新人教A版选修(2-2)第一章《导数及其应用》word单元测试

合集下载

人教版高中数学选修2-2习题第一章导数及其应用1.1.2导数的概念

人教版高中数学选修2-2习题第一章导数及其应用1.1.2导数的概念

第一章导数及其应用1.1变化率与导数导数的观点A 级基础稳固一、选择题1. y= x2在 x= 1 处的导数为 ()A. 2x B. 2 C. 2+ x D. 1分析:由于 f(x)= x2,x= 1,因此y= f(1+x)- f (1)= (1+x)2- 1= 2x+ (x)2,所以y=(2+x)= 2.x答案: B2.一物体运动知足曲线方程s=4t2+ 2t- 3,且 s′(5)= 42(m/s),其实质意义是 () A.物体 5 秒内共走过42 米B.物体每 5 秒钟运动42 米C.物体从开始运动到第 5 秒运动的均匀速度是42 米/秒D.物体以 t= 5 秒时的刹时速度运动的话,每经过一秒,物体运动的行程为42 米分析:由导数的物理意义知,s′ (5)= 42(m/s)表示物体在t= 5 秒时的刹时速度.答案: D3.设函数 f (x)在点 x0邻近有定义,且有 f(x0+x)- f(x0 )= a x+ b(x)2,(a,b 为常数 ),则 ()A. f′ (x)= a B. f′ (x)= bC. f′ (x0)= a D. f′ (x0)= b分析:由于 f′(x=f( x0+x)-f(x)=0)xa x+ b(x)2=(a+ b x)= a,因此 f′(xx0)=a.答案: C4.已知 y=x+ 4,则 y′|x1= ________.=555A. 2B. 10C. 5 D.-10分析:由题意知y=1+x+ 4- 1+ 4=5+x-5,y+-5+-5所以=5x1=5x=. 所以 y′|xx x=xx=5x ( 5+ x +5) 10.答案: B5.假如某物体做运动方程为s = 2(1- t 2)的直线运动 (s 的单位为 m , t 的单位为 s),那么 其在 1.2 s 末的刹时速度为 ()A .- 4.8 m/sB .- 0.88 m/sC . 0.88 m/sD . 4.8 m/s解 析 : 运 动 物 体 在1.2s 末 的 瞬 时 速 度 即 为 s 在 1.2 处 的 导数 , 所 以f ( 1.2+ t )- f ( 1.2)=t222[1-( 1.2+t ) ]- 2×( 1- 1.2 )=2(- 答案: A 二、填空题6.设函数t - 2.4)=- 4.8(m/s).f(x)知足f ( 1)- f ( 1- x )=- 1,则 f ′(1)= ________.x分析: f ( 1)- f ( 1- x ) = f ( 1- x )- f ( 1)= f ′(1)=- 1.x- x答案:- 17.函数 f(x)= x 2+ 1 在 x = 1 处可导,在求 f ′(1)的过程中,设自变量的增量为x ,则函数的增量y = ________.分析:y = f(1+ x)- f(1) =- (1 2+ 1)=2 x + ( x)2.答案: 2 x + (x)28.某物体做匀速直线运动,其运动方程是 s = vt ,则该物体在运动过程中其均匀速度与任何时辰的刹时速度的大小关系是________.s ( +t )- s ( t )分析: v 0== s t 0=ttv ( t 0+ t )- v ( t 0)=v tt= v.t答案:相等三、解答题19.利用导数的定义,求函数y = x 2+ 2 在点 x = 1 处的导数. 解:由于y = 1 2+2 - 1 =( x + x ) x 2+ 2- 2x x -(x ) 2,因此y =- 2x - x ,( x + x ) 2· x 2 x ( x + x ) 2· x 2因此 y ′=y = - 2x - x2=- 23,( x +2xx ) · xx因此 y ′|x =1=- 2.10.在自行车竞赛中,运动员的位移与竞赛时间t 存在关系 s(t)= 10t + 5t 2(s 的单位是 m ,t 的单位是 s).(1)求 t = 20,t = 0.1 时的s 与s ;t(2)求 t = 20 时的速度.解: (1) 当 t = 20, t = 0.1 时,s = s(20+ t)- s(20)= 10(20+ 0.1)+ 5(20+ 0.1)2- (10 ×20+ 5× 202)= 1+ 20+ 5×0.01=21.05.因此s 21.05 = 210.5.= 0.1ts( + t)+(+ t) 2- 10t - 5t 2(2)v ==10 t 5 t =tt5(t ) 2+ 10 t + 10tt(5 t + 10+ 10t)= 10+ 10t ,t=因此 t = 20 时的速度即为10+ 10×20= 210(m/s).B 级 能力提高1.某物体运动规律是 s = t 2 - 4t + 5,若此物体的刹时速度为 0,则 t = ()A .3B .2.5C .2D .1分析: s = (t + t)2- 4(t +t) + 5- ( t 2- 4t + 5)= 2t t + ( t)2- 4 t ,由于 v =st= 2t - 4= 0,因此 t = 2.答案: C2.婴儿从出生到第24 个月的体重变化如下图,第二年婴儿体重的均匀变化率为________kg/ 月.分析:第二年婴儿体重的均匀变化率为14.25- 11.25= 0.25(kg/月 ).24- 12答案: 0.253.若一物体运动方程是 (s 的单位是 m , t 的单位是 s)3t 2+ 2( t ≥3),s =29+ 3( t - 3) 2( 0≤t < 3) .求: (1) 物体在 t ∈内的均匀速度;(2) 物体的初速度v 0;(3) 物体在 t = 1 时的刹时速度.解: (1) 由于物体在 t ∈内的时间变化量为t = 5-3= 2,物体在 t ∈内的位移变化量为:= × 2+ 2- (3 ×32+ 2)= 3×(52- 32s 3 5 )= 48,因此物体在 t ∈上的均匀速度为 s 48 = 24(m/s).= 2t (2) 求物体的初速度 v 0 即求物体在 t = 0 时的刹时速度.由于物体在 t = 0 邻近的均匀变化率为s ( +)- ( ) == ftftt29+ 3[( 0+ t )- 3]2- 29- 3( 0- 3) 2= 3t - 18.t因此物体在 t = 0 处的刹时变化率为,s (3 t - 18)=- 18,t =即物体的初速度为- 18 m/s.(3)物体在 t = 1 时的刹时速度即为函数在 t = 1 处的刹时变化率.由于物体在 t = 1 邻近的均匀变化率为:s ( + )- ( )= f 1 t f 1 = tt29+ 3[( 1+ t )- 3]2- 29- 3( 1- 3) 2t - 12,= 3t因此物体在 t = 1 处的刹时变化率为:s = (3 t - 12)=- 12.t即物体在 t = 1 时的速度为- 12 m/s.。

新版高中数学人教A版选修2-2习题:第一章导数及其应用 检测A(1)

新版高中数学人教A版选修2-2习题:第一章导数及其应用 检测A(1)

第一章检测(A)(时间:90分钟满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则()A.a=1,b=1B.a=-1,b=1C.a=1,b=-1D.a=-1,b=-1解析∵y'=2x+a,∴曲线y=x2+ax+b在(0,b)处的切线的斜率为a,切线方程为y-b=ax,即ax-y+b=0.∴a=1,b=1.答案A2若函数f(x)=ax5+bx3+c满足f'(1)=2,则f'(-1)等于()A.-1B.-2C.2D.0解析f'(x)=5ax4+3bx2为偶函数,∴f'(-1)=f'(1)=2.答案C3若函数f(x)=a ln x+x在x=1处取得极值,则a的值为()A.12B.-1 C.0 D.-12解析f'(x)=ax+1,令f'(x)=0,得x=-a, 易知函数f(x)在x=-a处取得极值.所以a=-1.答案B4已知函数f(x)的导数f'(x)=a(x+1)(x-a),且f(x)在x=a处取得极大值,则实数a的取值范围是() A.(-1,+∞) B.(-1,0)C.(0,1)D.(1,+∞)答案B5设f(x)={x2,x∈[0,1],1x,x∈(1,e],则∫ef(x)d x等于()A.43B.54C.65D.76解析∫e0f(x)d x=∫1x2d x+∫e11xd x=13x3|1+ln x|e1=43.故选A.答案A6已知点P在曲线y=4e x+1上,α为曲线在点P处的切线的倾斜角,则α的取值范围是()A.[0,π4) B.[π4,π2)C.(π2,3π4] D.[3π4,π)解析因为0>y'=-4e x(e x+1)2=-4e x+2+1e x≥-1,当且仅当x=0时取等号.即-1≤tan α<0,所以3π4≤α<π.答案D7∫1(e x+2x)d x等于() A.1 B.e-1C.eD.e+1解析∵(e x+x2)'=e x+2x,∴∫10(e x+2x)d x=(e x+x2)|1=(e1+12)-(e0+0)=e.答案C8设a∈R,若函数y=e ax+3x,x∈R有大于零的极值点,则() A.a>-3 B.a<-3C.a>-13D.a<-13解析令y'=a e ax+3=0,∴e ax=-3a.设x=x0为大于0的极值点,∴e ax0=-3a.∴a<0,ax0<0.∴0<e ax0<1,即0<-3a<1.∴a<-3.答案B9设a<b,函数y=(x-a)2(x-b)的图象可能是()解析y'=2(x-a)(x-b)+(x-a)2=(x-a)(3x-a-2b),令y'=0,得x=a或x=a+2b3.∵a<b ,∴a<a+2b3. ∴当x=a 时,y 取极大值0;当x=a+2b3时,y 取极小值,且极小值小于零.故选C . 答案C10若函数f (x ),g (x )满足∫ 1-1f (x )g (x )d x=0,则称f (x ),g (x )为区间[-1,1]上的一组正交函数.给出三组函数:①f (x )=sin 12x ,g (x )=cos 12x ;②f (x )=x+1,g (x )=x-1;③f (x )=x ,g (x )=x 2.其中为区间[-1,1]上的正交函数的组数是( ) A.0B.1C.2D.3解析对于①,∫ 1-1sin 12x ·cos 12x d x=∫ 1-112sin x d x=12∫ 1-1sin x d x=12(-cos x )|-11=12{-cos 1-[-cos(-1)]}=12(-cos 1+cos 1) =0.故①为一组正交函数;对于②,∫ 1-1(x+1)(x-1)d x=∫ 1-1(x 2-1)d x=(13x 3-x)|-11=13-1-(-13+1)=23-2=-43≠0,故②不是一组正交函数;对于③,∫1-1x·x2d x=∫1-1x3d x=(14x4)|-11=0.故③为一组正交函数,故选C.答案C二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11∫-1-21(11+5x)3d x=.解析取F(x)=-110(5x+11)2,从而F'(x)=1(11+5x)3.则∫-1-21(11+5x)3d x=F(-1)-F(-2)=-110×62+110×12=110−1360=772.答案77212若函数f(x)在x=a处的导数为A(aA≠0),函数F(x)=f(x)-A2x2满足F'(a)=0,则A=.解析由题知f'(a)=A,又F'(x)=f'(x)-2A2x,且F'(a)=f'(a)-2aA2=A-2aA2=0.∵aA≠0,∴A=12a.答案12a13已知函数f (x )在(0,+∞)内可导,且f (e x )=x+e x ,则f'(1)= . 解析令e x =t ,则x=ln t ,∴f (t )=ln t+t ,∴f'(t )=1t +1,∴f'(1)=2.答案214设曲线y=e x 在点(0,1)处的切线与曲线y=1x(x>0)上点P 处的切线垂直,则点P 的坐标为 .解析曲线y=e x 在点(0,1)处的切线斜率k=y'=e x |x=0=1;由y=1x,可得y'=-1x2,因为曲线y=1x(x>0)在点P 处的切线与曲线y=e x 在点(0,1)处的切线垂直,所以-1x P2=-1,解得x P =1,由y=1x,得y P =1,故所求点P 的坐标为(1,1). 答案(1,1)15已知函数f (x )为一次函数,其图象经过点(3,4),且∫ 10f (x )d x=1,则函数f (x )的解析式为 .解析设函数f (x )=ax+b (a ≠0).∵函数f (x )的图象经过点(3,4),∴b=4-3a.∴∫ 10f (x )d x=∫10(ax+4-3a )d x =[12ax 2+(4-3a )x]|01=12a+4-3a=1, ∴a=65.∴b=25.∴f (x )=65x+25.答案f (x )=65x+25三、解答题(本大题共5小题,共45分.解答时应写出文字说明、证明过程或演算步骤)16(8分)求定积分∫0-1x2x2+2xd x的值.解∫0-1x2x2+2xd x=∫0-1x2+2x-2xx2+2xd x=∫0-1(1-2x+2)d x=∫0-11d x-∫0-12x+2d x=1-2∫0-11x+2d x=1-2ln(x+2)|-10=1-2ln 2.17(8分)已知曲线f(x)=2x3-3x,过点M(0,32)作曲线f(x)的切线,求切线的方程.解设切点坐标为N(x0,2x03-3x0),由导数的几何意义知切线的斜率k就是切点处的导数值,而f'(x)=6x2-3,所以切线的斜率k=f'(x0)=6x02-3.所以切线方程为y=(6x02-3)x+32.又点N在切线上,所以2x03-3x0=(6x02-3)x0+32,解得x0=-2.故切线方程为y=21x+32.18(9分)求函数y=13x3+3-ln x的单调区间.解函数的定义域为(0,+∞),y'=x2-1x =(x-1)(x2+x+1)x.令y'>0,则{(x-1)(x2+x+1)x>0,x>0,解得x>1;令y'<0,则{(x-1)(x2+x+1)x<0, x>0,解得0<x<1.故函数的单调递增区间为(1,+∞),单调递减区间为(0,1).19(10分)设f(x)=a(x-5)2+6ln x,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).(1)确定a的值;(2)求函数f(x)的单调区间与极值.解(1)因f(x)=a(x-5)2+6ln x,故f'(x)=2a(x-5)+6x.令x=1,得f(1)=16a,f'(1)=6-8a,所以曲线y=f(x)在点(1,f(1))处的切线方程为y-16a=(6-8a)(x-1),由点(0,6)在切线上可得6-16a=8a-6,故a=12.(2)由(1)知,f(x)=12(x-5)2+6ln x(x>0),f'(x)=x-5+6x =(x-2)(x-3)x.令f'(x)=0,解得x1=2,x2=3.当0<x<2或x>3时,f'(x)>0,故f(x)的单调递增区间为(0,2),(3,+∞);当2<x<3时,f'(x)<0,故f(x)的单调递减区间为(2,3).由此可知f(x)在x=2处取得极大值f(2)=92+6ln 2,在x=3处取得极小值f(3)=2+6ln 3.20(10分)已知f(x)=a(x-ln x)+2x-1x2,a∈R.(1)讨论f(x)的单调性;(2)当a=1时,证明f(x)>f'(x)+32对于任意的x∈[1,2]成立.解(1)f(x)的定义域为(0,+∞).f'(x )=a-a x −2x 2+2x 3=(ax 2-2)(x -1)x 3. 当a ≤0时,x ∈(0,1)时,f'(x )>0,f (x )单调递增,x ∈(1,+∞)时,f'(x )<0,f (x )单调递减.当a>0时,f'(x )=a (x -1)x 3(x -√2a )(x +√2a ).①0<a<2时,√2a >1,当x ∈(0,1)或x ∈(√2a ,+∞)时,f'(x )>0,f (x )单调递增,当x ∈(1,√2a)时,f'(x )<0,f (x )单调递减.②a=2时,√2a =1,在x ∈(0,+∞)内,f'(x )≥0,f (x )单调递增.③a>2时,0<√2a <1,当x ∈(0,√2a )或x ∈(1,+∞)时,f'(x )>0,f (x )单调递增,当x ∈(√2a ,1)时,f'(x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,1)内单调递增,在(1,+∞)内单调递减;当0<a<2时,f (x )在(0,1)内单调递增,在(1,√2a)内单调递减,在(√2a,+∞)内单调递增;当a=2时,f (x )在(0,+∞)内单调递增;当a>2时,f (x )在(0,√2a )内单调递增,在(√2a ,1)内单调递减,在(1,+∞)内单调递增. (2)由(1)知,a=1时,f (x )-f'(x )=x-ln x+2x -1x 2−(1-1x −2x 2+2x 3)=x-ln x+3x +1x 2−2x 3-1,x ∈[1,2].设g (x )=x-ln x ,h (x )=3x +1x 2−2x 3-1,x ∈[1,2].则f (x )-f'(x )=g (x )+h (x ).由g'(x )=x -1x≥0, 可得g (x )≥g (1)=1, 当且仅当x=1时取得等号.又h'(x )=-3x 2-2x+6x 4, 设φ(x )=-3x 2-2x+6,则φ(x )在x ∈[1,2]单调递减, 因为φ(1)=1,φ(2)=-10,所以∃x 0∈(1,2),使得x ∈(1,x 0)时,φ(x )>0,x ∈(x 0,2)时,φ(x )<0. 所以h (x )在(1,x 0)内单调递增,在(x 0,2)内单调递减.由h (1)=1,h (2)=12,可得h (x )≥h (2)=12, 当且仅当x=2时取得等号.所以f (x )-f'(x )>g (1)+h (2)=32,即f (x )>f'(x )+32对于任意的x ∈[1,2]成立.。

新人教版选修22第一章导数及其应用测试题及答案

新人教版选修22第一章导数及其应用测试题及答案

(数学选修2-2) 第一章 导数及其应用一、选择题1.若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+D .2sin α2.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( )3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的取值范围是( )A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(-4.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( )A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C.(0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +>5.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( )A .430x y --=B .450x y +-=C .430x y -+=D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数)(x f 在开区间),(b a 内有极小值点( )x ?abxy)(f y =OA .1个B .2个C .3个D .4个二、填空题1.若函数2f xx x c 在2x =处有极大值,则常数c 的值为_________;2.函数x x y sin 2+=的单调增区间为 。

3.设函数())(0)f x ϕϕπ=+<<,若()()f x f x '+为奇函数,则ϕ=__________ 4.设321()252f x x x x =--+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。

人教a版数学高二选修2-2习题_第一章_导数及其应用_1.1.3导数的几何意义

人教a版数学高二选修2-2习题_第一章_导数及其应用_1.1.3导数的几何意义

第一章 导数及其应用1.1 变化率与导数1.1.3 导数的几何意义A 级 基础巩固一、选择题1.已知曲线y =f (x )在x =5处的切线方程是y =-x +8,则f (5)与f ′(5)分别为( )A .3,3B .3,-1C .-1,3D .-1,-1解析:由题意得f (5)=-5+8=3,f ′(5)=-1.答案:B2.若曲线y =f (x )在点(x 0,f (x 0))处的切线方程为3x -y +1=0,则( )A .f ′(x 0)<0B .f ′(x 0)>0C .f ′(x 0)=0D .f ′(x 0)不存在解析:由导数的几何意义可知曲线在(x 0,f (x 0))处的导数等于曲线在该点处的切线的斜率,所以f ′(x 0)=3.答案:B3.曲线y =x 2在点P (1,1)处的切线方程为( )A .y =2xB .y =2x -1C .y =2x +1D .y =-2x解析:因为Δy Δx =(x +Δx )2-x 2Δx=2x +Δx ,所以 Δy Δx =2x ,所以y ′|x =1=2,所以切线方程为y -1=2(x -1),即y =2x -1.答案:B4.曲线y =12x 2-2x 在点(2,-2)处切线的斜率为( ) A .1 B .-1 C .0 D .-2解析:f′(2)= f (2+Δx )-f (2)Δx=12(2+Δx )2-2(2+Δx )-(-2)Δx =Δx 2=0. 答案:C 5.曲线y =x 3在点P 处的切线斜率为3,则点P 的坐标为( )A .(-2,-8)B .(1,1),(-1,-1)C .(2,8) D.⎝ ⎛⎭⎪⎫-12,-18解析:k =(x +Δx )3-x 3Δx ==3x 2=3,所以x =±1,所以点P 的坐标为(1,1),(-1,-1).答案:B二、填空题 6.设y =f (x )为可导函数,且满足条件f (1)-f (1-x )2x =-2,则曲线y =f (x )在点(1,f (1))处的切线的斜率是________. 解析:由 f (1)-f (1-x )2x =-2,得12f ′(1)=-2, 即f ′(1)=-4.答案:-47.如图所示,函数f (x )的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则 f (1+Δx )-f (1)Δx=______.解析:由导数的概念和几何意义知,f (1+Δx )-f (1)Δx =f ′(1)=k AB =0-42-0=-2. 答案:-28.曲线y =x 3在点(3,27)处的切线与两坐标轴所围成的三角形的面积为________.解析:因为f ′(3)= (x +Δx )3-x 3Δx =27, 所以在点(3,27)处的切线方程为y -27=27(x -3),即y =27x -54.此切线与x 轴、y 轴的交点分别为(2,0),(0,-54).所以切线与两坐标轴围成的三角形的面积为S =12×2×54=54.答案:54三、解答题9.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.解:先求曲线y =3x 2-4x +2在点M (1,1)处的斜率, k =y ′|x =1= 3(1+Δx )2-4(1+Δx )+2-3+4-2Δx =(3Δx +2)=2.设过点P (-1,2)且斜率为2的直线为l ,则由点斜式得:y -2=2(x +1),化为一般式:2x -y +4=0.所以,所求直线方程为2x -y +4=0.10.求曲线y =1x -x 上一点P (4,-74)处的切线方程. 解:因为y ′=(1x +Δx -1x )-(x +Δx -x )Δx =-Δx x (x +Δx )-Δx x +Δx +x Δx= ⎝ ⎛⎭⎪⎫-1x (x +Δx )-1x +Δx +x =-1x 2-12x . 所以y ′|x =4=-116-14=-516, 所以曲线在点P ⎝⎛⎭⎪⎫4,-74处的切线方程为: y +74=-516(x -4),即5x +16y +8=0.B 级 能力提升1.y =ax 2+1的图象与直线y =x 相切,则a =( )A.18B.14C.12D .1 解析:因为Δy Δx =a (x +Δx )2+1-ax 2-1Δx =a (Δx )2+2a (Δx )x Δx=a (Δx )+2ax ,所以 Δy Δx =2ax ,即y ′=2ax ,设切点为(x 0,y 0),则2ax 0=1,所以x 0=12a .因为切点在直线y =x 上,所以y 0=12a .代入y =ax 2+1得12a =14a +1,所以a=14. 答案:B2.设f (x )=f ′(1)+x,则f (4)=________.解析:f ′(1)= f (1+Δx )-f (1)Δx= (f ′(1)+1+Δx )-(f ′(1)+1)Δx= 1+Δx -1Δx = 11+Δx +1=12, 所以f (x )=12+x , 所以f (4)=12+4=52.答案:523.点P 在曲线y =f (x )=x 2+1上,且曲线在点P 处的切线与曲线y =-2x 2-1相切,求点P 的坐标. 解:设P (x 0,y 0),则y 0=x 20+1. f ′(x 0)= (x 0+Δx )2+1-(x 20+1)Δx =2x 0. 所以过点P 的切线方程为y -y 0=2x 0(x -x 0),即y =2x 0x +1-x 20.而此直线与曲线y =-2x 2-1相切,所以切线与曲线y =-2x 2-1只有一个公共点.由⎩⎪⎨⎪⎧y =2x 0x +1-x 20,y =-2x 2-1得2x 2+2x 0x +2-x 20=0, 所以Δ=4x 20-8(2-x 20)=0,解得x 0=±233,y 0=73. 所以点P 的坐标为⎝ ⎛⎭⎪⎫233,73或⎝ ⎛⎭⎪⎫-233,73.。

高中数学第一章导数及其应用模块综合检测新人教A选修22

高中数学第一章导数及其应用模块综合检测新人教A选修22

【优化方案】2021-2021学年高中数学 第一章 导数及其应用模块综合检测 新人教A 版选修2-2(时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合标题问题要求的)1.在△ABC 中,E ,F 分别为AB ,AC 的中点,则有EF ∥BC .这个命题的大前提为( )A .三角形的中位线平行于第三边B .三角形的中位线等于第三边的一半C .EF 为中位线D .EF ∥CB答案:A2.⎠⎛01(ex +2x)dx =( ) A .1 B .e -1C .eD .e +1解析:选C .⎠⎛01(ex +2x)dx =(ex +x2)10=e ,故选C . 3.复数(1-i 2)2=a +bi(a ,b ∈R ,i 是虚数单位),则a2-b2的值为( ) A .0 B .1C .2D .-1解析:选D .(1-i 2)2=1-2i +i22=-i =a +bi.所以a =0,b =-1,所以a2-b2=0-1=-1. 4.下列求导运算正确的是( )A .(x +3x )′=1+3x2B .(log2x)′=1xln 2C .(3x)′=3xlog3eD .(x2cos x)′=-2xsin x解析:选B.(x +3x )′=1-3x2,所以A 不正确;(3x)′=3xln 3,所以C 不正确;(x2cos x)′=2xcos x +x2·(-sin x),所以D 不正确;(log2x)′=1xln 2,所以B 正确.故选B.5.用反证法证明命题:“若(a -1)(b -1)(c -1)>0,则a ,b ,c 中至少有一个大于1”时,下列假设中正确的是( )A .假设a ,b ,c 都大于1B .假设a ,b ,c 都不大于1C .假设a ,b ,c 中至多有一个大于1D .假设a ,b ,c 中至多有两个大于1解析:选B.a ,b ,c 中至少有一个大于1的否认为a ,b ,c 都不大于1.6.已知函数f(x)=2x +1x +2,则函数y =f(x)的单调增区间是( )A .(-∞,+∞)B .(-∞,-2)C .(-2,+∞)D .(-∞,-2)和(-2,+∞)解析:选D .据解析式可知函数f(x)的定义域为{x|x ∈R ,x≠-2},由于f′(x)=3x +22>0,故函数f(x)在(-∞,-2)和(-2,+∞)上分别为增函数.7.已知集合A ={x|x2+y2=4},集合B ={x||x +i|<2,i 为虚数单位,x ∈R},则集合A 与B 的关系是( )A .AB B .B AC .A∩B =AD .A∩B =∅解析:选B.|x +i|=x2+1<2,即x2+1<4,解得-3<x <3,∴B =(-3,3),而A =[-2,2],∴B A ,故选B.8.用数学归纳法证明12+22+…+(n -1)2+n2+(n -1)2+…+22+12=n 2n2+13时,从n =k 到n =k +1,等式左边应添加的式子是( )A .(k -1)2+2k2B .(k +1)2+k2C .(k +1)2D .13(k +1)[2(k +1)2+1]解析:选B.n =k 时,左边=12+22+…+(k -1)2+k2+(k -1)2+…+22+12,n =k +1时,左边=12+22+…+(k -1)2+k2+(k +1)2+k2+(k -1)2+…+22+12,∴从n =k 到n =k +1,左边应添加的式子为(k +1)2+k2.9.若P =a +a +7,Q =a +3+a +4(a≥0),则P ,Q 的大小关系为( )A .P >QB .P =QC .P <QD .由a 的取值确定解析:选C .要比力P 与Q 的大小,只需比力P2与Q2的大小,只需比力2a +7+2a a +7与2a +7+2a +3a +4的大小,只需比力a2+7a 与a2+7a +12的大小,即比力0与12的大小,而0<12,故P <Q.10.如图,暗影部分的面积为( )A .⎠⎛ab [f(x)-g(x)]dx B .⎠⎛ac [g(x)-f(x)]dx +⎠⎛cb [f(x)-g(x)]dx C .⎠⎛ac [f(x)-g(x)]dx +⎠⎛cb [g(x)-f(x)]dx D .⎠⎛ab [g(x)-f(x)]dx 解析:选B.∵在区间(a ,c)上g(x)>f(x),而在区间(c ,b)上g(x)<f(x).∴S =⎠⎛a c [g(x)-f(x)]dx +⎠⎛cb [f(x)-g(x)]dx ,故选B.11.设函数f(x)在R 上可导,其导函数为f′(x),且函数y =(1-x)f′(x)的图象如图所示,则下列结论中必然成立的是( )A .函数f(x)有极大值f(2)和极小值f(1)B .函数f(x)有极大值f(-2)和极小值f(1)C .函数f(x)有极大值f(2)和极小值f(-2)D .函数f(x)有极大值f(-2)和极小值f(2)解析:选D .由题图可知,当x <-2时,f′(x)>0;当x =-2时,f′(x)=0;当-2<x <1时,f′(x)<0;当1<x <2时,f′(x)<0;当x =2时,f′(x)=0;当x >2时,f′(x)>0.由此可以获得函数f(x)在x =-2处取得极大值,在x =2处取得极小值.12.观察数表:1 2 3 4 … 第一行2 3 4 5 … 第二行3 4 5 6 … 第三行4 5 6 7 … 第四行… … … …第一列 第二列 第三列 第四列按照数表中所反映的规律,第n 行与第n -1列的交叉点上的数应该是( )A .2n -1B .2n +1C .n2-1D .2n -2解析:选D .按照数表可知,第1行第1列上的数为1,第2行第2列上的数为3,第3行第3列上的数为5,第4行第4列上的数为7,那么,由此可以推导出第n 行与第n 列交叉点上的数应该是2n -1,故第n 行与第n -1列的交叉点上的数应为2n -2.二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中的横线上)13.设复数i 满足i(z +1)=-3+2i(i 为虚数单位),则z 的实部是________.解析:由i(z +1)=-3+2i ,获得z =-3+2i i -1=2+3i -1=1+3i.答案:114.已知某商品生产成本C 与产量q 的函数关系式为C =100+4q ,价格p 与产量q 的函数关系式为p =25-18q ,则产量q =________时,利润L 最大.解析:收入R =q·p =q(25-18q)=25q -18q2.利润L =R -C =(25q -18q2)-(100+4q)=-18q2+21q -100(0<q <200),L′=-14q +21,令L′=0,即-14q +21=0,求得独一的极值点q =84.∴产量q 为84时,利润L 最大.答案:8415.已知圆的方程是x2+y2=r2,则经过圆上一点M(x0,y0)的切线方程为x0x +y0y =r2.类比上述性质,可以获得椭圆x2a2+y2b2=1类似的性质为________. 解析:圆的性质中,经过圆上一点M(x0,y0)的切线方程就是将圆的方程中的一个x 与y 分别用M(x0,y0)的横坐标与纵坐标替换.故可得椭圆x2a2+y2b2=1类似的性质为:过椭圆x2a2+y2b2=1上一点P(x0,y0)的切线方程为x0x a2+y0y b2=1.答案:经过椭圆x2a2+y2b2=1上一点P(x0,y0)的切线方程为x0x a2+y0y b2=116.(2021·山东省实验中学月考)给出下列四个命题:①若f′(x 0)=0,则x0是f(x)的极值点;②“可导函数f(x)在区间(a ,b)上不单调”等价于“f(x)在区间(a ,b)上有极值”;③若f(x)>g(x),则f′(x)>g′(x);④如果在区间[a ,b]上函数y =f(x)的图象是一条连续不断的曲线,则该函数在[a ,b]上必然能取得最大值和最小值.其中真命题的序号是________(把所有真命题的序号都填上).解析:②④显然正确;对f(x)=x3,有f′(0)=0,但x =0不是极值点,故①错;f(x)=x +1>g(x)=x ,但f′(x)=g′(x)=1,故③错.答案:②④三、解答题(本大题共6小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)已知复数z1=2-3i ,z2=15-5i 2+i 2. 求:(1)z1+z 2;(2)z1·z2;(3)z1z2.解:z2=15-5i 2+i 2=15-5i 3+4i =53-i 3-4i 3+4i 3-4i =5-15i 5 =1-3i.(1)z1+z 2=(2-3i)+(1+3i)=3.(2)z1·z2=(2-3i)(1-3i)=2-9-9i =-7-9i.(3)z1z2=2-3i 1-3i =2-3i 1+3i 1-3i 1+3i =2+9+3i 10=1110+310i. 18.(本小题满分12分)求函数f(x)=ex x -2的单调区间. 解:函数f(x)的定义域为(-∞,2)∪(2,+∞).f′(x)=ex x -2-ex x -22=ex x -3x -22. 因为x ∈(-∞,2)∪(2,+∞),所以ex >0,(x -2)2>0.由f′(x)>0,得x >3,所以函数f(x)的单调递增区间为(3,+∞);由f′(x)<0,得x <3,又定义域为(-∞,2)∪(2,+∞),所以函数f(x)的单调递减区间为(-∞,2)和(2,3).19.(本小题满分12分)已知a ,b ,c >0,且a +b +c =1,求证:(1)a2+b2+c2≥13; (2)a +b +c ≤ 3.证明:(1)∵a2+19≥23a ,b2+19≥23b ,c2+19≥23c ,∴(a2+19)+(b2+19)+(c2+19)≥23a +23b +23c =23.∴a2+b2+c2≥13.(2)∵a·13≤a +132,b·13≤b +132,c·13≤c +132, 三式相加得a 3+b 3+c 3≤12(a +b +c)+12=1, ∴a +b +c ≤ 3.20.(本小题满分12分)已知数列{an}满足Sn +an =2n +1.(1)写出a1,a2,a3,并推测an 的表达式;(2)用数学归纳法证明所得的结论.解:(1)由Sn +an =2n +1,当n =1时,S1=a1,∴a1+a1=2×1+1,得a1=32.当n =2时,S2=a1+a2,则a1+a2+a2=5,将a1=32代入得a2=74. 同理可得a3=158.∴an =2n +1-12n =2-12n .(2)证明:当n =1时,结论成立.假设n =k 时,命题成立,即ak =2-12k ;当n =k +1时,Sn +an =2n +1,则a1+a2+…+ak +2ak +1=2(k +1)+1.∵a1+a2+…+ak =2k +1-ak ,∴2ak +1=4-12k ,ak +1=2-12k +1成立. ∴当n =k +1时,结论也成立.∴按照上述知对于任意自然数n ∈N*,结论成立.21.(本小题满分13分)设函数f(x)=x3+ax2+x +1,a ∈R.(1)若x =1时,函数f(x)取得极值,求函数f(x)在x =-1处的切线方程;(2)若函数f(x)在区间(12,1)内不单调,求实数a 的取值范围.解:(1)由已知得f′(x)=3x2+2ax +1,f′(1)=0,故a =-2,∴f(x)=x3-2x2+x +1,当x =-1时,f(-1)=-3,即切点坐标为(-1,-3). 又f′(-1)=8,∴切线方程为8x -y +5=0.(2)f(x)在区间(12,1)内不单调,即f′(x)=0在(12,1)内有解,令f′(x)=3x2+2ax +1=0,则2ax =-3x2-1.由x ∈(12,1),得2a =-3x -1x .令h(x)=-3x -1x ,由h′(x)=-3+1x2=0,知h(x)在(33,1)上单调递减,在(12,33]上单调递增,∴h(1)<h(x)≤h(33),即h(x)∈(-4,-23].∴-4<2a≤-23,即-2<a≤- 3.而当a =-3时,f′(x)=3x2-23x +1=(3x -1)2≥0,不满足题意. 综上,实数a 的取值范围为(-2,-3).22.(本小题满分13分)已知函数f(x)=38x2-2x +2+ln x.(1)求函数y =f(x)的单调区间;(2)若函数y =f(x)在[em ,+∞)(m ∈Z)上有零点,求m 的最大值.解:(1)函数f(x)的定义域为(0,+∞).f′(x)=34x -2+1x =3x -2x -24x , 当f′(x)>0时,x ∈(0,23)∪(2,+∞);当f′(x)<0时,x ∈(23,2),所以函数f(x)的单调递增区间为(0,23)和(2,+∞),单调递减区间为[23,2].(2)由(1)知y 极大值=f(23)=56+ln 23>0,y 极小值=f(2)=ln 2-12>0.当x >0且x→0时f(x)<0,故f(x)在定义域上存在独一零点x0,且x0∈(0,23).若m≥0,则em≥1,[em ,+∞)⊂(23,+∞),此区间不存在零点,舍去,故m <0.当m =-1时,x ∈[1e ,+∞),f(1e )=1+38e2-2e >0,又(1e ,23)为增区间,此区间不存在零点,舍去.当m =-2时,x ∈[1e2,+∞),f(1e2)=1e2(38e2-2)<0,又(1e2,23)为增区间,且y =f(23)>0,故x0∈(1e2,23).综上,m 的最大值为-2.。

人教A版选修2-2第一章 导数及其应用.docx

人教A版选修2-2第一章 导数及其应用.docx

第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316 C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________;4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。

三、解答题1.求垂直于直线2610x y -+=并且与曲线3235y x x =+-相切的直线方程。

高中新课程数学(新课标人教A版)选修2-2《第一章 导数及其应用》知识点、考点、及其例题

高中新课程数学(新课标人教A版)选修2-2《第一章 导数及其应用》知识点、考点、及其例题

第一章导数及其应用知识点及练习题知识点1:导数概念的引入1. 导数的物理意义:瞬时速率。

一般的,函数()y f x =在0x x =处的瞬时变化率是000()()limx f x x f x x∆→+∆-∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y =', 即0()f x '=000()()limx f x x f x x∆→+∆-∆2. 导数的几何意义:曲线的切线.通过图像,我们可以看出当点n P 趋近于P 时,直线PT 与曲线相切。

容易知道,割线n PP 的斜率是00()()n n n f x f x k x x -=-,当点n P 趋近于P 时,函数()y f x =在0x x =处的导数就是切线PT 的斜率k ,即000()()lim ()n x n f x f x k f x x x ∆→-'==-3. 导函数:当x 变化时,()f x '便是x 的一个函数,我们称它为()f x 的导函数. ()y f x =的导函数有时也记作y ',即0()()()limx f x x f x f x x∆→+∆-'=∆考点:导数的几何意义及其应用[例题] 已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程;(2)求曲线过点P (2,4)的切线方程; (3)求斜率为4的曲线的切线方程.[变式训练] 已知函数f(x)=x3+x -16.(1)求曲线y =f(x)在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f(x)的切线,且经过原点,求直线l 的方程及切点坐标.知识点2:导数的计算1)基本初等函数的导数公式:1若()f x c =(c 为常数),则()0f x '=; 2 若()f x x α=,则1()f x xαα-'=;3 若()sin f x x =,则()cos f x x '=4 若()cos f x x =,则()sin f x x '=-;5 若()xf x a =,则()ln x f x a a '=6 若()x f x e =,则()xf x e '=7 若()log xa f x =,则1()ln f x x a '=8 若()ln f x x =,则1()f x x'=2)导数的运算法则1. [()()]()()f x g x f x g x '''±=±2. [()()]()()()()f x g x f x g x f x g x '''•=•+•3. 2()()()()()[]()[()]f x f xg x f x g x g x g x ''•-•'= 3)复合函数求导()y f u =和()u g x =,称则y 可以表示成为x 的函数,即(())y f g x =为一个复合函数 (())()y f g x g x '''=•考点:导数的求导及运算1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=( )319.316.313.310.D C B A 4.过抛物线y=x 2上的点M )41,21(的切线的倾斜角是() A.30° B.45° C.60° D.90° 5.如果曲线2932y x =+与32y x =-在0x x =处的切线互相垂直,则0x =知识点3:导数在研究函数中的应用1.函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(,)a b 内,如果()0f x '>,那么函数()y f x =在这个区间单调递增; 如果()0f x '<,那么函数()y f x =在这个区间单调递减. 2.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数()y f x =的极值的方法是:(1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么0()f x 是极大值;(2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么0()f x 是极小值; 4.函数的最大(小)值与导数函数极大值与最大值之间的关系.求函数()y f x =在[,]a b 上的最大值与最小值的步骤 (1) 求函数()y f x =在(,)a b 内的极值;(2) 将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的是一个最大值,最小的是最小值.考点:1.导数在研究函数单调性中的应用2.导数在求函数极值与最值中的应用题型一:导数在研究函数单调性中的应用[例题] 设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y=(e -1)x +4.(1)求a ,b 的值; (2)求f (x )的单调区间.[变式训练] 设函数f(x)=xekx(k ≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k 的取值范围.题型二:导数在求函数极值与最值中的应用[例题]已知函数f(x)=-x3+ax2+bx在区间(-2,1)内,当x=-1时取极小值,当x=23时取极大值.(1)求函数y=f(x)在x=-2时的对应点的切线方程;(2)求函数y=f(x)在[-2,1]上的最大值与最小值.[变式训练] 设函数f(x)=[ax2-(4a+1)x+4a+3]e x.(1)若曲线y=f(x)在点(1,f(1))处的切线方程与x轴平行,求a;(2)若f(x)在x=2处取得极小值,求a的取值范围.知识点4:解决实际问题利用导数的知识,,求函数的最大(小)值,从而解决实际问题考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用题型一:导数在切线方程中的运用1.曲线3x y =在P 点处的切线斜率为k,若k=3,则P 点为( ) A.(-2,-8) B.(-1,-1)或(1,1)C.(2,8)D.(-21,-81)2.曲线53123+-=x x y ,过其上横坐标为1的点作曲线的切线,则切线的倾斜角为( ) A.6π B.4π C.3π D.π43题型二:导数在单调性中的运用1.函数32()31f x x x =-+是减函数的区间为( ) A.(2,)+∞ B.(,2)-∞ C.(,0)-∞ D.(0,2)2.关于函数762)(23+-=x x x f ,下列说法不正确的是( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数 C .在区间(2,∞+)内,)(x f 为增函数 D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数3.已知函数()y xf x '=的图象如右图所示(其中'()f x 是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是( )4、(2010年山东21)(本小题满分12分)已知函数).(111)(R a xaax nx x f ∈--+-= (Ⅰ)当处的切线方程;在点时,求曲线))2(,2()(1f x f y a=-=(Ⅱ)当12a ≤时,讨论()f x 的单调性.题型三:导数在最值、极值中的运用1.函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( ) A .2B. 3C. 4D.52.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 163.已知函数)0()(3≠++=adcxaxxf是R上的奇函数,当1=x时)(xf取得极值-2.(1)试求a、c、d的值;(2)求)(xf的单调区间和极大值;4.设函数2312)(bxaxexxf x++=-,已知12=-=xx和为)(xf的极值点。

高中数学第一章导数及其应用本章整合新人教A版选修2_2【含答案】

高中数学第一章导数及其应用本章整合新人教A版选修2_2【含答案】

高中数学第一章导数及其应用本章整合新人教A版选修2-2 知识网络专题探究专题一导数的几何意义及其应用1.导数的几何意义:函数y=f(x)在点x=x0处的导数f′(x0)就是曲线y=f(x)在点(x0,f(x)0)处的切线的斜率.2.导数的几何意义的应用,利用导数的几何意义可以求出曲线上任意一点处的切线方程y-y0=f′(x0)(x-x0),明确“过点P(x0,y0)的曲线y=f(x)的切线方程”与“在点P(x0,y0)处的曲线y=f(x)的切线方程”的异同点.3.围绕着切点有三个等量关系,在求解参数问题中经常用到.【例1】已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程; (3)求斜率为4的曲线的切线方程.提示:切点坐标→切线斜率→点斜式求切线方程 解:(1)∵P (2,4)在曲线y =13x 3+43上,且y ′=x 2,∴在点P (2,4)处的切线的斜率k =y ′|x =2=4. ∴曲线在点P (2,4)处的切线方程为y -4=4(x -2), 即4x -y -4=0.(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 03+43,则切线的斜率k =0|x x y ='=x 02.∴切线方程为y -⎝ ⎛⎭⎪⎫13x 03+43=x 02(x -x 0),即y =x 02·x -23x 03+43.∵点P (2,4)在切线上, ∴4=2x 02-23x 03+43,即x 03-3x 02+4=0. ∴x 03+x 02-4x 02+4=0.∴x 02(x 0+1)-4(x 0+1)(x 0-1)=0. ∴(x 0+1)(x 0-2)2=0, 解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0. (3)设切点为(x 0,y 0), 则切线的斜率k =x 20=4, ∴x 0=±2.∴切点为(2,4)或⎝⎛⎭⎪⎫-2,-43.∴斜率为4的曲线的切线方程为y -4=4(x -2)和y +43=4(x +2),即4x -y -4=0和12x -3y +20=0.专题二 利用导数研究函数的单调性借助导数研究函数的单调性,尤其是研究含有ln x ,e x,-x 3等线性函数(或复合函数)的单调性,是近几年高考的一个重点.其特点是导数f ′(x )的符号一般由二次函数来确定;经常同一元二次方程、一元二次不等式结合,融分类讨论、数形结合于一体.【例2】若a ≥-1,求函数f (x )=ax -(a +1)ln(x +1)的单调区间. 解:由已知得函数f (x )的定义域为(-1,+∞),且f ′(x )=ax -1x +1(a ≥-1), (1)当-1≤a ≤0时,f ′(x )<0,函数f (x )在(-1,+∞)上单调递减; (2)当a >0时,由f ′(x )=0,解得x =1a.f ′(x ),f (x )随x 的变化情况如下表:从上表可知,当x ∈⎝ ⎛⎭⎪⎫-1,a 时,f ′(x )<0,函数f (x )在⎝ ⎛⎭⎪⎫-1,a 上单调递减;当x ∈⎝ ⎛⎭⎪⎫1a,+∞时,f ′(x )>0,函数f (x )在⎝ ⎛⎭⎪⎫1a,+∞上单调递增.综上所述,当-1≤a ≤0时,函数f (x )在(-1,+∞)上单调递减.当a >0时,函数f (x )在⎝ ⎛⎭⎪⎫-1,1a 上单调递减,函数f (x )在⎝ ⎛⎭⎪⎫1a ,+∞上单调递增.【例3】若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围.解:函数f (x )的导数f ′(x )=x 2-ax +a -1. 令f ′(x )=0,解得x =1或x =a -1.当a -1≤1,即a ≤2时,函数f (x )在(1,+∞)上为增函数,不合题意.当a -1>1,即a >2时,函数f (x )在(-∞,1)上为增函数,在(1,a -1)内为减函数,在(a -1,+∞)上为增函数.依题意当x ∈(1,4)时,f ′(x )<0, 当x ∈(6,+∞)时,f ′(x )>0. 故4≤a -1≤6,即5≤a ≤7. 因此a 的取值范围是[5,7].专题三 利用导数求函数的极值和最值1.极值和最值是两个迥然不同的概念,前者是函数的“局部”性质,而后者是函数的“整体”性质.另函数有极值未必有最值,反之亦然.2.判断函数“极值”是否存在时,务必把握以下原则: (1)确定函数f (x )的定义域; (2)解方程f ′(x )=0的根.(3)检验f ′(x )=0的根的两侧f ′(x )的符号: 若左正右负,则f (x )在此根处取得极大值. 若左负右正,则f (x )在此根处取得极小值.即导数为零点未必是极值点,这一点是解题时的主要失分点,学习时务必引起注意. 3.求函数f (x )在闭区间[a ,b ]上的最大值、最小值的方法与步骤: (1)求f (x )在(a ,b )内的极值;(2)将(1)求得的极值与f (a ),f (b )相比较,其中最大的一个值为最大值,最小的一个值为最小值.【例4】(1)函数f (x )=1x +2x 2+1x 3,求y =f (x )在⎣⎢⎡⎦⎥⎤-4,-12上的最值; (2)若a >0,求g (x )=1x +2x 2+ax3的极值点.解:(1)f ′(x )=-(x +1)(x +3)x, 令f ′(x )>0,得-3<x <-1,令f ′(x )<0,得x <-3,或-1<x <0,或x >0, ∴当x ∈⎣⎢⎡⎦⎥⎤-4,-12时,x ,f ′(x ),f (x )的变化如下表:(2)g ′(x )=-x 2+4x +3ax 4,设u =x 2+4x +3a ,Δ=16-12a , 当a ≥43时,Δ≤0,即g ′(x )≤0,所以y =g (x )没有极值点.当0<a <43时,x 1=-2-4-3a ,x 2=-2+4-3a <0.∴g (x )的递减区间为(-∞,x 1),(x 2,0),递增区间为(x 1,x 2). ∴有两个极值点x 1=-2-4-3a ,x 2=-2+4-3a . 【例5】已知f (x )=x 2+ax -ln x ,a ∈R .(1)若a =0,求函数y =f (x )在点(1,f (x ))处的切线方程; (2)若函数f (x )在[1,2]上是减函数,求实数a 的取值范围;(3)令g (x )=f (x )-x 2,是否存在实数a ,当x ∈(0,e](e 是自然对数的底数)时,函数g (x )的最小值是3,若存在,求出a 的值;若不存在,说明理由.解:(1)当a =0时,f (x )=x 2-ln x , 所以f ′(x )=2x -1x⇒f ′(1)=1,f (1)=1.所以曲线y =f (x )在点(1,f (1))处的切线方程为x -y =0. (2)因为函数在[1,2]上是减函数,所以f ′(x )=2x +a -1x =2x 2+ax -1x≤0在[1,2]上恒成立,令h (x )=2x 2+ax -1,有⎩⎪⎨⎪⎧h (1)≤0,h (2)≤0,得⎩⎪⎨⎪⎧a ≤-1,a ≤-72,得a ≤-72.(3)假设存在实数a ,使g (x )=ax -ln x (x ∈(0,e])有最小值3,g ′(x )=a -1x =ax -1x.①当a ≤0时,g ′(x )<0,所以g (x )在(0,e]上单调递减,g (x )min =g (e)=a e -1=3,a =4e (舍去).②当1a≥e 时,g ′(x )<0在(0,e]上恒成立,所以g (x )在(0,e]上单调递减.g (x )min =g (e)=a e -1=3,a =4e(舍去).③当0<1a <e 时,令g ′(x )<0⇒0<x <1a,所以g (x )在⎝ ⎛⎭⎪⎫0,1a 上单调递减,在⎝ ⎛⎦⎥⎤1a ,e 上单调递增.所以g (x )min =g ⎝ ⎛⎭⎪⎫1a =1+ln a =3,a =e 2,满足条件.综上,存在实数a =e 2,使得当x ∈(0,e]时g (x )有最小值3. 专题四 利用导数证明不等式从近几年高考题看,利用导数证明不等式这一知识点常考到,一般出现在高考题解答题中.利用导数解决不等式问题(如:证明不等式,比较大小等),其实质就是利用求导数的方法研究函数的单调性,而证明不等式(或比较大小)常与函数最值问题有关.因此,解决该类问题通常是构造一个函数,然后考查这个函数的单调性,结合给定的区间和函数在该区间端点的函数值使问题得以求解.其实质是这样的:要证不等式f (x )>g (x ),则构造函数φ(x )=f (x )-g (x ),只需证φ(x )>0即可,由此转化成求φ(x )最小值问题,借助于导数解决.【例6】已知函数f (x )=x 2ex -1-13x 3-x 2. (1)讨论函数f (x )的单调性;(2)设g (x )=23x 3-x 2,试比较f (x )与g (x )的大小.解:(1)f ′(x )=x (x +2)(ex -1-1),由f ′(x )=0得x 1=-2,x 2=0,x 3=1.当-2<x <0或x >1时,f ′(x )>0; 当x <-2或0<x <1时,f ′(x )<0,所以函数f (x )在(-2,0)和(1,+∞)上是单调递增的,在(-∞,-2)和(0,1)上是单调递减的.(2)f (x )-g (x )=x 2ex -1-x 3=x 2(ex -1-x ).因为对任意实数x 总有x 2≥0, 所以设h (x )=ex -1-x .h ′(x )=e x -1-1,由h ′(x )=0得x =1,则当x <1时,h ′(x )<0,即函数h (x )在(-∞,1)上单调递减,因此当x <1时,h (x )>h (1)=0.当x >1时,h ′(x )>0,即函数h (x )在(1,+∞)上单调递增,因此当x >1时,h (x )>h (1)=0.当x =1时,h (1)=0.所以对任意实数x 都有h (x )≥0,即f (x )-g (x )≥0,故对任意实数x ,恒有f (x )≥g (x ). 专题五 导数的应用 解决优化问题的步骤(1)首先要分析问题中各个数量之间的关系,建立适当的函数模型,并确定函数的定义域.(2)其次要通过研究相应函数的性质,如单调性、极值与最值,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.(3)最后验证数学问题的解是否满足实际意义.【例7】某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.解:(1)因为x =5时,y =11, 所以a2+10=11,a =2.(2)由(1)可知,该商品每日的销售量y =2x -3+10(x -6)2,所以商场每日销售该商品所获得的利润f (x )=(x -3)·⎣⎢⎡⎦⎥⎤2x -3+10(x -6)2=2+10(x -3)(x -6)2(3<x <6).从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如表:由上表可得,x =4时,函数f (x )取得最大值,且最大值等于42.答:当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大. 专题六 定积分的应用由定积分求曲边梯形面积的方法步骤 (1)画出函数的图象,明确平面图形的形状. (2)通过解方程组,求出曲线交点的坐标. (3)确定积分区间与被积函数,转化为定积分计算.(4)对于复杂的平面图形,常常通过“割补法”求各部分的面积之和.【例8】如图所示,求由曲线y =x ,y =2-x ,y =-13x 所围成的图形的面积.解:由⎩⎨⎧y =x ,y =2-x ,⎩⎪⎨⎪⎧y =x ,y =-13x ,⎩⎪⎨⎪⎧y =2-x ,y =-13x ,得交点(1,1),(0,0),(3,-1),故S =1⎰⎣⎢⎡⎦⎥⎤x -⎝ ⎛⎭⎪⎫-13x d x +31⎰⎣⎢⎡⎦⎥⎤(2-x )-⎝ ⎛⎭⎪⎫-13x d x =1⎰⎝ ⎛⎭⎪⎫x +13x d x +31⎰⎝ ⎛⎭⎪⎫2-23x d x =3222136x x ⎛⎫+ ⎪⎝⎭10|+⎝ ⎛⎭⎪⎫2x -13x 231| =23+16+6-13×9-2+13=136. 专题七 恒成立问题 解决恒成立问题的方法(1)若关于x 的不等式f (x )≤m 在区间D 上恒成立,则转化为f (x )max ≤m . (2)若关于x 的不等式f (x )≥m 在区间D 上恒成立,则转化为f (x )min ≥m . (3)导数是解决函数f (x )的最大值或最小值问题的有力工具. 【例9】已知函数f (x )=x ln x .(1)若函数g (x )=f (x )+ax 在区间[e 2,+∞)上为增函数,求a 的取值范围; (2)若对任意x ∈(0,+∞),f (x )≥-x 2+mx -32恒成立,求实数m 的最大值.解:(1)由题意得g ′(x )=f ′(x )+a =ln x +a +1.∵函数g (x )在区间[e 2,+∞)上为增函数, ∴当x ∈[e 2,+∞)时,g ′(x )≥0, 即ln x +a +1≥0在[e 2,+∞)上恒成立. ∴a ≥-1-ln x .又当x ∈[e 2,+∞)时,ln x ∈[2,+∞). ∴-1-ln x ∈(-∞,-3],∴a ≥-3.(2)∵2f (x )≥-x 2+mx -3, 即mx ≤2x ·ln x +x 2+3. 又x >0,∴m ≤2x ·ln x +x 2+3x.令h (x )=2x ·ln x +x 2+3x,h ′(x )=(2x ln x +x 2+3)′·x -(2x ln x +x 2+3)·x ′x2=(2ln x +2+2x )x -(2x ln x +x 2+3)x2=2x +x 2-3x2, 令h ′(x )=0,解得x =1或x =-3(舍).当x ∈(0,1)时,h ′(x )<0,函数h (x )在[0,1)上单调递减,当x ∈(1,+∞)时,h ′(x )>0,函数h (x )在(1,+∞)上单调递增.∴h (x )min =h (1)=4, 即m 的最大值为4.。

2014-2015学年人教a版数学选修2-2第1章《导数及其应用》综合检测(含答案)

2014-2015学年人教a版数学选修2-2第1章《导数及其应用》综合检测(含答案)

第一章综合检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2013·天津红桥区高二段测)二次函数y =f (x )的图象过原点且它的导函数y =f ′(x )的图象是如图所示的一条直线,y =f (x )的图象的顶点在( )A .第Ⅰ象限B .第Ⅱ象限C .第Ⅲ象限D .第Ⅳ象限[答案] A[解析] 设f (x )=ax 2+bx +c ,∵二次函数y =f (x )的图象过原点,∴c =0,∴f ′(x )=2ax +b ,由y =f ′(x )的图象可知,2a <0,b >0,∴a <0,b >0,∴-b 2a >0,4ac -b 24a =-b 24a >0,故选A.2.(2013·华池一中高二期中)曲线y =-1x 在点(12,-2)处的切线方程为( )A .y =4xB .y =4x -4C .y =4(x +1)D .y =2x -4[答案] B[解析] ∵y ′=1x 2,∴y ′|x =12=4,∴k =4,∴切线方程为y +2=4(x -12),即y =4x -4.3.(2014·淄博市临淄区学分认定考试)下列函数中,x =0是其极值点的函数是( ) A .f (x )=-x 3 B .f (x )=-cos x C .f (x )=sin x -x D .f (x )=1x[答案] B[解析] 对于A ,f ′(x )=-3x 2≤0恒成立,在R 上单调递减,没有极值点;对于B ,f ′(x )=sin x ,当x ∈(-π,0)时,f ′(x )<0,当x ∈(0,π)时,f ′(x )>0,故f (x )=-cos x 在x =0的左侧区间(-π,0)内单调递减,在其右侧区间(0,π)内单调递增,所以x =0是f (x )的一个极小值点;对于C ,f ′(x )=cos x -1≤0恒成立,在R 上单调递减,没有极值点;对于D ,f (x )=1x在x =0没有定义,所以x =0不可能成为极值点,综上可知,答案选B. 4.(2013·北师大附中高二期中)已知函数f (x )=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是( )A .(-∞,-3),∪(3,+∞)B .(-3,3)C .(-∞,-3]∪[3,+∞)D .[-3,3][答案] D[解析] f ′(x )=-3x 2+2ax -1,∵f (x )在(-∞,+∞)上是单调函数,且f ′(x )的图象是开口向下的抛物线,∴f ′(x )≤0恒成立,∴Δ=4a 2-12≤0,∴-3≤a ≤3,故选D.5.(2013·武汉实验中学高二期末)设函数f (x )在定义域内可导,y =f (x )的图象如下图所示,则导函数y =f ′(x )的图象可能是( )[答案] A[解析] f (x )在(-∞,0)上为增函数,在(0,+∞)上变化规律是减→增→减,因此f ′(x )的图象在(-∞,0)上,f ′(x )>0,在(0,+∞)上f ′(x )的符号变化规律是负→正→负,故选A.6.(2012·陕西文,9)设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点[答案] D[解析] 由f ′(x )=-2x 2+1x =1x (1-2x )=0可得x =2.当0<x <2时,f ′(x )<0,f (x )单调递减,当x >2时 f ′(x )>0,f (x )单调递增.所以x =2为极小值点.7.(2014·天门市调研)已知函数f (x )=a sin x -b cos x 在x =π4时取得极值,则函数y =f (3π4-x )是( )A .偶函数且图象关于点(π,0)对称B .偶函数且图象关于点(3π2,0)对称C .奇函数且图象关于点(3π2,0)对称D .奇函数且图象关于点(π,0)对称 [答案] D[解析] ∵f (x )的图象关于x =π4对称,∴f (0)=f (π2),∴-b =a ,∴f (x )=a sin x -b cos x =a sin x +a cos x =2a sin(x +π4),∴f (3π4-x )=2a sin(3π4-x +π4)=2a sin(π-x )=2a sin x .显然f (3π4-x )是奇函数且关于点(π,0)对称,故选D.8.(2013·武汉实验中学高二期末)定义域为R 的函数f (x )满足f (1)=1,且f (x )的导函数f ′(x )>12,则满足2f (x )<x +1的x 的集合为( )A .{x |-1<x <1}B .{x |x <1}C .{x |x <-1或x >1}D .{x |x >1}[答案] B[解析] 令g (x )=2f (x )-x -1,∵f ′(x )>12,∴g ′(x )=2f ′(x )-1>0,∴g (x )为单调增函数, ∵f (1)=1,∴g (1)=2f (1)-1-1=0, ∴当x <1时,g (x )<0,即2f (x )<x +1,故选B.9.(2013·华池一中高二期中)若关于x 的方程x 3-3x +m =0在[0,2]上有根,则实数m 的取值范围是( )A .[-2,2]B .[0,2]C .[-2,0]D .(-∞,-2)∪(2,+∞)[答案] A[解析] 令f (x )=x 3-3x +m ,则f ′(x )=3x 2-3=3(x +1)(x -1),显然当x <-1或x >1时,f ′(x )>0,f (x )单调递增,当-1<x <1时,f ′(x )<0,f (x )单调递减,∴在x =-1时,f (x )取极大值f (-1)=m +2,在x =1时,f (x )取极小值f (1)=m -2.∵f (x )=0在[0,2]上有解,∴⎩⎪⎨⎪⎧f (1)<0,f (2)>0,∴⎩⎪⎨⎪⎧m -2≤0,2+m ≥0,∴-2≤m ≤2. 10.(2013·河南安阳中学高二期末)f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a 、b ,若a <b ,则必有( )A .af (b )≤bf (a )B .bf (a )≤af (b )C .af (a )≤f (b )D .bf (b )≤f (a )[答案] A[解析] 令F (x )=xf (x ),(x >0),则F ′(x )=xf ′(x )+f (x )≤0,∴F (x )在(0,+∞)上为减函数,∵0<a <b ,∴F (a )>f (b ),即af (a )>bf (b ),与选项不符; 由于xf ′(x )+f (x )≤0且x >0,f (x )≥0,∴f ′(x )≤-f (x )x≤0,∴f (x )在(0,+∞)上为减函数,∵0<a <b ,∴f (a )>f (b ), ∴bf (a )>af (b ),结合选项知选A.11.(2014·天门市调研)已知函数f (x )的导函数f ′(x )=a (x -b )2+c 的图象如图所示,则函数f (x )的图象可能是( )[答案] D[解析] 由导函数图象可知,当x <0时,函数f (x )递减,排除A ,B ;当0<x <x 1时,f ′(x )>0,函数f (x )递增.因此,当x =0时,f (x )取得极小值,故选D.12.(2013·泰安一中高二段测)已知函数f (x )的导函数的图象如图所示,若△ABC 为锐角三角形,则一定成立的是( )A .f (sin A )>f (cosB ) B .f (sin A )<f (cos B )C .f (sin A )>f (sin B )D .f (cos A )<f (cos B )[答案] A[解析] 由导函数图象可知,x >0时,f ′(x )>0,即f (x )单调递增,又△ABC 为锐角三角形,则A +B >π2,即π2>A >π2-B >0,故sin A >sin(π2-B )>0,即sin A >cos B >0,故f (sin A )> f (cos B ),选A.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2013·华池一中高二期中)已知f (x )=x 3+3x 2+a (a 为常数),在[-3,3]上有最小值3,那么在[-3,3]上f (x )的最大值是________.[答案] 57[解析] f ′(x )=3x 2+6x =3x (x +2),当x ∈[-3,-2)和x ∈(0,3]时,f ′(x )>0,f (x )单调递增,当x ∈(-2,0)时,f ′(x )<0,f (x )单调递减,∴极大值为f (-2)=a +4,极小值为f (0)=a ,又f (-3)=a ,f (3)=54+a ,由条件知a =3,∴最大值为f (3)=54+3=57.14.(2014·湖北重点中学高二期中联考)已知函数f (x )=13ax 3+12ax 2-2ax +2a +1的图象经过四个象限,则实数a 的取值范围是________.[答案] (-65,-316)[解析] f ′(x )=ax 2+ax -2a =a (x -1)(x +2), 由f (x )的图象经过四个象限知,若a >0,则⎩⎪⎨⎪⎧ f (-2)>0,f (1)<0,此时无解;若a <0,则⎩⎪⎨⎪⎧f (-2)<0,f (1)>0, ∴-65<a <-316,综上知,-65<a <-316.15.(2014·泉州实验中学期中)已知函数f (x )=x 3-3x ,若过点A (1,m )(m ≠-2)可作曲线y =f (x )的三条切线,则实数m 的取值范围为________.[答案] (-3,-2)[解析] f ′(x )=3x 2-3,设切点为P (x 0,y 0),则切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0),∵切线经过点A (1,m ),∴m -(x 30-3x 0)=(3x 20-3)(1-x 0),∴m =-2x 30+3x 20-3,m ′=-6x 20+6x 0,∴当0<x 0<1时,此函数单调递增,当x 0<0或x 0>1时,此函数单调递减,当x 0=0时,m =-3,当x 0=1时,m =-2,∴当-3<m <-2时,直线y =m 与函数y =-2x 30+3x 20-3的图象有三个不同交点,从而x 0有三个不同实数根,故过点A (1,m )可作三条不同切线,∴m 的取值范围是(-3,-2).16.如图阴影部分是由曲线y =1x、y 2=x 与直线x =2、y =0围成,则其面积为______.[答案] 23+ln2[解析] 由⎩⎪⎨⎪⎧y 2=x ,y =1x ,得交点A (1,1)由⎩⎪⎨⎪⎧x =2y =1x 得交点B ⎝⎛⎭⎫2,12. 故所求面积S =⎠⎛01x d x +⎠⎛121xd x=23x 32| 10+ln x | 21=23+ln2. 三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)设函数f (x )=ln x +ln(2-x )+ax (a >0). (1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上 的最大值为12,求a 的值.[解析] 函数f (x )的定义域为(0,2), f ′(x )=1x -12-x+a ,(1)当a =1时,f ′(x )=-x 2+2x (2-x ),∴当x ∈(0,2)时,f ′(x )>0,当x ∈(2,2)时,f ′(x )<0,所以f (x )的单调递增区间为(0,2),单调递减区间为(2,2);(2)当x ∈(0,1]时,f ′(x )=2-2xx (2-x )+a >0,即f (x )在(0,1]上单调递增,故f (x )在(0,1]上的最大值为f (1)=a ,因此a =12.18.(本题满分12分)(2014·韶关市曲江一中月考)已知函数f (x )=ax 3+cx +d (a ≠0)是R 上的奇函数,当x =1时,f (x )取得极值-2.(1)求函数f (x )的解析式;(2)求函数f (x )的单调区间和极大值;(3)证明:对任意x 1、x 2∈(-1,1),不等式|f (x 1)-f (x 2)|<4恒成立. [解析] (1)∵f (x )是R 上的奇函数, ∴f (-x )=-f (x ),即-ax 3-cx +d =-ax 3-cx -d ,∴d =-d , ∴d =0(或由f (0)=0得d =0). ∴f (x )=ax 3+cx ,f ′(x )=3ax 2+c , 又当x =1时,f (x )取得极值-2,∴⎩⎪⎨⎪⎧ f (1)=-2,f ′(1)=0,即⎩⎪⎨⎪⎧ a +c =-2,3a +c =0,解得⎩⎪⎨⎪⎧a =1,c =-3. ∴f (x )=x 3-3x .(2)f ′(x )=3x 2-3=3(x +1)(x -1),令f ′(x )=0,得x =±1, 当-1<x <1时,f ′(x )<0,函数f (x )单调递减; 当x <-1或x >1时,f ′(x )>0,函数f (x )单调递增;∴函数f (x )的递增区间是(-∞,-1)和(1,+∞);递减区间为(-1,1). 因此,f (x )在x =-1处取得极大值,且极大值为f (-1)=2.(3)由(2)知,函数f (x )在区间[-1,1]上单调递减,且f (x )在区间[-1,1]上的最大值为M =f (-1)=2.最小值为m =f (1)=-2.∴对任意x 1、x 2∈(-1,1),|f (x 1)-f (x 2)|<M -m =4成立.即对任意x 1、x 2∈(-1,1),不等式|f (x 1)-f (x 2)|<4恒成立.19.(本题满分12分)(2014·北京海淀期中)已知函数f (x )=x 2-2(a +1)x +2a ln x (a >0). (1)当a =1时,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)求f (x )的单调区间;(3)若f (x )≤0在区间[1,e]上恒成立,求实数a 的取值范围. [解析] (1)∵a =1,∴f (x )=x 2-4x +2ln x , ∴f ′(x )=2x 2-4x +2x(x >0),f (1)=-3,f ′(1)=0, 所以切线方程为y =-3.(2)f ′(x )=2x 2-2(a +1)x +2a x =2(x -1)(x -a )x (x >0),令f ′(x )=0得x 1=a ,x 2=1,当0<a <1时,在x ∈(0,a )或x ∈(1,+∞)时,f ′(x )>0,在x ∈(a,1)时,f ′(x )<0,∴f (x )的单调递增区间为(0,a )和(1,+∞),单调递减区间为(a,1);当a =1时,f ′(x )=2(x -1)2x ≥0,∴f (x )的单调增区间为(0,+∞);当a >1时,在x ∈(0,1)或x ∈(a ,+∞)时,f ′(x )>0,在x ∈(1,a )时,f ′(x )<0,∴f (x )的单调增区间为(0,1)和(a ,+∞),单调递减区间为(1,a ).(3)由(2)可知,f (x )在区间[1,e]上只可能有极小值点,∴f (x )在区间[1,e]上的最大值必在区间端点取到,∴f (1)=1-2(a +1)≤0且f (e)=e 2-2(a +1)e +2a ≤0,解得a ≥e 2-2e2e -2.20.设函数f (x )=x 3-92x 2+6x -a .(1)对于任意实数x, f ′(x )≥m 恒成立,求m 的最大值; (2)若方程f (x )=0有且仅有一个实根,求a 的取值范围. [解析] (1)f ′(x )=3x 2-9x +6=3(x -1)(x -2).因为x ∈(-∞,+∞).f ′(x )≥m ,即3x 2-9x +(6-m )≥0恒成立. 所以Δ=81-12(6-m )≤0,得m ≤-34,即m 的最大值为-34.(2)因为当x <1时,f ′(x )>0;当1<x <2时,f ′(x )<0;当x >2时f ′(x )>0. 所以当x =1时,f (x )取极大值f (1)=52-a ,当x =2时,f (x )取极小值f (2)=2-a .故当f (2)>0或f (1)<0时,方程f (x )=0仅有一个实根,解得a <2或a >52.21.(本题满分12分)(2014·荆州中学、龙泉中学、宜昌一中、襄阳四中期中联考)已知函数f (x )=ln x +a x +1,a 为常数.(1)若a =92,求函数f (x )在[1,e ]上的值域;(e 为自然对数的底数,e ≈2.72)(2)若函数g (x )=f (x )+x 在[1,2]上为单调减函数,求实数a 的取值范围. [解析] (1)由题意f ′(x )=1x -a(x +1)2,当a =92时,f ′(x )=1x -92(x +1)2=(x -2)(2x -1)2x (x +1)2.∵x ∈[1,e ],∴f (x )在[1,2)上为减函数,[2,e ]上为增函数, 又f (2)=ln2+32,f (1)=94,f (e )=1+92e +2,比较可得f (1)>f (e ),∴f (x )的值域为[ln2+32,94].(2)由题意得g ′(x )=1x -a(x +1)2+1≤0在x ∈[1,2]上恒成立,∴a ≥(x +1)2x +(x +1)2=x 2+3x +1x +3恒成立,设h (x )=x 2+3x +1x+3(1≤x ≤2),∴当1≤x ≤2时,h ′(x )=2x +3-1x 2>0恒成立,∴h (x )max =h (2)=272,∴a ≥272, 即实数a 的取值范围是[272,+∞).22.(本题满分14分)(2014·北京海淀期中)如图,已知点A (11,0),直线x =t (-1<t <11)与函数y =x +1的图象交于点P ,与x 轴交于点H ,记△APH 的面积为f (t ).(1)求函数f (t )的解析式; (2)求函数f (t )的最大值.[解析] (1)由已知AH =11-t ,PH =t +1,所以△APH 的面积为f (t )=12(11-t )t +1,(-1<t <11).(2)解法1:f ′(t )=3(3-t )4t +1,由f ′(t )=0得t =3,函数f (t )与f ′(t )在定义域上的情况如下表:所以当t =解法2.由f (t )=12(11-t )t +1=12(11-t )2(t +1),-1<t <11,设g (t )=(11-t )2(t +1),-1<t <11,则g ′(t )=-2(11-t )(t +1)+(11-t )2=(t -11)(t -11+2t +2)=3(t -3)(t -11). g (t )与g ′(t )在定义域上的情况见下表:所以当t =3所以当t =3时,函数f (t )取得最大值12g (3)=8.一、选择题1.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1[答案] A[解析] y ′=2x +a ,∴y ′|x =0=(2x +a )|x =0=a =1, 将(0,b )代入切线方程得b =1.2.(2014·浙江杜桥中学期中)已知函数f (x )=x 3+ax 2+3x -9在x =-3时取得极值,则a =( )A .2B .3C .4D .5[答案] D[解析] f ′(x )=3x 2+2ax +3,由条件知,x =-3是方程f ′(x )=0的实数根,∴a =5. 3.函数y =2x 3-3x 2-12x +5在[0,3]上的最大值,最小值分别是( ) A .5,-15 B .5,-4 C .-4,-15 D .5,-16[答案] A[解析] ∵y ′=6x 2-6x -12=0,得x =-1(舍去)或x =2,故函数y =f (x )=2x 3-3x 2-12x +5在[0,3]上的最值可能是x 取0,2,3时的函数值,而f (0)=5,f (2)=-15,f (3)=-4,故最大值为5,最小值为-15,故选A.4.⎠⎛241xd x 等于( ) A .-2ln2B .2ln2C .-ln2D .ln2[答案] D[解析] 因为(ln x )′=1x ,所以 ⎠⎛241xd x =ln x |42=ln4-ln2=ln2.5.(2013·吉林白山一中高二期末)已知定义在R 上的函数f (x )的导函数f ′(x )的大致图象如图所示,则下列结论一定正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e)C .f (c )>f (b )>f (a )D .f (c )>f (e)>f (d )[答案] C[解析] 由图可知f ′(x )在(-∞,c )和(e ,+∞)上取正值,在(c ,e)上取负值,故f (x )在(-∞,c )和(e ,+∞)上单调递增,在(c ,e)上单调递减,∵a <b <c ,∴f (a )<f (b )<f (c ),故选C.6.已知函数f (x )=4x +3sin x ,x ∈(-1,1),如果f (1-a )+f (1-a 2)<0成立,则实数a 的取值范围为( )A .(0,1)B .(1,2)C .(-2,-2)D .(-∞,-2)∪(1,+∞) [答案] B[解析] ∵f (x )=4x +3sin x ,x ∈(-1,1), ∴f ′(x )=4+3cos x >0在x ∈(-1,1)上恒成立,∴f (x )在(-1,1)上是增函数,又f (x )=4x +3sin x ,x ∈(-1,1)是奇函数,∴不等式f (1-a )+f (1-a 2)<0可化为f (1-a )<f (a 2-1),从而可知,a 须满足⎩⎪⎨⎪⎧-1<1-a <1,-1<a 2-1<1,1-a <a 2-1.解得1<a < 2.7.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一个直角坐标系中,不可能正确的是( )[答案] D[解析] A 中,当f (x )为二次函数时,f ′(x )为一次函数,由单调性和导数值的符号关系知A 可以是正确的,同理B 、C 都可以是正确的,但D 中f (x )的单调性为增、减、增,故f ′(x )的值应为正负正,因此D 一定是错误的.8.函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( )[答案] D[解析] 由f (x )的图象知,f (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减,∴在(0,+∞)上f ′(x )≤0,在(-∞,0)上f ′(x )≥0,故选D.9.如果1N 能拉长弹簧1cm ,为了将弹簧拉长6cm ,所耗费的功为( ) A .0.18J B .0.26J C .0.12J D .0.28J[答案] A[解析] 设F (x )=kx ,当F (x )=1时,x =0.01m ,则k =100,∴W =∫0.060100x d x =50x 2|0.06=0.18.10.(2014·甘肃省金昌市二中、临夏中学期中)已知函数f (x )=ln x ,则函数g (x )=f (x )-f ′(x )的零点所在的区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)[答案] B[解析] 由题可知g (x )=ln x -1x ,∵g (1)=-1<0,g (2)=ln2-12=ln2-ln e>0,∴选B.11.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在R 上是增函数,则m的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .以上皆不正确[答案] D[解析] f ′(x )=x 2-2(4m -1)x +15m 2-2m -7,由题意得x 2-2(4m -1)x +15m 2-2m -7≥0恒成立,∴Δ=4(4m -1)2-4(15m 2-2m -7) =64m 2-32m +4-60m 2+8m +28 =4(m 2-6m +8)≤0, ∴2≤m ≤4,故选D.12.(2014·浙江省五校联考)已知函数f (x )=13x 3+12mx 2+m +n 2x 的两个极值点分别为x 1、x 2,且0<x 1<1<x 2,点P (m ,n )表示的平面区域内存在点(x 0,y 0)满足y 0=log a (x 0+4),则实数a 的取值范围是( )A .(0,12)∪(1,3)B .(0,1)∪(1,3)C .(12,1)∪(1,3]D .(0,1)∪[3,+∞)[答案] B[解析] f ′(x )=x 2+mx +m +n2,由条件知,方程f ′(x )=0的两实根为x 1、x 2且0<x 1<1<x 2,∴⎩⎪⎨⎪⎧f ′(0)>0,f ′(1)<0,∴⎩⎨⎧m +n2>0,1+m +m +n2<0,∴⎩⎪⎨⎪⎧m +n >0,3m +n <-2, 由⎩⎪⎨⎪⎧ m +n =0,3m +n =-2,得⎩⎪⎨⎪⎧ m =-1,n =1,∴⎩⎪⎨⎪⎧x 0<-1,y 0>1.由y 0=log a (x 0+4)知,当a >1时,1<y 0<log a 3,∴1<a <3;当0<a <1时,y 0=log a (x 0+4)>log a 3,由于y 0>1,log a 3<0,∴对∀a ∈(0,1),此式都成立,从而0<a <1,综上知0<a <1或1<a <3,故选B.二、填空题13.(2014·杭州七校联考)若函数f (x )=x 3-3bx +b 在区间(0,1)内有极值,则实数b 的取值范围是________.[答案] (0,1)[解析] f ′(x )=3x 2-3b ,∵f (x )在(0,1)内有极值, ∴f ′(x )=0在(0,1)内有解,∴0<b <1.14.(2013·泰州二中高二期中)函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a =________.[答案] 5[解析] f ′(x )=3x 2+2ax +3,由条件知,x =-3是f ′(x )=0的根,即f ′(-3)=0, ∴27-6a +3=0,∴a =5.15.对正整数n ,设曲线y =x n (1-x )在x =2处的切线与y 轴交点的纵坐标为a n ,则数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和是__________________. [答案] 2n +1-2[解析] ∵y =x n (1-x ),∴y ′=(x n )′(1-x )+(1-x )′·x n =n ·x n -1(1-x )-x n .f ′(2)=-n ·2n -1-2n =(-n -2)·2n -1.在点x =2处点的纵坐标为y =-2n . ∴切线方程为y +2n =(-n -2)·2n -1(x -2).令x =0得,y =(n +1)·2n , ∴a n =(n +1)·2n ,∴数列⎩⎨⎧⎭⎬⎫a n n +1的前n 项和为2(2n-1)2-1=2n +1-2.16.(2014·哈六中期中)已知函数f (x +2)是偶函数,x >2时f ′(x )>0恒成立(其中f ′(x )是函数f (x )的导函数),且f (4)=0,则不等式(x +2)f (x +3)<0的解集为________.[答案] (-∞,-3)∪(-2,1)[解析] ∵函数y =f (x +2)是偶函数,∴其图象关于y 轴对称,∵y =f (x +2)的图象向右平移两个单位得到y =f (x )的图象,∴函数y =f (x )的图象关于直线x =2对称,∵x >2时,f ′(x )>0,∴f (x )在(2,+∞)上单调递增,在(-∞,2)上单调递减,又f (4)=0,∴f (0)=0,∴0<x <4时,f (x )<0,x <0或x >4时,f (x )>0,由(x +2)f (x +3)<0得⎩⎪⎨⎪⎧x +2<0,f (x +3)>0,(1)或⎩⎪⎨⎪⎧x +2>0,f (x +3)<0.(2) 由(1)得⎩⎪⎨⎪⎧x <-2,x +3<0或x +3>4,∴x <-3;由(2)得⎩⎪⎨⎪⎧x >-2,0<x +3<4.∴-2<x <1,综上知,不等式的解集为(-∞,-3)∪(-2,1) 三、解答题17.(2013·四川达州诊断)已知函数f (x )=x 3+ax 2-3bx +c (b >0),且g (x )=f (x )-2是奇函数.(1)求a 、c 的值;(2)若函数f (x )有三个零点,求b 的取值范围. [解析] (1)∵g (x )=f (x )-2是奇函数, ∴g (-x )=-g (x )对x ∈R 成立, ∴f (-x )-2=-f (x )+2对x ∈R 成立, ∴ax 2+c -2=0对x ∈R 成立, ∴a =0且c =2.(2)由(1)知f (x )=x 3-3bx +2(b >0), ∴f ′(x )=3x 2-3b =3(x -b )(x +b ), 令f ′(x )=0得x =±b ,依题意有⎩⎨⎧f (-b )>0,f (b )<0,∴b >1,故正数b 的取值范围是(1,+∞).18.在曲线y =x 3(x ≥0)上某一点A 处作一切线使之与曲线以及x 轴围成图形的面积为112,试求过切点A 的切线方程.[解析] 设切点A (x 0,x 30),切线斜率k =y ′|x =x 0=3x 20.∴切线的方程为y -x 30=3x 20(x -x 0).令y =0,得x =2x 03.依题意S =∫x 00x 3d x -12×(x 0-2x 03)·x 3=14x 40-16x 40=112x 40=112, ∵x 0≥0,∴x 0=1.∴切线方程为y -1=3(x -1),即3x -y -2=0.19.(2014·福建安溪一中、养正中学联考)已知函数f (x )=x 3+ax 2+bx +5,若曲线f (x )在点(1,f (1))处的切线斜率为3,且x =23时,y =f (x )有极值.(1)求函数f (x )的解析式;(2)求函数f (x )在[-4,1]上的最大值和最小值. [解析] f ′(x )=3x 2+2ax +b ,(1)由题意得,⎩⎪⎨⎪⎧f ′(23)=3×(23)2+2a ×23+b =0,f ′(1)=3×12+2a ×1+b =3.解得⎩⎪⎨⎪⎧a =2,b =-4.经检验得x =23时,y =f (x )有极小值,所以f (x )=x 3+2x 2-4x +5.(2)由(1)知,f ′(x )=3x 2+4x -4=(x +2)(3x -2). 令f ′(x )=0,得x 1=-2,x 2=23,f ′(x ),f (x )的值随x 的变化情况如下表: ∵f (23)=9527,f (-2)=13,f (-4)=-11,f (1)=4,∴f (x )在[-4,1]上的最大值为13,最小值为-11.20.(2013·海淀区高二期中)已知函数f (x )=a 23x 3-2ax 2+bx ,其中a 、b ∈R ,且曲线y =f (x )在点(0,f (0))处的切线斜率为3.(1)求b 的值;(2)若函数f (x )在x =1处取得极大值,求a 的值.[解析](1)f′(x)=a2x2-4ax+b,由题意f′(0)=b=3.(2)∵函数f(x)在x=1处取得极大值,∴f′(1)=a2-4a+3=0,解得a=1或a=3.①当a=1时,f′(x)=x2-4x+3=(x-1)(x-3),x、f′(x)、f(x)的变化情况如下表:②当a=3时,f′(x)=9x2-12x+3=3(3x-1)(x-1),x、f′(x)、f(x)的变化情况如下表:综上所述,若函数f(x)在x=1处取得极大值,a的值为1.21.(2013·武汉实验中学高二期末)已知曲线f(x)=ax2+2在x=1处的切线与直线2x-y +1=0平行.(1)求f(x)的解析式;(2)求由曲线y=f(x)与y=3x、x=0、x=1、x=2所围成的平面图形的面积.[解析](1)由已知得:f′(1)=2,求得a=1,∴f(x)=x2+2.(2)由题意知阴影部分的面积是: S =⎠⎛01(x 2+2-3x )d x +⎠⎛12(3x -x 2-2)d x=(13x 3+2x -32x 2)|10+(32x 2-13x 3-2x )|21=1. 22.(2013·福州文博中学高二期末)设f (x )=ln x ,g (x )=f (x )+f ′(x ). (1)求g (x )的单调区间和最小值; (2)讨论g (x )与g (1x)的大小关系;(3)求a 的取值范围,使得g (a )-g (x )<1a 对任意x >0成立.[解析] (1)由题设知g (x )=ln x +1x ,∴g ′(x )=x -1x2,令g ′(x )=0,得x =1.当x ∈(0,1)时,g ′(x )<0,故(0,1)是g (x )的单调递减区间.当x ∈(1,+∞)时,g ′(x )>0,故(1,+∞)是g (x )的单调递增区间,因此,x =1是g (x )的唯一极值点,且为极小值点,从而是最小值点,所以最小值为g (1)=1.(2)g (1x)=-ln x +x ,设h (x )=g (x )-g (1x )=2ln x -x +1x ,则h ′(x )=-(x -1)2x 2.当x =1时,h (1)=0,即g (x )=g (1x).当x ∈(0,1)∪(1,+∞)时,h ′(x )<0,h ′(1)=0, 因此,h (x )在(0,+∞)内单调递减. 当0<x <1时,h (x )>h (1)=0,即g (x )>g (1x),当x >1时,h (x )<h (1)=0,即g (x )<g (1x).(3)由(1)知g (x )的最小值为1,所以g (a )-g (x )<1a 对任意x >0成立⇔g (a )-1<1a ,即ln a <1,从而得0<a <e ,即a 的取值范围为(0,e).。

高中数学人教A版选修2-2(课时训练):第一章 导数及其应用 章末复习 Word版含答案

高中数学人教A版选修2-2(课时训练):第一章 导数及其应用 章末复习 Word版含答案

章末复习1.对于导数的定义,必须明确定义中包含的基本内容和Δx→0的方式,导数是函数的增量Δy与自变量的增量Δx的比ΔyΔx的极限,即limΔx→0ΔyΔx=limΔx→0f(x0+Δx)-f(x0)Δx.函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率.2.曲线的切线方程利用导数求曲线过点P的切线方程时应注意:(1)判断P点是否在曲线上;(2)如果曲线y=f(x)在P(x0,f(x0))处的切线平行于y轴(此时导数不存在),可得方程为x=x0;P点坐标适合切线方程,P点处的切线斜率为f′(x0).3.利用基本初等函数的求导公式和四则运算法则求导数,熟记基本求导公式,熟练运用法则是关键,有时先化简再求导,会给解题带来方便.因此观察式子的特点,对式子进行适当的变形是优化解题过程的关键.4.判断函数的单调性(1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域,解决问题的过程中,只能在函数的定义域内,通过讨论导数的符号,来判断函数的单调区间;(2)注意在某一区间内f ′(x )>0(或f ′(x )<0)是函数f (x )在该区间上为增(或减)函数的充分条件.5.利用导数研究函数的极值要注意(1)极值是一个局部概念,是仅对某一点的左右两侧领域而言的.(2)连续函数f (x )在其定义域上的极值点可能不止一个,也可能没有极值点,函数的极大值与极小值没有必然的大小联系,函数的一个极小值也不一定比它的一个极大值小.(3)可导函数的极值点一定是导数为零的点,但函数的导数为零的点,不一定是该函数的极值点.因此导数为零的点仅是该点为极值点的必要条件,其充要条件是加上这点两侧的导数异号.6.求函数的最大值与最小值(1)函数的最大值与最小值:在闭区间[a ,b ]上连续的函数f (x ),在[a ,b ]上必有最大值与最小值;但在开区间(a ,b )内连续的函数f (x )不一定有最大值与最小值,例如:f (x )=x 3,x ∈(-1,1).(2)求函数最值的步骤一般地,求函数y =f (x )在[a ,b ]上最大值与最小值的步骤如下: ①求函数y =f (x )在(a ,b )内的极值;②将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )比较,其中最大的一个是最大值,最小的一个是最小值.7.应用导数解决实际问题,关键在于建立恰当的数学模型(函数关系),如果函数在区间内只有一个点x 0,使f ′(x 0)=0,则f (x 0)是函数的最值.题型一 应用导数解决与切线相关的问题根据导数的几何意义,导数就是相应切线的斜率,从而就可以应用导数解决一些与切线相关的问题.例1 (2013·福建)已知函数f (x )=x -a ln x (a ∈R ).(1)当a =2时,求曲线y =f (x )在点A (1,f (1))处的切线方程; (2)求函数f (x )的极值.解 函数f (x )的定义域为(0,+∞),f ′(x )=1-a x .(1)当a =2时,f (x )=x -2ln x ,f ′(x )=1-2x (x >0),∴f (1)=1,f ′(1)=-1,∴y =f (x )在点A (1,f (1))处的切线方程为y -1=-(x -1),即x +y -2=0.(2)由f ′(x )=1-a x =x -ax,x >0.①当a ≤0时,f ′(x )>0,函数f (x )为(0,+∞)上的增函数,函数f (x )无极值; ②当a >0时,由f ′(x )=0,解得x =a ;∵x ∈(0,a )时,f ′(x )<0,x ∈(a ,+∞)时,f ′(x )>0∴f (x )在x =a 处取得极小值,且极小值为f (a )=a -a ln a ,无极大值.综上当a ≤0时,函数f (x )无极值;当a >0时,函数f (x )在x =a 处取得极小值a -a ln a ,无极大值.跟踪演练1 已知曲线C 的方程是y =x 3-3x 2+2x . (1)求曲线在x =1处的切线方程;(2)若l 2:y =kx ,且直线l 2与曲线C 相切于点(x 0,y 0)(x 0≠0),求直线l 2的方程及切点坐标. 解 (1)∵y ′=3x 2-6x +2, ∴y ′|x =1=3×1-6×1+2=-1. ∴l 1的斜率为-1,且过点(1,0). ∴直线l 1的方程为y =-(x -1), 即l 1的方程为x +y -1=0.(2)直线l 2过原点,则k =y 0x 0(x 0≠0),由点(x 0,y 0)在曲线C 上,得y 0=x 30-3x 20+2x 0,∴y 0x 0=x 20-3x 0+2. ∵y ′=3x 2-6x +2,∴k =3x 20-6x 0+2.又k =y 0x 0,∴3x 20-6x 0+2=y 0x 0=x 20-3x 0+2, 整理得2x 20-3x 0=0.∵x 0≠0,∴x 0=32, 此时y 0=-38,k =-14,因此直线l 2的方程为y =-14x ,切点坐标为⎝⎛⎭⎫32,-38. 题型二 利用导数求函数的单调区间在区间(a ,b )内,如果f ′(x )>0,那么函数y =f (x )在区间(a ,b )内单调递增;在区间(a ,b )内,如果f ′(x )<0,那么函数y =f (x )在区间(a ,b )内单调递减. 例2 已知函数f (x )=x -2x +a (2-ln x ),a >0.讨论f (x )的单调性.解 由题知,f (x )的定义域是(0,+∞),f ′(x )=1+2x 2-a x =x 2-ax +2x 2.设g (x )=x 2-ax +2,二次方程g (x )=0的判别式Δ=a 2-8.①当Δ<0即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )是(0,+∞)上的单调递增函数.②当Δ=0即a =22时,仅对x =2,有f ′(x )=0,对其余的x >0都有f ′(x )>0.此时f (x )也是(0,+∞)上的单调递增函数.③当Δ>0即a >22时,方程g (x )=0有两个不同的实根x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x )、f (x )的变化情况如下表:在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.跟踪演练2 求下列函数的单调区间: (1)f (x )=(x -3)e x ,x ∈(0,+∞); (2)f (x )=x (x -a )2.解 (1)f ′(x )=(x -3)′e x +(x -3)(e x )′=(x -2)e x ,令f ′(x )>0,解得x >2,又x ∈(0,+∞),所以函数的单调增区间(2,+∞),函数的单调减区间(0,2). (2)函数f (x )=x (x -a )2=x 3-2ax 2+a 2x 的定义域为R , 由f ′(x )=3x 2-4ax +a 2=0,得x 1=a3,x 2=a .①当a >0时,x 1<x 2.∴函数f (x )的单调递增区间为⎝⎛⎭⎫-∞,a 3,(a ,+∞),单调递减区间为⎝⎛⎭⎫a 3,a . ②当a <0时,x 1>x 2,∴函数f (x )的单调递增区间为(-∞,a ),⎝⎛⎭⎫a 3,+∞, 单调递减区间为⎝⎛⎭⎫a ,a3. ③当a =0时,f ′(x )=3x 2≥0,∴函数f (x )的单调区间为(-∞,+∞),即f (x )在R 上是递增的.综上,a >0时,函数f (x )的单调递增区间为⎝⎛⎭⎫-∞,a 3,(a ,+∞),单调递减区间为⎝⎛⎭⎫a3,a . a <0时,函数f (x )的单调递增区间为(-∞,a ),⎝⎛⎭⎫a 3,+∞,单调递减区间为⎝⎛⎭⎫a ,a3. a =0时,函数f (x )的单调递增区间为(-∞,+∞). 题型三 利用导数求函数的极值和最值 1.利用导数求函数极值的一般步骤 (1)确定函数f (x )的定义域; (2)解方程f ′(x )=0的根;(3)检验f ′(x )=0的根的两侧f ′(x )的符号. 若左正右负,则f (x )在此根处取得极大值; 若左负右正,则f (x )在此根处取得极小值; 否则,此根不是f (x )的极值点.2.求函数f (x )在闭区间[a ,b ]上的最大值、最小值的方法与步骤 (1)求f (x )在(a ,b )内的极值;(2)将(1)求得的极值与f (a )、f (b )相比较,其中最大的一个值为最大值,最小的一个值为最小值.特别地,①当f (x )在[a ,b ]上单调时,其最小值、最大值在区间端点取得;②当f (x )在(a ,b )内只有一个极值点时,若在这一点处f (x )有极大(或极小)值,则可以断定f (x )在该点处取得最大(最小)值, 这里(a ,b )也可以是(-∞,+∞). 例3 已知函数f (x )=12x 2-a ln x (a ∈R ),(1)若f (x )在x =2时取得极值,求a 的值; (2)求f (x )的单调区间;(3)求证:当x >1时,12x 2+ln x <23x 3.(1)解 f ′(x )=x -a x ,因为x =2是一个极值点,所以2-a 2=0,则a =4.此时f ′(x )=x -4x =(x +2)(x -2)x ,因为f (x )的定义域是(0,+∞),所以当x ∈(0,2)时,f ′(x )<0;当x ∈(2,+∞),f ′(x )>0,所以当a =4时,x =2是一个极小值点,故a =4.(2)解 因为f ′(x )=x -a x =x 2-ax ,所以当a ≤0时,f (x )的单调递增区间为(0,+∞).当a >0时,f ′(x )=x -a x =x 2-a x =(x +a )(x -a )x,所以函数f (x )的单调递增区间(a ,+∞);递减区间为(0,a ).(3)证明 设g (x )=23x 3-12x 2-ln x ,则g ′(x )=2x 2-x -1x,因为当x >1时,g ′(x )=(x -1)(2x 2+x +1)x >0,所以g (x )在x ∈(1,+∞)上是增函数,所以g (x )>g (1)=16>0,所以当x >1时,12x 2+ln x <23x 3.跟踪演练3 已知函数f (x )=x 3+ax 2+b 的图象上一点P (1,0),且在点P 处的切线与直线3x +y =0平行.(1)求函数f (x )的解析式;(2)求函数f (x )在区间[0,t ](0<t <3)上的最大值和最小值;(3)在(1)的结论下,关于x 的方程f (x )=c 在区间[1,3]上恰有两个相异的实根,求实数c 的取值范围.解 (1)因为f ′(x )=3x 2+2ax ,曲线在P (1,0)处的切线斜率为:f ′(1)=3+2a ,即3+2a =-3,a =-3.又函数过(1,0)点,即-2+b =0,b =2.所以a =-3,b =2,f (x )=x 3-3x 2+2. (2)由f (x )=x 3-3x 2+2得,f ′(x )=3x 2-6x . 由f ′(x )=0得,x =0或x =2.①当0<t ≤2时,在区间(0,t )上f ′(x )<0,f (x )在[0,t ]上是减函数,所以f (x )max =f (0)=2, f (x )min =f (t )=t 3-3t 2+2.②当2<t <3时,当x 变化时,f ′(x )、f (x )的变化情况如下表:min max f (t )-f (0)=t 3-3t 2=t 2(t -3)<0. 所以f (x )max =f (0)=2.(3)令g (x )=f (x )-c =x 3-3x 2+2-c , g ′(x )=3x 2-6x =3x (x -2).在x ∈[1,2)上,g ′(x )<0;在x ∈(2,3]上,g ′(x )>0.要使g (x )=0在[1,3]上恰有两个相异的实根,则⎩⎪⎨⎪⎧g (1)≥0,g (2)<0,g (3)≥0,解得-2<c ≤0.题型四 导数与函数、不等式的综合应用利用导数研究函数是高考的必考内容,也是高考的重点、热点.考题利用导数作为工具,考查求函数的单调区间、函数的极值与最值,参数的取值范围等问题,若以选择题、填空题出现,以中低档题为主;若以解答题形式出现,则难度以中档以上为主,有时也以压轴题的形式出现.考查中常渗透函数、不等式等有关知识,综合性较强.例4 设函数f (x )=-13x 3+2ax 2-3a 2x +b (0<a <1).(1)求函数f (x )的单调区间和极值;(2)若当x ∈[a +1,a +2]时,恒有|f ′(x )|≤a ,试确定a 的取值范围;(3)当a =23时,关于x 的方程f (x )=0在区间[1,3]上恒有两个相异的实根,求实数b 的取值范围.解 (1)f ′(x )=-x 2+4ax -3a 2=-(x -a )(x -3a ). 令f ′(x )=0,得x =a 或x =3a .当x 变化时,f ′(x )、f (x )的变化情况如下表:值,f (x )极小值=f (a )=b -43a 3;当x =3a 时,f (x )取得极大值,f (x )极大值=f (3a )=b .(2)f ′(x )=-x 2+4ax -3a 2,其对称轴为x =2a . 因为0<a <1,所以2a <a +1.所以f ′(x )在区间[a +1,a +2]上是减函数.当x =a +1时,f ′(x )取得最大值,f ′(a +1)=2a -1; 当x =a +2时,f ′(x )取得最小值,f ′(a +2)=4a -4.于是有⎩⎪⎨⎪⎧2a -1≤a ,4a -4≥-a ,即45≤a ≤1.又因为0<a <1,所以45≤a <1.(3)当a =23时,f (x )=-13x 3+43x 2-43x +b .f ′(x )=-x 2+83x -43,由f ′(x )=0,即-x 2+83x -43=0,解得x 1=23,x 2=2,即f (x )在⎝⎛⎭⎫-∞,23上是减函数, 在⎝⎛⎭⎫23,2上是增函数,在(2,+∞)上是减函数. 要使f (x )=0在[1,3]上恒有两个相异实根, 即f (x )在(1,2),(2,3)上各有一个实根,于是有⎩⎪⎨⎪⎧f (1)≤0,f (2)>0,f (3)≤0,即⎩⎪⎨⎪⎧-13+b ≤0,b >0,-1+b ≤0,解得0<b ≤13.跟踪演练4 证明:当x ∈[-2,1]时,-113≤13x 3-4x ≤163.证明 令f (x )=13x 3-4x ,x ∈[-2,1],则f ′(x )=x 2-4.因为x ∈[-2,1],所以f ′(x )≤0, 即函数f (x )在区间[-2,1]上单调递减.故函数f (x )在区间[-2,1]上的最大值为f (-2)=163,最小值为f (1)=-113.所以,当x ∈[-2,1]时,-113≤f (x )≤163,即-113≤13x 3-4x ≤163成立.题型五 定积分及其应用定积分的几何意义表示曲边梯形的面积,它的物理意义表示做变速直线运动物体的位移或变力所做的功,所以利用定积分可求平面图形的面积以及变速运动的路程和变力做功等问题.利用定积分解决问题时要注意确定被积函数和积分上下限. 例5 求曲线y =sin x 与直线x =-π2,x =54π,y =0所围成图形的面积.解所求面积S =∫54π-π2||sin x d x=-⎠⎛0-π2sin x d x +⎠⎛0πsin x d x -∫54ππsin x d x =1+2+⎝⎛⎭⎫1-22=4-22. 跟踪演练5 求由曲线y =e x ,y =e -x及x =1所围成的图形面积.解如图,由⎩⎪⎨⎪⎧y =e x,y =e -x,解得交点为(0,1).所求面积为S =⎠⎛01(e x -e -x )d x =(e x+e -x)⎪⎪10=e +1e-2.1.求函数中参数的取值范围问题,可以有两种类型:一是已知函数单调性(或极值),求参数范围;二是已知函数最值(或恒成立)等性质,求参数范围.这两种类型从实质上讲,可以统一为:已知函数值的变化规律,探求其参数变化范围.2.在解决问题的过程中主要处理好下面的问题:(1)注意定义域;(2)函数在某区间上递增(或递减)的充要条件是:f ′(x)≥0(或f ′(x)≤0),且f ′(x)不恒为零;(3)与函数最值有关问题要注意最值能否取得的情况,一般我们可以研究临界值取舍即可.高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。

数学人教A版选修2-2章末测试:第一章导数及其应用A Word版含解析

数学人教A版选修2-2章末测试:第一章导数及其应用A Word版含解析
2
x2 4.函数 f(x)= ( )
x-1
A.在(0,2)上单调递减
B.在(-∞,0)和(2,+∞)上单调递增
C.在(0,2)上单调递增
D.在(-∞,0)和(2,+∞)上单调递减
5.已知函数 f(x)的导函数为 f′(x)=2x2,x∈(-1,1).如果 f(x)<f(1-x),则实数 x 的取
值范围为( )
C.在(4,+∞)上为减函数
D.在 x=2 处取极大值
8.已知函数 f(x)的导数 f′(x)=a(x+1)(x-a),且 f(x)在 x=a 处取得极大值,则实数 a
的取值范围是( )
A.a>-1
B.-1<a<0
C.0<a<1
D.a>1
9.如果圆柱的轴截面的周长 l 为定值,则体积的最大值为( )
( )1
A. -∞, 2
B.(-1,1)
( )1
C. -1, 2
( )1
D. 0, 2
1 π
6. 3
4 π
cos
2xdx=( )
4
1 A.
3
2 B.
3
2 C.
3
2 D.-
3
7.已知函数 y=f(x),其导函数 y=f′(x)的图象如图所示,则 y=f(x)( )
A.在(-∞,0)上为减函数
B.在 x=0 处取极小值
∴b≤-1.
答案:C
( ) 二、11.解析:由已知面积 S=
1 0
(ex+x)dx=
1 ex+ x2
2
|10
1
1
=e+ -1=e- .
2
2
1 答案:e-
2 12.解析:∵y′=3x2-10=2,∴x=±2.

[精品]新人教A版选修2-2高中数学第一章 导数及其应用 综合检测和答案

[精品]新人教A版选修2-2高中数学第一章 导数及其应用 综合检测和答案

第一章导数及其应用综合检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2010·全国Ⅱ文,7)若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则( )A.a=1,b=1B.a=-1,b=1C.a=1,b=-1D.a=-1,b=-1[答案] A[解析] y′=2x+a,∴y′|x=0=(2x+a)|x=0=a=1,将(0,b)代入切线方程得b=1.2.一物体的运动方程为s=2t sin t+t,则它的速度方程为( ) A.v=2sin t+2t cos t+1B.v=2sin t+2t cos tC.v=2sin tD.v=2sin t+2cos t+1[答案] A[解析] 因为变速运动在t0的瞬时速度就是路程函数y=s(t)在t0的导数,S′=2sin t+2t cos t+1,故选A.3.曲线y=x2+3x在点A(2,10)处的切线的斜率是( )A.4B.5C .6D .7 [答案] D[解析] 由导数的几何意义知,曲线y =x 2+3x 在点A (2,10)处的切线的斜率就是函数y =x 2+3x 在x =2时的导数,y ′|x =2=7,故选D.4.函数y =x |x (x -3)|+1( ) A .极大值为f (2)=5,极小值为f (0)=1 B .极大值为f (2)=5,极小值为f (3)=1 C .极大值为f (2)=5,极小值为f (0)=f (3)=1 D .极大值为f (2)=5,极小值为f (3)=1,f (-1)=-3 [答案] B[解析] y =x |x (x -3)|+1=⎩⎪⎨⎪⎧x 3-3x 2+1 (x <0或x >3)-x 3+3x 2+1 (0≤x ≤3)∴y ′=⎩⎪⎨⎪⎧3x 2-6x (x <0或x >3)-3x 2+6x (0≤x ≤3)x 变化时,f ′(x ),f (x )变化情况如下表:极大极小故应选B.5.(2009·安徽理,9)已知函数f(x)在R上满足f(x)=2f(2-x)-x2+8x-8,则曲线y=f(x)在点(1,f(1))处的切线方程是( ) A.y=2x-1B.y=xC.y=3x-2D.y=-2x+3[答案] A[解析] 本题考查函数解析式的求法、导数的几何意义及直线方程的点斜式.∵f(x)=2f(2-x)-x2+8x-8,∴f(2-x)=2f(x)-x2-4x+4,∴f(x)=x2,∴f′(x)=2x,∴曲线y=f(x)在点(1,f(1))处的切线斜率为2,切线方程为y -1=2(x-1),∴y=2x-1.6.函数f(x)=x3+ax2+3x-9,已知f(x)在x=-3时取得极值,则a等于( )A.2B.3C.4D.5[答案] D[解析] f′(x)=3x2+2ax+3,∵f(x)在x=-3时取得极值,∴x=-3是方程3x2+2ax+3=0的根,∴a=5,故选D.7.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是( )A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)[答案] D[解析] 令F(x)=f(x)·g(x),易知F(x)为奇函数,又当x<0时,f′(x)g(x)+f(x)g′(x)>0,即F′(x)>0,知F(x)在(-∞,0)内单调递增,又F(x)为奇函数,所以F(x)在(0,+∞)内也单调递增,且由奇函数知f(0)=0,∴F(0)=0.又由g(-3)=0,知g(3)=0∴F(-3)=0,进而F(3)=0于是F(x)=f(x)g(x)的大致图象如图所示∴F(x)=f(x)·g(x)<0的解集为(-∞,-3)∪(0,3),故应选D.8.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是( )A .①②B .③④C .①③D .①④ [答案] B[解析] ③不正确;导函数过原点,但三次函数在x =0不存在极值;④不正确;三次函数先增后减再增,而导函数先负后正再负.故应选B.9.(2010·湖南理,5)⎠⎜⎛241xd x 等于( )A .-2ln2B .2ln2C .-ln2D .ln2 [答案] D[解析] 因为(ln x )′=1x,所以 ⎠⎜⎛241x dx =ln x |42=ln4-ln2=ln2. 10.已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在x ∈(-∞,+∞)是增函数,则m 的取值范围是( )A .m <2或m >4B .-4<m <-2C .2<m <4D .以上皆不正确 [答案] D[解析] f ′(x )=x 2-2(4m -1)x +15m 2-2m -7,由题意得x 2-2(4m -1)x +15m 2-2m -7≥0恒成立,∴Δ=4(4m -1)2-4(15m 2-2m -7)=64m 2-32m +4-60m 2+8m +28 =4(m 2-6m +8)≤0, ∴2≤m ≤4,故选D.11.已知f (x )=x 3+bx 2+cx +d 在区间[-1,2]上是减函数,那么b +c ( )A .有最大值152B .有最大值-152C .有最小值152D .有最小值-152[答案] B[解析] 由题意f ′(x )=3x 2+2bx +c 在[-1,2]上,f ′(x )≤0恒成立.所以⎩⎪⎨⎪⎧f ′(-1)≤0f ′(2)≤0即⎩⎪⎨⎪⎧2b -c -3≥04b +c +12≤0令b +c =z ,b =-c +z ,如图过A ⎝⎛⎭⎪⎫-6,-32得z 最大,最大值为b +c =-6-32=-152.故应选B.12.设f (x )、g (x )是定义域为R 的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )A .f (x )g (x )>f (b )g (b )B .f (x )g (a )>f (a )g (x )C .f (x )g (b )>f (b )g (x )D .f (x )g (x )>f (a )g (x ) [答案] C[解析] 令F (x )=f (x )g (x )则F ′(x )=f ′(x )g (x )-f (x )g ′(x )g 2(x )<0 f (x )、g (x )是定义域为R 恒大于零的实数∴F (x )在R 上为递减函数,当x ∈(a ,b )时,f (x )g (x )>f (b )g (b )∴f (x )g (b )>f (b )g (x ).故应选C.二、填空题(本大题共4个小题,每小题4分,共16分.将正确答案填在题中横线上)13.⎠⎜⎛-2-1d x(11+5x )3=________. [答案]772[解析] 取F (x )=-110(5x +11)2,从而F ′(x )=1(11+5x )3则⎠⎜⎛-2-1d x(11+5x )3=F (-1)-F (-2)=-110×62+110×12=110-1360=772.14.若函数f (x )=ax 2-1x的单调增区间为(0,+∞),则实数a 的取值范围是________.[答案] a ≥0[解析] f ′(x )=⎝⎛⎭⎪⎫ax -1x ′=a +1x 2,由题意得,a +1x2≥0,对x ∈(0,+∞)恒成立,∴a ≥-1x2,x ∈(0,+∞)恒成立,∴a ≥0.15.(2009·陕西理,16)设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 99的值为________.[答案] -2[解析] 本小题主要考查导数的几何意义和对数函数的有关性质.k =y ′|x =1=n +1,∴切线l :y -1=(n +1)(x -1), 令y =0,x =nn +1,∴a n =lgnn +1,∴原式=lg 12+lg 23+…+lg 99100=lg 12×23×…×99100=lg 1100=-2.16.如图阴影部分是由曲线y =1x,y 2=x 与直线x =2,y =0围成,则其面积为________.[答案] 23+ln2[解析]由⎩⎪⎨⎪⎧y 2=x ,y =1x,得交点A (1,1)由⎩⎪⎨⎪⎧x =2y =1x得交点B ⎝⎛⎭⎪⎫2,12.故所求面积S =⎠⎜⎛01x d x +⎠⎜⎛121x d x =23x 32| 10+ln x | 21=23+ln2. 三、解答题(本大题共6个小题,共74分.解答应写出文字说明、证明过程或演算步骤)17.(本题满分12分)(2010·江西理,19)设函数f (x )=ln x +ln(2-x )+ax (a >0).(1)当a =1时,求f (x )的单调区间;(2)若f (x )在(0,1]上 的最大值为12,求a 的值.[解析] 函数f (x )的定义域为(0,2), f ′(x )=1x -12-x+a ,(1)当a =1时,f ′(x )=-x 2+2x (2-x ),所以f (x )的单调递增区间为(0,2),单调递减区间为(2,2);(2)当x ∈(0,1]时,f ′(x )=2-2xx (2-x )+a >0,即f (x )在(0,1]上单调递增,故f (x )在(0,1]上的最大值为f (1)=a ,因此a =12.18.(本题满分12分)求曲线y =2x -x 2,y =2x 2-4x 所围成图形的面积.[解析] 由⎩⎪⎨⎪⎧y =2x -x 2,y =2x 2-4x得x 1=0,x 2=2.由图可知,所求图形的面积为S =⎠⎜⎛02(2x -x 2)d x +|⎠⎜⎛02(2x 2-4x )d x |=⎠⎜⎛02(2x -x 2)d x -⎠⎜⎛02(2x 2-4x )d x . 因为⎝⎛⎭⎪⎫x 2-13x 3′=2x -x 2,⎝ ⎛⎭⎪⎫23x 3-2x 2′=2x 2-4x , 所以S =⎝ ⎛⎭⎪⎫x 2-13x 3⎪⎪⎪⎪2-⎝ ⎛⎭⎪⎫23x 3-2x 2⎪⎪⎪⎪2=4.19.(本题满分12分)设函数f (x )=x 3-3ax +b (a ≠0). (1)若曲线y =f (x )在点(2,f (2))处与直线y =8相切,求a ,b 的值;(2)求函数f (x )的单调区间与极值点.[分析] 考查利用导数研究函数的单调性,极值点的性质,以及分类讨论思想.[解析] (1)f ′(x )=3x 2-3a .因为曲线y =f (x )在点(2,f (2))处与直线y =8相切,所以⎩⎪⎨⎪⎧f ′(2)=0,f (2)=8.即⎩⎪⎨⎪⎧3(4-a )=0,8-6a +b =8.解得a =4,b =24.(2)f ′(x )=3(x 2-a )(a ≠0).当a <0时,f ′(x )>0,函数f (x )在(-∞,+∞)上单调递增,此时函数f (x )没有极值点.当a >0时,由f ′(x )=0得x =±a .当x ∈(-∞,-a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(-a ,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =-a 是f (x )的极大值点,x =a 是f (x )的极小值点. 20.(本题满分12分)已知函数f (x )=12x 2+ln x .(1)求函数f (x )的单调区间; (2)求证:当x >1时,12x 2+ln x <23x 3.[解析] (1)依题意知函数的定义域为{x |x >0}, ∵f ′(x )=x +1x,故f ′(x )>0,∴f (x )的单调增区间为(0,+∞). (2)设g (x )=23x 3-12x 2-ln x ,∴g ′(x )=2x 2-x -1x,∵当x >1时,g ′(x )=(x -1)(2x 2+x +1)x>0,∴g (x )在(1,+∞)上为增函数, ∴g (x )>g (1)=16>0,∴当x >1时,12x 2+ln x <23x 3.21.(本题满分12分)设函数f (x )=x 3-92x 2+6x -a .(1)对于任意实数x, f ′(x )≥m 恒成立,求m 的最大值; (2)若方程f (x )=0有且仅有一个实根,求a 的取值范围. [分析] 本题主要考查导数的应用及转化思想,以及求参数的范围问题.[解析] (1)f ′(x )=3x 2-9x +6=3(x -1)(x -2).因为x ∈(-∞,+∞).f ′(x )≥m ,即3x 2-9x +(6-m )≥0恒成立.所以Δ=81-12(6-m )≤0,得m ≤-34,即m 的最大值为-34.(2)因为当x <1时,f ′(x )>0;当1<x <2时,f ′(x )<0;当x >2时f ′(x )>0.所以当x =1时,f (x )取极大值f (1)=52-a ,当x =2时,f (x )取极小值f (2)=2-a .故当f (2)>0或f (1)<0时,方程f (x )=0仅有一个实根,解得a <2或a >52.22.(本题满分14分)已知函数f (x )=-x 3+ax 2+1(a ∈R ).(1)若函数y =f (x )在区间⎝ ⎛⎭⎪⎫0,23上递增,在区间⎣⎢⎡⎭⎪⎫23,+∞上递减,求a 的值;(2)当x ∈[0,1]时,设函数y =f (x )图象上任意一点处的切线的倾斜角为θ,若给定常数a ∈⎝ ⎛⎭⎪⎫32,+∞,求θ的取值范围;(3)在(1)的条件下,是否存在实数m ,使得函数g (x )=x 4-5x 3+(2-m )x 2+1(m ∈R )的图象与函数y =f (x )的图象恰有三个交点.若存在,请求出实数m 的值;若不存在,试说明理由.[解析] (1)依题意f ′⎝ ⎛⎭⎪⎫23=0,由f ′(x )=-3x 2+2ax ,得-3⎝ ⎛⎭⎪⎫232+2a ·23=0,即a =1.(2)当x ∈[0,1]时,tan θ=f ′(x )=-3x 2+2ax =-3⎝⎛⎭⎪⎫x -a 32+a23.由a ∈⎝ ⎛⎭⎪⎫32,+∞,得a 3∈⎝ ⎛⎭⎪⎫12,+∞.①当a 3∈⎝ ⎛⎦⎥⎤12,1,即a ∈⎝ ⎛⎦⎥⎤32,3时,f ′(x )max =a 23,f (x )min =f ′(0)=0.此时0≤tan θ≤a 23.②当a3∈(1,+∞),即a ∈(3,+∞)时,f ′(x )max =f ′(1)=2a-3,f ′(x )min =f ′(0)=0,此时,0≤tan θ≤2a -3.又∵θ∈[0,π),∴当32<a ≤3时,θ∈⎣⎢⎡⎦⎥⎤0,arctan a 23,当a >3时,θ∈[0,arctan(2a -3)].(3)函数y =f (x )与g (x )=x 4-5x 3+(2-m )x 2+1(m ∈R )的图象恰有3个交点,等价于方程-x 3+x 2+1=x 4-5x 3+(2-m )x 2+1恰有3个不等实根,∴x 4-4x 3+(1-m )x 2=0,显然x =0是其中一个根(二重根),方程x 2-4x +(1-m )=0有两个非零不等实根,则⎩⎪⎨⎪⎧Δ=16-4(1-m )>01-m ≠0∴m >-3且m ≠1故当m >-3且m ≠1时,函数y =f (x )与y =g (x )的图象恰有3个交点.。

高中 人教A版 选修2-2 第一章 导数及其应用【答案及解析】

高中 人教A版 选修2-2 第一章 导数及其应用【答案及解析】
13. 【解析】因为函数 ,所以 ,
因为 是函数 的一个极值点,所以 , ,所以 ,故答案为 .
14. 【解析】由 是定义在R上的奇函数,可得 ,
当 时, ,当 ,即有 , , ,
则导数为 , ,又切点为 ,切线方程为 ,
即 .故答案为: .
15. 【解析】 时, 是减函数,又 ,∴由 得 在 上恒成立, .
16. 【解析】由题知 , .
.
在 上单调递增;在 上单调递减,易知 在区间 上的最大值为 , , ,都有 成立,即 在 上的最大值大于等于 在 上的最大值,即 ,即 ,解得
17.(1) ;(2)1
【解析】(1) , ,
∵ , ,∴ .
由正弦定理可知 .
(2)∵ , ,∴ .
设 ,则 ,
在△ 与△ 中,由余弦定理可知,
3.C【解析】因为 ( ),所以 ,
由 得 ,所以,当 时, ,即 单调递增;
当 时, ,即 单调递减;
又函数 在区间 上不是单调函数,
所以有 ,解得 .故选C
4.C【解析】函数 是偶函数,排除选项 ;
当 时,函数 ,可得 ,
当 时, ,函数是减涵数,当 时,函数是增函数,排除项选项
5.B【解析】 , , , , ,……则 是一个周期为4的周期函数,
人教A版 选修2-2 第一章 导数及其应用
第I卷(选择题)
一、单选题
1.已知 ,则 ()
A. B. C. D.
2.曲线 在点 处的切线方程为
A. B. C. D.
3.已知函数 在区间 上不是单调函数,则实数 的取值范围是( )
A. B. C. D.
4.函数 的图象大为( )
A. B. C. D.

人教A版选修2-2第一章导数及其应用单元测试(A).docx

人教A版选修2-2第一章导数及其应用单元测试(A).docx

高中数学学习材料唐玲出品建工师四中第一章导数及其应用单元测试(A)一、选择题(共12小题,每小题5分,共60分) 1.3()f x x =, 0'()6f x =,则0x = ( ) A .2 B.2- C.2± D.1±2.设连续函数0)(>x f ,则当b a <时,定积分⎰ba dx x f )(的符号 ( )A 、一定是正的B 、一定是负的C 、当b a <<0时是正的,当0<<b a 时是负的D 、以上结论都不对3.一质点做直线运动,由始点起经过t s 后的距离为s =41t 4- 4t 3 + 16t 2,则速度为零的时刻是 ( )A.4s 末B.8s 末C.0s 与8s 末D.0s,4s,8s 末4.若20(23)0kx x dx -=⎰,则k=( )A. 1B.0C.0或1D.以上都不对5.设y=x-lnx ,则此函数在区间(0,1)内为( )A .单调递增 B. 有增有减 C.单调递减 D.不确定6. 已知f(x)=3x ·sinx ,则'(1)f =( ) A.31+cos1 B. 31sin1+cos1 C. 31sin1-cos1 D.sin1+cos17.曲线3cos (0)2y x x π=≤≤与坐标轴围成的面积是( ) A.4 B. 52C.3D.28.函数)(x f 的图像如图所示,下列数值排序正确的是( ) (A ))2()3()3()2(0//f f f f -<<< y (B ) )2()2()3()3(0//f f f f <-<< (C ))2()3()2()3(0//f f f f -<<<(D ))3()2()2()3(0//f f f f <<-<9. 若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是( ) A. [1,)-+∞ B. (1,)-+∞ C. (,1]-∞- D. (,1)-∞-12.设曲线1*()n y x n N +=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则12n x x x ⋅⋅⋅的值为( ) (A) 1n (B) 11n + (C) 1n n + (D) 1二、填空题(共4小题,每小题4分,共16分) 13. 若f(x)=ax 3+x +1有极值的充要条件是__________14.已知)(x f 为一次函数,且10()2()f x x f t dt =+⎰,则)(x f =______O 1 2 3 4 x15.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为16.设函数3()35f x x x =-+,若关于x 的方程()f x a =至少有两个不同实根, 则a 的取值范围是______________三、解答题(共6小题,74分,解答写出文字说明、证明过程或演算步骤) 17.(本小题满分12分)已知曲线f (x ) = a x 2 +2在x=1处的切线与2x-y+1=0平行 (1)求f (x )的解析式 (2)求由曲线y=f (x ) 与3y x =,0x =,2x =所围成的平面图形的面积。

高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案

高中数学选修2-2(人教A版)第一章导数及其应用1.1知识点总结含同步练习及答案

导数的几何意义当点趋近于点时,割线
趋近于确定的位置,这个确定位置的直线 P n P (,f ()) x 0x 0 P P n P P
).



高考不提分,赔付1万元,关注快乐学了解详情。

解析:图像中每点的斜率均表示这一时刻的速度.
答案:解析:4. 如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记 时刻五角星露出水面部分的图形面积为
,则导函数 的图象大致为

A .
B .
C
.D .
A
导函数 为单位时间内五角星出水的面积率,由图可知当一个角出来时,面积率由 开始,逐渐增多,当一个角
都出完了,则面积率一下由最大开始减小,当出最后两个角时,面积率会先增加,然后减小到 .
t S (t )(S (0)=0)y =(t )S ′()y =(t )S ′0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4 27
《导数及其应用》训练题
一、选择题(每小题5分,共50分)
1 .设函数y = f (x )可导,则 蚂 f (1 +^x ) - f
(1)
等于( A . f'(1)
B . 3f
'(1)
3LX
1
C . - f
'(1) 3 ).
D .以上都不对 1 2.已知物体的运动方程是 S r ^t 4
4
-4t 3 16t 2 (t 表示时间,S 表示位移),则瞬时速度 为0的时刻是
A . 0 秒、 C . 2 秒、 ).
2秒或4秒 8秒或16秒 B . 0
秒、
D . 0
秒、 2秒或16秒 4秒或8秒
3.若曲线y = x
x 3
在x = x 0处的切线互相垂直,则 X )等于

).
3
36
B .
6
4•若点P 在曲线 3
-3x 2
• (3 - . 3)x 3
上移动,经过点 4
P 的切线的倾斜角为:-,
则角〉的取值范围是
A . [0,二] ).
B .
[0
2)U [
2 二
兀)
能的是( ).
6.函数 f (X )= x
3
7.已知函数 f(x )
C .[訂:)
II 2■:
D .叱七P
5 •设f '(x )是函数
•ax -2在区间[1「二)内是增函数,则实数 a 的取值范围是(
).
C . (-3,::
)
D . (-
3 2
=x - px -qx 的图像与x 轴切于点(1,0),则 f (x )的极大值、 极小值
分别为(
4 A .
).
4
B . 0,
27 4
C . —
, 0 D . 0,
27
27
1 1
&由直线x , x = 2,曲线y 及x 轴所围图形的面积是(
2
x
15
17 1 , A.
B.
C. In 2
D. 2ln 2
4
4
2
3
9.函数f(x)二x -3bx 3b 在(0,1)内有极小值,则(
).
A . 0 ::: b < 1
B . b =1
C . b 0
10. y = ax 2
V 的图像与直线y = x 相切,则a 的值为(
).
1
1
1
A .
B .
C .-
8 4 2
、填空题(每小题5分,共20分)
11
.由定积分的几何意义可知
I 4 一 x 2 = -----------
12. 函数f(x)=xln x(x 0)的单调递增区间是
13.
已知函数f(x)二ax-lnx ,若f(x)・1在区间(1,=:)内恒成立,则实数 a 的范围为
14.设函数f(x)=x 「ax 的导数为f'(x)=2x ・1,则数列{-^}( n ・N *)的前n 项和 f (n) 是 _______________ .
三、解答题(共6题,共80分)
15.(本题12分)
1
求经过点(2,0)且与曲线y
相切的直线方程
x
16.(本题12分)
已知 x 1,求证:x In(1 - x).
).
D .
b :.-
17.(本题14分) 已知函数f (x) = -x3 3x2 9x a ,
(i)求f (x)的单调递减区间;
(n)若f (x)在区间[一2,2]上的最大值为20,求它在该区间上的最小值.
18.(本题14分)
已知函数f (x) =x4 -4x3• ax2 -1在区间[0,1]上单调递增,在区间[1,2]上单调递减,
(i)求a的值;
(n)设g(x) =bx2 -1,若方程f (x) =g(x)的解集恰有3个元素,求b的取值范围.
19.(本题14分)
某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格。

销售量可以增加, 且每星期多卖出的商品件数与商品单价的降低销x (单位:元,0乞X空30)的平方成正比
已知商品单价降低2元时,一星期多卖出24件.
(i )将一个星期的商品销售利润表示成x的函数;
(n)如何定价才能使一个星期的商品销售利润最大?
20.(本题14分) 设函数f (x)=旦x3- 3 x2(a 1)x 1,其中a为实数。

3 2
(i)已知函数f (x)在x =1处取得极值,求a的值;
(n)已知不等式f'(x) ・x2-x-a 1对任意a (0^::)都成立,求实数x的取值范围。

参考答案
一、选择题
1. C
2. D
3. A
4. B
5. C
6. B
7. A
8. D
9. A 10. B
二、填空题
11. 2-. 14.
三、解答题
1
15.解:•••点(2,0)不在曲线y 上,•••设切点为P(x o, y o),
x
y'l x仝.,•所求切线方程为_ X)
1
y-y°2(x-x°).
X
•••点(2,0)在切线上,• x/y。

=2-冷(①),
1
又P(x0,y°)在曲线y 上,• x)y0=1 (②),
x
联立①、②解得x0 =1 , y0 = 1,故所求直线方程为x • y - 2 = 0 .
16 .证明:设 f (x) = x -In(1 x ) ( x
1 ), 1 x
f '(x) = 1 ( x 1 ),
1+x x+1
f '(x) 0 ,••• f (x)在(1,::)是增函数,又f (1) = 1 - I n2 1 - I ne = 0,即即
f(1) 0 .
f (x) 0 ,即x ln(1 x) ( x 1 ).
17.解:(I) f '(x^ -3x2 6x 9,令f (M <0,解得x ::: -1 或x 3,所以函数f (x)
的单调递减区间为(一“,-1),(3, •::).
(n)因为f (一2) =8 12 -18 • a =2 a , f (2) =-8 12 • 18 a =22 a , 所以f(2) f (-2) . ••• x (-1,3)时,f'(x) 0 ,• f (x)在(-1,3]上单调递增.
又f (x)在[-2,-1)上单调递减,所以f (2)和f(-1)分别是f (x)在区间[-2,2]上的最大值和最小值.
于是有22 • a =20,解得a = -2 .故f (x) = -x3• 3x2• 9x - 2 ,
所以f (-1) =1 • 3-9-2 =-7,即函数f (x)在区间[-2,2]上的最小值为-7 .
3 2
18.解:(I) f '(x) =4x -12x ■ 2ax ,依题意x =1 是方程f '(x)二0 的解,• a = 4 .
(n)
由f (x)二g(x) = x2 (x2 -4x • 4 - b)二0有三个相异实根,故方程x2 - 4x • 4 - b = 0有两
个相异的非零实根.
・(0,4)U(4,::).
4一b = 0
=16-4(4 -b) 0 b
2
19.解:(i)设商品降价x元,则多卖的商品数为kx,若记商品在一个星期的获利为f(x),
则依题意有f (x) = (30 — X - 9)(432 kx2 )(21 — x)(432 kx2)
又由已知条件,24二k 22,于是有k = 6,
所以f (x) = -6x3 126x2— 432x 9072,x [0,30]
(n )根据(I),我们有f /(x)二- 18x2252x -432 二-18(x - 2)(x -12).
故x=12时,达到极大值,因为、,所以定价为
30 -12 = 18元能使一个星期的商品销售利润最大.
20•解:(I) f'(x)二ax2-3x • (a • 1),由于函数f (x)在x=1时取得极值,所以
f ⑴=0 ,即a —3 a 1 =0,二 a = 1.
(n)方法一:由题设知:ax2 -3x ■ (a ■ 1) • x2 - x - a ■ 1 对任意a (0,
■::)都成
立,即a(x2• 2)-X2-2x 0对任意a (0,=)都成立.
设g(a) =a(x2■ 2)-X2-2x(a • R),则对任意R , g(a)为单调递增函数(a • R). 所以对任意a (0, , g(a) 0恒成立的充分必要条件是g(0)_ 0 .
即-X2-2X_0, •••-2岂x乞0 于是x的取值范围是1x|-2乞x^0?.
2 2
方法二:由题设知:ax -3x (a 1) x「x -a • 1对任意a(0, •::)都成立
2
即a(x2
•2)-x -2x 0对任意a (0, ■::)都成立.
2 2
x
22x
对任意a (0, r)都成立,即X 22x乞0 . • _2乞x^0 .
x2 2 x2 2 于是x的取值范围是;、x I -2岂x岂01
于是a -。

相关文档
最新文档