高中数学排列组合中几种常见的数学模型-文档资料

合集下载

巧解排列组合的21种模型

巧解排列组合的21种模型

巧解排列组合的21种模型1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 A 、60种 B 、48种 C 、36种 D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B .3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B .4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C .(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A种答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? 解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配. (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A = 共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A = ð共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A ð中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种.(3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I = 分成四个不相交的子集,能被4整除的数集{}4,8,12,100A = ;能被4除余1的数集{}1,5,9,97B = ,能被4除余2的数集{}2,6,,98C = ,能被4除余3的数集{}3,7,11,99D = ,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种. 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+- .例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种.11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

高中数学排列组合问题的几种基本方法

高中数学排列组合问题的几种基本方法

高中数学排列组合问题的几种基本方法总结1. 分组(堆)问题分组(堆)问题的六个模型:①无序不等分;②无序等分;③无序局部等分;(④有序不等分;⑤有序等分;⑥有序局部等分.)处理问题的原则:①若干个不同的元素“等分”为 m个堆,要将选取出每一个堆的组合数的乘积除以m! ②若干个不同的元素局部“等分”有 m个均等堆,要将选取出每一个堆的组合数的乘积除以m!③非均分堆问题,只要按比例取出分完再用乘法原理作积.④要明确堆的顺序时,必须先分堆后再把堆数当作元素个数作全排列.1. 分组(堆)问题例1.有四项不同的工程,要发包给三个工程队,要求每个工程队至少要得到一项工程. 共有多少种不同的发包方式?解:要完成发包这件事,可以分为两个步骤:⑴先将四项工程分为三“堆”,有种分法;⑵再将分好的三“堆”依次给三个工程队,有3!=6种给法.∴共有6×6=36种不同的发包方式.211421226C C C A2.插空法:解决一些不相邻问题时,可以先排“一般”元素然后插入“特殊”元素,使问题得以解决.♀ ♀♀ ♀ ♀♀ ♀↑ ↑ ↑ ↑ ↑ ↑例2 . 7人排成一排.甲、乙两人不相邻,有多少种不同的排法?解:分两步进行:第1步,把除甲乙外的一般人排列: 第2步,将甲乙分别插入到不同的间隙或两端中(插孔):几个元素不能相邻时,先排一般元素,再让特殊元素插孔.3.捆绑法相邻元素的排列,可以采用“局部到整体”的排法,即将相邻的元素局部排列当成“一个”元素,然后再进行整体排列.例3 . 6人排成一排.甲、乙两人必须相邻,有多少种不的排法?解:(1)分两步进行:♀ ♀ ♀ ♀ ♀ ♀甲 乙第一步,把甲乙排列(捆绑):55A 有=120种排法26A 有=30种插入法120303600∴⨯共有=种排法第二步,甲乙两个人的梱看作一个元素与其它的排队:几个元素必须相邻时,先捆绑成一个元素,再与其它的进行排列.4.消序法(留空法)几个元素顺序一定的排列问题,一般是先排列,再消去这几个元素的顺序.或者,先让其它元素选取位置排列,留下来的空位置自然就是顺序一定的了.例4. 5个人站成一排,甲总站在乙的右侧的有多少种站法?解法1:将5个人依次站成一排,有 种站法,然后再消去甲乙之间的顺序数∴甲总站在乙的右侧的有站法总数为解法2:先让甲乙之外的三人从5个位置选出3个站好,有 种站法,留下的两个位置自然给甲乙有1种站法∴甲总站在乙的右侧的有站法总数为22A 有=2种捆法2120240∴⨯共有=种排法55A 有=120种排法55A 22A 535522543A A A =⨯⨯=35A 33551A A ⨯=4.消序法(留空法)变式:如下图所示,有5横8竖构成的方格图,从A 到B 只能上行或右行共有多少条不同的路线?解: 如图所示将一条路经抽象为如下的一个排法(5-1)+(8-1)=11格:也可以看作是1,2,3,4,5,6,7,①,②,③,种排法.其中必有四个↑和七个→组成!BA BA所以, 四个↑和七个→一个排序就对应一条路经,所以从A 到B 共有 条不同的路径.5.剪截法(隔板法):n 个 相同小球放入m(m ≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n 个相同小球串成一串从间隙里选m-1个结点剪截成m 段.例5. 某校准备参加今年高中数学联赛,把16个选手名额分配到高三年级的1-4 个教学班,每班至少一个名额,则不同的分配方案共有___种.解: 问题等价于把16个相同小球放入4个盒子里,每个盒子至少有一个小球的放法种数问题.将16个小球串成一串,截为4段有 种截断法,对应放到4个盒子里. 因此,不同的分配方案共有455种 .5.剪截法:n 个 相同小球放入m(m ≤n)个盒子里,要求每个盒子里至少有一个小球的放法等价于n 个相同小球串成一串从间隙里选m-1个结点剪截成m 段.变式: 某校准备参加今年高中数学联赛,把16个选手名额分配到高三年级的1-4 个教学班,每班的名额不少于该班的序号数,则不同的分配方案共有___种.解: 问题等价于先给2班1个,3班2个,4班3个,再把余下的10个相同小球放入4个盒子里,每个盒子至少有一个小球的放法种数问题.将10个小球串成一串,截为4段有 种截断法,对应放到4个盒子里. 514(51)(81)11C C --+-=315455C =3984C =因此,不同的分配方案共有84种 .6.错位法:编号为1至n 的n 个小球放入编号为1到 n 的n 个盒子里,每个盒子放一个小球.要求小球与盒子的编号都不同,这种排列称为错位排列.特别当n=2,3,4,5时的错位数各为1,2,9,44.例6. 编号为1至6的6个小球放入编号为1至6的6个盒子里,每个盒子放一个小球,其中恰有2个小球与盒子的编号相同的放法有____种.解: 选取编号相同的两组球和盒子的方法有 种,其余4组球与盒子需错位排列有9种放法.故所求方法有15×9=135种.7.剔除法:从总体中排除不符合条件的方法数,这是一种间接解题的方法.排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍.例7. 从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A 、B 、C ,所得的经过坐标原点的直线有_________条.解:所有这样的直线共有 条,其中不过原点的直线有 条,∴所得的经过坐标原点的直线有210-180=30条. 2615C =37210A =1266180A A ⨯=小结:①分堆问题;②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法).巩固练习1.将3封不同的信投入4个不同的邮筒,则不同的投法的种数是( )A.43B.34 C.34A D.34C 2.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块地上,其中黄瓜必须种植,不同的种植方法共有( )A.24种B.18种C.12种D.6种3. 12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )A.4448412C C C 种B.34448412C C C 种 C.3348412A C C 种 D.334448412A C C C 种。

高中数学完整讲义——排列与组合5.排列组合问题的常见模型1

高中数学完整讲义——排列与组合5.排列组合问题的常见模型1

排列组合问题的常见模型1知识内容1.基本计数原理⑴加法原理分类计数原理:做一件事,完成它有n类办法,在第一类办法中有m种不同的方法,在第二类办法中1有m种方法,……,在第n类办法中有m种不同的方法.那么完成这件事共有N=m+m+L+m种2n12n不同的方法.又称加法原理.⑴乘法原理分步计数原理:做一件事,完成它需要分成n个子步骤,做第一个步骤有m种不同的方法,做第二个1步骤有m种不同方法,……,做第n个步骤有m种不同的方法.那么完成这件事共有2nN=m⨯m⨯L⨯m种不同的方法.又称乘法原理.12n⑴加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用.2.排列与组合⑴排列:一般地,从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列.(其中被取的对象叫做元素)排列数:从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A m表示.n排列数公式:A m=n(n-1)(n-2)L(n-m+1),m,n∈N,并且m≤n.n+全排列:一般地,n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列.n的阶乘:正整数由1到n的连乘积,叫作n的阶乘,用n!表示.规定:0!=1.思维的发掘能力的飞跃1组合数公式: C m = n (n - 1)(n - 2)L (n - m + 1) = m ! m !(n - m )!⑴组合:一般地,从 n 个不同元素中,任意取出m (m ≤ n) 个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从 n 个不同元素中,任意取出 m (m ≤ n) 个元素的所有组合的个数,叫做从 n 个不同元素中,任意取出 m 个元素的组合数,用符号 C m 表示.n n n !, m , n ∈ N ,并且 m ≤ n .+组合数的两个性质:性质 1: C m = C n -m ;性质 2: C m = C m + C m -1 .(规定 C 0 = 1)nn n +1 n n n⑴排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排 列还是组合,同时要掌握一些常见类型的排列组合问题的解法:1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列, 然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.6.插板法:n 个相同元素,分成 m (m ≤ n) 组,每组至少一个的分组问题——把 n 个元素排成一排,从 n - 1个空中选 m -1 个空,各插一个隔板,有 C m -1 .n -17.分组、分配法:分组问题(分成几堆,无序).有等分、不等分、部分等分之别.一般地平均分成 n 堆(组),必须除以 n !,如果有 m 堆(组)元素个数相等,必须除以 m !8.错位法:编号为 1 至 n 的 n 个小球放入编号为 1 到 n 的 n 个盒子里,每个盒子放一个小球,要求 小球与盒子的编号都不同,这种排列称为错位排列,特别当n = 2 ,3,4,5 时的错位数各为 1,2, 9,44.关于 5、6、7 个元素的错位排列的计算,可以用剔除法转化为 2 个、3 个、4 个元素的错位 排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:⑴元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ⑴位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;⑴间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.2思维的发掘 能力的飞跃求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:⑴对特殊元素进行优先安排;⑴理解题意后进行合理和准确分类,分类后要验证是否不重不漏;⑴对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;⑴对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法;⑴顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理;⑴对于正面考虑太复杂的问题,可以考虑反面.⑴对于一些排列数与组合数的问题,需要构造模型.典例分析排队问题【例1】三个女生和五个男生排成一排⑴如果女生必须全排在一起,可有多少种不同的排法?⑵如果女生必须全分开,可有多少种不同的排法?⑶如果两端都不能排女生,可有多少种不同的排法?【例2】6个人站成一排:⑴其中甲、乙两人必须相邻有多少种不同的排法?⑴其中甲、乙两人不相邻有多少种不同的排法?⑴其中甲、乙两人不站排头和排尾有多少种不同的排法?⑴其中甲不站排头,且乙不站排尾有多少种不同的排法?思维的发掘能力的飞跃3【例3】7名同学排队照相.⑴若分成两排照,前排3人,后排4人,有多少种不同的排法?⑵若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种不同的排法?⑶若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法?⑷若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不同的排法?【例4】6个队员排成一排,⑴共有多少种不同的排法?⑴若甲必须站在排头,有多少种不同的排法?⑶若甲不能站排头,也不能站排尾,问有多少种不同的排法?【例5】ABCDE五个字母排成一排,若ABC的位置关系必须按A在前、B居中、C在后的原则,共有_______种排法(用数字作答).【例6】用1到8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有___个(用数字作答).4思维的发掘能力的飞跃2【例7】 记者要为 5 名志愿者和他们帮助的 2 位老人拍照,要求排成一排, 2 位老人相邻但不排在两端,不同的排法共有( )A . 1440 种B . 960 种C . 720 种D . 480 种【例8】 12 名同学合影,站成前排 4 人后排 8 人,现摄影师要从后排 8 人中抽 2 人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( )A . C 2A 283B .C 2A 68 6C . C 2A 28 6D . C 2A 28 5【例9】 记者要为 5 名志愿者和他们帮助的 2 位老人拍照,要求排成一排, 位老人相邻但不排在两端, 不同的排法共有( ) A .1440 种 B .960 种 C .720 种 D .480 种【例10】在数字1,2 ,3 与符号 + ,- 五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是( ) A . 6B .12C .18D . 24【例11】计划展出 10 幅不同的画,其中 1 幅水彩、4 幅油画、5 幅国画,排成一列陈列,要求同一品种的画必须连在一起,并且水彩画不放在两端,那么不同的陈列方式有_____种.思维的发掘 能力的飞跃52 3 4 5 6 7 a a a a a a【例12】6 人站一排,甲不站在排头,乙不站在排尾,共有_________种不同的排法(用数字作答).【例13】一条长椅上有 7 个座位,4 人坐,要求 3 个空位中,有 2 个空位相邻,另一个空位与 2 个相邻位不相邻,共有几种坐法?【例14】 3 位男生和 3 位女生共 6 位同学站成一排,若男生甲不站两端,3 位女生中有且只有两位女生相邻,则不同排法的种数是( ) A . 360 B . 288 C . 216 D . 96【例15】古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将五种不同属性的物质任意排成一列,但排列中属性相克的两种物质不相 邻,则这样的排列方法有 种(结果用数值表示).【例16】在 1, , , , , , 的任一排列 a , , , , , , 中,使相邻两数都互质的排列方1 2 3 4 5 6 7式共有()种.A . 288B . 576C . 864D .11526思维的发掘 能力的飞跃Q R S 1 2 3 4 5 6 7 8 9 P Q R S 1 2 3 4 5 6 7 8 Q【例17】从集合 {P , , , }与 {0 ,, , , , , , , ,}中各任取 2 个元素排成一排(字母和数字 均 不 能 重 复 ). 每 排 中 字 母 Q 和 数 字 0 至 多 只 能 出 现 一 个 的 不 同 排 法 种 数 是_________.(用数字作答)【例18】从集合 {O , , , , } 与 {0,, , , , , , , ,9}中各任取 2 个元素排成一排(字母和数字均不能重复) .每排中字母 O , 和数字 0 至多只能出现一个的不同排法种数是_________.(用数字作答)【例19】 6 个人坐在一排10 个座位上,问⑴ 空位不相邻的坐法有多少种?⑵ 4 个空位只有 3 个相邻的坐法有多少种?⑶ 4 个空位至多有 2 个相邻的坐法有多少种?【例20】 3 位男生和 3 位女生共 6 位同学站成一排,若男生甲不站两端,3 位女生中有且只有两位女生相邻,则不同排法的种数是( )A . 360B . 288C . 216D . 96思维的发掘 能力的飞跃7【例21】12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,其他人的相对顺序不变,则不同调整的方法的总数有()A.C2A283B.C2A686C.C2A286D.C2A285【例22】两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是_______.【例23】2007年12月中旬,我国南方一些地区遭遇历史罕见的雪灾,电煤库存吃紧.为了支援南方地区抗灾救灾,国家统一部署,加紧从北方采煤区调运电煤.某铁路货运站对6列电煤货运列车进行编组调度,决定将这6列列车编成两组,每组3列,且甲与乙两列列车不在同一小组.如果甲所在小组3列列车先开出,那么这6列列车先后不同的发车顺序共有()A.36种B.108种C.216种D.432种数字问题【例24】给定数字0、1、2、3、5、9,每个数字最多用一次,⑴可能组成多少个四位数?⑴可能组成多少个四位奇数?⑴可能组成多少个四位偶数?⑴可能组成多少个自然数?【例25】用0到9这10个数字,可组成多少个没有重复数字的四位偶数?8思维的发掘能力的飞跃2 3 4 5 a a a a a a a 1 2 L 9 1 2 3 4 2 3 4【例26】在 1,3,5,7,9 中任取 3 个数字,在 0,2,4,6,8 中任取两个数字,可组成多少个不同的五位偶数.【例27】用 1, , , , 排 成 一 个 数 字 不 重 复 的 五 位 数 a , , , , 12345a < a , > a , < a , > a 的五位数有多少个?12233445, 满 足【例28】用 0 ,, , , 这十个数字组成无重复数字的四位数,若千位数字与个位数字之差的绝对值是2 ,则这样的四位数共有多少个?【例29】用数字 0 , ,2 ,3 ,4 ,5 ,6 组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有______个(用数学作答).【例30】有 4 张分别标有数字 1, , , 的红色卡片和 4 张分别标有数字 1, , , 的蓝色卡片,从这 8思维的发掘 能力的飞跃9求 3 行中仅有中间行的两张卡片上的数字之和为 5 ,则不同的排法共有( )2 3 4 2 3 4张卡片中取出 4 张卡片排成一行.如果取出的 4 张卡片所标数字之和等于 10 ,则不同的排法 数一共有 种.432 ;【例31】有 8 张卡片分别标有数字1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ,从中取出 6 张卡片排成 3 行 2 列,要..A .1344 种B .1248 种C .1056 种D . 960 种【例32】有 4 张分别标有数字 1, , , 的红色卡片和 4 张分别标有数字 1, , , 的蓝色卡片,从这 8张卡片中取出 4 张卡片排成一行.如果取出的 4 张卡片所标数字之和等于 10 ,则不同的排法共有____种(用数字作答).【例33】用 1,2,3,4,5,6 组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且 1 和 2 相邻,这样的六位数的个数是__________(用数字作答).【例34】用数字1,2,3,4,5 可以组成没有重复数字,并且比 20000 大的五位偶数共有()A . 48 个B . 36 个C . 24 个D .18 个【例35】从 1,2 ,3 ,8 ,9 ,10 这 6 个数中,取出两个,使其和为偶数,则共可得到不同偶数?个这样的10思维的发掘 能力的飞跃1 12345 12345高中数学讲义【例36】求无重复数字的六位数中,能被3整除的数有______个.【例37】用数字0,,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个(用数学作答).【例38】从0,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300B.216C.180D.162【例39】从0,,,,,这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300B.216C.180D.162【例40】从1到9的九个数字中取三个偶数四个奇数,试问:⑴能组成多少个没有重复数字的七位数?其中任意两偶数都不相邻的七位数有几个?⑴上述七位数中三个偶数排在一起的有几个?⑴⑴中的七位数中,偶数排在一起、奇数也排在一起的有几个?思维的发掘能力的飞跃112 3 4 2 3 4 2 3 4 5 高中数学讲义⑷⑴其中任意两偶数都不相邻的七位数有几个?【例41】用 0 到 9 这九个数字.可组成多少个没有重复数字的四位偶数?【例42】有 4 张分别标有数字 1, , , 的红色卡片和 4 张分别标有数字 1, , , 的蓝色卡片,从这 8张卡片中取出 4 张卡片排成一行.如果取出的 4 张卡片所标数字之和等于 10 ,则不同的排法 共有______种(用数字作答).【例43】在由数字 1, , , , 组成的所有没有重复数字的 5 位数中,大于 23145 且小于 43521的数 共有( )个A . 56 个B . 57 个C . 58 个D . 60 个【例44】由 0,1,2,3,4 这五个数字组成的无重复数字的四位偶数,按从小到大的顺序排成一个数列 {a },则 a = _____.n 19 A . 2014B . 2034C . 1432D . 143012 思维的发掘 能力的飞跃--01234高中数学讲义【例45】从数字0、1、3、5、7中取出不同的三个作系数,可组成多少个不同的一元二次方程ax2+bx+c=0,其中有实数根的有几个?【例46】从{-3,2,1,,,,,}中任选三个不同元素作为二次函数y=ax2+bx+c的系数,问能组成多少条图像为经过原点且顶点在第一象限或第三象限的抛物线?思维的发掘能力的飞跃13。

排列组合中的常见模型

排列组合中的常见模型

排列组合的常见模型一、基础知识:(一)处理排列组合问题的常用思路:1、特殊优先:对于题目中有特殊要求的元素,在考虑步骤时优先安排,然后再去处理无要求的元素。

例如:用0,1,2,3,4组成无重复数字的五位数,共有多少种排法?解:五位数意味着首位不能是0,所以先处理首位,共有4种选择,而其余数位没有要求,只需将剩下的元素全排列即可,所以排法总数为44496N A =⨯=种2、寻找对立事件:如果一件事从正面入手,考虑的情况较多,则可以考虑该事的对立面,再用全部可能的总数减去对立面的个数即可。

例如:在10件产品中,有7件合格品,3件次品。

从这10件产品中任意抽出3件,至少有一件次品的情况有多少种解:如果从正面考虑,则“至少1件次品”包含1件,2件,3件次品的情况,需要进行分类讨论,但如果从对立面想,则只需用所有抽取情况减去全是正品的情况即可,列式较为简单。

3310785N C C =-=(种)3、先取再排(先分组再排列):排列数m n A 是指从n 个元素中取出m 个元素,再将这m 个元素进行排列。

但有时会出现所需排列的元素并非前一步选出的元素,所以此时就要将过程拆分成两个阶段,可先将所需元素取出,然后再进行排列。

例如:从4名男生和3名女生中选3人,分别从事3项不同的工作,若这3人中只有一名女生,则选派方案有多少种。

解:本题由于需要先确定人数的选取,再能进行分配(排列),所以将方案分为两步,第一步:确定选哪些学生,共有2143C C 种可能,然后将选出的三个人进行排列:33A 。

所以共有213433108C C A =种方案(二)排列组合的常见模型1、捆绑法(整体法):当题目中有“相邻元素”时,则可将相邻元素视为一个整体,与其他元素进行排列,然后再考虑相邻元素之间的顺序即可。

例如:5个人排队,其中甲乙相邻,共有多少种不同的排法解:考虑第一步将甲乙视为一个整体,与其余3个元素排列,则共有44A 种位置,第二步考虑甲乙自身顺序,有22A 种位置,所以排法的总数为424248N A A =⋅=种2、插空法:当题目中有“不相邻元素”时,则可考虑用剩余元素“搭台”,不相邻元素进行“插空”,然后再进行各自的排序注:(1)要注意在插空的过程中是否可以插在两边(2)要从题目中判断是否需要各自排序例如:有6名同学排队,其中甲乙不相邻,则共有多少种不同的排法解:考虑剩下四名同学“搭台”,甲乙不相邻,则需要从5个空中选择2个插入进去,即有25C 种选择,然后四名同学排序,甲乙排序。

排列组合常见模型及解题技巧

排列组合常见模型及解题技巧

排列组合常见模型及解题技巧排列组合常见模型及解题技巧___________________________________排列组合是数学中的一个重要概念,其主要用于解决有关物品数量、顺序、种类等问题,十分重要。

尤其在中考、高考中,排列组合模型非常常见。

因此,想要在考试中取得好成绩,需要对排列组合的相关知识有所了解。

### 一、常见的排列组合模型1. 元素排列模型:当有n个元素时,可以有n!种不同的排列方式。

2. 重复的排列模型:当有n个元素中有m个重复的元素时,可以有$\frac{n!}{m!}$种不同的排列方式。

3. 选择排列模型:当从n个元素中选出m个元素进行排列时,可以有$\frac{n!}{(n-m)!}$种不同的排列方式。

4. 组合模型:当从n个元素中选出m个元素进行组合时,可以有$\frac{n!}{m!(n-m)!}$种不同的组合方式。

5. 组合中出现重复的情况:当从n个元素中选出m个元素进行组合时,若有k个重复的元素,可以有$\frac{n!}{(m-k)!(n-m)!}$种不同的组合方式。

### 二、解题技巧1. 明确问题:排列组合问题一般都是要求出物品的总数量或者某一种情况出现的总次数。

因此,在解决这样的问题之前,要明确问题是要计算出总数量还是总次数。

2. 对物品进行分类:在解决排列组合问题时,要明确物品的数量、重复的情况以及可以选择的情况,将物品分成不同的分类。

3. 认真计算:根据不同的情况,选择对应的模型来计算出总数量或者总次数。

在计算之前一定要仔细地去理解问题,以免出错。

4. 熟悉常用公式:在处理排列组合问题时,要能够准确地使用对应的公式来计算出正确的答案。

因此,对于常用的公式一定要牢记于心,并能够准确地使用。

### 三、总结通过本文,我们可以了解到排列组合常见的几个模型以及如何正确地使用它们来解决问题。

排列组合问题是数学考试中常见的问题之一,因此在备考考试时一定要加强对这方面的学习。

排列组合常用策略及模型九种

排列组合常用策略及模型九种

排列组合问题常用策略排列组合问题的常用模型及策略有:捆绑法、插空法、隔板法、特殊元素/特殊位置优先法、缩倍法、间接法(正难则反)、均分问题、错排问题、圆排列问题等。

1、捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的例题:,,,,排法种数有()A、60种B、48种C、36种D、24种2、插空法:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例题:七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是()A、1440种 B、3600种 C、4820种 D、4800种3、缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.A B C D E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那例题:,,,,么不同的排法种数是()A、24种B、60种C、90种D、120种4、隔板法:对于将不可分辨的球装入可以分辨的盒子中求装入方法数的问题,常用隔板法.例题:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?5、特殊元素/特殊位置优先法:某个或某几个元素要或不要排在指定位置,可先处理这个或几个元素,再排其它的元素(元素优先法);也可先把指定位置安排符合要求的元素,再排其它的元素(位置优先法)。

例题:某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?6、间接法:对有限制条件的问题,尤其是“至多”“至少”问题,直接法较难则采用间接法,即从总体考虑,再把不符合条件的情况去掉。

例题:从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?7、均分问题:n个元素分成m堆得问题,平均分成的组,无论顺序如何都是一种情况。

排列组合问题的常见模型(详解)

排列组合问题的常见模型(详解)

排列组合问题的常见模型一、相异元素不许重复的排列组合问题这类问题有两个条件限制,一是给出的元素是不同的,即不允许有相同的元素;二是取出的元素也是不同的,即不允许重复使用元素。

这类问题有如下一些常见的模型。

模型1:从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定某k 个元素都包含在内,则:组合数:1m k n k N C --= 排列数:2m m k m n k N A C --=例1.全组有12个同学,其中有3个女同学,现要选出5个,如果3个女同学都必须当选,试问在下列情形中,各有多种不同的选法?(1)组成一个文娱小组;(2)分别担任不同的工作.解:(1)由于要选出的5人中,3个女同学都必须当选,因此还需要选2人.这可从9个男同学中选出,故不同的选法有:53112336(N C --==种)(2)在上述组合的基础上,因为还需要考虑选出5人的顺序关系,故不同的选法有:553522512359120364320(N A C A C --===⨯=种)模型2.从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定某k 个元素都不包含在内,则: 组合数:1m n k N C -= 排列数:2m m m m n k n k N A C A --==例2.某青年突击队有15名成员,其中有5名女队员,现在选出7人,如果5名女队员都不当选,试问下列情形中,各有多少种不同的选法?(1)组成一个抢修小组;(2)分别但任不同的抢修工作.解:(1)由于5名女队员都不当选,因此只能从10名男同学选出,故不同的选法有:77311551010120N C C C -====(种)(2)由于还需考虑选出的7个人的顺序问题,故不同的选法有:7721551010987654604800N A A -===⨯⨯⨯⨯⨯⨯=(种)模型3.从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定每一个排列或组合,都只包含某k 个元素中的某s 个元素。

80 排列组合中的常见模型

80    排列组合中的常见模型

第80炼 排列组合的常见模型一、基础知识:排列、组合、二项式1.分类计数原理(加法原理)12n N m m m =+++.2.分步计数原理(乘法原理)12n N m m m =⨯⨯⨯.3.排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤).注:规定1!0=.:nn A =n!4.排列恒等式(1)1(1)m m n n A n m A -=-+;(2)1mmn n n A A n m-=-;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-;(5)11m m m n n n A A mA -+=+. (6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720 单条件排列(以下各条的大前提是从n 个元素中取m 个元素的排列) (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n m n A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有kk k m k n A A 11+-+-种注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有kh h h A A 1+种(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +5.分配问题6“错位问题”及其推广①信2封信与2个信封全部错位有1种排法; ②信3封信与3个信封全部错位有2种排法; ③信4封信与4个信封全部错位有9种排法; ④信5封信与5个信封全部错位有44种排法;贝努利装错笺问题:信n 封信与n 个信封全部错位的组合数为1111()![(1)]2!3!4!!n f n n n =-+-+- 推广: n 个元素与n 个位置,其中至少有m 个元素错位的不同组合总数为1234(,)!(1)!(2)!(3)!(4)!(1)()!(1)()!m m m m ppmm mmf n m n C n C n C n C n C n p C n m =--+---+--+--++--12341224![1(1)(1)]p m p mm m m m mmp m n n n n nnC C C C C C n A A A A A A =-+-+-+-++-7.不定方程2n x x x m =1+++的解的个数(1)方程2n x x x m =1+++(,n m N *∈)的正整数解有11m n C --个(2) 方程2n x x x m =1+++(,n m N *∈)的非负整数解有 11n m n C +--个 (3) 方程2n x x x m =1+++(,n m N *∈)满足条件i x k ≥(k N *∈,21i n ≤≤-)的非负整数解有11(2)(1)n m n k C -+---个8.组合(1)组合的定义,排列与组合的区别 (2)组合数公式:C n m =)!(!!m n m n -=12)1(1)m -(n 1)-n (⨯⨯⨯-⨯+ m m n12.解排列组合应用题的基本规律(1)分类计数原理与分步计数原理使用方法有两种:①单独使用;②联合使用。

人教A版选修2-3排列组合问题的常见模型.docx

人教A版选修2-3排列组合问题的常见模型.docx

高中数学学习材料唐玲出品排列组合问题的常见模型一、相异元素不许重复的排列组合问题这类问题有两个条件限制,一是给出的元素是不同的,即不允许有相同的元素;二是取出的元素也是不同的,即不允许重复使用元素。

这类问题有如下一些常见的模型。

模型1:从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定某k 个元素都包含在内,则:组合数:1m k n k N C --= 排列数:2m m k m n k N A C --=例1.全组有12个同学,其中有3个女同学,现要选出5个,如果3个女同学都必须当选,试问在下列情形中,各有多种不同的选法?(1)组成一个文娱小组;(2)分别担任不同的工作.解:(1)由于要选出的5人中,3个女同学都必须当选,因此还需要选2人.这可从9个男同学中选出,故不同的选法有:53112336(N C --==种)(2)在上述组合的基础上,因为还需要考虑选出5人的顺序关系,故不同的选法有:553522512359120364320(N A C A C --===⨯=种)模型2.从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定某k 个元素都不包含在内,则: 组合数:1m n k N C -= 排列数:2m m m m n k n k N A C A --==例2.某青年突击队有15名成员,其中有5名女队员,现在选出7人,如果5名女队员都不当选,试问下列情形中,各有多少种不同的选法?(1)组成一个抢修小组;(2)分别但任不同的抢修工作.解:(1)由于5名女队员都不当选,因此只能从10名男同学选出,故不同的选法有:77311551010120N C C C -====(种)(2)由于还需考虑选出的7个人的顺序问题,故不同的选法有:7721551010987654604800N A A -===⨯⨯⨯⨯⨯⨯=(种)模型3.从n 个不同的元素中每次取出m 个不同元素作排列或组合,规定每一个排列或组合,都只包含某k 个元素中的某s 个元素。

巧解排列组合及21种模型

巧解排列组合及21种模型

巧解排列组合的21种模型排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握.实践证明,掌握题型和识别模式,并熟练运用,是解决排列组合的有效途径.下面就系统地介绍巧解排列组合的21种模型.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C . (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种 B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配. (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 答案:B .7.名额分配问题隔板法:例7.10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =ð共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A ð中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

巧解排列组合的21种模型

巧解排列组合的21种模型

巧解排列组合的21种模型排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握.实践证明,掌握题型和识别模式,并熟练运用,是解决排列组合的有效途径.下面就系统地介绍巧解排列组合的21种模型.1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A 、60种B 、48种C 、36种D 、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排法种数是52563600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是A 、24种B 、60种C 、90种D 、120种解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即551602A =种,选B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有A 、6种B 、9种C 、11种D 、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B .5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是A 、1260种B 、2025种C 、2520种D 、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110872520C C C =种,选C . (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有A 、4441284C C C 种 B 、44412843C C C 种 C 、4431283C C A 种D 、444128433C C C A 种 答案:A .6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有24C 种方法,再把三组学生分配到三所学校有33A 种,故共有234336C A =种方法.说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分配. (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为 A 、480种 B 、240种 C 、120种 D 、96种 答案:B .7.名额分配问题隔板法:例个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为6984C =种.8.限制条件的分配问题分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况: ①若甲乙都不参加,则有派遣方案48A 种;②若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有38A 方法,所以共有383A ;③若乙参加而甲不参加同理也有383A 种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有28A 种,共有287A 方法.所以共有不同的派遣方法总数为433288883374088A A A A +++=种.9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9.(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有A 、210种B 、300种C 、464种D 、600种解析:按题意,个位数字只可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个,合并总计300个,选B .(2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做{}7,14,21,98A =共有14个元素,不能被7整除的数组成的集合记做{}1,2,3,4,,100I A =共有86个元素;由此可知,从A 中任取2个元素的取法有214C ,从A 中任取一个,又从I A 中任取一个共有111486C C ,两种情形共符合要求的取法有2111414861295C C C +=种. (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将{}1,2,3,100I =分成四个不相交的子集,能被4整除的数集{}4,8,12,100A =;能被4除余1的数集{}1,5,9,97B =,能被4除余2的数集{}2,6,,98C =,能被4除余3的数集{}3,7,11,99D =,易见这四个集合中每一个有25个元素;从A 中任取两个数符合要;从,B D 中各取一个数也符合要求;从C 中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有211225252525C C C C ++种.10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B =+-.例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的排列},A={甲跑第一棒的排列},B={乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共有:()()()()n I n A n B n A B --+⋂43326554252A A A A =--+=种. 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

高中数学-排列组合21种模型

高中数学-排列组合21种模型

高中数学-排列组合21种模型1.排列的定义:从n 个不同元素中,任取m 个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.)1()2)(1(+---=m n n n n A m n )!(!m n n -=2.组合的定义:从n 个不同元素中,任取m 个元素,并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.!)1()2)(1(m m n n n n A A C m m m nm n +---== )!(!!m n m n -=1、特殊元素和特殊位置优先策略:位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。

若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件。

(转化思想,转特殊选排为任意,便能用排列数,减少分步次数)例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =2.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列.(同样是转化思想)例1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有A、60种B、48种C、36种D、24种解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D .例2.7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。

高考数学21种排列组合模型(完整版)

高考数学21种排列组合模型(完整版)

高考数学21种排列组合模型(完整版)九相邻问题捆绑法题忖屮规定相邻的儿个兀素拥绑成-个组,当作…个人兀素参与排列•例L AJKcJ)五人并排站成一排,如果月/必须相邻IIF在/的右边,那么不同的排法种数有A、60 种Ik 48 种(λ 36 种1)、24 种解析:把4"视为一人・HZi固定在/的右边,则本题相当于4人的全排列,爲=24种,答案:A2 •相离问题插空排元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例N七人并排站成-行,如果甲乙两个必须不相邻,那么不同的排法种数是\、1440 种 B. 360()种C、4820 种DX 4800 种解析:除卬乙外,瓦余B个排列数为(种,再用叩乙去插6个空位有々种,不同的排法种数是X4 = 3600种,选B.3.定序问题缩倍法任排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3. A,B,C,D,E五人并排站成•排,如果〃必须站在/的右边(4〃可以不相邻)那么不同的排法种数是A、24 种B、60 种C、90 种D、120 种解析:B^A的右边与/T在M的左边排法数相同,所以题设的排法只是5个元素全排列数的•半,即60种,选乩4.标号排位问题分步法把兀索排到指定位置上,可先把某个兀索按规定排入,笫二步再排另一个元素,如此继续下去,依次即可完成.例4・将数字1, 2, 3, 4填入标号为1, 2, 3, 4的四个方格电, 毎格填•个数,则每个方格的标号与所填数字均不相同的填法有A. 6 种B、9 种C、11 种[)、23 种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法「第二步填余下的两个数字,只有•种填法,共有3X3X1二9种填法,选〃・5.有序分配问题逐分法有序分配问题指把元素分成若干组,可用逐步下量分组法.例(1)有甲乙丙三项任务,rp需2人承担,乙丙各需一人承担,从10人屮选出4人承担这三项任务,不同的选法种数是A、126()种B、2025 种C、2320 种[)、3040 种解析:先从10人中选出2人承担叩项任务,再从剩下的8人屮选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有GX=2520种,选(;.(2) 12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有AWe 种B、3G:W 种C、G:U念种D、一种答案:月・6.全员分配问题分组法例6. (1)4名优秀学牛全部保送到3所学校去,毎所学校至少去一名,则不同的保送方案右多少种?解析:把四名学生分成3组令U种方法,再把三组学生分配到三所学校有念种,故共有U念=36种方法.说明:分配的兀素名亍对彖毎•对象都有兀素分配时常用先分纽再分配.(2)5本不同的书,全部分给4个学生,每个学生至少一本, 不同的分法种数为A. 48()种1人240 种C、12()种【)、96 种答案:B.7・名额分配问题隔板法例7. 1()个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就足把10个名额苕成10个相同的小球分成7堆,毎堆至少一个,可以在IO个小球的9个空位屮插入6块木板,每•种插法对应着•种分配方案,故共有不同的分配方案为= 84种.•限制条件的分配问题分类法例&某高校从某系的10名优秀毕业牛•屮选4人分别到西部四城市参加中国四部经济丿F发建设,其中卬同学不到银川,乙不到西宁,共有多少种不同派遣方案?解析:因为叩乙有限制条件,所以按照是否含有甲乙來分类,有以下四种情况:①若叩乙都不参加,则冇派遣方案禹种;②若甲参加而乙不参加,先安排叩有3种方法,然后安排其余学生有念方法,所以共右3心③若乙参加血叩不参加同理也有3心种;④若甲乙都参加,则先安排甲乙,有7种方法,然后再安排其余H人到另外两个城市右《种,共有方法•所以共右不同的派遣方法总数为£+3&+3念+ 7心4088种.9 •多元问题分类法元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计.例9. (1)由数字0, 1, 2, 3, 4, 5组成没有莹复数字的六位数,Jt•中个位数字小于十位数字的共仃A、210 种B、300 种C、464 种D、600 种解析:按题意,个位数字只可能是()、1、2、3和4共5种情况,分别有〈、444 .堆堆鳶、和W个,合并总计300个,选〃・(2)从1, 2, 3∙∙∙, 100这100个数屮,任取两个数,使它们的乘积能被7幣除,这两个数的取法(不计顺序)共河多少种?解析:被取的两个数中至少右一个能被7榕除时,他们的乘积就能被7榕除,将这100个数组成的集合视为全集1,能被7 整除的数的集合记做4{7,14,21,…98}共有,4个元素,不能被7整除的数组成的集合记做輕= {1,2,3,4,…,100}共有86个元素;由此可知,从月中任取2个元素的取法旳从/!中任取-个,又从輕中任取一个共有两种情形共符合耍求的取法有C1>C l X, = 1295种.(3)从1, 2, 3, ∙∙∙, 10()这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将/ = {123…,100}分成四个不相交的子集,能被4整除的数集宀{4,&12,…100};能被4除余1的数集—{1,5,9,…97},能被4除余2的数集C = {2,6,…,98},能被4 除余3的数集"{3,7,II,…99},易见这四个集合中每•个有23个元素:从>1屮任取两个数符合要;从乩D中各取•个数也符合耍求;从C中任取两个数也符合耍求;此外其它取法都不符合耍求;所以符合要求的取法共有c; + c;W种.10 •交叉问题集合法某些排列组合问题几部分Z间右交集,可川集合中求元素个数公式n(∕ U ") = H(A) +一n{A ∩ ・例10・从6名运动员中选出4人参加4 X 100米接力赛,如果卬不跑第一棒,乙不跑笫四棒,共有多少种不同的参赛方案?解析:设全集={6人中任取4人参赛的扌」!•列}, A= {甲跑笫• 棒的排列}, 1匸{乙跑第四棒的排列},根据求集合元素个数的公式得参赛方法共右:H(I)-H(A)一Λ(B)÷n(A MB)= 4-4-4 ÷^ = 252种.11.定位问题优先法某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

排列组合之21种模型(经典)

排列组合之21种模型(经典)

排列组合模型用于构建离散概率模型,用于描述离散随机事件
的概率分布。
在统计学中的应用
样本统计
排列组合模型用于描述样本数据 的分布和统计规律,例如样本均
值、方差、分布函数等。
贝叶斯统计
贝叶斯统计中的参数估计和假设检 验需要用到排列组合模型来计算概 率和似然函数。
多元统计分析
在多元统计分析中,排列组合模型 用于描述多个变量之间的关联和结 构,例如因子分析、聚类分析等。
插板法
总结词
插板法是一种计数方法,它通过将 n 个物体分成 m 份,使得每份至少有一个物体,从而得到一种组合方式。
详细描述
插板法是组合数学中的一种重要方法,它可以用来解决各种组合问题。插板法的应用非常广泛,例如在排列、组 合、概率论等领域都有应用。插板法的基本思想是通过将 n 个物体分成 m 份,使得每份至少有一个物体,从而 得到一种组合方式。
详细描述
组合恒等式是组合数学中的重要公式之一,它可以用来表示某些组合数之间存在一定的关系。组合恒 等式的应用非常广泛,例如在排列、组合、概率论等领域都有应用。
05
模型应用
在数学中的应用
01
02
03
组合数学
排列组合模型是组合数学 中的基础概念,用于研究 不同元素的选取、排列和 组合问题。
概率论
排列组合模型在概率论中 用于描述随机事件的组合 和排列,是概率计算的基 础。
排列的应用
体育比赛中的名次排列
在体育比赛中,参赛选手的名次是根据他们的成绩进行排列的, 排列的顺序决定了他们的名次。
密码学中的排列
在密码学中,通过排列不同的字母和数字可以生成复杂的密码,增 加了信息的安全性。
统计学中的排列
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学排列组合中几种常见的数学模型
排列组合问题是高考中必考的一个类型题,常常单独命题或与概率内容等相结合,一般以较容易题出现,但由于解这类问题时方法灵活,切人点多,且抽象性极强,在解题过程中发生重复或遗漏现象不易被发现,所以又成为高中学生学习的难点之一。

故在解题过程中通过分类、分步把复杂问题分解,找出问题的切入点,建立合理的数学模型,将问题简单化、常规化。

一、特殊元素优先数学模型
对于存在特殊元素或特殊位置的排列组合问题,我们可以从这些“特殊”入手,先满足特殊元素或特殊位置,再去满足其他元素或其他位置,这种模型称为“特殊元素优先数学模型”。

例1.用0,1,2,3,4,5这六个数字可组成无重复数字的四位偶数____个。

(用数字作答)
解:先安排四位偶数的个位上的数字(优先考虑)。

无重复数字的四位偶数中如果个位数是0共有C■A■个,同时如果个位数是2或4共有C■C■A■=96个,所以,重复数字的四位偶数共有60+96=156个。

点评:特殊元素优先法是比较容易入手的一种方法,在处理此类问题时一是要注意优先考虑有要求的特殊位置的元素,二是要注意与分步计数原理结合运用。

二、捆绑式数学模型
对于某些元素要求相邻排列的问题,可先将相邻元素捆绑并看作一个元素再与其它元素进行排列,同时对相邻元素进行自排,这种模型称为“捆绑式数学模型”。

这种模型分为两种,一种是相邻元素要全排列,一种是相邻元素是组合问题,不用排列。

例2.四个工人去住旅店,旅店只剩下三个房间,要求四人中必须有两个住在一个房间,另两个房间各住一人,问共有多少种不同的安排方法?
解:第一步:把四个工人中的二个捆绑在一起,共有C■=6种方法;第二步:把四个工人看成三个工人进行排列,共有A■=6种方法。

所以共有36种不同的安排方法。

点评:由于两个工人在同一个房间没有排列问题,所以不能自排。

还有一种典型的错误排法,先在四个人中选出三个工人入住三个房间,有24种方法,再把剩下一个人放下四个房间中的任意一个,共有4种方法,故共有96种方法。

请学生思考,这种方法为什么是错误的?
三、插空式数学模型
对于某些元素要求不相邻排列的问题,可先排好没有限制条件的元素,再将所指定的不相邻的元素插入它们的间隙及两端位置,这种模型称为“插空式数学模型”。

四、AB型数学模型
对于一些排列组合问题,不同的元素或不同的情况只有两
种,我们可把它们视为A和B,再进行排列,这种模型称为“AB 型数学模型”。

坐座位问题,射击问题,相同的小球放入盒中的问题,方程解的个数问题等等都可以归结为“AB型数学模型”。

例3.一个楼梯共10级台阶,每步走1级或2级,8步走完,一共有多少种走法?
解:10级台阶,要求8步走完,并且每步只能走1级或2级。

显然必须有2步中每步走2级,6步中每步走一级。

记每次走1级台阶为A,记每次走2级台阶为B,则原问题就相当于在8个格子中选2个填写B。

其余的填写A,这是一个8选2的组合问题,所以一共有28种走法。

点评:本题利用AB型数学模型,把一个实际问题映射为一个纯数学问题。

提高学生解排列组合题的有效途径之一是将一些常见题型
进行方法归类,构造模型解题。

这样有利于学生区别模式,并进而熟练运用。

本文列举了四种常见的排列组合典型问题的解题模型,希望能对大家有所帮助。

相关文档
最新文档