第二章 知识表示
第2章 知识表示方法
2020/4/13
内容简介
1 2.1 概述 2 2.2 一阶谓词逻辑表示法 3 2.3 产生式表示法 4 2.4 框架表示法 5 2.5 语义网络表示法 6 2.6 面向对象表示法
2020/4/13
2.1.1 知识的基本概念
知识定义
Feigenbaum 知识是经过削减、塑造、解释和转换的信息。简单地说, 知识是经过加工的信息。 Bernstein 知识是由特定领域的描述、关系和过程组成的。 Hayes-Roth 知识是事实、信念和启发式规则。
2020/4/13
2.1.1 知识
知识的特点
相对正确性 不确定性
可表示性 可利用性
2020/4/13
2.1.1 知识
知识分类
事实性知识:描述问题或事务的概念、属性、状态、环 境及条件等情况的知识。如:凡是猴子都有尾巴
过程性知识:描述问题求解过程所需要的操作、演算或 行为等规律性的知识。 如:电视维修法
2020/4/
• 例2.3 在一个房间里有一个机器人robot,一 个壁室alcove,一个积木块box,两个桌子 A和B。开始时,机器人robot在壁室alcove 的旁边,且两手是空的,桌子A上放着积木 块box,桌子B上是空的。机器人将把积木 块BOX从桌子A上转移到桌子B上。
2020/4/13
控制性知识(元知识):关于如何运用已有知识进行问题 求解的知识。 如:推理策略、搜索策略等。
2020/4/13
知识的要素
事实:事物的分类、属性、事物间关系、科学事实、客观事实等。 规则:事物的行动、动作和联系的因果关系知识。 控制:当有多个动作同时被激活时,选择哪一个动作来执行的知
识。
元知识:高层知识。怎样使用规则、解释规则、校验规则、解释
人工智能第二章知识表示方法
框架的构建与实现
80%
确定框架的结构
根据实际需求和领域知识,确定 框架的槽和属性,以及它们之间 的关系。
100%
填充框架的实例
根据实际数据和信息,为框架的 各个槽和属性填充具体的实例值 。
80%
实现框架的推理
通过逻辑推理和规则匹配,实现 基于框架的知识推理和应用。
框架表示法的应用场景
自然语言处理
模块化
面向对象的知识表示方法可以将 知识划分为独立的模块,方便管 理和维护。
面向对象表示法的优缺点
• 可扩展性:面向对象的知识表示方法可以通过继承和多态实现知识的扩展和复用。
面向对象表示法的优缺点
复杂性
面向对象的知识表示方法需要建立复 杂的类和对象关系,可能导致知识表 示的复杂性增加。
冗余性
面向对象的知识表示方法可能导致知 识表示的冗余,尤其是在处理不相关 或弱相关的事实时。
人工智能第二章知识表示方法
目
CONTENCT
录
• 知识表示方法概述 • 逻辑表示法 • 语义网络表示法 • 框架表示法 • 面向对象的知识表示法
01
知识表示方法概述
知识表示的定义
知识表示是人工智能领域中用于描述和表示知识的符号系统。它 是一种将知识编码成计算机可理解的形式,以便进行推理、学习 、解释和利用的过程。
知识表示方法通常包括概念、关系、规则、框架等元素,用于描 述现实世界中的实体、事件和状态。
知识表示的重要性
知识表示是人工智能的核心问题之一,它决定了知 识的可理解性、可利用性和可扩展性。
良好的知识表示方法能够提高知识的精度、可靠性 和一致性,有助于提高人工智能系统的智能水平和 应用效果。
知识表示方法的发展对于推动人工智能技术的进步 和应用领域的拓展具有重要意义。
人工智能 第2章 知识表示
2.1.1 知识的概念
按知识的作用范围划分
➢ 常识性知识 ➢ 领域性知识
按知识的确定性划分
➢ 确定知识 ➢ 不确定知识
按知识的作用及表示来划分
➢ 事实性知识 ➢ 规则性知识 ➢ 控制性知识 ➢ 元知识
按人类的思维及认识方法划分
➢ 逻辑性知识 ➢ 形象性知识
2.1.2 知识表示的概念
知识表示就是研究用机器表述上述知识的可行性、有效性的一 般方法,可以看成将知识符号化,即编码成某种数据结构,并输 入到计算机的过程和方法,即:
规则库: 用于描述相应领域内知识的产生式集合。
2. 综合数据库
综合数据库(事实库、上下文、黑板等):用于存放输 入的事实、从外部数据库输入的事实以及中间结果(事 实)和最后结果的工作区。
2.3.2 产生式系统的基本结构
3. 推理机
推理机:用来控制和协调规则库与综合数据库的 运行,包含了推理方式和控制策略。
一阶谓词逻辑表示法的缺点:
效率低
由于推理是根据形式逻辑进行的,把推理演算和知识含义截然分开, 抛弃了表达内容所含的语义信息,往往是推理过程太冗长,降低系统 效率。另外,谓词表示越细,表示越清楚,推理越慢、效率越低。
灵活性差
不便于表达和加入启发性知识和元知识。不便于表达不确定性的指示, 但人类的知识大都具有不确定性和模糊性,这使得它表示知识的范围 受到了限制。
R10:IF 该动物是哺乳动物 AND 是食肉动物 AND 是黄褐色 AND 身上有黑色条纹 THEN 该动物是虎
R11: IF 该动物是有蹄类动物 AND 有长脖子 AND 有长腿 AND 身上有暗斑点 THEN 该动物是长颈鹿
R12:IF 该动物有蹄类动物 AND 身上有黑色条纹 THEN 该动物是斑马
第2章 知识表示方法
梵塔问题归约图
(111) (333)
(111) (122)
(122) (322)
(322) (333)
(111) (113)
(113) (123)
(123) (122) (322) (321) (321) (331)
(331) (333)
2.3 谓词逻辑法
好的开始是成功的一半, 好的表示方法是成功的一半
第二章 知识表示方法
2.1 2.2 2.3 2.4 2.5 2.6 状态空间法 问题归约法 谓词逻辑法 语义网络法 其他方法 小结
2.1 状态空间法(State Space Representation)
问题求解技术主要是两个方面: –问题的表示 –求解的方法 状态空间法
2.6 小结(Summary)
• 本章所讨论的知识表示问题是人工智能研究的核心问 题之一。 • 知识表示方法很多,本章介绍了其中的7种,有图示法 和公式法,陈述式表示和过程式表示等。
2.6 小结(Summary)
• 知识表示方法间的关系
方法
状态空间法 归约法 谓词逻辑法 语义网络法
初始问题
状态 结点 合适公式 结点
– 状态(state) – 算Biblioteka (operator) – 状态空间方法
2.1.1 问题状态描述
定义 – 状态:描述某类不同事物间的差别而引入的一 组最少变量q0,q1,…,qn的有序集合。 – 算符:使问题从一种状态变化为另一种状态的 手段称为操作符或算符。 – 问题的状态空间:是一个表示该问题全部可能 状态及其关系的图,它包含三种说明的集合, 即三元状态(S,F,G)。
2.1.3 状态空间表示举例
第二章 知识的表示
动物识别系统
规则1 规则2 规则3 3 规则4 如果 那么 如果 那么 如果 那么 如果 那么 该动物有毛发 它是哺乳动物 该动物能产乳 它是哺乳动物 该动物有羽毛 它是鸟类动物 该动物能飞行 它能生蛋 它是鸟类动物
规则5
如果 那么 如果
规则6
规则7
那么 如果 那么 如果
规则8
该动物是哺乳动物 它吃肉 它是食肉动物 该动物是哺乳动物 它长有爪子 它长有利齿 它眼睛前视 它是食肉动物 该动物是哺乳动物 它长有蹄 它是有蹄动物 该动物是哺乳动物 它反刍 那么 它是有蹄动物,并且是偶蹄动物
3. Set_Down(x) 条件:At(robot,x) ∧Table(x) ∧Holds(robot,box) 动作:删除 Holds(robot,box) 增加 On(box,x) ∧ Empty(robot)
注:在执行动作前先要检查条件是否满足
At(robot,c) Empty(robot) On(box,a) Table(a) Table(b) Goto(x,y)---c/x,a/y At(robot,a) Empty(robot) On(box,a) Table(a) Table(b) Pick_Up(x)---a/x
r1不匹配 r2匹配——该动物是哺乳动物,加入综合数 据库
该动物身上有深色斑点,有长勃子,有长腿, 产乳,有蹄,,加入综合数据库 该动物身上有深色斑点,有长勃子,有长腿, 产乳,有蹄,是哺乳动物,有蹄动物 r11匹配——该动物是长颈鹿
2.3 框架表示法
规则13
如果
规则14
那么 如果
规则15
那么 如果 那么
该动物是鸟类 它不会飞 它有长颈 它有长腿 它的颜色是黑色和白色相杂 它是鸵鸟 该动物是鸟类 它不能飞行 它能游水 它的颜色是黑色和白色 它是企鹅 该动物是鸟类 它善于飞行 它是海燕
人工智能概论课件 第2章 知识表示(导论)
(1)个体是常量:一个或者一组指定的个体。
▪ “老张是一个教师”:一元谓词 Teacher (Zhang) ▪ “5>3” :二元谓词 Greater (5, 3) ▪ “Smith作为一个工程师为IBM工作”:
三元谓词 Works (Smith, IBM, engineer)
命题逻辑表示法:无法把它所描述的事物的结构及逻辑特 征反映出来,也不能把不同事物间的共同特征表述出来。
P:老李是小李的父亲
P:李白是诗人 Q:杜甫也是诗人
13
2.2.2 谓词
谓词的一般形式: P (x1, x2,…, xn)
▪ 个体 x1, x2,…, xn :某个独立存在的事物或者某个抽象 的概念;
(3)∧: “合取”(conjunction)——与。
“我喜欢音乐和绘画”: Like (I, music) ∧ Like (I, painting)
16
2.2.3 谓词公式
1. 连接词(连词) (4)→:“蕴含”(implication)或 “条
件”(“如co果nd刘iti华on跑)。得最快,那么他取得冠军。” :
▪ ( x)( y) F(x, y) 表示对于个体域中的任何两个个体x
和y,x与y都是朋友。
20
2.2.3 谓词公式
全称量词和存在量词出现的次序将影响命题的意思。 例如:
▪ ( x)( y)(Employee(x) → Manager(y, x)) :
“每个雇员都有一个经理。”
▪ ( y)( x)(Employee(x) → Manager(y, x)):
30
第2章 知识表示
2.1 知识与知识表示的概念 2.2 一阶谓词逻辑表示法
知识图谱文献综述(第二章知识表示学习)
知识图谱⽂献综述(第⼆章知识表⽰学习)第⼆章知识表⽰学习1. 任务定义、⽬标和研究意义 知识表⽰是知识获取与应⽤的基础,因此知识表⽰学习问题,是贯穿知识库的构建与应⽤全过程的关键问题。
⼈们通常以⽹络的形式组织知识库中的知识,⽹络中每个节点代表实体(⼈名、地名、机构名、概念等),⽽每条连边则代表实体间的关系。
然⽽,基于⽹络形式的知识表⽰⾯临诸多挑战性难题,主要包括如下两个⽅⾯: (1)计算效率问题。
基于⽹络的知识表⽰形式中,每个实体均⽤不同的节点表⽰。
当利⽤知识库计算实体间的语义或推理关系时,往往需要⼈们设计专门的图算法来实现,存在可移植性差的问题。
更重要的,基于图的算法计算复杂度⾼,可扩展性差,当知识库规模达到⼀定规模时,就很难较好地满⾜实时计算的需求。
(2)数据稀疏问题。
与其他类型的⼤规模数据类似,⼤规模知识库也遵守长尾分布,在长尾部分的实体和关系上,⾯临严重的数据稀疏问题。
例如,对于长尾部分的罕见实体,由于只有极少的知识或路径涉及它们,对这些实体的语义或推理关系的计算往往准确率极低。
近年来,以深度学习[Bengio, et al., 2009]为代表的表⽰学习[Bengio, et al., 2013]技术异军突起,在语⾳识别、图像分析和⾃然语⾔处理领域获得⼴泛关注。
表⽰学习旨在将研究对象的语义信息表⽰为稠密低维实值向量。
在该低维向量空间中,两个对象距离越近,则说明其语义相似度越⾼。
知识表⽰学习,则是⾯向知识库中的实体和关系进⾏表⽰学习。
知识表⽰学习实现了对实体和关系的分布式表⽰,它具有以下主要优点:(1)显著提升计算效率。
知识库的三元组表⽰实际就是基于独热表⽰的。
如前所分析的,在这种表⽰⽅式下,需要设计专门的图算法计算实体间的语义和推理关系,计算复杂度⾼,可扩展性差。
⽽表⽰学习得到的分布式表⽰,则能够⾼效地实现语义相似度计算等操作,显著提升计算效率。
(2)有效缓解数据稀疏。
由于表⽰学习将对象投影到统⼀的低维空间中,使每个对象均对应⼀个稠密向量,从⽽有效缓解数据稀疏问题,这主要体现在两个⽅⾯。
第2章知识表示方法
命题( ∀ x)P(x)为假,当且仅当至少存在一个xi
∈D,使得P(xi)为假
∃ :存在量词,意思是“至少有一个”、“存在有”
命题∈D( ∃,x使)P得(x)P为(x真i)为,真当且仅当至少存在一个xi
命题( ∃x)P(x)为假,当且仅当对论域中的所有
x,都有P(x)为假
18:08
18:08
27页
2.4.1 框架的构成
<框架名>
<槽名1>
<侧面11>
<值111>…<值11k1>
一般 结构
<侧面1n1> <值1n11>…<值1n1kn1>
<槽名2>
<侧面12>
<值121>…<值1211>
<侧面1n2> <值1n21>…<值1n21n2>
…
18:08
28页
2.4.1 框架的构成 表示对象间关系的常用槽名
缺省:教学 姓名: 性别:(男,女) 学历:(中专,大学)
•含有5个槽,槽名分别为:“类属”、“工作”、“性别”、“学历”和 “类别”。槽名后面是其槽值。 •槽值“<知识分子>”又是一个框架名。 •“范围”、“缺省”是槽“工作”的两个不同的侧面,其后是侧面值
18:08
30页
练习一下
例 描述“学生”的框架 框架名:<学生>
z P和Q都可以是一个或一组数学表达式或自然语言
z可表示精确的、不精确的,而谓词公式只能精确的
18:08
17页
2.3.2 产生式表示知识方法
确定性和不确定性规则知识的产生式表示
确定性规则知识: 前面产生式的基本形式表示即可
不确定性规则知识 用如下形式表示 P→Q (可信度)
或者 IF P THEN Q (可信度)
920091-人工智能导论(第4版)-第2章 知识表示(导论)
▪ ( x)( y) F(x, y) 表示在个体域中存在个体x与个体y,
x与y是朋友。
▪ ( x)( y) F(x, y) 表示对于个体域中的任何两个个体x
和y,x与y都是朋友。
20
2.2.3 谓词公式
全称量词和存在量词出现的次序将影响命题的意思。 例如:
▪ ( x)( y)(Employee(x) → Manager(y, x)) :
Introduction of Artificial Intelligence
第 2 章 知识表示
教材:
王万良《人工智能导论》(第4版) 高等教育出版社,2017.7
第2章 知识表示
人类的智能活动主要是获得并运用知识。知识是智 能的基础。为了使计算机具有智能,能模拟人类的 智能行为,就必须使它具有知识。但知识需要用适 当的模式表示出来才能存储到计算机中去,因此, 知识的表示成为人工智能中一个十分重要的研究课 题。 本章将首先介绍知识与知识表示的概念,然后介绍 一阶谓词逻辑、产生式、框架、语义网络等当前人 工智能中应用比较广泛的知识表示方法,为后面介 绍推理方法、专家系统等奠定基础。
词演算表达式的每个常量、变量、谓词和函数符号的 指派。
Friends (george, x) Friends (george, susie) T Friends (george, kate) F
对于每一个解释,谓词公式都可求出一个真值(T 或F)。
24
2.2.4 谓词公式的性质
2. 谓词公式的永真性、可满足性、不可满足性
③ 经验引起的不确定性
④ 不完全性引起的不确定性
7
2.1.2 知识的特性
3. 可表示性与可利用性
第二章知识表示方法
对知识进行表示的过程就是把知识编码成某种数据结 构的过程。 知识表示研究用机器表示知识的可行性、有效性的一 般方法,是一种数据结构与控制结构的统一体,既考 虑知识的存储,又考虑知识的使用。
5
知识表示方法可以分为陈述性知识表示和过程性知识 表示两大类。
陈述性知识表示主要是用来描述事实性知识。这类表 示法就是将对象的有关事实陈述出来,并以数据的形 式表示。强调事物所涉及的对象是什么,是对事物有 关知识的静态描述,是知识的一种显式表达形式。而 对于如何使用这些知识,则通过控制策略来决定。 过程性知识表示主要用来描述规则性知识和控制结构 知识。将有关某一问题领域的知识,连同如何使用这 些知识的方法,均隐式地表达为一个求解问题的过程 (如程序)
U=V
(V,0,V,0)
goto(U)
(c,1,c,0) (U,0,V,0) goto(U) (c,1,c,1) 目标状态
18
猴子和香蕉问题的状态空间图
2.1 状态空间法
猴子和香蕉问题自动演示:
•
香蕉
Ha!Ha!
箱子
猴子
19
二阶Hanoi塔问题
已知3个柱子l、2、3和两个盘子A、B(A比B 小)。 初始状态下,A、B依次放在1柱上;目标状态 是A、B依次放在柱子3上。 条件是每次可移动一个盘子,盘子上方是空顶 方可移动,而且任何时候都不允许大盘在小盘 之上。
9
2.1 状态空间法
2. 状态空间表示概念详释
Original
State
Middle State
Goal State
例如下棋、迷宫及各种游戏。
10
2.1 状态空间法
人工智能课件第二章 知识表示(修改)
19
• 接上一页
TABLE(a)
TABLE(a)
SETWODN(b) TABLE(b) GOTO( b,c) TABLE(b)
=======>状态5 ON(box,b) =======>状态6 ON(box,b)
EMPTY(robot)
EMPTY(robot)
AT(robot , a)
AT(robot ,b)
则称P是一个n元谓词,记为P(x1,x2,…,xn),其中, x1,x2,…,xn为个体。
7
定义2.2 设D是个体域,f:Dn→D是一个映射,则称 f是D上的一个n元函数,记作f(x1,x2,…,xn) 其中,x1,x2,…,xn为个体。
• 谓词与函数的区别: 谓词是D到{T,F}的映射,函数是D到D的映射; 谓词的真值是T和F,函数的值(无真值)是D中 的元素; 谓词可独立存在,函数只能作为谓词的个体。
5
二、谓词逻辑表示法
1. 基本概念
• 命题:具有真假意义的断言称为命题。 • 命题的真值:
T:表示命题的意义为真 F:表示命题的意义为假 • 命题真值的说明: 一个命题不能同时既为真又为假 一个命题可在一定条件下为真,而在另一条件下为假
6
• 论域:由所讨论对象的全体构成的集合。 • 个体:论域中的元素。 • 谓词:在谓词逻辑中命题是用形如P(x1,x2,…,xn)的谓词
是一种“一直往前走”不回头的方式,该方式是利用问 题给定的局部知识来决定选用的规则,就像动物识别系统一 样,选取一条与综合数据库进行匹配,然后作用到综合数据 库,再选取一条新的规则进行匹配,此时在选择上不再考虑 已经用过的规则了。
动物有暗斑点,有长脖子,有长腿,有奶,有蹄
• 该例子的部分推理网络如下:
人工智能概论第2章-知识表示
按照作用的层次,知识还可以分成以下两类: (1)对象级知识 (2)元级知识
知识表示的方法按其表示的特征可分为两类: (1)叙述性表示 (2)过程性表示
所谓表示就是为描述世界所作的一组约定,是把 知识符号化的过程、知识的表示与知识的获取、 管理、处理、解释等有直接的关系。
首先,将适用的算符作用于初始状态,以产生新的状态; 然后,再把一些适用的算符作用于新的状态;这样继续下 去,直到产生的状态为目标状态为止。 最后,就得到了问题的一个解,这个解是从初始状态到目 标状态所用算符构成的序列。
产生式可表示的知识种类及其基本形式 1.可表示的知识种类 2.产生式的基本形式 3.产生式与谓词逻辑中蕴涵式的区别
同构变换可使问题更明确,更便于求解。同构问题的解答 等价于原始问题的解答。
同态变换可使问题更加简化,易于求解。原始问题有解, 则同态问题有解,同态问题无解,则原始问题无解。
它们之间是蕴含关系,通过同构或同态变换,可以将原始 问题转化为比较清晰、简单的同构或同态问题。
2.2 状态空间表示法
2.7.1 状态空间表示法的构成
(3) 状态空间 由表示一个问题的全部状态及一切可用算符构
成的集合称为该问题的状态空间。
(4) 问题的解 从问题的初始状态集S出发,经过一系列的算
符运算,到达目标状态。由初始状态到目标状 态所用算符的序列就构成了问题的一个解。
2.2.2 状态空间方法表示问题时的步骤
2.7.1 状态空间表示法的构成
状态空间表示法就是以“状态空间”的形式对问 题进行表示。
(1) 状态:状态是描述问题求解过程中不同时刻状 况的数据结构。
(2) 算符:引起状态中某些分量发生变化,从而使 问题由一个状态变为另一个状态的操作称为算符。 算符可分为走步、过程、规则、数学算子、运算 符号或逻辑符号等。
第2章知识表示方法
人工智能原理与应用
第二章 知识表示方法
2.3
产生式表示法
产生式表示格式固定,形式单一,规则(知识单位)间相互较
2.3.5 产生式表示的特点
为独立,没有直接关系使知识库的建立较为容易,处理较为简单的 问题是可取的。另外推理方式单纯,也没有复杂计算。特别是知识
库与推理机是分离的,这种结构给知识库的修改带来方便,无需修
(1)自然性
(2)适宜于精确性知识的表示,而不适宜于不确定性知识的表示 (3)易实现
(4)与一阶谓词逻辑表示法相对应的表示法。
人工智能原理与应用
第二章 知识表示方法
2.3
产生式表示法
1943年美国数学家Post首先建立了一个产生式系统,
是作为组合问题的形式化变换理论提出来的。 产生式是一种知识表达方法,具有和Turing 机一样 的表达能力,有的心理学家认为人对知识的存储就是产生 式形式。
逻辑为基础,是到目前为止能够表达人类思维活动规律的一种最精
确的形式语言。它与人类的自然语言比较接近,由可方便地存储到
计算机中去,并被计算机做精确处理。因此,它是一种最早应用于
人工智能中的表示方法。
人工智能原理与应用
第二章 知识表示方法
2.2 一阶谓词逻辑表示法
2.2.1 知识的谓词逻辑表示法
用一阶谓词逻辑公式可以表示事物的状态、属性、 概念等事实性知识,也可以表示事物间具有确定因果 关系的规则性知识。
人工智能原理与应用
第二章 知识表示方法
例2、Honil 塔问题表示 已知三个柱子1,2,3和三个盘子A,B,C(A比B小,B比C小)。初始状 态下,A,B,C依次放在1柱上。目标状态是A,B,C依次放在柱子3上。 条件是每次可移动一个盘子,盘子上方是空顶方可移动,而任何时候都 不允许大盘在小盘之上。
2第二讲 第二章 知识表示(状态空间法)
一、问题状态描述 2、算符:
使问题从一种状态变化为另一种状态的手段,操作 符可为走步、过程、规则、数学算子、运算符号 或逻辑符号等。
3、状态空间:
一个表示该问题全部可能状态及其关系的图,包含 三种说明的集合,即所有可能的问题初始状态集 合S、 操作符集合F以及目标状态集合G。可把状 态空间记为三元状态(S,F,G)。
2 3 1 8 4 7 6 5
2 3 4 1 8 7 65
2.2状态空间法
求解的方法:首先把适用的算符用于初始状态,
以产生新的状态;然后,再把另一些适用算符 用于这些新的状态;这样继续下去,直至产生 目标状态为止。
初始 状态 2 3 1 8 4 7 6 5 2 3 1 8 4 7 6 5 1 2 3 8 4 7 6 5 目标状态 2 8 3 1 4 7 6 5
1
状态空间表示概念详释
初始状态
操 作
中间状态
操 作
目标状态
对一个问题的状态描述,必须确定3件事: ①该状态描述方式,特别是初始状态描述; ②操作符集合及其对状态描述的作用; ③目标状态的描述。 例如:数码难题。
1
例1:三数码难题(3 puzzle problem)
2 3
1 3 2 1 初始棋局
2 3 1 8 4 7 6 5 2
图论的基本概念
如果从节点ni到节点n 4)路径:某个节点序列 (n j存在有一条路经,则称 1,n2,…,nk),当 j=2, nj 是从 ni时,如果对于每一个 可达到的节点。 3,… ,k nj-1都有一个后继节点 寻找从一种状态变换成另一种状态的某个算符 nj存在,那么就把这个节点序列叫做从节点 n1至节点 序列问题等价于寻求图的某一路径问题。 nk的长度为 k的路径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-3-25
5
2.1.1 知识原则
知识原则
“一个系统展示高级的智能理解和行为,主要是因为 拥有应用领域特有的知识:概念、事实、表示、方法、 模型、隐喻和启发式。 ” 智能体有效地求解应用领域的问题主要靠拥有的领域 特有知识 【普通知识(general knowledge)】
The
2014-3-25
7
2.1.1 知识原则
系统求解问题的性能和系统拥有知识的关系
知识门槛( the thresholds of knowledge ) 1、使能门槛(Well-Formed Threshold)
指知识量超过该门槛时,系统就拥有了为执行任务所需的最低 限度知识; For each task, there is some minimum knowledge needed for one to even formulate it;
Inroom(Robot,R1) 简单的谓词公式
“谓词公式”的一般形式:
P(x1,x2,…,xn),其中, P——谓词符号(简称谓词); Xi(i=1,2,…,n)——参数项(简称项),项可以是常量、 变量或函数; P(x1,x2,…,xn)——n元谓词公式;
“谓词公式Leabharlann 的基本组成: (1)连词
(非)加在谓词公式前面,称为否定,或取反。 (与)连接谓词公式,称为合取; 产生的逻辑语句称为合取式,每个成分成为合取项。
(或)连接谓词公式,称为析取; 产生的逻辑语句称为析取式,每个成分成为析取项。 (蕴涵)连接谓词公式产生蕴涵式; 左部称为前项,右部称为后项。
2014-3-25
P
F T F
P∧Q T F F
P∨Q T T T
P
Q
T T F
P
Q T F F
F
2014-3-25
F
T
F
F
T
T
21
2.2 谓词逻辑表示法
1)谓词逻辑基本概念
2、连词和量词
通过引入连词和量词,可以把原子公式组合为复合谓词公式。 复合谓词公式也称为逻辑语句,谓词演算也称为谓词逻辑。
1)谓词逻辑基本概念
1、谓词公式
Married(father(L1),x)
函数符号
变量符号
函数符号、变量符号——小写字母的形式来表示
2014-3-25
18
2.2 谓词逻辑表示法
1)谓词逻辑基本概念
1、谓词公式 “谓词公式”的一般形式:
P(x1,x2,…,xn),其中, P——谓词符号(简称谓词); Xi(i=1,2,…,n)——参数项(简称项),项可以是常量、变 量或函数; P(x1,x2,…,xn)——n元谓词公式;
2014-3-25
9
2.1.1 知识原则
系统求解问题的性能和系统拥有知识的关系
知识门槛( the thresholds of knowledge ) 3、全能门槛(The Total Expert Threshold)
达到E,由于知识量的空前增加(丰富),使系统能解决该应用领域 内的几乎所有问题,成为全能专家。 超过E后
性能提高变缓
非线性关系 nonlinearly
2014-3-25
11
2.1.2 知识表示
知识表示在人工智能体的建造中起到关键作用
以适当方式表示知识,才导致智能体展示出智能行 为
知识表示是数据结构及其处理机制的综合
知识表示=符号(结构)+处理机制,其中 恰当的符号(结构)
用于存储要解决的问题、可能的中间解答和最终解
以清晰的符号结构表示解决的问题
正因为系统拥有关于颜色的知识,当接收关于颜色的问题 时,系统才会作出正确回答。 这些符号结构在系统回答关于颜色问题的行为中明显地起 到因果作用;
2014-3-25
14
2.2 谓词逻辑表示法
1)谓词逻辑基本概念
1、谓词公式 例1、表示“机器人(Robot)在1号房间(R1)内”
2014-3-25
13
2.1.2 知识表示
以清晰的符号结构表示了关于颜色的知识
Color(snow,white) Color(grass,green) Color(sky,yellow)
以规则的形式(逆向推理规则)表示“要打印x的颜色, 必须知道x的颜色是y;”
PrintColor(x):-Color(x,y),!,write(“It’s”),write(y). PrintColor(grass)
(1)连词
通过连词产生复合谓词公式(逻辑语句)的例子:
Inroom(Robot,R2)
Isa(Liming,Student) Isa(Wang,Teacher) At(Liming,School) At(Liming,School)
2014-3-25
Lives(Liming,House1) Isa(Wang,Officer) At(Wang,School) At(Wang,School)
只是用于解决问题的知识中的一小部分,能应用于多个
2014-3-25
6
2.1.1 知识原则
系统求解问题的性能和系统拥有知识的关系
知识门槛( the thresholds of knowledge ) 1、使能门槛(Well-Formed Threshold) 2、胜任门槛(The Competent Threshold) 3、全能门槛(The Total Expert Threshold)
2014-3-25
1
2.1 概述
本节主要内容:
2.1.1 知识原则 2.1.2 知识表示
2014-3-25
2
2.1.1 知识原则
教学目的:
了解智能行为取决于系统拥有的应用领域特有知识; 了解系统求解问题的性能与拥有知识量的关系; 掌握知识门槛的意义;
知识原则
D. B. Lenat(里南) and E. A. Feigenbaum(费根鲍姆), "On the thresholds of knowledge," in Proc. IJCAI-10, 1987, pp. 1173-1182.
Before you can apply search or knowledge to solve some problem, you need to already know enough to at least state the problem in a well-formed fashion. 最低限度知识用于为问题确定一个好的表示方案
变量符号
谓词符号
2014-3-25
函数符号
常量符号
16
2.2 谓词逻辑表示法
1)谓词逻辑基本概念
1、谓词公式
Inroom(Robot,R1) Married(father(L1),x)
谓词符号
常量符号
常量符号
谓词符号
常量符号
谓词符号、常量符号——首字母大写的形式来表示
2014-3-25
17
2.2 谓词逻辑表示法
答以及解决问题涉及的知识;
配套的处理机制
仅有符号(结构)不能体现出系统具有知识; 只有对其作适当的处理才构成意义。
2014-3-25
12
2.1.2 知识表示
例1、回答关于颜色的问题,并说明执行该任务的系统应 如何设计才成为专家系统。假定该任务只需说出雪、草地 和天空的颜色。用Prolog语言编写这个系统。 设计方案:
2014-3-25
谓词符号、常量符号、变量符号、函数符号; 用括号和逗号隔开,表示论域内的关系。
15
2.2 谓词逻辑表示法
1)谓词逻辑基本概念
1、谓词公式
用括号和逗号隔开,以表示论域内的关系
Inroom(Robot,R1)
谓词符号
常量符号
常量符号
Married(father(L1),x)
“谓词公式”的基本组成:
谓词符号、常量符号、变量符号、函数符号; 用括号和逗号隔开,表示论域内的关系。
“谓词公式是谓词逻辑的基本单元,也称为原子公式。
2014-3-25 19
2.2 谓词逻辑表示法
1)谓词逻辑基本概念
2、连词和量词
通过引入连词和量词,可以把谓词公式(原子公式)组合为复合谓 词公式。 复合谓词公式也称为逻辑语句。
(等价)连接谓词公式产生等价式;正、逆向蕴涵式的合取。
20
2.2 谓词逻辑表示法
1)谓词逻辑基本概念
2、连词和量词
通过引入连词和量词,可以把原子公式组合为复合谓词公式。 复合谓词公式也称为逻辑语句。
(1)连词
通过连词产生的复合谓词公式(逻辑语句)的真值表:
P T F T Q T T F
Color(snow,white). Color(grass,green). Color(sky,yellow). PrintColor(x):-Color(x,y),!,write(“It’s”),write(y). 问题是:?- PrintColor(grass). 系统回答:It’s green.
第2章 知识表示
如何表示知识是人工智能研究的一个重要议题 知识表示
以形式化方式表示知识; 供计算机自动处理; 2.1 概述 基本的知识表示方式