福建省仙游县五校教研小片区2017_2018学年八年级数学下学期期中联考试题新人教版含答案

合集下载

2017-2018学年度第二学期期中考试 初二年级 数学 试卷及参考答案

2017-2018学年度第二学期期中考试 初二年级 数学 试卷及参考答案

2017-2018学年度第二学期期中考试初二年级数学班级姓名学号考生须知1.本试卷共八页,共三道大题,25道小题。

满分100分。

考试时间120分钟。

2.在试卷和答题纸上准确填写班级、姓名和学号。

3.试卷答案一律书写在答题纸上,在试卷上作答无效。

4.答题纸上用黑色字迹签字笔作答,作图题请用铅笔。

一.选择题(请将唯一正确答案填入后面的括号中,每题2分,共20分)1.一元二次方程的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.无法确定2.如果方程的两个实数根分别为,那么的值是()A.3B.C.D.3.11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差4.三角形的两边长分别为3和6,第三边的长是方程的一个根,则此三角形的周长为()A.10B.11C.13D.11或135.如图,□ABCD中,对角线AC、BD交于点O,点E 是BC 的中点.若OE =3cm ,则AB 的长为()A .12cmB .9cmC .6cmD .3cm6.如图,菱形花坛ABCD 的面积为12平方米,其中沿对角线AC 修建的小路长为4米,则沿对角线BD 修建的小路长为()A .3米B .6米C .8米D .10米7.将抛物线平移,得到抛物线,下列平移方式中,正确的是()A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位8.已知二次函数的图象上有点A,B,C,则y 1、y 2、y 3的大小关系为()A .y 3>y 2>y 1B .y 3>y 1>y 2C .y 2>y 3>y 1D .y 1>y 2>y 39.在学完二次函数的图象及其性质后,老师让学生们说出的图象的一些性质,小亮说:“此函数图象开口向上,且对称轴是”;小丽说:“此函数图象肯定与x 轴有两个交点”;小红说:“此函数与y 轴的交点坐标为(0,-3)”;小强说:“此函数有最小值,”……请问这四位同学谁说的结论是错误的()A .小亮B .小丽C .小红D .小强10.如图,正方形ABCD 中,AB =8cm ,对角线AC ,BD 相交于点O ,点E ,F 分别从B ,C 两点同时出发,以1cm /s 的速度沿BC ,CD 运动,到点C ,D时停止ADOF运动.设运动时间为t(s),△OEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为()A B C D二.填空题(每空2分,共24分)11.方程的一个根是2,那么另一根是,=_______.12.若关于x的方程有两个相等实根,则代数式的值为.13.关于x的方程有两个实数根,则实数m的取值范围是__________________.14.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手甲乙平均数(环)9.59.5方差0.0350.015请你根据上表中的数据选一人参加比赛,最适合的人选是____,理由是_________________________________________.15.请写出一个开口向下,且经过(0,3)的抛物线的解析式______________________________.16.二次函数的图象与x轴只有一个公共点,则m的值为.17.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是_____________;(选填矩形、菱形、正方形、无法确定)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为________,∠ABC=________.18.小明和小亮组成团队参加某科学比赛.该比赛的规则是:每轮比赛一名选手参加,若第一轮比赛得分满60则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,下图为二人测试成绩折线统计图,下列说法合理的是_____________.①小亮测试成绩的平均数比小明的高②小亮测试成绩比小明的稳定③小亮测试成绩的中位数比小明的高④小亮参加第一轮比赛,小明参加第二轮比赛,比较合理三.解答题(19题每小题4分,20、21、22、24题每题6分,23、25题每题8分,共56分)19.解方程:(1)(2)(3)(4)(用配方法)20.(列方程解决问题)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.求该企业从2015年到2017年利润的年平均增长率.21.关于的一元二次方程有两个不相等的实数根.(1)求实数的取值范围;(2)若,求的值.22.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对初二年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:(1)统计表中的a=,b=,c=;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校初二年级共有600名学生,请你估计该校初二年级学生课外阅读7本及以上的人数.23.二次函数图象上部分点的横坐标,纵坐标的对应值如下表:x……y……(1)表格中的=,=;(2)求这个二次函数的表达式;(3)在右图中画出此二次函数的图象;(4)此抛物线在第一象限内的部分记为图象G,如果过抛物线顶点的直线y=mx+n(m≠0)与图象G有唯一公共点,请结合图象,写出m的取值范围_________________________________.24.在学习了正方形后,数学小组的同学对正方形进行了探究,发现:(1)如图1,在正方形ABCD中,点E为BC边上任意一点(点E不与B、C重合),点F在线段AE上,过点F的直线MN⊥AE,分别交AB、CD于点M、N.求证:AE=MN;同学们发现,过点D作DP∥MN,交AB于P,构造□DNMP,经过推理能够使问题得到解决(如图2).请你完成证明过程.xy11O(2)如图3,当点F 为AE 中点时,其他条件不变,连接正方形的对角线BD ,MN 与BD 交于点G ,连接BF ,求证:BF=FG .25.在平面直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:如果,那么称点Q 为点P 的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(-5,6)的“关联点”为点(-5,-6).(1)点(2,1)的“关联点”为;(2)如果点(m +1,2)是一次函数y =x +3图象上点N 的“关联点”,求点N 的坐标.(3)如果点P 在函数的图象上,其“关联点”Q 的纵坐标y ′的取值范围是-4<y ′≤4,则a 的取值范围是_________________.图1图2图3参考答案:1.C2.D3.B4.C5.C6.B7.D8.A9.D10.B11.3,612.113.m≥0且m≠114.乙,方差较小,成绩相对稳定.15.如y=-x2+3等16.m=117.菱形,18.②④19.(1)5,-1(2),(3)(4)20.20%21.(1)(2)22.(1)10,0.28,50;(2)略;(3)6.4;(4)26423.(1)-5,0(2)(3)略(3)m≥1或m≤-224.略25.(1)(2,1)(2)N(-5,-2)(3)2≤a<。

2017-2018学年度第二学期期中调研考试八年级数学试题(有答案和解析)

2017-2018学年度第二学期期中调研考试八年级数学试题(有答案和解析)

2017-2018学年八年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.化简式子√(−4)2结果正确的是()A. ±4B. 4C. −4D. ±22.下列式子为最简二次根式的是()A. √0.1aB. √52C. √a2+4D. √123.下列计算正确的是()A. √5−√3=√2B. (√5)−1=−√5C. √12÷√3=2D. 3√2−√2=34.如图,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A. AB//DC,AD//BCB.AB//DC,AD=BCC. AO=CO,BO=DOD. AB=DC,AD=BC5.在直角坐标系中,点P(-2,3)到原点的距离是()A. √5B. √13C. 15√11D. 26.若直角三角形的两条直角边长分别为3cm、4cm,则斜边上的高为()A. 52cm B. 125cm C. 5cm D. 512cm7.如图,“赵爽弦图”是由四个全等的直角三角形拼成一个大的正方形,是我国古代数学的骄傲,巧妙地利用面积关系证明了勾股定理.已知小正方形的面积是1,直角三角形的两直角边分别为a、b且ab=6,则图中大正方形的边长为()A. 5B. √13C. 4D.38.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的边长分别是9、25、1、9,则最大正方形E的边长是()A. 12B. 44C. 2√11D. 无法确定9.如图,为了检验教室里的矩形门框是否合格,某班的四个学习小组用三角板和细绳分别测得如下结果,其中不能判定门框是否合格的是()A. AB=CD,AD=BC,AC=BDB. AC=BD,∠B=∠C=90∘C. AB=CD,∠B=∠C=90∘D. AB=CD,AC=BD10.如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A. 4cmB. 6cmC. 8cmD. 10cm二、填空题(本大题共4小题,共20.0分)11.式子√2a+1在实数范围内有意义,则实数a的取值范围是______.12.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=1BC.若AB=10,2则EF的长是______.13.如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是边BM、CM的中点,当AB:AD=______时,四边形MENF是正方形.14.如图,菱形ABCD的边长为2,∠DAB=60°,点E为BC边的中点,点P为对角线AC上一动点,则PB+PE的最小值为______.三、计算题(本大题共3小题,共18.0分)15.计算:√18+√8-√6×√2√316.已知a=2+√3,b=2−√3,求a2-2ab+b2的值.17.你见过像√4−2√3,√√48−√45…这样的根式吗?这一类根式叫做复合二次根式.有一些复合二次根式可以化简,如:√4−2√3=√3−2√3+1=√(√3)2−2√3+12=√(√3−1)2=√3−1,请用上述方法化简:√5−2√6.四、解答题(本大题共6小题,共52.0分)18.如图,已知点E、F在四边形ABCD的对角线BD所在的直线上,且BE=DF,AE∥CF,请再添加一个条件(不要在图中再增加其它线段和字母),能证明四边形ABCD是平行四边形,并证明你的想法.你所添加的条件:______;19.如图,某校科技创新兴趣小组用他们设计的机器人,在平坦的操场上进行走展示.输入指令后,机器人从出发点A先向东走10米,又向南走40米,再向西走20米,又向南走40米,再向东走70米到达终止点B.求终止点B与原出发点A的距离AB.20.如图是一副秋千架,左图是从正面看,当秋千绳子自然下垂时,踏板离地面0.5m(踏板厚度忽略不计),右图是从侧面看,当秋千踏板荡起至点B位置时,点B 离地面垂直高度BC为1m,离秋千支柱AD的水平距离BE为1.5m(不考虑支柱的直径).求秋千支柱AD的高.21.如图,在由边长为1的小正方形组成的5×6的网格中,△ABC的三个顶点均在格点上,请按要求解决下列问题:(1)通过计算判断△ABC的形状;(2)在图中确定一个格点D,连接AD、CD,使四边形ABCD为平行四边形,并求出▱ABCD的面积.22.如图,△ABC中,∠ACB=90°,D、E分别是BC、BA的中点,连接DE,F在DE延长线上,且AF=AE.(1)求证:四边形ACEF是平行四边形;(2)若四边形ACEF是菱形,求∠B的度数.23.如图,四边形ABCD是正方形,点E,K分别在BC,AB上,点G在BA的延长线上,且CE=BK=AG.(1)求证:①DE=DG;②DE⊥DG(2)尺规作图:以线段DE,DG为边作出正方形DEFG(要求:只保留作图痕迹,不写作法和证明);(3)连接(2)中的KF,猜想并写出四边形CEFK是怎样的特殊四边形,并证明你的猜想:(4)当CECB =1n时,请直接写出S正方形ABCDS正方形DEFG的值.答案和解析1.【答案】B【解析】解:=|-4|=4,故选:B.根据二次根式的性质=|a|化简可得.本题主要考查二次根式的性质,解题的关键是掌握=|a|.2.【答案】C【解析】解:A、=,不是最简二次根式;B、=2,不是最简二次根式;C、,是最简二次根式;D、=不是最简二次根式;故选:C.根据二次根式的性质化简,判断即可.本题考查的是最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.【答案】C【解析】解:(A)原式=-,故A错误;(B)原式==,故B错误;(D)原式=2,故D错误;故选:C.根据二次根式的运算法则即可求出答案.本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.4.【答案】B【解析】【分析】此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.利用平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;5)对角线互相平分的四边形是平行四边形进行分析即可.【解答】解:A.AB∥DC,AD∥BC可利用两组对边分别平行的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;B.AB∥DC,AD=BC不能判定这个四边形是平行四边形,故此选项符合题意;C.AO=CO,BO=DO可利用对角线互相平分的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意;D.AB=DC,AD=BC可利用两组对边分别相等的四边形是平行四边形判定这个四边形是平行四边形,故此选项不合题意.故选B.5.【答案】B【解析】解:过P作PE⊥x轴,连接OP,∵P(-2,3),∴PE=3,OE=2,∴在Rt△OPE中,根据勾股定理得:OP2=PE2+OE2,∴OP==,则点P在原点的距离为.故选:B.在平面直角坐标系中找出P点,过P作PE垂直于x轴,连接OP,由P的坐标得出PE及OE的长,在直角三角形OPE中,由PE及OE的长,利用勾股定理求出OP的长,即为P到原点的距离.此题考查了勾股定理,以及坐标与图形的性质,勾股定理为:直角三角形中,两直角边的平方和等于斜边的平方,灵活运用勾股定理是解本题的关键.6.【答案】B【解析】解:根据勾股定理,斜边==5,设斜边上的高为h,则S△=×3×4=×5•h,整理得5h=12,解得h=cm.故选:B.先根据勾股定理求出斜边的长度,再根据三角形的面积列式进行计算即可求解.本题考查了勾股定理以及三角形的面积的利用,根据三角形的面积列式求出斜边上的高是常用的方法之一,需熟练掌握.7.【答案】B【解析】解:∵ab=6,∴直角三角形的面积是ab=3,∵小正方形的面积是1,∴大正方形的面积=1+4×3=13,∴大正方形的边长为,故选:B.根据ab的值求得直角三角形的面积,进而得出大正方形的面积.本题考查了勾股定理,还要注意图形的面积和a,b之间的关系.8.【答案】C【解析】解:正方形A、B、C、D的面积分别是9、25、1、9,由勾股定理得,正方形G的面积为:9+25=34,正方形H的面积为:1+9=10,则正方形E的面积为:34+10=44,最大正方形E的边长是;故选:C.根据勾股定理分别求出G、H的面积,根据勾股定理计算即可.本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.9.【答案】D【解析】解:A、AB=CD,AD=BC,AC=BD,可以得出门框是矩形,不合题意;B、AC=BD,∠B=∠C=90°,可以得出门框是矩形,不合题意;C、AB=CD,∠B=∠C=90°,可以得出门框是矩形,不合题意;D、AB=CD,AC=BD,不能得出门框是矩形,符合题意;故选:D.根据矩形的判定定理判断即可.本题考查了矩形的判定的应用,注意:矩形的判定定理有①有一个角是直角的平行四边形是矩形,②对角线相等的平行四边形是矩形,③有三个角是直角的四边形是矩形.10.【答案】D【解析】解:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线,根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10cm.故选:D.根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE的周长.此题主要考查了平行四边形的性质及全等三角形的判定及性质,还利用了中垂线的判定及性质等,考查面积较广,有一定的综合性.11.【答案】a≥-12【解析】解:由题意得,2a+1≥0,解得,a≥-,故答案为:a≥-.根据二次根式有意义的条件列出不等式,解不等式即可.本题考查的是二次根式有意义的条件,二次根式中的被开方数是非负数.12.【答案】5【解析】解:如图,连接DC.DE是△ABC的中位线,∴DE∥BC,DE=,∵CF=BC,∴DE∥CF,DE=CF,∴CDEF是平行四边形,∴EF=DC.∵DC是Rt△ABC斜边上的中线,∴DC==5,∴EF=DC=5,故答案为:5.根据三角形中位线的性质,可得DE与BC的关系,根据平行四边形的判定与性质,可得DC与EF的关系,根据直角三角形的性质,可得DC与AB的关系,可得答案.本题考查了平行四边形的判定与性质,利用了平行四边形的判定与性质,直角三角形斜边上的中线等于斜边的一半.13.【答案】1:2【解析】解:当AB:AD=1:2时,四边形MENF是正方形,理由是:∵AB:AD=1:2,AM=DM,AB=CD,∴AB=AM=DM=DC,∵∠A=∠D=90°,∴∠ABM=∠AMB=∠DMC=∠DCM=45°,∴∠BMC=90°,∵四边形ABCD是矩形,∴∠ABC=∠DCB=90°,∴∠MBC=∠MCB=45°,∴BM=CM,∵N、E、F分别是BC、BM、CM的中点,∴BE=CF,ME=MF,NF∥BM,NE∥CM,∴四边形MENF是平行四边形,∵ME=MF,∠BMC=90°,∴四边形MENF是正方形,即当AB:AD=1:2时,四边形MENF是正方形,故答案为:1:2.首先得出四边形MENF是平行四边形,再求出∠BMC=90°和ME=MF,根据正方形的判定推出即可.本题考查了矩形的性质、正方形的判定、三角形的中位线的应用等知识,熟练应用正方形的判定方法是解题关键.14.【答案】√3【解析】解:连接BD,交AC于O,连接DE交AC于P,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值.∵四边形ABCD是菱形,∴∠DCB=∠DAB=60°,DC=BC=2,∴△DCB是等边三角形,∵BE=CE=1,∴DE⊥AB(等腰三角形三线合一的性质).在Rt△DCE中,DE==.即PB+PE的最小值为.故答案为.找出B点关于AC的对称点D,连接DE交AC于P,则DE就是PB+PE的最小值,求出即可.本题主要考查轴对称-最短路线问题,菱形的性质,勾股定理等知识点,确定P点的位置是解答本题的关键.15.【答案】解:原式=3√2+2√2−2=5√2−2.【解析】先利用二次根式的乘除法则运算,然后把各二次根式化简为最简二次根式后合并即可.本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.16.【答案】解:∵a=2+√3,b=2−√3,∴a-b=2+√3-2+√3=2√3,∴a2-2ab+b2=(a-b)2=(2√3)2=12.【解析】根据已知先求出a-b的值,再把要求的式子化成完全平方的形式,然后代值计算即可.此题考查了分母有理化,用到的知识点是完全平方公式,求出a-b的值是解题的关键.17.【答案】解:√5−2√6=√3−2√6+2=√(√3)2−2√6+(√2)2=√(√3−√2)2=√3-√2.【解析】直接利用已知将原式变形化简即可.此题主要考查了二次根式的性质与化简,正确应用完全平方公式是解题关键.18.【答案】AE=CF【解析】解:答案不唯一,例如:添加AE=CF.证明如下:∵AE∥CF,∴∠E=∠F,又BE=DF,AE=CF,∴△ABE≌△CDF,∴AB=CD,∠ABE=∠CDF,∴∠ABD=∠CDB,∴AB∥CD,∴四边形ABCD是平行四边形.故答案为:AE=CF根据全等三角形的判定和性质得出AB=CD,∠ABE=∠CDF,根据平行四边形的判定推出即可.本题考查了平行四边形的性质和判定的应用,通过做此题培养了学生的推理能力,同时也培养了学生的分析问题和解决问题的能力.19.【答案】解:如图所示:过点A作AC⊥CB于C,则在Rt△ABC中,AC=40+40=80(米),BC=70-20+10=60(米),故终止点与原出发点的距离AB=√602+802=100(米),答:终止点B与原出发点A的距离AB为100m.【解析】直接构造直角三角形进而利用勾股定理得出答案.此题主要考查了勾股定理的应用,正确构造直角三角形是解题关键.20.【答案】解:设AD=xm,则由题意可得AB=(x-0.5)m,AE=(x-1)m,在Rt△ABE中,AE2+BE2=AB2,即(x-1)2+1.52=(x-0.5)2,解得x=3.即秋千支柱AD的高为3m.【解析】直接利用AE2+BE2=AB2,进而得出答案.此题主要考查了勾股定理的应用,正确得出关于x等式是解题关键.21.【答案】解:(1)由题意可得,AB=√12+22=√5,AC=√22+42=2√5,BC=√32+42=5,∵(√5)2+(2√5)2=25=52,即AB2+AC2=BC2,∴△ABC是直角三角形.(2)过点A作AD∥BC,过点C作CD∥AB,直线AD和CD的交点就是D的位置,格点D的位置如图,∴▱ABCD的面积为:AB×AC=√5×2√5=10.【解析】(1)分别计算三边长度,根据勾股定理的逆定理判断;(3)过点A作AD∥BC,过点C作CD∥AB,根据平行四边形的面积解答即可.此题考查直角三角形的判定和性质,关键是根据勾股定理的逆定理解答.22.【答案】(1)证明:∵∠ACB=90°,E是BA的中点,∴CE=AE=BE,∵AF=AE,∴AF=CE,在△BEC中,∵BE=CE且D是BC的中点,∴ED是等腰△BEC底边上的中线,∴ED也是等腰△BEC的顶角平分线,∴∠1=∠2,∵AF=AE,∴∠F=∠3,∵∠1=∠3,∴∠2=∠F,∴CE∥AF,又∵CE=AF,∴四边形ACEF是平行四边形;(2)解:∵四边形ACEF是菱形,∴AC=CE,由(1)知,AE=CE,∴AC=CE=AE,∴△AEC是等边三角形,∴∠CAE=60°,在Rt△ABC中,∠B=90°-∠CAE=90°-60°=30°.【解析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CE=AE=BE,从而得到AF=CE,再根据等腰三角形三线合一的性质可得∠1=∠2,根据等边对等角可得然后∠F=∠3,然后求出∠2=∠F,再根据同位角相等,两直线平行求出CE∥AF,然后利用一组对边平行且相等的四边形是平行四边形证明;(2)根据菱形的四条边都相等可得AC=CE,然后求出AC=CE=AE,从而得到△AEC是等边三角形,再根据等边三角形的每一个角都是60°求出∠CAE=60°,然后根据直角三角形两锐角互余解答.本题考查了菱形的性质,平行四边形的判定,等边三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半,以及直角三角形两锐角互余的性质,熟记各性质与判定方法是解题的关键.23.【答案】(1)证明:∵四边形ABCD是正方形,∴DC=DA,∠DCE=∠DAG=90°.又∵CE=AG,∴△DCE≌△DAG,∴DE=DG,∠EDC=∠GDA,又∵∠ADE+∠EDC=90°,∴∠ADE+∠GDA=90°∴DE⊥DG.(2)解:如图.(3)解:四边形CEFK 为平行四边形.证明:设CK 、DE 相交于M 点∵四边形ABCD 和四边形DEFG 都是正方形,∴AB ∥CD ,AB =CD ,EF =DG ,EF ∥DG ,∵BK =AG ,∴KG =AB =CD ,∴四边形CKGD 是平行四边形,∴CK =DG =EF ,CK ∥DG ,∴∠KME =∠GDE =∠DEF =90°,∴∠KME +∠DEF =180°,∴CK ∥EF ,∴四边形CEFK 为平行四边形.(4)解:∵CE CB =1n ,∴设CE =x ,CB =nx ,∴CD =nx ,∴DE 2=CE 2+CD 2=n 2x 2+x 2=(n 2+1)x 2,∵BC 2=n 2x 2,∴S 正方形ABCD S 正方形DEFG =BC 2DE 2=n 2n 2+1.【解析】(1)由已知证明DE 、DG 所在的三角形全等,再通过等量代换证明DE ⊥DG ; (2)根据正方形的性质分别以点G 、E 为圆心以DG 为半径画弧交点F ,得到正方形DEFG ;(3)由已知首先证四边形CKGD 是平行四边形,然后证明四边形CEFK 为平行四边形;(4)由已知表示出的值.此题考查的知识点是正方形的性质、全等三角形的判定和性质、平行四边形的判定及作图,解题的关键是先由正方形的性质通过证三角形全等得出结论,此题较复杂.。

福建省仙游县郊尾、枫亭五校教研小片区八年级数学下学期第一次月考试题

福建省仙游县郊尾、枫亭五校教研小片区八年级数学下学期第一次月考试题

2017年春季郊尾、枫亭五校教研小片区第一次月考联考八年级数学科试卷一、选择题(每小题4分,共40分)1.下列各式一定是二次根式的是()2.如图,□ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A.13 B.17 C.20 D.26第9题3.下列各式不是最简二次根式的是()4.下列各组数中以a,b,c为边的三角形不是直角三角形的是()A.a=2,b=3,c=4 B.a=7,b=24,c=25C.a=6,b=8,c=10 D.a=3,b=4,c=55.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.AB=CD D.AC=BC6.把mm1-根号外的因式移入根号内得()A.m B.m-C.m-D.m--7.下列运算中错误的是()A.•=B.÷=2 C.+=D.(﹣)2=38.x的取值范围是()A.0x> B.2x≥- C.2x≥ D.2x≤9.将面积为8π的半圆与两个正方形拼接如图所示,这两个正方形面积的和为()A.16 B.32 C.8π D.64第2题第5题10.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4的值为( ) A .1 B .2 C .3 D .4二、填空题(每小题4分,共24分) 11.使式子1+有意义的x 的取值范围是______________.12.在实数范围内分解因式:2-2x =________________ 13.计算:825-= .14.若一直角三角形的两边长为4、5,则第三边的长为 .15.若式子有意义,则x 的取值范围是 .16.观察下列各式:①312311=+,②413412=+ ③514513=+,…… 请用含n (n ≥1)的式子写出你猜想的规律: . 三、解答题(共86分) 17.计算:(6分)x x x x 502712112-+-18.(6分)若x ,y 为实数,且y x +y 的值. 19.(6分)如图,要从电线杆离地面8m 处向地面拉一条长10m 的电缆,求地面电缆固定点A 到电线杆底部B 的距离.20.(6分)如图,在□ABCD 中,点E ,F 分别为边BC ,AD 的中点.求证:△ABE ≌△CDF .21.(8分)已知x=215-,y=215+,求下列代数式的值x 2y+xy 2。

2017-2018学年福建省莆田市仙游县郊尾、枫亭五校教研小片区八年级(下)期中数学试卷(解析版)

2017-2018学年福建省莆田市仙游县郊尾、枫亭五校教研小片区八年级(下)期中数学试卷(解析版)

2017-2018学年福建省莆田市仙游县郊尾、枫亭五校教研小片区八年级(下)期中数学试卷一、选择题(本大题共10小题,每小题4分,共40分.)1.在Rt△ABC中,∠C=90°,AC=1,BC=2,则AB=()A.B.5C.D.32.在函数y=中,自变量x的取值范围是()A.x≠2B.x>2C.x≥2D.x≠03.化简后的结果是()A.B.3C.D.±34.下列各式正确的是()A.2a+3b=5ab B.a+2a=3a2C.2a2﹣a2=2D.b2﹣2b2=﹣b25.在直角坐标系中,点P(2,3)到原点的距离是()A.B.C.D.26.已知如图,四边形ABCD是平行四边形,下列结论中错误的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形7.在▱ABCD中,有两个内角的度数比是1:2,则▱ABCD中较小的内角是()A.45°B.60°C.90°D.120°8.下列各命题的逆命题成立的是()A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等9.如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为()A.5 cm B.6 cm C.10 cm D.不能确定10.如图,将一个高度为12cm的锥形瓶放入一个空玻璃槽中,并向锥形瓶中匀速注水,若水槽的高度为10cm,则水槽中的水面高度y(cm)随注水时间x(s)的变化图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.要使式子有意义,则x的取值范围是.12.菱形ABCD的两条对角线相交于点O,若AC=6,BD=4,则这个菱形的面积为.13.在▱ABCD中,AB+BC=10,则▱ABCD的周长是.14.若正方形的边长是1,则该正方形的对角线长为.15.以△ABC的三条边为边长向外作正方形,依次得到的正方形面积为9,16,25,则这个三角形直角三角形(填“是”或“不是”).16.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为.三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)17.(8分)计算:(1)7+3﹣4(2)(+)18.(8分)如图,▱ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AF=CE,求证:四边形BFDE是平行四边形.19.(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.20.(8分)已知:如图,在△ABC中,CD⊥AB,垂足为点D,AC=20,BC=15,DB=9.(1)求CD的长.(2)求AB的长.21.(8分)如图,在正方形ABCD中有一个点E,使三角形BCE是正三角形,求:(1)∠BAE的大小(2)∠AED的大小.22.(10分)如图所示,在矩形ABCD中,AC,BD是对角线,过顶点C作BD的平行线与AB的延长线相交于点E,求证:(1)四边形DBEC是平行四边形;(2)CA=CE.23.(10分)已知,如图,在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2﹣EA2=AC2,①求证:∠A=90°.②若DE=3,BD=4,求AE的长.24.(12分)如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点.点M是AB 边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.25.(14分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠C=30°,点D从点C出发沿CA 方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)用t表示线段CD,AE的长,并证明AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;。

福建省莆田市仙游县八年级下期中数学试卷及答案

福建省莆田市仙游县八年级下期中数学试卷及答案

2017-2018学年福建省莆田市仙游县八年级(下)期中数学试卷一、选择题(每小题4分,共32分)1.下列运算正确的是()A.B. C.D.2.在实数范围内,若有意义,则x的取值范围是()A.x≤﹣1 B.x<﹣1 C.x>﹣1 D.x≥﹣13.下面条件中,能判定四边形是平行四边形的条件是()A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直4.若(x+1)2+=0,则(x+y)2012的值为()A.1 B.﹣1 C.2012 D.﹣20125.在平行四边形ABCD中,∠A:∠B:∠C:∠D=2:3:2:3,则∠D=()A.36°B.108°C.72°D.60°6.设=a, =b,用含a,b的式子表示,则下列表示正确的是()A.ab2B.2ab C.ab D.a2b7.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.178.直角三角形两直角边和为7,面积为6,则斜边长为()A.5 B.C.7 D.二、填空题(每小题4分,共计32分)9.化简: = .10.当x=2时, = .11.如图,D,E,F分别为△ABC三边的中点,则图中平行四边形的个数为.12.如图,在平行四边形ABCD中,AC平分∠DAB,AB=4,则平行四边形ABCD的周长为.13.最简二次根式与是同类二次根式,则a= .14.连结矩形四边中点所得四边形是.15.已知直角三角形的两条直角边长分别为6cm和8cm,则斜边上的高为cm.16.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.三、解答题(共计86分)17.计算:(1)(2).18.计算:2×﹣3.19.如果直角三角形的两条直角边长分别为2和,求斜边c的长.20.求证:两组对角分别相等的四边形是平行四边形.21.先化简,再求值.已知:a=,求2﹣的值.22.如图,四边形ABCD是平行四边形,BE∥DF,且分别交对角线AC于点E、F,连接ED,BF.求证:∠1=∠2.23.如图,四边形ABCD、DEFG都是正方形,连接AE、CG.求证:(1)AE=CG;(2)AE⊥CG.24.已知在△ABC中,∠A、∠B、∠C的对边分别是a,b,c,满足a2+b2+c2+338=10a+24b+26c,试判断三角形ABC的形状.25.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD 上的动点,EG的延长线与BC的延长线交于点E,边结CE、DE(1)求证:四边形CEDF是平行四边形;(2)当AE= cm时,四边形CEDF是菱形.2017-2018学年福建省莆田市仙游县八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共32分)1.下列运算正确的是()A.B. C.D.【考点】平方根.【分析】根据实数的算术平方根和平方运算法则计算,注意一个数的平方必是非负数.【解答】解:A、=2,故本选项错误;B、=5,故本选项错误;C、(﹣)2=7,故本选项正确;D、没有意义,故本选项错误.故选C.2.在实数范围内,若有意义,则x的取值范围是()A.x≤﹣1 B.x<﹣1 C.x>﹣1 D.x≥﹣1【考点】二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据二次根式有意义,分式有意义得:1+x>0,解得:x>﹣1.故选:C.3.下面条件中,能判定四边形是平行四边形的条件是()A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直【考点】平行四边形的判定.【分析】根据平行四边形的判定定理(①两组对角分别相等的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③对角线互相平分的四边形是平行四边形,④有一组对边相等且平行的四边形是平行四边形)进行判断即可.【解答】解:A、两组对角分别相等的四边形是平行四边形,故本选项错误;B、∵OA=OC、OB=OD,∴四边形ABCD是平行四边形,故本选项正确;C、两组对边分别相等的四边形是平行四边形,故本选项错误;D、对角线互相平分的四边形才是平行四边形,而对角线互相垂直的四边形不一定是平行四边形,故本选项错误.故选B.4.若(x+1)2+=0,则(x+y)2012的值为()A.1 B.﹣1 C.2012 D.﹣2012【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x+1=0,2﹣y=0,解得x=﹣1,y=2,所以,(x+y)2012=(﹣1+2)2012=1.故A.5.在平行四边形ABCD中,∠A:∠B:∠C:∠D=2:3:2:3,则∠D=()A.36°B.108°C.72°D.60°【考点】平行四边形的性质.【分析】直接利用平行四边形的邻角互补以及对角相等求出∠D的度数.【解答】解:如图所示:∵在▱ABCD中,∠A:∠B=2:3,∴设∠A=2x,则∠B=3x,∠B=∠D,根据题意可得:5x=180°,解得:x=36°,故∠A=72°,∠B=108°,则∠D=108°.故选:B.6.设=a, =b,用含a,b的式子表示,则下列表示正确的是()A.ab2B.2ab C.ab D.a2b【考点】算术平方根.【分析】利用积的算术平方根的性质可得=×,进而用含a、b的式子表示即可.【解答】解:∵=a, =b,∴=×=ab.故选C.7.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.17【考点】菱形的性质;等边三角形的判定与性质;正方形的性质.【分析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选C.8.直角三角形两直角边和为7,面积为6,则斜边长为()A.5 B.C.7 D.【考点】一元二次方程的应用;勾股定理.【分析】可设直角三角形一直角边为x,则另一直角边为7﹣x,由面积为6作为相等关系列方程求得x的值,进而求得斜边的长.【解答】解:设直角三角形一直角边为x,则另一直角边为7﹣x,根据题意得x(7﹣x)=6,解得x=3或x=4,所以斜边长为.故选A.二、填空题(每小题4分,共计32分)9.化简: = .【考点】算术平方根.【分析】根据二次根式的性质: =×(a≥0,b≥0)解答.【解答】解: ==2,故答案为:2.10.当x=2时, = 1 .【考点】分式的值.【分析】直接利用x的值代入原式求出答案.【解答】解:∵x=2,∴=1.故答案为:1.11.如图,D,E,F分别为△ABC三边的中点,则图中平行四边形的个数为 3 .【考点】平行四边形的判定;三角形中位线定理.【分析】根据三角形中位线的性质定理,可以推出DE∥AF,DF∥EC,DF∥BE且DE=AF,DF=EC,DF=BE,根据平行四边形的判定定理,即可推出有三个平行四边形.【解答】解:∵D,E,F分别为△ABC三边的中点∴DE∥AF,DF∥EC,DF∥BE且DE=AF,DF=EC,DF=BE∴四边形ADEF、DECF、DFEB分别为平行四边形故答案为3.12.如图,在平行四边形ABCD中,AC平分∠DAB,AB=4,则平行四边形ABCD的周长为16 .【考点】平行四边形的性质.【分析】首先证得△ADC≌△ABC,由全等三角形的性质易得AD=AB,由菱形的判定定理得▱ABCD为菱形,由菱形的性质得其周长.【解答】解:∵AC平分∠DAB,∴∠DAC=∠BAC,∵四边形ABCD为平行四边形,∴∠B=∠D,在△ADC和△ABC中,,∴△ADC≌△ABC,∴AD=AB,∴四边形ABCD为菱形,∴AD=AB=BC=CD=4,▱ABCD的周长为:4×4=16,故答案为:16.13.最简二次根式与是同类二次根式,则a= 5 .【考点】同类二次根式.【分析】根据最简二次根式与同类二次根式的定义列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a=15,解得:a=5.故答案为:5.14.连结矩形四边中点所得四边形是菱形.【考点】矩形的性质.【分析】因为题中给出的条件是中点,所以可利用三角形中位线性质,以及矩形对角线相等去证明四条边都相等,从而说明是一个菱形.【解答】解:连接AC、BD,在△ABD中,∵AH=HD,AE=EB∴EH=BD,同理FG=BD,HG=AC,EF=AC,又∵在矩形ABCD中,AC=BD,∴EH=HG=GF=FE,∴四边形EFGH为菱形,故答案为:菱形.15.已知直角三角形的两条直角边长分别为6cm和8cm,则斜边上的高为 4.8 cm.【考点】勾股定理.【分析】设斜边上的高为hcm,由勾股定理求出斜边长,再由直角三角形面积的计算方法即可得出斜边上的高.【解答】解:设斜边上的高为hcm,由勾股定理得: =10cm,直角三角形的面积=×10×h=×6×8,解得:h=4.8.故答案为:4.8cm.16.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.【考点】菱形的性质;翻折变换(折叠问题).【分析】根据菱形性质得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根据折叠得出EF⊥AC,EF平分AO,推出EF∥BD,推出,EF为△ABD的中位线,根据三角形中位线定理求出即可.【解答】解:连接BD、AC,∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴EF=BD=(+)=,故答案为:.三、解答题(共计86分)17.计算:(1)(2).【考点】分母有理化;二次根式的乘除法.【分析】(1)先分子和分母都乘以,即可求出答案;(2)先分子和分母都乘以,再求出即可.【解答】解:(1)原式==;(2)===.18.计算:2×﹣3.【考点】二次根式的乘除法.【分析】直接化简二次根式,进而利用二次根式乘法运算法则求出答案.【解答】解:2×﹣3=4×﹣3=3﹣3=0.19.如果直角三角形的两条直角边长分别为2和,求斜边c的长.【考点】二次根式的应用;勾股定理.【分析】知道三角形两直角边,根据勾股定理可以得到斜边c.【解答】解:由题意,得c===,∴斜边c长为.20.求证:两组对角分别相等的四边形是平行四边形.【考点】平行四边形的判定;平行线的判定;多边形内角与外角.【分析】根据已知和四边形的内角和定理求出∠A+∠B=180°,推出AD∥BC,同理求出AB∥CD,根据平行四边形的判定推出即可.【解答】已知:四边形ABCD,∠A=∠C,∠B=∠D,求证:四边形ABCD是平行四边形,证明:∵∠A=∠C,∠B=∠D,∠A+∠B+∠C+∠D=360°,∴2∠A+2∠B=360°,∴∠A+∠B=180°,∴AD∥BC,同理AB∥CD,∴四边形ABCD是平行四边形.21.先化简,再求值.已知:a=,求2﹣的值.【考点】二次根式的化简求值.【分析】根据a的值可以对所求式子进行化简,从而可以解答本题.【解答】解:∵a=,∴2﹣=2﹣=2﹣(2﹣a)=2﹣2+a=a=.22.如图,四边形ABCD是平行四边形,BE∥DF,且分别交对角线AC于点E、F,连接ED,BF.求证:∠1=∠2.【考点】平行四边形的性质;全等三角形的判定与性质;平行四边形的判定与性质.【分析】根据平行四边形的对边平行且相等,得AB=CD,AB∥CD,再根据平行线的性质,得∠BAE=∠DCF,∠AEB=∠CFD,由AAS证明△ABE≌△CDF,根据全等三角形的对应边相等,得BE=DF,从而得出四边形BFDE是平行四边形,根据两直线平行内错角相等证得∠1=∠2.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∴∠BAE=∠DCF.又∵BE∥DF,∴∠BEF=∠EFD,∵∠BEF+∠AEB=180°,∠EFD+∠DFC=180°,∴∠AEB=∠CFD.∴△ABE≌△CDF(AAS).∴BE=DF.∴四边形BFDE是平行四边形.∴DE∥BF.∴∠1=∠2.23.如图,四边形ABCD、DEFG都是正方形,连接AE、CG.求证:(1)AE=CG;(2)AE⊥CG.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)可以把结论涉及的线段放到△ADE和△CDG中,考虑证明全等的条件,又有两个正方形,所以AD=CD,DE=DG,它们的夹角都是∠ADG加上直角,故夹角相等,可以证明全等;(2)再利用互余关系可以证明AE⊥CG.【解答】证明:(1)∵四边形ABCD、DEFG都是正方形,∴AD=CD,GD=ED,∵∠CDG=90°+∠ADG,∠ADE=90°+∠ADG∴∠CDG=∠ADE=90°,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),AE=CG;(2)设AE与DG相交于M,AE与CG相交于N,在△GMN和△DME中,由(1)得∠CGD=∠AED,又∵∠GMN=∠DME,∴∠GNM=∠MDE=90°,∴AE⊥CG.24.已知在△ABC中,∠A、∠B、∠C的对边分别是a,b,c,满足a2+b2+c2+338=10a+24b+26c,试判断三角形ABC的形状.【考点】因式分解的应用.【分析】现对已知的式子变形,出现三个非负数的平方和等于0的形式,求出a、b、c,再验证两小边的平方和是否等于最长边的平方即可.【解答】解:a2+b2﹣c2+338=10a+24b+26c,a2﹣10a+25+b2﹣24b+144﹣c2﹣26c+169=0,原式可化为(a﹣5)2+(b﹣12)2﹣(c﹣13)2=0,即a=5,b=12,c=13(a,b,c都是正的),而52+122=132符合勾股定理的逆定理,故该三角形是直角三角形.25.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD 上的动点,EG的延长线与BC的延长线交于点E,边结CE、DE(1)求证:四边形CEDF是平行四边形;(2)当AE= 2 cm时,四边形CEDF是菱形.【考点】菱形的判定;平行四边形的判定与性质.【分析】(1)只要证明△CFG≌△DEG,可得CF=DE,CF∥DE,即可推出四边形CEDF是平行四边形;(2)当EF⊥CD时,四边形CEDF是菱形,在Rt△DEG中,由∠EGD=90°,DG=CD=cm,∠EDG=∠B=60°,推出∠DEG=30°,推出DE=2DG=3cm,由此即可解决问题.【解答】(1)证明:∵四边形ABCD是平行四边形,∴BC∥AD,∴∠CFG=∠DEG,在△CFG和△DEG中,,∴△CFG≌△DEG,∴CF=DE,∵CF∥DE,∴四边形CEDF是平行四边形.(2)解:∵四边形CEDF是平行四边形,∴当EF⊥CD时,四边形CEDF是菱形,在Rt△DEG中,∵∠EGD=90°,DG=CD=cm,∠EDG=∠B=60°,∴∠DEG=30°,∴DE=2DG=3cm,∵AD=BC=5cm,∴AE=AD﹣DE=2cm.故答案为2.。

福建省2017-2018学年新人教版八年级数学下册期中试卷含答案解析

福建省2017-2018学年新人教版八年级数学下册期中试卷含答案解析

2017-2018学年八年级(下)期中数学试卷一、选择题1.下列式子中,属于最简二次根式的是()A.B.C. D.2.下面各组数是三角形的三边的长,则能构成直角三角形的是()A.2,2,3 B.60,80,100 C.4,5,6 D.5,6,73.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米4.使代数式有意义的x的取值范围是()A.x<3 B.x>3 C.x≤3 D.x≥35.如图,在▱ABCD中,AD=6,AB=4,DE平分∠ADC交BC于点E,则BE的长是()A.2 B.3 C.4 D.56.如图,在矩形ABCD中,对角线AC=8cm,∠AOD=120°,则AB的长为()A. cm B.2cm C. cm D.4cm7.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.118.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.9 B.10 C.D.二、填空题9.在△ABC中,BC=6,E、F分别是AB、AC的中点,则EF= .10.菱形的两条对角线分别是6cm和8cm,则这个菱形的面积是 cm2.11.比较大小:.(填“>”、“=”、“<”).12.化简= .13.写出“两组对边分别相等的四边形是平行四边形”的逆命题.14.+|b﹣4|=0,则= .15.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD= cm.16.如图,边长为2菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第6个菱形的边长为.三、解答题(共9题,86分)17.计算(1)﹣(﹣)(2)+a﹣4+.18.先化简,再求值:÷(x+1﹣),其中x=﹣2.19.如图,▱ABCD的对角线ACBD有相交于点O,且E、F、G、H分别是OA、OB、OC、OD、的中点.求证:四边形EFGH是平行四边形.20.如图,▱ABCD,E、F分别在AD、BC上,且EF∥AB.求证:EF=CD.21.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.22.如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1.(1)求∠2、∠3的度数;(2)求长方形纸片ABCD的面积S.23.如图,在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是菱形;(2)若AB=12cm,求菱形BDEF的周长.24.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.25.某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①⇒②⇒③),图中的M、N分别为直角三角形的直角边与矩形ABCD 的边CD、BC的交点.(1)该学习小组成员意外的发现图①(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图③中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图①和图③中发现的结论选择其一说明理由.(2)试探究图②中BN、CN、CM、DM这四条线段之间的数量关系,写出你的结论,并说明理由.(3)将矩形ABCD改为边长为1的正方形ABCD,直角三角板的直角顶点绕O点旋转到图④,两直角边与AB、BC分别交于M、N,直接写出BN、CN、CM、DM这四条线段之间所满足的数量关系.(不需要证明)参考答案与试题解析一、选择题1.下列式子中,属于最简二次根式的是()A.B.C. D.【考点】最简二次根式.【专题】计算题.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=3,故A错误;B、是最简二次根式,故B正确;C、=2,不是最简二次根式,故C错误;D、=,不是最简二次根式,故D错误;故选:B.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.2.下面各组数是三角形的三边的长,则能构成直角三角形的是()A.2,2,3 B.60,80,100 C.4,5,6 D.5,6,7【考点】勾股数.【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+22≠32,故不能构成直角三角形;B、602+802=1002,故能构成直角三角形;C、42+52≠62,故不能构成直角三角形;D、52+62≠72,故不能构成直角三角形.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.勾股定理的逆定理:若三角形三边满足a2+b2=c2,那么这个三角形是直角三角形.3.如果梯子的底端离建筑物5米,13米长的梯子可以达到建筑物的高度是()A.12米B.13米C.14米D.15米【考点】勾股定理的应用.【专题】应用题.【分析】根据梯子、地面、墙正好构成直角三角形,再根据勾股定理解答即可.【解答】解:如图所示,AB=13米,BC=5米,根据勾股定理AC===12米.故选A.【点评】此题是勾股定理在实际生活中的运用,比较简单.4.使代数式有意义的x的取值范围是()A.x<3 B.x>3 C.x≤3 D.x≥3【考点】二次根式有意义的条件.【分析】二次根式有意义时,被开方数为非负数,列不等式求解即可.【解答】解:根据题意得:3﹣x≥0,解得x≤3.故选C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.5.如图,在▱ABCD中,AD=6,AB=4,DE平分∠ADC交BC于点E,则BE的长是()A.2 B.3 C.4 D.5【考点】平行四边形的性质.【分析】由四边形ABCD是平行四边形,可得BC=AD=6,CD=AB=4,AD∥BC,得∠ADE=∠DEC,又由DE 平分∠ADC,可得∠CDE=∠DEC,根据等角对等边,可得EC=CD=4,所以求得BE=BC﹣EC=2.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=6,CD=AB=4,AD∥BC,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴EC=CD=4,∴BE=BC﹣EC=2.故选:A.【点评】此题考查了平行四边形的性质、角平分线的定义与等腰三角形的判定定理.注意当有平行线和角平分线出现时,会出现等腰三角形.6.如图,在矩形ABCD中,对角线AC=8cm,∠AOD=120°,则AB的长为()A. cm B.2cm C. cm D.4cm【考点】矩形的性质.【分析】根据矩形的对角线相等且互相平分可得AO=BO=AC,再根据邻角互补求出∠AOB的度数,然后得到△AOB是等边三角形,再根据等边三角形的性质即可得解.【解答】解:在矩形ABCD中,AO=BO=AC=4cm,∵∠AOD=120°,∴∠AOB=180°﹣120°=60°,∴△AOB是等边三角形,∴AB=AO=4cm.故选D.【点评】本题考查了矩形的性质,等边三角形的判定与性质,判定出△AOB是等边三角形是解题的关键.7.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11【考点】平行四边形的性质;勾股定理.【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选:C.【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.8.如图,一只蚂蚁从长、宽都是4,高是6的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.9 B.10 C.D.【考点】平面展开﹣最短路径问题.【专题】数形结合.【分析】将长方体展开,得到两种不同的方案,利用勾股定理分别求出AB的长,最短者即为所求.【解答】解:如图(1),AB==;如图(2),AB===10.故选B.【点评】此题考查了立体图形的侧面展开图,利用勾股定理求出斜边的长是解题的关键,而两点之间线段最短是解题的依据.二、填空题9.在△ABC中,BC=6,E、F分别是AB、AC的中点,则EF= 3 .【考点】三角形中位线定理.【分析】根据三角形的中位线等于第三边的一半进行计算即可.【解答】解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴EF=BC=×6=3,故答案为:3.【点评】此题考查了三角形的中位线定理的数量关系,熟练掌握定理是解题的关键.10.菱形的两条对角线分别是6cm和8cm,则这个菱形的面积是24 cm2.【考点】菱形的性质.【分析】直接利用菱形面积等于对角线乘积的一半进而得出答案.【解答】解:∵菱形的两条对角线分别是6cm和8cm,∴这个菱形的面积是:×6×8=24(cm2).故答案为:24.【点评】此题主要考查了菱形的性质,正确记忆菱形面积求法是解题关键.11.比较大小:<.(填“>”、“=”、“<”).【考点】实数大小比较.【分析】本题需先把进行整理,再与进行比较,即可得出结果.【解答】解:∵ =∴∴故答案为:<.【点评】本题主要考查了实数大小关系,在解题时要化成同一形式是解题的关键.12.化简= .【考点】分母有理化.【分析】把分子分母同时乘以(﹣1)即可.【解答】解:原式==.故答案为:.【点评】本题考查的是分母有理化,分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.13.写出“两组对边分别相等的四边形是平行四边形”的逆命题“平行四边形是两组对边分别相等的四边形”.【考点】命题与定理.【专题】推理填空题.【分析】把一个命题的条件和结论互换就得到它的逆命题.【解答】解:“两组对边分别相等的四边形是平行四边形”的逆命题是:“平行四边形是两组对边分别相等的四边形”.故答案为:“平行四边形是两组对边分别相等的四边形”.【点评】此题主要考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.14.+|b﹣4|=0,则= 2 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列出算式求出a、b的值,根据算术平方根的概念解答即可.【解答】解:由题意得,a﹣1=0,b﹣4=0,解得,a=1,b=4,则=2,故答案为:2.【点评】本题考查的是非负数的性质和算术平方根的概念,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.15.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD= 4 cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.【解答】解:∵平行四边形的周长为20cm,∴AB+BC=10cm;又△BOC的周长比△AOB的周长大2cm,∴BC﹣AB=2cm,解得:AB=4cm,BC=6cm.∵AB=CD,∴CD=4cm故答案为:4.【点评】此题主要考查平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.16.如图,边长为2菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第6个菱形的边长为18.【考点】菱形的性质.【专题】规律型.【分析】根据已知和菱形的性质可分别求得AC,AC1,AC2的长,从而可发现规律,根据规律不难求得第6个菱形的边长.【解答】解:连接DB,∵四边形ABCD是菱形,∴AD=AB.AC⊥DB,∵∠DAB=60°,∴△ADB是等边三角形,∴DB=AD=2,∴BM=1,∴AM==,∴AC=2AM=2,同理可得AC1=AC=6,AC2=AC1=6,AC3=AC2=18,AC4=AC3=18.故答案为:18.【点评】本题考查了菱形的性质,勾股定理,等边三角形的性质和判定的应用,解此题的关键是能根据求出的结果得出规律.三、解答题(共9题,86分)17.(2016春•莆田校级期中)计算(1)﹣(﹣)(2)+a﹣4+.【考点】二次根式的加减法.【分析】(1)首先化简二次根式,进而合并同类二次根式进而得出答案;(2)首先化简二次根式,进而合并同类二次根式进而得出答案.【解答】解:(1)﹣(﹣)=2﹣(3﹣×4)=2﹣=;(2)+a﹣4+=2a+a﹣2+=(3a﹣1).【点评】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.18.先化简,再求值:÷(x+1﹣),其中x=﹣2.【考点】分式的化简求值.【分析】将原式括号中各项通分并利用同分母分式的减法法则计算,整理后再利用平方差公式分解因式,然后利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,即可得到原式的值.【解答】解:÷(x+1﹣)=÷[﹣]=÷=×=当x=﹣2时,原式==.【点评】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找出公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.19.如图,▱ABCD的对角线ACBD有相交于点O,且E、F、G、H分别是OA、OB、OC、OD、的中点.求证:四边形EFGH是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】由平行四边形的性质得出OA=OC,OB=OD,再由中点的定义得出OE=OG,OF=OH,即可证出四边形EFGH是平行四边形.【解答】证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E、F、G、H分别是OA、OB、OC、OD、的中点,∴OE=OA,OG=OC,OF=OB,OH=OD,∴OE=OG,OF=OH,∴四边形EFGH是平行四边形.【点评】本题考查了平行四边形的判定与性质;熟记平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形是解决问题的关键.20.如图,▱ABCD,E、F分别在AD、BC上,且EF∥AB.求证:EF=CD.【考点】平行四边形的性质.【专题】证明题.【分析】根据平行四边形的性质可得AB=CD,AD∥BC,再判定四边形ABFE是平行四边形,进而可得AB=EF,再利用等量代换可得EF=CD.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∴AE∥FB,∵EF∥AB,∴四边形ABFE是平行四边形,∴AB=EF,∴EF=CD.【点评】此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形对边相等,两组对边分别平行的四边形是平行四边形.21.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△ACD是直角三角形,分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连结AC,在△ABC中,∵∠B=90°,AB=3,BC=4,∴AC==5,S△ABC=AB•BC=×3×4=6,在△ACD中,∵AD=13,AC=5,CD=12,∴CD2+AC2=AD2,∴△ACD是直角三角形,∴S△ACD=AC•CD=×5×12=30.∴四边形ABCD的面积=S△ABC+S△ACD=6+30=36.【点评】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC和△CAD的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.22.如图,把长方形纸片ABCD沿EF折叠后.点D与点B重合,点C落在点C′的位置上.若∠1=60°,AE=1.(1)求∠2、∠3的度数;(2)求长方形纸片ABCD的面积S.【考点】翻折变换(折叠问题);矩形的性质.【专题】几何综合题.【分析】(1)根据AD∥BC,∠1与∠2是内错角,因而就可以求得∠2,根据图形的折叠的定义,可以得到∠4=∠2,进而可以求得∠3的度数;(2)已知AE=1,在Rt△ABE中,根据三角函数就可以求出AB、BE的长,BE=DE,则可以求出AD的长,就可以得到矩形的面积.【解答】解:(1)∵AD∥BC,∴∠2=∠1=60°;又∵∠4=∠2=60°,∴∠3=180°﹣60°﹣60°=60°.(2)在直角△ABE中,由(1)知∠3=60°,∴∠5=90°﹣60°=30°;∴BE=2AE=2,∴AB==;∴AD=AE+DE=AE+BE=1+2=3,∴长方形纸片ABCD的面积S为:AB•AD=×3=3.【点评】此题考查了矩形的性质,折叠的性质以及直角三角形的性质.此题难度不大,解题的关键是注意数形结合思想的应用.23.如图,在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是菱形;(2)若AB=12cm,求菱形BDEF的周长.【考点】菱形的判定;三角形中位线定理.【专题】计算题;证明题;压轴题.【分析】(1)可根据菱形的定义“一组邻边相等的平行四边形是菱形”,先证明四边形BFED是平行四边形,然后再证明四边形的邻边相等即可.(2)F是AB的中点,有了AB的长也就求出了菱形的边长BF的长,那么菱形BDEF的周长也就能求出了.【解答】(1)证明:∵D、E、F分别是BC、AC、AB的中点,∴DE∥AB,EF∥BC,∴四边形BDEF是平行四边形,又∵DE=AB,EF=BC,且AB=BC,∴DE=EF,∴四边形BDEF是菱形;(2)解:∵AB=12cm,F为AB中点,∴BF=6cm,∴菱形BDEF的周长为6×4=24cm.【点评】本题的关键是判断四边形BDEF是菱形.菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.24.如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.【考点】矩形的判定;平行线的性质;等腰三角形的判定与性质;直角三角形斜边上的中线.【专题】压轴题.【分析】(1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案;(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可得出CO的长;(3)根据平行四边形的判定以及矩形的判定得出即可.【解答】(1)证明:∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,∠4=∠6,∵MN∥BC,∴∠1=∠5,∠3=∠6,∴∠1=∠2,∠3=∠4,∴EO=CO,FO=CO,∴OE=OF;(2)解:∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°,∵CE=12,CF=5,∴EF==13,∴OC=EF=6.5;(3)解:当点O在边AC上运动到AC中点时,四边形AECF是矩形.证明:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形,∵∠ECF=90°,∴平行四边形AECF是矩形.【点评】此题主要考查了矩形的判定、平行四边形的判定和直角三角形的判定等知识,根据已知得出∠ECF=90°是解题关键.25.某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①⇒②⇒③),图中的M、N分别为直角三角形的直角边与矩形ABCD 的边CD、BC的交点.(1)该学习小组成员意外的发现图①(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图③中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图①和图③中发现的结论选择其一说明理由.(2)试探究图②中BN、CN、CM、DM这四条线段之间的数量关系,写出你的结论,并说明理由.(3)将矩形ABCD改为边长为1的正方形ABCD,直角三角板的直角顶点绕O点旋转到图④,两直角边与AB、BC分别交于M、N,直接写出BN、CN、CM、DM这四条线段之间所满足的数量关系.(不需要证明)【考点】旋转的性质;全等三角形的判定与性质;勾股定理;矩形的性质.【专题】计算题;操作型.【分析】(1)作辅助线,连接DN,在Rt△CDN中,根据勾股定理可得:ND2=NC2+CD2,再根据ON垂直平分BD,可得:BN=DN,从而可证:BN2=NC2+CD2;(2)作辅助线,延长MO交AB于点E,可证:△BEO≌△DMO,NE=NM,在Rt△BEN和Rt△MCN中,根据勾股定理和对应边相等,可证:CN2+CM2=DM2+BN2;(3)根据正方形的性质知:OA=OB,∠OAM=∠OBN,∠AOB=∠AOM+∠BOM=90°,∠MON为直角三角板的直角,可知:∠MON=∠BOM+∠BON=90°,可得:∠AOM=∠BON,从而可证:△AOM≌△BON,AM=BN,又AB=BC,可得:BM=CN,在Rt△ADM和△BCM中,根据勾股定理:DM2=AM2+AD2=BN2+AD2,MC2=MB2+BC2=CN2+BC2,故可得:CM2﹣CN2+DM2﹣BN2=2.【解答】解:(1)选择图①证明:连接DN.∵四边形ABCD是矩形,∴BO=DO,∠DCN=90°,∵ON⊥BD,∴NB=ND,∵∠DCN=90°,∴ND2=NC2+CD2,∴BN2=NC2+CD2.(2)CM2+CN2=DM2+BN2.理由如下:如图②,延长MO交AB于E,连接NE、NM.∵四边形ABCD是矩形,∴BO=DO,∠ABC=∠DCB=90°,∵AB∥CD,∴∠ABO=∠CDO,∠BEO=∠DMO,∴△BEO≌△DMO,∴OE=OM,BE=DM,∵NO⊥EM,∴NE=NM,∵∠ABC=∠DCB=90°,∴NE2=BE2+BN2,NM2=CN2+CM2,∴CN2+CM2=BE2+BN2,即CN2+CM2=DM2+BN2.(3)CM2﹣CN2+DM2﹣BN2=2.【点评】本题考查了图形的旋转变化,在解题过程中要综合应用勾股定理、矩形、正方形的特殊性质及三角形全等的判定等知识.。

2017—2018学年度第二学期八年级数学期中试卷(含答案)

2017—2018学年度第二学期八年级数学期中试卷(含答案)

2017—2018学年度第二学期期中教学质量评估测试八年级数学试卷题号一 二 三 总分 得分注意事项:全卷共120分,考试时间120分钟.一、选择题:(每小题3分,共30分)1.下列二次根式中,最简二次根式的是( )A .B .C .D . 2.下列计算正确的是( ).A.2(3)9=B .822÷=C .236⨯=D .2(2)2-=-3. 下列各组数中,能构成直角三角形的是( )A. 4,5,6B. 1,1,C. 6,8,11D. 5,12,23 4. 在Rt△ABC 中,△C =90°,△B =45°,c =10,则a 的长为( )A. B. C.5 D.5.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是( ) A. AB=BC,CD=DA B. AB//CD,AD=BC C. AB//CD,C A ∠=∠ D.D C B A ∠=∠∠=∠, 6.正方形面积为36,则对角线的长为( ) A.B .6C .9D. 7.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A. 10mB. 15mC. 18mD. 20m8.如图,在平行四边形ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分△BAD 交BC 边于点E ,则EC 等于( )A .1cmB .2cmC .3cmD .4cm9.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF=3,则菱形ABCD 的周长是( )A .12B .16C .20D .2410.如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点D′处,则重叠部分△AFC 的面积为( )A .6B .8C .10D .12二、填空题:(每小题3分,共30分)11. 木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 .(填“合格”或“不合格” ) 12.若式子 在实数范围内有意义,则 的取值范围是 .13.在数轴上表示实数a 的点如图所示,化简()2-a 5-a 2+的结果为______.14.计算()2252-的结果是________.15.一个直角三角形的两边长分别为4与5,则第三边长为________.16.平行四边形ABCD 中一条对角线分△A 为35°和45°,则△B= 度. 17. 如右图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则EF= cm . 18. 在△ABC 中,△C=90°,AC=12,BC=16,则AB 边上的中线CD 为 .19.在平面直角坐标系中,点A (﹣1,0)与点B (0,2)的距离是 . 20.对于任意不相等的两个数a ,b ,定义一种运算△如下:a△b = ,座号得 分 评卷人 题号1 2 3 4 5 6 7 8 9 10 答案得 分 评卷人学校 年级 姓名 学号密封线内不要答题八年级 数学 第1页 (共6页) 八年级 数学 第2页 (共6页)212510252612-+x x x 8.04529a b a b+-如3△2= =5.那么12△4= .三.解答题:(本大题共60分)21. (6分)(共2小题,每小题3分)(1) (2)22.(8分)若最简二次根式31025311x x y x y -+--+和是同类二次根式. (1)求x y 、的值; (5分) (2)求22y x +的值.(3分)23.(7分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. ( 4分)(2)求这块地的面积.(3分)24. (8分)如图,四边形ABCD 中,AC ,BD 相交于点O ,O 是AC 的中点,AD △BC ,AC =8,BD =6.(1)求证:四边形ABCD 是平行四边形; (4分) (2)若AC △BD ,求平行四边形ABCD 的面积. (4分)25 . (8分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 的中点,连接OE .过点C 作CF △BD 交线段OE 的延长线于点F ,连接DF . 求证:(1)△ODE △△FCE (4分)(2)四边形ODFC 是菱形 (4分)得 分 评卷人DACB八年级 数学 第3页 (共6页) 八年级 数学 第4页 (共6页)3232+-)227(328--+5232232⨯÷26.(8分)已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形). (1)四边形EFGH 的形状是 ,证明你的结论;(4分)(2)当四边形ABCD 的对角线满足 条件时,四边形EFGH 是矩形(不证明)(2分) (3)你学过的哪种特殊四边形的中点四边形是矩形? (不证明)(2分)27.(6分)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口 小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?28.(9分)观察下列等式: △ △ + = △……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2分) (2)利用你观察到的规律,化简:(3分)(3)计算: + + +……+(4分)八年级 数学 第5页 (共6页) 八年级 数学 第6页 (共6页)23321+211+231+34)34)(34(34341-=-+-=+231+1031+)23)(23(23-+-23-2017—2018学年度第二学期期中教学质量评估测试八年级数学参考答案一、选择题1.D 2.B 3. B 4.A 5.C 6. A 7.C 8.B 9.D 10. C 二、填空题11.合格 12.x ≥﹣2且x ≠1 13. 3 14. 15.3或41 16.100 17 . 2.5 18. 10 19. . 20.1.2三、解答题:(共60分)21(1)解: + 2 ﹣(﹣ ) =2 +2 ﹣3 + ------(2分) =3 ﹣ ------(3分) (2)解: ÷ ×== ------(2分)= -------(3分) 22.(1)x=4,y=3;(5分) (2)5 (3分) 解:(1)由题意得:3x-10=2 , ---------(2分)2x+y-5=x-3y+11 ----------(4分)解得x=4 y=3 --------(5分)(2)当x=4 , y=3时22y x += =5 -----(3分) 23.解(1)以点A 、点B 、点C 为顶点的三角形是直角三角形(4分)(2)这块地的面积24m 2. (3分) 解:(1)连接AC . -------(1分) 由勾股定理可知:AC=---(2分)又∵AC 2+BC 2=52+122=132=AB 2--------(3分) ∴△ABC 是直角三角形 --------(4分) (2)这块地的面积=△ABC 的面积-△ACD 的面积 ----(1分)=×5×12- ×3×4 --- (2分) =24(m 2). ----(3分)24. (1)证明:∵O 是AC 的中点,∴OA =OC. ------(1分) ∵AD ∥BC ,∴∠DAO =∠BCO. -------(2分) 又∵∠AOD =∠COB ,∴△AOD ≌△COB ,(ASA ) -----------------(3分) ∴OD =OB ,∴四边形ABCD 是平行四边形 --------------(4分) (2)∵四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形 ---------------(2分)∴ ABCD 的面积= AC •BD = ×8×6=24 ---------------(4分)25 .证明:(1)∵CF ∥BD ∴∠ODE=∠FCE----------------(1分)∵E 是CD 中点 ∴CE=DE , -------------------(2分) 在△ODE 和△FCE 中2222435AD CD +=+=12121222410.-1.232322528528332⨯⨯10110102234+32722332235∴△ODE ≌△FCE (ASA ) --------------(4分) (2)∵△ODE ≌△FCE ∴OD=FC , -------------(1分) 又∵CF ∥BD , ∴四边形ODFC 是平行四边形-----(2分)∵矩形ABCD ∴AC=BD OC= AC,OD= BD ∴ OC=OD ----------------(3分)∴四边形ODFC 是菱形. -----------------------(4分) 26(1)平行四边形;(4分)(2)互相垂直(2分)(3)菱形.(2分)(1)证明:连结BD . -------------------- (1分)∵E 、H 分别是AB 、AD 中点,∴EH ∥BD ,EH= BD , ----------------------(2分)同理FG ∥BD ,FG= BD , ---------------------(3分)∴EH ∥FG ,EH=FG ,∴四边形EFGH 是平行四边形 --------------------------(4分) 27. 解:根据题意,得PQ=16×1.5=24(海里) - -----------(1分)PR=12×1.5=18(海里) -----------(2分) QR=30(海里)∵242+182=302, 即PQ 2+PR 2=QR 2∴∠QPR=90°. ----------------(4分) 由“远洋号”沿东北方向航行可知∠QPS=45°,则∠SPR=45°(5分) 即“海天”号沿西北方向航行. -------(6分)28. (1)(2)2311- (3)解:(1)第n 个等式 (2分)(2)原式=1121123111211=-=-+. (3分)原式=2-1+3-2+4-3+……+10-9=10-1 ( 4分)12121212=-+++=++)1)(1(11n n n n n n 101nn -+1=-+++=++)1)(1(11n n n n n n nn -+1n n -+1n n -+1。

2017-2018学年第二学期八年级期中测试数学试题卷、参考答案评分建议

2017-2018学年第二学期八年级期中测试数学试题卷、参考答案评分建议

17 S△ABC . 120
1 BM=5﹣2t, 2 17 1 17 由 S△PMD S△ABC ,即 12 t 5 2t , 120 2 2 2 ∴2t ﹣29t+43=0
①若点 M 在线段 CD 上,即 0 t
12.4 15.2
13.-4 16.3.
1 . 8 1 33 1 33 (2) x1 , x2 . 4 4
1 1 y 2 x 2 y x y x 18.(1)原式 2 2 2 2 , 2 y x y xy x
1 1 1 1 (1)已知 x 2 3 , y 2 3 ,求 的值. x y x y
(2)若 5 的整数部分为 a ,小数部分为 b ,写出 a , b 的值并计算
a 1 ab 的值. b
19.(本小题满分 8 分) 某校八年级对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由 低到高分成五组,并绘制成如图的频数分布直方图,请结合直方图提供的信息,回答下 列问题: (1)该班共有 ▲ 名同学参加这次测验; (2)这次测验成绩的中位数落在 ▲ 分数段内; (3)若该校一共有 800 名初三学生参加这次测验, 成绩 80 分以上(不含 80 分)为优秀,估计该校这 次数学测验的优秀人数是多少人?
第 2 页(共 3 页)
23.(1)∵AB=AC=13,AD⊥BC, ∴BD=CD=5cm,且∠ADB=90° , 2 2 2 ∴AD =AC ﹣CD ∴AD=12cm (2)AP=t, ∴PD=12﹣t, 在 Rt△PDC 中, PC 29 ,CD=5,根据勾股定理得,PC2=CD2+PD2, ∴29=52+(12﹣t)2 , ∴t=10 或 t=14(舍) (3)假设存在 t,使得 S△PMD ∵BC=10,AD=12, ∴ S△ABC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省五校教研小片区2017-2018学年八年级数学下学期期中联考试题(总分:150分,考试时间:120分钟)一、选择题(本大题共10小题,每小题4分,共40分.)1.在Rt △ABC 中,∠C=90°,AC=1,BC=2,则AB=( )A .5B .5C .3D .32.在函数y=中,自变量x 的取值范围是( )A .x ≠2B .x >2C .x ≥2D .x ≠03.化简:2)3-(的结果为( )A . -3 B. 3 C. 3 D. 34.下列各式正确的是( )A .错误!未找到引用源。

B .错误!未找到引用源。

C .错误!未找到引用源。

D.错误!未找到引用源。

5. 在直角坐标系中,点P (2,3)到原点的距离是( ) A. 2 B. 5 C. 13 D. 116.已知如图,四边形ABCD 是平行四边形,下列结论中错误的是( ) 第6题A .当AB=BC 时,它是菱形B .当AC ⊥BD 时,它是菱形C .当∠ABC=90°时,它是矩形D .当AC=BD 时,它是正方形7. ABCD 中,有两个内角的度数比为1:2,则这个平行四边形中较小的内角是( ) A .45° B .60° C .90° D .120°8.下列各命题的逆命题成立的是( )A .全等三角形的对应角相等B .如果两个数相等,那么它们的绝对值相等C .两直线平行,同位角相等D .如果两个角都是45°,那么这两个角相等9. 如图,D ,E ,F 分别是错误!未找到引用源。

ABC 各边的中点,AH 是高,若ED=6 cm , 那么HF 的长为( ) H F E D CB AA.5 cmB.6 cmC.10 cmD.不能确定第9题10.如图,将一个高度为12cm的锥形瓶放入一个空玻璃槽中,并向锥形瓶中匀速注水,若水槽的高度为10cm,则水槽中的水面高度y(cm)随注水时间x(s)的变化图象大致是()A. B.C. D.二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡...的相应位置)11. 要使式子错误!未找到引用源。

有意义,则x的取值范围是_______________.12.菱形ABCD的两条对角线相交于点O,若AC=6,BD=4,则这个菱形的面积为 . 13.在ABCD中,AB+BC=10,则ABCD的周长是______.14.若正方形的边长是1,则该正方形的对角线长为_________.15.以△ABC的三条边为边长向外作正方形,依次得到的正方形面积为9,16,25,则这个三角形______________ 直角三角形(填“是”或“不是”).16.在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ.当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在线段AB、AD边上移动,则点A′在BC边上可移动的第16题最大距离为______________.三、解答题(本大题共9小题,共86分.请在答题卡...的相应位置作答)17.计算:(1)(2)27124148÷⎪⎪⎭⎫ ⎝⎛+BFDE 是平行四边形.19.如图,ABCD 的对角线AC ,BD 相交于点O,EF 过点O ,且与AB,CD 分别相交于点E,F, 求证OE=OF20.如图,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9.(1)求DC 的长;(2)求AB 的长;第20题21. 如图,在正方形ABCD 中有一个点E ,使三角形BCE 是正三角形,求: (1) ∠BAE 的大小 (2)∠AED 的大小.第21题.22.如图所示,在矩形ABCD 中,AC ,BD 是对角线,过顶点C 作BD 的平行线与AB 的延长线相交于点E ,求证:(1)四边形DBEC 是平行四边形(2)CA=CE .23.如图,已知在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2﹣EA2=AC2,①求证:∠A=90°.②若DE=3,BD=4,求AE的长.24.如图所示,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)①当AM为何值时,四边形AMDN是矩形?②当AM为何值时,四边形AMDN是菱形?25.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠C=30°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)用t表示线段CD,AE的长,并证明AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请直接写出答案,不必写出过程.2018年春八年期中考试 数学参考答案一、选择题(本大题共10小题,每小题4分,共40分.)1—5 A A B D C 6—10 D B C B D二、填空题(本大题共4小题,每小题4分,共24分)11.x ≤2 12.12 13.20 14. 2 15.是 16.2三、解答题(本大题共9小题,共86分)17.(共8分每小题4分)计算(1)解:原式=7+6﹣12 ……3分= ………4分;(2)原式=33)2334(÷+……2分 =6134+……………………3分 =23…………4分18.(8分)证明:∵▱ABCD 的对角线AC 、BD 相交于点O ,∴AO=CO ,BO=DO ,…………………3分∵AF=CE ,∴FO=EO ,……………………………6分∴四边形BFDE 是平行四边形.…………………8分19.(8分)证明:∵四边形ABCD 是平行四边形∴OA=OC AB//CD ……………………………2分∴∠EAO=∠FCO ,∠AEO=∠CFO …………………4分∴△AOE ≌△COF …………………6分∴OE=OF …………………8分20.(8分)解:(1)∵CD ⊥AB 于D ,且BC=15,BD=9,∴∠CDA=∠CDB=90°……………………………………2分在Rt △CDB 中,CD 2+BD 2=CB 2,…………………………3分∴CD 2+92=152 ∴CD=12;……………………………………………………4分(2)在Rt △CDA 中,AC=20,CD 2+AD 2=AC 2∴122+AD 2=202 ∴AD=16,……………………………………………………6分∴AB=AD+BD=16+9=25.…………………………………8分21.(8分)因为四边形ABCD 为正方形,所以AB=BC ,∠ABC=∠BAD=90°,……………………………1分因为△EBC 是正三角形,所以∠EBC=60°, BE=BC=EC ,所以∠ABE=30°, AB=BE ,…………………………….3分所以∠EAB=∠AEB=(180°-∠ABE )÷2=150°÷2=75°.…………………4分 所以∠EAD=90°-∠EAB=15°同理,∠ADE=15°所以∠AED=180°-∠EAD-∠ADE=180°-15°-15°=150°……………………8分22.(10分)证明:(1)∵四边形ABCD 是矩形∴BE ∥DC …………………………………2分∵BD ∥EC ,…………………………………3分∴四边形BDCE 是平行四边形.………………………………5分(2)∵四边形BDCE 是平行四边形.∴BD=EC .…………………………………7分∵四边形ABCD 是矩形,∴AC=BD .…………………………………9分∴AC=EC .…………………………………10分23.(1)证明:连接CE ,如图,∵D 是BC 的中点,DE ⊥BC ,∴CE=BE∵BE 2﹣EA 2=AC 2,∴CE 2﹣EA 2=AC 2,∴EA 2+AC 2=CE 2,∴△ACE 是直角三角形,即∠A=90°;(2)解:∵DE=3,BD=4,∴BE==5=CE ,∴AC 2=EC 2﹣AE 2=25﹣EA 2,∵BC=2BD=8,∴在Rt △BAC 中由勾股定理可得:BC 2﹣BA 2=64﹣(5+EA )2=AC 2,∴64﹣(5+AE )2=25﹣EA 2,解得AE=1.4. 24 (1)证明:∵四边形ABCD 是菱形,∴ND ∥AM,∴∠NDE=∠MAE,∠DNE=∠AME. 又∵点E 是AD 边的中点,∴DE=AE,∴△NDE ≌△MAE,∴ND=MA,∴四边形AMDN 是平行四边形.(2)①当AM=1时,四边形AMDN 是矩形.理由如下:∵四边形ABCD 是菱形,∴AB=AD=2.当AM=1=21AD 时,可得∠ADM=30°. ∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN 是矩形.②当AM=2时,四边形AMDN 是菱形.理由如下:∵四边形ABCD 是菱形,∴AB=AD=2. ∵AM=2,∴AM=AD=2,又∠DAM=60°,∴△AMD 是等边三角形,∴AM=DM,∴平行四边形AMDN 是菱形.25.(14分)解:(1)由已知得CD=4t ,AE=2t ,…………………………2分∵DF ⊥BC,∠C=30°,∴DF=CD=2t. ……4分∴DF=AE 。

…………………………5分(2)能。

…………………………6分∵DF ∥AB ,DF=AE ,∴四边形AEFD 是平行四边形.……………………7分∵AD=60-4t …………………………………………8分∴当AD=AE 时,四边形AEFD 是菱形,即60﹣4t=2t ,解得:t=10.∴当t=10s 时,四边形AEFD 是菱形。

…………………………10分.(3)当t=s或12s时,△DEF为直角三角形…………………………14分。

相关文档
最新文档