平面向量基础练习题
平面向量小题测试答案
6.1平面向量的概念(分层作业)(夯实基础+能力提升)【夯实基础】一、单选题1.(2022·黑龙江·齐齐哈尔三立高级中学有限公司高一阶段练习)下列物理量中哪个是向量()A.质量B.功C.温度D.力2.(2022·全国·高一课时练习)给出下列说法:①零向量是没有方向的;②零向量的长度为0;③零向量的方向是任意的;④单位向量的模都相等.其中正确的有()A.1个B.2个C.3个D.4个-,,则向量AB的长度是()3.(2022·山东菏泽·高一期中)数轴上点A,B分别对应11A.0 B.1 C.2 D.34.(2022·全国·高一课时练习)下列说法错误的是()A.向量CD与向量DC长度相等B.单位向量都相等C.0的长度为0,且方向是任意的D.任一非零向量都可以平行移动5.(2022·新疆·和硕县高级中学高一阶段练习)下列说法正确的是()A.单位向量均相等B.单位向量1e=C.零向量与任意向量平行D.若向量a,b满足||||=,则a ba b=±6.(2022·湖北·鄂州市鄂城区教学研究室高一期中)下列关于零向量的说法正确的是()A.零向量没有大小B.零向量没有方向C.两个反方向向量之和为零向量D.零向量与任何向量都共线7.(2022·全国·高一课时练习)下列说法正确的是()A.向量AB与向量BA的长度相等B.两个有共同起点,且长度相等的向量,它们的终点相同C.零向量没有方向D.向量的模是一个正实数8.(2022·山东聊城一中高一期中)下列命题中正确的个数是()①起点相同的单位向量,终点必相同;A B C D四点必在一直线上;②已知向量AB CD∥,则,,,∥;③若,∥∥,则a ca b b c④共线的向量,若起点不同,则终点一定不同.A.0 B.1 C.2 D.3 9.(2022·山东东营·高一期中)设点O是正三角形ABC的中心,则向量AO,BO,CO是()A .相同的向量B .模相等的向量C .共起点的向量D .共线向量二、多选题10.(2022·全国·高一课时练习)下列结论中正确的是( ) A .a 与b 是否相等与a ,b 的方向无关 B .零向量相等,零向量的相反向量是零向量 C .若a ,b 都是单位向量,则a b =D .向量AB 与BA 相等11.(2022·全国·高一课时练习)下列结论中正确的是( ) A .若a b =,则a b = B .若,a b b c ==,则a c =C .若A ,B ,C ,D 是不共线的四点,则“AB DC =”是“四边形ABCD 为平行四边形”的充要条件D .“a b =”的充要条件是“a b =且a b ∥” 三、填空题12.(2022·全国·高一课时练习)下列各量中,是向量的是___________.(填序号) ①密度;②体积;③重力;④质量.13.(2022·全国·高一课时练习)已知圆O 的周长是2π,AB 是圆O 的直径,C 是圆周上一点,π,6BAC CD AB ∠=⊥于点D ,则CD =___________. 14.(2022·全国·高一课时练习)已知O 是正方形ABCD 的中心,则向量,,,AO OB CO OD 是___________.(填序号)①平行向量;②相等向量;③有相同终点的向量;④模都相等的向量.15.(2022·全国·高一课时练习)“AB CD ∥”是“A ,B ,C ,D 四点共线”的________条件. 16.(2022·北京市第十二中学高一期末)已知向量()1,a k =,()2,4b =,且a 与b 共线,则实数k =______.17.(2022·江苏·南京航空航天大学附属高级中学高一期中)已知()3,4a =,()4,2b =-,若2a b -与2ka b +为共线向量,则实数k =__________.18.(2022·全国·高一课时练习)设空间中有四个互异的点A 、B 、C 、D ,若()()20DB DC DA AB AC +-⋅-=,则ABC 的形状是___________.19.(2022·全国·高一专题练习)已知1e ,2e 是两个不共线的向量,而2125(1)2a k e k e =+-,1223b e e =+是两个共线向量,则实数k =________.20.(2022·山东菏泽·高一期中)已知A 、B 、C 是不共线的三点,向量m 与向量AB 是平行向量,与BC 是共线向量,则m =________. 四、解答题21.(2022·全国·高一专题练习)在平行四边形ABCD 中,E ,F 分别为边AD 、BC 的中点,如图.(1)写出与向量FC 共线的向量; (2)求证:BE FD =.22.(2022·全国·高一专题练习)在如图的方格纸上,已知向量a ,每个小正方形的边长为1.(1)试以B 为终点画一个向量b ,使b a =;(2)在图中画一个以A 为起点的向量c ,使5c =,并说出向量c 的终点的轨迹是什么?23.(2022·全国·高一专题练习)如图所示,在△ABC 中,D ,F 分别是BC ,AC 的中点,2,,3AE AD AB a AC b ===.(1)用,a b 表示,,,,AD AE AF BE BF ; (2)求证:B ,E ,F 三点共线.24.(2022·全国·高一课前预习)如图,设O 是▱ABCD 对角线的交点,则(1)与OA 的模相等的向量有多少个? (2)与OA 的模相等,方向相反的向量有哪些? (3)写出与AB 共线的向量.【能力提升】一、单选题 1.(2022·吉林·白城市通榆县毓才高级中学有限责任公司高一阶段练习)已知空间向量a ,b ,且2AB a b =+,56BC a b =-+,72CD a b =-,则一定共线的三点是( )A .、、ABC B .B CD 、、 C .A B D 、、 D .A C D 、、2.(2022·内蒙古大学满洲里学院附属中学高一期末)给出下列命题: ①两个具有共同终点的向量,一定是共线向量;②若A B C D ,,,是不共线的四点,则AB DC =是四边形ABCD 为平行四边形的充要条件; ③若a 与b 同向,且a b >,则a >b ; ④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中假命题的个数为( ) A .1 B .2 C .3D .43.(2022·全国·高一单元测试)已知I 为ABC 所在平面上的一点,且,,AB c AC b BC a ===.若0aIA bIB cIC ++=,则I 是ABC 的( ) A .重心B .内心C .外心D .垂心4.(2022·陕西渭南·高一期末)设e 是单位向量,3AB e =,3CD e =-,3AD =,则四边形ABCD 是( ) A .梯形B .菱形C .矩形D .正方形 5.(2022·浙江丽水·高一期末)若,a b 为非零向量,则“a a bb =”是“,a b 共线”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件6.(2022·全国·高一课时练习)在ABC 中,若BC a CA b AB c ===,,,且a b b c c a ⋅=⋅=⋅,则ABC 的形状为 A .等边三角形 B .直角三角形 C .等腰三角形D .以上都不对7.(2022·安徽·芜湖一中高一阶段练习)过ABC ∆内一点M 任作一条直线,再分别过顶点,,A B C 作l 的垂线,垂足分别为,,D E F ,若0AD BE CF ++=恒成立,则点M 是ABC ∆的A .垂心B .重心C .外心D .内心二、多选题8.(2022·广西贺州·高一期末)以下选项中,能使//a b 成立的条件有( ) A .a b = B .0a =或0b = C .2a b =-D .a 与b 都是单位向量9.(2022·全国·高一单元测试)下列叙述中错误的是( ) A .若a b =,则32a b >B .若//a b ,则a 与b 的方向相同或相反C .若//a b ,//b c ,则//a cD .对任一非零向量a ,||aa 是一个单位向量 三、填空题10.(2022·上海市向明中学高一期末)P 在线段12PP 的反向延长线上(不包括端点),且12PP PP λ=,则实数λ的取值范围是___________. 11.(2022·全国·高一课时练习)已知G 为ABC 内一点,且满足0AG BG CG ++=,则G 为ABC 的________心.12.(2022·陕西渭南·高一期末)若a 为任一非零向量,b 为单位向量,给出下列说法: ①a b >; ②a b ∥; ③0a >; ④1b =±;⑤若0a 是与a 同向的单位向量,则0a b =. 其中正确的说法有______个.13.(2022·全国·高一课时练习)如图,在矩形ABCD 中,M ,N 分别为线段BC ,CD 的中点,若12MN AM BN λλ=+,12,R λλ∈,则12λλ+的值为___________.14.(2022·全国·高一课时练习)如图,已知ABC 的面积为214cm ,D E ,分别为边AB ,BC 上的点,且::2:1AD DB BE EC ==,AE CD ,交于点P ,则APC △的面积为 _____2cm .四、解答题15.(2022·全国·高一课时练习)设1e ,2e 是两个不共线的向量,如果1232AB e e =-,124BC e e =+,1289CD e e =-.(1)求证:A ,B ,D 三点共线;(2)试确定λ的值,使122e e λ+和12e e λ+共线;(3)若12e e λ+与12e e λ+不共线,试求λ的取值范围.16.(2022·全国·高一课时练习)情境 我们应该熟悉如下结论:已知A ,B ,C ,O 为平面内不同在一条直线上的四点,则A ,B ,C 三点在一条直线上的充要条件是存在一对实数m ,n ,使OC mOA nOB =+,且1m n +=. 问题:怎样证明上述的结论呢?17.(2022·全国·高一课时练习)已知向量13(3,1),,22a b ⎛⎫=-= ⎪⎝⎭.(1)求与a 平行的单位向量c ;(2)设()23,x a t b y k ta b =++=-⋅+,若存在[0,2]t ∈,使得x y ⊥成立,求k 的取值范围.。
向量基础练习题(含答案)
;
三点共线,
,解得 ,
, , 。
故答案为 .
【点睛】
本题考查向量的线性运算和三点共线的综合应用,三点共线的运用是解题关键。
三点共线的判定方法:
(1)共线定理: , ;
(2)平面内任意一点 , ;
(3)平面内任意一点 , ,其中
19.
【解析】
【分析】
由向量垂直的充分必要条件可得: ,据此确定x的值即可.
直接利用向量的线性运算求出结果.
【详解】
∵ 为 所在平面内一点, ,
∴B,C,D三点共线。若 ∴ ,
化为: = + ,与 =− + ,比较可得: ,解得 。
即答案为—3.
【点睛】
本题考查的知识要点:向量的线性运算及相关的恒等变换问题.
22.
【解析】
【分析】
分别表示出 和 的坐标,而 ,根据 和 的坐标特点,求出 的值,得到答案。
根据向量加法的平行四边形法则,以及平行四边形的性质可得, ,解出向量 .
【详解】
根据平行四边形法则以及平行四边形的性质,
有 .
故选 .
【点睛】
本题考查向量加法的平行四边形法则以及平行四边形的性质,意在考查学生对这些知识的理
解掌握水平和分析推理能力。
9.C
【解析】
【分析】
利用向量的线性运算将 用 表示,由此即可得到 的值,从而可求 的值.
【点睛】
本小题主要考查平面向量相等、共线等知识的理解,属于基础题。
3.B
【解析】
【分析】
逐一分析选项,得到答案。
【详解】
A。单位向量的方向任意,所以当起点相同时,终点在以起点为圆心的单位圆上,终点不一定相同,所以选项不正确;
高中数学6.3《平面向量基本定理及坐标表示》基础过关练习题
第六章 6.3 6.3.2 6.3.3 6.3.4A 级——基础过关练1.给出下面几种说法: ①相等向量的坐标相同;②平面上一个向量对应于平面上唯一的坐标; ③一个坐标对应于唯一的一个向量;④平面上一个点与以原点为始点、该点为终点的向量一一对应. 其中正确说法的个数是( ) A .1 B .2 C .3D .4【答案】C 【解析】由向量坐标的定义不难看出一个坐标可对应无数个相等的向量,故③错误.2.设i ,j 是平面直角坐标系内分别与x 轴、y 轴正方向相同的两个单位向量,O 为坐标原点,若OA →=4i +2j ,OB →=3i +4j ,则2OA →+OB →的坐标是( )A .(1,-2)B .(7,6)C .(5,0)D .(11,8)【答案】D 【解析】因为OA →=(4,2),OB →=(3,4),所以2OA →+OB →=(8,4)+(3,4)=(11,8). 3.(2020年重庆月考)若向量a =(1,-2),b =(3,-1),则与a +b 共线的向量是( ) A .(-1,1) B .(-3,-4) C .(-4,3)D .(2,-3)【答案】C 【解析】向量a =(1,-2),b =(3,-1),则a +b =(4,-3),所以与a +b 共线的向量是λ(4,-3),其中λ∈R .当λ=-1时,共线向量是(-4,3).故选C .4.(2020年宁波月考)已知A (-1,2),B (2,-1),若点C 满足AC →+AB →=0,则点C 坐标为( )A .⎝⎛⎭⎫12,12B .(-3,3)C .(3,-3)D .(-4,5)D 【解析】设C (x ,y ),由A (-1,2),B (2,-1),得AC →=(x +1,y -2),AB →=(3,-3).又AC →+AB →=0,∴AC →=-AB →,即⎩⎪⎨⎪⎧x +1=-3,y -2=3,解得⎩⎪⎨⎪⎧x =-4,y =5.∴点C 坐标为(-4,5).故选D .5.已知A (-3,0),B (0,2),O 为坐标原点,点C 在∠AOB 内,且∠AOC =45°,设OC →=λOA →+(1-λ)OB →(λ∈R ),则λ的值为( )A .15B .13C .25D .23【答案】C 【解析】如图所示,因为∠AOC =45°,所以设C (x ,-x ),则OC →=(x ,-x ).又因为A (-3,0),B (0,2),所以λOA →+(1-λ)OB →=(-3λ,2-2λ).所以⎩⎪⎨⎪⎧x =-3λ,-x =2-2λ⇒λ=25.6.(2020年道里区校级期中)我国古代人民早在几千年以前就已经发现并应用勾股定理了,勾股定理最早的证明是东汉数学家赵爽在为《周髀算经》作注时给出的,被后人称作“赵爽弦图”.“赵爽弦图”是数形结合思想的体现,是中国古代数学的图腾,还被用作第24届国际数学家大会的会徽.如图,大正方形ABCD 是由4个全等的直角三角形和中间的小正方形组成的,若AB →=a ,AD →=b ,E 为BF 的中点,则AE →=( )A .45a +25bB .25a +45bC .43a +23bD .23a +43b【答案】A 【解析】如图所示,建立直角坐标系.设AB =1,BE =x ,则AE =2x .∴x 2+4x 2=1,解得x =55.设∠BAE =θ,则sin θ=55,cos θ=255.∴x E =255cos θ=45,y E =255sin θ=25.设AE →=mAB →+nAD →,则⎝⎛⎭⎫45,25=m (1,0)+n (0,1).∴m =45,n =25.∴AE →=45a +25b .故选A .7.(2020年苏州期末)已知A (2,-3),B (8,3),若AC →=2CB →,则点C 的坐标为________. 【答案】(6,1) 【解析】设C (x ,y ),∵A (2,-3),B (8,3),AC →=2CB →,∴(x -2,y +3)=2(8-x,3-y )=(16-2x,6-2y ).∴⎩⎪⎨⎪⎧x -2=16-2x ,y +3=6-2y ,解得x =6,y =1.∴点C 的坐标为(6,1).8.(2020年广州模拟)已知向量a =(3,-2),b =(m,1).若向量(a -2b )∥b ,则m =________. 【答案】-32 【解析】∵向量a =(3,-2),b =(m,1),∴a -2b =(3-2m ,-4).∵(a -2b )∥b ,∴-4m =3-2m .∴m =-32.9.已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°. (1)求向量OA →的坐标;(2)若B (3,-1),求BA →的坐标.解:(1)设点A (x ,y ),则x =43cos 60°=23,y =43sin 60°=6,即A (23,6),OA →=(23,6).(2)BA →=(23,6)-(3,-1)=(3,7).10.如图,已知点A (4,0),B (4,4),C (2,6),求AC 与OB 的交点P 的坐标.解:由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ), 则AP →=OP →-OA →=(4λ-4,4λ).连接OC ,则AC →=OC →-OA →=(-2,6).由AP →与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34.所以OP →=34OB →=(3,3).所以点P 的坐标为(3,3).B 级——能力提升练11.已知向量a =(1+λ,2),b =(3,4),若a ∥b ,则实数λ=( ) A .-113B .-52C .12D .53【答案】C 【解析】a ∥b ,∴4(1+λ)=6,即λ=12.12.已知a =(3,1),若将向量-2a 绕坐标原点逆时针旋转120°得到向量b ,则b 的坐标为( )A .(0,4)B .(23,-2)C .(-23,2)D .(2,-23)【答案】B 【解析】∵a =(3,1),∴-2a =(-23,-2).易知向量-2a 与x 轴正半轴的夹角α=150°(如图).向量-2a 绕坐标原点逆时针旋转120°得到向量b ,在第四象限,与x 轴正半轴的夹角β=30°,∴b =(23,-2).故选B .13.设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相连能构成四边形,则向量d 为( )A .(2,6)B .(-2,6)C .(2,-6)D .(-2,-6)【答案】D 【解析】由题意,得4a +4b -2c +2(a -c )+d =0,则d =-4a -4b +2c -2(a -c )=-6a -4b +4c =(-2,-6).14.向量a =(sin θ,cos θ),b =(1,2),则|a|=________;若向量a ,b 不能作为一组基底,则tan θ=________.【答案】1 12【解析】∵a =(sin θ,cos θ),∴|a |=sin 2θ+cos 2θ=1.∵向量a ,b 不能作为一组基底,∴a ∥b ,则2sin θ-cos θ=0,得tan θ=12.15.设向量OA →绕点O 逆时针旋转π2得向量OB →,且2OA →+OB →=(7,9),则向量OB →=________.【答案】⎝⎛⎭⎫-115,235 【解析】设OA →=(m ,n ),则OB →=(-n ,m ),所以2OA →+OB →=(2m -n,2n +m )=(7,9),即⎩⎪⎨⎪⎧2m -n =7,m +2n =9,解得⎩⎨⎧m =235,n =115.因此,OB →=⎝⎛⎭⎫-115,235. 16.已知点A (2,3),B (5,4),C (7,10)及AP →=AB →+λAC →(λ∈R ). (1)λ为何值时,点P 在第一、三象限的角平分线上?(2)四边形ABCP 能成为平行四边形吗?若能,求出相应的λ的值;若不能,请说明理由.解:设点P 的坐标为(x ,y ),则AP →=(x -2,y -3),AB →=(3,1),AC →=(5,7).∵AP →=AB →+λAC →,∴(x -2,y -3)=(3,1)+λ(5,7),即⎩⎪⎨⎪⎧x =5λ+5,y =7λ+4,∴P (5λ+5,7λ+4).(1)当点P 在第一、三象限的角平分线上时,由5λ+5=7λ+4得λ=12.(2)AB →=(3,1),PC →=(2-5λ,6-7λ).若四边形ABCP 为平行四边形,需AB →=PC →,于是⎩⎪⎨⎪⎧2-5λ=3,6-7λ=1.方程组无解,故四边形ABCP 不能成为平行四边形. 17.已知O 是△ABC 内一点,∠AOB =150°,∠BOC =90°,设OA →=a ,OB →=b ,OC →=c ,且|a|=2,|b|=1,|c|=3,试用a ,b 表示c.解:如图,以O 为原点,向量OA →所在的直线为x 轴建立平面直角坐标系.因为|a |=2,所以a =(2,0).设b =(x 1,y 1),所以x 1=|b |·cos 150°=1×⎝⎛⎭⎫-32=-32,y 1=|b |sin 150°=1×12=12 .所以b =⎝⎛⎭⎫-32,12 .同理可得c =⎝⎛⎭⎫-32,-332 .设c =λ1a +λ2b (λ1,λ2∈R ),所以⎝⎛⎭⎫-32,-332=λ1(2,0)+λ2⎝⎛⎭⎫-32,12=⎝⎛⎭⎫2λ1-32λ2,12λ2.所以⎩⎨⎧2λ1-32λ2=-32,12λ2=-332,解得⎩⎪⎨⎪⎧λ1=-3,λ2=-3 3.所以c =-3a -33b.C 级——探索创新练18.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点.若A ,B ,C 三点共线,则1a +1b的最小值为________.【答案】32+2 【解析】AB →=OB →-OA →=(2-a ,-2),AC →=OC →-OA →=(b +2,-4).由A ,B ,C 三点共线,得2(2-a )=b +2,即2a +b =2,所以a +b 2=1.所以1a +1b =a +b 2a +a +b 2b =32+b 2a +a b ≥32+212=32+2,当且仅当b 2a =a b ,即a =12,b =22时等号成立,所以最小值为32+ 2. 19.已知向量u =(x ,y )与向量v =(y,2y -x )的对应关系用v =f (u )表示. (1)求证:对任意向量a ,b 及常数m ,n ,恒有f (m a +n b )=mf (a )+nf (b )成立; (2)设a =(1,1),b =(1,0),求向量f (a )及f (b )的坐标; (3)求使f (c )=(p ,q )(p ,q 是常数)的向量c 的坐标. (1)证明:设a =(a 1,a 2),b =(b 1,b 2), 则m a +n b =(ma 1+nb 1,ma 2+nb 2),∴f (m a +n b )=(ma 2+nb 2,2ma 2+2nb 2-ma 1-nb 1),mf (a )+nf (b )=m (a 2,2a 2-a 1)+n (b 2,2b 2-b 1)=(ma 2+nb 2,2ma 2+2nb 2-ma 1-nb 1), ∴f (m a +n b )=mf (a )+nf (b )成立. (2)解:f (a )=(1,2×1-1)=(1,1), f (b )=(0,2×0-1)=(0,-1).(3)解:设c=(x,y),则f(c)=(y,2y-x)=(p,q),∴y=p,2y-x=q,∴x=2p-q,即向量c=(2p-q,p).。
高中数学6.4《平面向量的应用》基础过关练习题
第六章 6.4 6.4.1 6.4.2A 级——基础过关练1.两个大小相等的共点力F 1,F 2,当它们夹角为90°时,合力大小为20 N ,则当它们的夹角为120°时,合力大小为( )A .40 NB .10 2 NC .20 2 ND .10 3 N【答案】B 【解析】|F 1|=|F 2|=|F |cos 45°=102,当θ=120°时,由平行四边形法则知|F 合|=|F 1|=|F 2|=10 2 N.2.(2020年北京期末)已知正方形ABCD 的边长为1,设AB →=a ,BC →=b ,AC →=c ,则|a -b +c|等于( )A .0B .2C .2D .22【答案】C 【解析】如图,a +b =c ,则|a -b +c|=|2a|.又|a|=1,∴|a -b +c|=2.故选C .3.点O 是三角形ABC 所在平面内的一点,满足OA →·OB →=OB →·OC →=OC →·OA →,则点O 是△ABC 的( )A .三个内角的角平分线的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三条高的交点【答案】D 【解析】∵OA →·OB →=OB →·OC →,∴(OA →-OC →)·OB →=0.∴OB →·CA →=0.∴OB ⊥AC .同理OA ⊥BC ,OC ⊥AB ,∴O 为三条高的交点.4.(2020年深圳期中)已知两个力F 1,F 2的夹角为90°,它们的合力大小为10 N ,合力与F 1的夹角为60°,那么F 2的大小为( )A .5 3 NB .5 NC .10 ND .5 2 N【答案】A 【解析】由题意可知对应向量如图.由于α=60°,∴F 2的大小为|F 合|·sin60°=10×32=5 3 N .故选A .5.已知直角梯形ABCD 中,AB ⊥AD ,AB =2,DC =1,AB ∥DC ,则当AC ⊥BC 时,AD =( )A .1B .2C .3D .4【答案】A 【解析】建立平面直角坐标系,如图所示.设AD =t (t >0),则A (0,0),C (1,t ),B (2,0),则AC →=(1,t ),BC →=(-1,t ).由AC ⊥BC 知AC →·BC →=-1+t 2=0,解得t =1,故AD =1.6.一纤夫用牵绳拉船沿直线方向前进60 m ,若牵绳与行进方向夹角为30°,纤夫的拉力为50 N ,则纤夫对船所做的功为________J.【答案】1 5003 【解析】所做的功W =60×50×cos 30°=1 5003(J).7.在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP →·OA →=4,则y 与x 的函数关系式为________.【答案】y =-12x +2 【解析】OP →·OA →=(x ,y )·(1,2)=x +2y =4,∴x +2y -4=0,则y=-12x +2.8.在四边形ABCD 中,已知AB →=(4,-2),AC →=(7,4),AD →=(3,6),则四边形ABCD 的面积是________.【答案】30 【解析】BC →=AC →-AB →=(3,6)=AD →,又因为AB →·BC →=(4,-2)·(3,6)=0,所以四边形ABCD 为矩形.又|AB →|=42+(-2)2=25,|BC →|=32+62=35,所以S =|AB→||BC →|=25×35=30.9.如图,平行四边形ABCD 中,已知AD =1,AB =2,对角线BD =2,求对角线AC 的长.解:设AD →=a ,AB →=b ,则BD →=a -b ,AC →=a +b ,而|BD →|=|a -b|=a 2-2a·b +b 2=1+4-2a·b =5-2a·b =2,所以5-2a·b =4.所以a·b =12.又|AC →|2=|a +b|2=a 2+2a·b +b 2=1+4+2a·b =6,所以|AC →|=6,即AC = 6.10.质量m =2.0 kg 的木块,在平行于斜面向上的拉力|F|=10 N 的作用下,沿倾斜角θ=30°的光滑斜面向上滑行|s |=2.0 m 的距离(g 取9.8 N/kg).(1)分别求物体所受各力对物体所做的功;(2)在这个过程中,物体所受各力对物体做功的代数和是多少?解:(1)木块受三个力的作用,重力G ,拉力F 和支持力F N ,如图所示.拉力F 与位移s 方向相同,所以拉力对木块所做的功为W F =F·s =|F|·|s |cos 0°=20(J).支持力F N 的方向与位移方向垂直,不做功,所以W N =F N ·s =0.重力G 对物体所做的功为W G =G·s =|G||s |cos(90°+θ)=-19.6(J).(2)物体所受各力对物体做功的代数和为W =W F +W N +W G =0.4(J).B 级——能力提升练11.△ABC 中,若动点D 满足CA →2-CB →2+2AB →·CD →=0,则点D 的轨迹一定通过△ABC 的( )A .外心B .内心C .垂心D .重心【答案】A 【解析】取AB 的中点E ,则CA →2-CB →2+2AB →·CD →=(CA →+CB →)·(CA →-CB →)+2AB →·CD →=2CE →·BA →+2AB →·CD →=2AB →·(CD →-CE →)=2AB →·ED →=0,∴AB ⊥ED ,即点D 在AB 的垂直平分线上.∴点D 的轨迹一定通过△ABC 的外心.12.如图,用两根分别长52米和10米的绳子,将100 N 的物体吊在水平屋顶AB 上,平衡后,G 点距屋顶距离恰好为5米,绳子的重量忽略不计,则A 处所受力的大小为( )A .1202-50 6 NB .1502-50 6 NC .1203-50 2 ND .1503-50 2 N【答案】B 【解析】如图,由已知条件可知AG 与垂直方向成45°角,BG 与垂直方向成60°角.设A 处所受力为F a ,B 处所受力为F b ,物体的重力为G ,∠EGC =60°,∠EGD =45°,则有|F a |·cos 45°+|F b |cos 60°=G =100①,且|F a |·sin 45°=|F b |sin 60°②.由①②解得|F a |=1502-50 6.故选B .13.(2020年太原月考)在△ABC 中,若AD →=13AB →+12AC →,记S 1=S △ABD ,S 2=S △ACD ,S 3=S △BCD ,则下列结论正确的是( )A .S 3S 1=23B .S 2S 3=12C .S 2S 1=23D .S 1+S 2S 3=163【答案】C 【解析】如图,作AE →=13AB →,AF →=12AC →,则AD →=AE →+AF →,∴四边形AEDF是平行四边形.∴S △ADE =S △ADF .设△ABD 的边AB 上的高为h 1,△ACD 的边AC 上的高为h 2,则12|AE →|h 1=12|AF →|h 2,∴13·⎝⎛⎭⎫12|AB →|h 1=12·⎝⎛⎭⎫12|AC →|h 2.∴13S 1=12S 2.∴S 2S 1=1312=23.故选C .14.如图所示,已知点A (4,0),B (4,4),C (2,6),则AC 和OB 的交点P 的坐标为________.(3,3) 【解析】设P (x ,y ),OB →=(4,4),OP →=(x ,y ),由于OB →∥OP →,所以x -y =0.AC →=(-2,6),AP →=(x -4,y ),由于AP →∥AC →,所以6(x -4)+2y =0.可得x =3,y =3,故P 的坐标是(3,3).15.已知P ,Q 为△ABC 内的两点,且AQ →=14AC →+12AB →,AP →=12AC →+14AB →,则△APQ 的面积与△ABC 的面积之比为________.【答案】316 【解析】如图,根据题意,P ,Q 为△ABC 中位线DE ,DF 的中点,PQ =12EF =14BC ,而A 到PQ 的距离是到BC 距离的34,根据三角形的面积公式可知,S △APQ =316S △ABC .16.若a ,b 是两个不共线的非零向量,t ∈R .(1)t 为何值时,共起点的三个向量a ,t b ,13(a +b )的终点在一条直线上?(2)若|a|=|b|且a 与b 的夹角为60°,t 为何值时,|a -t b |最小?解:(1)由题意得a -t b 与a -13(a +b )共线,则设a -t b =m ⎣⎡⎦⎤a -13(a +b ),m ∈R ,化简得⎝⎛⎭⎫23m -1a =⎝⎛⎭⎫m 3-t b .因为a 与b 不共线,所以⎩⎨⎧23m -1=0,m 3-t =0,解得⎩⎨⎧m =32,t =12.所以当t =12时,a ,t b ,13(a +b )三个向量的终点在一条直线上.(2)因为|a|=|b|,所以|a -t b |2=(a -t b )2=|a |2+t 2|b |2-2t |a||b |cos 60°=(1+t 2-t )|a |2=⎣⎡⎦⎤⎝⎛⎭⎫t -122+34·|a |2.所以当t =12时,|a -t b |有最小值32|a |.17.某人骑车以每小时a 千米的速度向东行驶,感到风从正北方向吹来;而当速度为每小时2a 千米时,感到风从东北方向吹来,试求实际风速和方向.解:设a 表示此人以每小时a 千米的速度向东行驶的向量,无风时此人感到风速为-a .设实际风速为v ,那么此时人感到风速为v -a ,设OA →=-a ,OB →=-2a ,PO →=v .因为PO →+OA →=P A →,所以P A →=v -a ,这就是感到由正北方向吹来的风速.因为PO →+OB →=PB →,所以PB →=v -2a .于是当此人的速度是原来的2倍时所感受到由东北方向吹来的风速就是PB →.由题意∠PBO =45°,P A ⊥BO ,BA =AO ,从而,△POB 为等腰直角三角形,所以PO =PB =2a ,即|v |=2a .所以实际风速是每小时2a 千米的西北风.C 级——探索创新练18.在△ABC 中,AC =BC =33AB =1,且CE →=xCA →,CF →=yCB →,其中x ,y ∈(0,1),且x +4y =1.若M ,N 分别为线段EF ,AB 中点,则线段MN 的最小值为________.【答案】77【解析】如图,连接CM ,CN ,∵等腰三角形ABC 中,AC =BC =1,AB =3,∴∠ACB =120°.∴CA →·CB →=|CA →|·|CB →|cos 120°=-12.又CM 是△CEF 的中线,∴CM →=12(CE→+CF →)=12(xCA →+yCB →).同理可得CN →=12(CA →+CB →),∴MN →=CN →-CM →=1-x 2CA →+1-y 2CB →.∴MN→2=(1-x )24+(1-x )(1-y )2×⎝⎛⎭⎫-12+(1-y )24.由x +4y =1,得1-x =4y ,代入上式得MN →2=214y 2-32y +14.又x ,y ∈(0,1),∴当y =17时,MN →2取得最小值17,此时|MN →|的最小值为77,即线段MN 的最小值为77.。
2023年高考数学微专题练习专练26平面向量基本定理及坐标表示含解析理
专练26 平面向量基本定理及坐标表示命题范围:平面向量基本定理及坐标表示,用坐标表示平面向量的加法、减法与数乘运算,用坐标表示的平面向量共线的条件.[基础强化]一、选择题1.如果e 1,e 2是平面内一组不共线的向量,那么下列四组向量中,不能作为平面内所有向量的一组基底的是( )A .e 1与e 1+e 2B .e 1-2e 2与e 1+2e 2C .e 1+e 2与e 1-e 2D .e 1+3e 2与6e 2+2e 12.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b =( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2)3.已知a =(2,1),b =(1,x ),c =(-1,1).若(a +b )∥(b -c ),且c =m a +n b ,则m +n 等于( )A .14B .1 C .-13D .-124.设OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +2b的最小值是( )A.2B .4 C .6D .85.已知点M (5,-6)和向量a =(1,-2),若MN →=-3a ,则点N 的坐标为( ) A.(2,0) B .(-3,6) C .(6,2) D .(-2,0)6.已知向量m =(sin A ,12)与向量n =(3,sin A +3cos A )共线,其中A 是△ABC 的内角,则角A 的大小为( )64C .π3D .π27.已知向量a =(1,-2),b =(x ,3y -5),且a ∥b ,若x ,y 均为正数,则xy 的最大值是( )A .26B .2512C .2524D .2568.设向量a =(-3,4),向量b 与向量a 方向相反,且|b |=10,则向量b 的坐标为( ) A .(-65,85) B .(-6,8)C .(65,-85)D .(6,-8)9.[2022·安徽省蚌埠市质检]如图,在梯形ABCD 中,AB ∥DC 且AB =2DC ,点E 为线段BC 靠近点C 的一个四等分点,点F 为线段AD 的中点,AE 与BF 交于点O ,且AO →=xAB →+yBC →,则x +y 的值为( )A .1B .57C .1417D .56 二、填空题10.[2021·全国甲卷]已知向量a =(3,1),b =(1,0),c =a +k b .若a ⊥c ,则k =________. 11.[2022·安徽省滁州市质检]已知a =(1,3),a +b =(-1,2),则|a -b |+a ·b =________.12.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.[能力提升]13.已知在Rt△ABC 中,A =π2,AB =3,AC =4,P 为BC 上任意一点(含B ,C ),以P为圆心,1为半径作圆,Q 为圆上任意一点,设AQ →=aAB →+bAC →,则a +b 的最大值为( )124C .1712D .191214.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA →=λCE →+μDB →(λ,μ∈R ),则λ+μ的值为( )A .65B .85C .2D .8315.[2022·东北三省三校模拟]在正六边形ABCDEF 中,点G 为线段DF (含端点)上的动点,若CG →=λCB →+μCD →(λ,μ∈R ),则λ+μ的取值范围是________.16.如图,已知平面内有三个向量OA →、OB →、OC →,其中OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,且|OA →|=|OB →|=1,|OC →|=2 3.若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值为________.专练26 平面向量基本定理及坐标表示1.D 选项A 中,设e 1+e 2=λe 1,则⎩⎪⎨⎪⎧1=λ,1=0无解;选项B 中,设e 1-2e 2=λ(e 1+2e 2),则⎩⎪⎨⎪⎧1=λ,-2=2λ无解;选项C 中,设e 1+e 2=λ(e 1-e 2),则⎩⎪⎨⎪⎧1=λ,1=-λ无解;选项D 中,e 1+3e 2=12(6e 2+2e 1),所以两向量是共线向量,不能作为平面内所有向量的一组基底.2.D 12a -32b =(12,12)-(32,-32)=(-1,2).3.C ∵a +b =(3,1+x ),b -c =(2,x -1), ∵(a +b )∥(b -c ),∴3(x -1)=2(x +1), 得x =5,∴b =(1,5),又c =m a +n b , ∴(-1,1)=m (2,1)+n (1,5)∴⎩⎪⎨⎪⎧2m +n =-1,m +5n =1,得⎩⎪⎨⎪⎧m =-23,n =13,∴m +n =-23+13=-13.4.D ∵AB →=OB →-OA →=(a -1,1),CB →=(a +b ,-1), ∵A ,B ,C 三点共线,∴(a -1)×(-1)=1×(a +b ),∴2a +b =1, 又a >0,b >0,∴1a +2b =(1a +2b )(2a +b )=4+b a +4ab≥4+2b a ·4a b =8(当且仅当b a =4a b 即a =14,b =12时等号成立)5.A 设点N 的坐标为(x ,y ),则MN →=(x -5,y +6) 又MN →=-3a =(-3,6), ∴⎩⎪⎨⎪⎧x -5=-3,y +6=6,得⎩⎪⎨⎪⎧x =2,y =0.6.C ∵m ∥n ,∴sin A (sin A +3cos A )-32=0,∴2sin 2A +23sin A cos A =3. 可化为1-cos2A +3sin2A =3, ∴sin (2A -π6)=1.∵A ∈(0,π),∴(2A -π6)∈(-π6,11π6).因此2A -π6=π2,解得A =π3.故选C.7.C ∵a ∥b ,∴3y -5=-2x ,∴2x +3y =5,又x ,y 均为正数,∴5=2x +3y ≥22x ·3y =26xy ,(当且仅当2x =3y ,即:x =54,y =56时等号成立),∴xy ≤2524,故选C.8.D 由题意不妨设b =(-3m ,4m )(m <0),则|b |=(-3m )2+(4m )2=10,解得m =-2或m =2(舍去),所以b =(6,-8),故选D.9.C 根据向量的线性运算法则,可得AO →=xAB →+yBC →=xAB →+y (BA →+AC →) =xAB →-yAB →+yAC →=(x -y )AB →+y ·(AD →+DC →)=(x -y )AB →+y ·(2AF →+12AB →)=(x -y )AB →+2yAF →+12yAB →=(x -y 2)AB →+2yAF →,因为B ,O ,F 三点共线,可得x -y2+2y =1,即2x +3y -2=0;又由BO →=BA →+AO →=BA →+xAB →+yBC →=BA →-xBA →+y ·43BE →=(1-x )BA →+4y 3BE →,因为A ,O ,E 三点共线,可得1-x +4y3=1,即3x -4y =0,联立方程组⎩⎪⎨⎪⎧2x +3y -2=03x -4y =0,解得x =817,y =617,所以x +y =1417.10.-103解析:c =(3,1)+(k ,0)=(3+k ,1),a ·c =3(3+k )+1×1=10+3k =0,得k =-103. 11.0解析:a =(1,3),a +b =(-1,2),b =(-1,2)-(1,3)=(-2,-1),a -b =(3,4),|a -b |+a ·b =9+16+(-2-3)=0. 12.3解析:∵MA →+MB →+MC →=0,∴M 为△ABC 的重心,则AM →=12(AB →+AC →)×23=13(AB →+AC →),∴AB →+AC →=3AM →,∴m =3. 13.C根据题设条件建立如图所示的平面直角坐标系,则C (0,4),B (3,0),易知点Q 运动的区域为图中的两条线段DE ,GF 与两个半圆围成的区域(含边界),由AQ →=aAB →+bAC →=(3a ,4b ),设z =a +b ,则b =z -a ,所以AQ →=(3a ,4z -4a ).设Q (x ,y ),所以⎩⎪⎨⎪⎧x =3a ,y =4z -4a ,消去a ,得y =-43x +4z ,则当点P 运动时,直线y =-43x +4z 与圆相切时,直线的纵截距最大,即z 取得最大值,不妨作AQ ⊥BC 于Q ,并延长交每个圆的公切线于点R ,则|AQ |=125,|AR |=175,所以点A 到直线y =-43x +4z ,即4x +3y -12z =0的距离为175,所以|-12z |32+42=175,解得z =1712,即a +b 的最大值为1712. 14.B建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD =2,所以C (2,0),A (0,2),B (1,2),E (0,1),∴CA →=(-2,2),CE →=(-2,1),DB →=(1,2),∵CA →=λCE →+μDB →,∴(-2,2)=λ(-2,1)+μ(1,2),∴⎩⎪⎨⎪⎧-2λ+μ=-2,λ+2μ=2,解得λ=65,μ=25,则λ+μ=85.故选B.15.[1,4]解析:根据题意,不妨设正六边形ABCDEF 的边长为23,以中心O 为原点建立平面直角坐标系,如图所示:则可得F (-23,0),D (3,3),C (23,0),B (3,-3), 设点G 的坐标为(m ,n ),则CG →=(m -23,n ), CB →=(-3,-3),CD →=(-3,3),由CG →=λCB →+μCD →可得:m -23=-3λ-3μ, 即λ+μ=-33m +2, 数形结合可知:m ∈[-23,3],则-33m +2∈[1,4],即λ+μ的取值范围为[1,4].16.6解析:解法一:如图,作平行四边形OB 1CA 1,则OC →=OB 1+OA 1,因为OA →与OB →的夹角为120°,OA →与OC →的夹角为30°,所以∠B 1OC =90°.在Rt△OB 1C 中,∠OCB 1=30°,|OC |=23, 所以|OB 1|=2,|B 1C |=4,所以|OA 1|=|B 1C |=4,所以OC →=4OA →+2OB →,所以λ=4,μ=2,所以λ+μ=6. 解法二:以O 为原点,建立如图所示的平面直角坐标系,则A (1,0),B (-12,32),C (3,3). 由OC →=λOA →+μOB →,得⎩⎪⎨⎪⎧3=λ-12μ,3=32μ,解得⎩⎪⎨⎪⎧λ=4,μ=2.所以λ+μ=6.。
高中数学必修二6.1《平面向量的概念》高频考点练习题目含答案解析
第六章平面向量及其应用6.1 平面向量的概念课后篇巩固提升必备知识基础练1.有下列物理量:①质量;②速度;③力;④加速度;⑤路程;⑥功.其中,不是向量的个数是( )A.1B.2C.3D.4,又有方向,所以它们是向量;而质量、路程和功只有大小,没有方向,所以它们不是向量,故不是向量的个数是3.2.在同一平面上,把向量所在直线平行于某一直线的一切向量的起点放在同一点,那么这些向量的终点所构成的图形是( ) A.一条线段 B.一条直线C.圆上一群孤立的点D.一个半径为1的圆,而向量所在直线平行于同一直线,所以随着向量模的变化,向量的终点构成的是一条直线.3.如图所示,在正三角形ABC 中,P ,Q ,R 分别是AB ,BC ,AC 的中点,则与向量PQ⃗⃗⃗⃗⃗ 相等的向量是( )A.PR ⃗⃗⃗⃗⃗ 与QR ⃗⃗⃗⃗⃗B.AR ⃗⃗⃗⃗⃗ 与RC⃗⃗⃗⃗⃗ C.RA ⃗⃗⃗⃗⃗ 与CR ⃗⃗⃗⃗⃗ D.PA ⃗⃗⃗⃗⃗ 与QR ⃗⃗⃗⃗⃗,方向相同,因此AR ⃗⃗⃗⃗⃗ 与RC ⃗⃗⃗⃗⃗ 都是和PQ ⃗⃗⃗⃗⃗ 相等的向量. 4.若|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |且BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,则四边形ABCD 的形状为 ( )A.正方形B.矩形C.菱形D.等腰梯形BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ 知,AB=CD 且AB ∥CD ,即四边形ABCD 为平行四边形.又因为|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |,所以四边形ABCD 为菱形.5.(多选题)(2021福建福清期中)下列说法正确的是( )A.若|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |且BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,则四边形ABCD 是菱形B.在平行四边形ABCD 中,一定有AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗C.若a =b ,b =c ,则a =cD.若a ∥b ,b ∥c ,则a ∥cA,由BA ⃗⃗⃗⃗⃗ =CD ⃗⃗⃗⃗⃗ ,知AB=CD 且AB ∥CD ,即四边形ABCD 为平行四边形,又因为|AB ⃗⃗⃗⃗⃗ |=|AD ⃗⃗⃗⃗⃗ |,所以四边形ABCD 为菱形,故A 正确;对于B,在平行四边形ABCD 中,对边平行且相等,AB ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ 的方向相同,所以AB ⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ ,故B 正确;对于C,由向量相等的定义知,当a =b ,b =c 时,有a =c ,故C 正确;对于D,当b =0时不成立,故D 错误.故选ABC .6.(多选题)设点O 是正方形ABCD 的中心,则下列结论正确的是( ) A.AO ⃗⃗⃗⃗⃗ =OC ⃗⃗⃗⃗⃗ B.BO ⃗⃗⃗⃗⃗ ∥DB⃗⃗⃗⃗⃗⃗ C.AB ⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗ 共线 D.AO ⃗⃗⃗⃗⃗ =BO⃗⃗⃗⃗⃗图,∵AO ⃗⃗⃗⃗⃗ 与OC⃗⃗⃗⃗⃗ 方向相同,长度相等,∴选项A 正确; ∵BO ⃗⃗⃗⃗⃗ 与DB ⃗⃗⃗⃗⃗⃗ 的方向相反, ∴BO ⃗⃗⃗⃗⃗ ∥DB ⃗⃗⃗⃗⃗⃗ ,选项B 正确; ∵AB ∥CD ,∴AB⃗⃗⃗⃗⃗ 与CD ⃗⃗⃗⃗⃗ 共线, ∴选项C 正确; ∵AO ⃗⃗⃗⃗⃗ 与BO ⃗⃗⃗⃗⃗ 方向不同,∴AO ⃗⃗⃗⃗⃗ ≠BO⃗⃗⃗⃗⃗ ,∴选项D 错误. 7.如图,四边形ABCD ,CEFG ,CGHD 都是全等的菱形,HE 与CG 相交于点M ,则下列关系不一定成立的是( )A.|AB ⃗⃗⃗⃗⃗ |=|EF ⃗⃗⃗⃗⃗ |B.AB ⃗⃗⃗⃗⃗ 与FH ⃗⃗⃗⃗⃗ 共线C.BD ⃗⃗⃗⃗⃗⃗ 与EH ⃗⃗⃗⃗⃗⃗ 共线D.DC ⃗⃗⃗⃗⃗ 与EC⃗⃗⃗⃗⃗ 共线,直线BD 与EH 不一定平行,因此BD ⃗⃗⃗⃗⃗⃗ 不一定与EH ⃗⃗⃗⃗⃗⃗ 共线,C 项错误. 8.如图所示,4×3的矩形(每个小方格的边长均为1),在起点和终点都在小方格的顶点处的向量中,试问: (1)与AB⃗⃗⃗⃗⃗ 相等的向量共有几个? (2)与AB⃗⃗⃗⃗⃗ 平行且模为√2的向量共有几个? (3)与AB⃗⃗⃗⃗⃗ 方向相同且模为3√2的向量共有几个?与向量AB⃗⃗⃗⃗⃗ 相等的向量共有5个(不包括AB ⃗⃗⃗⃗⃗ 本身). (2)与向量AB⃗⃗⃗⃗⃗ 平行且模为√2的向量共有24个. (3)与向量AB⃗⃗⃗⃗⃗ 方向相同且模为3√2的向量共有2个. 关键能力提升练9.已知a 为单位向量,下列说法正确的是( ) A.a 的长度为一个单位长度 B.a 与0不平行C.与a 共线的单位向量只有一个(不包括a 本身)D.a 与0不是平行向量已知a 为单位向量,∴a 的长度为一个单位长度,故A 正确;a 与0平行,故B 错误;与a 共线的单位向量有无数个,故C 错误;零向量与任何向量都是平行向量,故D 错误. 10.(多选题)如图,在菱形ABCD 中,∠DAB=120°,则以下说法正确的是( )A.与AB⃗⃗⃗⃗⃗ 相等的向量只有一个(不包括AB ⃗⃗⃗⃗⃗ 本身) B.与AB⃗⃗⃗⃗⃗ 的模相等的向量有9个(不包括AB ⃗⃗⃗⃗⃗ 本身) C.BD ⃗⃗⃗⃗⃗⃗ 的模为DA ⃗⃗⃗⃗⃗ 模的√3倍 D.CB ⃗⃗⃗⃗⃗ 与DA ⃗⃗⃗⃗⃗ 不共线项,由相等向量的定义知,与AB⃗⃗⃗⃗⃗ 相等的向量只有DC ⃗⃗⃗⃗⃗ ,故A 正确;B 项,因为AB=BC=CD=DA=AC ,所以与AB ⃗⃗⃗⃗⃗ 的模相等的向量除AB ⃗⃗⃗⃗⃗ 外有9个,故B 正确;C 项,在Rt △ADO 中,∠DAO=60°,则DO=√32DA ,所以BD=√3DA ,故C 正确;D 项,因为四边形ABCD 是菱形,所以CB ⃗⃗⃗⃗⃗ 与DA ⃗⃗⃗⃗⃗ 共线,故D 错误.11.给出下列四个条件:①a =b ;②|a |=|b |;③a 与b 方向相反;④|a |=0或|b |=0.其中能使a ∥b 成立的条件是 .(填序号)a =b ,则a 与b 大小相等且方向相同,所以a ∥b ;若|a |=|b |,则a 与b 的大小相等,而方向不确定,因此不一定有a ∥b ;方向相同或相反的向量都是平行向量,因此若a 与b 方向相反,则有a ∥b ;零向量与任意向量平行,所以若|a |=0或|b |=0,则a ∥b .12.如图,四边形ABCD 和ABDE 都是边长为1的菱形,已知下列说法: ①AE ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ ,CB ⃗⃗⃗⃗⃗ ,DE ⃗⃗⃗⃗⃗ 都是单位向量; ②AB ⃗⃗⃗⃗⃗ ∥DE ⃗⃗⃗⃗⃗ ,DE ⃗⃗⃗⃗⃗ ∥DC ⃗⃗⃗⃗⃗ ; ③与AB⃗⃗⃗⃗⃗ 相等的向量有3个(不包括AB ⃗⃗⃗⃗⃗ 本身); ④与AE ⃗⃗⃗⃗⃗ 共线的向量有3个(不包括AE⃗⃗⃗⃗⃗ 本身); ⑤与向量DC⃗⃗⃗⃗⃗ 大小相等、方向相反的向量为DE ⃗⃗⃗⃗⃗ ,CD ⃗⃗⃗⃗⃗ ,BA ⃗⃗⃗⃗⃗ . 其中正确的是 .(填序号)由两菱形的边长都为1,故①正确;②正确;③与AB ⃗⃗⃗⃗⃗ 相等的向量是ED ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,故③错误;④与AE ⃗⃗⃗⃗⃗ 共线的向量是EA ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ ,DB⃗⃗⃗⃗⃗⃗ ,故④正确;⑤正确.13.已知在四边形ABCD 中,AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ ,且|AB ⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ |,tan D=√3,判断四边形ABCD 的形状.在四边形ABCD 中,AB⃗⃗⃗⃗⃗ =DC ⃗⃗⃗⃗⃗ , ∴AB DC ,∴四边形ABCD 是平行四边形. ∵tan D=√3,∴∠B=∠D=60°.又|AB⃗⃗⃗⃗⃗ |=|AC ⃗⃗⃗⃗⃗ |,∴△ABC 是等边三角形. ∴AB=BC ,故四边形ABCD 是菱形.学科素养创新练14.如图所示的方格纸由若干个边长为1的小正方形组成,方格纸中有两个定点A ,B ,点C 为小正方形的顶点,且|AC⃗⃗⃗⃗⃗ |=√5.(1)画出所有的向量AC⃗⃗⃗⃗⃗ ;⃗⃗⃗⃗⃗ |的最大值与最小值.(2)求|BC⃗⃗⃗⃗⃗ 如图所示.(2)由(1)所画的图知,⃗⃗⃗⃗⃗ |取得最小值√12+22=√5;①当点C位于点C1或C2时,|BC⃗⃗⃗⃗⃗ |取得最大值√42+52=√41.②当点C位于点C5或C6时,|BC⃗⃗⃗⃗⃗ |的最大值为√41,最小值为√5.∴|BC。
数学4(必修)第二章 平面向量练习题A
(数学4必修)第二章 平面向量练习题A[基础训练A 组] 一、选择题1.化简AC - BD + CD - AB得( )A .AB B .C .D .0 2.设00,a b 分别是与,a b向的单位向量,则下列结论中正确的是( )A .00a b =B .001a b ⋅=C .00||||2a b +=D .00||2a b +=3.已知下列命题中:(1)若k R ∈,且0kb = ,则0k =或0b =,(2)若0a b ⋅= ,则0a = 或0b =(3)若不平行的两个非零向量b a ,,满足||||b a =,则0)()(=-⋅+b a b a(4)若a 与b 平行,则||||a b a b =⋅其中真命题的个数是( )A .0B .1C .2D .34.下列命题中正确的是( )A .若a ⋅b =0,则a =0或b =0B .若a ⋅b =0,则a ∥bC .若a ∥b ,则a 在b 上的投影为|a|D .若a ⊥b ,则a ⋅b =(a ⋅b)25.已知平面向量(3,1)a = ,(,3)b x =- ,且a b ⊥,则x =( )A .3-B .1-C .1D .36.已知向量)sin ,(cos θθ=a ,向量)1,3(-=b 则|2|b a -的最大值,最小值分别是( )A .0,24B .24,4C .16,0D .4,0二、填空题1.若=)8,2(,=)2,7(-,则31=_________2.平面向量,a b 中,若(4,3)a =-=1,且5a b ⋅= ,则向量=____。
3.若3a = ,2b = ,且与的夹角为060,则a b -= 。
4.把平面上一切单位向量归结到共同的始点,那么这些向量的终点 所构成的图形是___________。
5.已知)1,2(=a与)2,1(=b ,要使b t a +最小,则实数t 的值为___________。
三、解答题1.如图,ABCD 中,,E F 分别是,BC DC 的中点,G 为交点,若AB =a,=b ,试以a ,b 为基底表示DE 、BF 、CG .2.已知向量 a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=- ,求向量a 的模。
初中数学平面向量基础专项练习题(含答案)
A.0 个 B.1 个 C.2 个 D.无数个
10.如图所示,已知点 G 是△ABC 的重心,过点 G 作直线与 AB,AC 两边分别交于 M,N 两
1
点,且
AM
xAB,
AN
yAC
,则
xy x y
的值为(
)
A...3. B...13. . C...2. D...12..
11.设 a , b 是两个非零向量,下列命题正确的是( ) A.若 a b a b ,则 a b B.若 a b ,则 a b a b
28.已知 e1 , e2 为不共线的单位向量,
m
1 4
,n
ke1 e2 (k R)
,若
mn
1 4
恒成
立,则 e1 , e2 的夹角的最小值为_________
29.(本小题满分 12 分)已知△ABC 在平面直角坐标系 xOy 中,其顶点 A,B,C 坐标分别
为 A(2,3) , B(1,6) , C(2 cos ,2sin ) .
可以唯一地表示成 c a b ( , 为实数),则实数 m 的取值范围是( )
A.(-∞,2)
B.
6 5
,
C.(-∞,-2)∪(-2,+∞)
D.
,
6 5
6 5
,
7.已知 RtABC ,点 D 为斜边 BC 的中点, AB 6
2,
AC 6 ,
AE
1
ED
,则
2
AE EB 等于 A. -14
∴ ( + )=2
故选 D.
19. 1
20.120° 由条件知|a|= 5 ,|b|=2 5 ,a+b=(-1,-2),∴|a+b|= 5 ,∵(a+b)·c= 5 ,
平面向量及其应用练习题(有答案)
一、多选题1.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知cos cos 2B bC a c=-,4ABC S =△,且b = )A .1cos 2B =B .cos 2B =C .a c +=D .a c +=2.给出下列结论,其中真命题为( ) A .若0a ≠,0a b ⋅=,则0b =B .向量a 、b 为不共线的非零向量,则22()a b a b ⋅=⋅ C .若非零向量a 、b 满足222a ba b +=+,则a 与b 垂直D .若向量a 、b 是两个互相垂直的单位向量,则向量a b +与a b -的夹角是2π3.在ABC ∆中,内角,,A B C 的对边分别为,,,a b c 若,2,6A a c π===则角C 的大小是( ) A .6π B .3π C .56π D .23π 4.下列结论正确的是( )A .在ABC 中,若AB >,则sin sin A B >B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形D .在ABC 中,若3b =,60A =︒,三角形面积S = 5.设P 是ABC 所在平面内的一点,3AB AC AP +=则( ) A .0PA PB += B .0PB PC += C .PA AB PB += D .0PA PB PC ++= 6.在△ABC 中,若cos cos a A b B =,则△ABC 的形状可能为( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形7.在△ABC 中,AB =AC ,BC =4,D 为BC 的中点,则以下结论正确的是( ) A .BD AD AB -= B .1()2AD AB AC =+ C .8BA BC ⋅=D .AB AC AB AC +=-8.有下列说法,其中错误的说法为( ). A .若a ∥b ,b ∥c ,则a ∥cB .若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是三角形ABC 的垂心 C .两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向D .若a ∥b ,则存在唯一实数λ使得a b λ=9.设a 、b 是两个非零向量,则下列描述正确的有( ) A .若a b a b +=-,则存在实数λ使得λa bB .若a b ⊥,则a b a b +=-C .若a b a b +=+,则a 在b 方向上的投影向量为aD .若存在实数λ使得λab ,则a b a b +=-10.如图所示,梯形ABCD 为等腰梯形,则下列关系正确的是( )A .AB DC =B .AB DC =C .AB DC >D .BC AD ∥11.如图,46⨯的方格纸(小正方形的边长为1)中有一个向量OA (以图中的格点O 为起点,格点A 为终点),则( )A .分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有11个B .满足10OA OB -=B 共有3个C .存在格点B ,C ,使得OA OB OC =+D .满足1OA OB ⋅=的格点B 共有4个 12.下列说法中错误的是( )A .向量AB 与CD 是共线向量,则A ,B ,C ,D 四点必在一条直线上 B .零向量与零向量共线 C .若,a b b c ==,则a c =D .温度含零上温度和零下温度,所以温度是向量13.如果12,e e 是平面α内两个不共线的向量,那么下列说法中正确的是( )A .12(,),e e λμλμ+∈R 可以表示平面α内的所有向量B .对于平面α内任一向量a ,使12,a e e λμ=+的实数对(,)λμ有无穷多个C .若向量1112e e λμ+与2122e e λμ+共线,则有且只有一个实数λ,使得()11122122e e e e λμλλμ+=+D .若存在实数,λμ使得120e e λμ+=,则0λμ==14.题目文件丢失!15.题目文件丢失!二、平面向量及其应用选择题16.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b= ABC .2D .317.O 为ABC ∆内一点内角A 、B 、C 所对的边分别为a 、b 、c ,已知0a OA b OB c OC ⋅+⋅+⋅=,且tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=,若a =边BC 所对的ABC ∆外接圆的劣弧长为( ) A .23π B .43π C .6π D .3π 18.已知向量OA 与OB 的夹角为θ,2OA =,1OB =,=OP tOA ,()1OQ t OB =-,PQ 在t t =0时取得最小值,则当0105t <<时,夹角θ的取值范围为( ) A .0,3π⎛⎫ ⎪⎝⎭B .,32ππ⎛⎫ ⎪⎝⎭C .2,23ππ⎛⎫⎪⎝⎭D .20,3π⎛⎫ ⎪⎝⎭19.已知点O 是ABC 内部一点,并且满足2350OA OB OC ++=,OAC 的面积为1S ,ABC 的面积为2S ,则12S S =A .310B .38C .25D .42120.在ABC 中,若A B >,则下列结论错误的是( ) A .sin sin A B >B .cos cos A B <C .sin2sin2A B >D .cos2cos2A B <21.在ABC 中,CB a =,CA b =,且sin sin a b OP OC m a B b A ⎛⎫⎪=++ ⎪⎝⎭,m R ∈,则点P 的轨迹一定通过ABC 的( ) A .重心B .内心C .外心D .垂心22.在ABC ∆中||||AB AC AB AC +=-,3,4,AB AC ==则BC 在CA 方向上的投影为( ). A .4B .3C .-4D .523.在ABC ∆中,6013ABC A b S ∆∠=︒==,,,则2sin 2sin sin a b cA B C-+-+的值等于( ) A .2393B .2633C .833D .2324.若点G 是ABC 的重心,,,a b c 分别是BAC ∠,ABC ∠,ACB ∠的对边,且303aGA bGB cGC ++=.则BAC ∠等于( ) A .90°B .60°C .45°D .30°25.如图,四边形ABCD 是平行四边形,E 是BC 的中点,点F 在线段CD 上,且2CF DF =,AE 与BF 交于点P ,若AP AE λ=,则λ=( )A .34B .58C .38D .2326.题目文件丢失!27.如图,在ABC 中,点D 在线段BC 上,且满足12BD DC =,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM mAB =,AN nAC =,则( )A .m n +是定值,定值为2B .2m n +是定值,定值为3C .11m n +是定值,定值为2 D .21m n+是定值,定值为3 28.已知,m n 是两个非零向量,且1m =,2||3m n +=,则||+||m n n +的最大值为 A 5B 10C .4D .529.已知点O 是ABC ∆内一点,满足2OA OB mOC +=,47AOB ABC S S ∆∆=,则实数m 为( ) A .2B .-2C .4D .-430.如图,在ABC 中,14AD AB →→=,12AE AC →→=,BE 和CD 相交于点F ,则向量AF →等于( )A.1277AB AC →→+B .1377AB AC →→+C .121414AB AC →→+ D .131414AB AC →→+ 31.奔驰定理:已知O 是ABC ∆内的一点,BOC ∆,AOC ∆,AOB ∆的面积分别为A S ,B S ,C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedes benz )的logo 很相似,故形象地称其为“奔驰定理”若O 是锐角ABC ∆内的一点,A ,B ,C 是ABC ∆的三个内角,且点O 满足OA OB OB OC OC OA ⋅=⋅=⋅,则必有( )A .sin sin sin 0A OAB OBC OC ⋅+⋅+⋅= B .cos cos cos 0A OA B OB C OC ⋅+⋅+⋅= C .tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=D .sin 2sin 2sin 20A OA B OB C OC ⋅+⋅+⋅=32.ABC 中,内角,,A B C 所对的边分别为,,a b c .若()226,c a b =-+3C π=,则ABC 的面积为( )A .6B 33C .33D 333.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( ) A .等腰直角三角形 B .等腰三角形C .直角三角形D .等边三角形34.题目文件丢失!35.在ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若()22S a b c +=+,则cos A 等于( )A .45B .45-C .1517D .1517-【参考答案】***试卷处理标记,请不要删除一、多选题 1.AD 【分析】利用正弦定理,两角和的正弦函数公式化简,结合,可求,结合范围,可求,进而根据三角形的面积公式和余弦定理可得. 【详解】 ∵, 整理可得:, 可得,∵A 为三角形内角,, ∴,故A 正确 解析:AD 【分析】利用正弦定理,两角和的正弦函数公式化简cos cos 2B bC a c=-,结合sin 0A ≠,可求1cos 2B =,结合范围()0,B π∈,可求3B π=,进而根据三角形的面积公式和余弦定理可得a c += 【详解】 ∵cos sin cos 22sin sin B b BC a c A C==--, 整理可得:sin cos 2sin cos sin cos B C A B C B =-,可得()sin cos sin cos sin sin 2sin cos B C C B B C A A B +=+==, ∵A 为三角形内角,sin 0A ≠,∴1cos 2B =,故A 正确,B 错误, ∵()0,B π∈, ∴3B π=,∵4ABC S =△,且3b =,11sin 22ac B a c ==⨯⨯=, 解得3ac =,由余弦定理得()()2222939a c ac a c ac a c =+-=+-=+-,解得a c +=C 错误,D 正确. 故选:AD. 【点睛】本题主要考查正弦定理,余弦定理以及两角和与差的三角函数的应用,还考查了运算求解的能力,属于中档题.2.CD 【分析】对于A 由条件推出或,判断该命题是假命题;对于B 由条件推出,判断该命题是假命题;对于C 由条件判断与垂直,判断该命题是真命题;对于D 由条件推出向量与的夹角是,所以该命题是真命题. 【详解解析:CD 【分析】对于A 由条件推出0b =或a b ⊥,判断该命题是假命题;对于B 由条件推出()()()222a b a b ⋅≠⋅,判断该命题是假命题;对于C 由条件判断a 与b 垂直,判断该命题是真命题;对于D 由条件推出向量a b +与a b -的夹角是2π,所以该命题是真命题. 【详解】对于A ,若0a ≠,0a b ⋅=,则0b =或a b ⊥,所以该命题是假命题; 对于B ,()()22222cos cos a ba b a b αα⋅==,而()()2222a ba b ⋅=,由于a 、b 为不共线的非零向量,所以2cos 1α≠,所以()()()222a b a b ⋅≠⋅,所以该命题是假命题;对于C ,若非零向量a 、b 满足222a ba b +=+,22222a b a b a b ++⋅=+,所以0a b ⋅=,则a 与b 垂直,所以该命题是真命题;对于D ,以a 与b 为邻边作平行四边形是正方形,则a b +和a b -所在的对角线互相垂直,所以向量a b +与a b -的夹角是2π,所以该命题是真命题. 故选:CD. 【点睛】本题考查平面向量的线性运算与数量积运算、向量垂直的判断,是基础题.3.BD 【分析】由正弦定理可得,所以,而,可得,即可求得答案. 【详解】 由正弦定理可得, ,而, , , 故或. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握解析:BD 【分析】由正弦定理可得sin sin a c A C =,所以sin sin 2c C A a ==,而a c <,可得A C <,即可求得答案. 【详解】 由正弦定理可得sin sin a cA C=,∴ sin sin 2c C A a ==,而a c <,∴ A C <, ∴566C ππ<<, 故3C π=或23π. 故选:BD. 【点睛】本题考查了根据正弦定理求解三角形内角,解题关键是掌握正弦定理和使用正弦定理多解的判断,考查了分析能力和计算能力,属于中等题.4.AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】中,,由得,A 正确; 锐角三角形中,,∴,B 正确; 中,解析:AB 【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a b A B=得sin sin A B >,A 正确; 锐角三角形ABC 中,222cos 02b c a A bc+-=>,∴2220b c a +->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=︒,即A B =或90A B +=︒,ABC 为等腰三角形或直角三角形,C 错;ABC 中,若3b =,60A =︒,三角形面积S =11sin 3sin 6022S bc A c ==⨯︒=4c =,∴2222cos 13a b c bc A =+-=,a =,∴2sin a R A ===,R =D 错. 故选:AB . 【点睛】本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.5.CD 【分析】转化为,移项运算即得解 【详解】 由题意: 故 即, 故选:CD 【点睛】本题考查了向量的线性运算,考查了学生概念理解,转化划归,数学运算能力,属于基础题.解析:CD 【分析】转化3AB AC AP +=为())(AB AP AC AP AP +=--,移项运算即得解 【详解】由题意:3AB AC AP += 故())(AB AP AC AP AP +=-- 即PB PC AP +=0C PA PB P ++=∴,PA AB PB +=故选:CD 【点睛】本题考查了向量的线性运算,考查了学生概念理解,转化划归,数学运算能力,属于基础题.6.ABCD 【分析】应用正弦定理将边化角,由二倍角公式有即或,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】 根据正弦定理 , 即. , 或. 即或解析:ABCD 【分析】应用正弦定理将边化角,由二倍角公式有sin 2sin 2A B =即A B =或2A B π+=,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】根据正弦定理sin sin a b A B= cos cos a A b B =sin cos sin cos A A B B =, 即sin 2sin 2A B =. 2,2(0,2)A B π∈,22A B =或22A B π+=. 即A B =或2A B π+=,△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形. 故选:ABCD 【点睛】本题考查了正弦定理的边化角,二倍角公式解三角形判断三角形的形状,注意三角形内角和为180°7.BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:,故A 错;对于 B 选项:因为D 为BC 的中点,,故B 正确; 对于C 选项:,故正确; 对于D 选项:,而,故解析:BC 【分析】根据向量的加法和减法运算,以及向量的数量积运算可选项. 【详解】对于A 选项:BD AD BD DA BA -=+=,故A 错; 对于 B 选项:因为D 为BC 的中点,()111++++()222AD AB BD AB BC AB BA AC AB AC ====+,故B 正确;对于C 选项:cos 248BD BA BC BA BC B BA BC BA⋅=⋅⋅∠=⋅⋅=⨯=,故正确;对于D 选项:2,AB AC AD AB AC CB +=-=,而2AD CB ≠,故D 不正确. 故选:BC. 【点睛】本题考查向量的线性运算和向量的数量积运算,属于基础题.8.AD【分析】分别对所给选项进行逐一判断即可. 【详解】对于选项A ,当时,与不一定共线,故A 错误; 对于选项B ,由,得,所以,,同理,,故是三角形的垂心,所以B 正确; 对于选项C ,两个非零向量解析:AD 【分析】分别对所给选项进行逐一判断即可. 【详解】对于选项A ,当0b =时,a 与c 不一定共线,故A 错误;对于选项B ,由PA PB PB PC ⋅=⋅,得0PB CA ⋅=,所以PB CA ⊥,PB CA ⊥, 同理PA CB ⊥,PC BA ⊥,故P 是三角形ABC 的垂心,所以B 正确;对于选项C ,两个非零向量a ,b ,若a b a b -=+,则a 与b 共线且反向,故C 正确;对于选项D ,当0b =,0a ≠时,显然有a ∥b ,但此时λ不存在,故D 错误. 故选:AD 【点睛】本题考查与向量有关的命题的真假的判断,考查学生对基本概念、定理的掌握,是一道容易题.9.AB 【分析】根据向量模的三角不等式找出和的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当时,则、方向相反且,则存在负实数解析:AB 【分析】根据向量模的三角不等式找出a b a b +=-和a b a b +=+的等价条件,可判断A 、C 、D 选项的正误,利用平面向量加法的平行四边形法则可判断B 选项的正误.综合可得出结论. 【详解】当a b a b +=-时,则a 、b 方向相反且a b ≥,则存在负实数λ,使得λa b ,A选项正确,D 选项错误;若a b a b +=+,则a 、b 方向相同,a 在b 方向上的投影向量为a ,C 选项错误; 若a b ⊥,则以a 、b 为邻边的平行四边形为矩形,且a b +和a b -是这个矩形的两条对角线长,则a b a b +=-,B 选项正确. 故选:AB. 【点睛】本题考查平面向量线性运算相关的命题的判断,涉及平面向量模的三角不等式的应用,考查推理能力,属于中等题.10.BD 【分析】根据向量的模及共线向量的定义解答即可; 【详解】解:与显然方向不相同,故不是相等向量,故错误; 与表示等腰梯形两腰的长度,所以,故正确; 向量无法比较大小,只能比较向量模的大小,故解析:BD 【分析】根据向量的模及共线向量的定义解答即可; 【详解】解:AB 与DC 显然方向不相同,故不是相等向量,故A 错误;AB 与DC 表示等腰梯形两腰的长度,所以AB DC =,故B 正确; 向量无法比较大小,只能比较向量模的大小,故C 错误; 等腰梯形的上底BC 与下底AD 平行,所以//BC AD ,故D 正确; 故选:BD . 【点睛】本题考查共线向量、相等向量、向量的模的理解,属于基础题.11.BCD 【分析】根据向量的定义及运算逐个分析选项,确定结果. 【详解】解:分别以图中的格点为起点和终点的向量中,与是相反向量的共有 18个,故错,以为原点建立平面直角坐标系,, 设,若, 所以解析:BCD 【分析】根据向量的定义及运算逐个分析选项,确定结果. 【详解】解:分别以图中的格点为起点和终点的向量中,与OA 是相反向量的共有 18个,故A 错, 以O 为原点建立平面直角坐标系,()1,2A , 设(,)B m n ,若10OA OB -=,所以22(1)(2)10m n -+-=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(0,1)B -,(2,1)-,(2,1)-共三个,故B 正确. 当(1,0)B ,(0,2)C 时,使得OA OB OC =+,故C 正确.若1OA OB ⋅=,则21m n +=,(33m -,22n -,且m Z ∈,)n Z ∈, 得(1,0)B ,(3,1)-,(1,1)-,(3,2)-共4个,故D 正确. 故选:BCD .【点睛】本题考查向量的定义,坐标运算,属于中档题.12.AD 【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】向量与是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B解析:AD 【分析】利用零向量,平行向量和共线向量的定义,判断各个选项是否正确,从而得出结论. 【详解】向量AB 与CD 是共线向量,则A ,B ,C ,D 四点不一定在一条直线上,故A 错误; 零向量与任一向量共线,故B 正确;若,a b b c ==,则a c =,故C 正确; 温度是数量,只有正负,没有方向,故D 错误. 故选:AD 【点睛】本题考查零向量、单位向量的定义,平行向量和共线向量的定义,属于基础题.13.AD 【分析】根据平面向量基本定理可知,A 、D 是正确的,选项B 不正确;对于选项C ,当两个向量均为时,有无数个,故不正确. 【详解】由平面向量基本定理可知,A 、D 是正确的. 对于B,由平面向量基本解析:AD 【分析】根据平面向量基本定理可知,A 、D 是正确的,选项B 不正确;对于选项C ,当两个向量均为0时,λ有无数个,故不正确.【详解】由平面向量基本定理可知,A 、D 是正确的.对于B ,由平面向量基本定理可知,如果一个平面的基底确定, 那么任意一个向量在此基底下的实数对是唯一的,所以不正确; 对于C ,当两向量的系数均为零,即12120λλμμ====时, 这样的λ有无数个,所以不正确. 故选:AD . 【点睛】本题考查平面向量基本定理的辨析,熟记并理解定理内容是关键,解题中要注意特殊值的应用,属于基础题.14.无 15.无二、平面向量及其应用选择题16.D 【详解】 由余弦定理得,解得(舍去),故选D.【考点】 余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记! 17.A 【分析】 根据题意得出tan tan tan A B Ca b c==,利用正弦定理边化角思想和切化弦思想得出A B C ==,从而可得知ABC ∆为等边三角形,进而可求得BC 所对的ABC ∆外接圆的劣弧长. 【详解】0a OA b OB c OC ⋅+⋅+⋅=,a bOC OA OB c c∴=--,同理可得tan tan tan tan A B OC OA OB C C =--,tan tan tan tan a A c Cb Bc C ⎧-=-⎪⎪∴⎨⎪-=-⎪⎩,tan tan tan A B Ca b c∴==, 由正弦定理得tan tan tan sin sin sin A B C A B C ==,所以,111cos cos cos A B C==, cos cos cos A B C ∴==,由于余弦函数cos y x =在区间()0,π上单调递减,所以,3A B C π===, 设ABC ∆的外接圆半径为R ,则322sin 32aR A===,1R ∴=, 所以,边BC 所对的ABC ∆外接圆的劣弧长为222133R A ππ⨯=⨯=. 故选:A. 【点睛】本题考查弧长的计算,涉及正弦定理边角互化思想、切化弦思想以及正弦定理的应用,考查计算能力,属于中等题. 18.C 【解析】 【分析】根据向量的数量积运算和向量的线性表示可得,()()22254cos 24cos 1PQ PQ t t θθ==+-++,根据二次函数的最值可得出012cos 54cos t θθ+=+,再由0105t <<,可求得夹角θ的取值范围.【详解】 因为2cos OA OB θ⋅=,()1PQ OQ OP t OB tOA =-=--,()()22254cos 24cos 1PQ PQ t t θθ==+-++,∵PQ 在t t =0时取得最小值,所以012cos 54cos t θθ+=+,又0105t <<,则12cos 1054cos 5θθ+<<+,得1cos 02θ-<<,∵0θπ≤≤,所以223ππθ<<,故选:C. 【点睛】 本题考查向量的数量积运算和向量的线性表示,以及二次函数的最值和分式不等式的求解,关键在于由向量的模的平方等于向量的平方,得到关于角度的三角函数的不等式,属于中档题. 19.A 【解析】∵2350OA OB OC ++=,∴()()23OA OC OB OC +=-+. 设AC 中点为M ,BC 中点为N ,则23OM ON =-, ∵MN 为ABC 的中位线,且32OM ON=, ∴36132255410OACOMCCMNABC ABC SSSS S ⎛⎫==⨯=⨯= ⎪⎝⎭,即12310S S =.选A . 20.C 【分析】由正弦定理结合三角形中的大边对大角得sin sin A B >,由余弦函数性质判断B ,然后结合二倍角公式判断CD . 【详解】设ABC 三边,,a b c 所对的角分别为,,A B C , 由A B >,则,a b >∴sin sin 0A B >>,A 正确; 由余弦函数性质知cos cos A B <,B 正确;sin 22sin cos A A A =,sin 22sin cos B B B =,当A 为钝角时就有sin 2sin 2A B <,C 错误,;2cos 212sin A A =-,2cos 212sin B B =-,∴cos2cos2A B <,D 正确. 故选:C . 【点睛】本题考查三角形内角和定理,考查正弦定理、余弦函数性质,考查正弦、余弦的二倍角公式,考查学生的逻辑推理能力,属于中档题. 21.A 【分析】设sin sin a B b A CH ==,则()mCP a b CH=+,再利用平行四边形法则可知,P 在中线CD 上,即可得答案; 【详解】 如图,sin sin a B b A CH ==,∴()m OP OC a b CH =++,()mCP a b CH=+, 由平行四边形法则可知,P 在中线CD 上,∴P 的轨迹一定通过ABC 的重心.故选:A. 【点睛】本题考查三角形重心与向量形式的关系,考查数形结合思想,考查逻辑推理能力、运算求解能力,求解时注意向量加法几何意义的运用. 22.C 【分析】先对等式AB AC AB AC +=-两边平方得出AB AC ⊥,并计算出BC CA ⋅,然后利用投影的定义求出BC 在CA 方向上的投影. 【详解】对等式AB AC AB AC +=-两边平方得,222222AB AC AB AC AB AC AB AC ++⋅=+-⋅,整理得,0AB AC ⋅=,则AB AC ⊥,()216BC CA AC AB CA AC CA AB CA AC ∴⋅=-⋅=⋅-⋅=-=-,设向量BC 与CA 的夹角为θ,所以,BC 在CA 方向上的投影为16cos 44BC CA BC CA BC BC BC CACAθ⋅⋅-⋅=⋅===-⋅, 故选C .【点睛】本题考查平面向量投影的概念,解本题的关键在于将题中有关向量模的等式平方,这也是向量求模的常用解法,考查计算能力与定义的理解,属于中等题. 23.A 【解析】分析:先利用三角形的面积公式求得c 的值,进而利用余弦定理求得a ,再利用正弦定理求解即可.详解:由题意,在ABC ∆中, 利用三角形的面积公式可得011sin 1sin 6022ABC S bc A c ∆==⨯⨯⨯=, 解得4c =,又由余弦定理得22212cos 116214132a b c bc A =+-=+-⨯⨯⨯=,解得a =, 由正弦定理得2sin 2sin sin sin a b c a A B C A -+===-+,故选A. 点睛:本题主要考查了利用正弦定理和三角函数的恒等变换求解三角形问题,对于解三角形问题,通常利用正弦定理进行“边转角”寻求角的关系,利用“角转边”寻求边的关系,利用余弦定理借助三边关系求角,利用两角和差公式及二倍角公式求三角函数值. 利用正、余弦定理解三角形问题是高考高频考点,经常利用三角形内角和定理,三角形面积公式,结合正、余弦定理解题. 24.D 【分析】由点G 是ABC 的重心可得0GA GB GC ++=,即GA GB GC =--,代入30aGA bGB cGC ++=中可得3()0ba GB c a GC ⎛⎫-+-= ⎪ ⎪⎝⎭,由,GB GC 不共线可得00b a a -=⎧-=,即可求得,,a b c 的关系,进而利用余弦定理求解即可 【详解】因为点G 是ABC 的重心,所以0GA GB GC ++=,所以GA GB GC =--,代入303aGA bGB cGC ++=可得3()03b a GB c a GC ⎛⎫-+-=⎪ ⎪⎝⎭, 因为,GB GC 不共线,所以00b a a -=⎧-=,即b a c =⎧⎪⎨=⎪⎩,所以222cos 2b c a BAC bc +-∠==,故30BAC ︒∠=, 故选:D 【点睛】本题考查向量的线性运算,考查利用余弦定理求角 25.A 【分析】设出()()()11AP mAB m AF mAB m AD DF =+-=+-+,求得()2113m AP AB m AD +=+-,再利用向量相等求解即可. 【详解】 连接AF ,因为B ,P ,F 三点共线,所以()()()11AP mAB m AF mAB m AD DF =+-=+-+, 因为2CF DF =,所以1133DF DC AB ==, 所以()2113m AP AB m AD +=+-. 因为E 是BC 的中点, 所以1122AE AB BC AB AD =+=+. 因为AP AE λ=,所以()211132m AB m AD AB AD λ+⎛⎫+-=+ ⎪⎝⎭, 则213112m m λλ+⎧=⎪⎪⎨⎪-=⎪⎩,解得34λ=. 故选:A【点睛】本题主要考查平面向量的线性运算,考查了平面向量基本定理的应用,属于基础题.26.无27.D【分析】过点C 作CE 平行于MN 交AB 于点E ,结合题设条件和三角形相似可得出21312AM n n n AB n n ==--+,再根据AMmAB =可得231n m n =-,整理可得213m n +=,最后选出正确答案即可. 【详解】如图,过点C 作CE 平行于MN 交AB 于点E ,由AN nAC =可得1AC AN n=,所以11AE AC EM CN n ==-,由12BD DC =可得12BM ME =,所以21312AM n n n AB n n ==--+,因为AM mAB =,所以231n m n =-, 整理可得213m n+=.故选:D .【点睛】本题考查向量共线的应用,考查逻辑思维能力和运算求解能力,属于常考题.28.B【分析】先根据向量的模将||+||m n n +转化为关于||n 的函数,再利用导数求极值,研究单调性,进而得最大值.【详解】()22224419||=1||3m m n m nn m n =+∴+=+⋅+=,,,22n m n +⋅=,()2222=52-m n m m n n n ∴+=++⋅,25||+||m n n n n ∴+=-+, 令()2(05),5x x f x x x n =<≤=-,则()2'125f x x =-,令()'0f x =,得10,2x =∴当1002x <<时,()'0f x >,当1052x <<时, ()'0f x <, ∴当102x =时, ()f x 取得最大值1010f ⎛⎫= ⎪ ⎪⎝⎭,故选B. 【点睛】向量的两个作用:①载体作用:关键是利用向量的意义、作用脱去“向量外衣”,转化为我们熟悉的数学问题;②工具作用:利用向量可解决一些垂直、平行、夹角与距离问题. 29.D【分析】将已知向量关系变为:12333m OA OB OC +=,可得到3m OC OD =且,,A B D 共线;由AOB ABC O S S D CD∆∆=和,OC OD 反向共线,可构造关于m 的方程,求解得到结果. 【详解】由2OA OB mOC +=得:12333m OA OB OC += 设3m OC OD =,则1233OA OB OD += ,,A B D ∴三点共线 如下图所示:OC 与OD 反向共线 3ODm m CD ∴=- 734AOB ABC OD m m C S S D ∆∆∴==-= 4m ⇒=- 本题正确选项:D【点睛】本题考查向量的线性运算性质及向量的几何意义,关键是通过向量线性运算关系得到三点共线的结果,从而得到向量模长之间的关系.30.B【分析】过点F 分别作//FM AB 交AC 于点M ,作//FN AC 交AB 于点N ,由平行线得出三角形相似,得出线段成比例,结合14AD AB →→=,12AE AC →→=,证出37AM AC →→=和17AN AB →→=,最后由平面向量基本定理和向量的加法法则,即可得AB →和AC →表示AF →. 【详解】 解:过点F 分别作//FM AB 交AC 于点M ,作//FN AC 交AB 于点N , 已知14AD AB →→=,12AE AC →→=, //FN AC ,则MFE ABE △△和MCF ACD △△, 则:MF ME AB AE =且MF MC AD AC=, 即:2MF ME AB AC =且14MF MC AC AB =,所以124MC MF ME AB AC AC ==, 则:8MC ME =,所以37AM AC =, 解得:37AM AC →→=, 同理//FM AB ,NBF ABE △△和NFD ACD △△, 则:NF NB AE AB =且NF ND AC AD=, 即:12NF NB AB AC =且14NF ND AC AB =,所以142NB NF ND AC AB AB ==, 则:8NB ND =,即()8AB AN AD AN -=-, 所以184AB AN AB AN ⎛⎫-=- ⎪⎝⎭,即28AB AN AB AN -=-, 得:17AN AB =, 解得:17AN AB →→=, 四边形AMFN 是平行四边形,∴由向量加法法则,得AF AN AM →→→=+, 所以1377AF AB AC →→→=+. 故选:B.【点睛】本题考查平面向量的线性运算、向量的加法法则和平面向量的基本定理,考查运算能力. 31.C【分析】利用已知条件得到O 为垂心,再根据四边形内角为2π及对顶角相等,得到AOB C π∠=-,再根据数量积的定义、投影的定义、比例关系得到::cos :cos :cos OA OB OC A B C =,进而求出::A B C S S S 的值,最后再结合“奔驰定理”得到答案. 【详解】如图,因为OA OB OB OC OC OA ⋅=⋅=⋅, 所以()00OB OA OC OB CA ⋅-=⇒⋅=,同理0OA BC ⋅=,0OC AB ⋅=, 所以O 为ABC ∆的垂心。
平行向量基本定理题型练习-高一下学期数学人教A版(2019)必修第二册
第六章 6.3.1 平行向量基本定理【基础篇】题型1 平面向量基本定理的理解1.已知{e 1,e 2}是平面内所有向量的一个基底,则下列四组向量中,不能..作为基底的一组是( )A .2e 1-e 2和2e 2-4e 1B .e 1+e 2和e 1-2e 2C .e 1-2e 2和e 1D .e 1+e 2和2e 2+e 12.(多选)如果e 1,e 2是平面α内两个不共线的向量,那么在下列叙述中正确的有( ) A .λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量B .对于平面α内的任一向量a ,使a =λe 1+μe 2的实数λ,μ有无数多对C .若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2)D .若存在实数λ,μ使λe 1+μe 2=0,则λ=μ=03.如图所示,平面内的两条相交直线OP 1和OP 2将该平面分割成四个部分Ⅰ,Ⅰ,Ⅰ,Ⅰ(不包括边界).若OP →=aOP 1→+bOP 2→,且点P 落在第Ⅰ部分,则实数a ,b 满足( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0题型2 向量相等4. 如图所示,平行四边形ABCD 的对角线相交于点O ,E 为AO 的中点.若DE →=λ2AB →+2μAD→(λ,μ∈R ),则λ+μ等于( )A .1B .-1C .14D .185.设E 为△ABC 的边AC 的中点,BE →=mAB →+nAC →,则m +n =________.题型3 平面向量的分解6.如图所示,在正六边形ABCDEF 中,设AB →=a ,AF →=b ,则AC →=( )A .a +2bB .2a +3bC .2a +bD .32a +b7.如图,在△ABC 中,点D 是线段AB 上靠近A 的三等分点,点E 是线段CD 的中点,则( )A .AE →=16AB →+12AC →B.AE →=13AB →+12AC →C.AE →=16AB →-12AC →D.AE →=13AB →-12AC →8.已知e 1,e 2是平面内两个不共线的向量,a =3e 1-2e 2,b =-2e 1+e 2,c =7e 1-4e 2,用向量a 和b 表示c ,则c =________.9.在平行四边形ABCD 中,E ,F 分别是AD ,DC 边的中点,BE ,BF 分别与AC 交于R ,T 两点,ET →=xAB →+yAD →(x ,y ∈R ),则x +y =( ) A .16B .13C .23D .56【提升篇】1.如果{a ,b }是一个基底,那么下列不能作为基底的是( ) A .a +b 与a -bB .a +2b 与2a +bC .a +b 与-a -bD .a 与-b2.在△ABC 中,点D 在边AB 上,CD 平分∠ACB .若CB →=a ,CA →=b ,|a |=1,|b |=2,则CD →=( ) A .13a +23b B .23a +13b C .35a +45bD .45a +35b3.(多选)[浙江宁波九校2022高一期末]在梯形ABCD 中,AB ∥CD ,AB =2CD ,E ,F 分别是AB ,CD 的中点,AC 与BD 交于M .设AB →=a ,AD →=b ,则下列结论正确的有( ) A .AC →=12a +bB .BC →=-12a +bC .BM →=-13a +23bD .EF →=-14a +b4.如图,在△ABC 中,D ,E 分别在边BC ,AC 上,且BC →=3BD →,EC →=λAE →,F 是AD ,BE 的交点.若AF →=35AD →,则λ=( )A .2B .3C .6D .75.某中学八角形校徽由两个正方形叠加组合而成,体现“方方正正做人”之意,又体现南开人“面向四面八方,胸怀博大,广纳新知,锐意进取”之精神.如图的多边形,由一个正方形与以该正方形中心为中心逆时针旋转45°后的正方形组合而成.已知向量n ,k ,则向量a =( )A .3k +2nB .3k +(2+2)nC .(2+2)k +(2+2)nD .(2+2)k +(1+2)n6.(多选)[湖北孝感2022高一期末]已知△ABC 中,O 是BC 边上靠近B 的三等分点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N .设AB →=mAM →,AC →=nAN →,其中m >0,n >0,则下列结论正确的是( ) A .AO →=23AB →+13AC →B.AO →=13AB →+23AC →C .2m +n =3D .m +2n =37.在等腰梯形ABCD 中,DC →=2AB →,E 为BC 的中点,F 为DE 的中点,记DA →=a ,DC →=b .若用a ,b 表示DF →,则DF →=________.8.在△ABC 中,AD →=12AB →,BE →=23BC →.若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2=________.9.如图,在△ABC 中,D 是BC 的中点,E ,F 是AD 的两个三等分点,BA →·CA →=4,BF →·CF →=-1,则BE →·CE →的值是________.10.如图,在正△ABC 中,点G 为边BC 的中点,边AB ,AC 上的动点D ,E 分别满足AD →=λAB →,AE →=(1-2λ)AC →,λ∈R .设DE 的中点为F ,记|FG →||BC →|=R(λ),则R(λ)的取值范围为________.11.如图,在平行四边形ABCD 中,E 是AB 的中点,F ,G 分别是AD ,BC 的四等分点⎝⎛⎭⎫AF =14AD ,BG =14BC .设AB →=a ,AD →=b . (1)用a ,b 表示EF →,EG →.(2)如果|b |=2|a |,EF ,EG 有什么位置关系?用向量的方法证明你的结论.12.如图所示,在△OAB 中,OC →=14OA →,OD →=12OB →,AD 与BC 交于点M .过点M 的直线l与OA ,OB 分别交于点E ,F . (1)试用OA →,OB →表示向量OM →;(2)设OE →=λOA →,OF →=μOB →,求证:1λ+3μ是定值.13.如图,在直角梯形OABC 中,OA ∥CB ,OA ⊥OC ,OA =2BC =2OC ,M 为AB 上靠近B的三等分点,OM 交AC 于点D ,P 为线段BC 上的动点. (1)用OA →和OC →表示OM →; (2)求OD DM;(3)设OB →=λCA →+μOP →,求λμ的取值范围.答案及解析【详解】对于A 选项,因为2e 2-4e 1=-2(2e 1-e 2),所以2e 1-e 2和2e 2-4e 1共线,A 选项不满足条件;对于B 选项,设e 1+e 2=λ(e 1-2e 2)=λe 1-2λe 2,则⎩⎪⎨⎪⎧λ=1,-2λ=1,无解,故e 1+e 2和e 1-2e 2不共线,B 选项能作为基底;同理可知e 1-2e 2和e 1不共线,e 1+e 2和2e 2+e 1也不共线,C ,D 选项均能作为基底.故选A.2.【答案】AD【详解】由平面向量基本定理可知,A ,D 正确.对于B ,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的.对于C ,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,λ有无数个.故选AD.3.【答案】B【详解】取第Ⅰ部分内一点画图易得a >0,b <0.4.【答案】D【详解】因为E 为AO 的中点,所以AE →=14AC →=14(AB →+AD →),所以DE →=AE →-AD →=14(AB →+AD →)-AD →=14AB →-34AD →.又因为DE →=λ2AB →+2μAD →,所以⎩⎨⎧λ2=14,2μ=-34,解得⎩⎨⎧λ=12,μ=-38,所以λ+μ=18,故选D.5.【答案】-12【详解】因为BE →=BA →+AE →=-AB →+12AC →=mAB →+nAC →,所以m =-1,n =12,所以m +n =-12.6.【答案】C【详解】在正六边形ABCDEF 中,连接FC ,则FC ∥AB ,FC =2AB ,所以AC →=AF →+FC →=AF →+2AB →=2a +b .故选C.【详解】由题图知AE →=12AD →+12AC →=16AB →+12AC →.故选A.8.【答案】a -2b【详解】因为a ,b 不共线,设c =xa +yb (x ,y ∈R),则xa +yb =x (3e 1-2e 2)+y (-2e 1+e 2)=(3x -2y )e 1+(-2x +y )e 2=7e 1-4e 2.又因为e 1,e 2不共线,所以⎩⎪⎨⎪⎧3x -2y =7,-2x +y =-4,解得⎩⎪⎨⎪⎧x =1,y =-2,所以c =a -2b .9.【答案】D 【详解】如图所示,设CT →=μCA →=2μCF →+μCB →(μ∈R).因为F ,T ,B 共线,所以3μ=1,解得μ=13.所以AT →=23AC →,所以ET →=AT →-AE →=23AC →-AE →=23AB →+16AD →.又ET →=xAB →+yAD →,所以x =23,y =16,所以x +y =56.故选D.【详解】由题意知,a 与b 不共线,根据平行四边形法则,可知A ,B ,D 选项中的两个向量都可以作为基底,而a +b 与-a -b 共线,不能作为基底.2.【答案】B【详解】∵CD 平分∠ACB ,∴|CA →||CB →|=|AD →||DB →|=2.∴AD →=2DB →=23AB →=23(CB →-CA →)=23(a -b ).∴CD→=CA →+AD →=b +23(a -b )=23a +13b .3.【答案】ABD【详解】由题意得,AC →=AD →+DC →=b +12a ,故A 正确;BC →=BA →+AC →=-a +b +12a =b -12a ,故B 正确;由△CMD ∽△AMB ,且CD =12AB 得AM →=23AC →,则BM →=BA →+AM →=-a +23AC →=-a +23b +13a =23b -23a ,故C 错误;EF →=EA →+AD →+DF →=-12a +b +14a =b -14a ,故D 正确.故选ABD.4.【答案】A【详解】由题意得AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →.因为B ,E ,F 三点共线,所以AF →=kAB →+(1-k )AE →=kAB →+1-k λ+1AC →.因为AF →=35AD →,所以kAB →+1-k λ+1AC →=35⎝⎛⎭⎫23AB →+13AC →,则⎩⎨⎧k =25,1-k λ+1=15.解得λ=2,故选A.5.【答案】D【详解】根据题意可得|n |=|k |,已知该图形是由以正方形中心为中心逆时针旋转45°后的正方形与原正方形组合而成,如图,由对称性可得|AB |=|BC |=|CD |=|DE |=|EQ |=|QF |,|CE |=|EF |=|FG |=2|AB |=2|n |. 由图可知点B ,C ,E ,Q 共线,点Q ,F ,G 共线,所以BQ →=BC →+CE →+EQ →=(2+2)k , QG →=QF →+FG →=(1+2)n ,所以a =BG →=BQ →+QG →=(2+2)k +(1+2)n .故选D.6.【答案】AC【详解】AO →=AB →+BO →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →,A 正确,B 错误.因为AB →=mAM →,AC →=nAN →,所以AO →=23AB →+13AC →=2m 3AM →+n 3AN →.又因为M ,O ,N 三点共线,所以2m 3+n3=1,故2m +n =3,C 正确,D 错误.故选AC.7.【答案】14a +38b【详解】DE →=12DB →+12DC →=12(DA →+AB →)+12DC →=34DC →+12DA →,∴DF →=12DE →=38DC →+14DA →,即DF →=14a +38b .8.【答案】12【详解】DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,又DE →=λ1AB →+λ2AC →,所以λ1+λ2=12.9.【答案】78【详解】∵E ,F 是AD 的两个三等分点,D 是BC 的中点,∴BF →=BD →+DF →,CF →=CD →+DF →=DF →-BD →,BA →=BD →+DA →=BD →+3DF →,CA →=CD →+DA →=3DF →-BD →.∴BA →·CA →=9|DF →|2-|BD →|2=4, BF →·CF →=|DF →|2-|BD →|2=-1, 解得|DF →|2=58,|BD →|2=138.又∵BE →=BD →+DE →=BD →+2DF →,CE →=CD +DE →=2DF →-BD →,∴BE →·CE →=4|DF →|2-|BD →|2=208-138=78.10.【答案】⎣⎡⎦⎤12,74 【解析】设正△ABC 的边长为2,则AB →·AC →=2×2×cos π3=2,|BC →|=2. FG →=AG →-AF →=12(AB →+AC →)-12(AD →+AE →)=12(1-λ)AB →+λAC →,所以|FG →|= (1-λ)2+4λ2+2λ(1-λ)=3λ2+1.又0≤1-2λ≤1,0≤λ≤1,所以0≤λ≤12,因此|FG →|=3λ2+1∈⎣⎡⎦⎤1,72,R(λ)=3λ2+12∈⎣⎡⎦⎤12,74.11.【答案】(1)由已知,得AE →=EB →=12a ,AF →=BG →=14b , 所以EF →=EA →+AF →=14b -12a , EG →=EB →+BG →=14b +12a . (2)EF 与EG 互相垂直.证明如下:EF →·EG →=⎝⎛⎭⎫14b +12a ·(14b -12a )=116b 2-14a 2, 因为|b |=2|a |,所以EF →·EG →=0,即EF ⊥EG ,所以EF 与EG 互相垂直.12.【答案】(1)【解】由A ,M ,D 三点共线可得存在实数m ,使得OM →=mOA →+(1-m )OD →,又OD →=12OB →,故OM →=mOA →+1-m 2OB →. 由C ,M ,B 三点共线可得存在实数n ,使得OM →=nOC →+(1-n )OB →,又OC →=14OA →,故OM →=n 4OA →+(1-n )OB →. 由题意知OA →,OB →不共线,则⎩⎨⎧m =14n ,1-m 2=1-n ,解得⎩⎨⎧m =17,n =47,故OM →=17OA →+37OB →. (2)【证明】由E ,M ,F 三点共线,可设OM →=kOE →+(1-k )OF →(k ∈R),由OE →=λOA →,OF →=μOB →,得OM →=kλOA →+(1-k )μOB →.由(1)知OM →=17OA →+37OB →, 则⎩⎨⎧kλ=17,(1-k )μ=37,即⎩⎨⎧λ=17k ,3μ=7-7k ,所以1λ+3μ=7,故1λ+3μ是定值. 13.【答案】(1)依题意CB →=12OA →,AM →=23AB →, ∴AM →=23(OB →-OA →)=23(OC →+CB →)-23OA →=23OC →-13OA →, ∴OM →=OA →+AM →=OA →+⎝⎛⎭⎫23OC →-13OA →=23OA →+23OC →.(2)设OD →=tOM →(t ∈R).由(1)可知OD →=23tOA →+23tOC →. 又A ,C ,D 三点共线,∴23t +23t =1,解得t =34,故OD DM =3. (3)由题意得OB →=OC →+CB →=OC →+12OA →, 已知P 是线段BC 上的动点,设CP →=xOA →⎝⎛⎭⎫0≤x ≤12. ∵OB →=λCA →+μOP →=λ(OA →-OC →)+μ(OC →+CP →)=(λ+μx )OA →+(μ-λ)OC →,又OC →,OA →不共线,∴⎩⎪⎨⎪⎧μ-λ=1,λ+μx =12,解得⎩⎪⎨⎪⎧λ=μ-1,μ=32+2x. 又0≤x ≤12,∴1≤x +1≤32,∴1≤μ≤32. 可知λμ=μ(μ-1)=⎝⎛⎭⎫μ-122-14在区间⎣⎡⎦⎤1,32上单调递增, 当μ=1时,(λμ)min =0,当μ=32时,(λμ)max =34, 故λμ的取值范围是⎣⎡⎦⎤0,34.。
初中平面向量练习题及答案
初中平面向量练习题及答案典例精析题型一向量的有关概念下列命题:①向量AB的长度与BA的长度相等;②向量a与向量b平行,则a与b的方向相同或相反;③两个有共同起点的单位向量,其终点必相同;④向量AB与向量CD是共线向量,则A、B、C、D必在同一直线上.其中真命题的序号是.①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;AB与CD是共线向量,则A、B、C、D可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①.正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可.下列各式:①|a|=a?a;② ?c=a? ;③OA-OB=BA;④在任意四边形ABCD中,M为AD的中点,N为BC的中点,则AB+=2;⑤a=,b=,且a与b不共线,则⊥.其中正确的个数为A.1B.C.D.4选D.| a|=a?a正确; ?c≠a? ; OA-OB=BA正确;如下图所示,MN=++且MN=++,两式相加可得2MN=AB+DC,即命题④正确;因为a,b不共线,且|a|=|b|=1,所以a+b,a-b 为菱形的两条对角线,即得⊥.所以命题①③④⑤正确.题型二与向量线性运算有关的问题如图,ABCD是平行四边形,AC、BD交于点O,点M在线段DO上,且=,点N在线段OC上,且=,设=a, =b,试用a、b 表示,,1313.在?ABCD中,AC,BD交于点O, 111所以==a-b),22=2=2=2.11又=,=,31所以=AD+=b+1115=b=a,266111=+=+4412==a+b). 323所以=-1511=-+)=a.6626向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形.O是平面α上一点,A、B、C是平面α上不共线的三点,平面α内的动点P满足OP=1OA+λ,若λ=2时,则PA?的值为 .由已知得-=λ,11即AP=λ,当λ=时,得AP=,2所以2AP=AB +AC,即AP-AB=AC-AP,所以BP=PC,所以PB+PC=PB+BP=0,所以? =?0=0,故填0.题型三向量共线问题设两个非零向量a与b不共线.若=a+b,=2a+8b,=3,求证:A,B,D三点共线;试确定实数k,使ka+b和a+kb共线. 1证明:因为=a+b,=2a+8b,=3,所以BD=BC +CD=2a+8b+3=5=5AB,所以AB, BD共线.又因为它们有公共点B,所以A,B,D三点共线.因为ka+b和a+kb共线,所以存在实数λ,使ka+b=λ,所以a=b.因为a与b是不共线的两个非零向量,所以k-λ=λk-1=0,所以k2-1=0,所以k=±1.向量共线的充要条件中,要注意当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,要注意待定系数法的运用和方程思想.证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.已知O是正三角形BAC内部一点,+2+3=0,则△OAC的面积与△OAB的面积之比是如图,在三角形ABC中, OA+2OB+3OC=0,整理可得OA+OC+2=0.1令三角形ABC中AC边的中点为E,BC边的中点为F,则点O在点F与点E连线的处,即OE=2OF.1hh1设三角形ABC中AB边上的高为h,则S△OAC=S△OAE+S△OEC?OE? 的情形,而向量平行则包括共线的情形.2.判断两非零向量是否平行,实际上就是找出一个实数,使这个实数能够和其中一个向量把另外一个向量表示出来.3.当向量a与b共线同向时,|a+b|=|a|+|b|;当向量a与b共线反向时,|a+b|=||a|-|b||;当向量a与b不共线时,|a+b|<|a|+|b|.典例精析题型一平面向量基本定理的应用如图?ABCD中,M,N分别是DC,BC中点.已知AM=a,=b,试用a,b表示,AD与AC易知AM=AD+DM 1=+,1AN=AB+BN=AB2AD, 1a,??2即? ??1?b.?2? 22所以=b-a),=2a-b).32所以=+=a+b).运用平面向量基本定理及线性运算,平面内任何向量都可以用基底来表示.此处方程思想的运用值得仔细领悟.已知D为△ABC的边BC上的中点,△ABC所在平面内有一点P,满足++=0等于 1B.C.1 D.1A.由于D为BC边上的中点,因此由向量加法的平行四边形法则,易知PB+PC=2PD,因此结合PA+BP+CP=0即得PA=2PD,因此易得P,A,D三点共线且D是PA=1,即选C.题型二向量的坐标运算已知a=,b=,u=a+2b,v=2a-b.若u=3v,求x;若u∥v,求x.因为a=,b=,所以u=+2=+=,v=2-=.u=3v?=3=,所以2x+1=6-3x,解得x=1.u∥v ?=λ2x1,-3=0?x=1.对用坐标表示的向量来说,向量相等即坐标相等,这一点在解题中很重要,应引起重视.nπnπ已知向量an=sinn∈N*),|b|=1.则函数y =|a1+b|2+|a2+b|2+|a3+b|2+ (77)+|a141+b|2的最大值为.π设b=,所以y=|a1+b|2+|a2+b|2+|a3+b|2+…+|a141+b|2=2+b2+2+…+2+b2+2=282+2cos,所以y的最大7777值为284.题型三平行向量的坐标运算已知△ABC的角A,B,C所对的边分别是a,b,c,设向量m=,n=,p=.若m∥n,求证:△ABC为等腰三角形;π若m⊥p,边长c=2,角CABC的面积.证明:因为m∥n,所以asin A=bsin B.由正弦定理,得a2=b2,即a=b.所以△ABC为等腰三角形.因为m⊥p,所以m²p=0,即a+b=0,所以a+b=ab.由余弦定理,得4=a2+b2-ab=2-3ab,所以2-3ab-4=0.所以ab=4或ab=-1.113所以S△ABC=absin C3.22设m=,n=,则①m∥n?x1y2=x2y1;②m⊥n?x1x2+y1y2=0.已知a,b,c分别为△ABC的三个内角A,B,C的对边,向量m=,n=.若m⊥n,且a+b=10,则△ABC周长的最小值为A.10-3C.10-23B.10+5D.10+231由m⊥n得2cos2C-3cos C-2=0,解得cos C=-cos C=2,所以c2=a2+b2-2abcos平面向量一、选择题1、已知向量OM?,ON?,则12MN等于 A.B.C.D.、已知向量a?,b?,则?3a?2b的坐标是 A. B.C.D.3、已知?,?,且∥,则x等于 A.3B.?3C.1D.?1334、若?,?,则与的夹角的余弦值为 A.633365B.65C.?3365D.?6365546,与的夹角是135?,则?等于 A.12B.2C.?2D.?126、点关于点B的对称点是 A.B.C.D.7、下列向量中,与垂直的向量是 A.B.C.D.8、已知A、B、C三点共线,且A、B、C三点的纵坐标分别为2、5、10,则点A分所成的比是 A.?38B.38C.?83D.839、在平行四边形ABCDA.? B.?或? C.ABCD是矩形D.ABCD是正方形10、已知点C在线段AB的延长线上,且?BC??CA,则?等于A.3B.13C.?3D.?1311、已知平面内三点A,B,C满足BA?AC,则x的值为A.3B.6C.7D.912、已知?ABC的三个顶点分别是A,B,C,重心G,则x、y的值分别是 A.x?2,y?5B.x?1,y??52C.x?1,y??1D.x?2,y??5216、设两个非零向量a,b不共线,且ka?b与a?kb 共线,则k的值为 A.1B.?1C.?1 D.017、已知A,B,?23,则点M的坐标是 A.B.C.D.18、将向量y?sin2x按向量?平移后的函数解析式是A.y?sin?1B.y?sin?1C.y?sin?1D.y?sin?1二、填空题20、已知??2?3,且3?2与??垂直,则?等于1、已知等边三角形ABC的边长为1,则??22、设e?1、e2是两个单位向量,它们的夹角是60,则??3、已知A、B,?三、解答题24、已知A,AB?,求线段AB的中点C的坐标。
高中数学6.2.2《平面向量的运算》基础过关练习题(含答案)
第六章 6.2 6.2.2A 级——基础过关练1.(多选)如图,在平行四边形ABCD 中,下列结论正确的是( )A .AB →=DC → B .AD →+AB →=AC → C .AB →-AD →=BD → D .AD →+CB →=0【答案】ABD 【解析】A 项显然正确;由平行四边形法则知B 正确;C 项中AB →-AD →=DB →,故C 错误;D 项中AD →+CB →=AD →+DA →=0.故选ABD .2.化简以下各式:①AB →+BC →+CA →;②AB →-AC →+BD →-CD →;③OA →-OD →+AD →;④NQ →+QP →+MN →-MP →.结果为零向量的个数是( )A .1B .2C .3D .4【答案】D 【解析】①AB →+BC →+CA →=AC →+CA →=AC →-AC →=0; ②AB →-AC →+BD →-CD →=(AB →+BD →)-(AC →+CD →)=AD →-AD →=0; ③OA →-OD →+AD →=(OA →+AD →)-OD →=OD →-OD →=0; ④NQ →+QP →+MN →-MP →=NP →+PM →+MN →=NM →-NM →=0. 3.(2020年北京期末)如图,向量a -b 等于( )A .3e 1-e 2B .e 1-3e 2C .-3e 1+e 2D .-e 1+3e 2【答案】B 【解析】如图,设a -b =AB →=e 1-3e 2,∴a -b =e 1-3e 2.故选B .4.对于菱形ABCD ,给出下列各式:①AB →=BC →;②|AB →|=|BC →|;③|AB →-CD →|=|AD →+BC →|;④|AD →+CD →|=|CD →-CB →|. 其中正确的个数为( ) A .1 B .2 C .3D .4【答案】C 【解析】由菱形的图形,可知向量AB →与BC →的方向是不同的,但它们的模是相等的,所以②正确,①错误;因为|AB →-CD →|=|AB →+DC →|=2|AB →|,|AD →+BC →|=2|BC →|,且|AB →|=|BC →|,所以|AB →-CD →|=|AD →+BC →|,即③正确;因为|AD →+CD →|=|BC →+CD →|=|BD →|,|CD →-CB →|=|CD →+BC →|=|BD →|,所以④正确.综上所述,正确的个数为3.故选C .5.若|AB →|=8,|AC →|=5,则|BC →|的取值范围是( ) A .[3,8] B .(3,8) C .[3,13]D .(3,13)【答案】C 【解析】由于BC →=AC →-AB →,则有|AB →|-|AC →|≤|BC →|≤|AB →|+|AC →|,即3≤|BC →|≤13.6.若非零向量a 与b 互为相反向量,给出下列结论:①a ∥b ;②a ≠b ;③|a|≠|b|;④b =-a.其中所有正确命题的序号为________.【答案】①②④ 【解析】非零向量a ,b 互为相反向量时,模一定相等,因此③不正确.7.若a ,b 为相反向量,且|a|=1,|b|=1,则|a +b|=________,|a -b|=________. 【答案】0 2 【解析】若a ,b 为相反向量,则a +b =0,所以|a +b|=0.又a =-b ,所以|a|=|-b|=1.因为a 与-b 共线,所以|a -b|=2.8.如图,已知向量a 和向量b ,用三角形法则作出a -b +a .解:如图所示,作向量OA →=a ,向量OB →=b ,则向量BA →=a -b ;作向量AC →=a ,则BC →=a -b +a .9.如图,已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,OF →=f ,试用a ,b ,c ,d ,f 表示以下向量:AC →,AD →,AD →-AB →,AB →+CF →,BF →-BD →. 解:AC →=OC →-OA →=c -a . AD →=AO →+OD →=OD →-OA →=d -a . AD →-AB →=BD →=OD →-OB →=d -b .AB →+CF →=OB →-OA →+OF →-OC →=b -a +f -c . BF →-BD →=OF →-OB →-(OD →-OB →)=OF →-OD →=f -d .10.如图,在四边形ABCD 中,对角线AC ,BD 交于点O ,且|AB →|=|AD →|=1,OA →+OC →=OB →+OD →=0,cos ∠DAB =12,求|DC →+BC →|与|CD →+BC →|.解:∵OA →+OC →=OB →+OD →=0, ∴OA →=CO →,OB →=DO →.∴四边形ABCD 为平行四边形.又|AB →|=|AD →|=1,∴▱ABCD 为菱形. ∵cos ∠DAB =12,∠DAB ∈(0,π),∴∠DAB =π3,∴△ABD 为正三角形.∴|DC →+BC →|=|AB →+BC →|=|AC →|=2|AO →|=3,|CD →+BC →|=|BD →|=|AB →|=1.B 级——能力提升练11.在平面上有A ,B ,C 三点,设m =AB →+BC →,n =AB →-BC →,若m 与n 的长度恰好相等,则有( )A .A ,B ,C 三点必在一条直线上 B .△ABC 必为等腰三角形且∠B 为顶角 C .△ABC 必为直角三角形且∠B 为直角D .△ABC 必为等腰直角三角形【答案】C 【解析】以BA →,BC →为邻边作平行四边形ABCD ,则m =AB →+BC →=AC →,n =AB →-BC →=AB →-AD →=DB →,由m ,n 的长度相等可知,两对角线相等,因此平行四边形一定是矩形.故选C .12.平面内有四边形ABCD 和点O ,若OA →+OC →=OB →+OD →,则四边形ABCD 的形状是( )A .梯形B .平行四边形C .矩形D .菱形【答案】B 【解析】因为OA →+OC →=OB →+OD →,所以OA →-OB →=OD →-OC →,即BA →=CD →.所以AB CD .故四边形ABCD 是平行四边形.13.平面上有一个△ABC 和一点O ,设OA →=a ,OB →=b ,OC →=c .又OA →,BC →的中点分别为D ,E ,则向量DE →等于( )A .12(a +b +c )B .12(-a +b +c )C .12(a -b +c )D .12(a +b -c )【答案】B 【解析】DE →=DO →+OE →=-12a +12(b +c )=12(-a +b +c ).14.如图,在正六边形ABCDEF 中,与OA →-OC →+CD →相等的向量有________.①CF →;②AD →;③DA →;④BE →;⑤CE →+BC →;⑥CA →-CD →;⑦AB →+AE →.【答案】① 【解析】OA →-OC →+CD →=CA →+CD →=CF →;CE →+BC →=BC →+CE →=BE →≠CF →;CA →-CD →=DA →≠CF →;AB →+AE →=AD →≠CF →.15.已知|a|=7,|b|=2,且a ∥b ,则|a -b|的值为________.【答案】5或9 【解析】当a 与b 方向相同时,|a -b|=||a|-|b||=7-2=5;当a 与b 方向相反时,|a -b|=|a|+|b|=7+2=9.16.如图所示,点O 是四边形ABCD 内任一点,试根据图中给出的向量,确定a ,b ,c ,d 的方向(用箭头表示),使a +b =BA →,c -d =DC →,并画出b -c 和a +d .解:因为a +b =BA →,c -d =DC →,所以a =OA →,b =BO →,c =OC →,d =OD →.如图所示,作平行四边形OBEC ,平行四边形ODF A .根据平行四边形法则可得,b -c =EO →,a +d =OF →.17.如图所示,O 是平行四边形ABCD 的对角线AC ,BD 的交点,若AB →=a ,DA →=b ,OC →=c ,试证明:b +c -a =OA →.证明:(方法一)因为b +c =DA →+OC →=OC →+CB →=OB →,OA →+a =OA →+AB →=OB →,所以b +c =OA →+a ,即b +c -a =OA →.(方法二)OA →=OC →+CA →=OC →+CB →+CD →=c +DA →+BA →=b +c -AB →=b +c -a .(方法三)因为c -a =OC →-AB →=OC →-DC →=OC →+CD →=OD →=OA →+AD →=OA →-DA →=OA →-b ,所以b +c -a =OA →.C 级——探索创新练18.已知|a |=8,|b |=15. (1)求|a -b |的取值范围;(2)若|a -b |=17,则表示a ,b 的有向线段所在的直线所成的角是多少? 解:(1)由向量三角不等式||a |-|b ||≤|a -b |≤|a |+|b |,得7≤|a -b |≤23. 当a ,b 同向时,不等式左边取等号, 当a ,b 反向时,不等式右边取等号. (2)易知|a |2+|b |2=82+152=172=|a -b |2. 作OA →=a ,OB →=b ,则|BA →|=|a -b |=17, 所以△OAB 是直角三角形,其中∠AOB =90°. 所以表示a ,b 的有向线段所在的直线成90°角.。
平面向量及其应用全章综合测试卷(基础篇)(教师版)
D.两个有共同起点而且相等的向量,其终点必相同
【解题思路】根据零向量的方向是任意的; ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直;长度相等的向
量是相等向量或相反向量;即可解决.
【解答过程】零向量的方向是任意的,故 A 错;
若 ⋅ = ⋅ , ≠ 0 ,则 = 或 与, 都垂直,故 B 错;
13.(5 分)(2024·高一课时练习)下列各量中,向量有: ③⑤⑥⑧⑩
.(填写序号)
①浓度;②年龄;③风力;④面积;⑤位移;⑥人造卫星的速度;⑦电量;⑧向心力;⑨盈利;⑩加速
度.
【解题思路】根据向量的概念判断即可.
【解答过程】解:向量是有大小有方向的量,故符合的有:风力,位移,人造卫星的速度,向心力,加速
A.1
B.2
)
C. 2
D. 3
1
【解题思路】由正弦定理及余弦定理得cos = 2,然后利用余弦定理结合三角形的面积公式,即可求解.
【解答过程】∵sin2 + sin2−sinsin = sin2,
∴2 + 2− = 2,cos =
2 2−2
2
1
= 2,可得sin = 1−cos2 =
∵2 + 2− = ( + )2−3 = 2, + = 4, = 2,
∴ = 4,
1
1
所以三角形的面积为 = 2sin = 2 × 4 ×
3
2
= 3.
故选:D.
二.多选题(共 4 小题,满分 20 分,每小题 5 分)
9.(5 分)(2024·高一课时练习)下列说法中正确的是(
【解答过程】由题设sin = 1−cos2 =
平面向量及其应用基础练习题
一、多选题1.下列说法中正确的是( )A .对于向量,,a b c ,有()()a b c a b c ⋅⋅=⋅⋅B .向量()11,2e =-,()25,7e =能作为所在平面内的一组基底C .设m ,n 为非零向量,则“存在负数λ,使得λ=m n ”是“0m n ⋅<”的充分而不必要条件D .在ABC 中,设D 是BC 边上一点,且满足2CD DB =,CD AB AC λμ=+,则0λμ+=2.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且02C <<π,4b =,则以下说法正确的是( )A .3C π=B .若72c =,则1cos 7B =C .若sin 2cos sin A B C =,则ABC 是等边三角形D .若ABC 的面积是4 3.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,已知A =3π,a =7,则以下判断正确的是( )A .△ABC 的外接圆面积是493π; B .b cos C +c cos B =7;C .b +c 可能等于16;D .作A 关于BC 的对称点A ′,则|AA ′|的最大值是4.ABC 是边长为2的等边三角形,已知向量a ,b 满足2AB a =,2AC a b =+,则下列结论正确的是( ) A .a 是单位向量 B .//BC b C .1a b ⋅=D .()4BC a b ⊥+5.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B >D .sin sin sin +=+a b cA B C6.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( )A .1122AE AB AC →→→=+B .2AB EF →→=C .1133CP CA CB →→→=+D .2233CP CA CB →→→=+7.在ABC 中,AB =1AC =,6B π=,则角A 的可能取值为( )A .6πB .3π C .23π D .2π 8.以下关于正弦定理或其变形正确的有( ) A .在ABC 中,a :b :c =sin A :sin B :sin C B .在ABC 中,若sin 2A =sin 2B ,则a =bC .在ABC 中,若sin A >sin B ,则A >B ,若A >B ,则sin A >sin B 都成立D .在ABC 中,sin sin sin +=+a b cA B C9.在ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,不解三角形,确定下列判断错误的是( )A .B =60°,c =4,b =5,有两解 B .B =60°,c =4,b =3.9,有一解C .B =60°,c =4,b =3,有一解D .B =60°,c =4,b =2,无解10.下列关于平面向量的说法中正确的是( )A .已知A 、B 、C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ⋅=⋅且0b ≠,则a c =C .若点G 为ΔABC 的重心,则0GA GB GC ++=D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 11.下列各式中,结果为零向量的是( ) A .AB MB BO OM +++ B .AB BC CA ++ C .OA OC BO CO +++ D .AB AC BD CD -+- 12.在△ABC 中,若cos cos a A b B =,则△ABC 的形状可能为( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形13.对于菱形ABCD ,给出下列各式,其中结论正确的为( ) A .AB BC =B .AB BC =C .AB CD AD BC -=+D .AD CD CD CB +=-14.在ABCD 中,设AB a =,AD b =,AC c =,BD d =,则下列等式中成立的是( ) A .a b c +=B .a d b +=C .b d a +=D .a b c +=15.已知实数m ,n 和向量a ,b ,下列说法中正确的是( ) A .()m a b ma mb -=- B .()m n a ma na -=-C .若ma mb =,则a b =D .若()0ma na a =≠,则m n =二、平面向量及其应用选择题16.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,则①AD =-b -12a ;②BE =a +12b ;③CF =-12a +12b ;④AD +BE +CF =0.其中正确的等式的个数为( ) A .1B .2C .3D .417.已知非零向量AB 与AC 满足0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭且12AB AC AB AC ⋅=,则ABC 的形状是( ) A .三边均不相等的三角形 B .等腰直角三角形 C .等边三角形D .以上均有可能18.在ABC ∆中,a、b 、c 分别是角A 、B 、C 的对边,若sin cos sin a b cA B B===ABC ∆的面积为( ) A .2B .4CD .19.a ,b 为单位向量,且27a b +=,则向量a ,b 夹角为( )A .30B .45︒C .60︒D .90︒20.在ABC 中,AD 、BE 、CF 分别是BC 、CA 、AB 上的中线,它们交于点G ,则下列各等式中不正确...的是( ) A .23BG BE = B .2CG GF = C .12DG AG =D .0GA GB GC ++=21.在△ABC 中,AB =a ,BC =b ,且a b ⋅>0,则△ABC 是( ) A .锐角三角形B .直角三角形C .等腰直角三角形D .钝角三角形22.在△ABC 中,M 是BC 的中点.若AB =a ,BC =b ,则AM =( ) A .1()2a b + B .1()2a b - C .12a b + D .12a b +23.在ABC ∆中,6013ABC A b S ∆∠=︒==,,,则2sin 2sin sin a b cA B C-+-+的值等于( )A .239B .2633C .833D .2324.在ABC ∆中,已知2AB =,4AC =,若点G 、W 分别为ABC ∆的重心和外心,则()AG AW BC +⋅=( )A .4B .6C .10D .1425.如图所示,在正方形ABCD 中,E 为BC 的中点,F 为AE 的中点,则DF =( )A .1324AB AD -+ B .1223AB AD + C .1132AB AD - D .1324AB AD -26.题目文件丢失!27.ABC ∆中,22:tan :tan a b A B =,则ABC ∆一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形28.在梯形ABCD 中,//AD BC ,90ABC ∠=︒,2AB BC ==,1AD =,则BD AC ⋅=( )A .2-B .3-C .2D .529.已知点O 是ABC ∆内一点,满足2OA OB mOC +=,47AOB ABC S S ∆∆=,则实数m 为( ) A .2B .-2C .4D .-430.在ABC ∆中,60A ∠=︒,1b =,3ABC S ∆,则2sin 2sin sin a b cA B C++=++( )A 239B 263C 83D .2331.已知ABC ∆的内角A 、B 、C 满足()()1sin 2sin sin 2A ABC C A B +-+=--+,面积S 满足12S ≤≤,记a 、b 、c 分别为A 、B 、C 所对的边,则下列不等式一定成立的是( ) A .()8bc b c +> B .()162ab a b +>C .612abc ≤≤D .1224abc ≤≤32.已知平面向量a ,b ,c 满足2a b ==,()()20c a c b ⋅--=,则b c ⋅的最大值为( ) A .54B .2C .174D .433.在ABC 中,AB AC BA BC CA CB →→→→→→⋅=⋅=⋅,则ABC 的形状为( ). A .钝角三角形 B .等边三角形 C .直角三角形 D .不确定 34.在ABC 中,若sin 2sin cos B A C =,那么ABC 一定是( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形35.在矩形ABCD 中,3,2AB BC BE EC ===,点F 在边CD 上,若AB AF 3→→=,则AE BF→→的值为( )A .0B C .-4 D .4【参考答案】***试卷处理标记,请不要删除一、多选题 1.BCD 【分析】.向量数量积不满足结合律进行判断 .判断两个向量是否共线即可 .结合向量数量积与夹角关系进行判断 .根据向量线性运算进行判断 【详解】解:.向量数量积不满足结合律,故错误, ., 解析:BCD 【分析】A .向量数量积不满足结合律进行判断B .判断两个向量是否共线即可C .结合向量数量积与夹角关系进行判断D .根据向量线性运算进行判断 【详解】解:A .向量数量积不满足结合律,故A 错误,B.1257-≠,∴向量1(1,2)e =-,2(5,7)e =不共线,能作为所在平面内的一组基底,故B 正确,C .存在负数λ,使得m n λ=,则m 与n 反向共线,夹角为180︒,此时0m n <成立,当0m n <成立时,则m 与n 夹角满足90180θ︒<︒,则m 与n 不一定反向共线,即“存在负数λ,使得m n λ=”是“0m n <”的充分而不必要条件成立,故C 正确,D .由23CD CB =得2233CD AB AC =-,则23λ=,23μ=-,则22033λμ+=-=,故D 正确故正确的是BCD , 故选:BCD . 【点睛】本题主要考查向量的有关概念和运算,结合向量数量积,以及向量运算性质是解决本题的关键,属于中档题.2.AC 【分析】对于,利用正弦定理可将条件转化得到,即可求出; 对于,利用正弦定理可求得,进而可得;对于,利用正弦定理条件可转化为,结合原题干条件可得,进而求得; 对于,根据三角形面积公式求得,利解析:AC 【分析】对于A2sin sin A C A =,即可求出C ; 对于B ,利用正弦定理可求得sin B ,进而可得cos B ;对于C ,利用正弦定理条件可转化为2cos a c B =,结合原题干条件可得B ,进而求得A B C ==;对于D ,根据三角形面积公式求得a ,利用余弦定理求得c ,进而由正弦定理求得R . 【详解】2sin c A =2sin sin A C A =, 因为sin 0A ≠,故sin 2C =, 因为(0,)2C π∈,则3C π=,故A 正确;若72c =,则由正弦定理可知sin sin c b C B =,则4sin sin 72b B Cc ==因为(0,)B π∈,则1cos 7B =±,故B 错误; 若sin 2cos sin A BC =,根据正弦定理可得2cos a c B =,2sin c A =,即sin a A =sin 2cos A c B =,所以sin A B =,因为23A B C ππ+=-=,则23A B π=-,故2sin()3B B π-=,1sin 2B B B +=,即1sin cos 22B B =,解得tan B =3B π=,则3A π=,即3A B C π===,所以ABC 是等边三角形,故C 正确; 若ABC的面积是1sin 2ab C =2a =,由余弦定理可得22212cos 416224122c a b ab C =+-=+-⨯⨯⨯=,即c = 设三角形的外接圆半径是R ,由正弦定理可得24sin c R C ===,则该三角形外接圆半径为2,故D 错误, 故选:AC . 【点睛】本题考查正余弦定理的应用及同角三角函数的基本关系和两角和与差的三角公式,转化思想,计算能力,属于中档题.3.ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设的外接圆半径为,根据正弦定理,可得,所以的外接圆面积是,故A 正确;对于B ,根据正弦定解析:ABD 【分析】根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】对于A ,设ABC 的外接圆半径为R ,根据正弦定理2sin a R A =,可得3R =,所以ABC 的外接圆面积是2493S R ππ==,故A 正确; 对于B ,根据正弦定理,利用边化角的方法,结合A B C π++=,可将原式化为2sin cos 2sin cos 2sin()2sin R B C R C B R B C R A a +=+==,故B 正确.对于C ,22(sin sin )2[sin sin()]3b c R B C R B B π+=+=+-114(cos )14sin()23B B B π=+=+14b c ∴+≤,故C 错误.对于D ,设A 到直线BC 的距离为d ,根据面积公式可得11sin 22ad bc A =,即sin bc Ad a=,再根据①中的结论,可得d =D 正确. 故选:ABD. 【点睛】 本题是考查三角恒等变换与解三角形结合的综合题,解题时应熟练掌握运用三角函数的性质、诱导公式以及正余弦定理、面积公式等.4.ABD 【分析】A. 根据是边长为2的等边三角形和判断;B.根据,,利用平面向量的减法运算得到判断;C. 根据,利用数量积运算判断;D. 根据, ,利用数量积运算判断. 【详解】 A. 因为是边长解析:ABD 【分析】A. 根据ABC 是边长为2的等边三角形和2AB a =判断;B.根据2AB a =,2AC a b =+,利用平面向量的减法运算得到BC 判断;C. 根据1,2a ABb BC ==,利用数量积运算判断;D. 根据b BC =, 1a b ⋅=-,利用数量积运算判断. 【详解】A. 因为ABC 是边长为2的等边三角形,所以2AB =,又2AB a =,所以 a 是单位向量,故正确;B. 因为2AB a =,2AC a b =+,所以BC AC AB b =-=,所以//BC b ,故正确;C. 因为1,2a AB b BC ==,所以1122cos120122a b BC AB ⋅=⋅=⨯⨯⨯︒=-,故错误;D. 因为b BC =, 1a b ⋅=-,所以()()2444440BC a b b a b a b b ⋅+=⋅+=⋅+=-+=,所以()4BC a b ⊥+,故正确. 故选:ABD 【点睛】本题主要考查平面向量的概念,线性运算以及数量积运算,还考查了运算求解的能力,属于中档题.5.ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在,由正弦定理得,则,故A 正确; 对于B ,若,则或,所以和不一定相等,故B 错误; 对于C ,若,由正弦定理知,由于三角形中,大边对大角解析:ACD 【分析】根据正弦定理的性质即可判断. 【详解】对于A ,在ABC ,由正弦定理得2sin sin sin a b cR A B C===,则::2sin :2sin :2sin sin :sin :sin a b c R A R B R C A B C ==,故A 正确;对于B ,若sin 2sin 2A B =,则A B =或2A B π+=,所以a 和b 不一定相等,故B 错误;对于C ,若sin sin A B >,由正弦定理知a b >,由于三角形中,大边对大角,所以A B >,故C 正确;对于D ,由正弦定理得2sin sin sin a b cR A B C===,则2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++,故D 正确.故选:ACD. 【点睛】本题考查正弦定理的应用,属于基础题. 6.AC【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知, , A 是正确的;因为EF 是中位线,所以B 是正确的; 根据三角形重心解析:AC 【分析】由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:根据三角形中线性质和平行四边形法则知,111()()222AE AB BE AB BC AB AC AB AC AB →→→→→→→→→→=+=+=+-=+, A 是正确的;因为EF 是中位线,所以B 是正确的;根据三角形重心性质知,CP =2PG ,所以22113323CP CG CA CB CA CB →→→→→→⎛⎫⎛⎫==⨯+=+ ⎪ ⎪⎝⎭⎝⎭,所以C 是正确的,D 错误. 故选:AC 【点睛】本题主要考查了平面向量基本定理的简单应用,熟记一些基本结论是求解问题的关键,属于中档题.7.AD 【分析】由余弦定理得,解得或,分别讨论即可. 【详解】 由余弦定理,得, 即,解得或.当时,此时为等腰三角形,,所以; 当时,,此时为直角三角形,所以. 故选:AD 【点睛】 本题考查余弦解析:AD 【分析】由余弦定理得2222cos AC BC BA BC BA B =+-⋅⋅,解得1BC =或2BC =,分别讨论即可. 【详解】由余弦定理,得2222cos AC BC BA BC BA B =+-⋅⋅,即2132BC BC =+-,解得1BC =或2BC =. 当1BC =时,此时ABC 为等腰三角形,BC AC =,所以6A B π==;当2BC =时,222AB AC BC +=,此时ABC 为直角三角形,所以A =2π. 故选:AD 【点睛】本题考查余弦定理解三角形,考查学生分类讨论思想,数学运算能力,是一道容易题.8.ACD 【分析】对于A ,由正弦定理得a :b :c =sinA :sinB :sinC ,故该选项正确; 对于B ,由题得A =B 或2A+2B =π,即得a =b 或a2+b2=c2,故该选项错误; 对于C ,在ABC 中解析:ACD 【分析】对于A ,由正弦定理得a :b :c =sin A :sin B :sin C ,故该选项正确; 对于B ,由题得A =B 或2A +2B =π,即得a =b 或a 2+b 2=c 2,故该选项错误; 对于C ,在ABC 中,由正弦定理可得A >B 是sin A >sin B 的充要条件,故该选项正确; 对于D ,由正弦定理可得右边=2sin 2sin 2sin sin R B R CR B C+=+=左边,故该选项正确.【详解】对于A ,由正弦定理2sin sin sin a b cR A B C===,可得a :b :c =2R sin A :2R sin B :2R sin C =sin A :sin B :sin C ,故该选项正确;对于B ,由sin2A =sin2B ,可得A =B 或2A +2B =π,即A =B 或A +B =2π,∴a =b 或a 2+b 2=c 2,故该选项错误;对于C ,在ABC 中,由正弦定理可得sin A >sin B ⇔a >b ⇔A >B ,因此A >B 是sin A >sin B 的充要条件,故该选项正确; 对于D ,由正弦定理2sin sin sin a b cR A B C===,可得右边=2sin 2sin 2sin sin sin sin b c R B R CR B C B C ++==++=左边,故该选项正确.故选:ACD. 【点睛】本题主要考查正弦定理及其变形,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.ABC 【分析】根据判断三角形解的个数的结论:若为锐角,当时,三角形有唯一解;当时,三角形有两解;当时,三角形无解:当时,三角形有唯一解.逐个判断即可得解. 【详解】对于,因为为锐角且,所以三角解析:ABC 【分析】根据判断三角形解的个数的结论:若B 为锐角,当c b <时,三角形有唯一解;当sin c B b c <<时,三角形有两解;当sin c B b >时,三角形无解:当sin c B b =时,三角形有唯一解.逐个判断即可得解. 【详解】对于A ,因为B 为锐角且45c b =<=,所以三角形ABC 有唯一解,故A 错误;对于B ,因为B 为锐角且sin 4 3.92c B b c =⨯==<,所以三角形ABC 有两解,故B 错误;对于C ,因为B 为锐角且 sin 43c B b ==>=,所以三角形ABC 无解,故C 错误;对于D ,因为B 为锐角且sin 42c B b ==>=,所以三角形ABC 无解,故D 正确. 故选:ABC. 【点睛】本题考查了判断三角形解的个数的方法,属于基础题.10.AC 【分析】根据平面向量基本定理判断A ;由数量积的性质可判断;由向量的中点表示和三角形的重心性质可判断,由数量积及平面向量共线定理判断D . 【详解】解:因为不能构成该平面的基底,所以,又有公共【分析】根据平面向量基本定理判断A ;由数量积的性质可判断B ;由向量的中点表示和三角形的重心性质可判断C ,由数量积及平面向量共线定理判断D . 【详解】解:因为,AB AC 不能构成该平面的基底,所以//AB AC ,又,AB AC 有公共点A ,所以A 、B 、C 共线,即A 正确;由平面向量的数量积可知,若a b b c =,则||||cos ,||||cos ,a b a b b c b c <>=<>,所以||cos ,||cos ,a a b c b c <>=<>,无法得到a c =,即B 不正确;设线段AB 的中点为M ,若点G 为ABC ∆的重心,则2GA GB GM +=,而2GC GM =-,所以0GA GB GC ++=,即C 正确;()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则220a b λ=⋅->解得1λ<,且a与b 不能共线,即4λ≠-,所以()(),44,1λ∈-∞--,故D 错误;故选:AC . 【点睛】本题考查向量共线定理和向量数量积的性质和向量的加减运算,属于中档题.11.BD 【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案. 【详解】对于选项:,选项不正确; 对于选项: ,选项正确; 对于选项:,选项不正确; 对于选项: 选项正确. 故选:解析:BD 【分析】根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案. 【详解】对于选项A :AB MB BO OM AB +++=,选项A 不正确; 对于选项B : 0AB BC CA AC CA ++=+=,选项B 正确; 对于选项C :OA OC BO CO BA +++=,选项C 不正确;对于选项D :()()0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-=故选:BD 【点睛】本题主要考查了向量的线性运算,属于基础题.12.ABCD 【分析】应用正弦定理将边化角,由二倍角公式有即或,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】 根据正弦定理 , 即. , 或. 即或解析:ABCD 【分析】应用正弦定理将边化角,由二倍角公式有sin 2sin 2A B =即A B =或2A B π+=,进而有△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形 【详解】根据正弦定理sin sin a b A B= cos cos a A b B =sin cos sin cos A A B B =, 即sin 2sin 2A B =. 2,2(0,2)A B π∈,22A B =或22A B π+=. 即A B =或2A B π+=,△ABC 可能为:直角三角形,等腰三角形,等腰直角三角形,等边三角形. 故选:ABCD 【点睛】本题考查了正弦定理的边化角,二倍角公式解三角形判断三角形的形状,注意三角形内角和为180°13.BCD 【分析】由向量的加法减法法则及菱形的几何性质即可求解. 【详解】菱形中向量与的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误; 因为,,且, 所以,即C 结论正确; 因为,解析:BCD 【分析】由向量的加法减法法则及菱形的几何性质即可求解. 【详解】菱形中向量AB 与BC 的方向是不同的,但它们的模是相等的, 所以B 结论正确,A 结论错误;因为2AB CD AB DC AB -=+=,2AD BC BC +=,且AB BC =, 所以AB CD AD BC -=+,即C 结论正确; 因为AD CD BC CD BD +=+=,||||CD CB CD BC BD -=+=,所以D 结论正确.故选:BCD 【点睛】本题主要考查了向量加法、减法的运算,菱形的性质,属于中档题.14.ABD 【分析】根据平行四边形及向量的加法法则即可判断. 【详解】由向量加法的平行四边形法则,知成立, 故也成立;由向量加法的三角形法则,知成立,不成立. 故选:ABD 【点睛】 本题主要考查解析:ABD 【分析】根据平行四边形及向量的加法法则即可判断. 【详解】由向量加法的平行四边形法则,知a b c +=成立,故a b c +=也成立;由向量加法的三角形法则,知a d b +=成立,b d a +=不成立. 故选:ABD 【点睛】本题主要考查了向量加法的运算,数形结合,属于容易题.15.ABD 【分析】根据向量数乘运算判断AB 选项的正确性,通过的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性. 【详解】根据向量数乘的运算可知A 和B 正确;C 中,当时,,但与不一定相等,解析:ABD 【分析】根据向量数乘运算判断AB 选项的正确性,通过m 的特殊情况判断C 选项的正确性,根据向量运算判断D 选项的正确性. 【详解】根据向量数乘的运算可知A 和B 正确;C 中,当0m =时,0ma mb ==,但a 与b 不一定相等,故C 不正确;D 中,由ma na =,得()0m n a -=,因为0a ≠,所以m n =,故D 正确. 故选:ABD 【点睛】本小题主要考查向量数乘运算,属于基础题.二、平面向量及其应用选择题16.D 【分析】本题考查的知识点是向量的加减法及其几何意义、及零向量,我们根据已知中的图形,结合向量加减法的三角形法则,对题目中的四个结论逐一进行判断,即可得到答案. 【详解】①如图可知AD =AC +CD =AC +12CB =-CA -12BC=-b -12a ,故①正确. ②BE =BC +CE =BC +12CA =a +12b ,故②正确. ③CF =CA +AE =CA +12AB =b +12(-a -b ) =-12a +12b ,故③正确. ④AD +BE +CF =-DA +BE +CF =-(DC +CA )+BE +CF=-(12a +b )+a +12b -12a +12b =0,故④正确. 故选D. 【点睛】本题考查的主要知识点是向量加减法及其几何意义,关键是要根据向量加减法及其几何意义,将未知的向量分解为已知向量. 17.C 【分析】ABAB 和ACAC 分别表示向量AB 和向量AC 方向上的单位向量,0AB AC BC AB AC ⎛⎫⎪+⋅= ⎪⎝⎭表示A ∠平分线所在的直线与BC 垂直,可知ABC 为等腰三角形,再由12AB AC ABAC⋅=可求出A ∠,即得三角形形状。
高中数学平面向量习题五篇
高中数学平面向量习题五篇篇一:高中数学平面向量练习题一.填空题。
1. +++等于________.2.若向量=(3,2),=(0,-1),则向量2-的坐标是________. 3.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为________.4.向量a 、b 满足|a|=1,|b|=2,(a+b)⊥(2a-b),则向量a 与b 的夹角为________.5.已知向量=(1,2),=(3,1),那么向量2-21的坐标是_________. 6.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若与共线,则||的值等于________.7.将点A (2,4)按向量=(-5,-2)平移后,所得到的对应点A ′的坐标是______.8. 已知a=(1,-2),b=(1,x),若a ⊥b,则x 等于______9. 已知向量a,b 的夹角为120,且|a|=2,|b|=5,则(2a-b )·a=______ 10. 设a=(2,-3),b=(x,2x),且3a ·b=4,则x 等于_____11. 已知y x 且),3,2(),,(),1,6(--===∥,则x+2y 的值为_____ 12. 已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC +的最小值是 .14.将圆222=+y x 按向量v=(2,1)平移后,与直线0=++λy x 相切,则λ的值为 .二.解答题。
1.设平面三点A (1,0),B (0,1),C (2,5).(1)试求向量2+的模; (2)试求向量与的夹角; (3)试求与垂直的单位向量的坐标.2.已知向量a=(θθcos ,sin )(R ∈θ),b=(3,3)(1)当θ为何值时,向量a 、b 不能作为平面向量的一组基底 (2)求|a -b|的取值范围3.已知向量a、b是两个非零向量,当a+tb(t∈R)的模取最小值时,(1)求t的值(2)已知a、b共线同向时,求证b与a+tb垂直4. 设向量)2,11,3(-=,向量垂直于向量,向量平行于,=(),试求OD=时+的坐标.OAOCOD,5.将函数y=-x 2进行平移,使得到的图形与函数y=x 2-x -2的图象的两个交点关于原点对称.(如图)求平移向量a 及平移后的函数解析式.6.已知平面向量).23,21(),1,3(=-=若存在不同时为零的实数k 和t,使.,,)3(2t k t ⊥+-=-+=且 (1)试求函数关系式k=f (t ) (2)求使f (t )>0的t 的取值范围.参考答案1.2.(-3,-4)3.74.90°(21,321).6.73.7.(-3,2). 8.-2 9.1210.3111.0 12. 90° 13.2-14.51--或(1)∵ AB =(0-1,1-0)=(-1,1),=(2-1,5-0)=(1,5). ∴ 2+=2(-1,1)+(1,5)=(-1,7). ∴ |2AB +|=227)1(+-=50.(2)∵ ||=221)1(+-=2.||=2251+=26,·AC =(-1)×1+1×5=4.∴ cos=||||AC AB ⋅=2624⋅=13132.(3)设所求向量为m =(x ,y ),则x 2+y 2=1. ①又 =(2-0,5-1)=(2,4),由⊥,得2 x +4 y =0. ②由①、②,得⎪⎪⎩⎪⎪⎨⎧-==.55552y x 或⎪⎪⎩⎪⎪⎨⎧==.-55552y x ∴ (552,-55)或(-552,55)即为所求.13.【解】(1)要使向量a 、b 不能作为平面向量的一组基底,则向量a 、b 共线∴33tan 0cos 3sin 3=⇒=-θθθ故)(6Z k k ∈+=ππθ,即当)(6Z k k ∈+=ππθ时,向量a 、b 不能作为平面向量的一组基底(2))cos 3sin 3(213)3(cos )3(sin ||22θθθθ+-=-+-=-b a 而32cos 3sin 332≤+≤-θθ ∴ 132||132+≤-≤-b a14.【解】(1)由2222||2||)(a bt a t b tb a +⋅+=+当的夹角)与是b a b a b b a t αα(cos ||||||222-=⋅-=时a+tb(t ∈R)的模取最小值(2)当a 、b 共线同向时,则0=α,此时||||b a t -=∴0||||||||||||)(2=-=-⋅=+⋅=+⋅b a a b b a a b tb a b tb a b ∴b ⊥(a+tb)18.解:设020),,(=-=⋅∴⊥=x y OB OC OB OC y x OC ①又0)1()2(3)2,1(,//=+---+=x y y x 即:73=-x y ②联立①、②得⎩⎨⎧==7,14y x ………10分 )6,11(),7,14(=-==∴OA OC OD OC 于是.19.解法一:设平移公式为⎩⎨⎧-'=-'=k y y hx x 代入2x y -=,得到k h hx x y h x k y +-+-=-'-=-'2222.)(即,把它与22--=x x y 联立,得⎪⎩⎪⎨⎧--=+-+-=22222x x y k h hx x y设图形的交点为(x 1,y 1),(x 2,y 2), 由已知它们关于原点对称,即有:⎩⎨⎧-=-=2121y y x x 由方程组消去y 得:02)21(222=++-+-k h x h x .由.2102212121-==++=+h x x h x x 得且又将(11,y x ),),(22y x 分别代入①②两式并相加,得:.22221222121-+--++-=+k h x hx x x y y241)())((0211212-+-+-+-=∴k x x x x x x . 解得)49,21(.49-==a k . 平移公式为:⎪⎪⎩⎪⎪⎨⎧-'=+'=4921y y x x 代入2x y -=得:22+--=x x y . 解法二:由题意和平移后的图形与22--=x x y 交点关于原点对称,可知该图形上所有点都可以找到关于原点的对称点在另一图形上,因此只要找到特征点即可.22--=x x y 的顶点为)49,21(-,它关于原点的对称点为(49,21-),即是新图形的顶点.由于新图形由2x y -=平移得到,所以平移向量为49049,21021=-=-=--=k h 以下同解法一.20.解:(1).0)(])3[(.0,2=+-⋅-+=⋅∴⊥t k t 即 ).3(41,0)3(4,1,4,02222-==-+-∴===⋅t t k t t k 即(2)由f(t)>0,得.303,0)3()3(,0)3(412><<-->+>-t t t t t t t 或则即篇二:高中数学平面向量习题及答案第二章 平面向量 一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则( ). A .与共线 B .与共线 C .与相等 D .与相等2.下列命题正确的是( ). A .向量与是两平行向量 B .若a ,b 都是单位向量,则a =bC .若=,则A ,B ,C ,D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A(3,1),B(-1,3),若点C 满足,其中R 1,则点C 的轨迹方程为( ).A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=04.已知a 、b 是非零向量且满足(a -2b)⊥a ,(b -2a)⊥b ,则a 与b 的夹角是( ).A .6πB .3πC .23πD .56π5.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C),则=( ).(第1题)A .λ(+),λ∈(0,1)B .λ(+),λ∈(0,22) C .λ(-),λ∈(0,1)D .λ(-BC ),λ∈(0,22)6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则=( ). A .+ B .- C .+D .+7.若平面向量a 与b 的夹角为60°,|b|=4,(a +2b)·(a -3b)=-72,则向量a 的模为( ). A .2B .4C .6D .128.点O 是三角形ABC 所在平面内的一点,满足OA ·OB =OB ·OC =OC ·OA ,则点O 是△ABC 的( ). A .三个内角的角平分线的交点B .三条边的垂直平分线的交点C .三条中线的交点D .三条高的交点9.在四边形ABCD 中,=a +2b ,=-4a -b ,C =-5a -3b ,其中a ,b 不共线,则四边形ABCD 为( ). A .平行四边形B .矩形C .梯形D .菱形10.如图,梯形ABCD 中,|AD |=|BC |,EF ∥AB ∥CD 则相等向量是( ). A .AD 与BC B .OA 与OB C .AC 与BD D .EO 与OF二、填空题11.已知向量OA =(k ,12),OB =(4,5),OC =(-k ,10),且A ,B ,C 三点(第10题)共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x=.13.已知平面上三点A,B,C满足|AB|=3,||=4,||=5,则AB·BC +BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+mb)⊥(a-b),则实数m等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a +c=b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λ(λ∈R),试求λ为何值时,点P在第三象限内?18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD 中,E ,F 分别为AB ,BC 的中点,求证:AF ⊥DE(利用向量证明).20.已知向量a =(cos θ,sin θ),向量b =(3,-1),则|2a -b|的最大值.(第19题)参考答案 一、选择题 1.B解析:如图,与,与不平行,与共线反向. 2.A解析:两个单位向量可能方向不同,故B 不对.若=,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对. 3.D解析:提示:设OC =(x ,y),OA =(3,1),OB =(-1,3)OA =(3)OB =(3)OAOB =(33),∴ (x ,y)=(33),∴⎩⎨⎧βαβα33+=-=y x1,由此得到答案为D . 4.B解析:∵(a -2b)⊥a ,(b -2a)⊥b ,∴(a -2b)·a =a2-2a ·b =0,(b -2a)·b =b2-2a ·b =0,∴ a2=b2,即|a|=|b|.∴|a|2=2|a||b|cos θ=2|a|2cos θ.解得cos θ=21.∴ a 与b 的夹角是3π.(第1题)5.A解析:由平行四边形法则,+=,又+=,由λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵=,∴=+=+.(第6题)7.C解析:由(a+2b)·(a-3b)=-72,得a2-a·b-6b2=-72.而|b|=4,a·b=|a||b|cos 60°=2|a|,∴ |a|2-2|a|-96=-72,解得|a|=6.8.D解析:由OA·OB=OB·OC=OC·OA,得OA·OB=OC·OA,即OA·(OC-OB)=0,故BC·OA=0,BC⊥OA,同理可证AC⊥OB,∴ O是△ABC的三条高的交点.9.C解析:∵AD=++C=-8a-2b=2BC,∴∥BC且||≠|BC|.∴四边形ABCD为梯形.10.D解析:AD与BC,AC与BD,OA与OB方向都不相同,不是相等向量.二、填空题11.-32.解析:A ,B ,C 三点共线等价于,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又 A ,B ,C 三点共线,∴ 5(4-k)=-7(-k -4),∴ k =-32.12.-1.解析:∵ M(-1,3),N(1,3), ∴ MN =(2,0),又a =MN ,∴ ⎩⎨⎧0=4-3-2=3+2x x x 解得⎩⎨⎧4=1=-1=-x x x 或 ∴ x =-1. 13.-25.解析:思路1:∵ 3=4,5,∴ △ABC 为直角三角形且∠ABC =90°,即⊥,∴·=0, ∴ ·BC +BC ·CA +CA · =·+· =CA ·(BC +) =-(CA )2=-25.思路2:∵3=4=5,∴∠ABC =90°,∴ cos ∠CAB53,cos ∠BCA=54.根据数积定义,结合图(右图)知·=0,BC ·CAcos ∠ACE =4×5×(-54)=-16, CA ·cos ∠BAD =3×5×(-53)=-9.∴ ·+·+·=0―16―9=-25.14.323.解析:a +mb =(3+2m ,4-m),a -b =(1,5). ∵ (a +mb)⊥(a -b),∴ (a +mb)·(a -b)=(3+2m)×1+(4-m)×5=0 m =323.15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF 交AC 于点E ,则OF =OA +OC ,又 OA +OC =-OB , ∴ =2OE =-OB .O 是△ABC 的重心. 16.答案:平行四边形.(第15题)D(第13题)解析:∵ a +c =b +d ,∴ a -b =d -c ,∴BA =CD . ∴ 四边形ABCD 为平行四边形. 三、解答题 17.λ<-1.解析:设点P 的坐标为(x ,y),则=(x ,y)-(2,3)=(x -2,y -3).+λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)=(3,1)+λ(5,7) =(3+5λ,1+7λ). ∵ AP =+λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ).∴ ⎩⎨⎧+=-+=-λλ713532y x 即⎩⎨⎧+=+=λλ7455y x要使点P 在第三象限内,只需⎩⎨⎧<+<+074055λλ 解得 λ<-1.18.=(47,2).解析:∵ A(7,8),B(3,5),C(4,3),=(-4,-3),=(-3,-5).又 D 是BC 的中点,∴ =21(+AC )=21(-4-3,-3-5) =21(-7,-8)=(-27,-4).又 M ,N 分别是AB ,AC 的中点,(第18题)∴ F 是AD 的中点,∴ DF =-FD =-21AD =-21(-27,-4)=(47,2). 19.证明:设=a ,AD =b ,则AF =a +21b ,ED =b -21a . ∴ AF ·ED =(a +21b)·(b -21a)=21b2-21a2+43a ·b .又AB ⊥,且,∴ a2=b2,a ·b =0.∴ AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴ |2a -b|2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ.又4sin θ-43cos θ=8(sin θcos 3π-cos θsin 3π)=8sin(θ-3π),最大值为8,∴ |2a -b|2的最大值为16,∴|2a -b|的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b|表示2a ,b 终点间的距离.|2a|=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ|的最大值为直径的长为4.(第19题)篇三:平面向量练习题精心汇编选择题:1.已知平行四边形ABCD ,O 是平行四边形ABCD 所在平面内任意一点,=,=,=,则向量等于 ( )A .++B .+-C .-+D .--2.已知向量a 与b 的夹角为120o,3,13,a ab =+=则b等于( )(A )5 (B )4 (C )3 (D )13.设a ,b 是两个非零向量.下列正确的是( ) A .若|a +b|=|a|-|b|,则a ⊥b B .若a ⊥b ,则|a +b|=|a|-|b|C .若|a +b|=|a|-|b|,则存在实数λ,使得b =λ aD .若存在实数λ,使得b =λa ,则|a +b|=|a|-|b|高☆考♂资♀源€网 4.已知→a =(sin θ,1+cos θ),→b =(1,1-cos θ),其中θ∈(π,3π2),则一定有 ( )A .→a ∥→bB .→a ⊥→bC .→a 与→b 夹角为45°D .|→a |=|→b | 5.已知向量a →=(6,-4),b →=(0,2),c →=a →+λb →,若C 点在函数y =sin π12x 的图象上,实数λ=( ) A .52 B .32C .-52D .-326. 已知∈Z k ,(,1),(2,4)==AB k AC ,若≤10AB ABC 是直角三角形的概率为( )A .17B .27C .37D .477.将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为( )A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭ B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭ C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭8.在ABC ∆中,M 是BC 的中点,AM=1,点P 在AM 上且满足−→−=−→−PM AP 2,则()PA PB PC ⋅+等于( )(A )49 (B )43 (C )43- (D) 49-9.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( ) A.AO OD = B.2AO OD =C.3AO OD =D.2AO OD =10.△ABC 中,点D 在边AB 上,CD 平分∠ACB ,若CB = a , CA = b ,a= 1 ,b= 2, 则CD =( )(A )13a + 23b (B )23a +13b (C )35a +45b (D )45a +35b11.已知||2||0a b =≠,且关于x 的方程2||0x a x a b ++⋅=有实根,则a 与b 的夹角的取值范围是 ( )A.[0,6π]B.[,]3ππC.2[,]33ππD.[,]6ππ12. 设非零向量a =)2,(x x ,)2,3(x b -=,且b a ,的夹角为钝角,则x 的取值范围是( )(A ))(0,∞- (B )) ⎝⎛0,34 (C ))(0,∞- ) ⎝⎛0,34(D )⎝⎛⎪⎭⎫-∞-31, ) ⎝⎛-0,31 )⎝⎛∞+,3413.已知点O 、N 、P 在三角形ABC 所在平面内,且==,0=++NC NB NA ,则PB PA ∙=∙=∙则点O 、N 、P 依次是三角形ABC 的( )(A )重心、外心、垂心 (B )重心、外心、内心 (C )外心、重心、垂心 (D )外心、重心、内心14.设(,1)A a ,(2,)B b ,(4,5)C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在OC 方向上的投影相同,则a 与b 满足的关系式为( )(A )453a b -= (B )543a b -= (C )4514a b += (D )5414a b += 15.(上海理14)在直角坐标系xOy 中,,i j 分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC 中,2AB i j =+,3AC i k j =+,则k 的可能值有( ) A 、1个 B 、2个 C 、3个 D 、4个填空题:16.四边形ABCD 中,()()()1,2,4,1,5,3AB BC CD ==--=--则四边形ABCD 的形状是17.已知,a b 是两个非零向量,且a b a b ==-,则与a a b +的夹角为____ 18.已知OFQ ∆的面积为S ,且1=⋅−→−−→−FQ OF ,若2321<<S ,则−→−−→−FQ OF ,夹角θ的取值范围是_________19.若O 是ABC 所在平面内一点,且满足2OB OC OB OC OA-=+-,则ABC的形状为_ ___20若D 为ABC ∆的边BC 的中点,ABC ∆所在平面内有一点P ,满足0P A B P C P ++=,设||||AP PD λ=,则λ的值为__21下列命题中:① →→→→→→→⋅-⋅=-⋅c a b a c b a )(;② →→→→→→⋅⋅=⋅⋅c b a c b a )()(;③2()a b →→-2||a →=22||||||a b b →→→-⋅+;④ 若0=⋅→→b a ,则0=→a 或0=→b ;⑤若,a bc b ⋅=⋅则a c =;⑥22a a=;⑦2a bba a⋅=;⑧222()a b a b ⋅=⋅;⑨222()2a b a a b b -=-⋅+。
高中数学试卷 代数——平面向量练习题
高中数学试卷 代数——平面向量练习题一、单选题1.下列说法正确的是( )A .零向量没有方向B .向量就是有向线段C .只有零向量的模长等于0D .单位向量都相等2.设D ,E 分别为 △ABC 两边 BC , CA 的中点,则 AD ⃗⃗⃗⃗⃗⃗ +EB ⃗⃗⃗⃗⃗ = ( ) A .12AC⃗⃗⃗⃗⃗ B .32AC⃗⃗⃗⃗⃗ C .12AB⃗⃗⃗⃗⃗⃗ D .32AB⃗⃗⃗⃗⃗⃗ 3.平面向量a →与b →的夹角为2π3,|b →|=2,则|a →+b →|=( )A .√13B .√37C .7D .34.化简 AB ⃗⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ −CD ⃗⃗⃗⃗⃗⃗ =( ) A .AD⃗⃗⃗⃗⃗⃗ B .0⃗ C .AC⃗⃗⃗⃗⃗ D .DA⃗⃗⃗⃗⃗⃗ 5.O 是锐角三角形ABC 的外心,由O 向边BC ,CA ,AB 引垂线,垂足分别是D ,E ,F ,给出下列命题:①OA →+OB →+OC →=0→; ②OD →+OE →+OF →=0→;③|OD →|:|OE →|:|OF →|=cosA :cosB :cosC ;④∃λ∈R ,使得AD →=λ(AB→|AB →|SINB +AC→|AC →|SINC )。
以上命题正确的个数是( ) A .1B .2C .3D .4;6.已知a ⃗ 和b ⃗ 为非零向量,且|2a +3b ⃗ |=|2a −3b ⃗ |,a ⃗ 与b ⃗ 的夹角为( ) A .π6B .π4C .π2D .2π37.如图,在直三棱柱 ABC −A 1B 1C 1 中,若 CA ⃗⃗⃗⃗⃗ =a ⃗ ,CB ⃗⃗⃗⃗⃗ =b ⃗ ,CC 1⃗⃗⃗⃗⃗⃗⃗ =c ⃗ ,则 A 1B⃗⃗⃗⃗⃗⃗⃗⃗ = ( )A .a ⃗ +b ⃗ −c ⃗B .a ⃗ −b ⃗ +c ⃗C .−a +b ⃗ +cD .−a +b ⃗ −c8.已知向量a →=(1,﹣2),b →=(x ,2),若a →⊥b →,则|b →|=( )A .√5B .2√5C .5D .209.已知向量a →=(1,−1),b →=(2,x ).若a →·b →=1,则x 的值是( )A .1B .12C .−12D .-110.已知点P 是曲线C : x 24 ﹣y 2=1上的任意一点,直线l :x=2与双曲线C 的渐近线交于A ,B 两点,若 OP ⃗⃗⃗⃗⃗⃗ =λ OA ⃗⃗⃗⃗⃗⃗ +μ OB⃗⃗⃗⃗⃗⃗ ,(λ,μ⊥R ,O 为坐标原点),则下列不等式恒成立的是( ) A .λ2+μ2≥ 12B .λ2+μ2≥2C .λ2+μ2≤ 12D .λ2+μ2≤211.已知I 为⊥ABC 的内心,cosA= 78,若 AI ⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗⃗ ,则x+y 的最大值为( ) A .34B .12C .56D .4512.以下四组向量能作为基底的是( ) A .e⃗ 1=(1,2),e ⃗ 2=(2,4) B .e⃗ 1=(3,−1),e ⃗ 2=(−1,3) C .e⃗ 1=(2,1),e ⃗ 2=(−2,−1) D .e ⃗ 1=(12,0),e ⃗ 2=(3,0)13.若 a ⃗ =(x −4,x −3) , b ⃗ =(3x −9,−3) ,且 a ⃗ ⊥b⃗ ,则 x 值为( ) A .3B .5C .3 或 5D .−3 或 −5 14.若向量a →与b →不共线,a→·b →≠0,且c →=a →-(a →·a →a →·b→)b →,则向量a →与c →的夹角为()A .0B .π6C .π3D .π215.棱长均为3的三棱锥 S −ABC ,若空间一点 P 满足 SP ⃗⃗⃗⃗⃗ =xSA ⃗⃗⃗⃗⃗ +ySB ⃗⃗⃗⃗⃗ +zSC ⃗⃗⃗⃗⃗ (x +y +z =1) ,则 |SP|⃗⃗⃗⃗⃗⃗⃗⃗ 的最小值为( )A .√6B .√63C .√36D .116.在⊥ABC 中,⊥ABC =120°,AB =3,BC =1,D 是边AC 上的一点,则 BD⇀⋅AC ⇀ 的取值范围是( ) A .[−212,1]B .[−52,212]C .[0,1]D .[−212,52]17.已知a →,b →,e →是平面向量,e →与a →是单位向量,且a →⊥e →,向量b →满足4b →2−8e →⋅b →+3=0,则|a →+b →|的最大值与最小值之和是( ) A .2√2B .2√3C .4D .2√5二、填空题18.已知点 A(1,3) , B(4,−1) ,则与向量 AB ⃗⃗⃗⃗⃗⃗ 方向相同的单位向量的坐标为 . 19.已知向量 a →=(2,m),b →=(1,−2) ,若 a →与 b →共线,则m = . 20.已知向量 a ⃗ ,b ⃗ 的夹角为 θ ,且 (a +b ⃗ )⊥(a −b ⃗ ) , |√3a +b ⃗ |=|2a −√3b⃗ | ,则 cosθ= .21.平面向量 a ⃗ ,b ⃗ 满足 |a |=√3 , |b ⃗ |=√2 , a ⃗ ⋅b ⃗ =−1 ,则 |a −2b ⃗ |= . 22.已知 |a |=3 , |b ⃗ |=2 , (a +2b ⃗ )⋅(a −3b ⃗ )=−18 ,则 a ⃗ 与 b ⃗ 的夹角为 . 23.已知向量 a ⃗ =(2,−1,1) , b ⃗ =(t ,2,−1) , t ∈R ,若 a ⃗ ⊥b ⃗ ,则 t = . 24.已知向量 a ⃗ =(x ,1,−1) , b ⃗ =(2,1,0) , |a |=√2 ,则 a ⃗ ⋅b ⃗ = . 25.已知过点 P (−1,1) 的直线 m 交 x 轴于点 A ,抛物线 x 2=y 上有一点 B 使 PA ⊥PB ,若 AB 是抛物线 x 2=y 的切线,则直线 m 的方程是 .26.已知平面向量a ⃗ ,b ⃗ 满足|a |=3|b ⃗ |=3,若c ⇀=(2−2λ)a ⇀+3λb ⃗ (λ∈R),且c ⃗ ⋅a ⃗⃗ |a ⃗⃗ |=c ⃗ ⋅b ⃗⃗ |b ⃗⃗ |,则cos⟨a ,3a −c ⟩的最小值为 .27.已知平面向量 a ⃗ =(1,2) , b ⃗ =(4,2) , c ⃗ =a ⃗ +mb⃗ (m ∈R) ,且 c ⃗ 与 a ⃗ 的夹角等于 c ⃗ 与 b ⃗ 的夹角,则 m = .28.若向量 a ⇀,b ⇀ 满足 |a|⇀=|b ⇀|=2 ,且 a ⇀⋅(a ⇀−b ⇀)=2 ,则向量 a ⇀ 与 b ⇀ 的夹角为 . 29.各棱长都等于4的四面ABCD 中,设G 为BC 的中点,E 为⊥ACD 内的动点(含边界),且GE⊥平面ABD ,若 AE ⃗⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =1,则| AE ⃗⃗⃗⃗⃗ |= .30.如图,在四棱柱 ABCD −A 1B 1C 1D 1 中,底面 ABCD 是平行四边形,点 E 为 BD 的中点,若A 1E ⇀=xAA 1⇀+yAB ⇀+zAD ⇀ ,则 x +y +z = .31.已知向量 a ⇀ , b ⇀ 的夹角为 60° , |a ⇀|=2 , |b ⇀|=1 ,则 |a ⇀+3b⇀|= . 32.在菱形ABCD 中, ∠BAD =2π3, AB =2 ,点M ,N 分别为BC ,CD 边上的点,且满足 |BM ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||BC ⃗⃗⃗⃗⃗⃗⃗⃗ |=|CN ⃗⃗⃗⃗⃗⃗⃗⃗ ||CD ⃗⃗⃗⃗⃗⃗⃗⃗ |,则 AM ⃗⃗⃗⃗⃗⃗⃗ ⋅AN ⃗⃗⃗⃗⃗⃗ 的最小值为 . 33.已知平面直角坐标内定点 A(−1,0) , B(1,0) , M(4,0) , N(0,4) 和动点 P(x 1,y 1) , Q(x 2,y 2) ,若 AP ⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =1 , OQ ⃗⃗⃗⃗⃗⃗ =(12−t)OM ⃗⃗⃗⃗⃗⃗⃗ +(12+t)ON ⃗⃗⃗⃗⃗⃗ ,其中O 为坐标原点,则 |QP ⃗⃗⃗⃗⃗ | 的最小值是 .34.在⊥ABC 中,若( CA ⃗⃗⃗⃗⃗ + CB ⃗⃗⃗⃗⃗ )• AB ⃗⃗⃗⃗⃗⃗ = 35 | AB ⃗⃗⃗⃗⃗⃗ |2,则 tanA tanB= . 三、解答题35.已知向量 a ⇀=(3,2) , b ⇀=(−1,2) .(1)求 |a ⇀−2b⇀| 的值; (2)若 3a ⇀−b ⇀ 与 a ⇀+kb ⇀ 共线,求实数k 的值. 36.已知向量 a⃗ =(1,0) , b ⃗ =(−1,2) . (1)求 2a +b⃗ 的坐标; (2)求 a ⃗ ⋅(a ⃗ −b⃗ ) . 37.已知向量 a ⇀ , b ⇀ , c ⇀ ,求作 a ⇀−b ⇀+c ⇀ 和 a ⇀−(b ⇀−c ⇀) .38.已知△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,向量m ⃗⃗⃗ =(a ,√3b),n ⃗ =(cosA ,sinB),且m⃗⃗⃗ //n ⃗ . (1)求角A ;(2)若a =2,△ABC 的面积为√3,求b 、c .39.如图,在△OAB 中,G 为中线OM 上一点,且OG⃗⃗⃗⃗⃗⃗ =2GM ⃗⃗⃗⃗⃗⃗⃗ ,过点G 的直线与边OA ,OB 分别交于点P ,Q .(1)用向量OA ⃗⃗⃗⃗⃗⃗ ,OB⃗⃗⃗⃗⃗⃗ 表示OG ⃗⃗⃗⃗⃗⃗ ; (2)设向量OA ⃗⃗⃗⃗⃗⃗ =43OP ⃗⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗⃗ =nOQ ⃗⃗⃗⃗⃗⃗ ,求n 的值. 40.在平面直角坐标系 xOy 中,已知向量 a ⃗ =(1,−√3) , b ⃗ =(sinx,cosx) , x ∈(0,π2) . (1)若 a ⃗ ⊥b⃗ ,求 tan2x 的值: (2)若 a⃗ 与 b ⃗ 的夹角为 2π3 ,求 x 的值. 41.已知向量 a ⃗ =(2,1),b⃗ =(m ,2) . (1)若 a ⃗ +3b ⃗ 与 a ⃗ −b ⃗ 共线,求实数 m 的值; (2)若 (2a +b⃗ ) 与 a ⃗ 垂直,求 a ⃗ 与 b ⃗ 的夹角. 42.已知在⊥ABC 中,C=2A , cosA =34,且2 BA ⃗⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ =﹣27. (1)求cosB 的值; (2)求AC 的长度.43.已知向量 a ⃗ =(sinx , 32 ), b⃗ =(cosx ,﹣1)当 a ⃗ ⊥ b ⃗ 时,求 2sinx−cosx 4sinx+3cosx 的值. 44.已知向量 a⃗ =(1,0) , b ⃗ =(−2,1) . (1)若 ka −b ⃗ 与 a ⃗ +3b ⃗ 平行,求 k 的值; (2)若 ka −b⃗ 与 a ⃗ +3b ⃗ 垂直,求 k 的值. 45.已知曲线E 上的任意点到点F (1,0)的距离比它到直线x=﹣2的距离小1.(⊥)求曲线E 的方程;(⊥)点D 的坐标为(2,0),若P 为曲线E 上的动点,求PD →•PF →的最小值;(⊥)设点A 为y 轴上异于原点的任意一点,过点A 作曲线E 的切线l ,直线x=3分别与直线l 及x 轴交于点M ,N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点A 在y 轴上运动(点A 与原点不重合)时,线段AB 的长度是否发生变化?请证明你的结论.46.已知过抛物线 y 2=8x 的焦点,斜率为 2√2 的直线交抛物线于 A(x 1,y 1),B(x 2,y 2)(x 1<x 2)两点.(1)求线段 AB 的长度;(2)O 为坐标原点, C 为抛物线上一点,若 OC ⃗⃗⃗⃗⃗ =OA⃗⃗⃗⃗⃗⃗ +λOB ⃗⃗⃗⃗⃗⃗ ,求 λ 的值. 47.已知两个非零向量 e 1⇀,e 2⇀ 不共线,如果 AB ⇀=2e 1⇀+3e 2⇀, BC ⇀=4e 1⇀+13e 2⇀,CD ⇀=2e 1⇀−4e 2⇀ ,(1)求证:A ,B ,D 三点共线;(2)若 |e 1⇀|=|e 2⇀|=1 ,且 |AB ⇀|=√13 ,求向量 e 1⇀,e 2⇀ 的夹角. 48.设函数 f(x)=a ⋅b ⃗ 其中向量a =(2cosx,1),b ⃗ =(cosx,√3sin2x),x ∈R (1)求函数f (x )的单调减区间;(2)若 x ∈[−π4,0] ,求函数f (x )的值域.49.如图,已知点G 是△ABC 的重心,点P 是△GBC 内一点(包括边界),设AB ⃗⃗⃗⃗⃗⃗ =a ⃗ ,AC⃗⃗⃗⃗⃗ =b ⃗ .(1)试用a ⃗ ,b ⃗ 表示AG ⃗⃗⃗⃗⃗ ,并求|AG ⃗⃗⃗⃗⃗ +BG ⃗⃗⃗⃗⃗ +CG ⃗⃗⃗⃗⃗ |; (2)若AP ⃗⃗⃗⃗⃗ =λa⃗ +μb ⃗ ,求λ+μ的取值范围. 50.如图,在平面直角坐标系 xOy 中,焦点在x 轴上的椭圆 C :x 2a 2+y 2b2=1 经过点 (b ,2ca ) ,且 a 2=8 经过点 T(1,0) 作斜率为 k(k >0) 的直线 l 交椭圆C 与A 、B 两点(A 在x 轴下方).(1)求椭圆C 的方程;(2)过点 O 且平行于 l 的直线交椭圆于点M 、N ,求|AT|⋅|BT||MN|2 的值; (3)记直线 l 与y 轴的交点为P ,若 AP ⃗⃗⃗⃗⃗ =25TB ⃗⃗⃗⃗⃗,求直线 l 的斜率k 的值.51.已知椭圆 x 2a 2+y 2b2=1(a >b >0) 的离心率为 √22 ,右焦点为 F(1,0) ,直线l 经过点F ,且与椭圆交于A ,B 两点,O 为坐标原点. (1)求椭圆的标准方程;(2)当直线l 绕点F 转动时,试问:在x 轴上是否存在定点M ,使得 MA ⃗⃗⃗⃗⃗⃗⃗ ⋅MB⃗⃗⃗⃗⃗⃗⃗ 为常数?若存在,求出定点M 的坐标;若不存在,请说明理由.答案解析部分1.【答案】C【知识点】向量的几何表示;零向量;单位向量【解析】【解答】零向量的方向是任意的,A 选项错误;有向线段只是向量的一种表示形式,两者不等同,B 选项错误; 只有零向量的模长等于0,C 选项正确;单位向量模长相等,单位向量若方向不同,则不是相等向量,D 选项错误. 故答案为: C .【分析】根据向量的定义和性质依次判断每个选项得到答案.2.【答案】D【知识点】向量数乘的运算及其几何意义;向量的线性运算性质及几何意义 【解析】【解答】因为D ,E 分别为 BC , CA 的中点, 所以 AD⇀+EB ⇀=AD ⇀−BE ⇀=12(AB ⇀+AC ⇀)−12(BA ⇀+BC ⇀) =12AB ⃗⃗⃗⃗⃗ +12AC ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ +12CB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12(AC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )=32AB⃗⃗⃗⃗⃗ . 故答案为:D .【分析】利用向量的数乘和线性运算即可求解。
必修4--平面向量基础练习题
必修4--平面向量基础练习题1.下列向量中,与向量c=(2,3)共线的一个向量p是(3,2)。
2.已知正六边形ABCDEF,在下列表达式①BC+CD+EC;②2BC+DC;③FE+ED;④2ED-FA中,与AC等价有2个。
4.若向量BA=(2,3),CA=(4,7),则BC=(-2,-4)。
5.已知a、b是两个单位向量,下列四个命题中正确的是C.a·b=1.6.如图,正方形ABCD中,点E是DC的中点,.7.设M是平行四边形ABCD的对角线的交点,O为任意一点,则OA+OB+OC+OD=4OM。
8.在矩形ABCD中,O是对角线的交点,若BC=5e1,DC=3e2,则OC=(5e1+3e2)/2.9.对于菱形ABCD,给出下列各式:①BC=AB;②|BC|=|AB|;③|AB-CD|=|AD+BC|;④|AC|2+|BD|2=4|AB|2.其中正确的有3个。
10.在ABCD中,设AB=a,AD=b,AC=c,BD=d,则下列等式中不正确的是B.a-b=d。
11.已知向量a与b反向,下列等式中成立的是D.|a|+|b|=|a+b|。
12.与向量d=(12,5)平行的单位向量为(12/13,5/13)。
13.已知向量a=(1,2),b=(3,1),则b-a=(2,-1)。
14.已知向量$a=(x+3,x^2-3x-4)$与向量$AB$相等,其中$A(1,2),B(3,2)$,则$x=2$。
15.设$a=(1-t,1-t,t),b=(2,t,t)$,则$b-a$的最小值是$1$。
16.在菱形$ABCD$中,$\angle DAB=120^\circ$,则以下说法错误的是:B.与$AB$的模相等的向量有$9$个(不含$AB$)。
17.已知向量$a=(3,1),b=(1,3),c=(k,7)$,若$a-c\parallel b$,则$k=5$。
18.给出下列结论:①若$a\neq 0,a\cdot b=0$,则$b\perp a$;②若$a\cdot b=b\cdot c$,则$a=c$;③$a\times b\cdot c=a\cdotb\times c$;④$a\times (b\times c)=(a\cdot c)b-(a\cdot b)c$;⑤若$a+b=a-b$,则$a\perp b$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量基础练习
1)两列火车从同一站台沿相反方向开去,走了相同的路程,设两
列火车的位移向量分别为a 和b ,那么下列命题中错误的一个
是
A 、a 与b 为平行向量
B 、a 与b 为模相等的向量
C 、a 与b 为共线向量
D 、a 与b 为相等的向量
2)在四边形ABCD 中,若AC AB AD =+,则四边形ABCD 的形状一
定是 ( )
(A) 平行四边形 (B) 菱形 (C) 矩形 (D) 正方形
3)如果a ,b 是两个单位向量,则下列结论中正确的是 ( )
(A) a =b (B) 1⋅a b = (C) 22≠a b (D) =a b
4)AB BC AD +-=
A 、AD
B 、CD
C 、DB
D 、DC
5)已知正方形ABCD 的边长为1,AB =a ,
BC =b ,AC =c , 则++a b c 等于 ( )
(A) 0 (B) 3 (D) 6)下列各组的两个向量,平行的是
A 、(2,3)a =-,(4,6)b =
B 、(1,2)a =-,(7,14)b =
C 、(2,3)a =,(3,2)b =
D 、(3,2)a =-,(6,4)b =-
7)若平行四边形的3个顶点分别是(4,2),(5,7),(-3,4),
则第4个顶点的坐标不可能是( )
(A)(12,5) (B)(-2,9) (C) (3,7) (D) (-4,-1)
8)点),0(m A )0(≠m ,按向量a 平移后的对应点的坐标是)0,(m ,则 向量a 是
A 、),(m m -
B 、),(m m -
C 、),(m m --
D 、),(m m
9)已知(6,0)a =,(5,5)b =-,则a 与b 的夹角为
A 、045
B 、060
C 、0135
D 、0
120 10)已知)2,3(-M ,)0,1(-N ,则线段MN 的中点P 的坐标是________。
11)设O 是平行四边形ABCD 的两条对角线的交点,下列向量组:
(1)AD 与AB ;(2)DA 与BC ;(3)CA 与DC ;(4)OD 与OB ,
其中可作为这个平行四边形所在平面表示它的所有向量的基底
的向量组可以是________________。
12)已知向量a (1,5)=,b (3,2)=-,则向量a 在b 方向上的投影
为 .
13)已知)8,7(A ,)5,3(B ,则向量AB 方向上的单位向量坐标是
________。
14)已知3a =,4b =,a 与b 的夹角为
43π,
(3)(2)a b a b -⋅+=__________. 15)已知3=a ,4=b ,且向量a ,b 不共线,
若向量+a k b 与向量-a k b 互相垂直,则实数k 的值为 .。