不等式及不等式组教案

合集下载

人教版数学七年级下册第61课时《不等式与不等式组复习》教案

人教版数学七年级下册第61课时《不等式与不等式组复习》教案

人教版数学七年级下册第61课时《不等式与不等式组复习》教案一. 教材分析《不等式与不等式组复习》这一课时,是人教版数学七年级下册的教学内容。

本课时主要对不等式与不等式组的概念、性质、解法等进行复习,旨在帮助学生巩固已学知识,提高解决问题的能力。

教材通过对不等式与不等式组的复习,使学生能够熟练运用不等式解决实际问题,为后续学习更高级的数学知识打下基础。

二. 学情分析学生在之前的学习中已经掌握了不等式与不等式组的基本概念、性质和解法。

但部分学生在解不等式组时,对不等号的方向变化、解集的表示方法等方面容易出错。

因此,在复习过程中,教师需要针对这些薄弱环节进行重点讲解和练习,提高学生的解题技能。

三. 教学目标1.知识与技能:使学生熟练掌握不等式与不等式组的概念、性质和解法,能灵活运用不等式解决实际问题。

2.过程与方法:通过复习不等式与不等式组,培养学生分析问题、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心和自主学习能力。

四. 教学重难点1.重点:不等式与不等式组的概念、性质和解法。

2.难点:不等式组的解集表示方法和在实际问题中的应用。

五. 教学方法采用讲解法、例题解析法、练习法、小组讨论法等,结合多媒体教学手段,引导学生主动参与复习过程,提高复习效果。

六. 教学准备1.教材、课件和教学资源。

2.练习题和测试题。

3.黑板、粉笔等教学工具。

七. 教学过程利用课件展示不等式与不等式组在实际生活中的应用场景,引导学生回顾已学知识,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT展示不等式与不等式组的概念、性质和解法,让学生对所学知识有一个全面的了解。

在呈现过程中,教师要点拔重点,解答学生的疑问。

3.操练(10分钟)让学生独立完成练习题,检验学生对不等式与不等式组的掌握程度。

教师巡回指导,对学生在解题过程中遇到的问题进行解答。

4.巩固(10分钟)针对学生在操练过程中出现的问题,教师进行讲解和总结,帮助学生巩固知识点。

高中数学《不等式》教案

高中数学《不等式》教案

高中数学《不等式》教案教学内容:不等式
教学目标:
1. 理解不等式的概念和性质。

2. 掌握不等式的解法和解集表示法。

3. 能够根据不等式的性质解决实际问题。

教学重点:
1. 掌握不等式的基本概念和性质。

2. 能够利用不等式解决实际问题。

教学难点:
1. 熟练掌握各种不等式的解法。

2. 能够根据实际问题建立并解决不等式。

教学过程:
一、导入(5分钟)
1. 引入不等式的概念,并和等式做比较,引发学生思考。

二、讲解不等式的性质和解法(15分钟)
1. 讲解不等式的符号表示及性质。

2. 讲解不等式的解法,包括加减法、乘法、除法等。

三、练习与讨论(20分钟)
1. 练习不等式的基本运算和解法。

2. 让学生在小组讨论中解决不等式问题。

四、实际问题应用(10分钟)
1. 列举一些实际问题,让学生通过建立不等式解决。

五、总结与展望(5分钟)
1. 总结不等式的性质和解法。

2. 展望下节课内容,讲解高级不等式的解法。

六、作业布置(5分钟)
1. 布置练习题,巩固不等式的知识。

教学板书:
不等式
1. 定义:比较两个数的大小关系的代数式。

2. 符号表示:大于(>)、小于(<)、大于等于(≥)、小于等于(≤)。

3. 特性:加减法、乘除法性质。

教学反思:
通过本节课的教学,学生对不等式的概念和性质有了初步了解,并能够熟练解决基本的不等式问题。

下一步可以引入更复杂的不等式,挑战学生的解题能力。

高中数学代数不等式教案

高中数学代数不等式教案

高中数学代数不等式教案
一、教学目标:
1. 了解不等式的概念,掌握不等式的性质和解不等式的方法;
2. 能够解决简单的一元一次不等式;
3. 能够推导不等式,简单应用不等式解决实际问题。

二、教学重点和难点:
1. 不等式的性质和解不等式的方法;
2. 推导不等式和应用不等式解决实际问题。

三、教学内容:
1. 不等式的概念及性质;
2. 解一元一次不等式的方法;
3. 推导不等式;
4. 应用不等式解决实际问题。

四、教学过程:
1. 导入新课:通过提问引出学生对不等式的认识,引出不等式的概念和性质;
2. 学习不等式的性质和解不等式的方法,并讲解示例;
3. 学生练习解题;
4. 学习推导不等式的方法,并讲解示例;
5. 学生练习推导不等式;
6. 学习应用不等式解决实际问题,并讲解示例;
7. 学生练习应用不等式解决实际问题;
8. 总结本节课的内容,布置作业。

五、课后作业:
1. 练习册上的相关习题;
2. 思考如何应用不等式解决生活中的问题。

六、教学反思:
通过本节课的教学,学生对不等式的概念和性质有了更深入的理解,解不等式的方法也得到了初步掌握。

但是,需要鼓励学生多加练习,提高解题能力。

在教学中,要充分启发学生的思维,引导学生灵活运用不等式解决实际问题。

七年级数学下册_第9章不等式与不等式组教案_人教新课标版

七年级数学下册_第9章不等式与不等式组教案_人教新课标版

第九章不等式与不等式组第一节、知识梳理一、学习目标1.掌握不等式及其解(解集)的概念,理解不等式的意义.2.理解不等式的性质并会用不等式基本性质解简单的不等式.3.会用数轴表示出不等式的解集.二、知识概要1.不等式:一般地,用不等号“>”、“<”表示不等关系的式子叫做不等式.2.不等式的解:一般地,在含有未知数的不等式中,能使不等式成立的未知数的值,叫做不等式的解.3.不等式的解集:一个不等式的所有解,组成这个不等式的解的集合,称之为此不等式的解集.4.一元一次不等式:只含有一个未知数,且未知数的次数是1的不等式,叫做一元一次不等式.5.不等式的性质:性质一:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.性质二:不等式两边都乘以(或除以)同一个正数,不等号的方向不变.性质三:不等式的两边都乘以(或除以)同一个负数,不等号方向改变.6.三角形中任意两边之差小于第三边.三、重点难点重点是不等式的基本性质及其应用,难点是不等式和不等式解集的理解.四、知识链接本周知识由以前学过的比较大小拓展而来,又为解决实际问题提供了一个解题的工具,并为以后学的不等式组打下基础.五、中考视点不等式也是经常考到的内容,经常出现在选择题、填空题中,以解不等式为主.有时在一些解答题中也要用到不等式,利用不等关系求范围等.第二节、教材解读1. 常用的不等号有哪些?常用的不等号有五种,其读法和意义是:(1)“≠”读作“不等于”,它说明两个量是不相等的,但不能明确哪个大哪个小.(2)“>”读作“大于”,表示其左边的量比右边的量大.(3)“<”读作“小于”,表示其左边的量比右边的量小.(4)“≥”读作“大于或等于”,即“不小于”,表示左边的量不小于右边的量.(5)“≤”读作“小于或等于”,即“不大于”,表示左边的量不大于右边的量.2. 如何恰当地列不等式表示不等关系?(1)找准题中不等关系的两个量,并用代数式表示.(2)正确理解题目中的关键词语,如:多、少、快、慢、增加了、减少了、不足、不到、不大于、不小于、不超过、非负数、至多、至少等的确切含义.(3)选用与题意符合的不等号将表示不等关系的两个量的代数式连接起来.根据下列关系列不等式:a的2倍与b 的的和不大于3.前者用代数式表示是2a+ b.“不大于”就是“小于或等于”.列不等式为:2a+b≤3.3. 用数轴表示不等式注意什么?用数轴表示不等式要注意两点:一是边界;二是方向.若边界点在范围内则用实心点表示,若边界点不在范围内,则用空心圆圈表示;方向是对于边界点而言,大于向右画,而小于则向左画.在同一个数轴上表示下列两个不等式:x>-3;x≤2.- 2 -第三节、错题剖析一、去括号时,错用乘法分配律【例1】解不等式3x+2(2-4x)<19.错解: 去括号,得3x+4-4x<19,解得x>-15.诊断: 错解在去括号时,括号前面的数2没有乘以括号内的每一项.正解: 去括号,得3x+4-8x<19,-5x<15,所以x>-3.二、去括号时,忽视括号前的负号【例2】解不等式5x-3(2x-1)>-6.错解: 去括号,得5x-6x-3>-6,解得x<3.诊断:去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号.错解在去括号时,没有将括号内的项全改变符号.正解: 去括号,得5x-6x+3>-6,所以-x>-9,所以x<9.三、移项时,不改变符号【例3】解不等式4x-5<2x-9.错解: 移项,得4x+2x<-9-5,即6x<-14,所以诊断: 一元一次不等式中的移项和一元一次方程中的移项一样,移项就要改变符号,用心爱心专心- 3 -错解忽略了这一点.正解: 移项,得4x-2x<-9+5,解得2x<-4,所以x<-2.四、去分母时,忽视分数线的括号作用【例4】解不等式错解: 去分母,得6x-2x-5>14,解得诊断: 去分母时,如果分子是一个整式,去掉分母后要用括号将分子括起来.错解在去掉分母时,忽视了分数线的括号作用.正解: 去分母,得6x-(2x-5)>14,去括号,得6x-2x+5>14,解得五、不等式两边同除以负数,不改变方向【例5】解不等式3x-6<1+7x.错解:移项,得3x-7x<1+6,即-4x<7,所以诊断:将不等式-4x<7的系数化为1时,不等式两边同除以-4后,根据不等式的基本性质:不等式两边同乘以或同除以同一个负数,不等号要改变方向,因此造成了错解.正解:移项,得3x-7x<1+6,即-4x<7,所以x >- 4 -【例6】 x2与a的和不是正数用不等式表示.错解及分析: x2+a<0. 对“不是正数”理解不清.x2与a的和是0或负数.正解: x2+a≤0.【例7】求不等式的非负整数解.错解及分析:整理得,3x≤16,所以故其非负整数解是1,2,3,4,5.本例的解题过程没有错误,错在对“非负整数”的理解.正解:整理得,3x≤16,所以故其非负整数解是0,1,2,3,4,5.【例8】解不等式3-5(x-2)-4(-1+5x)<0.错解及分析:去括号,得3-x-2-4+5x<0,即4x<3,所以本题一是去括号后各项没有改变符号;二是一个数乘以一个多项式时应该把这个数和多项式的每一项相乘.正解:去括号得3-x+10+4-20x<0,即-21x<-17,所以【例9】解不等式7x-6<4x-9.错解及分析:移项,得7x+4x<-9-6,即11x<-15,所以一元一次不等式中移项和一元一次方程中的移项一样,都要改变符号.正解:移项,得7x-4x<-9+6,即3x<-3,所以x<-1.【例10】解不等式错解及分析:去分母,得3+2(2-3x)≤5(1+x).即11x≥2,所以错误的原因是在去分母时漏乘了不含分母的一项“3”.正解:去分母,得用心爱心专心- 5 -30+2(2-3x)≤5(1+x).即11x≥29,所以【例11】解不等式6x-6≤1+7x.错解及分析:移项,得6x-7x≤1+6.即-x≤7,所以x<-7.将不等式-x≤7的系数化为1时,不等式两边同除以-1,不等号没有改变方向,因此造成了错解.正解:移项,得6x-7x<1+6.即-x≤7,所以x≥-7.【例12】解关于x的不等式m(x-2)>x-2.错解: 化简,得(m-1)x>2(m-1),所以x>2.诊断: 错解默认为m-1>0,实际上m-1还可能小于或等于0.正解: 化简,得(m-1)x>2(m-1),①当m-1>0时,x>2;②当m-1<0时,x<2;③当m-1=0时,无解.【例13】解不等式(a-1)x>3.错解:系数化为1,得x >.诊断:此题的未知数系数含有字母,不能直接在不等式两边同时除以这个系数,应该分类讨论.正解:①当a-1>0时,x >;②当a=1时,0×x>3,不等式无解;③当a-1<0时,x <.【例14】不等式组的解集为 .错解:两个不等式相加,得 x-1<0,所以x<1.诊断:这是解法上的错误,它把解不等式组与解一次方程组的方法混为一谈,不等式组的解法是分别求出不等式组中各个不等式的解集,然后在数轴上表示出来,求得的公共- 6 -部分就是不等式组的解集,而不能用解方程组的方法来求解正解:解不等式组,得.在同一条数轴上表示出它们的解集,如图,所以不等式组的解集为:0<x <【例15】解不等式组错解:因为5x-3>4x+2,且4x+2>3x-2,所以 5x-3>3x-2.移项,得5x-3x>-2+3.解得 x >.诊断:上面的解法套用了解方程组的方法,是否正确,我们可以在x >的条件下,任取一个x的值,看是否满足不等式组.如取x=1,将它代入5x-3>4x+2,得2>6(不成立).可知x >不是原方程组的解集,其造成错误的原因是由原不等式组变形为一个新的不等式时,改变了不等式的解集.正解:由5x-3>4x+2,得x>5.由4x+2>3x-2,得x>-4.综合x>5和x>-4,得原不等式组的解集为x>5.【例16】解不等式组错解:由不等式2x+3<7可得x<2.由不等式5x-6>9可得x>3.所以原不等式组的解集为2>x>3.诊断:由不等式性质可得,2>3,这是不可能的.正解:由不等式2x+3<7可得x<2.由不等式5x-6>9可得x>3.用心爱心专心- 7 -所以原不等式组无解.【例17】解不等式错解:去分母,得3-4x-1>9x.移项,得-4x-9x>1-3合并,得-13x>-2系数化为1,得诊断:本题忽视了分数线的双重作用,去分母时,若分子为多项式,应对其加上括号.正解:去分母,得3-(4x-1)>9x去括号,得3-4x+1>9x.移项,得-4x-9x >-1-3合并,得-13x>-4系数化为1,得【例18】若不等式组的解集为x>2,则a的取值范围是().A. a<2B. a≤2C. a>2D. a≥2错解及分析:原不等式组可分为得a<2,故选A.当a=2时,原不等式组变为解集也为x>2.正解:应为a≤2 ,故选B.【例19】解不等式组错解:②-①,得不等式组的解集为x<-13.诊断:错解中把方程组的解法套用到不等式组中.正解:由不等式2x<7+x得到x<7.由不等式3x<x-6得到x<-3.所以原不等式组的解集为x<-3.第四节、思维点拨一、巧用乘法- 8 -【例1】解不等式0.125x<3.【思考与分析】此不等式是一元一次不等式的一般形式,只需不等式两边同时除以0.125,就可以化系数为“1”,但是较繁.不如利用不等式的性质2两边同乘以8要比两边同除以0.125解得简捷.解:两边同乘以8,得x<24.二、巧去分母【例2】解不等式【思考与分析】常规方法是先去分母,但仔细观察就会发现,可先进行移项.解:移项,得合并同类项,得x≥-1.【例3】解不等式【思考与分析】常规方法是去分母,两边同乘以分母的最小公倍数.但我们会注意到“0.25×4=1,0.5×2=1”,则利用分数的性质,对左边第一项分子、分母同乘以4,第二项分子、分母同乘以2,这样就可以化去分母并且系数为整数.解:利用分数的性质(即左边第一项分子、分母同乘以4,第二项分子、分母同乘以2),得8x+4-2(x-2)≤2,去括号,得8x+4-2x+4≤2,移项,合并同类项,得6x≤-6两边同时除以6得x≤-1.三、根据已知条件取特殊值【例4】设a、b是不相等的任意正数,又x =,则x、y这两个数一定是()A.都不大于2B.都不小于2C.至少有一个大于2用心爱心专心- 9 -D.至少有一个小于2【思考与分析】不妨取a=1,b=3,得x=10,y =从而排除A、B,再取a=3,b=4,得,从而排除D,故选C.答案:C.【反思】用特殊值法解选择题时,如果所取的特殊值使部分选项取得相同的结果,则应另选特殊值再验,直至选出答案.四、根据数轴取特殊值【例5】不等式组的解集在数轴上表示出来是如下图中的()【思考与分析】本题的常规方法是先解不等式组,然后再对照各选项选出正确答案,由于这样做要解不等式组,比较麻烦.仔细观察各选项中的数轴,有两个特殊数2,-1,不妨先取x=2,代入不成立,故可排除A、B.再取x=0,代入不成立,又可排除C,从而选D,这样做不仅节省了时间,而且又减少了出错的机会﹒答案:D.【反思】用特殊值法解选择题时,要综合运用验证法,排除法等技巧,快速选出正确答案﹒比较两个数或两个代数式的大小,可以运用求差法:如果a-b>0,则a>b;如果a-b<0,则a<b.运用求差法比较大小的一般步骤是:(1)作差;(2)判断差的符号;(3)确定大小.【例6】设x>y,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x或y的值是多少?【思考与分析】根据求差法的步骤我们先求出两个式子的差,然后再根据已知条件x>y,来判断这个差的符号,从而比较两个代数式的大小.- 10 -解:由两式作差得-(8-10x)-[-(8-10y)]=-8+10x+8-10y=10x-10y.因为x>y,所以10x>10y,即10x-10y>0.所以-(8-10x)>-(8-10y).又由题意得-(8-10x)>0,即x>,所以x最小的正整数值为1.【例7】有一个三口之家准备在假期出外旅行,咨询时了解到东方旅行社规定:若父母各买一张全票则孩子可以按全票的七折购票;而光明旅行社则规定:三人均可按团体票计价,即按全票的80%收费.若两家旅行社的票价相同,则实际哪家收费较低呢?【思考与分析】要比较哪家旅行社的收费低,我们可以先用含有未知数的式子表示出两家旅行社需要的费用,然后根据求差法的步骤,求出两个式子的差,再根据已知条件判断这个差的符号即可比较出哪个旅行社的费用低.解:设这两家旅行社全票的价格为a元,依题意东方旅行社的收费为2a+70%a=2.7a,光明旅行社的收费为3a×80%=2.4a.因为2.7a-2.4a=0.3a>0,所以实际上光明旅行社的收费较低.【反思】在解题时我们为什么设这两家旅行社全票的价格为a元呢?因为如果不设的话,我们即使知道用求差法比较大小,也无从下手.五、巧去括号【例8】【思考与分析】观察题目中的括号及数字的特点可先考虑去中括号,再去小括号,这样会使运算简便.解:去中括号,得去分母,得 3x+60<28+8x,移项,合并同类项,得-5x<-32,【思考与分析】观察题目中的括号及数字的特点可从里向外去小括号,给后面的运算带来方便.解:去小括号,得六、巧用“整体思想”【例9】解不等式:【思考与分析】观察题目中括号内外可知都有相同的项:2x-1,我们把2x-1视为整体,再去中括号和分母,则可使运算简捷.解: 3(2x-1)-9(2x-1)-9<5.合并同类项得-6×(2x-1)<14.解得反思:我们在解带有括号的一元一次不等式时,我们要善于观察题目的特点,巧去括号可使运算简便.【例10】在欧洲足球锦标赛中,共有16支队伍参加比赛,争夺象征欧洲足球最高荣誉的“德劳内杯”.16支队伍被分成4个小组,进行单循环赛(即每个队需同其他三个队各赛一场),胜一场积3分,平一场积1分,负一场积0分,每组按照积分的前两名出线进入前八强,每个队在小组赛中需积多少分,才能确保出线?【思考与分析】根据题意,只有小组赛中的积分的前两名才能出线,我们可以分几种情况来讨论出线积分的多少.(1)若某一队三战全胜积9分,则同组的另一小队需保证小组第二才有出线的希望,在剩下的两场比赛中,它有六种可能:两场全胜积6分,一胜一平积4分,一胜一负积3分,两平积2分,一平一负积1分,两负积0分.(三场比赛,肯定有一场负)因此,在这种情况中,至少积6分才能确保出线;(2)若某一队三战两胜一平积7分,则小组第二至少要两胜积6分才能出线;(3)若某一队三战两胜一负积6分,则其他两个队也可能三战两胜一负积6分,这样三队同积6分,不能确保小组出线.由以上思考讨论可知,在小组赛中,积分可能出现三个队积分相同,为了确保出线,至少需积7分,才能保证以小组第二的身份出线.解:需7分.【小结】通过解题过程我们知道做这类题的时候要注意:在足球比赛中,一般按积分多少排名次;积分相等的两队,净胜球数多的队名次在前;积分、净胜球数都相等的球队,进球数多的队名次在前;分析有关足球比赛的问题时,不能单纯的利用不等关系判断,还要注意到相互之间的胜负关系.第五节、竞赛数学【例1】满足的x的值中,绝对值不超过11的那些整数之和等于 .【思考与分析】要求出那些整数之和,必须求出不等式的绝对值不超过11的整数解,因此我们应该先解不等式.解:原不等式去分母,得3(2+x)≥2(2x-1),去括号,移项,合并同类项,得-x≥-8,即x≤8.满足x≤8且绝对值不超过11的整数有0,±1,±2,±3,±4,±5,±6,±7,±8,-9,-10,-11.这些整数的和为(-9)+(-10)+(-11)=-30.【例2】如果关于x的一元一次方程3(x+4)=2a+5的解大于关于x的方程的解,那么().【思考与分析】这道题把方程问题转化为解不等式问题,利用了转化的数学思想.由于第一个方程的解大于第二个方程的解,只要先分别解出关于x的两个方程的解(两个解都是关于a的式子),再令第一个方程的解大于第二个方程的解,就可以求出问题的答案.解:关于x的方程3(x+4)=2a+5的解为关于x的方程的解为由题意得,解得.因此选D.【例3】如果,2+c>2,那么().A. a-c>a+cB. c-a>c+aC. ac>-acD. 3a>2a【思考与分析】已知两个不等式分别是关于a和c的不等式,求得它们的解集后,便可以找到正确的答案.解: 由所以a<0.由2+c>2,得c>0,则有-c<c.两边都加上a,得a-c<a+c,排除A;由a<0,c>0,得ac<0,-ac>0,从而ac<-ac,排除C;由a<0,两边都加上2a,得3a<2a,排除D.答案应该选B,事实上,由a<0,得-a>0,从而-a>a,两边同时加上c,可得c-a>c+a.【例4】四个连续整数的和为S,S满足不等式,这四个数中最大数与最小数的平方差等于 .【思考与分析】由于四个数是连续整数,我们欲求最大值与最小值,故只须知四数之一就行了,由它们的和满足的不等式就可以求出.解:设四个连续整数为m-1,m,m+1,m+2,它们的和为S=4m+2.由<19,解得7<m<9.由于m为整数,所以m=8,则四个连续整数为7,8,9,10,因此最大数与最小数的平方的差为102-72=51.从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离.但除零以外,绝对值都是表示两个数的绝对值,即一个数与它相反数的绝对值是一样的.由于这个性质,含有绝对值号的不等式的求解过程出现了一些新特点.一个实数a的绝对值记作∣a∣,指的是由a所惟一确定的非负实数:含绝对值的不等式的性质:(1)∣a∣≥∣b∣b≤|a|或b≥-|a|,∣a∣≤∣b∣∣b∣≤a≤∣b∣;(2)∣a∣-∣b∣≤∣a+b∣≤∣∣a∣+∣b∣;(3)∣a∣-∣b∣≤∣a-b∣≤∣a∣+∣b∣.由于绝对值的定义,含有绝对值号的代数式无法进行统一的代数运算.通常的手法是按照绝对值符号内的代数式取值的正、负情况,去掉绝对值符号,转化为不含绝对值号的代数式进行运算,即含有绝对值号的不等式的求解,常用分类讨论法.在进行分类讨论时,要注意所划分的类别之间应该不重、不漏.下面结合例题予以分析.【例5】解不等式|x-5|-|2x+3|<1.【分析】关键是去掉绝对值符号前后的变号.分三个区间讨论:解:(1)当当x≤时,原不等式化为-(x-5)-[-(2x+3)]<1,解得x<-7,结合x≤,故x<-7是原不等式的解;(2)当<x≤5时,原不等式化为-(x-5)-(2x+3)<1,解得是原不等式的解;(3)当x>5时,原不等式化为:x-5-(2x+3)<1,解得x>-9,结合x>5,故x>5是原不等式的解.综合(1),(2),(3)可知,是原不等式的解.第六节、本章训练基础训练题1.不等式x+3<6的非负整数解为().A. 1,2B. 1,2,3C. 1,2,0D. 1,2,3,02.已知三个连续奇数的和不超过27且大于10,这样的数组共有().A. 1个B. 2个C. 3个D. 4个3.的值不小于-2,则a的取值范围是().4.若+2x的值不大于8-的值,那么x的正整数解是 .5.小明准备用26元钱买火腿肠和方便面,已知一根火腿肠2元,一盒方便面3元,他买了5盒方便面,还可以买多少根火腿肠?6.小华用最小刻度是1厘米的刻度尺,测量一本书的长,测得结果是17.5厘米,这0.5厘米是他估计的,并不准确,若设他所测量的书的长为x厘米,那么x应该满足的不等式是什么?答案1. C2. B3. C4. 1,2,35.解:设还可以买x根火腿肠.由题意我们可列不等式5×3+2x≤26,解得因为x必须为正整数,所以x=1,2,3,4,5.答:小明还可以买火腿肠的数目不超过5根.6.解:17<x<18.提高训练题1.解不等式2.李明在第一次数学测验中得76分,在第二次测验中得92分,设第三次测验的分数为x,且三次的平均分不低于85分,求x的取值范围.3.小强去超市买某种牌子的衬衣,该种衬衣单价为每件100元,小强想买的衬衣数不少于5件,路上交通费为10元,小强准备钱时有以下几种选择:准备400元,准备500元,准备510元,准备610元.请你说明哪种方案可行?4.某商城以单价260元购进一批DVD机,出售时标价398元,由于销售不好,商场准备降价出售,但要保证利润不低于10%.小明说:“可降价100元.”小英说:“可降价150元.”小华说:“降价不能超过112元.”你同意他们谁的说法?5. 巧解下列不等式:(1) 0.375x-2≤0.5x(2)(4)6. 解下列不等式:(1) 9-2(x-2)≥6(2) 12-3x<8-2x7. 已知答案2.解:由题意得我们可列不等式≥85,解得x≥87.3.解:设小明准备了x元钱.我们由题意可列不等式≥5.解得x≥510.所以准备510元或准备610元都可以.4.解:设降价x元.5. (1) x≥-16(提示:不等式两边同乘8);我们可以由题意列不等式398-x-260≥260×10%.解得x≤112.所以小明和小华的说法是正确的.强化训练题1. 若实数a>1,则实数M=a,N=的大小关系是().A. P>N>M B. M>N>PC. N>P>M D. M>P>N2. 若0<a<1,则下列四个不等式中正确的是().3. a、b、c在数轴上的对应点的位置如图所示,下列式子正确的有().① b+c>0;② a+b>a+c;③ bc>ac;④ ab>ac.A.1个B.2个 C.3个 D.4个.4.我市某初中举行“八荣八耻”知识抢答赛,总共50道抢答题.抢答规定:抢答对1题得3分,抢答错1题扣1分,不抢答得0分.小军参加了抢答比赛,只抢答了其中的20道题,要使最后得分不少于50分,问小军至少要答对几道题?5.已知前年物价涨幅(即前年物价比上一年,也就是大前年物价增加的百分比)为20%,去年物价涨幅为15%,预计今年物价涨幅降低5个百分点,为了使明年物价比大前年物价涨幅不高出55%,明年物价涨幅必须比今年物价涨幅至少再降低x个百分点(x为整数)则x =().A. 6B. 7C. 8D. 96.某商场计划投入一笔资金,采购紧销商品.经调查发现,如月初出售,可获利15%,并可用本和利再投资其他商品,则月末又可获利10%;如等到月末出售可获利30%,但需要支付仓储费用700元.请问根据商场资金多少,如何购销获利较多?7.小王家里装修,他去商店买灯,商店柜台里现有功率100瓦的白炽灯和40瓦的节能灯,它们的单价分别为2元和32元,经了解知道这两种灯的照明效果和使用寿命都是一样的.已知小王家所在地的电价为每度0.5元,请问当这两种灯的使用寿命超过多长时间时,小王选择节能灯才合算。

高中数学的几个不等式教案

高中数学的几个不等式教案

高中数学的几个不等式教案
教学目标:
1. 了解不等式的基本概念与性质
2. 掌握解不等式的方法与技巧
3. 能够独立解决不等式问题
教学内容:
1. 不等式的定义及表示方法
2. 不等式的性质
3. 解不等式的方法
4. 不等式的应用
教学步骤:
1. 热身:利用简单的不等式练习引出不等式的概念
2. 导入:介绍不等式的定义及表示方法
3. 讲解:讲解不等式的性质,如加减乘除不等式、绝对值不等式等
4. 演示:演示解不等式的方法,如化简、整理、分析不等式中的关系等
5. 练习:让学生进行一些不等式练习,巩固所学知识
6. 拓展:引导学生探讨不等式的应用领域,如最值问题、应用题等
7. 总结:总结本节课的重点内容并布置作业
教学反馈:
1. 学生完成作业后,进行批改并给予反馈
2. 收集学生对不等式学习过程中的疑问,进行解答与指导
教学资源:
1. 教材:高中数学教材中的相关章节
2. 教具:黑板、彩色粉笔、教学PPT等
3. 练习册:针对不等式的练习题
教学评估:
1. 课堂学习表现评定
2. 作业完成情况评定
3. 学生解决不等式问题的能力评定
教学总结:
通过本节课的教学,学生应该能够掌握不等式的基本概念与性质,掌握解不等式的方法与技巧,提高解决数学问题的能力。

同时,也对不等式的应用有一定的了解与认识。

初中不等式全部解法教案

初中不等式全部解法教案

初中不等式全部解法教案教学目标:1. 理解不等式的概念,掌握不等式的基本性质。

2. 学会解一元一次不等式,并能运用不等式解决实际问题。

3. 能够运用图像法、符号法等多种方法解不等式组。

教学重点:1. 不等式的概念与基本性质。

2. 一元一次不等式的解法。

3. 不等式组的解法。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引入不等式的概念,让学生举例说明不等式的含义。

2. 引导学生理解不等式的基本性质,如对称性、传递性等。

二、一元一次不等式的解法(15分钟)1. 讲解一元一次不等式的定义,让学生明确解的概念。

2. 引导学生运用代数方法解一元一次不等式,如加减乘除等。

3. 举例讲解如何将实际问题转化为不等式,并求解。

三、不等式组的解法(15分钟)1. 讲解不等式组的概念,让学生理解不等式组的组成。

2. 引导学生运用图像法、符号法等多种方法解不等式组。

3. 举例讲解如何将实际问题转化为不等式组,并求解。

四、巩固练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。

2. 讲解练习题的解法,引导学生运用不等式的性质和解法。

五、总结与拓展(10分钟)1. 总结不等式的概念、基本性质、解法等。

2. 引导学生思考如何将不等式应用于实际生活中,解决实际问题。

教学反思:本节课通过讲解不等式的概念、基本性质和解法,使学生掌握了不等式的基本知识。

在教学过程中,注意引导学生运用不等式解决实际问题,提高了学生的应用能力。

同时,通过练习题的训练,使学生巩固了所学知识。

但在教学中也存在一些不足,如对学生自主学习能力的培养不够,个别学生对不等式的理解仍有一定困难。

在今后的教学中,应加强对学生的引导,提高学生的学习兴趣和自主学习能力。

《不等式的性质》教案

《不等式的性质》教案

《不等式的性质》教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生运用不等式解决实际问题的能力。

3. 提高学生对数学逻辑思维的认识。

二、教学内容:1. 不等式的定义与性质2. 不等式的运算规则3. 不等式在实际问题中的应用三、教学重点与难点:1. 教学重点:不等式的基本性质,不等式的运算规则。

2. 教学难点:不等式在实际问题中的应用。

四、教学方法:1. 采用问题驱动法,引导学生探究不等式的性质。

2. 运用案例分析法,让学生学会将不等式应用于实际问题。

3. 利用小组讨论法,培养学生的合作与交流能力。

五、教学过程:1. 导入:通过生活实例引入不等式的概念,让学生感受不等式的实际意义。

2. 新课导入:讲解不等式的定义与性质,引导学生理解不等式的基本概念。

3. 案例分析:分析实际问题,让学生掌握不等式在解决问题中的应用。

4. 课堂练习:布置练习题,巩固所学的不等式性质与运算规则。

5. 小组讨论:分组讨论不等式在实际问题中的应用,培养学生的合作与交流能力。

7. 作业布置:布置课后作业,巩固所学知识。

六、教学评价:1. 课堂参与度:观察学生在课堂上的参与情况,是否积极回答问题,参与小组讨论。

2. 练习题的正确率:检查学生完成练习题的正确率,以评估他们对不等式性质的理解和运用能力。

3. 课后作业:评估学生课后作业的质量,包括解题思路的清晰性和答案的准确性。

4. 小组讨论报告:评估学生在小组讨论中的表现,包括他们的思考深度和与他人合作的有效性。

七、教学资源:1. 教学PPT:制作包含不等式性质的图表、示例和练习题的PPT,以便进行多媒体教学。

2. 练习题库:准备一系列不等式练习题,包括填空题、选择题和解答题,以供课堂练习和课后作业使用。

3. 小组讨论模板:提供小组讨论的报告模板,包括讨论问题、成员贡献和结论等部分。

八、教学进度安排:1. 第1周:介绍不等式的定义和基本性质。

2. 第2周:讲解不等式的运算规则和性质。

高一数学《不等式与不等式组》解法与应用教案

高一数学《不等式与不等式组》解法与应用教案

高一数学《不等式与不等式组》解法与应用教案第一节:不等式的基本性质与解法在本节中,我们将学习不等式的基本性质及解法。

一、不等式的基本性质1. 不等式的传递性:若 a < b 且 b < c,则 a < c。

2. 不等式的加减性:若 a < b,则 a ± c < b ± c。

3. 不等式的乘除性:若 a < b 且 c > 0,则 ac < bc;若 a < b 且 c < 0,则 ac > bc。

4. 不等式的倒数性:若 a > b 且 c < 0,则 ac < bc;若 a > b 且 c > 0,则 ac > bc。

二、不等式的解法1. 用加减法解不等式:利用不等式的加减性质,对不等式两边同时加减相同的数值,可以保持不等号的方向不变。

2. 用乘除法解不等式:利用不等式的乘除性质,对不等式两边同时乘除相同的正数,可以保持不等号的方向不变;对不等式两边同时乘除相同的负数,可以改变不等号的方向。

3. 注意特殊情况:当不等号两边出现倒数时,需要注意不等式的方向可能会发生改变。

第二节:不等式组的基本性质与解法在本节中,我们将学习不等式组的基本性质及解法。

一、不等式组的概念不等式组是由若干个不等式组成的一个数学对象,其中的每个不等式被称为不等式组的一个元。

二、不等式组的性质1. 不等式组的合并策略:当不等式组中的不等式关系相同(如都是大于或都是小于)时,可以将它们合并为一个不等式。

2. 不等式组的分解策略:当不等式组中的不等式关系不同(如既有大于又有小于)时,需要对不等式组进行分解处理。

三、不等式组的解法1. 图解法:将不等式组中的不等式转化为线性方程,绘制出每个不等式对应的线性方程的图像,找出满足所有不等式的公共区域,即为不等式组的解。

2. 代入法:将不等式组中的某个不等式转化为等式,然后将其它不等式的变量用该等式中的变量表示,求解出一个变量的取值范围,再代入其他不等式求解出其余变量的取值范围,得到不等式组的解集。

不等式的基本性质教案

不等式的基本性质教案

不等式的基本性质教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生解决实际问题的能力,提高学生的数学思维能力。

二、教学内容:1. 不等式的概念及其表示方法。

2. 不等式的基本性质:加减乘除同一数或式子,不等号方向不变;乘除相反数,不等号方向改变。

三、教学重点与难点:1. 教学重点:不等式的概念,不等式的基本性质。

2. 教学难点:不等式性质的灵活运用。

四、教学方法:1. 采用问题驱动法,引导学生探索不等式的基本性质。

2. 利用实例分析,让学生感受不等式在实际问题中的应用。

五、教学步骤:1. 引入不等式的概念,让学生了解不等式的表示方法。

3. 利用PPT展示不等式的基本性质,让学生直观地感受性质的应用。

4. 进行课堂练习,让学生巩固所学的不等式基本性质。

5. 结合实际问题,让学生运用不等式基本性质解决问题。

7. 布置课后作业,巩固所学知识。

六、教学评价:1. 课后收集学生的课堂练习和课后作业,评价学生对不等式基本性质的掌握程度。

2. 在下一节课开始时,让学生分享自己解决实际问题的经历,评估学生运用不等式基本性质解决实际问题的能力。

七、教学反思:在课后,教师应认真反思本节课的教学效果,针对学生的掌握情况,调整教学策略,以提高学生对不等式基本性质的理解和运用能力。

八、课后作业:1. 完成练习册上的相关习题。

2. 举出生活中的不等式实例,并与同学分享。

九、教学进度安排:本节课计划用1课时完成。

十、教学资源:1. PPT课件。

2. 练习册。

3. 实际问题案例。

六、教学活动设计:1. 导入新课:通过复习上一节课的内容,引导学生回顾不等式的基本性质。

2. 小组讨论:让学生分组讨论,每组选择一个实际问题,运用不等式的基本性质解决问题,并分享解题过程和答案。

3. 案例分析:教师展示一些典型的问题案例,让学生分析并解释不等式基本性质在解决问题中的作用。

4. 练习巩固:学生完成一些有关不等式基本性质的练习题,教师及时给予指导和反馈。

人教版小学数学六年级下册不等式及其解集教案

人教版小学数学六年级下册不等式及其解集教案

课题:第九章不等式与不等式组9.1 不等式9.1.1 不等式及其解集教学目标(一)知识与技能1.了解不等式的概念;2.理解不等式的解集;3.能正确表示不等式的解集。

(二)过程与方法经历把实际问题抽象为不等式的过程,能列出不等关系式;初步体会不等式(组)是刻画现实世界中不等关系的一种有效的数学模型,培养学生的建模意识。

(三)情感态度价值观培养学生的知识迁移能力和建模意识,加深同学之间的合作与交流。

教学难点不等式解集的表示教学难点不等式解集的确定教具准备Powerpoint课件课型教学手段教学方法新授课多媒体授课练习——归纳法教学过程(师生活动)设计理念提出问题多媒体演示:1、两个体重相同的孩子正在跷跷板上做游戏.现在换了一个小胖子上去,跷跷板发生了倾斜,游戏无法继续进行下去了.这是什么原因呢?2、一辆匀速行驶的汽车在11:20时距离A地50千米。

要在12:00以前驶过A地,车速应该满足什么条件?若设车速为每小时x千米,你能用一个式子表示吗?(学生经过讨论从时间、路程两个角度分别列出不等式)通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,激发他们的学习兴趣.(一)不等式、一元一次不等式的概念1、在学生充分发表自己意见的基础上,师生共同归纳得出:用“<”或“>”表示大小关系的式子叫做不等式;用“≠”表示不等关系的式子也是不等式。

(学生联想等式,读背记忆概念)注意:a.不等号开口所对的数较大;b.不等式中可以含有未知数,也可以不含未知数。

引导学生仔细观察并归纳出不等式的意义。

探究新知2、下列式子中哪些是不等式?(1)a+b=b+a (2)-3>-5 (3)x≠l(4)x十3>6 (5) 2m< n (6)2x-3上述不等式中,有些不含未知数,有些含有未知数.我们把那些类似于一元一次方程,含有一个未知数且未知数的次数是1的不等式,叫做一元一次不等式。

(学生联想一元一次方程,读背记忆概念)3、小组交流:说说生活中的不等关系.分组活动.先独立思考,然后小组内互相交流并做记录,最后各组选派代表发言。

2.2不等式的基本性质(教案)

2.2不等式的基本性质(教案)
-难点2:乘法性质中负数的处理。当c<0时,乘法性质与加法性质不同,不等号的方向会改变。
-举例:若a>b且c<0,则ac<bc。需要通过具体的例子和练习,让学生掌握负数在乘法性质中的影响。
-难点3:将不等式性质应用于实际问题。学生需要能够从实际问题中抽象出不等关系,并正确应用基本性质。
-举例:在解决实际问题时,如购物预算问题,学生需要将预算限制转化为不等式,并利用性质进行求解。
2.2不等式的基本性质(教案)
一、教学内容
本节课选自八年级数学下册第二章“不等式与不等式组”中的2.2节“不等式的基本性质”。教学内容主要包括以下几点:
1.不等式的定义及其表示方法;
2.不等式的基本性质:
(1)传递性:如果a>b且b>c,那么a>c;
(2)对称性:如果a>b,那么b<a;
(3)加法性质:如果a>b,那么a+c>b+c(c为任意实数);
实践活动环节,分组讨论和实验操作进行得相当顺利。学生们能够将不等式的基本性质应用到解决实际问题中,这让我很欣慰。但在小组讨论中,我也注意到有的学生在表达自己的观点时不够自信,这可能是因为他们对知识点的掌握还不够熟练。我会在以后的课堂中多给予这些学生鼓励和支持。
学生小组讨论的环节让我看到了学生们的思维火花。他们在讨论不等式在实际生活中的应用时,提出了很多有趣的观点和问题。但在引导讨论的过程中,我发现自己对一些开放性问题的设计还不够精准,有时会导讨论更加高效。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与不等式相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示不等式的基本性质。

初中数学不等式公开课教案

初中数学不等式公开课教案

初中数学不等式公开课教案1、理解不等式的概念和性质;2、掌握一元一次不等式的解法;3、能够应用不等式解决实际问题;4、培养学生的逻辑思维能力和解决问题的能力。

二、教学重点和难点重点:1、不等式的概念和性质;2、一元一次不等式的解法。

难点:一元一次不等式的解法。

三、教学方法启发式、讲练结合、小组合作。

四、教学过程(一)复习导入1、复习一元一次方程的解法;2、引入不等式概念,让学生举例说明不等式的含义。

(二)新课讲解1、介绍不等式的概念和性质;2、讲解一元一次不等式的解法;3、通过例题讲解不等式的解法应用。

(三)课堂练习1、布置练习题,让学生独立解答;2、选取部分学生的解答进行讲解和评价。

(四)小组讨论1、布置小组讨论题目,让学生分组讨论;2、选取小组代表进行解答和讲解。

(五)总结和拓展1、总结不等式的概念和性质;2、讲解不等式在实际问题中的应用;3、提出拓展问题,引导学生思考。

五、教学评价1、课堂讲解:重点清晰,难点解释到位,语言表达准确;2、课堂练习:学生参与度高,解答正确率较高;3、小组讨论:学生能够积极参与,小组合作良好;4、学生反馈:学生对不等式的理解和应用有较好的掌握。

六、教学反思在课后,教师应反思教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。

同时,关注学生的学习反馈,及时解答学生的疑问,提高学生的学习兴趣和自信心。

七、教学资源1、教案;2、PPT;3、练习题;4、小组讨论题目。

八、教学时间1课时。

九、教学内容1、不等式的概念和性质;2、一元一次不等式的解法;3、不等式在实际问题中的应用。

不等式的基本性质教案

不等式的基本性质教案

不等式的基本性质教案不等式的基本性质教案1一、教学目标:(一)知识与技能1.掌握不等式的三条基本性质。

2.运用不等式的基本性质对不等式进行变形。

(二)过程与方法1.通过等式的性质,探索不等式的性质,初步体会“类比”的数学思想。

2.通过观察、猜想、验证、归纳等数学活动,经历从特殊到一般、由具体到抽象的认知过程,感受数学思考过程的条理性,发展思维能力和语言表达能力。

(三)情感态度与价值观通过探究不等式基本性质的活动,培养学生合作交流的意识和大胆猜想,乐于探究的良好思维品质。

二、教学重难点教学重点:探索不等式的三条基本性质并能正确运用它们将不等式变形。

教学难点:不等式基本性质3的探索与运用。

三、教学方法:自主探究——合作交流四、教学过程:情景引入:1.举例说明什么是不等式?2.判断下列各式是否成立?并说明理由。

( 1 ) 若x-6=10, 则x=16( )( 2 ) 若3x=15, 则 x=5 ( )( 3 ) 若x-6>10 则 x>16( )( 4 ) 若3x>15 则 x>5 ( )【设计意图】(1)、(2)小题唤起对旧知识等式的基本性质的回忆,(3)、(4)小题引导学生大胆说出自己的想法。

温故知新问题1.由等式性质1你能猜想一下不等式具有什么样的性质吗?等式性质1:等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。

估计学生会猜:不等式两边都加上或减去同一个数(或同一个整式),所得结果仍是不等式。

教师引导:“=”没有方向性,所以可以说所得结果仍是等式,而不等号:“>,<,≥,≤”具有方向性,我们应该重点研究它在方向上的变化。

问题2.你能通过实验、猜想,得出进一步的结论吗?同学通过实例验证得出结论,师生共同总结不等式性质1。

问题3.你能由等式性质2进一步猜想不等式还具有什么性质吗?等式性质2:等式两边都乘或除以同一个数(除数不能是0),等式依然成立。

估计学生会猜:不等式两边都乘或除以同一个数(除数不能是0),不等号的方向不变。

高中高一数学上册《不等式》教案、教学设计

高中高一数学上册《不等式》教案、教学设计
(四)课堂练习
1.设计具有代表性的练习题,让学生独立完成,巩固所学知识。
2.练习题包括:
-基础题:求解一元一次不等式;
-提高题:求解一元二次不等式;
-拓展题:求解不等式组及实际问题。
3.教师巡回指导:在学生做题过程中,教师进行巡回指导,解答学生疑问,及时发现问题并进行纠正。
(五)总结归纳
1.学生总结:让学生回顾本节课所学内容,用自己的话总结不等式的概念、性质、解法及实际应用。
(二)讲授新知
1.不等式的概念:介绍不等式的定义,强调不等式与等式的区别,让学生理解不等式的意义。
2.不等式的性质:详细讲解不等式的性质,如同向可加性、反向可减性等,并通过实例进行说明。
3.不等式的解法:以一元一次不等式为例,讲解求解不等式的基本步骤,引导学生掌握解题方法。
4.不等式在实际问题中的应用:结合购物优惠券问题,讲解如何将实际问题转化为不等式模型,并求解。
8.适时进行课堂小结,巩固所学知识,查漏补缺。
-通过提问、讨论等方式,帮助学生梳理知识体系,形成系统化认识。
9.注重课后辅导,针对学生的个体差异,给予有针对性的指导和帮助。
-定期检查作业,了解学生学习情况,及时解答学生疑问,提高学习效果。
四、教学内容与过程
(一)导入新课
1.生活实例引入:以同学们熟悉的购物优惠券问题作为切入点,提出问题:“同学们在购物时,如何利用优惠券使得自己的购物更加划算?”通过这个实例,引导学生思考如何用数学方法解决实际问题。
2.一元一次不等式、一元二次不等式及不等式组的解法。
3.不等式在实际问题中的应用。
4.不等式的证明方法及逻辑推理能力的培养。
(二)教学难点
1.学生对不等式性质的灵活运用。

《不等式与不等式组》教材分析

《不等式与不等式组》教材分析

《不等式与不等式组》教材分析1、本章教材的地位不等式的知识是初中阶段在一元一次方程和二元一次方程组的学习之后,进一步探究数量关系的重要内容.数量之间除了有相等关系外,还有大小不等的关系。

不等式与不等式组是讨论不等关系的有力数学工具,掌握不等式的基本性质是基础知识,解一元一次不等式是一项基本技能,也是学生以后学习一元二次方程、函数以及进一步学习不等式知识的基础。

2、教材的主要内容本章的主要内容包括:一元一次不等式(组)及相关概念,不等式的性质,一元一次不等式(组)的解法及其解集的几何表示,利用一元一次不等式分析、解决实际问题。

本章重视数学与实际的关系,注意体现列不等式(组)中蕴藏的建模思想和解不等式(组)中蕴藏的化归思想。

3、教材特点(1)突出建摸思想,实际问题作为大背景贯穿全章在本章中,安排了一些有代表性的实际问题作为知识的发生、发展的背景材料,实际问题始终贯穿于全章,对不等式(组)等概念的引入和对它们的解法的讨论,都是在建立和运用不等式(组)这种数学模型的过程之中进行的.例:91节中,通过一个具体行程问题引入不等式及不等式的解,9.2 节从生活中常见的购物问题说起,由于市场上存在不同的促销方式,所以购物时可以货比三家,进行选择购物。

(2)注重知识的前后联系,强调通过比较来认识新事物本章位居一次方程(组)之后.方程(组)是讨论等量关系的数学工具,不等式(组)是讨论不等关系的数学工具。

两者既有联系又有差异。

在认识一次方程(组)的基础上,通过比较的方式学习新知识一元一次不等式(组),对于学生的学习起到了正向迁移的作用。

(3)淡化概念教学,删减运算的数量和难度:强化学生的主动探索,增加培养学生能力的练习教材在解不等式时,将其放在了实际问题中解决,删减了运算的数量和难度,强化了学生探索解决实际问题的主动性。

而每一节课后的习题都有与学生实际生活密切相关的习题,使学生能够更加生动形象的理解数学问题,同时也增强了学生解决问题的能力。

不等式的基本性质(教案)

不等式的基本性质(教案)

不等式的基本性质教学目标:1. 理解不等式的概念及基本性质;2. 学会解简单的不等式问题;3. 能够应用不等式的基本性质解决实际问题。

教学内容:第一章:不等式的概念1.1 不等式的定义1.2 不等式的表示方法1.3 不等式的性质第二章:不等式的基本性质2.1 性质1:不等式的两边加上或减去同一个数,不等号的方向不变;2.2 性质2:不等式的两边乘以或除以同一个正数,不等号的方向不变;2.3 性质3:不等式的两边乘以或除以同一个负数,不等号的方向改变。

第三章:解简单的不等式3.1 解一元一次不等式;3.2 解一元二次不等式;3.3 解不等式组。

第四章:不等式的应用4.1 实际问题转化为不等式;4.2 解不等式得到答案;4.3 检验答案的合理性。

第五章:不等式的综合练习5.1 填空题;5.2 选择题;5.3 解答题。

教学方法:1. 采用讲解、示例、练习、讨论等方式进行教学;2. 通过引导学生发现不等式的基本性质,培养学生的思维能力;3. 结合实际问题,培养学生的应用能力。

教学评估:1. 课堂练习:每章结束后进行课堂练习,检验学生掌握情况;2. 课后作业:布置相关作业,巩固所学知识;3. 期中考试:检查学生对不等式的基本性质的掌握程度。

教学资源:1. PPT课件;2. 教案;3. 练习题;4. 实际问题案例。

教学进度安排:1. 第一章:2课时;2. 第二章:3课时;3. 第三章:4课时;4. 第四章:3课时;5. 第五章:2课时。

第六章:不等式的扩展性质6.1 不等式的传递性质:如果a < b且b < c,a < c。

6.2 不等式的对称性质:如果a < b,则b > a。

6.3 不等式的多变量性质:解涉及多个变量的不等式。

第七章:不等式的图形表示7.1 直线与不等式的关系:直线y = mx + c与不等式y > mx + c的关系。

7.2 平面区域与不等式组:不等式组的图形表示及解集的确定。

不等式的基本性质教学设计优秀

不等式的基本性质教学设计优秀

不等式的基本性质教学设计优秀不等式的基本性质教学设计优秀1【教学目标】1.通过具体情境让学生感受和体验现实世界和日常生活中存在着大量的不等关系,鼓励学生用数学观点进行观察、归纳、抽象,使学生感受数学、走进数学、改变学生的数学学习态度。

2.建立不等观念,并能用不等式或不等式组表示不等关系。

3.了解不等式或不等式组的实际背景。

4.能用不等式或不等式组解决简单的实际问题。

【重点难点】重点:1.通过具体的问题情景,让学生体会不等量关系存在的普遍性及研究的必要性。

2.用不等式或不等式组表示实际问题中的不等关系,并用不等式或不等式组研究含有简单的不等关系的问题。

3.理解不等式或不等式组对于刻画不等关系的意义和价值。

难点:1.用不等式或不等式组准确地表示不等关系。

2.用不等式或不等式组解决简单的含有不等关系的实际问题。

【方法手段】1.采用探究法,按照阅读、思考、交流、分析,抽象归纳出数学模型,从具体到抽象再从抽象到具体的方法进行启发式教学。

2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用。

3.设计教典型的现实问题,激发学生的学习兴趣和积极性。

【教学过程】教学环节教师活动学生活动设计意图导入新课日常生活中,同学们发现了哪些数量关系。

你能举出一些例子吗?实例 1.某天的天气预报报道,最高气温35℃,最低气温29℃。

实例2.若一个数是非负数,则这个数大于或等于零。

实例3.两点之间线段最短。

实例4.三角形两边之和大于第三边,两边之差小于第三边。

引导学生想生活中的例子和学过的数学中的例子。

在老师的引导下,学生肯定会迫不及待的能说出很多个例子来。

即活跃了课堂气氛,又激发了学生学习数学的兴趣。

推进新课同学们所举的这些例子联系了现实生活,又考虑到数学上常见的数量关系,非常好。

而且大家已经考虑到本节课的标题《不等关系与不等式》,所举的实例都是反映不等量的关系。

(下面利用电脑投影展示两个实例)实例5:限时40km/h的路标,指示司机在前方路段行使时,应使汽车的速度v不超过40km/h。

高中数学教案不等式

高中数学教案不等式

高中数学教案不等式教学目标:
1. 掌握不等式的概念和性质;
2. 能够熟练解不等式;
3. 能够应用不等式解决实际问题。

教学重点和难点:
1. 不等式的定义和性质;
2. 解不等式,注意不等式两端的运算符号的改变。

教学准备:
1. 课件、教材、黑板、粉笔;
2. 题目练习册、答案。

教学过程:
一、复习导入(5分钟)
1. 复习前几节课所学习的代数式和方程的知识;
2. 引导学生回顾不等式的概念。

二、新知传授(10分钟)
1. 讲解不等式的定义和性质;
2. 讲解解不等式的基本方法和技巧。

三、示范演练(15分钟)
1. 做几道简单的例题让学生跟着老师一起做;
2. 提醒学生注意符号的变化、运算的规则。

四、学生练习(15分钟)
1. 学生自行完成教师给出的练习题;
2. 教师巡视指导学生,帮助解决问题。

五、讲解拓展(10分钟)
1. 讲解一些不等式的应用题,并辅以实例说明;
2. 激发学生的思考,引导学生灵活运用不等式解决问题。

六、小结提问(5分钟)
1. 教师对本节课所学内容进行小结,并强调重点;
2. 鼓励学生积极参与,提问解疑。

七、作业布置(5分钟)
1. 布置课后作业,加深学生对不等式知识的理解;
2. 鼓励学生勤加练习,巩固所学知识。

教学反思:
本节课教学设计主要是通过简单明了的不等式范本教案,引导学生掌握不等式的基本概念和解法,培养学生解决实际问题的能力。

要重视培养学生的逻辑思维能力和学习兴趣,激发他们对数学学习的热情。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

以下是查字典数学网为您推荐的不等式及不等式组教案,希望本篇文章对您学习有所帮助。

不等式及不等式组知识网络一、不等式与不等式的性质1、不等式:表示不等关系的式子。

(表示不等关系的常用符号:,)。

2、不等式的性质:(l)不等式的两边都加上(或减去)同一个数,不等号方向不改变,如a b, c为实数 a+cb+c(2)不等式两边都乘以(或除以)同一个正数,不等号方向不变,如ab, cbc。

(3)不等式两边都乘以(或除以)同一个负数,不等号方向改变,如ab,c0 ac二、不等式(组)的类型及解法1、一元一次不等式:(l)概念:含有一个未知数并且含未知数的项的次数是一次的不等式,叫做一元一次不等式。

对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.(2)一元一次不等式的解集用数轴表示有以下四种情况,如下图所示:(1) 如图中所示:(2) 如图中所示:(3) 如图中所示:(4) 如图中所示:用数轴表示不等式的解集,应记住下面的规律:大于向右画,小于向左画,有等号( , )画实心点,无等号()画空心圈.(3)解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将项的系数化为 1.注意:解不等式时,上面的五个步骤不一定都能用到,并且不一定按照顺序解,要根据不等式的形式灵活安排求解步骤.2、一元一次不等式组:(l)概念:含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。

几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.(2)解法:先求出各不等式的解集,再确定解集的公共部分。

注:求不等式组的解集一般借助数轴求解较方便。

不等式组解集的确定方法:若a(1) 的解集是x(3) 的解集是a。

相关文档
最新文档