高二数学选修2-3教案
高中数学人教A版高二选修2-3教学案:1.2.2_第一课时_组合与组合数公式_Word版含解析
1.2.2组合第一课时组合与组合数公式预习课本P21~24,思考并完成以下问题1.组合的概念是什么?2.什么是组合数?组合数公式是怎样的?3.组合数有怎样的性质?[新知初探]1.组合的概念从n个不同的元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合.2.组合数的概念、公式、性质[点睛]排列与组合的联系与区别联系:二者都是从n个不同的元素中取m(n≥m)个元素.区别:排列与元素的顺序有关,组合与元素的顺序无关,只有元素相同且顺序也相同的两个排列才是相同的排列.只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)从a,b,c三个不同的元素中任取两个元素的一个组合是C23.()(2)从1,3,5,7中任取两个数相乘可得C24个积.()(3)1,2,3与3,2,1是同一个组合.()(4)C35=5×4×3=60.()答案:(1)×(2)√(3)√(4)×2.C2n=10,则n的值为()A.10B.5C.3D.4答案:B3.从9名学生中选出3名参加“希望英语”口语比赛,不同选法有()A.504种B.729种C.84种D.27种答案:C4.计算C28+C38+C29=________.答案:120组合的概念[典例]判断下列问题是组合问题还是排列问题:(1)设集合A={a,b,c,d,e},则集合A的子集中含有3个元素的有多少个?(2)某铁路线上有5个车站,则这条线上共需准备多少种车票?多少种票价?(3)3人去干5种不同的工作,每人干一种,有多少种分工方法?(4)把3本相同的书分给5个学生,每人最多得1本,有几种分配方法?[解](1)因为本问题与元素顺序无关,故是组合问题.(2)因为甲站到乙站,与乙站到甲站车票是不同的,故是排列问题,但票价与顺序无关,甲站到乙站,与乙站到甲站是同一种票价,故是组合问题.(3)因为分工方法是从5种不同的工作中取出3种,按一定次序分给3个人去干,故是排列问题.(4)因为3本书是相同的,无论把3本书分给哪三人,都不需考虑他们的顺序,故是组合问题.区分排列与组合的方法区分排列与组合的办法是首先弄清楚事件是什么,区分的标志是有无顺序,而区分有无顺序的方法是:把问题的一个选择结果写出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题.[活学活用]判断下列问题是组合问题还是排列问题:(1)把5本不同的书分给5个学生,每人一本;(2)从7本不同的书中取出5本给某个同学;(3)10个人相互写一封信,共写了几封信; (4)10个人互相通一次电话,共通了几次电话.解:(1)由于书不同,每人每次拿到的也不同,有顺序之分,故它是排列问题.(2)从7本不同的书中,取出5本给某个同学,在每种取法中取出的5本并不考虑书的顺序,故它是组合问题.(3)因为两人互写一封信与写信人与收信人的顺序有关,故它是排列问题. (4)因为互通电话一次没有顺序之分,故它是组合问题.有关组合数的计算与证明[典例] (1)计算C 410-C 37·A 33; (2)证明:m C m n =n C m -1n -1.[解] (1)原式=C 410-A 37=10×9×8×74×3×2×1-7×6×5=210-210=0.(2)证明:m C m n=m ·n !m !(n -m )! =n ·(n -1)!(m -1)!(n -m )!=n ·(n -1)!(m -1)!(n -m )!=n C m -1n -1.关于组合数公式的选取技巧(1)涉及具体数字的可以直接用n n -m C m n -1=nn -m ·(n -1)!m !(n -1-m )!=n !m !(n -m )!=C m n 进行计算. (2)涉及字母的可以用阶乘式C mn =n !m !(n -m )!计算.(3)计算时应注意利用组合数的性质C m n =C n -mn简化运算.[活学活用]1.计算:C 38-n 3n +C 3n n +21的值.解:∵⎩⎪⎨⎪⎧38-n ≤3n ,3n ≤21+n ,∴9.5≤n ≤10.5.∵n ∈N *,∴n =10.∴C 38-n 3n +C 3n 21+n =C 2830+C 3031=C 230+C 131=30×292×1+31=466. 2.求使3C x -7x -3=5A 2x -4成立的x 值.解:根据排列数和组合数公式,原方程可化为 3·(x -3)!(x -7)!4!=5·(x -4)!(x -6)!,即3(x -3)4!=5x -6,即为(x -3)(x -6)=40. ∴x 2-9x -22=0,解得x =11或x =-2. 经检验知x =11时原式成立. 3.证明下列各等式. (1)C m n =m +1n +1C m +1n +1; (2)C 0n +C 1n +1+C 2n +2…+C m -1n +m -1=C m -1n +m .解:(1)右边=m +1n +1·(n +1)!(m +1)![(n +1)-(m +1)]!=m +1n +1·(n +1)!(m +1)!(n -m )!=n !m !(n -m )!=C mn =左边,∴原式成立.(2)左边=(C 0n +1+C 1n +1)+C 2n +2+C 3n +3+…+C m -1n +m -1=(C 1n +2+C 2n +2)+C 3n +3+…+C m -1n +m -1=(C 2n +3+C 3n +3)+…+C m -1n +m -1=(C3n +4+C 4n +4)+…+C m -1n +m -1=…=C m -2n +m -1+C m -1n +m -1=C m -1n +m =右边,∴原式成立.简单的组合问题[典例] 在一次数学竞赛中,某学校有12人通过了初试,学校要从中选出5人去参加市级培训,在下列条件中,有多少种不同的选法?(1)任意选5人;(2)甲、乙、丙三人必须参加; (3)甲、乙、丙三人不能参加. [解] (1)C 512=792种不同的选法.(2)甲、乙、丙三人必须参加,只需从另外的9人中选2人,共有C 29=36种不同的选法. (3)甲、乙、丙三人不能参加,只需从另外的9人中选5人,共有C 59=126种不同的选法.解答简单的组合问题的思考方法(1)弄清要做的这件事是什么事;(2)选出的元素是否与顺序有关,也就是看看是不是组合问题; (3)结合两计数原理利用组合数公式求出结果. [活学活用]一个口袋内装有大小相同的7个白球和1个黑球. (1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法? 解:(1)从口袋内的8个球中取出3个球,取法种数是C 38=8×7×63×2×1=56.(2)从口袋内取出3个球有1个是黑球,于是还要从7个白球中再取出2个,取法种数是C 27=7×62×1=21. (3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,取法种数是C 37=7×6×53×2×1=35.层级一 学业水平达标1.C 58+C 68的值为( )A .36B .84C .88D .504解析:选A C 58+C 68=C 69=C 39=9×8×73×2×1=84. 2.以下四个命题,属于组合问题的是( ) A .从3个不同的小球中,取出2个排成一列 B .老师在排座次时将甲、乙两位同学安排为同桌C .在电视节目中,主持人从100位幸运观众中选出2名幸运之星D .从13位司机中任选出两位开两辆车从甲地到乙地解析:选C 选项A 是排列问题,因为2个小球有顺序;选项B 是排列问题,因为甲、乙位置互换后是不同的排列方式;选项C 是组合问题,因为2位观众无顺序;选项D 是排列问题,因为两位司机开哪一辆车是不同的.选C .3.方程C x 14=C 2x -414的解集为( )A .4B .14C .4或6D .14或2解析:选C 由题意知⎩⎪⎨⎪⎧x =2x -4,2x -4≤14,x ≤14或⎩⎪⎨⎪⎧x =14-(2x -4),2x -4≤14,x ≤14,解得x =4或6.4.平面上有12个点,其中没有3个点在一条直线上,也没有4个点共圆,过这12个点中的每三个作圆,共可作圆( )A .220个B .210个C .200个D .1 320个解析:选A C 312=220,故选A .5.从5名志愿者中选派4人在星期六和星期日参加公益活动,每人一天,每天两人,则不同的选派方法共有( )A .60种B .48种C .30种D .10种解析:选C 从5名志愿者中选派2人参加星期六的公益活动有C 25种方法,再从剩下的3人中选派2人参加星期日的公益活动有C 23种方法,由分步乘法计数原理可得不同的选派方法共有C 25·C 23=30种.故选C .6.C 03+C 14+C 25+…+C 1821的值等于________. 解析:原式=C 04+C 14+C 25+…+C 1821 =C 15+C 25+…+C 1821=C 1721+C 1821=C 1822=C 422=7 315.答案:7 3157.若已知集合P ={1,2,3,4,5,6},则集合P 的子集中含有3个元素的子集数为________.解析:由于集合中的元素具有无序性,因此含3个元素的子集个数与元素顺序无关,是组合问题,共有C 36=20种.答案:208.不等式C 2n -n <5的解集为________.解析:由C 2n -n <5,得n (n -1)2-n <5,∴n 2-3n -10<0.解得-2<n <5.由题设条件知n ≥2,且n ∈N *, ∴n =2,3,4.故原不等式的解集为{2,3,4}. 答案:{2,3,4}9.(1)解方程:A 3m =6C 4m ; (2)解不等式:C x -18>3C x 8.解:(1)原方程等价于m (m -1)(m -2)=6×m (m -1)(m -2)(m -3)4×3×2×1,∴4=m -3,m =7.(2)由已知得:⎩⎪⎨⎪⎧x -1≤8,x ≤8,∴x ≤8,且x ∈N *,∵C x -18>3C x8,∴8!(x -1)!(9-x )!>3×8!x !(8-x )!.即19-x>3x ,∴x >3(9-x ),解得x >274,∴x =7,8.∴原不等式的解集为{7,8}.10.某区有7条南北向街道,5条东西向街道.(如图)(1)图中有多少个矩形?(2)从A 点走向B 点最短的走法有多少种?解:(1)在7条南北向街道中任选2条,5条东西向街道中任选2条,这样4条线可组成一个矩形,故可组成矩形有C 27·C 25=210(个).(2)每条东西向的街道被分成6段,每条南北向街道被分成4段,从A 到B 最短的走法,无论怎样走,一定至少包括10段,其中6段方向相同,另4段方向也相同,每种走法,即是从10段中选出6段,这6段是走东西方向的(剩下4段即是走南北方向的),共有C 610=C 410=210(种)走法.层级二 应试能力达标1.若C 4n >C 6n ,则n 的集合是( )A .{6,7,8,9}B .{0,1,2,3}C .{n |n ≥6}D .{7,8,9}解析:选A∵C 4n >C 6n,∴⎩⎪⎨⎪⎧C 4n >C 6n ,n ≥6,⇒⎩⎪⎨⎪⎧n !4!(n -4)!>n !6!(n -6)!,n ≥6.⇒⎩⎪⎨⎪⎧ n 2-9n -10<0,n ≥6,⇒⎩⎪⎨⎪⎧-1<n <10,n ≥6. ∵n ∈N *,∴n =6,7,8,9. ∴n 的集合为{6,7,8,9}.2.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张卡片,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )A .12种B .18种C .36种D .54种解析:选B 由题意,不同的放法共有C 13C 24=3×4×32=18种. 3.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( ) A .60种 B .63种 C .65种D .66种解析:选D 和为偶数共有3种情况,取4个数均为偶数的取法有C 44=1种,取2奇数2偶数的取法有C 24·C 25=60种,取4个数均为奇数的取法有C 45=5种,故不同的取法共有1+60+5=66种.4.过三棱柱任意两个顶点的直线共15条,其中异面直线有( ) A .18对B .24对C .30对D .36对解析:选D 三棱柱共6个顶点,由此6个顶点可组成C 46-3=12个不同四面体,而每个四面体有三对异面直线则共有12×3=36对.5.方程C x 17-C x 16=C 2x +216的解集是________.解析:因为C x 17=C x 16+C x -116,所以C x -116=C 2x +216,由组合数公式的性质,得x -1=2x +2或x -1+2x+2=16,得x 1=-3(舍去),x 2=5.答案:{5}6.某书店有11种杂志,2元1本的有8种,1元1本的有3种.小张买杂志用去10元钱,则不同买法的种数为________(用数字作答).解析:由已知分两类情况: (1)买5本2元的买法种数为C 58.(2)买4本2元的、2本1元的买法种数为C 48·C 23.故不同买法种数为C 58+C 48·C 23=266. 答案:2667.已知C 4n ,C 5n ,C 6n 成等差数列,求C 12n 的值. 解:由已知得2C 5n =C 4n +C 6n ,所以2·n !5!(n -5)!=n !4!(n -4)!+n !6!(n -6)!,整理得n 2-21n +98=0, 解得n =7或n =14,要求C 12n 的值,故n ≥12,所以n =14,于是C 1214=C 214=14×132×1=91.8.已知集合A ={a 1,a 2,a 3,a 4},B ={0,1,2,3},f 是从A 到B 的映射. (1)若B 中每一元素都有原象,则不同的映射f 有多少个? (2)若B 中的元素0无原象,则不同的映射f 有多少个?(3)若f 满足f (a 1)+f (a 2)+f (a 3)+f (a 4)=4,则不同的映射f 又有多少个? 解:(1)显然映射f 是一一对应的,故不同的映射f 共有A 44=24个.(2)∵0无原象,而1,2,3是否有原象,不受限制,故A 中每一个元素的象都有3种可能,只有把A 中每一个元素都找出象,这件工作才算完成,∴不同的映射f 有34=81个.(3)∵1+1+1+1=4,0+1+1+2=4,0+0+1+3=4,0+0+2+2=4,∴不同的映射有:1+C 24A 22+C 24A 22+C 24=31个.。
人教课标版高中数学选修2-3:《离散型随机变量的均值与方差(第2课时)》教案-新版
2.3 离散型随机变量的均值与方差(第2课时)一、教学目标 1.核心素养通过对离散型随机变量的方差的学习,更进一步提高了学生的数学建模能力和数学运算能力. 2.学习目标(1)通过实例,理解取得有限值的离散型随机变量的方差的概念 (2)能计算简单离散型随机变量的方差 (3)并能够解决一些实际问题. 3.学习重点离散型随机变量的方差的概念、公式及其应用. 4.学习难点灵活利用公式求方差.. 二、教学设计 (一)课前设计 1.预习任务 任务1阅读教材P64-P67,思考:方差、标准差的定义是什么?它们各自反应了什么? 任务2若随机变量X 服从两点分布,则方差为多少?若服从二项分布呢? 任务3根据方差的计算过程,可得到它的什么性质? 2.预习自测(1)已知随机变量x 的分布列则()X D =__________.(2)若随机变量⎪⎭⎫⎝⎛3210~,B X ,则方差DX=________.(二)课堂设计 1.知识回顾(1)均值或数学期望: 一般地,若离散型随机变量ξ的概率分布为则称 n n p x p x p x E +++=...2211ξ为ξ的均值或数学期望,简称期望.(2)均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平. (3)均值或期望的一个性质:若b aX Y +=,其中b a ,是常数(X 是随机变量),则Y 也是随机变量, 且有b aEX b aX E +=+)(①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身;②当1=a 时,b EX b X E +=+)(,即随机变量X 与常数之和的期望等于X 的期;③当0=b 时,aEX aX E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.(4)①若X 服从两点分布,则p X E =)(; ②若ξ~),,(p n B 则np X E =)(. 2.问题探究问题探究一 随机变量方差的定义要从两名同学中挑选出一名同学代表班级参加射击比赛,根据以往的成绩记录,第一名同学击中目标靶的环数的分布列为如果每班只能一人参加年级比赛,你觉得应该让甲乙谁代表班级参赛? 通过计算分析: E (X 1)=5, E (X 2)=5,所以从均值比较不出两名同学的水平高低.数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示随机变量在随机试验中取值的平均值.但有时两个随机变量只用这一个特征量是无法区别它们的,还需要对随机变量取值的稳定与波动、集中与离散的程度进行刻画.但显然两名同学的水平是不同的,要进一步去分析成绩的稳定性. 我们可以定义离散型随机变量的方差.(给出定义)方差:对于离散型随机变量X ,如果它所有可能取的值是n x x x ,....,,21,且取这些值的概率分别是n p p p ,....,,21,那么,n n p X E x p X E x p X E x X D ⋅-++⋅-+⋅-=2222121))((...))(())(()(称为随机变量X 的方差,式中的)(X E 是随机变量X 的均值.标准差:)(X D 的算术平方根)(X D 叫做随机变量X 的标准差,记作)(X σ.随机变量X 的方差、标准差都反映了随机变量取值的稳定与波动、集中与离散的程度;数值越大,说明随机变量取值波动越大,越不稳定;请分别计算探究中两名同学各自的射击成绩的方差.(进一步探究认识用随机变量方差来反映取值的稳定情况)第一名同学5.1)(,8)(==X D X E 第二名同学82.0)(,8)(==X D X E结论:第一名同学的射击成绩稳定性较差,第二名同学的射击成绩稳定性较好,稳定于8环左右.对“探究”的再思考(1)如果其他班级参赛选手的射击成绩都在9环左右,本班应该派哪一名选手参赛? (2)如果其他班级参赛选手的射击成绩都在8环左右,本班应该派哪一名选手参赛? 问题探究二 常见随机变量方差及随机变量方差的性质 ①若X 服从两点分布,则)1()(p p X D -= 若),(~p n B X ,则)1()(p np X D -=.②方差的性质:)()(2X D a b aX D =+;22))(()()(X E X E X D -=. 3.运用新知例1有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为X ,求)(X E ,)(X D .【知识点:期望、方差】解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以X ~B(200,1%).因为np X E =)(,)1()(p np X D -=,这里n =200,p =1%.所以)(X E =200×1%=2,)(X D =200×1%×99%=1.98. 例2已知随机变量X 的分布列为若E (X )=23. (1)求D (X )的值;(2)若Y =3X -2【知识点:离散型随机变量期望、方差及方差的性质】 解:由12+13+p =1,得p =16.又E (X )=0×12+1×13+16x =23, ∴x =2.(1)D (X )=(0-23)2×12+(1-23)2×13+(2-23)2×16=1527=59. (2)∵Y =3X -2,∴D (Y )=D (3X -2)=9D (X ).==练习1 设X ~B (n ,p ),且E (X )=12,D (X )=4,则n 与p 的值分别为( ) A .18,13 B .12,23C .18,23D .12,13 【知识点:离散型随机变量方差及方差的性质】答案:由X ~B (n ,p ),则4)(,12)(====npq X D np X E ,所以32,18==p n . 练习2 设p 为非负实数,随机变量X 的概率分布为:求E (X )与D (X )的最大值. 解:根据题意,得⎩⎪⎨⎪⎧0≤p <1,0≤12-p <1,解得0≤p ≤12.因为E (X )=-1×(12-p )+0×p +1×12=p , 所以当p =12时,E (X )取得最大值,为12.因为D (X )=(-1-p )2(12-p )+(0-p )2p +(1-p )2×12=-p 2-p +1=-(p +12)2+54,故当p =0时,D (X )取得最大值为1.【知识点:离散型随机变量期望、方差及二次函数的性质】 4.课堂总结 重点难点突破(1)求离散型随机变量均值与方差的方法步骤: ①理解X 的意义,写出X 可能取的全部值; ②求X 取每个值的概率; ③写出X 的分布列; ④由方差的定义求)(X D .(2)方差的性质:(1))()(2X D a b aX D =+;22))(()()(X E X E X D -=. (2)若X 服从两点分布,则()=(1)D X p p -; (3)若ξ~),,(p n B 则(1)D np p ξ=-;(4)方差DX 表示,DX 越大,表示,说明X 的取值越分散;DX 越小,表示,说明X 的取值越集中稳定.(5)方差公式的几种形式:22122))(()())(())(()(X E X E p X E x X E X E X D i ni i -=⋅-=-=∑=.方差的意义数学期望反映了随机变量取值的平均水平,但有时只知道数学期望还不能解决问题,还需要知道随机变量的取值在均值周围变化的情况,即方差.①随机变量的均值反映了随机变量取值的平均水平,方差反映了随机变量稳定于均值的程度,它们从整体和全局上刻画了随机变量,是生产实际中用于方案取舍的重要的理论依据,一般先比较均值,若均值相同,再用方差来决定.②随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;③标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛. 5.随堂检测1.若随机变量X 满足P (x =c )=1,其中c 为常数,则()X E =________,()X D _______.2.已知随机变量X 的分布列为则()X E 与()X D 的值为( )(A) 0.6和0.7 (B)1.7和0.3 (C) 0.3和0.7 (D)1.7和0.213.已知()5.0100~,B X 则()X E =___,()X D =____. ()12-X E =____,()12-X D =____.4.有一批数量很大的商品,其中次品占1%,现从中任意地连续取出200件商品,设其次品数为X ,则()X E =_____, ()X D =_______.5.已知甲、乙两名射手在同一条件下射击,所得环数x 1、x 2的分布列如下:试比较两名射手的射击水平.如果其他对手的射击成绩都在8环左右,应派哪一名选手参赛?如果其他对手的射击成绩都在9环左右,应派哪一名选手参赛?(三)课后作业 基础型 自主突破1.已知随机变量ξ满足P (ξ=1)=0.3,P (ξ=2)=0.7,则E (ξ)和D (ξ)的值分别为( )A .0.6和0.7B .1.7和0.09C .0.3和0.7D .1.7和0.21 2.已知X 的分布列为则D (X )等于( )A .0.7B .0.61C .-0.3D .0 3.D (ξ-D (ξ))的值为( )A .无法求B .0C .D (ξ) D .2D (ξ) 能力型 师生共研4.甲、乙两台自动车床生产同种标准产品1 000件,ξ表示甲机床生产1 000件产品中的次品数,η表示乙机床生产1 000件产品中的次品数,经过一段时间的考察,ξ,η的分布列分别是:据此判定()A.甲比乙质量好B.乙比甲质量好C.甲与乙的质量相同D.无法判定5.若ξ是离散型随机变量,P(ξ=X1)=23,P(ξ=X2)=13,且X1<X2,又已知E(ξ)=43,D(ξ)=29,则X1+X2的值为()A.53 B.73C.3 D.1136.设ξ~B(n,p),则有()A.E(2ξ-1)=2np B.D(2ξ+1)=4np(1-p)+1 C.E(2ξ+1)=4np+1D.D(2ξ-1)=4np(1-p)7.若随机变量X1~B(n,0.2),X2~B(6,p),X3~B(n,p),且E(X1)=2,D(X2)=32,则σ(X3)的值是()A.0.5 B. 1.5 C. 2.5 D.3.5自助餐1.已知离散型随机变量X的分布列如下表.E(X)=0,D(X)=1,则a=________,b=________.2.变量ξ的分布列如下:其中a,b,c成等差数列.若E(ξ)=13,则D(ξ)的值是________.3.抛掷一枚质地均匀的骰子,用X表示掷出偶数点的次数.(1)若抛掷一次,求E(X)和D(X);(2)若抛掷10次,求E(X)和D(X).4.有三张形状、大小、质地完全一致的卡片,在每张卡片上写上0,1,2,现从中任意抽取一张,将其上数字记作x,然后放回,再抽取一张,其上数字记作y,令ξ=x·y.求:(1)ξ所取各值的分布列;(2)随机变量ξ的数学期望与方差.(四)参考答案预习自测 1.1.2 2.920 随堂检测 1.c ,0 2. D3.50, 25, 99, 1004. 2,1.985. 解:92.0106.092.081=⨯+⨯+⨯=ξE ,94.0102.094.082=⨯+⨯+⨯=ξE∴甲、乙两射手的射击平均水平相同.又8.0,4.021==ξξD D∴甲射击水平更稳定.如果对手在8环左右,派甲;如果对手在9环左右,派乙. 课后作业 基础型 1.D 2.B 3.C 能力型 4.A 5.C 6.D 7.C 自助餐 1.512, 14 2.593.解:(1)X 服从两点分布,∴E (X )=p =12.D (X )=p (1-p )=12×(1-12)=14. (2)由题意知,X ~B (10,12). ∴E (X )=np =10×12=5, D (X )=npq =10×12×(1-12)=52.4.解:(1)随机变量ξ的可能取值有0,1,2,4,“ξ=0”是指两次取的卡片上至少有一次为0,其概率为 P (ξ=0)=1-23×23=59;“ξ=1”是指两次取的卡片上都标着1,其概率为 P (ξ=1)=13×13=19;“ξ=2”是指两次取的卡片上一个标着1,另一个标着2,其概率为P (ξ=2)=2×13×13=29; “ξ=4”是指两次取的卡片上都标着2,其概率为P (ξ=4)=13×13=19. 则ξ的分布列为(2)E (ξ)=0×59+1×19+2×29+4×19=1,D (ξ)=(0-1)2×59+(1-1)2×19+(2-1)2×29+(4-1)2×19=169.。
人教课标版高中数学选修2-3:《二项式定理(第1课时)》教案-新版
1.3 二项式定理 第一课时一、教学目标 1.核心素养通过二项式定理的推导过程的学习,提高学生的归纳推理能力,树立由特殊到一般的数学思想,增强学生的逻辑推理能力. 2.学习目标(1)初步掌握求二项展开式.(2)熟练运用通项公式求二项展开式中指定的项(如常数项、有理项). 3.学习重点熟练运用通项公式求二项展开式中指定的项(如常数项、有理项). 4.学习难点熟练运用通项公式求二项展开式中指定的项(如常数项、有理项). 二、教学设计 (一)课前设计1.预习任务(阅读教材完成)1.二项式定理:=+nb a )( ; 2.(1)n b a )(+的二项展开式中共有 项; (2)二项式系数: ;(3)二项展开式的通项公式:=+1r T ,它是展开式的第 项. 2.预习自测1.二项式91()x x-的展开式的第3项是( )A .-84x 3B .84x 3C .-36x 5D .36x 5 解:D2.(1+x )7的展开式中x 2的系数是( ) A .42 B .35 C .28 D .21 解:D3.在62()x x-的二项展开式中,常数项等于________.解:-160 (二)课堂设计1.知识回顾(1)错误!未找到引用源。
;(2)错误!未找到引用源。
(3)错误!未找到引用源。
2.问题探究问题探究一探究归纳,形成二项式定理●活动一回顾旧知,回忆展开式(a+b)4=(a+b) (a+b) (a+b) (a+b)展开式中的各项是什么?思考:ab3是怎样来的?有多少个?引导学生追究每个系数的来源,借助于组合的思想找到规律,从中体会到探索的乐趣.归纳结论:由上面的探索得到:(a+b)4=C04a4+C14a3b+C24a2b2+C34ab3+C44b4●活动二大胆猜想(a+b)n展开式中的各项是什么?归纳:一般对于任意的正整数n,有:(a+b)n=C0n a n+C1n a n-1b+…+C r n a n-r b r…+C n n b n(n∈N*)并指出:①这个式子所表示的定理叫二项式定理.右边的多项式叫(a+b)n的二项展开式.各项系数C r n(r=0、1、2、…、n)叫做二项式系数.②式子中的C r n a n-r b r叫做二项展开式的通项.记做:T r+1=C r n a n-r b r.上述结论是从分析了少数特例后,得出了一般的结论,这种方法叫不完全归纳法,还需用数学归纳法证明,但这里教材不要求证明了.问题探究二利用二项式定理能解决问题?1.求二项式的指定项或其系数例1.(1)(1+x)7的展开式中x2的系数是( )A.42 B.35 C.28 D.21【知识点:二项式展开式的系数求法,考查运算能力】解:选D 依题意可知,二项式(1+x)7的展开式中x2的系数等于C27×15=21.(2)在(2x2-1x)5的二项展开式中,x的系数为( )A.10 B.-10 C.40 D.-40【知识点:二项式展开式的系数求法,考查运算能力】解:D.(2x2-1x)5的展开式的通项为T r+1=5rC(2x2)5-r(-1x)r=5rC25-r(-1)r x10-3 r,令10-3r=1得,r=3,∴T4=35C22(-1)3x=-40x.∴x的系数是-40.例2.(1)在62()x x-的二项展开式中,常数项等于________.【知识点:二项式展开式的系数求法,考查运算能力】解:-160.由通项公式得T r +1=6r C x 6-r 2()r x-=(-2)r 6r C x 6-2r,令6-2r =0,解得r =3,所以是第4项为常数项,T 4=(-2)336C =-160.(2)已知8()ax x-展开式中常数项为1 120,其中实数a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或28【知识点:二项式展开式的系数求法,考查运算能力】解:选C 由题意知48C ·(-a )4=1 120,解得a =±2,令x =1,得展开式各项系数和为(1-a )8=1或38.例3.(1) 在(x -2)5y)4的展开式中x 3y 2的系数为________. 【知识点:二项式展开式的系数求法,考查运算能力】 解:480 (x -2)5的展开式的通项为T r +1=5r C x 5-r (-2)r ,令5-r =3得r =2,得x 3的系数25C (-2)2=40;y)4的展开式的通项公式为T r +1=4r C 4-ry r ,令r =2得y 2的系数24C 2=12,于是展开式中x 3y 2的系数为40×12=480.(2) 在(x -1)(x -2)(x -3)(x -4)(x -5)的展开式中,含x 4的项的系数是________. 【知识点:二项式展开式的系数求法,考查运算能力】解:-15.从4个因式中选取x ,从余下的一个因式中选取常数,即构成x 4项,即-5x 4-4x 4-3x 4-2x 4-x 4,所以x 4项的系数应是-1-2-3-4-5=-15. 3.课堂总结 【知识梳理】二项式定理及其通项公式1.二项式定理:01()()n n n r n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈2.(1)nb a )(+的二项展开式中共有错误!未找到引用源。
高二数学选修2-3教案
—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式二次备课第课时总第教案课型:新授课主备人:审核人:1.1分类加法计数原理和分步乘法计数原理一、教学目标:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题二、教学重难点:重点:分类计数原理(加法原理)与分步计数原理(乘法原理)难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解三、教学方法讲授法四、教学过程一、新课讲授引入课题先看下面的问题:①从我们班上推选出两名同学担任班长,有多少种不同的选法?②把我们的同学排成一排,共有多少种不同的排法?要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法.总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法.在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.1 分类加法计数原理(1)提出问题问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?探究:你能说说以上两个问题的特征吗?(2)发现新知分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法. 那么完成这件事共有m=N+n种不同的方法.(3)知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:.A大学 B大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A ,B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有5+4=9(种).变式:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有1m种不同的方法,在第2类方案中有2m种不同的方法,在第3类方案中有3m种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,有n类办法,在第1类办法中有1m种不同的方法,在第2类办法中有2m种不同的方法……在第n类办法中有nm种不同的方法.那么完成这件事共有nmmmN+⋅⋅⋅++=21种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.2 分步乘法计数原理(1)提出问题问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以1A,2A,…,1B,2B,…的方式给教室里的座位编号,总共能编出多少个不同的号码?用列举法可以列出所有可能的号码:我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何一个组成一个号码,而且它们各不相同,因此共有 6×9 = 54 个不同的号码.探究:你能说说这个问题的特征吗?(2)发现新知二次备课分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有n m N ⨯=种不同的方法.(3)知识应用例2.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生.解:第 1 步,从 30 名男生中选出1人,有30种不同选择;第 2 步,从24 名女生中选出1人,有 24 种不同选择.根据分步乘法计数原理,共有30×24 =720种不同的选法.探究:如果完成一件事需要三个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,做第3步有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n 个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3.理解分类加法计数原理与分步乘法计数原理异同点①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.3 综合应用例3. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法?③从书架上任取两本不同学科的书,有多少种不同的取法?【分析】①要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.②要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.③要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解: (1) 从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4 种方法;第2 类方法是从第2 层取1本文艺书,有3 种方法;第3类方法是从第 3 层取 1 本体育书,有 2 种方法.根据分类加法计数原理,不同取法的种数是二次备课123N m m m =++=4+3+2=9;( 2 )从书架的第 1 , 2 , 3 层各取 1 本书,可以分成3个步骤完成:第 1 步从第 1 层取 1 本计算机书,有 4 种方法;第 2 步从第 2 层取1本文艺书,有 3 种方法;第 3 步从第3层取1 本体育书,有 2 种方法.根据分步乘法计数原理,不同取法的种数是123N m m m =⨯⨯=4×3×2=24 .(3)26232434=⨯+⨯+⨯=N 。
人教版高中数学选修2-3:2.2.2 事件的相互独立性教案
(一) 复习引入问题1:三个臭皮匠能顶一个诸葛亮吗?诸葛亮一人组成的团队PK臭皮匠三人组成的团队,他们解决同一个问题的概率分别为:诸葛亮解决问题的概率为0.85;臭皮匠老大解决问题的概率为0.5,老二为0.4,老三为0.3,要求臭皮匠团队成员必须独立解决,三人中至少有一人解决问题就算团队胜出,问臭皮匠团队与诸葛亮团队谁的胜算比较大?臭皮匠团队的亲友团做了如下的解释,设事件A:臭皮匠老大能解决问题;事件B:臭皮匠老二能解决问题;事件C:臭皮匠老三能解决问题;则臭皮匠团队能胜出的概率为P=P(A)+P(B)+P(C)=0.5+0.45+0.4=1.35,所以臭皮匠团队必胜。
你认为这种计算方法合理吗?教师提问,让学生利用已有知识对臭皮匠亲友团的回答做出是否正确的判断。
将我们的俗语改编成题,激发学生学习兴趣,同时引出本节主要内容:事件的独立性。
课题2.2.2 事件的相互独立性课时 1 授课时间主备人:教学目标知识与技能了解相互独立事件的概念,初步掌握用定义判断某些事件是否相互独立,能区分互斥事件与相互独立事件。
了解相互独立事件同时发生的概率的乘法公式,会运用此公式计算一些简单的概率问题。
过程与方法:经历概念的形成及公式的探究、应用过程,培养学生观察、分析、类比、归纳的能力,培养学生自主学习的能力与探究问题的能力。
情感态度与价值观:通过设置恰当而有趣的课前引例,激发学生学习本小节知识的兴趣,通过小组合作学习让学生体会合作学习的乐趣教学准备ppt重点难点教学重点:了解相互独立事件的概念,如何求相互独立事件都发生的概率。
教学难点:公式的推导与应用。
教师活动学生活动设计意图。
人教版高中选修2-3《正态分布》教案
人教版高中选修2-3《正态分布》教案一、教学目标1.知识与技能:–能够通过计算、观察与分析进行正态分布的基本参数估计与计算;–能够根据数据特征确定正态分布的使用条件,并运用正态分布解决实际问题。
2.过程与方法:–提高学生数理思维能力及运用计算机软件进行数据统计和分析的能力;–提高学生观察、归纳、分析问题及解决问题的能力。
3.情感态度与价值观:–培养学生科学态度,认识正态分布的重要性和应用价值,拓宽学生科学视野。
二、教学重、难点1.教学重点:–正态分布的基本概念与相关参数的计算;–正态分布的性质及模型的应用;–正态分布与假设检验。
2.教学难点:–正态分布在实际中的广泛应用。
三、教学内容1. 正态分布的基本概念与参数1.正态分布的定义–介绍正态分布的基本特征和概念。
2.正态分布的概率密度函数和分布函数–掌握正态分布的概率密度函数和分布函数的定义;–画出正态分布的概率密度函数和分布函数的图像。
3.正态分布的标准化–掌握正态分布的标准化转化法,以及标准正态分布表的使用方法。
2. 正态分布的参数估计与计算1.正态分布的基本形式–介绍正态分布的基本形式,以及参数的含义;–学习如何通过样本来估计总体的参数。
2.样本均值和样本标准差–掌握样本均值和样本标准差的定义和计算方法;–从样本中估计总体的均值和标准差。
3.抽样分布–掌握样本均值和样本标准差的概率分布,以及如何计算抽样分布。
3. 正态分布的应用1.正态分布的性质及模型的应用–描述正态分布的各种统计特征;–掌握利用正态分布进行概率估计的方法;–了解正态分布在实际问题中的应用,如质量控制、投资、风险评估等。
2.正态分布与假设检验–了解假设检验的基本内容及步骤;–学习如何从正态分布的角度来诠释假设检验。
四、教学方法1.授课讲解:对正态分布相关概念和公式进行讲解,以期解决学生对于正态分布不熟悉的情况。
2.讲解示范法:用实例向学生呈现正态分布的应用场景及应用方法,以期加深学生对于正态分布在实践中的应用认识。
数学选修23教学计划
数学选修23教学计划数学选修2-3教学计划一、指导思想认真学习与贯彻课程标准改革的精神,以学生为本,以教导处教学计划为指导。
面向全体学生,全面提高学生的素质,发展学生的智力,培养学生的数学能力,提高学生的数学成绩。
较好地完成高中必修3下半册和选修2-1的部分教学任务。
学生情况及教材分析高中教学内容深,学生接受起来很困难。
所以教师要根据实际情况,面对全体,因材施教,对学习有障碍的学生进行个别辅导。
以优待差,发挥学生群体的作用。
抓好三类生的教学,促进尖子生,带好中等生,扶好下等生。
二、学生情况及简要分析高二(1)班学生来自恰热克镇各村,现该班有 (36) 名学生,他们都是团员,该班学生都自愿组织的,学生的热情较高,组织情况也很好。
三、教材分析高中选修2-1的部分教学内容。
通过教学,要使学生把数学与实际生活联系起来,掌握必须掌握的基础知识与基本技能,进一步培养学生的数学创新意识良好个性品质以及初步的辩证唯物主义的观点。
第一章命题,本章主要学习四种命题,四种命题的相互关系,充分条件与必要条件,充要条件,简单逻辑连接词,含有一个最词的明天的否定有关知识。
结好了方法才会学有所获。
在教学中面向全体学生,因材施教,加强引导,使学生养成良好的学习习惯,注重培养学生兴趣和主动性。
鼓励学生大胆创新,勇于探索。
培养学生创新能力和创新意识。
努力提高学生成绩。
4、教师千方百计想出最直观的教学方法,把课程讲明白,直到学生弄明白为止。
多使用直观简捷的教学方法,注重兴趣教学。
根据学生容易遗忘的特点,要及时有效地搞好复习。
课前提问抓住重点,每周的自习课搞好一周的复习巩固,做好每个单元的训练。
教师一定要有耐心、信心,相信学生会学好的五、高中数学教学计划指导思想准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。
针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基矗六、教学建议1、树立以学生为主体的教育观念。
数学选修2-3教案
第一章计数原理1.1分类加法计数原理和分步乘法计数原理教学目标:知识与技能:①理解分类加法计数原理与分步乘法计数原理;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:培养学生的归纳概括能力;情感、态度与价值观:引导学生形成“自主学习”与“合作学习”等良好的学习方式教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解授课类型:新授课课时安排:2课时教具:多媒体、实物投影仪教学过程:引入课题先看下面的问题:①从我们班上推选出两名同学担任班长,有多少种不同的选法?②把我们的同学排成一排,共有多少种不同的排法?要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法. 总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法.在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.1 分类加法计数原理(1)提出问题问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?探究:你能说说以上两个问题的特征吗?(2)发现新知m种不同的方分类加法计数原理完成一件事有两类不同方案,在第1类方案中有n种不同的方法. 那么完成这件事共有法,在第2类方案中有N+=nm种不同的方法.(3)知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:A大学 B大学生物学数学化学会计学医学信息技术学物理学法学工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?分析:由于这名同学在 A , B 两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择 A , B 两所大学中的一所.在 A 大学中有 5 种专业选择方法,在 B 大学中有 4 种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有5+4=9(种).变式:若还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n 类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.2 分步乘法计数原理(1)提出问题问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以1A ,2A ,…,1B ,2B ,…的方式给教室里的座位编号,总共能编出多少个不同的号码?用列举法可以列出所有可能的号码:我们还可以这样来思考:由于前 6 个英文字母中的任意一个都能与 9 个数字中的任何一个组成一个号码,而且它们各不相同,因此共有 6×9 = 54 个不同的号码.探究:你能说说这个问题的特征吗?(2)发现新知分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有n m N ⨯=种不同的方法.(3)知识应用例2.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?分析:选出一组参赛代表,可以分两个步骤.第 l 步选男生.第2步选女生.解:第 1 步,从 30 名男生中选出1人,有30种不同选择;第 2 步,从24 名女生中选出1人,有 24 种不同选择.根据分步乘法计数原理,共有30×24 =720种不同的选法.探究:如果完成一件事需要三个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,做第3步有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n 个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?一般归纳:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3.理解分类加法计数原理与分步乘法计数原理异同点①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.3 综合应用例3. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法?③从书架上任取两本不同学科的书,有多少种不同的取法?【分析】①要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.②要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.③要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这件事的一部分,应用分步计数原理,上述每一种选法都完成后,这件事才能完成,因此这些选法的种数之间还应运用分类计数原理.解: (1) 从书架上任取1本书,有3类方法:第1类方法是从第1层取1本计算机书,有4 种方法;第2 类方法是从第2 层取1本文艺书,有3 种方法;第3类方法是从第 3 层取 1 本体育书,有 2 种方法.根据分类加法计数原理,不同取法的种数是123N m m m =++=4+3+2=9;( 2 )从书架的第 1 , 2 , 3 层各取 1 本书,可以分成3个步骤完成:第 1 步从第 1 层取 1 本计算机书,有 4 种方法;第 2 步从第 2 层取1本文艺书,有 3 种方法;第 3 步从第3层取1 本体育书,有 2 种方法.根据分步乘法计数原理,不同取法的种数是123N m m m =⨯⨯=4×3×2=24 .(3)26232434=⨯+⨯+⨯=N 。
人教版高中数学选修2-3教案:1.3.1二项式定理
§1.3.1 二项式定理【教学目标】1.理解二项式定理及推导方法,识记二项展开式的有关特征,能对二项式定理进行简单应用;2.通过对二项式定理内容的研究,体验特殊到一般的发现规律,一般到特殊指导实践的认识事物过程。
【教学重难点】教学重点:二项式定理的内容及归纳过程;教学难点:在二项式展开的过程中,发现各项及各项系数的规律。
【教学过程】一、设置情景,引入课题引入:二项式定理研究的是(a+b)n的展开式。
如(a+b)2=a2+2ab+b2, (a+b)3=?,(a+b)4=?,那么(a+b)n的展开式是什么呢?二、引导探究,发现规律1、多项式乘法的再认识问题1:(a1+ b1)(a2+b2) (a3+ b3)展开式中每一项是怎样构成的?展开式有几项?2、(a+b)3展开式的再认识问题2:将上式中,若令a1=a2=a3=a, b1=b2= b3=b,则展开式又是什么?合作探究1:合并同类项后,为什么a2b的系数是3?教师引导:可以发现a2b是从(a+b)(a+b)(a+b)这三个括号中的任意两个中选a,剩下的一个括号中选b;利用组合知识可以得到a2b应该出现了C23· C11=3次,所以a2b的系数是3。
问题3:(a+b)4的展开式又是什么呢?可以对(a+b)4按a或按b进行分类:(1)四个括号中全都取a,得:C44a4(2)四个括号中有3个取a,剩下的1个取b,得:C34a3· C11b(3)四个括号中有2个取a,剩下的2个取b,得:C24a2· C22b2(4)四个括号中有1个取a,剩下的3个取b,得:C14a· C33b3(5)四个括号中全都取b,得:C44b4小结:对于展开式,只要按一个字母分类就可以了,可以按a分类,也可以按b分类,再如:(1)不取b:C04a4;(2)取1个b:C14a3b;(3)取2个b:C24a2b2;(4)取3个b:C34a b3;(5)取4个b:C44b4,然后将上面各式相加得到展开式。
高二数学精品教案:112基本计数原理和排列组合选修2-3
(2)分步乘法计数原理: 做一件事情,完成它需要分成 n 个步骤,做第一个步骤有 m1 种不同的方法,做第二个步 骤有 m2 种不同的办法……做第 n 个步骤有 mn 种不同的方法,那么完成这件事情共有 N= m1×m2×…×mn 种不同的方法 说明: (1)两个基本计数原理是解决计数问题最基本的理论根据,它们分别给出了用两种不同 方式(分类和分步)完成一件事情的方法总数的计算方法 (2)考虑用哪个计 数原理,关键是看完成一件事情是否能独立完成,决定是分类还是分 步。如果完成一件事情有 n 类办法,每类办法都能独立完成,则用分类加法计数原理;如果 完成一件事情,需要分成 n 个步骤,各个步骤都是不可缺少的,需要依次完成所有步骤,才
型与乙型电视机各一台,不同的取法共有( )种
A. 140
B. 84
C. 70
D. 35
4. 四个不同的小球放入编号 1,2,3,4 的四个盒子中 ,则恰有一个空盒的方法共有
N ,且m
n)
C
0 n
C
n n
1
(4)组合数的两个性质:
①
C
m n
C nm n
②
Cm n1
C
m n
C
m n
1
4. 排列和组合的关系:
(1)二者区别的关键:是否和顺序有关
(2)二者的联系:
Anm
C
m n
Amm
5. 解决站队和组数的常用方法:
(1)特殊位置(或元素)优先考虑法:解决在与不在的问题
(2)捆绑法:解决元素相邻的问题
有( )个
人教课标版高中数学选修2-3:《离散型随机变量及其分布列(第1课时)》教案-新版
2.1 离散型随机变量及其分布列(第1课时)一、教学目标【核心素养】对离散型随机变量及其分布列概念的学习,初步形成从实际问题到数学问题的数学建模思想.【学习目标】1.了解随机变量的概念.2.理解离散型随机变量的概率分布列及其特征.3.学会解答一些简单分布列的运算.【学习重点】离散型随机变量分布列制表.【学习难点】1.正确选取离散型随机变量及概率的运算.2.掌握如何将实际问题划归为离散型随机变量的分布列方法.二、教学设计(一)课前设计1.预习任务任务1-阅读教材,了解离散型随机变量的的概念及性质.任务2-离散型随机变量分布列的性质及表格的制作.2.预习自测1.已知:①某机场候机室中一天的旅客数量X;②某寻呼台一天内收到的寻呼次数X ;③某篮球下降过程中离地面的高度X ;④某立交桥经过的车辆数X .其中不是离散型随机变量的是( ) A.①中的X B.②中的X C.③中的X D.④中的X 解:C2.袋中有大小相同的5个小球,分别标有1,2,3,4,5五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量X,则X 所有可能取值的个数是( ) A.5 B.9 C.10 D.25 解:B由于本试验属于有放回抽取,所以所有1,2,3,4,5肯能号码都可被抽取到.然后抽取的数字之和是相同值得时候只能看作1次取值.所以最后可能组合就有9组不重复可能取值.3.某一随机变量X 的概率分布列如下表,且2.12=+n m ,则2nm -的值为( )A.-0.2B.0.2C.0.1D.-0.1 解:B利用概率=∑=ni i p 11.(二)课堂设计问题探究一 、离散型随机变量的定义●活动一 感知随机变量引例:某一时间段内公交站等公交的乘客人数;某固定电话在某时间段内接到的电话数量;一批注入某种毒素的动物在确定时间段内死亡的数量;长途汽车在1000KM 的行驶路程中到达目的地所用的时间等等. 讨论:(1)变量:可变的量;在函数中常见;常用x,y,z 等字母表示一些不确定的数值关系.(2)随机性:偶然性的一种形式;是对某一事件发生的不确定性的描述. (3)离散性:数据的分散性,不具备连续的特征(如:连续型数据-10≤x ≤9;离散型数据:x =-10,-1,0,1,9). 引入(1)在随机试验的实际结果与数学之间,自然地或人为地建立起一种数学数字对应关系,使每一个可能的结果都对应着一个实数,那么随机试验的结果就可以用取值对应的任一个变量来表示,这个变量叫随机变量,随机变量常用X 、Y 、ξ、η等表示(区别于连续型函数)(x f ).(2)离散型随机变量:如果对于随机变量可能取的值有限多个或无限多个,但可以按一定次序一一列出,这样的随机变量叫做离散型随机变量(如:掷骰子点6出现的次数X ;抛硬币正面出现的次数N ;流水生产线上发生故障点的个数M ).注意:①并不是所有的随机变量都能一一列出.例如汽车的使用寿命;从发电站到用户家庭的线路故障点;一天中雷雨天气的发生时间等等.②相反的,如果随机变量可以取定区间内的任意一个数值,这样的变量称之为连续型随机变量.●活动二随机变量类型的判别、选取、取值实例感知,如何在实际情景中选取随机变量:例1.重庆至武汉的高铁路段设立有固定的100个安全检测点,请能否将此监测点看作随机变量?属于离散型或是连续型?如何选取随机变量?例2.三峡大坝水位检测站承担对长江沿岸(0,168m)水位任务检测工作.该水位站检测到的水位数据是否属于随机变量?是连续型或是离散型?例3.一个盒子里面装有5个红球4个黄球3个白球.一次实验中取出依次不放回取出3个球.根据题意如何选取随机变量.例4.在一次关于电视娱乐节目的调查中,对100个家庭进行了调查分析.发现有观看关于娱乐节目、生活节目、电视剧节目、电影节目.请对以上调查结果做出合理的分析,给出随机变量的的选取意见.随机变量从本质上讲就是以随机试验的每一个可能结果对应的某个函数的自变量.即随机变量的取值实质上是试验所对应的结果数,但这些数是预先知道的所有可能的值,而不知道具体是哪一个值,也就充分验证了实验结果具有随机性的特征.问题探究二、离散型随机变量的分布列及其性质●活动一列分布列表(1)分布列的定义表示概率在所有试验结果中的分布情况的列表.(2)分布列的表示①设定离散型随机变量X 可能的取值为nx x x ,,,21⋅⋅⋅.②求出X 取定每一个值i x (n i ,,3,2,1⋅⋅⋅=)的概率i i p x X P ==)(. ③列出概率分布表则该表格为离散型随机变量X 的概率分布列,简称X 的分布列. ●活动二 结合实例,认知分布列性质思考:分布列的概率问题是否与之前所学概率知识有相通之处?例1.已知随机变量X 的分布列为33)21()(i C i X P == (i =0,1,2,3)则==)2(X P ;详解:83)21()2(323===i C X P点拔:考察组合在概率中的基本算法. 例2.已知随机变量X 的分布列为则x = .详解:3.0)5.02.0(1)2(=+-==X P . 点拔:概率的性质.通过以上案例的分析,我们不难发现: 离散型随机变量分布列的性质由概率的性质可知,任一离散型随机变量的分布列都具有下面两个性质: ①0(1,2,3,,)i p i n ≥=L , ②11ni i p ==∑点拔:1.理解分布列的两大性质,熟练掌握概率的算法及运用它来解决一些实际问题.2.重点理解性质②,对于求取分布列中的某些参数具有重要指导意义. 三、课堂总结 【知识梳理】1.连续型随机变量、离散型随机变量的概念与区别.2.如何在实际问题中筛选出随机变量并建立变量关系.3.离散型随机变量分布列的概率性质:①0(1,2,3,,)i p i n ≥=L ,;②=∑=ni i p 1 1.4.随机变量分布列的表格制作步骤:①选取随机变量的可能取值;②计算随机变量取值对应的概率;③制作概率分布列表格. 【重难点突破】1.若X 是一个随机变量,λ、μ是常数.则有如下情况:μλ+=X Y ;X X Y μλ+=2; 2)(μλ+=X Y ......中的Y 也是一个随机变量.提示:类比于理解函数中x 与f (x )的对应关系.2.掌握离散型随机变量分布列的两大性质,学会应用其概率特征解决一些参数问题.3.在具体划归分布列的应用中,关键明确变量的取值,正确求取值对应的概率四、随堂检测1.抛掷两颗骰子,如果将所得点数之和记为X,那么X=4表示的随机试验结果是()A.两颗都是4点B.一颗是1点,另一颗是3点C.两颗都是2点D.一颗是1点,另一颗是3点,或者两颗都是2点【知识点:随机变量的概念】解:D2.下列4个表格中,可以作为离散型随机变量分布列的一个是()A.B.C.D.【知识点:概率分布列的性质;互斥事件】 解:C3.随机变量X 的概率分布规律为)4,3,2,1()1()(=+==n n n an X P 其中a 是常数,则)2521(<<X P 的值为 .【知识点:分布列的性质;互斥事件概率】解:654.设X 是离散型随机变量,其分布列如下表所示.则=q ( ). A.1 B.221±C.221+D.221-【知识点:分布列的性质;互斥事件概率】 解:D 五、课后作业 ★基础型 自主突破1.如果X 是一个离散型随机变量,则假命题是( ) A.X 取每一个可能值的概率都是非负数; B.X 取所有可能值的概率之和为1;C.X 取某几个值的概率等于分别取其中每个值的概率之和;D.X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和 【知识点:真假命题;分布列的性质】解:由分布列性质①可知1≥i p ≥0,(n i ,,3,2,1⋅⋅⋅=),故A 是真命题;分布列性质②=∑=ni i p 1 1 可知B 、C 是真命题.故D 是假命题.2.①某寻呼台一小时内收到的寻呼次数X ;②在(0,1)区间内随机的取一个数X ;③某超市一天中的顾客量X 其中的X 是离散型随机变量的是( ) A.① B .② C.③ D.①③【知识点:离散型随机变量的定义】解:②中的区间取值是随机的,但是数值是连续的,是不能一一列出的,这样的数据属于连续型随机变量.故选D.3.设离散型随机变量ξ的概率分布如下,则a 的值为( )A .12B .16C .13D .14【知识点:分布列性质】解:由概率分布列性质=∑=ni i p 11可知31,1)4()3()2()1(===+=+=+=a X P X P X P X P 故选C .4、设随机变量X 的分布列为()()1,2,3,,,k P X k k n λ===⋯⋯,则λ的值为( ) A .1B .12C .13D .14【知识点:等比数列通项式及前n 项和公式;分布列性质】解:21,113211==-=⋅⋅⋅++⋅⋅⋅+++=∑∞=λλλλλλλn i i p 故选B .5、已知随机变量X 的分布列为:()12k p X k ==, ,3,2,1=k ,则()24p X <≤=( ) A.163B.41C.161 D.165【知识点:互斥事件概率问题;分布列性质】 解:,1632121)4()3()42(43=+==+==≤<X p X p X p 故选A .6、投掷两枚骰子,所得点数之和记为X ,那么4X =表示的随机实验结果是( )A.一枚是3点,一枚是1点B.两枚都是2点C.两枚都是4点D.一枚是3点,一枚是1点或两枚都是2点【知识点:离散型随机变量;数学思想:分类讨论】解:一枚骰子可取点数范围从1、2、3、4、5、6;X =2+2=4 或X =1+3=4的讨论组合方式,故选D .★★能力型 师生共研7.设随机变量X 的分布列为()()21,2,3,,,k P X k k n λ==⋅=⋯⋯,则 λ= .【知识点:等比数列通项式及前n 项和公式;分布列性质】 解:31,11222223211==-=⋅⋅⋅++⋅⋅⋅+++=∑∞=λλλλλλλn i i p8.一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数X 可能取值为【知识点:组合;数学思想:分类讨论】解:由于抽取的过程中是不放回取球.可能情况数1035 C ,分类讨论情况如下(不论先后):①1,2,3.②1,3,4③1,3,5 ④2,3,4 ⑤2,3,5 ⑥3,4,5.⑦4,5,1⑧4,5,2⑨5,1,2⑩4,2,1.故X 的可能取值为3,4,5.9.某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量(1)求租车费η关于行车路程ξ的关系式;(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?【知识点:离散型随机变量;数学思想:转化】解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2(2)由38=2ξ+2,得ξ=18,5×(18-15)=15.所以,出租车在途中因故停车累计最多15分钟.★★★探究型 多维突破11、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数X 的分布列.【知识点:分布列;数学思想:转化、分类讨论】解:设黄球的个数为n ,由题意知绿球个数为2n ,红球个数为4n ,盒中的总数为7n .∴44(1)77n P X n ===,1(0)77n P X n ===,22(1)77n P X n =-==. 所以从该盒中随机取出一球所得分数X 的分布列为12、一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n 次终止的概率是n 21(n =1,2,3,…).记X 为原物体在分裂终止后所生成的子块数目,求(10)P X ≤.【知识点:分布列,互斥事件概率;数学思想:转化、分类讨论】解:依题意,原物体在分裂终止后所生成的数目X 的分布列为∴(10)(2)(4)(8)P X P X P X P X ≤==+=+==87814121=++. 自助餐1.下列随机变量中,不是离散随机变量的是( )A.从10只编号的球 ( 0号到9号) 中任取一只,被取出的球的号码ξB.抛掷两个骰子,所得的最大点数ξC.[0 , 10]区间内任一实数与它四舍五入取整后的整数的差值ξD.一电信局在未来某日内接到的 电话呼叫次数ξ【知识点:离散型随机变量】2.甲乙两名篮球运动员轮流投篮直至某人投中为止,设每次投篮甲投中的概率为0.4,乙投中的概率为0.6,而且不受其他投篮结果的影响.设甲投篮的次数为ξ,若甲先投,则==)(k P ξ( )A.4.06.01⨯-kB.76.024.01⨯-kC.6.04.01⨯-kD.24.076.01⨯-k【知识点:互斥事件概率;数学思想:转化、分类讨论】解:B 若甲投1次球,则包含两层信息---甲乙两人共投球1次;甲乙两人共投球2次,即概率76.0)4.01)(4.01(4.0)1(=--+==ξP ;若甲投2次球,则包含两层信息---甲乙两人共投球3次;甲乙两人共投球4次,即概率1824.0)4.01)(4.01(4.0)4.01(4.04.0)4.01()2(=--⋅-+⋅-==ξP .同理可得出==)(k P ξ76.024.01⨯-k .3.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则)0(=ξP 等于( )A.0B.21 C.31 D.32 【知识点:对立事件概率】4.设随机变量ξ的分布列为)5,4,3,2,1(15)(===k k k P ξ,则)2521(<<ξP 等于( ) A.21B.91C.61D.51【知识点:互斥事件概率;数学思想:分类讨论】解:D5.已知随机变量ξ的分布列为:),3,2,1(21)(⋅⋅⋅===k k P k ξ,则=≤<)42(ξP ()A.163B.41C.161D.165【知识点:互斥事件概率;数学思想:分类讨论】解:A6.已知随机变量ξ的概率分布为:则==)10(ξP ( ) A.932 B.1032 C.931 D.1031 【知识点:分布列;数学思想:观察法】解:D7.位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上向右的概率都是21,质点P 移动5次后位于点(2,3)的概率是( ) A.3)21( B.525)21(C C.335)21(C D.53525)21(C C 【知识点:计数原理,独立事件概率;数学思想:组合】解:B8.在一批产品中共12件,其中次品3件,每次从中任取一件,在取得合格品之前取出的次品数ξ的所有可能取值是【知识点:离散型随机变量】解:0,1,2,3.9.设随机变量ξ只能取5,6,7,…,16这12个值,且取每个值的概率相同,则=>)8(ξP ,)146(≤<ξP =【知识点:对立事件、互斥事件概率;数学思想:分类讨论、正反面】 解:31121121121121)8(=+++=>ξP ;65)121121(1)6(1)146(=+-=≤-=≤<ξξP P .10.已知随机变量ξ的分布列是:=≤≤)42(ξP【知识点:分布列;数学思想:分类讨论】解:0.711.指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.(1)某人射击一次命中的环数;(2)任意掷一枚均匀硬币5次,出现正面向上的次数;(3)投一颗质地均匀的骰子出现的点数(最上面的数字);(4)某个人的属相随年龄的变化.【知识点:离散型随机变量】解:(1)某人射击一次,可能命中的环数是0环,1环,…,10环结果中的一个而且出现哪一个结果是随机的,因此是随机变量.(2)任意掷一枚硬币1次,可能出现正面向上也可能出现反面向上,因此投掷5次硬币,出现正面向上的次数可能是0,1,2,3,4,5,而且出现哪种结果是随机的,是随机变量.(3)投一颗骰子出现的结果是1点,2点,3点,4点,5点,6点中的一个且出现哪个结果是随机的,因此是随机变量.(4)属相是人出生时便确定的,不随年龄的变化而变化,不是随机变量.12.设b,c 分别是先后抛掷一枚骰子得到的点数.(1)设A =},,02|{2R x c bx x x ∈<+-求φ≠A 的概率;(2)设随机变量|,|c b -=ξ求ξ的分布列. 【知识点:二次方程根的判别,对立事件概率;数学思想:分类讨论】 解:b,c 的所有可能取值从1-6.当b =1,c =1,2,3,4,5,6; 08)2(4)(4222<-=--=-=∆c b c b ac b ;当b =2,c =1,2,3,4,5,6;08)2(4)(4222<-=--=-=∆c b c b ac b ;当b =3,c =2,3,4,5,6;08)2(4)(4222<-=--=-=∆c b c b ac b ; 当b =4,c =3,4,5,6;08)2(4)(4222<-=--=-=∆c b c b ac b ;当b =5,c =4,5,6;08)2(4)(4222<-=--=-=∆c b c b ac b ;当b =6,c =5,6;08)2(4)(4222<-=--=-=∆c b c b ac b .故当φ≠A 时概率18536261=-;5,4,3,2,1,0=ξ其分布列如下:。
人教课标版高中数学选修2-3《二项式定理(第2课时)》教案-新版
1.3 二项式定理第二课时一、教学目标1.核心素养通过二项式定理的推导过程的学习,提高学生的归纳推理能力,树立由特殊到一般的数学思想增强了学生的逻辑推理能力.2.学习目标二项式展开式的项数、指数、系数特点及其应用.3.学习重点二项式展开式的项数、指数、系数特点及其应用.4.学习难点二项式定理和二项式系数性质的应用.二、教学设计(一)课前设计1.预习自测1.错误!未找到引用源。
的展开式中,常数项为错误!未找到引用源。
,则错误!未找到引用源。
()A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
解:D2.错误!未找到引用源。
的展开式中常数项为.(用数字作答)解:-423.若错误!未找到引用源。
的二项展开式中错误!未找到引用源。
的系数为错误!未找到引用源。
,则错误!未找到引用源。
.解:2(二)课堂设计1.知识回顾1.二项式定理及其特例:(1)错误!未找到引用源。
,(2)错误!未找到引用源。
2.二项展开式的通项公式:错误!未找到引用源。
3.求常数项、有理项和系数最大的项时,要根据通项公式讨论对错误!未找到引用源。
的限制;求有理项时要注意到指数及项数的整数性2.问题探究问题探究一●活动一认知杨辉三角在n(+展开式中,当n=1,2,3,…时,各项的二项式系数是怎样的?a)b()1ba+()2ba+()3ba+()4ba+()5ba+()6ba+仔细观察,你能发现什么规律?“杨辉三角”为什么会有这些规律呢?二项式系数表(杨辉三角)错误!未找到引用源。
展开式的二项式系数,当错误!未找到引用源。
依次取错误!未找到引用源。
…时,二项式系数表,表中每行两端都是错误!未找到引用源。
,除错误!未找到引用源。
以外的每一个数都等于它肩上两个数的和●活动二函数观点认知二项式系数设函数()r n Crf=的函数图象,观察f=,这个函数的定义域是怎样的?试以n=6为例作出()r n Cr函数图像,你能说出它的哪些性质?错误!未找到引用源。
高二数学选修2-3教案(9)排列组合习题课
组合(四)一、知识运用〖1〗 100件产品中,有98件合格品,2件次品100件产品中任意抽出3件. (1)一共有多少种不同的抽法;(2)抽出的3件都不是次品的抽法有多少种?(3)抽出的3件中恰好有1件是次品的抽法有多少种? (4)抽出的3件中至少有1件是次品的取法有多少种?解:(1)3100161700C =;(2)398152096C =;(3)12298247539506C C =⨯=;(4)解法一:(直接法)12212982989506989604C C C C +=+=;解法二:(间接法)33100981617001520969604C C -=-=.〖2〗 从编号为1,2,3,…,10,11的共11个球中,取出5个球,使得这5个球的编号之和为奇数,则一共有多少种不同的取法?解:分为三类:1奇4偶有4516C C ; 3奇2偶有2536C C ; 5奇1偶有56C ,∴一共有4516C C +2536C C +23656=C .〖3〗 现有8名青年,其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任),现在要从中挑选5名青年承担一项任务,其 中3名从事英语翻译工作,2名从事德语翻译工作,则有多少种不同的选法?解:我们可以分为三类:①让两项工作都能担任的青年从事英语翻译工作,有2324C C ; ②让两项工作都能担任的青年从事德语翻译工作,有1334C C ; ③让两项工作都能担任的青年不从事任何工作,有2334C C , ∴一共有2324C C +1334C C +2334C C =42种方法.〖4〗 甲、乙、丙三人值周,从周一至周六,每人值两天,但甲不值周一,乙不值周六,问可以排出多少种不同的值周表 ?解法一:(排除法)422131424152426=+-C C C C C C .解法二:分为两类:一类为甲不值周一,也不值周六,有2324C C ; 另一类为甲不值周一,但值周六,有2414C C , ∴一共有2414C C +2324C C =42种方法.〖5〗 6本不同的书全部送给5人,每人至少1本,有多少种不同的送书方法? 解:第一步:从6本不同的书中任取2本“捆绑”在一起看成一个元素有26C 种方法; 第二步:将5个“不同元素(书)”分给5个人有55A 种方法.根据分步计数原理,一共有26C 55A =1800种方法〖6〗 某考生打算从7所重点大学中选3所填在第一档次的3个志愿栏内,其中A 校定为第一志愿;再从5所一般大学中选3所填在第二档次的三个志愿栏内,其中B 、C 两校必选,且B 在C 前问:此考生共有多少种不同的填表方法?AB解:先填第一档次的三个志愿栏:因A 校定为第一档次的第一志愿,故第一档次的二、三志愿有26A 种填法;再填第二档次的三个志愿栏:B 、C 两校有23C 种填法,剩余的一个志愿栏有13A 种填分步计数原理知,此考生不同的填表方法共有26A 23C 13270A =(种)〖7〗 如图是由12个小正方形组成的43⨯矩形网格,一质点沿网格线从点A 到点B 的不同路径之中,最短路径有 条解: 总揽全局:把质点沿网格线从点A 到点B 的最短路径分为七步,其中四步向右,三步向上,不同走法的区别在于哪三步向上,因此,本题的结论是:3537=C .〖8〗 圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多是多少?解:要使交点个数最多,则只需所有的交点都不重合内有交点,但如果两条弦相交,则交点就是以这两条弦的四个端点为顶点的四边形的对角线的交点,也就是说,弦在圆内的交点与以圆上四点为顶点的四边形是一一对应的因此只需求以圆上四点为顶点的四边形的个数,即412495C =个变式:本题构造了四边形以求得满足条件的交点,类似的,前面讲过一个问题: 以一个正方体的8个顶点连成的异面直线共有 对解:以一个正方体的顶点为顶点的四面体共有4812C -=58个,每个四面体的四条棱可以组成3对异面直线,因此以一个正方体的8个顶点连成的异面直线共有3×58=174对另解:()312244443210174C C C C ⎡⎤+-=⎣⎦对〖9〗 有10只不同的试验产品,其中有4只次品,6只正品,现每次取一只测试,直到4只次品全测出为止,求最后一只次品正好在第五次测试时被发现的不同情形有多少种?解:本题实质是,前五次测试中有1只正品4只次品,且第五次测试的是次品思路一:设想有五个位置,先从6只正品中任选1只,放在前四个位置的任一个上,有1164C C 种方法;再把4只次品在剩下的四个位置上任意排列,有44A 种排法同的情形共有114644576C C A =种思路二:设想有五个位置,先从4只次品中任选1只,放在第五个位置上,有14C 种方法;再从6只正品中任选1只,和剩下的3只次品一起在前四个位置上任意排列,有1464C A 种方法114464576C C A =种〖10〗 在一次象棋比赛中,进行单循环比赛2人,他们各赛了3场后,因故退出了比赛,这样,这次比赛共进行了83场,问:比赛开始时参赛者有多少人?解:需要考虑两种情况:第一种,因故退出比赛的两人之间没有进行比赛,则22683n C -+=,此方程无正整数解;第二种,因故退出比赛的两人之间进行了比赛,则226183n C -+-=,解得15n =,所以,比赛开始时参赛者有15人二、学力发展A1. 有两条平行直线a 和b ,在直线a 上取4个点,直线b 上取5个点,以这些点为顶点作三角形,这样的三角形共有( )A .70B .80C .82D .842. 12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案有 ( )种A .4441284C C C B .44412843C C C C .4431283C C A D .444128433C C C A3. 5本不同的书,全部分给4个学生,每个学生至少一本,不同分法的种数为 A .480 B .240 C .120 D .964. 已知甲、乙两组各有8人,现从每组抽取4人进行计算机知识竞赛,比赛成员的组成共有 种可能5. 在一次考试的选做题部分,要求在第1题的4个小题中选做3个小题,在第2题的3个小题中选做2个小题,第3题的2个小题中选做1个小题,有 种不同的选法6. 从1,3,5,7,9中任取3个数字,从2,4,6,8中任取2个数字,一共可以组成 个没有重复数字的五位数7. 正六边形的中心和顶点共7个点,以其中三个点为顶点的三角形共有 个8. 从5名男生和4名女生中选出4人去参加辩论比赛(1)如果4人中男生和女生各选2人,有 种选法; (2)如果男生中的甲与女生中的乙必须在内,有 种选法;(3)如果男生中的甲与女生中的乙至少要有1人在内,有 种选法; (4)如果4人中必须既有男生又有女生,有 种选法 9. 在200件产品中,有2件次品从中任取5件, (1)“其中恰有2件次品”的抽法有 种; (2)“其中恰有1件次品”的抽法有 种; (3)“其中没有次品”的抽法有 种; (4)“其中至少有1件次品”的抽法有 种 10. 某科技小组有6名同学,现从中选出3人去参观展览,至少有1名女生入选时的不同选法有16种,求该科技小组中女生的人数答案:1. A 2. A 3. B 4. ()2484900C = 5. 23134224C C C =6. 5325547200A C C =7. 37332C -=8.⑴225460C C = ⑵2721C = ⑶449791C C -= ⑷444945120C C C --=A9.⑴31981274196C = ⑵41982124234110C =⑶51982410141734C = ⑷55200198125508306C C -=10. 女生的人数是2 思路:分3n ≤和34n <≤两种情况讨论B1. 如图,小圆圈表示网络的结点,结点之间的连线表示它们通过的最大信息量,现从结点A 向结点B 以分开沿不同路线同时传递,则单位时间内传递的最大信息量为 ( )A .26B .24C .20D .192. 学校召开学生代表大会,高二年级的3个班共选6名代表,每班至少1名,代表的名额分配方案种数是 ( )A .64B .20C .18D .103. 3名医生和6名护士被分配到3所学校为学生体检,每所学校分配1名医生和2名护士,不同的分配方法共有( )A .90B .180C .270D .5404. 公共汽车上有4位乘客,汽车沿途停靠6个站,那么这4位乘客不同的下车方式共有 种;如果其中任何两人都不在同一站下车,那么这4位乘客不同的下车方式共有 种5. 4名男生和3名女生排成一行,按下列要求各有多少种排法:(1)男生必须排在一起 ; (2)女生互不相邻 ;(3)男女生相间 ; (4)女生按指定顺序排列 .6. 有排成一行的7个空位置,3位女生去坐,要求任何两个女生之间都要有空位,共有 种不同的坐法7. 赛艇运动员10人,3人会划右舷,2人会划左舷,其余5人两舷都能划,现要从中挑选6人上艇,平均分配在两舷上划桨,共有 种选法8. ,,,,A B C D E 5位同学进行网页设计比赛,决出了第1至第5名的名次A 、B 两位同学去询问名次,主考官对A 说:“很遗憾,你和B 都未拿到冠军”;对B 说:5位同学的名次排列共可能有 种不同的情况9. 学校餐厅供应客饭,每位学生可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种,现在餐厅准备了5种不同的荤菜,若要保证每位学生有200种以上的不同选择,则餐厅至少还需准备 种不同的素菜种10. 有10只不同的试验产品,其中有4只次品,6只正品,现每次取一只测试,直到测出1只次品为止,求第一只次品正好在第五次测试时被发现的不同情形有 _______种11. 圆周上有12个等分点,以其中3个点为顶点的直角三角形的个数为 个答案:1. D 2. D 3. D 4. 461296=, 4464360C A =5.⑴4444576A A = ⑵43451440A A = ⑶3434144A A = ⑷47840A =6. 3560A =7. 3332231333763553545675C C C C C C C C C +++=8. 333354A ⨯⨯= 9. 225m in 2007x C C x >⇒=10. 4416441440C C C = 11. 1161060C C =四、课堂小结 排列、组合问题解题方法比较灵活,问题思考的角度不同,就会得到不同的解法.若选择的切入角度得当,则问题求解简便,否则会变得复杂难解.教学中既要注意比较不同解法的优劣,更要注意提醒学生体会如何对一个问题进行认识思考,才能得到最优方法。
高中数学人教A版选修2-3教案-2.1 离散型随机变量及其分布列_教学设计_教案_1
教学准备
1. 教学目标
离散型随机变量的分布列
2. 教学重点/难点
离散型随机变量的分布列
3. 教学用具
4. 标签
教学过程
一、基本知识概要:
1. 随机变量:随机试验的结果可以用一个变量来表示,这样的变量的随机变量,记作;
说明:若是随机变量,,其中是常数,则也是随机变量。
2. 离散型随机变量:随机变量可能取的值,可以按一定顺序一一列出
连续型随机变量:随机变量可以取某一区间内的一切值。
说明:①分类依据:按离散取值还是连续取值。
②离散型随机变量的研究内容:随机变量取什么值、取这些值的多与少、所取值的平均值、稳定性等。
说明:放回抽样时,抽到的次品数为独立重复试验事件,即。
例2:一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以表示取出的三只球中的最小号码,写出随机变量的分布列。
剖析:因为在编号为1,2,3,4,5的球中,同时取3只,所以小号码可能是1或2或3,即可以取1,2,3。
三、课堂小结
1会根据实际问题用随机变量正确表示某些随机试验的结果与随机事件;2熟练应用分布列的两个基本性质;
3能熟练运用二项分布计算有关随机事件的概率。
四、作业布置:教材P193页闯关训练。
高中数学选修2-3教案
高中数学选修2-3教案在现代教育体系中,高中数学课程是培养学生逻辑思维和解决实际问题能力的重要环节。
其中,选修2-3作为高中数学的拓展模块,不仅涵盖了更多深入的数学知识,还注重培养学生的应用能力和创新思维。
本文旨在为教师们提供一个关于高中数学选修2-3的教案范本,以供参考和借鉴。
## 教学目标在设计教案之前,首先明确本节课的教学目标:1. 让学生掌握本节课程的核心概念和基本原理;2. 通过实例讲解,帮助学生理解抽象概念的具体应用;3. 引导学生发现问题、分析问题,并尝试解决问题;4. 培养学生的合作学习和沟通能力;5. 激发学生的探索兴趣,鼓励自主学习。
## 教学内容针对高中数学选修2-3的特点,选择适当的教学内容至关重要。
例如,本节课可以围绕“函数与导数”的主题展开,包括以下几个部分:- 函数的概念及其性质;- 导数的定义和计算方法;- 导数在研究函数变化趋势中的应用;- 实际问题中如何运用导数进行优化。
## 教学方法采用多样化的教学方法能够有效提升学生的学习效率和兴趣。
以下是一些建议:- **案例分析法**:引入实际生活中的例子,如物理学中的运动速度问题,经济学中的成本收益分析等,将抽象的数学概念具体化;- **小组讨论法**:让学生分组探讨问题,互相交流思路和方法,培养合作精神;- **启发式教学法**:通过提问引导学生思考,而不是直接给出答案,激发学生的好奇心和求知欲;- **实践操作法**:设置实验或实践活动,使学生通过动手操作加深对知识点的理解。
## 教学过程1. 导入新课:简要回顾上一节课的内容,提出本节课的学习目标和预期效果。
2. 讲解新知:系统阐述函数与导数的基本概念,强调其在实际问题中的应用。
3. 实例演示:结合具体的数学问题,展示如何运用导数解决实际问题,并引导学生发现其中的规律。
4. 学生练习:布置适量的练习题,让学生独立完成或小组合作,巩固所学知识。
5. 总结反馈:教师总结本节课的重点难点,对学生的练习给予及时的反馈和指导。
人教版数学高二A版选修2-3教案独立重复试验与二项分布
2.2.3独立重复试验与二项分布整体设计教材分析本节内容是新课标教材选修2—3第二章《随机变量及其分布》的第二节《二项分布及其应用》的第三小节.通过前面的学习,学生已经学习掌握了有关概率和统计的基础知识:古典概率、互斥事件概率、条件概率、相互独立事件概率的求法以及分布列的有关内容.独立重复试验是研究随机现象的重要途径之一,很多概率模型的建立都以独立重复试验为背景,二项分布就是来自于独立重复试验的一个概率模型.二项分布是继超几何分布后的又一应用广泛的概率模型,而超几何分布在产品数量n相当大时可以近似地看成二项分布.在自然现象和社会现象中,大量的随机变量都服从或近似地服从二项分布,实际应用广泛,理论上也非常重要.可以说本节内容是对前面所学知识的综合应用,是一种模型的构建,是从实际入手,通过抽象思维,建立数学模型,进而认知数学理论,应用于实际的过程.会对今后数学及相关学科的学习产生深远的影响.课时分配1课时教学目标知识与技能理解n次独立重复试验的模型及二项分布,能解答简单实际问题;能进行与n次独立重复试验的模型及二项分布有关的概率的计算.过程与方法通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念,使学生充分体会知识的发现过程,并渗透由特殊到一般,由具体到抽象的数学思想方法.情感、态度与价值观感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,养成实事求是的科学态度和锲而不舍的钻研精神.重点难点教学重点:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题.教学难点:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算.教学过程复习旧知互斥事件:不可能同时发生的两个事件.P(A+B)=P(A)+P(B).一般地,如果事件A1,A2,…,A n彼此互斥,那么P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n).相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件.相互独立事件同时发生的概率:P(AB)=P(A)P(B)一般地,如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率,等于每个事件发生的概率的积,P(A1A2…A n)=P(A1)P(A2)…P(A n).探究新知提出问题:分析下面的试验,它们有什么共同特点?(1)某人射击1次,击中目标的概率是0.8,他连续射击3次;(2)实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即先赢3局就胜出);(3)连续投掷一个骰子5次.活动结果:在同一条件下多次重复地做某个试验.(由学生归纳后给出定义)1.n次独立重复试验的定义:一般地,在相同条件下重复做的n次试验称为n次独立重复试验.在n次独立重复试验中,记A i(i=1,2,…,n)是“第i次试验的结果”.显然,P(A1A2…A n)=P(A1)P(A2)…P(A n)提出问题:在前面问题(1)基础上,求:①第一次命中,后面两次不中的概率;②恰有一次命中的概率;③恰有两次命中的概率.活动设计:由浅入深,增加梯度,旨在引导学生归纳独立重复试验的概率公式.活动结果:记事件“第i次击中目标”为A i(i=1,2,3),则A1、A2、A3相互独立,且P(A1)=P(A2)=P(A3)=0.8.①第一次命中,后面两次不中的事件即A1A2A3,∴P(A1A2A3)=P(A1)[1-P(A2)][1-P(A3)]=0.032.②三次射击恰有一次命中的事件即A1A2A3+A1A2A3+A1A2A3,∴三次射击恰有一次命中的事件的概率为P3(1)=3×0.8×0.2×0.2=0.096.③三次射击恰有两次命中的事件即A1A2A3+A1A2A3+A1A2A3,∴三次射击恰有两次命中的事件的概率为P3(2)=3×0.8×0.8×0.2=0.384.教师指出:由刚才的问题不难发现这样一个事实:P3(1)=3×0.8×0.2×0.2=C13×0.8×(1-0.8)2=0.096,P3(2)=3×0.8×0.8×0.2=C23×0.82×(1-0.8)=0.384,推广到一般形式:n次射击试验,命中k次的概率P n(k)=C k n0.8k(1-0.8)n-k.理解新知2.独立重复试验的概率公式:一般地,如果在1次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率P n(k)=C k n p k(1-p)n-k,它是二项式[(1-p)+p]n展开式的第k+1项.设计意图:理所当然引出二项分布概念.3.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数X是一个随机变量.如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是P(X=k)=C k n p k q n-k(k=0,1,2,…,n,q=1-p).由于C k n p k q n k恰好是二项展开式:(q+p)n=C0n p0q n+C1n p1q n1+…+C k n p k q n k+…+C n n p n q0中的第k+1项的值,所以称这样的随机变量X服从二项分布,记作X~B(n,p),其中p称为成功概率.运用新知例1实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率.(2)求按比赛规则甲获胜的概率.解:甲、乙两队实力相等,所以每局比赛甲获胜的概率为12,乙获胜的概率为12. (1)记事件A =“甲打完3局才能取胜”,记事件B =“甲打完4局才能取胜”,记事件C =“甲打完5局才能取胜”.①甲打完3局取胜,相当于进行3次独立重复试验,且每局比赛甲均取胜.∴甲打完3局取胜的概率为P(A)=C 33(12)3=18. ②甲打完4局才能取胜,相当于进行4次独立重复试验,且甲第4局比赛取胜,前3局为2胜1负.∴甲打完4局才能取胜的概率为P(B)=C 23×(12)2×12×12=316. ③甲打完5局才能取胜,相当于进行5次独立重复试验,且甲第5局比赛取胜,前4局恰好2胜2负.∴甲打完5局才能取胜的概率为P(C)=C 24×(12)2×(12)2×12=316. (2)记事件D =“按比赛规则甲获胜”,则D =A +B +C ,又因为事件A 、B 、C 彼此互斥,故P(D)=P(A +B +C)=P(A)+P(B)+P(C)=18+316+316=12. 答:按比赛规则甲获胜的概率为12. 例2重复抛掷一枚骰子5次得到点数为6的次数记为ξ,求P(ξ>3).解:依题意,随机变量ξ~B(5,16). ∴P(ξ=4)=C 45(16)4·56=257 776,P(ξ=5)=C 55(16)5=17 776. ∴P(ξ>3)=P(ξ=4)+P(ξ=5)=133 888. 【变练演编】甲乙两选手比赛,假设每局比赛甲胜的概率为0.6,乙胜的概率为0.4,那么采取三局两胜制还是五局三胜制对甲更有利?你对局制长短的设置有何认识?设计意图:此题设计新颖,贴近生活,贴近高考,一下子把学生带到了全新的知识场景中,强大的诱惑力促使每个学生积极思考.此题是开放性试题,不是直接要你求什么、证什么,培养学生的发散性思维和创造性思维.解:三局两胜制中,甲获胜分三种情形:甲连胜两局;甲前两局中胜一局,第三局胜. 故P(甲获胜)=0.62+C 12×0.62×0.4=0.648. 五局三胜制中,甲获胜分三种情形:甲连胜三局;甲前三局中胜两局,第四局胜;甲前四局中胜两局,第五局胜.故P(甲获胜)=0.63+C 23×0.63×0.4+C 24×0.63×0.42≈0.683. 可以看出五局三胜制对甲有利,并由此可以猜测比赛的总局数越多甲获胜的概率越大.因此,为使比赛公平,比赛的局数不能太少.变式:如果要求在这两种赛制比赛中必须打完全部比赛,结论会有变化吗?解:设甲获胜的局数为随机变量X ,在三局两胜制中,X ~B(3,0.6),因此甲获胜的概率为P(X≥2)=P(X =2)+P(X =3)=C 23×0.62×0.4+0.63=0.648. 在五局三胜制中,X ~B(5,0.6),因此甲获胜的概率为P(X≥3)=P(X =3)+P(X =4)+P(X =5)=C 35×0.63×0.42+C 45×0.64×0.4+0.65≈0.683. 【达标检测】1.每次试验的成功率为p(0<p<1),重复进行10次试验,其中前7次都未成功,后3次都成功的概率为( )A .C 310p 3(1-p)7B .C 310p 3(1-p)3C .p 3(1-p)7D .p 7(1-p)32.10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有一人中奖的概率为( )A .C 310×0.72×0.3B .C 13×0.72×0.3 C.310 D.3A 27·A 13A 310答案:1.C 2.B课堂小结1.独立重复试验要从三方面考虑.第一:每次试验是在相同条件下进行.第二:各次试验中的事件是相互独立的.第三,每次试验都只有两种结果,即事件要么发生,要么不发生.2.如果1次试验中某事件发生的概率是p ,那么n 次独立重复试验中这个事件恰好发生k 次的概率为P n (k)=C k n p k (1-p)n -k .对于此式可以这么理解:由于1次试验中事件A 要么发生,要么不发生,所以在n 次独立重复试验中A 恰好发生k 次,则在另外的n -k 次中A 没有发生,即A 发生,由P(A)=p ,P(A )=1-p ,所以上面的公式恰为[(1-p)+p]n 展开式中的第k +1项,可见排列组合、二项式定理及概率间存在着密切的联系.补充练习【基础练习】1.将一枚硬币连续抛掷5次,则正面向上的次数X 的分布为( )A .X ~B(5,0.5)B .X ~B(0.5,5)C .X ~B(2,0.5)D .X ~B(5,1)2.随机变量X ~B(3,0.6),则P(X =1)等于( )A .0.192B .0.288C .0.648D .0.2543.某人考试,共有5题,解对4题为及格,若他解一道题的正确率为0.6,则他及格的概率为( )A.81125B.81625C.1 0533 125D.243625答案:1.A 2.B 3.C【拓展练习】有一批食品出厂前要进行五项指标检验,如果有两项指标不合格,则这批食品不能出厂.已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2.(1)求这批产品不能出厂的概率(保留三位有效数字);(2)求直至五项指标全部检验完毕,才能确定该批食品是否出厂的概率(保留三位有效数字).解:(1)这批食品不能出厂的概率是:P=1-0.85-C15×0.84×0.2≈0.263.(2)五项指标全部检验完毕,这批食品可以出厂的概率是:P1=C14×0.2×0.83×0.8,五项指标全部检验完毕,这批食品不能出厂的概率是:P2=C14×0.2×0.83×0.2,由互斥事件只能有一个发生的概率加法可知,五项指标全部检验完毕,才能确定这批产品是否出厂的概率是:P=P1+P2=C14×0.2×0.83=0.409 6≈0.410.设计说明在整个教学过程中,主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线,思维为主攻”的“四为主”原则.教师不是抛售现成的结论,而是充分利用学生的思维,展示“发现”的过程,突出“师生互动”的教学,这种设计充分体现了教师的主导作用.学生在一系列的思考、探究中逐步完成了本节的学习任务,充分实现了学生的主体性地位,在整个教学过程中,始终着眼于培养学生的思维能力,这种设计符合现代教学观和学习观的精神,体现了素质教育的要求.备课资料备选例题:1.某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的使用寿命有关,该型号的灯泡的使用寿命为1年以上的概率为p1,使用寿命为2年以上的概率为p2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(Ⅰ)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(Ⅱ)在第二次灯泡更换工作中,对其中某一盏灯来说,求该盏灯需要更换灯泡的概率;(Ⅲ)当p1=0.8,p2=0.3时,求在第二次灯泡更换工作中,至少需要更换4只灯泡的概率(结果保留两位有效数字).分析:对于(Ⅰ),不需要换灯泡,则说明这5只灯泡的使用寿命都在1年以上,每只发生的概率均为p1;更换2只灯泡,则说明这5只灯泡中有且仅有2只灯泡的使用寿命均不超过1年,其发生的概率均为(1-p1),但是哪两只不确定;而对于(Ⅱ),一是这盏灯是确定的;二是这盏灯有两种可能,一种是第一、二次均更换;另一种是第一次未换,但第二次需要更换;对于(Ⅲ),包括换4只和换5只两种情况.解:(Ⅰ)在第一次更换灯泡工作中,不需要换灯泡的概率为p51;需要更换2只灯泡的概率为C25p31(1-p1)2;(Ⅱ)对该盏灯来说,在第一、二次都更换了灯泡的概率为(1-p1)2;在第一次未更换灯泡,而在第二次需要更换灯泡的概率为p1(1-p2),故所求的概率为p=(1-p1)2+p1(1-p2);(Ⅲ)在第二次灯泡更换工作中,至少换4只灯泡包括换4只和换5只两种情况,换5只的概率为p5(其中p为(Ⅱ)中所求,下同),换4只的概率为C15p4(1-p),故至少换4只灯泡的概率为p3=p5+C15p4(1-p).又当p1=0.8,p2=0.3时,p=0.22+0.8×0.7=0.6,∴p3=0.65+5×0.64×0.4=0.34.即满2年至少需要换4只灯泡的概率为0.34.点评:分情况进行讨论,一定要注意不重不漏地全部考虑到.2.某单位6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立).(Ⅰ)求至少3人同时上网的概率;(Ⅱ)至少几人同时上网的概率小于0.3?解:(Ⅰ)方法1:利用分类讨论的思想解决.将“至少3人同时上网的概率”转化为“恰有3人同时上网,恰有4人同时上网,恰有5人同时上网,恰有6人同时上网”四种情形,即C 36(0.5)6+C 46(0.5)6+C 56(0.5)6+C 66(0.5)6=2132. 方法2:利用正难则反的思想解决.将“至少3人同时上网的概率”转化为“1减去至多2人同时上网的概率”,即1-C 06(0.5)6-C 16(0.5)6-C 26(0.5)6=1-1132=2132. (Ⅱ)至少4人同时上网的概率为C 46(0.5)6+C 56(0.5)6+C 66(0.5)6=1132>0.3, 至少5人同时上网的概率为(C 56+C 66)(0.5)6=764<0.3,因此,至少5人同时上网的概率小于0.3.(设计者:王宏东 李王梅)。
人教课标版高中数学选修2-3《事件的独立性》教案-新版
第二章随机变量及其分布2.2 二项分布及其应用2.2.1 事件的独立性一、教学目标1、核心素养通过上一节课条件概率和本节课事件的相互独立性的学习,使学生会处理较为复杂的概率计算,同时也培养了学生分类讨论的思想.从而提高了学生的运算能力和数学建模能力;2、学习目标(1)理解事件独立性的概念;(2)理解互斥事件、对立事件和相互独立事件的区别;(3)会利用相互独立事件概率的乘法公式解决相应的问题;3、学习重点理解事件A与B独立的概念,并能运用相互独立事件的概率乘法公式解决实际问题;4、学习难点运用相互独立事件的概率乘法公式解决实际问题二、教学设计(一)课前设计1、预习任务任务1阅读教材,思考:(1)互斥事件、相互独立事件和对立事件的区别?(2)如何用条件概率证明两个事件相互独立?任务2熟记相互独立事件的乘法公式,并会利用公式解决预习自测的题目;2、预习自测1.设A与B是相互独立事件,则下列命题中正确的命题是()A.A与B是对立事件B.A与B是互斥事件C.A与B不相互独立D.A与B是相互独立事件答案 D2.一个口袋中有黑球和白球各5个,从中连摸两次球,每次摸一个且每次摸出后不放回,用A表示第一次摸得白球,B 表示第二次摸得白球,则A 与B 是( )A 、互斥事件B 、不相互独立事件C 、对立事件D 、相互独立事件 答案 B3.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是( )A.0.12B.0.88C.0.28D.0.42答案:D4.一学生通过英语听力测试的概率是21,他连续测试两次,那么其中恰好一次通过的概率是( ) A.41 B.31 C.21 D.43 答案:C(二)课堂设计1、知识回顾(1)互斥事件和相互独立事件的概念;(2)互斥事件与相互独立事件的区别;(3)古典概型的概率公式;(4)条件概率的概念及其性质、计算公式;(5)本节课所学习的事件独立性的概念?相互独立事件概率计算公式?2、问题探究问题探究一 活动一:三张奖券中只有一张能中奖,现分别由三名同学有放回地抽取,事件A 为“第一名同学没有抽到中奖奖券”,事件B 为“最后一名同学抽到中奖奖券”.事件A 的发生会影响事件B 发生的概率吗?解析:显然无放回时,A 的发生影响着B ,即是条件概率.而当有放回地抽取奖券时,最后一名同学也是从原来的三张奖券中任抽一张,因此第一名同学抽的结果对最后一名同学的抽奖结果没有影响,即事件A 的发生不会影响事件B 发生的概率.于是P (B |A )=P (B ),代入条件概率公式得P (AB )=P (B |A )P (A )=P (A )P (B )活动二:甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?事件A :从甲坛子里摸出1个球,得到白球;事件B :从乙坛子里摸出1个球,得到白球 问题:事件A 、B 是否互斥?(不互斥)可以同时发生吗?(可以)问题:事件A (或B )是否发生对事件B (或A )发生的概率有无影响?(无影响) “从这两个坛子里分别摸出1个球,它们都是白球”是一个事件,它的发生,就是事件A ,B 同时发生,记作A B ⋅.(简称积事件)从甲坛子里摸出1个球,有5种等可能的结果;从乙坛子里摸出1个球,有4种等可能的结果于是从这两个坛子里分别摸出1个球,共有54⨯种等可能的结果同时摸出白球的结果有32⨯种所以从这两个坛子里分别摸出1个球,它们都是白球的概率323()5410P A B ⨯⋅==⨯. 另一方面,从甲坛子里摸出1个球,得到白球的概率3()5P A =,从乙坛子里摸出1个球,得到白球的概率2()4P B =.显然()()()P A B P A P B ⋅=⋅. 这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积一般地,如果事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅. 相互独立事件的定义:设A,B 为两个事件,如果 P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立(mutually independent ).事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立相互独立事件同时发生的概率:()()()P A B P A P B ⋅=⋅问题探究二、互斥事件、对立事件、相互独立事件的区别 1.定义:设A ,B 为两个事件,如果()=()()P AB P A P B ⋅,那么称事件A 与事件B 相互独立.2.如果A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也都相互独立.3.如果A 与B 相互独立,那么()=()P B A P B ,()=()P A B P A .4.互斥事件是不可能同时发生的两个事件,而相互独立事件是指一个事件是否发生对另一个事件发生的概率没有影响,二者不能混淆.对于事件A、B,在一次试验中,A、B如果不能同时发生,那么称A、B互斥.一次试验中,如果A、B两个事件互斥且A、B中必然有一个发生,那么称A、B对立,显然A+B为一个必然事件.A、B互斥则不能同时发生,但可能同时不发生.如掷一枚骰子,“点数为1”为事件A,“点数为2”为事件B,则A、B可能都不发生.两事件相互独立是指一个事件的发生与否对另一事件发生的概率没有影响.A、B互斥,则0)(=ABP;A、B对立,则1)()(=+BPAP.A、B相互独立,则)()()(BPAPABP⋅=,可见这是不相同的概率.问题探究三、利用相互独立事件乘法公式能解决哪些实际问题?例1.一个口袋内装有2个白球和2个黑球.求(1)先摸出一个白球不放回,再摸出一个白球的概率是多少?(2)先摸出一个白球后放回,再摸出一个白球的概率是多少?【知识点:相互独立事件乘法公式、条件概率】详解:(1)先摸出一白球不放回这件事对再摸出一个白球的概率产生了影响,再摸时只有一个白球,两个黑球,则概率为13;(2)先摸出一白球后放回这件事对再摸出一个白球的概率没有影响,还是从两个白球两个黑球中摸,则概率为1 2例2.天气预报中,在元旦假期甲地的降雨概率是0.2,乙地的降雨概率是0.3.假定在这段时间内两地是否降雨相互之间没有影响,计算在这段时间内:(1)甲乙两地都降雨的概率;(2)甲乙两地都不降雨的概率;(3)甲乙两地至少一个地方的概率;【知识点:相互独立事件乘法公式;数学思想:正难则反思想】详解:“甲地降雨”为时间A,“乙地降雨”为事件B.(1)“甲乙两地都不下雨”表示时间A,B同时发生,且甲乙两地是否降雨相互之间没有影响,即事件A与事件B相互独立.所以()()()=0.20.3=0.06p AB P A P B=⨯(2)“甲乙两地都不降雨”即事件A与B同时发生.利用独立事件的性质2可知,事件A与B 相互独立.所以()()()10.210.30.56p AB P A p B==-⨯-=()()(3)“至少一个地方降雨”用字母表示应为()()()()()()()()()()0.20.70.80.30.20.30.44p AB AB AB p AB p AB p AB p A p B p A p B p A p B ++=++=++=⨯+⨯+⨯=例3:俗话说“三个臭皮匠,顶上一个诸葛亮”,从数学角度解释这句话的含义【知识点:相互独立事件乘法公式;数学思想:正难则反思想】分析:三个臭皮匠不妨命名为A,B,C .假设三人解决某一问题的概率为0.5,且相互独立.诸葛亮解决该问题的概率为0.8.那么这三个臭皮匠至少有一人解决问题的概率为:1()10.50.50.50.8750.8p ABC -=-⨯⨯=>从数学角度解释名言,更能引起同学们的兴趣.激发他们上课的热情和积极性.例4:某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是0.05,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码;(3)至少有一次抽到某一指定号码;【知识点:相互独立事件乘法公式;数学思想:正难则反思想】详解:设“第一次抽奖抽到某一指定号码”为事件A ,“第二次抽奖抽到某一指定号码”为事件B ,“两次抽奖都抽到某一指定号码”为事件AB .(1)由于两次抽奖结果互不影响,因此事件A 与B 相互独立.于是由独立性可得,两次抽奖抽到某一指定号码的概率为P (AB )=P (A )P (B )=0.05×0.05=0.0025.(2)“两次抽奖恰有一次抽到某一指定号码”可以用(A )()B AB 表示.由于事件B A B A 与互斥,根据概率的加法公式和相互独立事件的定义可得,所求事件的概率为095.005.0)05.01()05.01(05.0)()()()()()(=⨯-+-⨯=+=+B P A P B P A P B A P B A P (3)“两次抽奖至少有一次抽到某一指定号码”可以用()()()AB AB AB 表示.由于事件B A B A AB ,,两两互斥,根据概率的加法公式和相互独立事件的定义可得,所求事件的概率为0975.0095.00025.0)()()(=+=++B A P B A P AB P例5.已知某种高炮在它控制的区域内击中敌机的概率为0.2.(1)假定有5门这种高炮控制某个区域,求敌机进入这个区域后未被击中的概率;(2)要使敌机一旦进入这个区域后有0.9以上的概率被击中,需至少布置几门高炮?【知识点:相互独立事件乘法公式;数学思想:正难则反思想】分析:因为敌机被击中的就是至少有1门高炮击中敌机,故敌机被击中的概率即为至少有1门高炮击中敌机的概率解:(1)设敌机被第k 门高炮击中的事件为K A (k =1,2,3,4,5),那么5门高炮都未击中敌机的事件为12345A A A A A ⋅⋅⋅⋅.∵事件1A ,2A ,3A ,4A ,5A 相互独立,∴敌机未被击中的概率为5512345123454()=()()()()()(10.2)5P A A A A A P A P A P A P A P A ⎛⎫⋅⋅⋅⋅⋅⋅⋅⋅=-= ⎪⎝⎭∴敌机未被击中的概率为5)54(. (2)至少需要布置n 门高炮才能有0.9以上的概率被击中,仿(1)可得: 敌机被击中的概率为415n⎛⎫- ⎪⎝⎭∴令41()0.95n -≥,∴41()510n ≤ 两边取常用对数,得110.313lg 2n ≥≈- ∵+∈N n ,∴11n = ∴至少需要布置11门高炮才能有0.9以上的概率击中敌机点拨:上面例题的解法,都是解应用题的逆向思考方法采用这种方法在解决带有词语“至多”、“至少”的问题时的运用,常常能使问题的解答变得简便;3、课堂总结结合第一小节的知识梳理【知识梳理】【重点难点突破】(1)条件概率的计算方法有两种:①利用定义计算,先分别计算概率)(AB P 和)(A P ,然后代入公式)()()(A P AB P A B P =. ②利用缩小样本空间计算(局限在古典概型内),即将原来的样本空间Ω缩小为已知的事件A ,原来的事件B 缩小为AB ,利用古典概型计算概率:)()()(A n AB n A B P =. (2)判定相互独立事件的方法①由定义,若)()()(B P A P AB P ⋅=,则B A 、独立.②有些事件不必通过概率的计算就能判定其独立性,如有放回的两次抽奖,由事件本身的性质就能直接判定出是否相互影响,从而得出它们是否相互独立.4、随堂检测1.在一段时间内,甲去某地的概率是14,乙去此地的概率是15,假定两人的行动相互之间没有影响,那么在这段时间内至少有1人去此地的概率是( )()A 320 ()B 15 ()C 25 ()D 920【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 C2.从甲口袋内摸出1个白球的概率是13,从乙口袋内摸出1个白球的概率是12,从两个口袋内各摸出1个球,那么56等于( ) ()A 2个球都是白球的概率 ()B 2个球都不是白球的概率()C2个球不都是白球的概率()D2个球中恰好有1个是白球的概率【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 C3.电灯泡使用时间在1000小时以上概率为0.2,则3个灯泡在使用1000小时后坏了1个的概率是()()A0.128 ()B0.096 ()C0.104 ()D0.384【知识点:相互独立事件乘法公式;】答案 B4.某道路的A、B、C三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这条路上行驶时,三处都不停车的概率是()()A35192()B25192()C35576()D65192【知识点:相互独立事件乘法公式;】答案 A5.(1)将一个硬币连掷5次,5次都出现正面的概率是;(2)甲、乙两个气象台同时作天气预报,如果它们预报准确的概率分别是0.8与0.7,那么在一次预报中两个气象台都预报准确的概率是.【知识点:相互独立事件乘法公式;】答案(1) 132(2) 0.56(三)课后作业★基础型自主突破1.一个口袋中有黑球和白球各5个,从中连摸两次球,每次摸一个且每次摸出后不放回,用A 表示第一次摸得白球,B表示第二次摸得白球,则A与B是()A、互斥事件B、不相互独立事件C、对立事件D、相互独立事件【知识点:相互独立事件、互斥事件】答案 B2.10件产品中有4件是次品,从10件产品中任取2件,恰好2件是正品或2件是次品的概率是()A、225B、215C、13D、715【知识点:相互独立事件乘法公式;数学思想:分类谈论思想】答案 D3.加工某零件需要经过两道工序,第一道工序的废品率是0.01,第二道工序的废品率为0.02,设这两道工序是否出废品是彼此无关的,那么产品的合格率为()A、0.9702B、0.9700C、0.9998D、0.9996【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 A4.种植某种树苗,成活率为0.9,若种植这种树苗5棵,则恰好成活4棵的概率是()A、0.33B、0.66C、0.5D、0.45【知识点:相互独立事件乘法公式】答案 B5.一射手对同一目标独立地射击四次,已知至少命中一次的概率为8081,则此射手每次击中的概率是()A、13B、23C、14D、25【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 C6.甲、乙两篮球运动员在罚球线投球的命中率分别是0.7和0.6,每人投球3次,则两人都投进2球的概率是_________.【知识点:相互独立事件乘法公式】答案0.19★★能力型师生共研7.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是()A.p1p2B.p1(1-p2)+p2(1-p1)C.1-p1p2D.1-(1-p1)(1-p2)【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】答案 B8.(浙江)甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是( )(A ) 0.216 (B )0.36 (C )0.432 (D )0.648【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 D9.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为41,由甲、乙、丙三人独立解答此题只有一人解出的概率为______. 【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】答案 2411 10.某学生参加一次选拔考试,有5道题,每题10分.已知他解题的正确率为53,若40分为最低分数线,则该生被选中的概率是________.【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】答案 31251053 11.甲、乙、丙三人射击命中目标的概率分别为0.5,0.25,0.125,现三人同时射击一目标,则目标被命中的概率为________.【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 6443 ★★★探究型 多维突破12.荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一个荷叶),而且顺时针方向跳的概率是逆时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 荷叶上,则跳三次之后停在A 荷叶上的概率是( )A.13 B.29 C.49 D.827答案 A【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】13.在一个选拔项目中,每个选手都需要进行四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为5 6、45、34、13,且各轮问题能否正确回答互不影响.(1)求该选手进入第三轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率;(3)该选手在考核过程中回答过的问题的个数记为X,求随机变量X的分布列.【知识点:相互独立事件乘法公式;数学思想:正难则反思想,分类讨论思想】答案:设事件A i(i=1,2,3,4)表示“该选手能正确回答第i轮问题”,由已知P(A1)=56,P(A2)=45,P(A3)=34,P(A4)=13,(1)设事件B表示“该选手进入第三轮才被淘汰”,则P(B)=P(A1A2A3)=P(A1)P(A2)P(A3)=56×45×(1-34)=16.(2)设事件C表示“该选手至多进入第三轮考核”,则P(C)=P(A1+A1A2+A1A2A3)=P(A1)+P(A1A2)+P(A1A2A3)=16+56×15+56×45×(1-34)=12.(3)X的可能取值为1,2,3,4.P(X=1)=P(A1)=1 6,P(X=2)=P(A1A2)=56×(1-45)=16,P(X=3)=P(A1A2A3)=56×45×(1-34)=16,P(X=4)=P(A1A2A3)=56×45×34=12,所以,X的分布列为自助餐1.已知事件A 、B 发生的概率都大于零,则( )A .如果A 、B 是互斥事件,那么A 与B 也是互斥事件B .如果A 、B 不是相互独立事件,那么它们一定是互斥事件C .如果A 、B 是相互独立事件,那么它们一定不是互斥事件D .如果A +B 是必然事件,那么它们一定是对立事件【知识点:相互独立事件、互斥事件】答案 C2.两个事件对立是这两个事件互斥的( )A .充分但不是必要条件B .必要但不是充分条件C .充分必要条件D .既不充分又不必要条件【知识点:互斥事件、对立事件】答案 B3.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击一个目标,则它们都中靶的概率是( )A.35B.34C.1225D.1425【知识点:相互独立事件乘法公式】答案 D4.今有光盘驱动器50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为( )A .35035C CB .350352515C C C C ++ C .3503451C C -D .3501452524515C C C C C + 【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 D5.甲、乙、丙3人投篮,投进的概率分别是13,25,12.现3人各投篮1次,则3人都没有投进的概率为( )A.115B.215C.15D.110【知识点:相互独立事件乘法公式】答案 C6.甲盒中有200个螺杆,其中有160个A 型的,乙盒中有240个上螺母,其中有180个A 型的,现从甲、乙两盒中各任取一个,则能配成A 型的螺栓概率为( )A .201 B.1615 C .53 D .2019 【知识点:相互独立事件乘法公式】答案 C7.到成都旅游的外地游客中,若甲、乙、丙三人选择去武侯祠游览的概率均为35,且他们的选择互不影响,则这三人中至多有两人选择去武侯祠游览的概率为( )A.36125B.44125C.54125D.98125【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案 D8.位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位移动的方向为向上或向右,并且向上和向右移动的概率都为21,质点P 移动5次后位于(2,3)的概率是( ) A.5)21( B.525)21(C C.325)21(C D.53525)21(C C【知识点:相互独立事件乘法公式;数学思想:分类讨论思想】答案 B9.某市派出甲、乙两支球队参加全省足球冠军赛甲乙两队夺取冠军的概率分别是4173和 .则该市足球队夺得全省冠军的概率是_________.【知识点:互斥事件加法公式】答案 2819 10.一个家庭中有两个小孩,求:(1)两个小孩中有一个是女孩的概率;(2)两个都是女孩的概率; (3)已知其中一个是女孩,另一个也是女孩的概率.【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案:设“家庭中有一个是女孩”为事件A ,“另一个也是女孩”为事件B ,则“两个都是女孩”为事件AB ,家庭中有两个小孩的情况有:男、男;男、女;女、男;女、女;共4种情况,因此n (Ù)=4;其中有一个是女孩的情况有3种,因此n (A )=3;其中两个都是女孩的情况有1种,因此n (AB )=1.(1)由P (A )=n (A )n (Ù)=34,可得两个小孩中有一个是女孩的概率为34.(2)由P (AB )=n (AB )n (Ù)=14,可得两个都是女孩的概率为14.(3)由条件概率公式,可得P (B |A )=P (AB )P (A )=1434=13或P (B |A )=n (AB )n (A )=13.因此,在已知其中一个是女孩,另一个也是女孩的概率为13.11.某零件从毛坯到成品,一共要经过六道自动加工工序,如果各道工序出次品的概率分别为0.01、0.02、0.03、0.03、0.05、0.05,那么这种零件的次品率是多少?【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案:设“第i 道工序出次品”为事件A i ,i =1,2,3,4,5,6,它们相互独立,但不互斥,所以出现次品的概率为P (A 1+A 2+A 3+A 4+A 5+A 6)=1-P (A -1·A -2·A -3·A -4·A -5·A -6)=1-(1-0.01)·(1-0.02)·(1-0.03)2·(1-0.05)2=0.176 1.12.甲、乙2个人独立地破译一个密码,他们能译出密码的概率分别为13和14,求:(1)2个人都译出密码的概率;(2)2个人都译不出密码的概率;(3)恰有1个人译出密码的概率;(4)至多1个人译出密码的概率;(5)至少1个人译出密码的概率.【知识点:相互独立事件乘法公式;数学思想:正难则反思想】答案: 记“甲独立地译出密码”为事件A ,“乙独立地译出密码”为事件B ,A ,B 为相互独立事件,且P (A )=13,P (B )=14.(1)“2 个人都译出密码”的概率为:P (A ·B )=P (A )×P (B )=13×14=112.(2)“2个人都译不出密码”的概率为:P (A ·B )=P (A )×P (B )=[1-P (A )]×[1-P (B )]=(1-13)(1-14)=12. (3)“恰有1个人译出密码”可以分为两类:甲译出乙未译出以及甲未译出乙译出,且两个事件为互斥事件,所以恰有1个人译出密码的概率为:P (A ·B +A ·B )=P (A ·B )+P (A ·B )=P (A )P (B )+P (A )P (B )=13(1-14)+(1-13)×14=512.(4)“至多1个人译出密码”的对立事件为“有2个人译出密码”,所以至多1个人译出密码的概率为:1-P (AB )=1-P (A )P (B )=1-13×14=1112.(5)“至少1个人译出密码”的对立事件为“2个都未译出密码”,所以至少有1个人译出密码的概率为:1-P (A ·B )=1-P (A )P (B )=1-23×34=12.。
最新人教版高中数学选修2-3《正态分布》示范教案
最新人教版高中数学选修2-3《正态分布》示范教案2.4 正态分布整体设计:正态分布是高中数学新增内容之一,也是统计学中的重要内容。
它是学生进一步应用正态分布解决实际问题的理论依据,同时也是许多分布的近似描述。
因此,正态分布在理论研究中占有很重要的地位。
教材分析:本章节的课时分配为1课时,教学目标包括掌握正态分布在实际生活中的意义和作用,加深对正态密度函数和正态曲线的理解,以及归纳正态曲线的性质。
教学方法主要是通过观察并探究规律,提高分析问题和解决问题的能力,同时培养数形结合、函数与方程等数学思想方法。
情感、态度与价值观方面,通过教学中的探究过程,使学生体验发现的快乐,培养学生的进取意识和科学精神。
重点难点:教学重点为正态曲线的性质和标准正态曲线N(0,1);教学难点为通过正态分布的图形特征,归纳正态曲线的性质。
教学过程:复旧知:回顾曲边梯形的面积S=∫bf(x)dx的意义,以及频率分布直方图和频率分布折线图的作法和意义。
这一部分的设计意图是通过学过的知识来探究新问题,驱动学生思维的自觉性和主动性,让学生亲身感受知识的发生过程,既反映了数学的发展规律,又符合学生的思维特征和认知规律。
探究新知:教师提出问题:同学们知道高尔顿板试验吗?通过小球落入各个小槽中的频率分布情况来认识正态分布。
活动设计包括教师板书课题和学生阅读课本中关于高尔顿板的内容。
接着,教师提出问题:(1)运用多媒体画出频率分布直方图。
(2)当n由1,000增至2,000时,观察频率分布直方图的变化。
(3)请问当样本容量n无限增大时,频率分布直方图变化的情况如何?(频率分布就会无限接近一条光滑曲线——总体密度曲线)。
(4)样本容量越大,总体估计就越精确。
改写后的文章:2.4 正态分布整体设计:正态分布是高中数学新增内容之一,也是统计学中的重要内容。
它是学生进一步应用正态分布解决实际问题的理论依据,同时也是许多分布的近似描述。
因此,正态分布在理论研究中占有很重要的地位。
人教课标版高中数学选修2-3《正态分布》教学设计
2.4 正态分布一、教学目标1.核心素养:学习正态分布的过程中,更进一步的体会数形结合思想的作用.培养了学生们直观想象和数学建模的能力.2.学习目标(1)通过道尔顿板重复实验,画出正态分布密度曲线.(2)随机变量取值的概率与面积的关系.(3)3σ原则的探索3.学习重点正态分布曲线的定义及其曲线特点,利用标准正态分布表求得标准正态总体在某一区间内取值的概率.4.学习难点正态分布的概念及其实际应用.二、教学设计(一)课前设计1.预习任务任务1阅读教材P70-P75,思考:正态分布密度曲线的概念?正态分布的概念?任务2思考正态分布密度曲线与x轴之间的面积为多少?2.预习自测1.若随机变量满足正态分布N(μ,σ2),则关于正态曲线性质的叙述正确的是() A.σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”B.σ越大,曲线越“瘦高”,σ越小,曲线越“矮胖”C.σ的大小,和曲线的“瘦高”、“矮胖”没有关系D.曲线的“瘦高”、“矮胖”受到μ的影响答案 A2.已知随机变量ξ服从正态分布N(4,σ2),则P(ξ>4)=()A.15 B.14 C.13 D.12答案 D解析由正态分布图像可知,μ=4是该图像的对称轴,∴P(ξ<4)=P(ξ>4)=1 2.3.设随机变量ξ服从正态分布N(0,1),若P(ξ>1)=p,则P(-1<ξ<0)=()A.12+p B.12-p C.1-2p D.1-p答案 B解析P(-1<ξ<0)=12P(-1<ξ<1)=12[1-2P(ξ>1)]=12-P(ξ>1)=12-p.(二)课堂设计1.知识回顾(1)几何分布.(2)频率分布直方图、折线图.2.问题探究问题探究一重复操作高尔顿板实验,探索正态分布密度曲线●活动一通过道尔顿板重复实验,并画出小球在球槽内的分布曲线.问题探究二随机变量取值的概率与面积的关系.★▲●活动一探讨随机变量取值与面积的关系如果随机变量ξ服从正态分布N(μ,σ2),那么对于任意实数a、b(a<b),当随机变量ξ在区间(a,b]上取值时,其取值的概率与正态曲线与直线x=a,x=b以及x轴所围成的图形的面积相等.如图(1)中的阴影部分的面积就是随机变量ξ在区间(a,b]上取值的概率.一般地,当随机变量在区间(-∞,a )上取值时,其取值的概率是正态曲线在x =a 左侧以及x 轴围成图形的面积,如图(2).随机变量在(a ,+∞)上取值的概率是正态曲线在x =a 右侧以及x 轴围成图形的面积,如图(3).根据以上概率与面积的关系,在有关概率的计算中,可借助与面积的关系进行求解. ●活动二 在实际例子中的应用例题1 若随机变量X ~N (μ,σ2),则P (X ≤μ)=________. 【知识点:正态分布;数学思想:数形结合】详解: 若X ~N (μ,σ2),则其密度曲线关于X =μ对称,则P (X ≤μ)=12. 点拨:随机变量取值的概率与面积的关系 问题探究三 3σ原则★▲ ●活动一 3σ原则含义的理解由于正态变量在(-∞,+∞)内取值的概率是1,由上所述,容易推出,它在区间(μ-2σ,μ+2σ)之外取值的概率是4.56%,在区间(μ-3σ,μ+3σ)之外取值的概率是0.26%.于是,正态变量的取值几乎都在距x =μ三倍标准差之内,这就是正态分布的3σ原则. ●活动二 3σ原则的实际应用设X ~N (1,32),试求(1)P (-2<X ≤4);(2)P (4<X ≤7). 【知识点:正态分布的3σ原则;数学思想:数形结合】 详解:因为X ~N (1,32),所以μ=1,σ=3. (1)P (-2<X ≤4)=P (1-3<X ≤1+3)=P (μ-σ<X ≤μ+σ)=0.682 6.(2)因为P (4<X ≤7)=12[P (-5<X ≤7)-P (-2<X ≤4)]=12[P (1-6<X ≤1+6)-P (1-3<X ≤1+3)] =12[P (μ-2σ<X ≤μ+2σ)-P (μ-σ<X ≤μ+σ)]=12(0.954 4-0.682 6)=0.135 9. 点拨:正态分布的3σ原则的反复使用. 3.课堂总结【知识梳理】(1)正态分布与正态曲线:如果随机变量ξ的概率密度为:.(σμ,,R x ∈为常数,且0 σ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.(2)正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E . (3)标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=- x ex x πϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ϕϕξ-=≤ .(4)正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ.(5)“3σ”原则. 【重难点突破】(1)正态分布求概率有时候转化为标准正态分布来解决. (2)用“3σ”原则解题时,有时需要数形结合来解决. 4.随堂检测1.正态总体N (0,49),数值落在(-∞,-2)∪(2,+∞)的概率为( ) A .0.46 B .0.997 4 C .0.03 D .0.002 6 【知识点:正态分布;数学思想:数形结合】 答案 D解:P (-2<ξ≤2)=P (0-3×23<ξ≤0+3×23)=P (μ-3σ<ξ≤μ+3σ)=0.997 4, ∴数值落在(-∞,2)∪(2,+∞)的概率为1-0.997 4=0.002 6.2.若随机变量η服从标准正态分布N (0,1),则η在区间(-3,3]上取值的概率等于( ) A .0.682 6 B .0.954 4 C .0.997 4 D .0.317 4 【知识点:正态分布;数学思想:数形结合】答案 C解:μ=0,σ=1,∴(-3,3]内概率就是(μ-3σ,μ+3σ)内的概率0.997 4.4.若随机变量ξ~N(2,100),若ξ落在区间(-∞,k)和(k,+∞)内的概率是相等的,则k 等于()A.2 B.10 C. 2 D.可以是任意实数【知识点:正态分布;数学思想:数形结合】答案 A5.已知正态分布落在区间(0.2,+∞)上的概率为0.5,那么相应的正态曲线f(x)在x=________时,达到最高点.【知识点:正态分布;数学思想:数形结合】答案0.2解:由于正态曲线关于直线x=μ对称和其落在区间(0.2,+∞)上的概率为0.5,得μ=0.2.6.已知X~N(2.5,0.12),求X落在区间(2.4,2.6]中的概率.【知识点:正态分布;数学思想:数形结合】解:∵X~N(2.5,0.12),∴μ=2.5,σ=0.1.∴X落在区间(2.4,2.6]中的概率为P(2.5-0.1<X≤2.5+0.1)=0.682 6.(三)课后作业基础型自主突破1.ξ的概率密度函数f(x)=12πe-x-122,下列错误的是()A.P(ξ<1)=P(ξ>1) B.P(-1≤ξ≤1)=P(-1<ξ<1) C.f(x)的渐近线是x=0 D.η=ξ-1~N(0,1)答案 C2.正态曲线φμ,σ(x)=12πσe-x-μ22σ2,x∈R,其中μ<0的图像是()【知识点:正态分布;数学思想:数形结合】答案 A解析因为μ<0,所以对称轴x=μ位于y轴左侧.3.下列说法不正确的是()A.若X~N(0,9),则其正态曲线的对称轴为y轴B.正态分布N(μ,σ2)的图像位于x轴上方C.所有的随机现象都服从或近似服从正态分布D.函数f(x)=12πe-x22(x∈R)的图像是一条两头低、中间高、关于y轴对称的曲线答案 C解析并不是所有的随机现象都服从或近似服从正态分布,还有些其他分布.4.如下图是正态分布N1(μ,σ21),N2(μ,σ22),N3(μ,σ23)相应的曲线,则有()A.σ1>σ2>σ3B.σ3>σ2>σ1 C.σ1>σ3>σ2D.σ2>σ1>σ3【知识点:正态分布;数学思想:数形结合】答案 A解析σ反映了随机变量取值的离散程度,σ越小,波动越小,取值越集中,图像越“瘦高”.5.正态曲线关于y轴对称,当且仅当它所对应的正态总体的均值为()A.1 B.-1 C.0 D.与标准差有关6.设随机变量ξ~N (2,4),则D (12ξ)的值等于( )A .1B .2 C.12 D .4 【知识点:正态分布】 答案 A解析 ∵ξ~N (2,4),∴D (ξ)=4. ∴D (12ξ)=14D (ξ)=14×4=1. 能力型 师生共研7.在正态分布总体服从N (μ,σ2)中,其参数μ,σ分别是这个总体的( ) A .方差与标准差 B .期望与方差 C .平均数与标准差 D .标准差与期望 答案 C解析 由正态分布概念可知C 正确.8.若随机变量ξ的密度函数为f (x )=12πe -x 22,ξ在(-2,-1)和(1,2)内取值的概率分别为P 1,P 2,则P 1,P 2的关系为( )A .P 1>P 2B .P 1<P 2C .P 1=P 2D .不确定 【知识点:正态分布;数学思想:数形结合】 答案 C解析 由题意知,μ=0,σ=1,所以曲线关于x =0对称,根据正态曲线的对称性,可知P 1=P 2.9.设随机变量ξ~N (μ,σ2),且P (ξ≤C )=P (ξ>C )=P ,则P 的值为( ) A .0 B .1 C.12 D .不确定与σ无关 答案 C解析 ∵P (ξ≤C )=P (ξ>C )=P ,∴C =μ,且P =12.10.已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=( ) A .0.477 B .0.628 C .0.954 D .0.977解析 因为随机变量ξ服从正态分布N (0,σ2),所以正态曲线关于直线x =0对称,又P (ξ>2)=0.023,所以P (ξ<-2)=0.023,所以P (-2≤ξ≤2)=1-P (ξ>2)-P (ξ<-2)=1-2×0.023=0.954,故选C. 探究型 多维突破13.随机变量X ~N (μ,σ2),则Y =aX +b 服从( ) A .N (aμ,σ2) B .N (0,1) C .N (μa ,σ2a ) D .N (aμ+b ,a 2σ2) 【知识点:正态分布】 答案 D14.某中学共有210名学生,从中取60名学生成绩如下:成绩 1 2 3 4 5 6 7 8 9 10 人数615211233【知识点:正态分布】解析 因为x =160(4×6+5×15+6×21+7×12+8×3+9×3)=6,s 2=160[6×(4-6)2+15×(5-6)2+21×(6-6)2+12×(7-6)2+3×(8-6)2+3×(9-6)2]=1.5, 以x =6,s ≈1.22作为总体预计平均成绩和标准差的估计值,即μ=6,σ=1.22, 则总体服从正态分布N (6,1.222),所以,正态分布的概率密度函数式:μμ,σ(x )=11.222πe -x -622×1.222 .自助餐1.若ξ~N (1,14),η=6ξ,则E (η)等于( )A .1 B.32 C .6 D .36 答案 C解析 ∵ξ~N (1,14),∴E (ξ)=1,∴E (η)=6E (ξ)=6.2.已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ≤0)=( ) A .0.16 B .0.32 C .0.68 D .0.84【知识点:正态分布;数学思想:数形结合】答案 A解析利用正态分布图像的对称性,P(ξ≤0)=1-P(ξ≤4)=1-0.84=0.16.3.已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.682 6,则P(X>4)=() A.0.158 8 B.0.158 7 C.0.158 6 D.0.158 5【知识点:正态分布;数学思想:数形结合】答案 B解析由正态密度函数的对称性知P(X>4)=1-P2≤X≤42=1-0.682 62=0.158 7,故选B.4.若随机变量ξ~N(0,1),则P(|ξ|>3)等于()A.0.997 4 B.0.498 7 C.0.974 4 D.0.002 6【知识点:正态分布;数学思想:数形结合】答案 D5.已知ξ~N(0,62),且P(-2≤ξ≤0)=0.4,则P(ξ>2)等于()A.0.1 B.0.2 C.0.6 D.0.8【知识点:正态分布;数学思想:数形结合】答案 A6.已知一次考试共有60名同学参加,考生的成绩X~N(110,52),据此估计,大约应有57人的分数在下列哪个区间内?()A.(90,110] B.(95,125] C.(100,120] D.(105,115]【知识点:正态分布;数学思想:数形结合】答案 C解析由于X~N(110,52),所以μ=110,σ=5,因此考试成绩在区间(105,115],(100,120],(95,125]上的概率分别应是0.682 6,0.954 4,0.997 4,由于一共有60人参加考试,∴成绩位于上述三个区间的人数分别是:60×0.682 6=41人,60×0.954 4=57人,60×0.997 4=60人.7.设离散型随机变量ξ~N(0,1),则P(ξ≤0)=________;P(-2<ξ<2)=________.【知识点:正态分布;数学思想:数形结合】答案12,0.954 4解析因为标准正态曲线的对称轴为x=0,所以P(ξ≤0)=P(ξ>0)=12.而P(-2<ξ<2)=P(-2σ<ξ<2σ)=0.954 4.8.某种零件的尺寸X(cm)服从正态分布N(3,1),则不属于区间(1,5)这个尺寸范围的零件约占总数的________.【知识点:正态分布;数学思想:数形结合】答案 4.56%解析属于区间(μ-2σ,μ+2σ)即区间(1,5)的取值概率约为95.44%,故不属于区间(1,5)这个尺寸范围的零件数约占总数的1-95.44%=4.56%.9.在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为________.【知识点:正态分布;数学思想:数形结合】答案0.810.设随机变量ξ~N(3,4),若P(ξ>c+2)=P(ξ<c-2),求c的值.【知识点:正态分布;数学思想:数形结合】解析由ξ~N(3,4)可知,密度函数关于直线x=3对称(如下图所示),又P(ξ>c+2)=P(ξ<c-2),故有3-(c-2)=(c+2)-3,∴c=3.11.若在一次数学考试中,某班学生的分数为X,且X~N(110,202),满分为150分,这个班的学生共有54人,求这个班在这次数学考试中及格(不小于90分)的人数和130分以上(不包括130分)的人数.【知识点:正态分布;数学思想:数形结合】解析∵X~N(110,202),∴μ=110,σ=20.∴P(110-20<X≤110+20)=0.682 6.∴X>130的概率为12×(1-0.682 6)=0.158 7.∴X≥90的概率为0.682 6+0.158 7=0.841 3. ∴及格的人数为54×0.841 3≈45(人),130分以上的人数为54×0.158 7≈9(人).12.设随机变量X服从正态分布X~N(8,1),求P(5<X≤6).【知识点:正态分布;数学思想:数形结合】解析由已知得μ=8,σ=1,∵P(6<X≤10)=0.954 4,P(5<X≤11)=0.997 4,∴P(5<X≤6)+P(10<X≤11)=0.997 4-0.954 4=0.043.如图,由正态曲线分布的对称性,得P(5<X≤6)=P(10<X≤11)=0.0432=0.021 5.11/ 11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)发现新知
分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有 种不同的方法,在第2类方案中有 种不同的方法. 那么完成这件事共有
种不同的方法.
(3)知识应用
例1.在填写高考志愿表时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,具体情况如下:
3综合应用
例3.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书.
①从书架上任取1本书,有多少种不同的取法?
②从书架的第1、2、3层各取1本书,有多少种不同的取法?
③从书架上任取两本不同学科的书,有多少种不同的取法?
【分析】
①要完成的事是“取一本书”,由于不论取书架的哪一层的书都可以完成了这件事,因此是分类问题,应用分类计数原理.
高二数学选修2-3教案
第课时 总第教案
课型:新授课主备人:审核人:
1.1分类加法计数原理和分步乘法计数原理
一、教学目标:
①理解分类加法计数原理与分步乘法计数原理;
②会利用两个原理分析和解决一些简单的应用问题
二、教学重难点:
重点:分类计数原理(加法原理)与分步计数原理(乘法原理)
难点: 分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解
分析:选出一组参赛代表,可以分两个步骤.第l步选男生.第2步选女生.
解:第1步,从30名男生中选出1人,有30种不同选择;
第2步,从24名女生中选出1人,有24种不同选择.
根据分步乘法计数原理,共有
30×24 =720
种不同的选法.
探究:如果完成一件事需要三个步骤,做第1步有 种不同的方法,做第2步有 种不同的方法,做第3步有 种不同的方法,那么完成这件事共有多少种不同的方法?
2分步乘法计数原理
(1)提出问题
问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以 , ,…, , ,…的方式给教室里的座位编号,总共能编出多少个不同的号码?
用列举法可以列出所有可能的号码:
我们还可以这样来思考:由于前6个英文字母中的任意一个都能与9个数字中的任何一个组成一个号码,而且它们各不相同,因此共有6×9 = 54个不同的号码.
探究:你能说说这个问题的特征吗?
(2)发现新知
分步乘法计数原理完成一件事有两类不同方案,在第1类方案中有 种不同的方法,在第2类方案中有 种不同的方法.那么完成这件事共有
种不同的方法.
(3)知识应用
例2.设某班有男生30名,女生24名.现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?
三、教学方法
讲授法
四、教学过程
一、新课讲授
引入课题
先看下面的问题:
①从我们班上推选出两名同学担任班长,有多少种不同的选法?
②把我们的同学排成一排,共有多少种不同的排法?
要解决这些问题,就要运用有关排列、组合知识. 排列组合是一种重要的数学计数方法.总的来说,就是研究按某一规则做某事时,一共有多少种不同的做法.
A大学B大学
生物学数学
化学会计学
医学信息技术学
物理学法学
工程学
如果这名同学只能选一个专业,那么他共有多少种选择呢?
分析:由于这名同学在A , B两所大学中只能选择一所,而且只能选择一个专业,又由于两所大学没有共同的强项专业,因此符合分类加法计数原理的条件.解:这名同学可以选择A , B两所大学中的一所.在A大学中有5种专业选择方法,在B大学中有4种专业选择方法.又由于没有一个强项专业是两所大学共有的,因此根据分类加法计数原理,这名同学可能的专业选择共有
②要完成的事是“从书架的第1、2、3层中各取一本书”,由于取一层中的一本书都只完成了这件事的一部分,只有第1、2、3层都取后,才能完成这件事,因此是分步问题,应用分步计数原理.
③要完成的事是“取2本不同学科的书”,先要考虑的是取哪两个学科的书,如取计算机和文艺书各1本,再要考虑取1本计算机书或取1本文艺书都只完成了这
如果完成一件事情需要 个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢?
一般归纳:
完成一件事情,需要分成n个步骤,做第1步有 种不同的方法,做第2步有 种不同的方法……做第n步有 种不同的方法.那么完成这件事共有
种不同的方法.
理解分步乘法计数原理:
分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.
5+4=9(种).
变式:若还有C大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?
探究:如果完成一件事有三类不同方案,在第1类方案中有 种不同的方法,在第2类方案中有 种不同的方法,在第3类方案中有 种不同的方法,那么完成这件事共有多少种不同的方法?
如果完成一件事情有 类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢?
3.理解分类加法计数原理与分步乘法计数原理异同点
①相同点:都是完成一件பைடு நூலகம்的不同方法种数的问题
②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.
在运用排列、组合方法时,经常要用到分类加法计数原理与分步乘法计数原理. 这节课,我们从具体例子出发来学习这两个原理.
1 分类加法计数原理
(1)提出问题
问题1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?
问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?
一般归纳:
完成一件事情,有n类办法,在第1类办法中有 种不同的方法,在第2类办法中有 种不同的方法……在第n类办法中有 种不同的方法.那么完成这件事共有
种不同的方法.
理解分类加法计数原理:
分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.