二氧化碳超临界流体萃取概述

合集下载

co2超临界

co2超临界

co2超临界一、什么是CO2超临界?CO2超临界是指将二氧化碳(CO2)加压至超过其临界点(7.38 MPa,31.1℃)的状态下,使其达到液态和气态之间的状态。

在这种状态下,二氧化碳具有类似于液体的密度和类似于气体的运动性质。

二、CO2超临界在哪些领域应用广泛?1. 超临界流体萃取技术超临界流体萃取技术是指利用CO2超临界作为萃取剂,将目标物质从原料中分离出来。

此技术适用于药物、食品、香料等领域。

2. 超临界干燥技术超临界干燥技术是指利用CO2超临界作为干燥介质,将湿润的物体快速干燥。

此技术适用于纺织品、药品等领域。

3. 超临界反应技术超临界反应技术是指利用CO2超临界作为反应介质,在高压高温条件下进行化学反应。

此技术适用于合成新材料、新药等领域。

三、CO2超临界的优点有哪些?1. 环保CO2超临界是一种环保的工艺,因为CO2是一种天然存在于大气中的物质,不会对环境造成污染。

2. 安全CO2超临界的操作压力较高,但由于其不易燃、不易爆、无毒等性质,使得其操作相对安全。

3. 高效CO2超临界能够快速地将目标物质从原料中分离出来,并且可以循环利用,提高了工艺效率和经济效益。

四、CO2超临界存在哪些挑战?1. 能耗较高由于CO2超临界需要加压才能达到超临界状态,因此需要消耗大量的能量。

2. 设备成本高由于CO2超临界需要使用高压容器等特殊设备,因此设备成本较高。

3. 工艺参数难以控制由于CO2超临界状态下液相和气相之间的交替变化比较复杂,因此工艺参数难以控制,对操作人员要求较高。

五、未来发展趋势如何?未来发展趋势主要包括以下几个方面:1. 节能降耗未来的CO2超临界技术将会更加注重节能降耗,通过改进工艺流程、优化设备结构等方式来实现。

2. 提高工艺控制精度未来的CO2超临界技术将会更加注重工艺控制精度,通过引入先进的自动化控制系统等方式来实现。

3. 拓展应用领域未来的CO2超临界技术将会拓展应用领域,例如在环保、新能源等领域中发挥更大的作用。

二氧化碳超临界流体萃取技术

二氧化碳超临界流体萃取技术

二氧化碳超临界流体萃取技术1. 什么是二氧化碳超临界流体萃取?想象一下,你在厨房里做一道美味的菜,食材新鲜,调料得当,但有一样东西让你的味道更上一层楼,那就是萃取!二氧化碳超临界流体萃取技术,就是一个在化学和食品领域里发挥魔力的“厨艺秘诀”。

好吧,简单来说,它就是利用超临界状态的二氧化碳来提取植物中的精华,比如油、香味或者其他活性成分。

它听起来复杂,但实际上,它就像是在做一道高级的浓汤,把好东西从食材中提取出来。

1.1 超临界流体是什么?超临界流体,这个名字听上去就像科幻电影里的怪物,但其实它是个很乖的家伙。

我们知道,液体和气体有各自的特点,但当物质在高温和高压的环境下,它们就会变得很奇妙,成为“超临界流体”。

在这个状态下,二氧化碳既可以像气体一样流动,又可以像液体一样溶解东西,简直是“水火不容”的完美结合。

就像在派对上,气氛一高涨,大家都融入了一起,开心得不得了。

1.2 为什么选择二氧化碳?有人可能会问,为什么要用二氧化碳呢?其实,二氧化碳是个环保小天使,它的来源广泛,成本也相对低。

而且,提取出来的成分没有残留,有些就像小孩子的作业,干干净净,放心使用。

再说,它提取的产品往往质量更高,口感更好,香味更浓,谁不喜欢呢?2. 二氧化碳超临界流体萃取的过程接下来,咱们聊聊这个神奇的过程。

首先,我们得准备好要萃取的材料,像是香草、咖啡豆或者草药,这些都是“主角”。

然后,把这些材料放进一个密闭的容器里,就像给他们一个舒适的小窝。

接着,我们就开始给这个小窝加压、加热,让二氧化碳变成超临界状态。

这个过程就像是在给材料做个“深层按摩”,把他们里面的精华一股脑地释放出来。

2.1 这个过程的好处说到好处,那可真是不胜枚举。

首先,这个方法非常高效,能够在短时间内提取出大量的成分,节省了时间和成本。

其次,超临界流体的低毒性,让这个萃取过程更安全,更健康。

谁都不想吃到有害物质吧?而且,由于它不使用溶剂,所以最终的产品味道更加纯正,简直就是“无污染”的代名词。

第3章超临界流体萃取

第3章超临界流体萃取

(c) 吸附法 T1=T2,P1=P2 1.萃取釜,2.吸附剂, 3.解析釜 4.高压泵
吸附剂
3.恒温恒压工艺(吸附剂法)
恒温恒压萃取工艺,即萃取和分离在同样的温度和压力下进行。该工艺分离萃取取物需要持殊的吸附剂(如离于交换树脂、活性炭等)进行吸脱,一般用于去除有害物质,如从茶叶中脱除咖啡因。有时也称吸附剂法。 该工艺CO2流体始终处于恒定的超临界状态,十分节能。但若采用较贵的吸附剂,则要在生产中增加吸附剂再生系统。
3.制取啤酒花浸膏 从啤酒花中提取浸是膏国际上超临界CO2萃取技术应用最成功的项目。啤酒花是啤酒配制工业中重要的原料之一,其主要成份是含萍草图类的酸和含蛇麻酮类的 -酸,使啤酒拥有特殊口感的苦味。 -酸和 -酸在常温下极不稳定,易受光、热、氧和细菌的作用而变质失效,一般的酒花成品(散花和颗粒酒花)常温下贮存一年即失去其使用价值。
Density changeable
三相点
临界点
超临界流体
表3-1 流体的一些物理性质比较
流体
密度(kg/m3)
粘度(Pa·s)
扩散系数(m2/s)
气体
1.0
10-6~10-5
10-5
超临界流体
7.0×102
10-5
10-7
液体
1.0×103
10-4
10-9
“超临界状态是一种亚稳态”
1.超临界流体的主要特征:
超临界流体技术是近代分离科学中出现的高新技术。 超临界流体( supercritical fluid, SCF) : 在临界点以上物质处于既非液体又非气体的超临界状态。
P/Pa
T/℃
Solid
Gas
Liquid
Supercritical fluid

二氧化碳超临界流体萃取技术简介

二氧化碳超临界流体萃取技术简介
一般用量:1%~5%(质量)
常见临界流体萃取辅助剂
被萃取物 咖啡因 单甘酯 亚麻酸
青霉素G钾盐 乙醇 豆油
菜子油 棕榈油 EPA ,DHA
超临界流体
CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2
辅助剂 水
丙酮 正己烷
水 氯化锂 己烷,乙醇
丙烷 乙醇 尿素
超临界流体旳选择性
超临界流体萃取技术
(Supercritical Fluid Extraction,SFE)
物质有三种状态: 气态、液态、固态 流体状态
物质旳第四态:超临界状态
临界温度:每种物质都有一种特定 温度,在这个温度以上,不论怎样 增大压强,虽然密度与液态接近, 气态物质也不会液化。这个温度称 为物质旳临界温度。
④ 化合物旳相对分子量越高,越难萃取。
分子量在200~400范围内旳组分轻易萃 取,有些低相对分子质量、易挥发成份甚 至能够直接用二氧化碳液体提取;高分子 量物质(如树胶、蜡等)则极难萃取。
超临界CO2是非极性溶剂,在许 多方面类似于己烷,对非极性旳脂 溶性成份有很好旳溶解能力,对有 一定极性旳物质(如黄酮、生物碱 等)旳溶解性就较差。其对成份旳 溶解能力差别很大,主要与成份旳 极性有关,其次与沸点、分子量也 有关。
3 扩散系数比气体小,但比液体高一到 两个数量级,具有很强旳渗透能力
4 SCF旳介电常数,极化率和分子行为 都与气液两相都有明显差别
总之,超临界流体不但具有液体 旳溶解能力,也具有气体旳扩散和 传质能力
超临界流体萃取
(Supercritical Fluid Extraction,SFE)
超临界流体萃取是利用超临 界流体作萃取剂,从液体或固体 中萃取出某些成份并进行分离旳 技术。

超临界二氧化碳萃取

超临界二氧化碳萃取

超临界二氧化碳萃取简介超临界二氧化碳(Supercritical Carbon Dioxide, SC-CO2)萃取是一种以超临界二氧化碳作为溶剂进行的萃取过程。

它利用高压和高温将二氧化碳转化为超临界状态,达到具备液体和气体特性的状态。

超临界二氧化碳具有很高的溶解力和较低的粘度,因此在萃取过程中可以有效地溶解和提取目标物质。

超临界二氧化碳萃取被广泛应用于食品、药品、化妆品等领域,具有高效、环保、无残留等优势。

超临界二氧化碳特性超临界二氧化碳是指二氧化碳在超临界条件下(温度和压力高于其临界点)所处的状态。

在超临界状态下,二氧化碳既具备了液体的高溶解度,又具备了气体的低粘度。

这使得超临界二氧化碳成为一种理想的溶剂,可用于萃取、分离和精炼各种物质。

具体来说,超临界二氧化碳具有以下特性:1.高溶解力:超临界二氧化碳可以溶解多种物质,包括脂类、色素、挥发性有机物等。

由于其溶解力随压力和温度的变化而改变,因此可以通过调控压力和温度来实现有针对性的溶解和提取。

2.可控性:超临界二氧化碳的溶解力可以通过调节压力和温度来控制。

这使得超临界二氧化碳的溶解过程可以精确地控制溶剂的浓度和性质,实现对目标物质的选择性溶解和提取。

3.快速传递速度:由于超临界二氧化碳的低粘度,它能够快速渗透和传递到被提取物质的内部,从而加快了提取过程的速度。

4.安全环保:超临界二氧化碳是一种绿色溶剂,其在超临界条件下不会产生有毒物质,对环境没有污染。

同时,超临界二氧化碳是可再生的,可以循环利用,减少了对资源的消耗。

超临界二氧化碳萃取过程超临界二氧化碳萃取的过程可以分为以下几个步骤:1.设备准备:首先需要准备超临界二氧化碳的萃取设备,该设备通常由高压容器、泵和加热系统组成。

确保设备的密封性和安全性。

2.材料准备:将待提取物质准备好,并根据需要进行预处理,如研磨、过滤、干燥等。

3.加料和加热:将待提取物质放入萃取设备中,并根据需要加入辅助剂。

随后,通过加热系统升温,使二氧化碳逐渐达到超临界状态。

CO2超临界萃取技术简介(程克文)

CO2超临界萃取技术简介(程克文)

超临界CO2萃取压力与温度的关系图
二氧化碳超临界萃取装置
超临界CO2萃取的特点 决定了其应用范围十分广 阔。 在医药工业中,可用 于中草药有效成份的提取, 热敏性生物制品药物的精 制,及脂质类混合物的分 离; 在食品工业中,啤酒 花的提取,色素的提取等; 在香料工业中,天然 及合成香料的精制;化学 工业中混合物的分离等。
3.夹带剂 在超临界状态下,CO2具有选择性溶解。SFE-CO2对低 分子、低极性、亲脂性、低沸点的成分如挥发油、烃、酯、 内酯、醚,环氧化合物等表现出优异的溶解性,像天然植 物与果实的香气成分。对具有极性集团(-OH,-COOH等)的 化合物,极性集团愈多,就愈难萃取,故多元醇,多元酸 及多羟基的芳香物质均难溶于超临界二氧化碳。 对于分子量高的化合物,分子量越高,越难萃取,分 子量超过500的高分子化合物也几乎不溶。 而对于分子量较大和极性集团较多的中草药的有效成 分的萃取,就需向有效成分和超临界二氧化碳组成的二元 体系中加入第三组分,来改变原来有效成分的溶解度,在 超临界液体萃取的研究中,通常将具有改变溶质溶解度的 第三组分称为夹带剂。一般地说,具有很好溶解性能的溶 剂,也往往是很好的夹带剂,如甲醇、乙醇、丙酮、乙酸 乙酯。
有机溶剂萃取精酚
CO2回收基本流程图
应用茶多酚的产品
6.CO2萃取剂优点
用超临界萃取方法提取天然产物时,一般用CO2作萃取剂。 a)临界温度和临界压力低(Tc=31.1℃,Pc=7.38MPa),操作 条件温和,对有效成分的破坏少,因此特别适合于处理高 沸点热敏性物质,如香精、香料、油脂、维生素等; b)CO2可看作是与水相似的无毒、廉价的有机溶剂; c)CO2在使用过程中稳定、无毒、不燃烧、安全、不污染环境, 且可避免产品的氧化; d)CO2的萃取物中不含硝酸盐和有害的重金量,并且无有害溶 剂的残留; e)在超临界CO2萃取时,被萃取的物质通过降低压力,或升 超临界流体萃取机高温度即可析出,不必经过反复萃取操 作,所以超临界CO2萃取流程简单。 因此超临界CO2萃取特别适合于对生物、食品、化妆品 和药物等的提取和纯化。

超临界流体萃取

超临界流体萃取
超临界流体萃取的设备主要包括以下几部分
压缩机:用于将二氧化碳等 气体压缩成超临界流体
萃取器:用于将超临界流体 与基质接触,溶解并携带目 标物质
分离器:用于将超临界流体 和目标物质分离
浓缩器:用于进一步分离和 浓缩目标物质
Part 3
技术特点
技术特点
超临界流体萃取技术具有以下特点 高效性:超临界流体具有高扩散系数和溶解能力,可以快速渗透到基质中,萃取效率 高 环保性:超临界流体萃取技术使用二氧化碳等环保型溶剂,不使用有机溶剂,减少了 对环境的污染 广泛适用性:超临界流体萃取技术可以用于分离多种物质,包括脂溶性和水溶性物质
20XX
超临界流体萃取
演讲者:xxx
-
超临界流体萃取
1
超临界流 体萃取 2
3
超临界流体萃取(Supercritical Fluid Extraction, SFE)是一种先进的分离技术,它利用超临界流体的特 殊性质来进行萃取和分离
超临界流体是一种处于临界点以上的流体,具有高密 度和低粘度,同时兼具液相和气相的特性
流程和设备
超临界流体萃取的流 程包括以下几个步骤
流程和设备
萃取:将超临界 流体与待分离的 基质接触,溶解 并携带目标物质
压缩:将二氧化碳 (CO2)等超临界流体 压缩到临界点以上,
形成超临界流体
浓缩:将目标物 质进一步分离和
浓缩
分离:通过调节 压力和温度,将 超临界流体和目
标物质分离
流程和设备
超临界流体萃取技术广泛应用于化工、食品、医药等 领域
Part 1
工作原理
工作原理
1ห้องสมุดไป่ตู้
超临界流体萃取的工作原 理是利用超临界流体的特 殊溶解性能,将目标物质

超临界CO2流体萃取技术

超临界CO2流体萃取技术

选择萃取溶剂为二氧化碳是因为其无毒、无害、无残留、安全性好;工艺 流程简单, 操作方便, 提取时间快、生产周期短; 用人少,节约劳动力;较低 的温度下萃取, 防止热敏性物质的氧化分解。 工艺过程 超临界流体萃取过程基本上由萃取阶段和分离阶段所组成,按所采用的方 法不同,有变压萃取分离(等温法)、变温萃取分离(等压法)和吸附萃取分离 (吸附法)3种基本流程。超临界CO2 萃取的工艺流程是将被萃取物粉碎后放入 萃取釜中密封,设定好萃取釜的温度和压力。CO2低温冷却成液态后经高压泵 增压进入萃取器,与其中的原料接触、传质,节流膨胀后进入分离器里。这时 由于溶质在CO2 中的溶解度降低而从CO2中凝聚析出, 汇集在分离器底部,溶 剂CO2则从分离器顶端引出, 循环使用。装置设计要遵循安全、可靠、可连续 运转、宽适应、广用途的指导思想,为了适应不同制品萃取过程的需要,装置 的操作参数须设计得高些, 且调节范围也须宽些, 即有较大的操作弹性。
中草药、调味品:随着我国经济的不断发展, 人们开始对中草药进行深入的 研究。姚伟席, 刘志明分别从银杏叶中萃取了黄酮化合物。从药用植物红花 中提取红花苷及红花醌甙; 从甘草中提取甘草甙; 从长春花中提取长春花碱 和长春新碱; 生物碱的超临界流体萃取; 花卉:超临界流体萃取技术在花卉方面应用也比较多, 除了非常成熟的啤酒 花超临界流体萃取技术外还有很多。超临界流体萃取百合中秋水仙碱, 萃取 溶剂为CO2;提携剂; 乙醇; 萃取温度: 40℃; 萃取压力: 18MPa; 萃取时间: 2h; 萃取过程中须加入氨水进行碱化而使秋水仙碱游离出来, 这样利于萃取。 此外在花卉方面采用超临界流体萃取技术还有关于桂花、茉莉花、金银花、 柚子花挥发成分、桂花净油化学成分、鸡蛋花、水雪莲花等超临界CO2萃取技 术的研究。

超临界CO2萃取技术

超临界CO2萃取技术

超临界CO2 萃取技术与其他技术联用
大蒜可行滞气、暖脾胃、消症积、解毒杀虫的作用,近 代研究表明大蒜亦有抗菌消炎、降血脂、抑制血小板聚集、 减少冠状动脉粥样硬化、抗癌防癌等作用
临床所用大蒜注射液的生产工艺中集成了超临界CO2 萃取、分子蒸馏和膜分离技术。采用超临界CO 2 萃取大 蒜有效成分,用分子蒸馏进行分离纯化, 用膜分离过滤除菌。 该工艺简单,有效成分不被破坏, 生产的大蒜注射液各项指 标符合药典注射剂项下的各项规定。充分显示了高新提取 分离技术工艺集成应用于中药开发的优势。
局限性
涉及高压系统, 大规模使用时其工 艺过程和技术的要 求高,设备费用也 大
超临界CO2萃取技术の应用
目前,国内外采用CO2超临界萃取技术 可利用的资源有:紫杉、黄芪、人参叶、 大麻、香獐、青蒿草、银杏叶、川贝草、 桉叶、玫瑰花、樟树叶、茉莉花、花椒、 八角、桂花、生姜、大蒜、辣椒、桔柚皮、 啤酒花、芒草、香茅草、鼠尾草、迷迭香、 丁子香、豆蔻、沙棘、麦、玉米、米糠、 鱼、烟草、茶叶、煤、废油等。
3.萃取温度低, CO2的临界温度为31.265℃ ,临界压力为 7.18MPa, 可以有效地防止热敏性成分的氧化和逸散,完整保留生物 活性,而且能把高沸点,低挥发渡、易热解的物质在其沸点温度以下 萃取出来。
4. 临界CO2 流体常态下是气体, 无毒, 与萃取成分分离后, 完全没 有溶剂的残留, 有效地避免了传统提取条件下溶剂毒性的残留。同时 也防止了提取过程对人体的毒害和对环境的污染, 100%的纯天然。
超临界CO2 萃取技术与其他技术联用
青蒿素是我国唯一得到国际承认的抗疟新药。青蒿 素结构中有一过氧基团, 传统的溶剂提取法由于经过长 时间的提取和浓缩, 易使青蒿素破坏损失, 且要浓缩大 量的有机溶剂,易燃易爆, 提取周期长, 成本高。

超临界二氧化碳萃取

超临界二氧化碳萃取

超临界二氧化碳萃取超临界二氧化碳(Supercritical carbon dioxide, SC-CO2) 萃取是一種新型的萃取工藝。

它是把純二氧化碳流經加熱裝置,加以加压,使其處於超临界狀態,利用超临界二氧化碳溶解性來分離萃取物進行萃取之用。

超临界二氧化碳萃取作為一種技術已经多次被使用,作用於許多工業及醫藥行業。

由於超临界二氧化碳萃取工藝較傳統萃取方法具備許多優點,如低溫低壓,萃取速度快,可以用較低的加熱壓力使質溶性物質溶於超临界流體,可簡化原料的加工步驟,產品的穩定性好,也取得了良好的萃取分離效果,可以大幅減少污染,能提高產品的品質,廣為人士所重視。

超临界二氧化碳萃取工藝具有卓越的特點,它不僅可以有效地收集和分離物質,而且能夠使萃取物標準化,並可保持其純度和產品品質,以滿足客戶的要求。

超临界二氧化碳萃取工藝非常環保,它可以提高產品品質,減少污染,節約能源,降低成本,而不需要傳統的化學萃取,也不需要太多設備和清潔劑。

此外,它還可以節省原材料,優化產品,提高工作效率,降低生產成本,避免使用有害物質,提高了整個工藝的品質和優勢。

超临界二氧化碳萃取工藝也已被用於包括植物油、製藥原料分離萃取純化,食品、藥食同源中的多重田野萃取以及酚類成分提取等行業中,取得了良好的應用效果。

乍看之下,超临界二氧化碳萃取工藝的優勢如此之多,但其實它還有很多缺陷,其中最大的是對高溫或高壓的依賴度太高,此外它也不適合萃取細細的成分,如纖維和細菌,因此受的限制較多。

就處理進度說,超临界二氧化碳萃取還可以降低工藝中的生產成本,並且可以實現對物料中密度及大小不方便濾進行萃取和分離,甚至細微的分離,從而獲得更高的成果和產品質量。

目前,國內外科研機構都在積極開發超临界萃取新技術,以實現超临界萃取工藝的更高效率,提高產品品質,降低成本,減少對環境的污染,以有效推動超临界二氧化碳萃取工藝在不同行業的應用。

超临界流体萃取技术及其应用简介

超临界流体萃取技术及其应用简介

超临界流体萃取技术及其应用简介一、本文概述《超临界流体萃取技术及其应用简介》一文旨在全面介绍超临界流体萃取(Supercritical Fluid Extraction,简称SFE)这一先进的分离和提取技术,以及其在各个领域的广泛应用。

本文将概述超临界流体萃取技术的基本原理、特点、优势以及在实际应用中的成功案例,从而揭示这一技术在现代科学和工业中的重要地位。

超临界流体萃取技术利用超临界流体(如二氧化碳)的特殊性质,通过调整压力和温度实现对目标组分的有效提取。

与传统的提取方法相比,超临界流体萃取具有操作简便、提取效率高、溶剂残留低、环境友好等诸多优点,因此受到广泛关注。

本文将从理论基础入手,详细阐述超临界流体萃取技术的原理及其在不同领域的应用。

通过案例分析,我们将展示这一技术在医药、食品、化工、环保等领域取得的显著成果,以及其对现代工业发展的推动作用。

我们将对超临界流体萃取技术的发展前景进行展望,以期为读者提供全面的技术信息和应用参考。

二、超临界流体萃取技术的基本原理超临界流体萃取(Supercritical Fluid Extraction,简称SFE)是一种先进的提取分离技术,其基本原理是利用超临界状态下的流体作为萃取剂,从目标物质中分离出所需组分。

超临界流体指的是在温度和压力超过其临界值后,流体既非液体也非气体的状态,具有介于液体和气体之间的独特物理性质,如密度、溶解度和扩散系数等。

在超临界状态下,流体对许多物质表现出很强的溶解能力,这主要得益于其特殊的物理性质。

通过调整温度和压力,可以控制超临界流体的溶解能力和选择性,从而实现对目标组分的有效提取。

常用的超临界流体包括二氧化碳(CO₂)、乙烯、氨等,其中二氧化碳因其无毒、无臭、化学性质稳定且易获取等优点,被广泛应用于超临界流体萃取中。

在超临界流体萃取过程中,目标物质与超临界流体接触后,其中的目标组分因溶解度差异而被选择性溶解在超临界流体中。

超临界萃取

超临界萃取

超临界萃取
超临界萃取是一种利用超临界流体(通常是超临界二氧化碳)作为
溶剂进行提取的技术。

超临界流体具有介于气体和液体之间的特性,具有较高的溶解力和低的粘度。

超临界萃取被广泛用于从天然产物
中提取化学物质,如药物、天然香料和植物提取物。

超临界萃取的过程是将待提取物料与超临界流体接触,在高压和高
温条件下进行混合和溶解。

随后,通过降压或降温来使溶液回到常
压下,提取物则会从溶液中析出。

这种技术具有以下几个优点:
1. 高选择性:超临界萃取可以根据物质的溶解度和分配系数来实现
有选择性的提取。

2. 高效性:超临界萃取过程通常较快,可以在短时间内完成大量提取。

3. 无残留溶剂:超临界流体通常可以通过减压来回收和重复使用,
因此没有残留的溶剂产生。

4. 温和条件:超临界萃取通常在相对温和的条件下进行,对物质的
活性和稳定性影响较小。

由于这些优点,超临界萃取已被广泛应用于食品、医药、化工和环保等领域。

它在提取高附加值产品、减少有机溶剂使用、替代传统萃取技术等方面具有重要的应用前景。

超临界CO2流体萃取技术

超临界CO2流体萃取技术

美国应用分离公司超临界 CO2流体萃取仪一、超临界流体萃取技术的起源及发展超临界流体萃取(Supercritical Fluid Extraction,SFE) 作为一种技术应用于分离提取最早可追溯到1879年,当时J.B.Hannay等就发现,用超临界的乙醇可溶解金属卤化物,压力越高,溶解能力越强。

1962年E.klesper等首次成功用超临界的二氯二氟甲烷从血液中分离铁卟啉,1966年开始用超临界CO2和超临界正戊烷来分析多环芳烃、染料和环氧树酯等。

1978年klesper又将超临界流体技术应用于聚合物工业,从聚合物中提取各类添加剂,使超临界流体萃取技术的应用范围不断扩大。

超临界流体萃取技术在工业中也早有应用,最为典型的例子就是用CO2流体萃取咖啡豆中的咖啡因,即脱咖啡因。

二、超临界流体萃取仪的工作原理及特点超临界流体萃取(Supercritical Fluid Extraction,SFE) 是一种以超临界流体作为流动相的分离技术。

超临界流体是指物质高于其临界点,即高于其临界温度和临界压力时的一种物态。

它即不是液体,也不是气体,但它具有液体的高密度,气体的低粘度,以及介入气液态之间的扩散系数的特征。

一方面超临界流体的密度通常比气体密度高两个数量级,因此具有较高的溶解能力;另一方面,它表面张力几近为零,因此具有较高的扩散性能,可以和样品充分的混合、接触,最大限度的发挥其溶解能力。

在萃取分离过程中,溶解样品在气相和液相之间经过连续的多次的分配交换,从而达到分离的目的。

三、超临界流体萃取仪的基本流程和重要部件典型的超临界流体萃仪的工作流程如下图所示。

它大体上可分为三个部分即流动相系统、分离系统、和收集系统。

Micrometering ValveModifier Pump Module流动相对流动相的选择首先要考虑它对萃取样品的溶解能力,流动相的密度越大,其溶解能力越强;次外,在实际应用中还必需考虑流体的超临界条件、腐蚀性和毒性等。

二氧化碳超临界流体萃取的原理

二氧化碳超临界流体萃取的原理

二氧化碳超临界流体萃取的原理二氧化碳超临界流体萃取是一种基于二氧化碳的萃取技术,利用二氧化碳在超临界状态下的特性来实现物质的分离和提纯。

该技术被广泛应用于化学、制药、食品、环保等领域,具有高效、环保、安全等优点。

二氧化碳是一种常见的气体,常温下为无色无味的气体。

然而,在高压和适当温度下,二氧化碳可以变为超临界流体,具有介于气体和液体之间的特性。

在这种状态下,二氧化碳的密度和溶解能力大大增加,使其成为一种理想的溶剂。

二氧化碳超临界流体萃取的原理可以分为三个步骤:溶解、分离和回收。

首先是溶解过程。

将待处理的混合物与超临界二氧化碳接触,溶质通过与二氧化碳发生相互作用而溶解在其中。

二氧化碳的高密度和溶解能力使其能够有效地溶解多种化合物,包括有机物、无机盐和生物活性物质等。

接下来是分离过程。

通过调节温度、压力和其他工艺参数,利用溶解度的差异将溶质从超临界二氧化碳中分离出来。

可以通过改变温度或降低压力来减小溶解度,使溶质从溶液中析出。

最后是回收过程。

回收二氧化碳是超临界流体萃取过程中的关键步骤之一。

通过降低压力,使超临界二氧化碳转变为气态,从而实现溶质的回收和二氧化碳的循环利用。

回收二氧化碳不仅可以减少成本,还能减少对环境的影响。

二氧化碳超临界流体萃取技术的优点主要体现在以下几个方面:1. 高效性:二氧化碳超临界流体具有较高的溶解能力和扩散速率,可以快速而高效地提取目标物质。

同时,溶剂和溶质之间的相互作用也有利于溶质的迁移和分离。

2. 环保性:相比传统的有机溶剂,二氧化碳是天然、无毒、可再生的溶剂,对环境无污染,不会产生有害废物。

此外,二氧化碳超临界流体萃取不需要使用其他辅助溶剂,进一步减少了对环境的影响。

3. 安全性:二氧化碳是一种非易燃、非爆炸的化学物质,使用过程中不存在安全隐患。

而且,超临界流体萃取过程可以在相对较低的温度和压力下进行,减少了操作人员的风险。

4. 多功能性:二氧化碳超临界流体萃取适用于多种物质的提取和分离。

co2超临界萃取法

co2超临界萃取法

CO2超临界萃取法CO2超临界萃取法是一种用于提取天然产物和分离化合物的高效且环保的技术。

它利用二氧化碳(CO2)在超临界状态的特性,结合适当的温度和压力条件,实现对目标物质的选择性提取。

1. 原理CO2超临界萃取法基于CO2的物理性质,当温度和压力超过临界点时,CO2会变成超临界流体,具有密度和溶解能力的特点。

在这种状态下,CO2既具有气体的扩散性和低粘度,又具有液体的溶解能力和高密度,因此可以有效地溶解多种化合物。

2. 过程CO2超临界萃取法的过程通常包括以下几个步骤:(1)预处理:将原料进行干燥、粉碎等预处理步骤,以增加提取效率。

(2)萃取器:将预处理后的原料放入萃取器中,与CO2超临界流体接触。

(3)溶解:CO2超临界流体在与原料接触的同时,通过溶解作用将目标化合物从原料中提取出来。

(4)分离:将溶解了目标化合物的CO2超临界流体转移到分离器中,通过降压或改变温度,使CO2从溶解状态向气体状态转变,从而使提取的目标化合物得以分离。

(5)回收:分离后的目标化合物可通过冷凝或其他方法进行回收,而CO2则可以回收再利用。

3. 优势CO2超临界萃取法相对于传统的有机溶剂萃取方法具有以下优势:(1)环保性:CO2是一种无毒、无害、无残留的天然物质,不会对环境造成污染。

(2)高效性:CO2超临界流体具有较高的溶解度和扩散性,可以快速有效地提取目标物质。

(3)选择性:通过调节温度和压力等条件,可以实现对目标化合物的选择性提取,减少杂质的干扰。

(4)可控性:CO2超临界萃取法的温度和压力可以根据需要进行调节,以适应不同的提取要求。

(5)可回收性:CO2可以回收再利用,降低了成本和资源消耗。

4. 应用领域CO2超临界萃取法在许多领域都有广泛的应用,包括:(1)药物制剂:用于从天然药物中提取有效成分,制备药物制剂。

(2)食品工业:用于提取植物油、香料、咖啡因等天然产物。

(3)香精和化妆品:用于提取香精和化妆品中的活性成分。

二氧化碳超临界流体萃取装置原理

二氧化碳超临界流体萃取装置原理

二氧化碳超临界流体萃取装置原理
二氧化碳超临界流体萃取(SFE)是一种用于提取和分离化合物的技术,常用于食品、药物和化妆品等行业。

下面是二氧化碳超临界流体萃取装置的原理:
1. 超临界流体状态:
在高压和高温条件下,二氧化碳可以变为超临界流体状态。

超临界流体既具有气体的低表面张力和高扩散性,又具有液体的高密度和可溶性。

这使二氧化碳成为一种理想的提取剂。

2. 超临界流体萃取装置构成:
二氧化碳超临界流体萃取装置通常由以下组成部分构成:
- 压力容器:用于控制二氧化碳的压力和温度,将其转化为超临界流体状态。

- 泵:将液态二氧化碳压入压力容器,使其达到必要的压力。

- 萃取器:装置中所需提取物与样品隔离的部分,通常由固定床、萃取柱或萃取板组成。

- 分离器:将二氧化碳和提取物分离的部分,通常是一个收集器。

3. 萃取过程:
a. 压力调节:通过控制泵和压力容器,将液态二氧化碳压力升至超临界状态(通常在10-30 MPa),同时控制温度使其保持超临界状态(通常在40-60℃)。

b. 萃取物溶解:将待提取物样品加入萃取器中,让超临界二氧化碳与样品接触。

由于超临界二氧化碳的高溶解性,它可以从样品中溶解和萃取目标化合物。

c. 分离:将含有目标化合物的超临界二氧化碳从萃取器中传输到分离器中,通过减压降温使二氧化碳恢复到气态,从而将目标化合物分离并收集。

二氧化碳超临界流体萃取装置利用超临界二氧化碳的特性,能够高效地提取食品、药物和化妆品中的化合物。

其原理简单且操作方便,同时具有无毒、无残留和环境友好等优点。

这使得二氧化碳超临界流体萃取成为一种广泛应用的分离技术。

二氧化碳超临界流体萃取概述

二氧化碳超临界流体萃取概述

二氧化碳超临界流体萃取概述二氧化碳是一种很常见的气体,但是过多的二氧化碳会造成"温室效应",因此充分利用二氧化碳具有重要意义。

传统的二氧化碳利用技术主要是用于生产干冰(灭火用)或作为食品添加剂等。

目前国内外正在致力于发展一种新型的二氧化碳利用技术──CO2超临界萃取技术。

运用该技术可生产高附加值的产品,可提取过去用化学方法无法提取的物质,且廉价、无毒、安全、高效;适用于化工、医药、食品等工业。

二氧化碳在温度高于临界温度Tc=31.26℃、压力高于临界压力Pc=7.2MPa的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力。

用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景。

传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。

超临界流体萃取是一种新型的分离技术, 它是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。

它具有提取率高、产品纯度好、流程简单、能耗低等优点。

CO2- SFE技术由于温度低, 且系统密闭, 可大量保存对热不稳定及易氧化的挥发性成分, 为中药挥发性成分的提取分离提供了目前最先进的方法。

用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。

这项技术除了用在化工、医药等行业外,还可用在烟草、香料、食品等方面。

如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素及银杏叶、紫杉中的有价值成分。

可见这项技术在未来具有广阔的发展前景。

一. 超临界流体萃取的基本原理(一). 超临界流体定义任何一种物质都存在三种相态-气相、液相、固相。

三相成平衡态共存的点叫三相点。

液、气两相成平衡状态的点叫临界点。

在临界点时的温度和压力称为临界压力。

宇航人超临界二氧化碳萃取

宇航人超临界二氧化碳萃取

宇航人超临界二氧化碳萃取
宇航人超临界二氧化碳萃取是一种利用超临界二氧化碳流体技术进行物质提取的方法。

超临界二氧化碳流体萃取技术是指利用气、液相临界点以上的二氧化碳流体,代替有机溶剂进行常温提取的现代绿色提纯技术。

这种技术具有提取效率高、产品选择性强、产品营养成分和风味物质保留完全、无溶剂残留等优点。

宇航人超临界二氧化碳萃取技术广泛应用于医药、食品、香料、日化等领域。

在医药领域,可以用于提取有效成分,如破壁灵芝孢子粉、红花杜鹃叶中的活性成分等。

在食品领域,可以用于提取植物油,如花生油、核桃油、沙棘油等。

此外,还可以用于提取香料成分、天然维生素E等。

宇航人超临界二氧化碳萃取技术具有以下优点:
1. 提取效率高:超临界二氧化碳流体能够迅速穿过物料颗粒,提高提取效率。

2. 产品选择性强:通过调节二氧化碳流体的温度、压力等参数,可以实现对不同成分的选择性提取。

3. 保留产品营养成分和风味物质:在提取过程中,超临界二氧化碳流体能够有效地保留产品中的营养成分和风味物质。

4. 无溶剂残留:二氧化碳是一种环保无毒的物质,提取过程中无溶剂残留,符合绿色生产要求。

5. 应用范围广泛:宇航人超临界二氧化碳萃取技术可以应用于医药、食品、香料、日化等多个领域。

总之,宇航人超临界二氧化碳萃取技术是一种绿色、高效、选择性强的现代提取技术,具有广泛的应用前景。

CO2超临界流体萃取技术

CO2超临界流体萃取技术

CO2超临界流体萃取技术韩延欣技术简介任何一种物质都存在三种相态----气相、液相、固相,三相呈平衡态共存的点叫三相点,液、气两相呈平衡状态的点叫临界点。

在临界点时的温度和压力称为临界温度和临界压力。

高于临界温度和临界压力的流体称为超临界流体。

超临界流体萃取(Superitical Fluid Extraction,以下简称SFE)是一项应用广泛的实用性新技术。

传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺路线长、产品纯度不高,易残留有害物质。

1、超临界萃取的原理:在超临界状态下,超临界流体兼有气、两重性:既有与气体相当的高渗透能力和低的粘度,又兼有与液体相近的密度和对许多物质优良的溶解能力,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。

然后借助减压、升温的方法使超临界流体从被萃取物质中完全析出,从而达到分离提纯的目的。

相密度(g/ml) 扩散系数(cm2/s) 粘度(g/cm.s)气体(G) 10-3 10-1 10-4超临界流(SCF) 0.3~0.9 10-3~10-4 10-4~10-3液体(L) 1 10-5 10-22、超临界流体(SCF)的选取:溶质在某溶剂中的溶解度与溶剂的密度呈正相关,SCF也与此类似。

因此,通过改变压力和温度,改变SCF的密度,便能溶解许多不同类型的物质,达到选择性地提取各种类型化合物的目的。

可作为SCF的物质很多,如二氧化碳、一氧化亚氮、乙烷、甲醇、氨和水等。

其中二氧化碳因其临界温度低(Tc=31.3℃),接近室温;临界压力小(Pv=7.15MPa),扩散系数为液体的100倍,因而具有较好的溶解能力。

二氧化碳无色、无味、无毒、不易燃、化学惰性、低膨胀性、价廉、易制得高纯气体等特点,使其作为超临界萃取的流体得到较为广泛的应用。

超临界二氧化碳流体萃取是利用CO2流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而开发的新型萃取技术,具有提取率高、产品纯度好、流程简单等优点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二氧化碳超临界流体萃取概述二氧化碳是一种很常见的气体,但是过多的二氧化碳会造成"温室效应",因此充分利用二氧化碳具有重要意义。

传统的二氧化碳利用技术主要是用于生产干冰(灭火用)或作为食品添加剂等。

目前国内外正在致力于发展一种新型的二氧化碳利用技术──CO2超临界萃取技术。

运用该技术可生产高附加值的产品,可提取过去用化学方法无法提取的物质,且廉价、无毒、安全、高效;适用于化工、医药、食品等工业。

二氧化碳在温度高于临界温度Tc=31.26℃、压力高于临界压力Pc=7.2MPa的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍,因而具有惊人的溶解能力。

用它可溶解多种物质,然后提取其中的有效成分,具有广泛的应用前景。

传统的提取物质中有效成份的方法,如水蒸汽蒸馏法、减压蒸馏法、溶剂萃取法等,其工艺复杂、产品纯度不高,而且易残留有害物质。

超临界流体萃取是一种新型的分离技术, 它是利用流体在超临界状态时具有密度大、粘度小、扩散系数大等优良的传质特性而成功开发的。

它具有提取率高、产品纯度好、流程简单、能耗低等优点。

CO2- SFE技术由于温度低, 且系统密闭, 可大量保存对热不稳定及易氧化的挥发性成分, 为中药挥发性成分的提取分离提供了目前最先进的方法。

用超临界CO2萃取法可以从许多种植物中提取其有效成分,而这些成分过去用化学方法是提取不出来的。

这项技术除了用在化工、医药等行业外,还可用在烟草、香料、食品等方面。

如食品中,可以用来去除咖啡、茶叶中的咖啡因,可提取大蒜素、胚芽油、沙棘油、植物油以及医药用的鸦片、阿托品、人参素及银杏叶、紫杉中的有价值成分。

可见这项技术在未来具有广阔的发展前景。

一. 超临界流体萃取的基本原理(一). 超临界流体定义任何一种物质都存在三种相态-气相、液相、固相。

三相成平衡态共存的点叫三相点。

液、气两相成平衡状态的点叫临界点。

在临界点时的温度和压力称为临界压力。

不同的物质其临界点所要求的压力和温度各不相同。

超临界流体(Supercritical fluid,SCF)技术中的SCF是指温度和压力均高于临界点的流体,如二氧化碳、氨、乙烯、丙烷、丙烯、水等。

高于临界温度和临界压力而接近临界点的状态称为超临界状态。

处于超临界状态时,气液两相性质非常相近,以至无法分别,所以称之为SCF。

目前研究较多的超临界流体是二氧化碳,因其具有无毒、不燃烧、对大部分物质不反应、价廉等优点,最为常用。

在超临界状态下,CO2流体兼有气液两相的双重特点,既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和物质良好的溶解能力。

其密度对温度和压力变化十分敏感,且与溶解能力在一定压力范围内成比例,所以可通过控制温度和压力改变物质的溶解度。

(二). 超临界流体萃取的基本原理超临界流体萃取分离过程是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。

当气体处于超临界状态时, 成为性质介于液体和气体之间的单一相态, 具有和液体相近的密度, 粘度虽高于气体但明显低于液体, 扩散系数为液体的10~100倍; 因此对物料有较好的渗透性和较强的溶解能力, 能够将物料中某些成分提取出来。

在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地依次把极性大小、沸点高低和分子量大小的成分萃取出来。

并且超临界流体的密度和介电常数随着密闭体系压力的增加而增加, 极性增大, 利用程序升压可将不同极性的成分进行分步提取。

当然,对应各压力范围所得到的萃取物不可能是单一的,但可以通过控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则自动完全或基本析出,从而达到分离提纯的目的,并将萃取分离两过程合为一体,这就是超临界流体萃取分离的基本原理。

超临界CO2的溶解能力超临界状态下,CO2对不同溶质的溶解能力差别很大,这与溶质的极性、沸点和分子量密切相关,一般来说由一下规律:1.亲脂性、低沸点成分可在低压萃取(104Pa), 如挥发油、烃、酯等。

2.化合物的极性基团越多,就越难萃取。

3.化合物的分子量越高,越难萃取。

超临界CO2的特点超临界CO2成为目前最常用的萃取剂,它具有以下特点:1.CO2临界温度为31.1℃,临界压力为7.2MPa,临界条件容易达到。

2.CO2化学性质不活波,无色无味无毒,安全性好。

3.价格便宜,纯度高,容易获得。

因此,CO2特别适合天然产物有效成分的提取。

二、超临界流体萃取的特点1.萃取和分离合二为一,当饱含溶解物的二氧化碳超临界流体流经分离器时,由于压力下降使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不存在物料的相变过程,不需回收溶剂, 操作方便;不仅萃取效率高,而且能耗较少,节约成本。

2.压力和温度都可以成为调节萃取过程的参数。

临界点附近,温度压力的微小变化,都会引起CO2密度显著变化,从而引起待萃物的溶解度发生变化,可通过控制温度或压力的方法达到萃取目的。

压力固定,改变温度可将物质分离;反之温度固定,降低压力使萃取物分离;因此工艺流程短、耗时少。

对环境无污染,萃取流体可循环使用,真正实现生产过程绿色化。

3.萃取温度低, CO2的临界温度为31.265℃,临界压力为7.18MPa, 可以有效地防止热敏性成分的氧化和逸散,完整保留生物活性,而且能把高沸点,低挥发渡、易热解的物质在其沸点温度以下萃取出来。

4. 临界CO2 流体常态下是气体, 无毒, 与萃取成分分离后, 完全没有溶剂的残留, 有效地避免了传统提取条件下溶剂毒性的残留。

同时也防止了提取过程对人体的毒害和对环境的污染, 100%的纯天然。

5.超临界流体的极性可以改变, 一定温度条件下, 只要改变压力或加入适宜的夹带剂即可提取不同极性的物质, 可选择范围广。

三、超临界流体萃取技术的应用(一).超临界流体技术在国内天然药物研制中的应用目前,国内外采用CO2超临界萃取技术可利用的资源有:紫杉、黄芪、人参叶、大麻、香獐、青蒿草、银杏叶、川贝草、桉叶、玫瑰花、樟树叶、茉莉花、花椒、八角、桂花、生姜、大蒜、辣椒、桔柚皮、啤酒花、芒草、香茅草、鼠尾草、迷迭香、丁子香、豆蔻、沙棘、小麦、玉米、米糠、鱼、烟草、茶叶、煤、废油等。

在超临界流体技术中,超临界流体萃取技术(Supercritical fluid extraction,SFE)与天然药物现代化关系密切。

SFE对非极性和中等极性成分的萃取,可克服传统的萃取方法中因回收溶剂而致样品损失和对环境的污染,尤其适用于对温热不稳定的挥发性化合物提取;对于极性偏大的化合物,可采用加入极性的夹带剂如乙醇、甲醉等,改变其萃取范围提高抽提率。

(二). 超临界CO2萃取技术在中药开发方面的优点用超临界CO2萃取技术进行中药研究开发及产业化,和中药传统方法相比,具有许多独特的优点:1、二氧化碳的临界温度在31.2℃,能够比较完好地保存中药有效成分不被破坏或发生次生化, 尤其适合于那些对热敏感性强、容易氧化分解的成分的提取。

2、流体的溶解能力与其密度的大小相关, 而温度、压力的微小变化会引起流体密度的大幅度变化, 从而影响其溶解能力。

所以可以通过调节操作压力、温度, 从而可减小杂质使中药有效成分高度富集,产品外观大为改善, 萃取效率高, 且无溶剂残留。

3、根据中医辨证论治理论, 中药复方中有效成分是彼此制约、协同发挥作用的。

超临界二氧化碳萃取不是简单地纯化某一组分, 而是将有效成分进行选择性的分离, 更有利于中药复方优势的发挥。

4. 超临界CO2还可直接从单方或复方中药中提取不同部位或直接提取浸膏进行药理筛选,开发新药,大大提高新药筛选速度。

同时,可以提取许多传统法提不出来的物质,且较易从中药中发现新成分,从而发现新的药理药性,开发新药。

5、二氧化碳无毒、无害、不易燃易爆、粘度低,表面张力低、沸点低, 不易造成环境污染。

6、通过直接与GC、IR、MS、LC等联用,客观地反映提取物中有效成分的浓度,实现中药提取与质量分析一体化。

7. 提取时间快、生产周期短。

超临界CO2提取(动态)循环一开始,分离便开始进行。

一般提取10分钟便有成分分离析出,2一4小时左右便可完全提取。

同时,它不需浓缩等步骤,即使加入夹带剂,也可通过分离功能除去或只是简单浓缩。

8. 超临界CO2萃取,操作参数容易控制,因此,有效成分及产品质量稳定。

9. 经药理、临床证明,超临界CO2提取中药,不仅工艺上优越,质量稳定且标准容易控制,而且其药理、临床效果能够得到保证。

10. 超临界CO2萃取工艺,流程简单,操作方便,节省劳动力和大量有机溶剂,减小三废污染,这无疑为中药现代化提供了一种高新的提取、分离、制备及浓缩新方法。

另外,超临界流体结晶技术中的RESS过程、GAS过程等可制备粒径均匀的超细颗粒,从而可制备控释小丸等剂型,可用来制备中药新剂型。

超临界萃取技术除了在中药有效成分的提取方面有着明显的优势之外,它还在食品、化工和生物工程方面有着广泛的应用。

(三).超临界流体技术在其他方面的应用1. 在食品方面的应用目前已经可以用超临界二氧化碳从葵花籽、红花籽、花生、小麦胚芽、可可豆中提取油脂,这种方法比传统的压榨法的回收率高,而且不存在溶剂法的溶剂分离问题。

2. 在医药保健品方面的应用在抗生素药品生产中,传统方法常使用丙酮、甲醇等有机溶剂,但要将溶剂完全除去,又不是要变质非常困难。

若采用SCFE法则完全可符合要求。

另外,用SCFE法从银杏叶中提取的银杏黄酮,从鱼的内脏,骨头等提取的多烯不饱和脂肪酸(DHA,EPA),从沙棘籽提取的沙棘油,从蛋黄中提取的卵磷脂等对心脑血管疾病具有独特的疗效3. 天然香精香料的提取用SCFE法萃取香料不仅可以有效地提取芳香组分,而且还可以提高产品纯度,能保持其天然香味,如从桂花、茉莉花、菊花、梅花、米兰花、玫瑰花中提取花香精,从胡椒、肉桂、薄荷提取香辛料,从芹菜籽、生姜,莞荽籽、茴香、砂仁、八角、孜然等原料中提取精油,不仅可以用作调味香料,而且一些精油还具有较高的药用价值。

啤酒花是啤酒酿造中不可缺少的添加物,具有独特的香气、清爽度和苦味。

传统方法生产的啤酒花浸膏不含或仅含少量的香精油,破坏了啤酒的风味,而且残存的有机溶剂对人体有害。

超临界萃取技术为酒花浸膏的生产开辟了广阔的前景。

4. 在化工方面的应用在美国超临界技术还用来制备液体燃料。

以甲苯为萃取剂,在Pc=100atm, Tc=400-440℃条件下进行萃取,在SCF溶剂分子的扩散作用下,促进煤有机质发生深度的热分解,能使三分之一的有机质转化为液体产物。

此外,从煤炭中还可以萃取硫等化工产品。

美国最近研制成功用超临界二氧化碳既作反应剂又作萃取剂的新型乙酸制造工艺。

相关文档
最新文档