2016-2017学年广东省深圳市龙华区福苑学校七年级(上)期中数学试卷含答案

合集下载

2016-2017学年深圳市龙华区福苑学校七上期中数学试卷

2016-2017学年深圳市龙华区福苑学校七上期中数学试卷

2016年深圳市龙华区福苑学校七上期中数学试卷一、选择题(共12小题;共60分)1. 的绝对值是A. B. C. D.2. 数轴上,到对应点的距离为个单位长度的数是A. 或B.C. 或D.3. 年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球.已知地球距离月球表面约为千米,那么这个距离千米用科学记数法(保留三个有效数字)表示应为A. 千米B. 千米C. 千米D. 千米4. 下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是城市北京武汉广州哈尔滨平均气温单位A. 北京B. 武汉C. 广州D. 哈尔滨5. 下列计算正确的是A. B.C. D.6. 下列各等式不一定成立的是A. B. C. D.7. 下列说法正确的是A. 平方是它本身的数只有B. 立方是它本身的数只有C. 绝对值是它本身的数是正数D. 倒数是它本身的数是8. 下列各式中,其中两项是同类项的是A. 和B. 和C. 和D. 和9. 下列各式正确的是A.B.C.D.10. 的平方的倍与的差,应写成A. B. C. D.11. 若要使得如图的平面展开图折叠成正方体后,相对面上的数互为相反数,则的值是A. B. C. D.12. 若,那么的值是A. B. C. D. 或二、填空题(共4小题;共20分)13. 如果盈利万元记作万元,那么亏损万元记作.14. 若与是同类项,则.15. 按照如图计算转换机计算,则输出结果为.16. 观察下列图形:它们是按一定规律排列的,依照此规律,第个图形共有个★.三、解答题(共7小题;共91分)17. 计算题.(1);(2);(3);(4).18. 计算题.(1);(2).19. 求代数式的值:,其中,.20. 如图,是一个由小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.21. 如图,一个边长为的正方形内画了一个圆,其直径也是.(1)用代数式表示图中阴影部分的面积.(2)当,取时,阴影部分的面积是多少?22. “十一”黄金周期间,九寨沟在天假期中每天接待游客的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数).日期月日月日月日月日月日月日月日人数变化万人(1)若月日的游客人数为万人,则月日的游客人数为万人;(2)七天内游客人数最多的是月日;(3)若月日游客人数为万人,门票每人元.请求出黄金周期间九寨沟门票总收入是多少万元?23. 请观察下列算式,找出规律并填空.,,,.(1)则第个算式是;(2)第个算式是,根据以上规律解答下题:(3).答案第一部分1. C2. C3. B4. D5. D6. D7. D8. C9. D 10. A11. B 12. A第二部分13. 万元14.15.16.【解析】归纳推理可得,第个图形共有个★.第三部分17. (1)原式(2)原式(3)原式(4)原式18. (1)原式.原式(2)19. 原式.当,时,原式.20. 如图所示:21. (1)根据题意得:.阴影正方形圆.(2)当,时,阴影22. (1)(2)(3)万元答:黄金周期间九寨沟门票总收入是万元.23. (1)(2)原式(3)。

广东省深圳市七年级上学期期中数学试卷

广东省深圳市七年级上学期期中数学试卷
广东省深圳市七年级上学期期中数学试卷
姓名:________班级:________ 成绩:________
一、 精心选一选 (共8题;共16分)
1. (2分) (2017·黄冈模拟) 下列式子中结果为负数的是( )
A . |﹣2|
B . ﹣(﹣2)
C . ﹣2﹣1
D . (﹣2)2
2. (2分) 下列运算中,正确的是( )
12. (1分) (2017·景泰模拟) 据了解,地下综合管廊是建于城市地下用于敷设市政公用管线的公用设施,该系统不仅解决城市交通拥堵问题,还极大方便了电力、通信、燃气、供排水等市政设施的维护和检修.2015年4月8日,白银市被国家确定为全国地下综合管廊试点城市,8月9日,项目采取政府和社会资本合作的PPP模式开工建设,项目总投资22.38亿元.请将22.38亿元用科学记数法表示并保留3个有效数字为________ 元.
A .
B .
C .
D .
二、 细心填一填 (共9题;共11分)
9. (1分) (2019七上·义乌月考) 的相反数是________
10. (1分) 当n=________时,多项式7x2y2n+1﹣ x2y5可以合并成一项.
11. (1分) (2017·杨浦模拟) 用代数式表示“a的相反数与b的倒数的和的平方”:________.
(2)一个n×2的矩形用不同的方式分割后,小正方形的个数最少是________
三、 认真答一答: (共9题;共79分)
18. (5分) (2017七上·马山期中) 在数轴上表示下列有理数,并用“<”号连接起来:
|﹣1.5|,﹣ ,0,﹣22 , ﹣(﹣3)
19. (6分) (2017八上·海勃湾期末) 观察下列各式: = ﹣ ; = ; = ; = ﹣ ;….

2016-2017学年七年级(上)期中数学试卷及答案解析

2016-2017学年七年级(上)期中数学试卷及答案解析

2016-2017学年七年级(上)期中数学试卷一、选择题1.﹣3的相反数是()A. B.3 C.± D.﹣32.图中不是正方体的展开图的是()A.B.C. D.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个 B.2个 C.3个 D.4个5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是() A.6 B.7 C.11 D.126.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A .15B .16C .21D .17 二、填空题7.计算:(﹣1)2015+(﹣1)2016= . 8.若3a 2bc m 为七次单项式,则m 的值为 .9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n 个三角形,则需要 根火柴棍.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为 米.. 11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 .12.如果3x 2n ﹣1y m 与﹣5x m y 3是同类项,则m= ,n= .13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= .14.如果(x+1)2=a 0x 4+a 1x 3+a 2x 2+a 3x+a 4(a 0,a 1,a 2,a 3,a 4都是有理数)那么a 04+a 13+a 22+a 3+a 4;a 04﹣a 13+a 22﹣a 3+a 4;a 04+a 22+a 4的值分别是 ; ; .三、解答题15.(5分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16.(5分)由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.17.(12分)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].18.(8分)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9增减(单位:个)(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.20.(8分)若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].21.(9分)我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是;(3)请说明(2)中猜想的结论是正确的.22.(9分)小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.23.(10分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A 县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?24.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案与试题解析一、选择题1.﹣3的相反数是()A.B.3 C.± D.﹣3【考点】相反数.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:﹣3的相反数是3.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.图中不是正方体的展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题:正方体的每一个面都有对面,可得答案.【解答】解:由正方体的表面展开图的特点可知,只有A,C,D这三个图形,经过折叠后能围成正方体.故选B.【点评】本题考查了几何体的展开图,只要有“田”字格的展开图都不是正方体的表面展开图.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式【考点】单项式.【分析】根据单项式及单项式的次数的定义即可解答.【解答】解:A、根据单项式的定义可知,x是单项式,故本选项不符合题意;B、根据单项式的定义可知,0是单项式,故本选项不符合题意;C、根据单项式的系数的定义可知,﹣x的系数是﹣1,故本选项符合题意;D、根据单项式的定义可知,不是单项式,故本选项不符合题意.故选C.【点评】本题考查了单项式及单项式的次数的定义,比较简单.单项式的系数的定义:单项式中的数字因数叫做单项式的系数.4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个B.2个C.3个D.4个【考点】有理数.【分析】根据小于或等于零的数是非正数,可得答案.【解答】解:﹣(﹣2)=2>0,﹣|﹣7|=﹣7<0,﹣12001×0=0,﹣(﹣1)3=1>0,=﹣<0,﹣24=﹣16<0,故选:D.【点评】本题考查了有理数,小于或等于零的数是非正数,化简各数是解题关键.5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.12【考点】代数式求值.【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【解答】解:∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=11.故选C【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.6.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A.15 B.16 C.21 D.17【考点】专题:正方体相对两个面上的文字.【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【解答】解:由题意可得,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故选D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题7.计算:(﹣1)2015+(﹣1)2016= 0 .【考点】有理数的乘方.【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.8.若3a2bc m为七次单项式,则m的值为 4 .【考点】多项式.【分析】单项式3a2bc m为七次单项式,即是字母的指数和为7,列方程求m的值.【解答】解:依题意,得2+1+m=7,解得m=4.故答案为:4.【点评】单项式的次数是指各字母的指数和,字母指数为1时,省去不写.9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n个三角形,则需要2n+1 根火柴棍.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:因为第一个三角形需要三根火柴棍,再每增加一个三角形就增加2根火柴棒,所以有n个三角形,则需要2n+1根火柴棍.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.【点评】本题考查了有理数的乘方,正确理解问题中的数量关系,总结问题中隐含的规律是解题的关键.11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 4.23×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 230 000=4.23×106,故答案为:4.23×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.如果3x2n﹣1y m与﹣5x m y3是同类项,则m= 3 ,n= 2 .【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可列出关于m 、n 的方程组,求出m 、n 的值.【解答】解:由题意,得,解得.故答案分别为:3、2.【点评】此题考查的知识点是同类项, 关键要明确同类项定义中的两个“相同”: (1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= ﹣1 .【考点】规律型:数字的变化类.【分析】依次求出a 2,a 3,a 4,判断出每3个数为一个循环组依次循环,用2016除以3,根据商和余数的情况解答即可.【解答】解:a 1=,a 2===2,a 3===﹣1,a 4===,…,依此类推,每3个数为一个循环组依次循环, ∵2016÷3=672,∴a 2016为第672循环组的第三个数, ∴a 2016=a 3=﹣1. 故答案为:﹣1.【点评】本题是对数字变化规律的考查,读懂题目信息,求出各数并判断出每3个数为一个循环组依次循环是解题的关键.14.如果(x+1)2=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4都是有理数)那么a04+a13+a22+a3+a4;a04﹣a13+a22﹣a3+a4;a04+a22+a4的值分别是 4 ;0 ; 2 .【考点】代数式求值.【分析】由原式可得x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,可得a0=a1=0,a2=1,a3=2,a4=1,再分别代入所求代数式即可.【解答】解:∵(x+1)2=a0x4+a1x3+a2x2+a3x+a4,∴x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,∴a0=a1=0,a2=1,a3=2,a4=1,则a04+a13+a22+a3+a4=1+2+1=4,a04﹣a13+a22﹣a3+a4=1﹣2+1=0,a04+a22+a4=1+1=2,故答案为:4; 0; 2.【点评】本题主要考查代数式的求值,根据已知等式得出a0=a1=0,a2=1,a3=2,a4=1是解题的关键.三、解答题15.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【考点】作图-三视图.【分析】通过仔细观察和想象,再画它的三视图即可.【解答】解:几何体的三视图如图所示,【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.16.由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.【考点】有理数大小比较;数轴.【分析】(1)数轴上原点左边的数就是负数,右边的数就是正数,离开原点的距离就是这个数的绝对值;(2)数轴上的数右边的数总是大于左边的数,即可求解.【解答】解:(1)A:﹣4;B:1.5;C:0;D:﹣1.5;E:4;(2)用“<”把这些数连接起来为:﹣4<﹣1.5<0<1.5<4.【点评】本题主要考查了数轴上点表示的数的确定方法,以及数轴上的数的关系,右边的数总是大于左边的数.17.(12分)(2016秋•崇仁县校级期中)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].【考点】有理数的混合运算.【分析】(1)先将减法转化为加法,再根据有理数的加法法则计算即可;(2)先算乘除,再算加法即可;(3)先求原式的倒数,再求解即可;(4)先算乘方,再算乘除,最后算加减.有括号,要先做括号内的运算.【解答】(1)解:原式=﹣7﹣5﹣4+10=﹣6;(2)解:原式=﹣1+5×(﹣4)×(﹣4)=﹣1+80=79;(3)解:因为(﹣+﹣)÷=(﹣+﹣)×64=﹣16+8﹣4=﹣12,所以÷(﹣+﹣)=﹣;(4)解:原式=9﹣×(﹣)×(4+16)=9+×20=9+16=25.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.19.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.【考点】正数和负数.【分析】(1)由表格可以求得该厂星期一生产工艺品的数量;(2)由表格可以求得本周产量中最多的一天比最少的一天多生产多少个工艺品;(3)由表格可以求得该工艺厂在本周实际生产工艺品的数量.【解答】解:(1)由表格可得,周一生产的工艺品的数量是:300+5=305(个)即该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天是星期六,最少的一天是星期五,16+300﹣[(﹣10)+300]=26个,即本周产量中最多的一天比最少的一天多生产26个;(3)2100+[5+(﹣2)+(﹣5)+15+(﹣10)+16+(﹣9)]=2100+10=2110(个).即该工艺厂在本周实际生产工艺品的数量是2110个.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的含义.20.若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].【考点】有理数的混合运算.【分析】原式各项利用题中的新定义计算即可得到结果.【解答】解:(1)﹣3△5=﹣3×5﹣[(﹣3)+5]=﹣15﹣2=﹣17;(2)(﹣4)△(﹣5)=﹣4×(﹣5)﹣[(﹣4)+(﹣5)]=20+9=29,则2△[(﹣4)△(﹣5)]=2×29﹣(2+29)=58﹣31=27.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.21.我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是4×=4﹣;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是n×=n﹣;(3)请说明(2)中猜想的结论是正确的.【考点】规律型:数字的变化类.【分析】观察已知算式可以发现:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;由此可以解决(1)和(2);(3)根据(2)中算式左侧和右侧进行分式运算比较即可.【解答】解:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;(1)第4个等式:4×=4﹣,(2)第n个等式:n×=n﹣,(3)证明:n×=,n﹣==,∴n×=n﹣,∴(2)中猜想的结论是正确的.【点评】此题主要考察运算规律的探索应用与证明,观察已知算式找出规律是解题的关键.22.小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.【考点】整式的加减.【分析】(1)因为A﹣B=﹣7x2+10x+12,且B=4x2﹣5x﹣6,所以可以求出A,再进一步求出A+B.(2)根据(1)的结论,把x=3代入求值即可.【解答】解:(1)A=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,A+B=(﹣3x2+5x+6)+(4x2﹣5x﹣6)=x2;(2)当x=3时,A+B=x2=32=9.【点评】本题解题的关键是读懂题意,并正确进行整式的运算.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.23.(10分)(2015秋•无锡期中)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车12﹣x 辆,乙仓库调往A县农用车10﹣x 辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?【考点】列代数式;代数式求值.【分析】(1)根据题意列出代数式;(2)到甲的总费用=甲调往A的车辆数×甲到A调一辆车的费用+乙调往A的车辆数×乙到A调一辆车的费用,同理可求出到乙的总费用;(3)把x=4代入代数式计算即可.总费用=到甲的总费用+到乙的总费用.【解答】解:(1)设从甲仓库调往A县农用车x辆,则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340,到B的总费用=760﹣30×4=640故总费用=340+640=980.【点评】根据题意列代数,再求代数式的值.24.(12分)(2015秋•常熟市期中)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ﹣2 ,b= 1 ,c= 7 ;(2)若将数轴折叠,使得A点与C点重合,则点B与数 4 表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= 3t+3 ,AC= 5t+9 ,BC= 2t+6 .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】数轴;两点间的距离.【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)由 3BC﹣2AB=3(2t+6)﹣2(3t+3)求解即可.【解答】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.【点评】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。

七年级(上)数学科期中检测试题(含答案)

七年级(上)数学科期中检测试题(含答案)
9.下列各对数中,数值相等的一对是()
A.-(-2)3和-23B.(-3)2和-32C.( )2和 D.|-32|和-(-32)
10.某品牌的面粉袋上标有质量为(25±0.25)kg的字样,下列4袋面粉中质量合格的是()
A.24.70kgB.24.80kgC.25.30kgD.25.51kg
11. “比 的大1的数”用代数式表示为()
答:在离下午的出发地向南方向9千米处。..................4分
(2)解:
..................2分
..................3分
答:小王这天下午耗了多少钱的汽油... ..................4分
(3)解:10+(6-3) 2=10+6=16(元)
A. B. C. D.
6.下列计算正确的是( )
A. ;B. C. D.
7.若| |=5,| |=2且 <0, >0则 ( )
A.7B.﹣7C.3D.﹣3
8.用四舍五入法对2.098176分别取近似值,其中正确的是()
A.2.09(精确到0.01)B.2.098(精确到千分位)
C.2.0(精确到十分位)D.2.0981(精确到0.0001)
A.B.C.D.
12.如图1,数轴上A,B两点分别对应有理数a,b,则下列结论正确的是()
A.a+b>0B.ab<0C.a-b<0D.b-a>0
13.如图2,一个矩形的周长为30,若一边长用字母 表示,则此矩形的面积为( )
A. B. C. D.
14. 表示一个一位数, 表示一个两位数,把 放在 的左边组成一个三位数,则这个三位数可以表示为()
=
= 8 (千克) ........3分

【数学】2016-2017年广东省深圳市龙华区福苑学校七年级上学期期中数学试卷与解析PDF

【数学】2016-2017年广东省深圳市龙华区福苑学校七年级上学期期中数学试卷与解析PDF

2016-2017学年广东省深圳市龙华区福苑学校七年级(上)期中数学试卷一、选择题(本题12小题,每题3分,共36分)每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卷相应位置上.1.(3分)﹣的绝对值是()A.﹣2 B .﹣ C .D.22.(3分)数轴上,到﹣3对应点距离为5个单位长度的数是()A.﹣8或1 B.8 C.﹣8或2 D.23.(3分)2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球.已知地球距离月球表面约为384 000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为()A.3.84×104千米B.3.84×105千米C.3.84×106千米D.38.4×104千米4.(3分)下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是()城市北京武汉广州哈尔滨﹣4.6 3.813.1﹣19.4平均气温(单位:℃)A.北京B.武汉C.广州D.哈尔滨5.(3分)下列计算正确的是()A.B.C.﹣1+2=﹣3 D.6.(3分)下列各等式不一定成立的是()A.0﹣a=﹣a B.1×a=a C.(﹣a)2=a2D.0÷a=07.(3分)下列说法正确的是()A.平方是它本身的数只有0 B.立方是它本身的数只有±1C.绝对值是它本身的数是正数D.倒数是它本身的数是±18.(3分)下列各式中,其中两项是同类项的是()A.a2b和a2c B.2mn和2mnp C.0.2pq和0.3pq D.3a3b和2ab3 9.(3分)下列各式正确的是()A.a﹣(b﹣c+d)=a﹣b﹣c+d B.a﹣2(b﹣c+d)=a﹣2b+2c+dC.a﹣(b﹣c+d)=a﹣b+c+d D.a﹣(b﹣c+d)=a﹣b+c﹣d10.(3分)a的平方的7倍减去3的差,应写成()A.7a2﹣3 B.7(a2﹣3)C.(7a)2﹣3 D.a2(7﹣3)11.(3分)若要使得如图中平面展开图折叠成正方体后,相对面上的数互为相反数,则a+b+c的值是()A.﹣2 B.2 C.4 D.312.(3分)若|a+1|+(b﹣2016)2=0,那么a b的值是()A.1 B.﹣1 C.2016 D.1或﹣1二、填空题(本题4小题,每题3分,共计12分)请把答案填到答题卷相应位置上.13.(3分)如果盈利15万元记作+15万元,那么亏损3万元记作.14.(3分)若﹣a2b m与4a n b是同类项,则m+n=.15.(3分)按照如图计算转换机计算,输出结果为.16.(3分)观察下列图形,它们是按一定规律排列的,依照此规律,第16个图形共有个★.三、解答题(共计52分)17.(16分)计算题.(1)20﹣17﹣(﹣7)(2)3×(﹣2)﹣(﹣28)÷7(3)(4)﹣23+3×(﹣1)2010﹣(﹣2)2.18.(10分)计算题.(1)﹣4x2y﹣8xy2+2x2y﹣3xy2(2)(7y﹣3z)﹣(8y﹣5z)19.(6分)求代数式的值:4x2+3xy﹣x2﹣9,其中x=2,y=﹣3.20.(6分)如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.21.(3分)如图,一个边长为a的正方形内画了一个圆,其直径也是a(1)用代数式表示图中阴影部分的面积.(2)当a=8,π取3时,阴影部分的面积是多少?22.(5分)“十•一”黄金周期间,九寨沟在7天假期中每天接待游客的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化(万人)+1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.4(1)若9月30日的游客人数为a万人,则10月2日的游客人数为万人;(2)七天内游客人数最大的是10月日;(3)若9月30日游客人数为3万人,门票每人220元.请求出黄金周期间九寨沟门票总收入是多少万元?23.(6分)请观察下列算式,找出规律并填空,,,(1)则第10个算式是=,(2)第n个算式是=,根据以上规律解答下题:(3)+++…+.2016-2017学年广东省深圳市龙华区福苑学校七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题12小题,每题3分,共36分)每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卷相应位置上.1.(3分)﹣的绝对值是()A.﹣2 B.﹣ C.D.2【解答】解:|﹣|=.故选:C.2.(3分)数轴上,到﹣3对应点距离为5个单位长度的数是()A.﹣8或1 B.8 C.﹣8或2 D.2【解答】解:数轴上,到﹣3对应点距离为5个单位长度的数是:﹣3﹣5=﹣8或﹣3+5=2.故选:C.3.(3分)2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球.已知地球距离月球表面约为384 000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为()A.3.84×104千米B.3.84×105千米C.3.84×106千米D.38.4×104千米【解答】解:384 000=3.84×105.故选:B.4.(3分)下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是()城市北京武汉广州哈尔滨平均气温﹣4.6 3.813.1﹣19.4(单位:℃)A.北京B.武汉C.广州D.哈尔滨【解答】解:因为﹣19.4<﹣4.6<3.8<13.1,所以气温最低的城市是哈尔滨.故选:D.5.(3分)下列计算正确的是()A.B.C.﹣1+2=﹣3 D.【解答】解A、原式=﹣2×(﹣2)=4,错误;B、原式=﹣,错误;C、原式=1,错误;D、原式=﹣,正确,故选:D.6.(3分)下列各等式不一定成立的是()A.0﹣a=﹣a B.1×a=a C.(﹣a)2=a2D.0÷a=0【解答】解:A、原式=0+(﹣a)=﹣a,不符合题意;B、原式=a,不符合题意;C、原式=a2,不符合题意;D、当a=0时,原式没有意义,不一定成立,符合题意,故选:D.7.(3分)下列说法正确的是()A.平方是它本身的数只有0 B.立方是它本身的数只有±1 C.绝对值是它本身的数是正数D.倒数是它本身的数是±1【解答】解:A、平方是它本身的数有0和1,故本选项错误;B、立方是它本身的数有±1、0,故本选项错误;C、绝对值是它本身的数是正数和0,故本选项错误;D、正确.故选:D.8.(3分)下列各式中,其中两项是同类项的是()A.a2b和a2c B.2mn和2mnp C.0.2pq和0.3pq D.3a3b和2ab3【解答】解:0.2pq和0.3pq是同类项,故选:C.9.(3分)下列各式正确的是()A.a﹣(b﹣c+d)=a﹣b﹣c+d B.a﹣2(b﹣c+d)=a﹣2b+2c+dC.a﹣(b﹣c+d)=a﹣b+c+d D.a﹣(b﹣c+d)=a﹣b+c﹣d【解答】解:A、原式=a﹣b+c﹣d,故本选项错误;B、原式=a﹣2b+2c﹣2d,故本选项错误;C、原式=a﹣b+c﹣d,故本选项错误;D、原式=a﹣b+c﹣d,故本选项正确;故选:D.10.(3分)a的平方的7倍减去3的差,应写成()A.7a2﹣3 B.7(a2﹣3)C.(7a)2﹣3 D.a2(7﹣3)【解答】解:依题意得:7a2﹣3.故选:A.11.(3分)若要使得如图中平面展开图折叠成正方体后,相对面上的数互为相反数,则a+b+c的值是()A.﹣2 B.2 C.4 D.3【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“2”与面“b”相对,面“﹣1”与面“a”相对,面“﹣3”与面“c”相对.∵相对面上的数互为相反数,∴a=1,b=﹣2,c=3,∴a+b+c=2.故选:B.12.(3分)若|a+1|+(b﹣2016)2=0,那么a b的值是()A.1 B.﹣1 C.2016 D.1或﹣1【解答】解:由题意得,a+1=0,b﹣2016=0,解得,a=﹣1,b=2016,则a b=1,故选:A.二、填空题(本题4小题,每题3分,共计12分)请把答案填到答题卷相应位置上.13.(3分)如果盈利15万元记作+15万元,那么亏损3万元记作﹣3万元.【解答】解:“正”和“负”相对,如果盈利15万元记作+15万元,那么亏损3万元记作﹣3万元.故答案为:﹣3万元.14.(3分)若﹣a2b m与4a n b是同类项,则m+n=3.【解答】解:由同类项的定义可知n=2,m=1,则m+n=3.故答案为:3.15.(3分)按照如图计算转换机计算,输出结果为.【解答】解:根据题意得:[(﹣3+3)×2﹣3]÷(﹣2)=,故答案为:16.(3分)观察下列图形,它们是按一定规律排列的,依照此规律,第16个图形共有49个★.【解答】解:观察图形会发现,第一个图形的五角星数为:1×3+1;第二个图形的五角星数为:2×3+1;第三个图形的五角星数为:3×3+1;第四个图形的五角星数为:4×3+1;则第16个图形的五角星数为:16×3+1=49个五角星.三、解答题(共计52分)17.(16分)计算题.(1)20﹣17﹣(﹣7)(2)3×(﹣2)﹣(﹣28)÷7(3)(4)﹣23+3×(﹣1)2010﹣(﹣2)2.【解答】解:(1)原式=20﹣17+7=10;(2)原式=﹣6+4=﹣2;(3)原式=4﹣6﹣2=﹣4;(4)原式=﹣8+3﹣4=﹣9.18.(10分)计算题.(1)﹣4x2y﹣8xy2+2x2y﹣3xy2(2)(7y﹣3z)﹣(8y﹣5z)【解答】解:(1)原式=﹣2x2y﹣11xy2;(2)原式=7y﹣3z﹣8y+5z=﹣y+2z.19.(6分)求代数式的值:4x2+3xy﹣x2﹣9,其中x=2,y=﹣3.【解答】解:原式=3x2+3xy﹣9,当x=2,y=﹣3时,原式=3×4+3×2×(﹣3)﹣9=﹣15.20.(6分)如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.【解答】解:如图所示:21.(3分)如图,一个边长为a的正方形内画了一个圆,其直径也是a(1)用代数式表示图中阴影部分的面积.(2)当a=8,π取3时,阴影部分的面积是多少?【解答】解:(1)根据题意得:S阴影=S正方形﹣S圆=a2﹣(a)2π=a2﹣πa2;(2)当a=8,π=3时,S阴影=64﹣48=16.22.(5分)“十•一”黄金周期间,九寨沟在7天假期中每天接待游客的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)日期10月1日10月2日10月3日10月4日10月5日10月6日10月7日人数变化(万人)+1.6+0.8+0.4﹣0.4﹣0.8+0.2﹣1.4(1)若9月30日的游客人数为a万人,则10月2日的游客人数为a+2.4万人;(2)七天内游客人数最大的是10月3日;(3)若9月30日游客人数为3万人,门票每人220元.请求出黄金周期间九寨沟门票总收入是多少万元?【解答】解:(1)若9月30日的游客人数为a万人,则10月2日的游客人数为a+2.4万人;故答案为:a+2.4.(2)七天内游客人数最大的是10月3日;故答案为:3.(3)[(3+1.6)+(3+1.60+0.8)+(3+1.60+0.8+0.4)+(3+1.60+0.8+0.4﹣0.4)+(3+1.60+0.8+0.4﹣0.4﹣0.8)+(3+1.60+0.8+0.4﹣0.4﹣0.8+0.2)+(3+1.60+0.8+0.4﹣0.4﹣0.8+0.2﹣1.4)]×220=(4.6+5.4+5.8+5.4+4.6+4.8+3.4)×220=34×220=7480(万元).答:黄金周期间九寨沟门票总收入是7480万元.23.(6分)请观察下列算式,找出规律并填空,,,(1)则第10个算式是=,(2)第n个算式是=﹣,根据以上规律解答下题:(3)+++…+.第11页(共13页)【解答】解:(1)由规律得:第10个算式为=;(2)第n 个算式为=;(3)原式=1+…=1=.故答案为:;;;.第12页(共13页)。

七年级上期中数学试卷含答案解析04

七年级上期中数学试卷含答案解析04

七年级(上)期中数学试卷一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.的相反数是()A.﹣3 B.3 C.D.2.计算|﹣2|的值是()A.﹣2 B.﹣C.D.23.﹣3的倒数为()A.﹣3 B.﹣C.3 D.4.下列不是具有相反意义的量是()A.前进5米和后退5米B.收入10元和支出10元C.身高增加2厘米和体重减少2千克D.超过5克和不足2克5.在﹣1,﹣2,0,2这四个数中,最小的一个数是()A.﹣1 B.﹣2 C.0 D.26.每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为150000000千米,将150000000千米用科学记数法表示为()A.0.15×109千米B.1.5×108千米C.15×107千米D.1.5×107千米7.下列计算中正确的是()A.6a﹣5a=1 B.5x﹣6x=11x C.m2﹣m=m D.x3+6x3=7x38.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>09.单项式﹣a3b2c的系数及次数分别是()A.系数是﹣1,次数是5 B.系数是1,次数是5C.系数是1,次数是6 D.系数是﹣1,次数是610.下列各式不是同类项的是()A.2x与﹣3x B.﹣m2n与8nm2C.4m2n与﹣7mn2D.10和﹣111.在下列有理数中:9,﹣3,0,,3.14,﹣(+5.3),﹣(﹣6)中,正数的个数为()A.3个B.4个C.5个D.6个12.大于﹣3.5且小于2.5的整数共有()A.6个B.5个C.4个D.3个13.第六次全国人口普查数据显示,某市的常住人口约为556.82万人,数据556.82万的精确度是()A.百分位B.万位 C.千位 D.百位14.下列说法正确的有()个①0既不是正数也不是负数;②绝对值最小的数是0;③﹣1是最大的负整数;④绝对值等于它本身的数只有0;⑤倒数等于它本身的数是±1,0;⑥相反数等于它本身的数只有0;⑦正数和负数统称有理数.A.3个B.4个C.5个D.6个15.的所有可能的值有()A.1个B.2个C.3个D.4个二、解答题(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分)16.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)10+(﹣2)×(﹣5)2(3).17.计算:(1)(3a﹣2)﹣3(a﹣5)(2)3(x2﹣y2)+(y2﹣z2)﹣4(z2﹣x2)18.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣3ab2+2,其中a=﹣2,b=2.19.在所给的数轴上用字母“A、B、C、D、E”分别表示出以下各数:2.5,4,﹣3,﹣,0,并回答问题:这5个数中表示最大数与最小数的两点之间相距多少个单位?20.一个三角形一边长为a+b,另一边长比这条边大b,第三边长比这条边小a﹣b.(1)求这个三角形的周长;(2)若a=5,b=3,求三角形周长的值.21.某工厂第一车间有x人,第二车间比第一车间人数的少20人,如果从第二车间调出15人到第一车间,那么(1)调动后,第一车间的人数为人;第二车间的人数为人.(2)调动后,第一车间的人数比第二车间的人数多多少人?22.某摩拖车厂本周内计划每天生产200辆摩托车,由于工人实行轮休,每天上班人数不一定相等,实际每天生产量与计划生产量相比情况如表(增加的车辆为正数,减少的车辆为负(2)产量最多的一天比产量最少的一天多生产了多少辆?(3)本周总生产量与计划生产量相比,是增加还是减少了?增加或减少了多少辆?23.小明有5张卡片写着不同的数字的卡片,请你分别按要求抽出卡片,写出符合要求的算式:(1)从中取出2张卡片,使这2张卡片上数字乘积最大;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小;(3)从中取出2张卡片,用学过的运算方法,使这2张卡片上数字组成一个最大的数;(4)从中取出4张卡片,用学过的运算方法,使结果为24.(写出一种即可)24.某餐厅中,一张桌子可以坐6人,如果把多张桌子摆在一起,可以有以下两种摆放方式.(1)当有5张桌子时,第一种摆放方式能坐人,第二种摆放方式能坐人,(2)当有n张桌子时,第一种摆放方式能坐人,第二种摆放方式能坐人,(3)一天中午餐厅要接待98位顾客共同就餐(即桌子要摆在一起),但餐厅只有25张这样的餐桌,若你是这个餐厅的经理(上)期中数学试卷参考答案与试题解析一、选择题(在各小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.本大题共15小题,每题3分,计45分)1.的相反数是()A.﹣3 B.3 C.D.【考点】相反数.【分析】求一个数的相反数,即在这个数的前面加负号.【解答】解:根据相反数的定义,得的相反数是.故选D.2.计算|﹣2|的值是()A.﹣2 B.﹣C.D.2【考点】绝对值.【分析】一个负数的绝对值是它的相反数.【解答】解:|﹣2|的值是2.故选D.3.﹣3的倒数为()A.﹣3 B.﹣C.3 D.【考点】倒数.【分析】据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣,故选B.4.下列不是具有相反意义的量是()A.前进5米和后退5米B.收入10元和支出10元C.身高增加2厘米和体重减少2千克D.超过5克和不足2克【考点】正数和负数.【分析】根据相反意义的量的定义对各选项分析判断利用排除法求解.【解答】解:A、前进5米和后退5米,是具有相反意义的量,故本选项错误;B、收入10元和支出10元,是具有相反意义的量,故本选项错误;C、身高增加2厘米和体重减少2千克,不是具有相反意义的量,故本选项正确;D、超过5克和不足2克,是具有相反意义的量,故本选项错误.故选C.5.在﹣1,﹣2,0,2这四个数中,最小的一个数是()A.﹣1 B.﹣2 C.0 D.2【考点】有理数大小比较.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小)比较即可.【解答】解:∵﹣2<﹣1<0<2,∴最小的一个数是:﹣2,故选B.6.每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为150000000千米,将150000000千米用科学记数法表示为()A.0.15×109千米B.1.5×108千米C.15×107千米D.1.5×107千米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于150000000有9位,所以可以确定n=9﹣1=8.【解答】解:150 000 000=1.5×108.故选B.7.下列计算中正确的是()A.6a﹣5a=1 B.5x﹣6x=11x C.m2﹣m=m D.x3+6x3=7x3【考点】整式的加减.【分析】直接合并同类项,作出正确的选择.【解答】解:6a﹣5a=a,故A错误,5x﹣6x=﹣x,故B错误,2m﹣m=m,故C错误,x3+6x3=7x3,故D正确,故选D.8.有理数a、b在数轴上的对应的位置如图所示,则()A.a+b<0 B.a+b>0 C.a﹣b=0 D.a﹣b>0【考点】有理数的减法;数轴;有理数的加法.【分析】先根据数轴判断出a、b的正负情况,以及绝对值的大小,然后对各选项分析后利用排除法求解.【解答】解:根据图形可得:a<﹣1,0<b<1,∴|a|>|b|,A、a+b<0,故A选项正确;B、a+b>0,故B选项错误;C、a﹣b<0,故C选项错误;D、a﹣b<0,故D选项错误.故选:A.9.单项式﹣a3b2c的系数及次数分别是()A.系数是﹣1,次数是5 B.系数是1,次数是5C.系数是1,次数是6 D.系数是﹣1,次数是6【考点】单项式.【分析】依据单项式的系数和次数的定义回答即可.【解答】解:单项式﹣a3b2c的系数是﹣1,次数是3+2+1=6.故选:D.10.下列各式不是同类项的是()A.2x与﹣3x B.﹣m2n与8nm2C.4m2n与﹣7mn2D.10和﹣1【考点】同类项.【分析】依据同类项的定义求解即可.【解答】解:A、2x与﹣3x是同类项,与要求不符;B、﹣m2n与8nm2是同类项,与要求不符;C、4m2n与﹣7mn2相同字母的指数不同,不是同类项,与要求相符;D、几个常数项是同类项,故10和﹣1是同类项,与要求不符.故选:C.11.在下列有理数中:9,﹣3,0,,3.14,﹣(+5.3),﹣(﹣6)中,正数的个数为()A.3个B.4个C.5个D.6个【考点】正数和负数.【分析】根据大于0的数是正数解答.【解答】解:﹣(+5.3)=﹣5.3,﹣(﹣6)=6.∴大于0的数有9,﹣(﹣6),3.14,共3个.故选A.12.大于﹣3.5且小于2.5的整数共有()A.6个B.5个C.4个D.3个【考点】数轴.【分析】在数轴上表示出﹣3.5与2.5,进而可得出结论.【解答】解:如图所示,,由图可知符合条件的整数有﹣3,﹣2,﹣1,0,1,2共6个.故选A.13.第六次全国人口普查数据显示,某市的常住人口约为556.82万人,数据556.82万的精确度是()A.百分位B.万位 C.千位 D.百位【考点】近似数和有效数字.【分析】根据近似数的精确度求解.【解答】解:数据556.82万的精确到百位.故选D.14.下列说法正确的有()个①0既不是正数也不是负数;②绝对值最小的数是0;③﹣1是最大的负整数;④绝对值等于它本身的数只有0;⑤倒数等于它本身的数是±1,0;⑥相反数等于它本身的数只有0;⑦正数和负数统称有理数.A.3个B.4个C.5个D.6个【考点】有理数大小比较;相反数;绝对值;倒数.【分析】根据有理数的分类和绝对值、相反数和倒数的定义分别进行判断即可得出答案.【解答】解:0既不是正数也不是负数,正确;②绝对值最小的数是0,正确;③﹣1是最大的负整数,正确;④绝对值等于它本身的数是正数和0,故本选项错误;⑤倒数等于它本身的数是±1,故本选项错误;⑥相反数等于它本身的数只有0,正确;⑦正数、0和负数统称有理数,故本选项错误;正确的有4个;故选B.15.的所有可能的值有()A.1个B.2个C.3个D.4个【考点】绝对值.【分析】由于a、b的符号不确定,应分a、b同号,a、b异号两种情况分类求解.【解答】解:①a、b同号时,,也同号,即同为1或﹣1;故此时原式=±2;②a、b异号时,,也异号,即一个是1,另一个是﹣1,故此时原式=1﹣1=0;所以所给代数式的值可能有3个:±2或0.故选C.二、解答题(将解答过程写在答题卡上指定的位置.本大题共有9小题,计75分)16.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)10+(﹣2)×(﹣5)2(3).【考点】有理数的混合运算.【分析】根据有理数的混合运算顺序,求出每个算式的值各是多少即可.【解答】解:(1)﹣20+(﹣14)﹣(﹣18)﹣13=﹣20﹣14+18﹣13=﹣34+18﹣13=﹣16﹣13=﹣29(2)10+(﹣2)×(﹣5)2=10﹣2×25=10﹣50=﹣40(3)=2+×6=2+4=617.计算:(1)(3a﹣2)﹣3(a﹣5)(2)3(x2﹣y2)+(y2﹣z2)﹣4(z2﹣x2)【考点】整式的加减.【分析】(1)先去括号,再合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:(1)(3a﹣2)﹣3(a﹣5)=3a﹣2﹣3a+15=13;(2)3(x2﹣y2)+(y2﹣z2)﹣4(z2﹣x2)=3x2﹣3y2+y2﹣z2﹣4z2+4x2=7x2﹣2y2﹣5z2.18.先化简,再求值:2(a2b+ab2)﹣2(a2b﹣1)﹣3ab2+2,其中a=﹣2,b=2.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=2a2b+2ab2﹣2a2b+2﹣3ab2+2=﹣ab2+4,当a=﹣2,b=2时,原式=8+4=12.19.在所给的数轴上用字母“A、B、C、D、E”分别表示出以下各数:2.5,4,﹣3,﹣,0,并回答问题:这5个数中表示最大数与最小数的两点之间相距多少个单位?【考点】数轴.【分析】(1)根据已知条件将字母“A、B、C、D、E”与之相对应的数2.5,4,﹣3,﹣,0在数轴上表示出来;(2)在数轴上找到最大数4与最小说﹣3,然后根据数轴上点与点之间的距离的定义,将其计算出来.【解答】解:(1)数轴…(2)|4|+|﹣3|=7…(直接写出只给l分,目的是引起学生注意)20.一个三角形一边长为a+b,另一边长比这条边大b,第三边长比这条边小a﹣b.(1)求这个三角形的周长;(2)若a=5,b=3,求三角形周长的值.【考点】代数式求值.【分析】(1)用代数式分别表示出三边的长再相加,即可得三角形的周长.(2)把a=5,b=3,代入三角形周长的式子,计算出周长的值.【解答】解:(1)这个三角形的周长是:(a+b)+(a+2b)+[a+b﹣(a﹣b)]=a+b+a+2b+a+b﹣a+b=2a+5b;(2)当a=5,b=3时,三角形的周长=2a+5b=2×5+5×3=25.21.某工厂第一车间有x人,第二车间比第一车间人数的少20人,如果从第二车间调出15人到第一车间,那么(1)调动后,第一车间的人数为x+15人;第二车间的人数为x﹣35人.(2)调动后,第一车间的人数比第二车间的人数多多少人?【考点】列代数式.【分析】(1)先表示出调动前两车间人数,再根据题意可得;(2)将调动后第一车间人数减去第二车间人数可得.【解答】解:(1)根据题意,调动前第一车间人数为x人,第二车间人数为x﹣20,则调动后,第一车间的人数为x+15人,第二车间的人数为x﹣20﹣15=x﹣35人,故答案为:x+15,x﹣35;(2)调动后,第一车间的人数比第二车间的人数多(x+15)﹣(x﹣35)=x+50人.22.某摩拖车厂本周内计划每天生产200辆摩托车,由于工人实行轮休,每天上班人数不一定相等,实际每天生产量与计划生产量相比情况如表(增加的车辆为正数,减少的车辆为负(2)产量最多的一天比产量最少的一天多生产了多少辆?(3)本周总生产量与计划生产量相比,是增加还是减少了?增加或减少了多少辆?【考点】正数和负数.【分析】(1)根据表格列出算式,计算即可得到结果;(2)找出产量最多与最少的,相减即可得到结果;(3)表格中的数据相加得到结果,即可做出判断.【解答】解:(1)200×3+(﹣5+7+3)=600+5=605(辆).答:本周前三天共生产了605辆摩托车.(2)10﹣(﹣15)=25(辆).答:产量最多的一天比产量最少的一天多生产了25辆.(3)﹣5+7﹣3+4+10﹣9﹣15=﹣11.故本周总生产量与计划生产量相比,是减少了,增加或减少了11辆.23.小明有5张卡片写着不同的数字的卡片,请你分别按要求抽出卡片,写出符合要求的算式:(1)从中取出2张卡片,使这2张卡片上数字乘积最大;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小;(3)从中取出2张卡片,用学过的运算方法,使这2张卡片上数字组成一个最大的数;(4)从中取出4张卡片,用学过的运算方法,使结果为24.(写出一种即可)【考点】有理数的混合运算.【分析】(1)观察这五个数,要找乘积最大的数就要找符号相同的数且数值最大的,所以选﹣3和﹣5;(2)2张卡片上数字相除的商最小,就要找符号不同的两个数,且分母越大越好,分子越小越好,所以选3和﹣5,且分母为3;(3)这2张卡片上数字组成一个最大的数,除了个位和十位相乘外,还有乘方,所以抽取4和﹣5;(4)利用加减乘除来连接,不是唯一答案.【解答】解:(1)(﹣3)×(﹣5)=15;(2)﹣5÷3=﹣;(3)(﹣5)4=625;(4)[(﹣3)﹣(﹣5)]×(3×4),=2×12,=24.24.某餐厅中,一张桌子可以坐6人,如果把多张桌子摆在一起,可以有以下两种摆放方式.(1)当有5张桌子时,第一种摆放方式能坐22人,第二种摆放方式能坐14人,(2)当有n张桌子时,第一种摆放方式能坐4n+2人,第二种摆放方式能坐2n+4人,(3)一天中午餐厅要接待98位顾客共同就餐(即桌子要摆在一起),但餐厅只有25张这样的餐桌,若你是这个餐厅的经理,你打算选择哪种方式来摆放餐桌?为什么?【考点】规律型:图形的变化类.【分析】(1)(2)第一种中,只有一张桌子是6人,后边多一张桌子多4人.即有n张桌子时是6+4(n﹣1)=4n+2,由此算出5张桌子,用第一种摆设方式,可以坐4×5+2=22人;第二种中,有一张桌子是6人,后边多一张桌子多2人,即6+2(n﹣1)=2n+4,由此算出5张桌子,用第二种摆设方式,可以坐2×5+4=14人.(2)分别求出n=25时,两种不同的摆放方式对应的人数,即可作出判断.【解答】解:(1)当有5张桌子时,第一种摆放方式能坐4×5+2=22人,第二种摆放方式能坐2×5+4=14人;(2)第一种中,只有一张桌子是6人,后边多一张桌子多4人.即有n张桌子时是6+4(n ﹣1)=4n+2.第二种中,有一张桌子是6人,后边多一张桌子多2人,即6+2(n﹣1)=2n+4.(2)打算用第一种摆放方式来摆放餐桌.因为,当n=25时,4×25+2=102>98当n=25时,2×25+4=54<98所以,选用第一种摆放方式.2016年11月24日。

【6套打包】深圳市七年级上册数学期中考试检测试题(含答案)

【6套打包】深圳市七年级上册数学期中考试检测试题(含答案)

人教版七年级(上)期中模拟数学试卷(10)一、选择题(本大题共8小题,每小题3分,共24分)1.与1的和是3的数是()A.﹣4 B.﹣2 C.2 D.42.下列运算中,正确的是()A.4x+3y=7xy B.4x2+3x=7x3C.4x3﹣3x2=x D.﹣4xy+3yx=﹣xy3.马拉松(Marathon)是国际上非常普及的一项长跑比赛项目,全程距离26英里385码,折合为42195米,用科学记数法表示42195为()A.4.2195×102B.4.2195×103C.4.2195×104D.42.195×1034.下列各项中是同类项的是()A.3xy与2xy B.2ab与2abc C.x2y与x2z D.a2b与ab25.如图,数轴的单位长度为1,如果点A表示的数是﹣3,那么点B表示的数是()A.﹣2 B.﹣1 C.0 D.16.按图中计算程序计算,若开始输入的x的值为1,则最后输出的结果是()A.89 B.158 C.183 D.1987.已知代数式m+2n+2的值是3,则代数式3m+6n+1的值是()A.4 B.5 C.6 D.78.已知最近的一届世界运动会、亚运会、奥运会分别于2013年、2014年、2016年举办,若这三项运动会都是每四年举办一次,则这三项运动会均不在下列哪一年举办()A.2070年B.2071年C.2072年D.2073年二、填空题(本大题有8小题,每小题3分,共24分)9.﹣3的绝对值是.10.已知(a﹣2)2+|b﹣1|=0,则a b=.11.某商店出售的某种品牌的面粉袋上,标有质量为(50±0.2)千克的字样,从中任意拿出两袋,他们的质量最多相差千克.12.若电影票上座位是“4排5号”记作(4,5),则(8,13)对应的座位是.13.若a﹣1与3互为相反数,则a=.14.比较大小:﹣8 ﹣5(填“>”或“<”)15.a是某数的十位数字,b是它的个位数字,则这个数可表示为.16.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为.三、解答(共72分)17.计算(1)(﹣1)+(﹣3)﹣(﹣9);(2)(﹣4)×6+(﹣125)÷(﹣5);(3)(+)×(﹣36);(4)(﹣1)2018﹣6÷(﹣2)3×418.计算(1)2a﹣7a+3a;(2)(8mn﹣3m2)﹣2(3mn﹣2m2).19.先化简,再求值(1)2a﹣5b+4a+3b,其中a=,b=﹣2;(2)2(3x2﹣4xy)﹣4(2x2﹣3xy﹣1),其中x=﹣1,y=﹣2.20.画出数轴,把22,0,﹣2,(﹣1)3这四个数在数轴上表示出来;并按从小到大的顺序用“<”号将各数连接起来.21.如图所示(1)用代数式表示长方形ABCD中阴影部分的面积;(2)当a=10,b=4时,求其阴影部分的面积.(其中π取3.14)22.开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.23.已知在纸面上有一数轴(如图1),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣4表示的点与表示的点重合;(2)若﹣2表示的点与8表示的点重合,回答以下问题:①16表示的点与表示的点重合;②如图2,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是、.(3)如图3,若m和n表示的点C和点D经折叠后重合,(m>n>0),现数轴上P、Q两点之间的距离为a(P在Q的左侧),且P、Q两点经折叠后重合,求P、Q两点表示的数分别是多少?(用含m,n,a的代数式表示)参考答案与试题解析一.选择题(共8小题)1.与1的和是3的数是()A.﹣4 B.﹣2 C.2 D.4【分析】根据有理数的加法法则即可得.【解答】解:∵2+1=3,∴与1的和是3的数是2,故选:C.2.下列运算中,正确的是()A.4x+3y=7xy B.4x2+3x=7x3C.4x3﹣3x2=x D.﹣4xy+3yx=﹣xy【分析】根据同类项的定义、合并同类项法则对四个选项进行判断即可.【解答】解:A.4x与3y不是同类项,不能合并,此选项错误;B.4x2与3x不是同类项,不能合并,此选项错误;C.4x3与﹣3x2不是同类项,不能合并,此选项错误;D.﹣4xy+3yx=﹣xy,此选项正确;故选:D.3.马拉松(Marathon)是国际上非常普及的一项长跑比赛项目,全程距离26英里385码,折合为42195米,用科学记数法表示42195为()A.4.2195×102B.4.2195×103C.4.2195×104D.42.195×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:42195=4.2195×104,故选:C.4.下列各项中是同类项的是()A.3xy与2xy B.2ab与2abc C.x2y与x2z D.a2b与ab2【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【解答】解:A.3xy与2xy是同类项,符合题意;B.2ab与2abc所含字母不相同,不符合题意;C.x2y与x2z所含字母不相同,不符合题意;D.a2b与ab2相同字母的指数不相同,不符合题意;故选:A.5.如图,数轴的单位长度为1,如果点A表示的数是﹣3,那么点B表示的数是()A.﹣2 B.﹣1 C.0 D.1【分析】可借助数轴,直接数数得结论,也可通过加减法计算得结论.【解答】解:因为点B与点A的距离为4,当点A表示的数为﹣3时,点B表示的数为﹣3+4=1.故选:D.6.按图中计算程序计算,若开始输入的x的值为1,则最后输出的结果是()A.89 B.158 C.183 D.198【分析】把x=1代入计算程序中计算即可求出所求.【解答】解:把x=1代入计算程序得:1+1+1=3<50,把x=3代入计算程序得:9+3+1=13<50,把x=13代入计算程序得:169+13+1=183>50,则输出的数为183,故选:C.7.已知代数式m+2n+2的值是3,则代数式3m+6n+1的值是()A.4 B.5 C.6 D.7【分析】由题意确定出m+2n的值,原式变形后代入计算即可求出值.【解答】解:∵m+2n+2=3,即m+2n=1,∴原式=3(m+2n)+1=3+1=4,故选:A.8.已知最近的一届世界运动会、亚运会、奥运会分别于2013年、2014年、2016年举办,若这三项运动会都是每四年举办一次,则这三项运动会均不在下列哪一年举办()A.2070年B.2071年C.2072年D.2073年【分析】根据题意可以分别写出世界运动会、亚运会、奥运会举行的时间,从而可以判断选项中的哪一个年份不符合题意,从而可以解答本题.【解答】解:由题意可得,世界运动会、亚运会、奥运会分别举行的时间为2013+4n,2014+4n,2016+4n,当n=14时,2013+4n=2019,2014+4n=2070,2016+4n=2072,当n=15时,2013+4n=2073,故选:B.二、填空题(本大题有8小题,每小题3分,共24分)9.﹣3的绝对值是 3 .【分析】计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.【解答】解:﹣3的绝对值是3.10.已知(a﹣2)2+|b﹣1|=0,则a b= 2 .【分析】直接利用偶次方以及绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵(a﹣2)2+|b﹣1|=0,∴a﹣2=0,b﹣1=0,解得:a=2,b=1,故a b=2.故答案为:2.11.某商店出售的某种品牌的面粉袋上,标有质量为(50±0.2)千克的字样,从中任意拿出两袋,他们的质量最多相差0.4 千克.【分析】(50±0.2)的字样表明质量最大为50.2,最小为49.8,二者之差为0.4.依此即可求解.【解答】解:根据题意得:标有质量为(50±0.2)的字样,∴最大为50+0.2=50.2,最小为50﹣0.2=49.8,故他们的质量最多相差0.4千克.故答案为:0.4.12.若电影票上座位是“4排5号”记作(4,5),则(8,13)对应的座位是8排13号.【分析】由“4排5号”记作(4,5)可知,有序数对与排号对应,(8,13)的意义为第8排13号.【解答】解:根据题意知:前一个数表示排数,后一个数表示号数.所以(8,13)表示的座位是8排13号.故答案为:8排13号.13.若a﹣1与3互为相反数,则a=﹣2 .【分析】利用相反数的性质列出方程,求出方程的解即可得到a的值.【解答】解:根据题意得:a﹣1+3=0,解得:a=﹣2,故答案为:﹣214.比较大小:﹣8 <﹣5(填“>”或“<”)【分析】利用两个负数比较大小,绝对值大的反而小,进而得出答案.【解答】解:∵|﹣8|=8,|﹣5|=5,∴﹣8<﹣5.故答案为:<.15.a是某数的十位数字,b是它的个位数字,则这个数可表示为10a+b.【分析】根据两位数=十位数字×10+个位数字即可得出答案.【解答】解:十位数字为a,个位数字为b的意义是a个10与b个1的和为:10a+b.故答案为:10a+b.16.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为13 .【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.【解答】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑥个图形有3+2×5=13(个),故答案为:13.三、解答(共72分)17.计算(1)(﹣1)+(﹣3)﹣(﹣9);(2)(﹣4)×6+(﹣125)÷(﹣5);(3)(+)×(﹣36);(4)(﹣1)2018﹣6÷(﹣2)3×4【分析】(1)将减法转化为加法,再计算加法即可得;(2)先计算乘法和除法,再计算加减可得;(3)先利用乘法分配律展开,再依次计算乘法和加减可得;(4)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=﹣1﹣3+9=﹣4+9=5;(2)原式=﹣24+25=1;(3)原式=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣20+27﹣2=5;(4)原式=1﹣6÷(﹣8)×4=1+×4=1+3=4.18.计算(1)2a﹣7a+3a;(2)(8mn﹣3m2)﹣2(3mn﹣2m2).【分析】(1)直接找出同类项进而合并同类项得出答案;(2)直接去括号进而合并同类项得出答案.【解答】解:(1)原式=(2﹣7+3)a=﹣2a;(2)原式=8mn﹣3m2﹣6mn+4m2,=(﹣3+4)m2+(8﹣6)mn=m2+2mn.19.先化简,再求值(1)2a﹣5b+4a+3b,其中a=,b=﹣2;(2)2(3x2﹣4xy)﹣4(2x2﹣3xy﹣1),其中x=﹣1,y=﹣2.【分析】(1)先合并同类项化简原式,再将a,b的值代入计算可得;(2)将原式去括号,合并同类项化简,再将x,y的值代入计算可得.【解答】解:(1)原式=6a﹣2b,当a=,b=﹣2时,原式=6×﹣2×(﹣2)=3+4=7;(2)原式=6x2﹣8xy﹣8x2+12xy+4=﹣2x2+4xy+4,当x=﹣1,y=﹣2时,原式=﹣2×(﹣1)2+4×(﹣1)×(﹣2)+4=﹣2+8+4=10.20.画出数轴,把22,0,﹣2,(﹣1)3这四个数在数轴上表示出来;并按从小到大的顺序用“<”号将各数连接起来.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:22=4,0,﹣2,(﹣1)3=﹣1,如图所示:,故﹣2<(﹣1)3<0<22.21.如图所示(1)用代数式表示长方形ABCD中阴影部分的面积;(2)当a=10,b=4时,求其阴影部分的面积.(其中π取3.14)【分析】(1)用长方形的面积减去2个半径为b的圆的面积,据此可得;(2)将a,b的值代入计算可得.【解答】解:(1)阴影部分的面积为ab﹣2××πb2=ab﹣πb2;(2)当a=10,b=4时,ab﹣πb2=10×4﹣×3.14×16≈14.88.22.开学期间,为了打扫卫生,班主任派卫生委员小敏去轻工市场购买一些扫帚和抹布.选定一家店后,老板告诉小敏,扫帚每把25元,抹布每块5元,现为了搞促销,有两种优惠方案.方案一:买一把扫帚送一块抹布;方案二:扫帚和抹布都按定价的90%付款.小敏需要购买扫帚6把,抹布x块(x>6).(1)若小敏按方案一购买,需付款多少元(用含x的式子表示);(2)若小敏按方案二购买,需付款多少元(用含x的式子表示);(3)当x=10时,通过计算说明此时按哪种方案购买较为合算;(4)当x=10时,你能给小敏提供一种更为省钱的购买方案吗?试写出你的购买方法.【分析】(1)根据题意列出算式即可;(2)根据题意列出算式即可;(3)把x=10分别代入求出结果,即可得出答案;(4)先在方案一买6把扫帚,再在方案二买4块抹布即可.【解答】解:(1)∵方案一:买一把扫帚送一块抹布,∴小敏需要购买扫帚6把,抹布x块(x>6),若小敏按方案一购买,需付款25×6+5(x ﹣6)=(5x+120)元;(2)∵方案二:扫帚和抹布都按定价的90%付款,∴小敏需要购买扫帚6把,抹布x块(x>6),若小敏按方案二购买,需付款25×6×0.9+5x •0.9=(4.5x+135)元;(3)方案一需:5×10+120=170元,方案二需4.5×10+135=180元,故方案一划算;(4)其中6把扫帚6块抹布按方案一买,剩下4块抹布按方案二买,共需168元.23.已知在纸面上有一数轴(如图1),折叠纸面.(1)若1表示的点与﹣1表示的点重合,则﹣4表示的点与 4 表示的点重合;(2)若﹣2表示的点与8表示的点重合,回答以下问题:①16表示的点与﹣10 表示的点重合;②如图2,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,则A、B两点表示的数分别是﹣1006 、1012 .(3)如图3,若m和n表示的点C和点D经折叠后重合,(m>n>0),现数轴上P、Q两点之间的距离为a(P在Q的左侧),且P、Q两点经折叠后重合,求P、Q两点表示的数分别是多少?(用含m,n,a的代数式表示)【分析】(1)由表示1与﹣1的两点重合,利用对称性即可得到结果;(2)由﹣2表示的点与8表示的点重合,确定出3为对称点,得出两项的结果即可;(3)根据(2)的计算方法进行解答.【解答】解:(1)若1表示的点与﹣1表示的点重合,则原点为对称点,所以﹣4表示的点与4表示的点重合;(2)由题意得:(﹣2+8)÷2=3,即3为对称点,①根据题意得:2×3﹣16=﹣10;②∵3为对称点,A、B两点之间的距离为2018(A在B的左侧),且A、B两点经折叠后重合,∴A表示的数=﹣+3=﹣1006,B点表示的数=+3=1012;(3)点P表示的数为:;点Q表示的数为:.故答案为:(1)4;(2)①﹣10;②﹣1006,1012.人教版七年级数学上册期中考试试题及答案一、选择题(每题4分,共48分)1.如果+10%表示“增加10%”,那么“减少8%”可以记作()A.﹣18% B.﹣8% C.+2% D.+8%2.﹣2的相反数是()A.﹣2 B.﹣C.2 D.3.下列代数式中:,2x+y,,,,0,整式有()A.3个B.4个C.5个D.6个4.当x<3时,式子|x﹣3|化简为()A.﹣3 B.x C.x﹣3 D.3﹣x5.在﹣22,(﹣2)2,﹣(﹣2),﹣|﹣2|中,负数的个数是()A.1个B.2个C.3个D.4个6.我市加大农村沼气等清洁能源推广,年产沼气21700000立方米,这个数用科学记数法精确到百万位可表示为()A.217×105B.21.7×106C.2.17×107D.2.2×1077.下列单项式中,系数最大的是()A.﹣2ax3B.﹣xy2C.﹣abc3D.﹣xy28.现有以下四个结论:①任何数都不等于它的相反数;②互为相反数的两个数的同一偶数次方相等;③如果a>b,那么a的倒数小于b的倒数;④倒数等于其本身的有理数只有1.其中正确的有()A.1个B.2个C.3个D.4个9.如果2x3n y m+4与﹣3x9y2n是同类项,那么m、n的值分别为()A.m=﹣2,n=3 B.m=2,n=3 C.m=﹣3,n=2 D.m=3,n=2 10.对于多项式﹣x3﹣3x2+x﹣7,下列说法正确的是()A.最高次项是x3B.二次项系数是3C.多项式的次数是3 D.常数项是711.2012年6月15日,重庆市物价局发出相关通知,从今年7月1日起,我市将开始执行居民生活用电试行阶梯电价方案.方案的具体电价标准为:凡我市实行“一户一表”的城乡居民用户,月用电量200千瓦时(含)以内的为第一档,维持现行电价标准,即每千瓦时0.52元;月用电量201﹣400千瓦时(含)的为第二档,每千瓦时提高5分,即每千瓦时0.57元;月用电量在401千瓦时(含)以上的为第三档,每千瓦时提高0.30元,即每千瓦时0.82元.某居民今年11月用电量为t千瓦时(200<t≤400),则该居民所付电费为()A.0.52tB.0.57tC.0.52×20 0+0.57tD.0.52×200+0.57×(t﹣200)12.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150二、填空题(每题4分,共24分)13.(﹣3)2﹣1=.14.的系数为,次数为.15.关于x的多项式4x n+1﹣3x2﹣x+2是四次多项式,则n=.16.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k=.17.已知=﹣1,则的值为.18.若规定一种运算:a*b=(a+b)﹣(a﹣b),其中a,b为有理数,则a*b+(b﹣a)*b 等于.三、解答题(每题8分,共16分)19.(8分)在数轴上表示下列各数,并用“<”把这些数连接起来.﹣2.5,﹣3,0,2,|﹣3|20.(8分)把下面各数对应的序号填在相应的大括号里.①﹣5,②|﹣|,③0,④﹣3.14,⑤,⑥﹣12,⑦0.1010010001…,⑧+1.99,⑨﹣,⑩﹣(﹣3)2分数集合:(…)负有理数集合:(…)四、解答题(21题12分,22题8分,23-25每题10分,26题12分,共62分)21.(12分)计算(1)(﹣18)+(+5)﹣(﹣7)﹣(+11)(2)(﹣)×(﹣1)÷(﹣2)(3)25×+(﹣25)×+25×(﹣)(4)﹣12﹣[1+(﹣12)÷6]×(﹣)322.(8分)某冰箱销售商,今年四月份销售冰箱(a﹣1)台,五月份销售冰箱比四月份的2倍少1台,六月份销售冰箱比前两个月的总和还多5台.(1)求五月份和六月份分别销售冰箱多少台?(2)六月份比五月份多销售冰箱多少台?23.(10分)先化简再求值:5abc﹣2a2b﹣[3abc+2(ab2﹣a2b)],其中a=﹣,b=﹣1,c =3.24.(10分)已知|a﹣2|+(b+1)2=0,c与互为倒数,(d﹣1)的平方是25,求代数式a c﹣2c a的值.(要求写出过程)参考答案一、选择题1.如果+10%表示“增加10%”,那么“减少8%”可以记作()A.﹣18% B.﹣8% C.+2% D.+8%【分析】正数和负数可以表示一对相反意义的量,在本题中“增加”和“减小”就是一对相反意义的量,既然增加用正数表示,那么减少就用负数来表示,后面的百分比的值不变.解:“增加”和“减少”相对,若+10%表示“增加10%”,那么“减少8%”应记作﹣8%.故选:B.【点评】解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.﹣2的相反数是()A.﹣2 B.﹣C.2 D.【分析】根据只有符号不同的两个数互为相反数,可得答案.解:﹣2的相反数是2,故选:C.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.3.下列代数式中:,2x+y,,,,0,整式有()A.3个B.4个C.5个D.6个【分析】分母不含字母的式子即为整式.解:整式有:2x+y,a2b,,0,故选:B.【点评】本题考查分式与整式的概念,注意π不是字母.4.当x<3时,式子|x﹣3|化简为()A.﹣3 B.x C.x﹣3 D.3﹣x【分析】由x<3可得x﹣3<0,再根据绝对值的性质即可求解.解:∵x<3,∴x﹣3<0,∴|x﹣3|=3﹣x.故选:D.【点评】考查了绝对值,如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.5.在﹣22,(﹣2)2,﹣(﹣2),﹣|﹣2|中,负数的个数是()A.1个B.2个C.3个D.4个【分析】根据有理数的乘方、正数和负数、绝对值的知识对各选项依次计算即可.解:﹣22,=﹣4,(﹣2)2=4,﹣(﹣2)=2,﹣|﹣2|=﹣2,∴是负数的有:﹣4,﹣2.故选:B.【点评】本题考查了有理数的乘方、正数和负数、绝对值的知识,此题比较简单,计算时特别要注意符号的变化.6.我市加大农村沼气等清洁能源推广,年产沼气21700000立方米,这个数用科学记数法精确到百万位可表示为()A.217×105B.21.7×106C.2.17×107D.2.2×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,n的值是这个数的整数部分位数减1.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.解:21700000=2.17×107≈2.2×107.故选:D.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.7.下列单项式中,系数最大的是()A.﹣2ax3B.﹣xy2C.﹣abc3D.﹣xy2【分析】根据单项式系数的定义即可求解.解:∵﹣2ax3的系数是﹣2,﹣xy2的系数是﹣,﹣abc3的系数是﹣,﹣xy2的系数是﹣,﹣>﹣2>﹣>﹣,∴单项式中,系数最大的是﹣xy2.故选:B.【点评】考查了单项式,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.8.现有以下四个结论:①任何数都不等于它的相反数;②互为相反数的两个数的同一偶数次方相等;③如果a>b,那么a的倒数小于b的倒数;④倒数等于其本身的有理数只有1.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据有理数的乘方法则,相反数、倒数的定义对四个选项进行逐一解答即可.解:①任何数都不等于它的相反数,错误,例如0;②互为相反数的两个数的同一偶数次方相等,正确;③如果a>b,那么a的倒数小于b的倒数,错误,0>﹣1,而0没有倒数;④倒数等于其本身的有理数只有1,错误,还有﹣1;故选:A.【点评】此题主要考查了有理数的乘方以及相反数,正确把握相关定义是解题关键.9.如果2x3n y m+4与﹣3x9y2n是同类项,那么m、n的值分别为()A.m=﹣2,n=3 B.m=2,n=3 C.m=﹣3,n=2 D.m=3,n=2 【分析】要使两个单项式同类项必须使其所含的字母相同且字母的指数也相同,观察可看出其所含的字母相同,则只要使其相同字母的指数相同.可得3n=9,m+4=2n,解方程即可求得.解:∵2x3n y m+4与﹣3x9y2n是同类项,∴3n=9,m+4=2n,∴n=3,m=2,故选:B.【点评】要使两个单项式成为同类项,只要使其满足同类项定义中的两个“相同”即可.10.对于多项式﹣x3﹣3x2+x﹣7,下列说法正确的是()A.最高次项是x3B.二次项系数是3C.多项式的次数是3 D.常数项是7【分析】根据多项式的项和次数的定义,确定各个项和各个项的系数,要带有符号.解:A、多项式﹣x3﹣3x2+x﹣7的最高次项是﹣x3;故A错误.B、多项式﹣x3﹣3x2+x﹣7的二次项系数是﹣3;故B错误.C、多项式﹣x3﹣3x2+x﹣7的次数是3;故C正确.D、多项式﹣x3﹣3x2+x﹣7的常数项是﹣7;故D错误.故选:C.【点评】本题考查与多项式相关的概念,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.11.2012年6月15日,重庆市物价局发出相关通知,从今年7月1日起,我市将开始执行居民生活用电试行阶梯电价方案.方案的具体电价标准为:凡我市实行“一户一表”的城乡居民用户,月用电量200千瓦时(含)以内的为第一档,维持现行电价标准,即每千瓦时0.52元;月用电量201﹣400千瓦时(含)的为第二档,每千瓦时提高5分,即每千瓦时0.57元;月用电量在401千瓦时(含)以上的为第三档,每千瓦时提高0.30元,即每千瓦时0.82元.某居民今年11月用电量为t千瓦时(200<t≤400),则该居民所付电费为()A.0.52tB.0.57tC.0.52×20 0+0.57tD.0.52×200+0.57×(t﹣200)【分析】某居民家11月份用电t千瓦时,交电费y元,根据等量关系列出关于y的方程即可.解:设该居民所付电费为y元,则依题意有y=0.52×150+0.57(t﹣200),故选:D.【点评】本题主要考查了列代数式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出代数式即可.12.下列图象都是由相同大小的按一定规律组成的,其中第①个图形中一共有4颗,第②个图形中一共有11颗,第③个图形中一共有21颗,…,按此规律排列下去,第⑨个图形中的颗数为()A.116 B.144 C.145 D.150【分析】根据题意将每个图形都看作两部分,一部分是上面的构成规则的矩形的,另一部分是构成下面的近似金字塔的形状,然后根据递增关系得到答案.解:∵4=1×2+2,11=2×3+2+321=3×4+2+3+4第4个图形为:4×5+2+3+4+5,∴第⑨个图形中的颗数为:9×10+2+3+4+5+6+7+8+9+10=144.故选:B.【点评】此题主要考查了图形变化规律,正确得出每个图形中小星星的变化情况是解题关键.二、填空题(每题4分,共24分)13.(﹣3)2﹣1=8 .【分析】根据有理数的运算法则进行计算.解:(﹣3)2﹣1=9﹣1=8.故填8.【点评】本题考查的是有理数的运算能力,注意符号的处理.14.的系数为,次数为 3 .【分析】根据单项式系数、次数的定义来求解.解:的系数为,次数为3.故答案为:,3.【点评】此题考查的是单项式,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.15.关于x的多项式4x n+1﹣3x2﹣x+2是四次多项式,则n= 3 .【分析】由于多项式是关于x的四次多项式,所以n+1=4,解方程可求n的值.解:∵关于x的多项式4x n+1﹣3x2﹣x+2是四次多项式,∴n+1=4,解得n=3.故答案为:3.【点评】本题考查了多项式的知识,几个单项式的和叫做多项式,每个单项式叫做多项式的项,其中不含字母的项叫做常数项.多项式中次数最高的项的次数叫做多项式的次数.16.多项式x2﹣3kxy﹣3y2+6xy﹣8不含xy项,则k= 2 .【分析】先将原多项式合并同类项,再令xy项的系数为0,然后解关于k的方程即可求出k.解:原式=x2+(﹣3k+6)xy﹣3y2﹣8,因为不含xy项,故﹣3k+6=0,解得:k=2.故答案为:2.【点评】本题考查了合并同类项法则及对多项式“项”的概念的理解,题目设计巧妙,有利于培养学生灵活运用知识的能力.17.已知=﹣1,则的值为 1 .【分析】由=﹣1,可得m、n、p两负一正,再去绝对值计算即可求解.解:∵=﹣1,∴m、n、p两负一正,∴==1.故答案为:1.【点评】考查了绝对值的性质,能够根据已知条件正确地判断出m、n、p的值是解答此题的关键.18.若规定一种运算:a*b=(a+b)﹣(a﹣b),其中a,b为有理数,则a*b+(b﹣a)*b 等于4b.【分析】先根据新定义展开,再去括号合并同类项即可.解:a*b+(b﹣a)*b=(a+b)﹣(a﹣b)+(b﹣a+b)﹣(b﹣a﹣b)=a+b﹣a+b+2b﹣a+a=4b.故答案为4b.【点评】本题考查了整式的加减,主要考查学生的理解能力和计算能力,题目比较好,难度适中.三、解答题(每题8分,共16分)19.(8分)在数轴上表示下列各数,并用“<”把这些数连接起来.﹣2.5,﹣3,0,2,|﹣3|【分析】先在数轴上表示出各个数,再比较即可.解:﹣3<﹣2.5<0<2<|﹣3|.【点评】本题考查了有理数的大小比较法则和数轴、绝对值等知识点,能熟记有理数的大小比较法则的内容是解此题的关键,注意:在数轴上表示的数,右边的数总比左边的数大.20.(8分)把下面各数对应的序号填在相应的大括号里.①﹣5,②|﹣|,③0,④﹣3.14,⑤,⑥﹣12,⑦0.1010010001…,⑧+1.99,⑨﹣,⑩﹣(﹣3)2分数集合:(②,④,⑤,⑧…)负有理数集合:(①,④,⑥,⑩…)【分析】根据有理数的分类填空即可.解:分数集合:(②,④,⑤,⑧,…)负有理数集合:(①,④,⑥,⑩…),故答案为:②,④,⑤,⑧;①,④,⑥,⑩.【点评】本题考查了有理数的分类,解题的关键是正确掌握分类的标准以及注意0既不是正数也不是负数.四、解答题(21题12分,22题8分,23-25每题10分,26题12分,共62分)21.(12分)计算(1)(﹣18)+(+5)﹣(﹣7)﹣(+11)(2)(﹣)×(﹣1)÷(﹣2)(3)25×+(﹣25)×+25×(﹣)(4)﹣12﹣[1+(﹣12)÷6]×(﹣)3【分析】(1)先把减法转化加法,然后根据有理数的加法即可解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据乘法分配律可以解答本题;(4)先算小括号里的,再算中括号里的,最后根据有理数的加减法即可解答本题.解:(1)(﹣18)+(+5)﹣(﹣7)﹣(+11)=(﹣18)+5+7+(﹣11)=﹣17;(2)(﹣)×(﹣1)÷(﹣2)=﹣=﹣;(3)25×+(﹣25)×+25×(﹣)=25×﹣25×+25×(﹣)=25×()=25×=;(4)﹣12﹣[1+(﹣12)÷6]×(﹣)3=﹣1﹣()×(﹣)=﹣1﹣(﹣)×(﹣)=﹣1﹣=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.22.(8分)某冰箱销售商,今年四月份销售冰箱(a﹣1)台,五月份销售冰箱比四月份的2倍少1台,六月份销售冰箱比前两个月的总和还多5台.(1)求五月份和六月份分别销售冰箱多少台?(2)六月份比五月份多销售冰箱多少台?【分析】(1)分别表示出五月份和六月份销售的台数即可;(2)用六月份减去五月份的销量即可求解.解:(1)五月份的销量为:2(a﹣1)﹣1=2a﹣3,六月份的销量为:(a﹣1)+(2a﹣3)+5=3a+1;(2)3a+1﹣(2a﹣3)=3a+1﹣2a+3=a+4.故六月份比五月份多销售冰箱(a+4)台.【点评】本题考查了整式的加减,解答本题的关键是掌握去括号法则和合并同类项法则.23.(10分)先化简再求值:5abc﹣2a2b﹣[3abc+2(ab2﹣a2b)],其中a=﹣,b=﹣1,c =3.【分析】先将原式化简,然后将a、b、c的值代入原式即可求出答案.解:原式=5abc﹣2a2b﹣[3abc+2ab2﹣2a2b]=5abc﹣2a2b﹣3abc﹣2ab2+2a2b=2abc﹣2ab2,当a=﹣,b=﹣1,c=3时,原式=2×()×(﹣1)×3﹣2×()×9=3+9=12.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.24.(10分)已知|a﹣2|+(b+1)2=0,c与互为倒数,(d﹣1)的平方是25,求代数式a c﹣2c a的值.(要求写出过程)【分析】根据非负数的性质、倒数的定义和乘方分别得出a,b,c,d的值,再分别代入计算可得.解:∵|a﹣2|+(b+1)2=0,c与互为倒数,(d﹣1)的平方是25,∴a=2,b=﹣1,c=3,d=6或d=﹣4,当d=6时,a c﹣2c a=23+﹣2×32=8﹣6﹣18=﹣16;当d=﹣4时,a c﹣2c a=23+﹣2×32=8+4﹣18=﹣6;综上,代数式a c﹣2c a的值为﹣16或﹣6.【点评】本题主要考查代数式的求值,解题的关键是掌握非负数的性质、倒数的定义和乘方的运算法则.人教版数学七年级上册期中考试试题(答案)一、选择题(每小题3分,共36分)1.﹣3的绝对值是()A.3B.﹣3C.D.2.如果高出海平面20米,记作+20米,那么﹣30米表示()A.不足30米B.低于海平面30米C.高出海平面30米D.低于海平面20米3.2012年6月,我国首台载人潜水器“蛟龙号”在太平洋马里亚纳海沟,进行7000米级海试第四次下载试验中成功突破7000米深度,再创我国载人深潜新纪录.7000这个数据用科学记数法表示为()。

2016-2017学年广东省深圳市龙华区七年级上学期数学期末试卷带答案

2016-2017学年广东省深圳市龙华区七年级上学期数学期末试卷带答案

2016-2017学年广东省深圳市龙华区七年级(上)期末数学试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)﹣的相反数是()A.2 B.﹣2 C.﹣ D.2.(3分)2016年天猫双11落下帷幕,总成交额最终定格在120700000000元,是8年来成交额首次突破1000亿大关,数据120700000000元用科学记数法表示为()A.12.07×1010B.1.207×1011C.1.207×1012D.1.207×10123.(3分)某企业去年产值p万元,今年比去年增产10%,今年产值是()A.p(1+10%)万元B.(p+10%)万元C.万元D.万元4.(3分)如图,小亮为将一个衣架固定在墙上,他在衣架两端各用一个钉子进行固定,用数学知识解释他这样操作的原因,应该是()A.过一点有无数条直线B.两点之间线段的长度,叫做这两点之间的距离C.经过两点有且只有一条直线D.两点之间,线段最短5.(3分)若﹣x m y n+4与5x2y是同类项,则n m的值为()A.﹣9 B.6 C.9 D.166.(3分)由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是()A.主视图的面积最小B.左视图的面积最小C.俯视图的面积最小D.三个视图的面积相等7.(3分)据报道,2016年深圳双创活动周上会场参观人数累计超过50万人,某数学学习兴趣小组为了解参观者的职业情况,他们应采用的收集数据的方式是()A.对所有参观者发放问卷进行调查B.对所有参观者中的成年人发放问卷进行调查C.在主会场入口随机发放问卷进行调查D.在无人机展厅随机发放问卷进行调查8.(3分)如果过一个多边形的一个顶点的对角线有6条,则该多边形是()A.九边形B.八边形C.七边形D.六边形9.(3分)小雷为表示出自己七年级几次数学测试成绩的变化情况,他应该采用的统计图是()A.折线统计图B.条形统计图C.扇形统计图D.以上均可以10.(3分)下列说法中正确的是()A.若|a|=﹣a,则a一定是负数B.单项式x3y2z的系数为1,次数是6C.若AP=BP,则点P是线段AB的中点D.若∠AOC=∠AOB,则射线OC是∠AOB的平分线11.(3分)A、B两地相距900千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是()A.4小时B.4.5小时 C.5小时D.4小时或5小时12.(3分)把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、D、B 三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN 的度数是()A.30°B.45°C.55°D.60°二、填空题(每小题3分,共12分)13.(3分)如果收入10元记作+10元,那么支出80元记作元.14.(3分)将一个正方体的表面沿某些棱剪开,其展开图如图,则该正方体中与“们”字相对的字是.15.(3分)若x=2是方程ax+3bx﹣10=0的解,则3a+9b的值为.16.(3分)将一些白色的围棋棋子按如图的规律摆成图案,其中第1个图案有4个棋子,第2个图案有9个棋子,第3个图案有16个棋子,第4个图案有25个棋子,以后每个图案中间一列的棋子都比前一个图案中间一列的棋子多1个,则第n个图案中棋子的个数为.三、解答题(本题共7小题,共52分)17.(8分)计算:(1)﹣13﹣(﹣22)+(﹣28)(2)﹣22﹣|﹣12|×(﹣)18.(8分)(1)化简:5(x2+2xy)﹣2(x2﹣xy)(2)先化简,再求代数式的值:3(a2b+ab2)﹣(4a2b﹣2)﹣(3ab2+2),其中a=﹣3,b=2.19.(8分)(1)解方程:7x﹣5=3x+5(2)解方程:=1﹣.20.(6分)自实施《深圳市生活垃圾分类和减量管理办法》以来,深圳生活垃圾分类和减量工作取得了一定的成效,环保部门为了提高宣传实效,随机抽样调查了100户居民8月的生活垃圾量,并绘制成不完整的频数分布直方图,(如图1),并将他们的垃圾分类情况绘制成不完整的扇形统计图,请你根据图中的信息解答下列问题:(1)请将条形统计图1补充完整;(2)图2的扇形统计图中,表示“有害垃圾C”所在扇形的圆心角度数为度;(3)根据统计,8月所抽查的居民产生的生活垃圾总量约为2750kg,则其中为可回收的垃圾约为kg.21.(6分)如图,已知线段AB、a、b,请用尺规按下列要求作图:(1)延长线段AB到C,使BC=a;(2)在射线BA上截取线段AD,使AD=b;若AB=4cm,a=3cm,b=5cm,且E 为CD的中点,则AE=cm.22.(9分)列方程解应用题(1)七(1)班组织去看“元旦”大型演出活动,已知一等座票每张24元,二等座票每张18元,如果全班50名学生购票共用去1026元,请问七(1)班购买一等座票和二等座票各多少张?(2)某体育用品商场销售A、B两种品牌的足球,已知每个A种品牌的售价比B 种品牌足球的售价高20元,售出5个A种品牌足球与售出6个B种品牌足球的总售价相同.①求A、B两种品牌足球的售价;②“元旦”期间,该商场决定对这两种品牌足球均打8折销售,李老师在该商场购买了20个这两种品牌的足球,发现所需的总费用比打折前少420元,请问李老师在该商场购买A、B两种品牌的足球名多少?23.(7分)数轴上有A、B、C三点,其中点C为线段AB的中点,O为原点.(1)若点A所表示的数为﹣3,点B所表示的数为5,则点C所表示的数为;(2)若点A所表示的数为﹣5,点B所表示的数为﹣2,则点C所表示的数为;(3)若点A所表示的数为﹣5,点B所表示的数为b,则点C所表示的数为;(用含b的代数式表示)(4)若点A所表示的数为a,点B所表示的数为b,则点C所表示的数为;(用含a、b的代数式表示)(5)若点A所表示的数为a,点B所表示的数为8,且OC=2,则a的值为.2016-2017学年广东省深圳市龙华区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.(3分)﹣的相反数是()A.2 B.﹣2 C.﹣ D.【解答】解:﹣的相反数是,故选:D.2.(3分)2016年天猫双11落下帷幕,总成交额最终定格在120700000000元,是8年来成交额首次突破1000亿大关,数据120700000000元用科学记数法表示为()A.12.07×1010B.1.207×1011C.1.207×1012D.1.207×1012【解答】解:120700000000=1.207×1011.故选:B.3.(3分)某企业去年产值p万元,今年比去年增产10%,今年产值是()A.p(1+10%)万元B.(p+10%)万元C.万元D.万元【解答】解:根据题意可得今年产值=(1+10%)p万元,故选:A.4.(3分)如图,小亮为将一个衣架固定在墙上,他在衣架两端各用一个钉子进行固定,用数学知识解释他这样操作的原因,应该是()A.过一点有无数条直线B.两点之间线段的长度,叫做这两点之间的距离C.经过两点有且只有一条直线D.两点之间,线段最短【解答】解:因为“两点确定一条直线”,所以他在衣架两端各用一个钉子进行固定.故选:C.5.(3分)若﹣x m y n+4与5x2y是同类项,则n m的值为()A.﹣9 B.6 C.9 D.16【解答】解:由题意可知:m=2,n+4=1∴m=2,n=﹣3,∴n m=(﹣3)2=9故选:C.6.(3分)由5个大小相同的小正方体拼成的几何体如图所示,则下列说法正确的是()A.主视图的面积最小B.左视图的面积最小C.俯视图的面积最小D.三个视图的面积相等【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,主视图的面积是4;从左边看第一层是两个小正方形,第二层左边一个小正方形,左视图的面积为3;从上边看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,俯视图的面积是4,左视图面积最小,故B正确;故选:B.7.(3分)据报道,2016年深圳双创活动周上会场参观人数累计超过50万人,某数学学习兴趣小组为了解参观者的职业情况,他们应采用的收集数据的方式是()A.对所有参观者发放问卷进行调查B.对所有参观者中的成年人发放问卷进行调查C.在主会场入口随机发放问卷进行调查D.在无人机展厅随机发放问卷进行调查【解答】解:A、对所有参观者发放问卷进行调查费人力、物力和时间较多,故A错误;B、对所有参观者中的成年人发放问卷进行调查调查不具代表性、广泛性,故B 错误;C、在主会场入口随机发放问卷进行调查具代表性、广泛性,故C正确;D、在无人机展厅随机发放问卷进行调查不具代表性、广泛性,故D错误;故选:C.8.(3分)如果过一个多边形的一个顶点的对角线有6条,则该多边形是()A.九边形B.八边形C.七边形D.六边形【解答】解:∵过一个多边形的一个顶点的对角线有6条,∴多边形的边数为6+3=9,∴这个多边形是九边形.故选:A.9.(3分)小雷为表示出自己七年级几次数学测试成绩的变化情况,他应该采用的统计图是()A.折线统计图B.条形统计图C.扇形统计图D.以上均可以【解答】解:表示出自己七年级几次数学测试成绩的变化情况,他应该采用的统计图是折线统计图,故选:A.10.(3分)下列说法中正确的是()A.若|a|=﹣a,则a一定是负数B.单项式x3y2z的系数为1,次数是6C.若AP=BP,则点P是线段AB的中点D.若∠AOC=∠AOB,则射线OC是∠AOB的平分线【解答】解:A、若|a|=﹣a,则a一定是负数或零,故本选项错误;B、单项式x3y2z的系数为1,次数是:3+2+1=6,故本选项正确;C、若AP=BP,则点P是线段AB的中点或垂直平分线上的点,故本选项错误;D、如图所示,OC不是∠AOB的平分线,但是也符合∠AOC+∠BOC=∠AOB,故本选项错误;故选:B.11.(3分)A、B两地相距900千米,甲乙两车分别从A、B两地同时出发,相向而行,已知甲车的速度为110千米/时,乙车的速度为90千米/时,则当两车相距100千米时,甲车行驶的时间是()A.4小时B.4.5小时 C.5小时D.4小时或5小时【解答】解:设当两车相距100千米时,甲车行驶的时间为x小时,根据题意得:900﹣(110+90)x=100或(110+90)x﹣900=100,解得:x=4或x=5.故选:D.12.(3分)把一副三角尺ABC与BDE按如图所示那样拼在一起,其中A、D、B 三点在同一直线上,BM为∠ABC的平分线,BN为∠CBE的平分线,则∠MBN 的度数是()A.30°B.45°C.55°D.60°【解答】解:∵BM为∠ABC的平分线,∴∠CBM=∠ABC=×60°=30°,∵BN为∠CBE的平分线,∴∠CBN=∠EBC=×(60°+90°)=75°,∴∠MBN=∠CBN﹣∠CBM=75°﹣30°=45°.故选:B.二、填空题(每小题3分,共12分)13.(3分)如果收入10元记作+10元,那么支出80元记作﹣80元.【解答】解:如果收入10元记作+10元,那么支出80元记作﹣80元.故答案为:﹣80.14.(3分)将一个正方体的表面沿某些棱剪开,其展开图如图,则该正方体中与“们”字相对的字是梦.【解答】解:因为正方体的表面展开图中,相对的面之间一定相隔一个正方形,所以“我”与“中”是相对面,“们”与“梦”是相对面,“的”与“国”是相对面.故答案为:梦.15.(3分)若x=2是方程ax+3bx﹣10=0的解,则3a+9b的值为15.【解答】解:把x=2代入方程ax+3bx﹣10=0得:2a+6b=10,即a+3b=5,所以3a+9b=3×5=15,故答案为:15.16.(3分)将一些白色的围棋棋子按如图的规律摆成图案,其中第1个图案有4个棋子,第2个图案有9个棋子,第3个图案有16个棋子,第4个图案有25个棋子,以后每个图案中间一列的棋子都比前一个图案中间一列的棋子多1个,则第n个图案中棋子的个数为(n+1)2.【解答】解:∵第(1)个图案需要棋子数为:4=22个;第(2)个图案需要棋子数为:32=9个;第(3)个图案需要棋子数为:42=16个;第(4)个图案需要棋子数为:52=25个;…∴第(n)个图案需要棋子数为:(n+1)2个;故答案为:(n+1)2.三、解答题(本题共7小题,共52分)17.(8分)计算:(1)﹣13﹣(﹣22)+(﹣28)(2)﹣22﹣|﹣12|×(﹣)【解答】解:(1)﹣13﹣(﹣22)+(﹣28)=﹣13+22﹣28=9﹣28=﹣19(2)﹣22﹣|﹣12|×(﹣)=﹣4﹣12×(﹣)=﹣4﹣12×+12×=﹣4﹣8+9=﹣12+918.(8分)(1)化简:5(x2+2xy)﹣2(x2﹣xy)(2)先化简,再求代数式的值:3(a2b+ab2)﹣(4a2b﹣2)﹣(3ab2+2),其中a=﹣3,b=2.【解答】解:(1)原式=5x2+10xy﹣5x2+2xy=12xy;(2)原式=3a2b+3ab2﹣2a2b+1﹣3ab2﹣2=a2b﹣1,当a=﹣3,b=2时,原式=(﹣3)2×2﹣1=17.19.(8分)(1)解方程:7x﹣5=3x+5(2)解方程:=1﹣.【解答】解:(1)移项得7x﹣3x=5+5,合并同类项得4x=10,系数化为1得x=;(2)去分母得3(x+1 )=6﹣2(2x﹣2 ),去括号得3x+3=6﹣4x+4,移项得3x+4x=6+4﹣3,合并同类项得7x=7,系数化为1得x=1.20.(6分)自实施《深圳市生活垃圾分类和减量管理办法》以来,深圳生活垃圾分类和减量工作取得了一定的成效,环保部门为了提高宣传实效,随机抽样调查了100户居民8月的生活垃圾量,并绘制成不完整的频数分布直方图,(如图1),并将他们的垃圾分类情况绘制成不完整的扇形统计图,请你根据图中的信息解答下列问题:(1)请将条形统计图1补充完整;(2)图2的扇形统计图中,表示“有害垃圾C”所在扇形的圆心角度数为10.8度;(3)根据统计,8月所抽查的居民产生的生活垃圾总量约为2750kg,则其中为可回收的垃圾约为1320kg.【解答】解:(1)由条形图可知40~50的频数为100﹣(5+15+40+10)=30,如图所示,(2)“有害垃圾C”所占的百分比为1﹣(48%+32%+17%)=3%,∴表示“有害垃圾C”所在扇形的圆心角度数为360°×3%=10.8°,故答案为:10.8;(3)∵2750×48%=1320(kg),∴可回收的垃圾约为1320kg,故答案为:1320.21.(6分)如图,已知线段AB、a、b,请用尺规按下列要求作图:(1)延长线段AB到C,使BC=a;(2)在射线BA上截取线段AD,使AD=b;若AB=4cm,a=3cm,b=5cm,且E 为CD的中点,则AE=1cm.【解答】解:(1)如图所示:延长线段AB到C,使BC=a;(2)如图所示:在射线BA上截取线段AD,使AD=b;∵AB=4cm,a=3cm,b=5cm,∴DC=4+3+5=12(cm),∵E为CD的中点,∴DE=6cm,∴AE=DE﹣AD=6﹣5=1(cm).故答案为:1.22.(9分)列方程解应用题(1)七(1)班组织去看“元旦”大型演出活动,已知一等座票每张24元,二等座票每张18元,如果全班50名学生购票共用去1026元,请问七(1)班购买一等座票和二等座票各多少张?(2)某体育用品商场销售A、B两种品牌的足球,已知每个A种品牌的售价比B 种品牌足球的售价高20元,售出5个A种品牌足球与售出6个B种品牌足球的总售价相同.①求A、B两种品牌足球的售价;②“元旦”期间,该商场决定对这两种品牌足球均打8折销售,李老师在该商场购买了20个这两种品牌的足球,发现所需的总费用比打折前少420元,请问李老师在该商场购买A、B两种品牌的足球名多少?【解答】解:(1)设购买一等座票x张,则购买二等座票(50﹣x)张,根据题意得:24x+18(50﹣x)=1026,解得:x=21,∴50﹣x=29.答:购买一等座票21张,购买二等座票29张.(2)①设A种品牌足球的售价为y元/个,则B种品牌足球的售价为(y﹣20)元/个,根据题意得:5y=6(y﹣20),解得:y=120,∴y﹣20=100.答:A种品牌足球的售价为120元/个,B种品牌足球的售价为100元/个.②设购买A种品牌足球z个,则购买B种品牌足球(20﹣z)个,根据题意得:(120﹣120×0.8)z+(100﹣100×0.8)(20﹣z)=420,解得:z=5,∴20﹣z=15.答:购买A种品牌足球5个,购买B种品牌足球15个.23.(7分)数轴上有A、B、C三点,其中点C为线段AB的中点,O为原点.(1)若点A所表示的数为﹣3,点B所表示的数为5,则点C所表示的数为1;(2)若点A所表示的数为﹣5,点B所表示的数为﹣2,则点C所表示的数为﹣3.5;(3)若点A所表示的数为﹣5,点B所表示的数为b,则点C所表示的数为;(用含b的代数式表示)(4)若点A所表示的数为a,点B所表示的数为b,则点C所表示的数为;(用含a、b的代数式表示)(5)若点A所表示的数为a,点B所表示的数为8,且OC=2,则a的值为﹣12或﹣4.【解答】解:(1)若点A所表示的数为﹣3,点B所表示的数为5,则点C所表示的数为=1;(2)若点A所表示的数为﹣5,点B所表示的数为﹣2,则点C所表示的数为=﹣3.5;(3)若点A所表示的数为﹣5,点B所表示的数为b,则点C所表示的数为(用含b的代数式表示)(4)若点A所表示的数为a,点B所表示的数为b,则点C所表示的数为;(用含a、b的代数式表示)(5)若点A所表示的数为a,点B所表示的数为8,且OC=2,则C为﹣2,a的值为﹣2×2﹣8=﹣12;C为2,a的值为2×2﹣8=﹣4.故答案为:(1)1;(2)﹣3.5;(3);(4);(5)﹣12或﹣4.附赠:数学考试技巧一、心理准备细心+认真=成功!1、知己知彼,百战百胜。

七年级数学上学期期中检测试题 新人教版7

七年级数学上学期期中检测试题 新人教版7

七年级数学期中检测题时间:100分钟 满分:100分 得分:一、选择题(每小题2分,共28分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写 在下表相应题号的方格内.1.5-的相反数是( ) A .-5B. 5C. 51 D. 51- 2.在数轴上表示-2的点与表示3的点之间的距离是( )A .5B .-5C .1D . -1 3.下列式子中,正确的是 ( )A .-(-8)>|-11|B .51-<31- C .|-8|<0 D .5-<)3(-- 4. 2008北京奥运会主会场“鸟巢”的座席数是91000个,用科学记数法表示为( )A .51091.0⨯B .4101.9⨯C .41091⨯D .3101.9⨯5.下列代数式书写规范的是( )A .4aB .ab 411- C.y x ÷2D .225xy 6.下列计算正确的是 ( )A . 4812-=--B .945-=+-C .1091-=--D .932=-7.若 |x |=5 ,|y |=2 且x <0,y >0 则=+y x ( )A .7B .﹣7C .3D .﹣38. 用四舍五入法对2.098176分别取近似值,其中正确的是( ) A. 2.09(精确到0.01)B.2.098(精确到千分位)C. 2.0(精确到十分位)D.2.0981(精确到0.0001)9. 下列各对数中,数值相等的一对是( ) A .-(-2)3和-23B .(-3)2和-32C .(32)2和322 D .|-32|和-(-32)10.某品牌的面粉袋上标有质量为(25±0.25)kg 的字样,下列4袋面粉中质量合格的是( ) A. 24.70kg B. 24.80kg C .25.30kg D.25.51kg11. “比a 的大1的数”用代数式表示为( )A. B. C. D.12.如图1,数轴上A ,B 两点分别对应有理数a ,b ,则下列结论正确的是( ) A .a+b >0 B .ab <0 C.a -b <0 D .b -a >013.如图2,一个矩形的周长为30,若一边长用字母x 表示,则此矩形的面积为 ( ) A.)15(x x - B.)30(x x - C.)230(x x - D.)15(x x +14.a 表示一个一位数,b 表示一个两位数,把a 放在b 的左边组成一个三位数,则这个三位数可以表示为( )A.abB.b a +10C.b a +100D.b a + 二、填空题(每小题3分,共12分) 15.( )×(32-) = 1 . 16.如图3所示,数轴的一部分被墨水污染,被污染的部分内含有的整数为_________________.17.如果b a ,互为相反数,d c ,互为倒数,则________32=++cd ba 18. 某商店举办促销活动,促销的方法是将原价 x 元的衣服以原价打8折后再减去10元出售,则出售的价格为________________元图165165-a 165+a a 651-图3165--三、解答题(共60分)19.(8分)4-错误!未找到引用源。

【6套打包】深圳市七年级上册数学期中考试测试题(解析版)

【6套打包】深圳市七年级上册数学期中考试测试题(解析版)

人教版七年级第一学期期中模拟数学试卷(含答案)一、选择题(每小题3分,共计36分)1.﹣6的倒数是()A.6 B.﹣6 C.D.﹣2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨3.计算(﹣0.5)2013×(﹣2)2014的结果是()A.﹣0.5 B.0.5 C.﹣2 D.24.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.5.下列计算中正确的是()A.5a3﹣6a3=﹣a B.3a2+4a2=7a4C.7a+3a2=10a3D.a2+4a2=5a26.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c是单项式C.是多项式D.中,系数是7.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个8.长方形的一边长等于3x+2y,另一边长比它长x﹣y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y9.在(﹣1)3,(﹣1)2,﹣22,(﹣3)2,这四个数中,最大的数与最小的数的和等于()A.6 B.﹣5 C.8 D.510.若|x|=7,|y|=5,且x+y>0,那么x+y的值是()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣12 11.已知整式x2﹣2x的值为3,则2x2﹣4x+6的值为()A.7 B.9 C.12 D.1812.对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0 B.1 C.3 D.5二、填空题(每小题3分,共计12分)13.单项式﹣y的系数是.14.a、b互为相反数,c、d互为倒数,则=.15.设[x]表示不大于x的最大整数,例如[1.8]表示不超过1.8的最大整数就是1,[﹣3.8]表示不超过﹣3.8的最大整数﹣4,计算[2.7]+[﹣4.5]的值为.16.如图,是一个数值转换机,根据所给的程序计算,若输入x的值为1,则输出y的值为.三.解答题(共计52分)17.(12分)计算:(1)25.7+(﹣7.3)+(﹣13.7)+7.3(2)(3)(4)﹣14﹣(1﹣0.5)×18.(6分)先化简,再求值:(3a+2a﹣4a3)﹣(﹣a+3a3﹣2a2),其中a=﹣219.(6分)一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?20.(6分)有理数a、b、c在数轴上的点如图所示:化简:|c|+|a﹣c|﹣2|c+b|+|a+b|.21.(6分)某商场销售一种西装和领带,西装每套定价500元,领带每条定价100元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.现某客户要到商场购买西服20套,领带x条(x>20).方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.(1)若客户按方案一购买,需付款元;若客户按方案二购买,需付款元;(2)若x=30,请通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算此方案需要付款多少元?22.(8分)我们知道,|a|可以理解为|a﹣0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a﹣b|,反过来,式子|a﹣b|的几何意义是:数轴上表示数a 的点和表示数b的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是.(2)数轴上点A用数a表示,若|a|=5,那么a的值为.(3)数轴上点A用数a表示,①若|a﹣3|=5,那么a的值是.②当|a+2|+|a﹣3|=5时,数a的取值范围是,这样的整数a有个③|a﹣3|+|a+2017|有最小值,最小值是.23.(8分)23、如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出的值吗?参考答案一、选择题1.﹣6的倒数是()A.6 B.﹣6 C.D.﹣【分析】根据倒数的定义求解.解:﹣6的倒数是﹣.故选:D.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤a<10,n 表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.11 000 000=1.1×107.解:11 000 000=1.1×107.故选:B.【点评】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分的绝对值是大于或等于1,而小于10,小数点向左移动7位,应该为1.1×107.3.计算(﹣0.5)2013×(﹣2)2014的结果是()A.﹣0.5 B.0.5 C.﹣2 D.2【分析】把(﹣2)2014写成(﹣2)×(﹣2)2013,然后根据有理数的乘方的定义,先乘积再乘方进行计算即可得解.解:(﹣0.5)2013×(﹣2)2014,=(﹣0.5)2013×(﹣2)×(﹣2)2013,=(﹣2)×[(﹣0.5)×(﹣2)]2013,=﹣2×1,=﹣2.故选:C.【点评】本题考查了有理数的乘方,此类题目,转化为同指数幂相乘是解题的关键,也是难点.4.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.解:选项A、D经过折叠后,标有字母“M”的面不是下底面,而选项C折叠后,不是沿沿图中粗线将其剪开的,故只有B正确.故选:B.【点评】正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图.5.下列计算中正确的是()A.5a3﹣6a3=﹣a B.3a2+4a2=7a4C.7a+3a2=10a3D.a2+4a2=5a2【分析】根据合并同类项的法则,结合选项进行判断即可.解:A、5a3﹣6a3=﹣a3,故本选项错误;B、3a2+4a2=7a2,故本选项错误;C、7a和3a2不是同类项,不能合并,故本选项错误;D、a2+4a2=5a2,故本选项正确;故选:D.【点评】此题考查了合并同类项的知识,属于基础题,关键是掌握合并同类项的法则.6.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c是单项式C.是多项式D.中,系数是【分析】直接利用单项式的系数以及多项式的次数与项数确定方法分别分析得出答案.解:A、1﹣a﹣ab是二次三项式,正确,不合题意;B、﹣a2b2c是单项式,正确,不合题意;C、是多项式,正确,不合题意;D、πr2中,系数是:π,故此选项错误,符合题意.故选:D.【点评】此题主要考查了单项式和多项式,正确把握相关定义是解题关键.7.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】根据正数和负数的意义,可判断①;根据绝对值的意义,可判断②;根据倒数的意义,可判断③;根据绝对值的性质,可判断④;根据平方的意义,可判断⑤.解:①﹣a可能是负数、零、正数,故①说法错误;②|﹣a|一定是非负数,故②说法错误;③倒数等于它本身的数是±1,故③说法正确;④绝对值等于它本身的数是非负数,故④说法错误;⑤平方等于它本身的数是0或1,故⑤说法错误;故选:A.【点评】本题考查了有理数的乘方,注意0的平方等于0,﹣a不一定是负数,绝对值都是非负数.8.长方形的一边长等于3x+2y,另一边长比它长x﹣y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y【分析】根据题意表示另一边的长,进一步表示周长,化简.解:依题意得:周长=2(3x+2y+3x+2y+x﹣y)=14x+6y.故选D.【点评】此题考查了整式的加减,列式表示出长方形的周长是关键.9.在(﹣1)3,(﹣1)2,﹣22,(﹣3)2,这四个数中,最大的数与最小的数的和等于()A.6 B.﹣5 C.8 D.5【分析】先根据有理数的乘方运算法则将各数化简,找到最大的数与最小的数,然后根据有理数的加法法则求得计算结果.解:∵(﹣1)3=﹣1,(﹣1)2=1,﹣22=﹣4,(﹣3)2=9,且﹣4<﹣1<1<9,∴最大的数与最小的数的和等于﹣4+9=5.故选:D.【点评】解决此类题目的关键是熟记有理数的运算法则.10.若|x|=7,|y|=5,且x+y>0,那么x+y的值是()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣12【分析】根据题意,利用绝对值的代数意义,以及有理数的加法法则判断即可.解:∵|x|=7,|y|=5,且x+y>0,∴x=7,y=5;x=7,y=﹣5,则x+y=12或2,故选:A.【点评】此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.11.已知整式x2﹣2x的值为3,则2x2﹣4x+6的值为()A.7 B.9 C.12 D.18【分析】先把代数式进行适当的变形,然后直接把已知整式的值代入代数式即可求出代数式的值.解:2x2﹣4x+6=2(x2﹣2x)+6,将x2﹣2x=3代入上面的代数式得,2x2﹣4x+6,=2×3+6,=12,故选:C.【点评】本题主要考查了代数式的求值方法,通车分为三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.12.对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0 B.1 C.3 D.5【分析】根据n!=1×2×3×…×n得到1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,且5!、…、10!的数中都含有2与5的积,则5!、…、10!的末尾数都是0,于是得到1!+2!+3!+…+10!的末尾数为3.解:∵1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,而5!、…、10!的数中都含有2与5的积,∴5!、…、10!的末尾数都是0,∴1!+2!+3!+…+10!的末尾数为3.故选:C.【点评】本题考查了规律型:数字的变化类:通过特殊数字的变化规律探讨一般情况下的数字变化规律.二、填空题(每小题3分,共计12分)13.单项式﹣y的系数是﹣.【分析】直接利用单项式的系数确定方法分析得出答案.解:单项式﹣y的系数是:﹣.故答案为:﹣.【点评】此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.14.a、b互为相反数,c、d互为倒数,则=.【分析】由a、b互为相反数,c、d互为倒数可知a+b=0,cd=1,然后代入求值即可.解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1.∴原式=﹣3×0﹣﹣=﹣.故答案为:﹣.【点评】本题主要考查的是有理数的运算,根据题意得到a+b=0,cd=1是解题的关键.15.设[x]表示不大于x的最大整数,例如[1.8]表示不超过1.8的最大整数就是1,[﹣3.8]表示不超过﹣3.8的最大整数﹣4,计算[2.7]+[﹣4.5]的值为﹣3 .【分析】根据[x]表示不大于x的最大整数,进而得出答案.解:由题意可得:[2.7]+[﹣4.5]=2﹣5=﹣3.故答案为:﹣3.【点评】此题主要考查了新定义,正确理解题意是解题关键.16.如图,是一个数值转换机,根据所给的程序计算,若输入x的值为1,则输出y的值为4 .【分析】把x=1代入数值转换机中计算即可得到结果.解:把x=1代入得:2×12﹣4=2﹣4=﹣2,把x=﹣2代入得:2×(﹣2)2﹣4=8﹣4=4,则输出y的值为4.故答案为:4【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.三.解答题(共计52分)17.(12分)计算:(1)25.7+(﹣7.3)+(﹣13.7)+7.3(2)(3)(4)﹣14﹣(1﹣0.5)×【分析】(1)根据加法结合律可以解答本题;(2)先把除法转化为乘法,然后根据乘法分配律即可解答本题;(3)先算乘法,再算加减即可解答本题;(4)先算小括号里的,再算中括号里的,最后根据有理数的乘法和减法即可解答本题.解:(1)25.7+(﹣7.3)+(﹣13.7)+7.3=(25.7﹣13.7)+[(﹣7.3)+7.3]=12+0=12;(2)=(﹣)×(﹣36)=18+20+(﹣21)=17;(3)=(﹣1)+﹣1=﹣;(4)﹣14﹣(1﹣0.5)×=﹣1﹣=﹣1﹣×(﹣3)=﹣1+=﹣.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的运算顺序.18.(6分)先化简,再求值:(3a+2a﹣4a3)﹣(﹣a+3a3﹣2a2),其中a=﹣2【分析】根据整式的运算法则即可求出答案.解:原式=3a+2a﹣4a3+a﹣3a3+2a2=6a﹣7a3+2a2当a=﹣2时,原式=6×(﹣2)﹣7×(﹣8)+2×4=﹣12+56+8=52.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.19.(6分)一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?【分析】(1)根据三视图可分别得出俯视图上小立方体的个数;(2)根据(1)可得小正方体的个数为10,然后利用1个小正方体的体积乘以10即可;(3)根据三视图可得该物体的表面有多少个小正方形,然后利用1个小正方形的面积乘以个数即可.解:(1)如图所示:(2)3×3×3×10=270(cm3),答:该物体的体积是270cm3;(3)3×3×38=342(cm2),答:该物体的表面积是342cm2.【点评】本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.20.(6分)有理数a、b、c在数轴上的点如图所示:化简:|c|+|a﹣c|﹣2|c+b|+|a+b|.【分析】根据数轴判断出a、b、c的符号,再根据绝对值的性质去掉绝对值符号,合并同类项即可.解:如图可知:a>0,c<0,b<0,且|b|>|c|>|a|,则|c|=﹣c,|a﹣c|=a﹣c,|c+b|=﹣c﹣b,|a+b|=﹣a﹣b,则原式=﹣c+(a﹣c)﹣2(﹣c﹣b)+(﹣a﹣b)=﹣c+a﹣c+2c+2b﹣a﹣b=b.【点评】本题考查了整式的加减、数轴、绝对值,在数轴上判断出字母的符号是解题的关键.21.(6分)某商场销售一种西装和领带,西装每套定价500元,领带每条定价100元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.现某客户要到商场购买西服20套,领带x条(x>20).方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.(1)若客户按方案一购买,需付款(100x+8000)元;若客户按方案二购买,需付款(90x+9000)元;(2)若x=30,请通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算此方案需要付款多少元?【分析】(1)根据题目提供的两种不同的付款方式列出代数式即可;(2)将x=30代入求得的代数式中即可得到费用,然后比较即可得到选择哪种方案更合算;(3)根据题意可以得到先按方案一购买20套西装获赠送20条领带,再按方案二购买10条领带更合算.解:(1)客户要到该商场购买西装20套,领带x条(x>20).方案一费用:(100x+8000)元;方案二费用:(90x+9000)元;(2)当x=30时,方案一费用:100x+8000=100×30+8000=11000(元);方案二费用:90x+9000=90×30+9000=11700(元);∵11000<11700,∴按方案一购买较合算;(3)先按方案一购买20套西装获赠20条领带,再按方案二购买10条领带.20×500+100×0.9×10=10900(元).故此方案需要付款10900元.【点评】本题考查了列代数式和求代数式的值的相关的题目,解题的关键是认真分析题目并正确的列出代数式.22.(8分)我们知道,|a|可以理解为|a﹣0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a﹣b|,反过来,式子|a﹣b|的几何意义是:数轴上表示数a 的点和表示数b的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是 5 ,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是 2 .(2)数轴上点A用数a表示,若|a|=5,那么a的值为5或﹣5 .(3)数轴上点A用数a表示,①若|a﹣3|=5,那么a的值是﹣2或8 .②当|a+2|+|a﹣3|=5时,数a的取值范围是﹣2≤a≤3 ,这样的整数a有 6 个③|a﹣3|+|a+2017|有最小值,最小值是2020 .【分析】(1)根据两点间的距离公式求解可得;(2)根据绝对值的定义可得;(3)①利用绝对值定义知a﹣3=5或﹣5,分别求解可得;②由|a+2|+|a﹣3|=5的意义是表示数轴上到表示﹣2和表示3的点的距离之和是5的点的坐标,据此可得;③由|a﹣3|+|a+2017|表示数轴到表示3与表示﹣2017的点距离之和,根据两点之间线段最短可得.解:(1)数轴上表示数8的点和表示数3的点之间的距离是8﹣3=5,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是﹣1﹣(﹣3)=2,故答案为:5、2.(2)若|a|=5,那么a的值为5或﹣5,故答案为:5或﹣5.(3)数轴上点A用数a表示,①若|a﹣3|=5,则a﹣3=5或a﹣3=﹣5,∴a=8或﹣2,故答案为:﹣2或8.②∵|a+2|+|a﹣3|=5的意义是表示数轴上到表示﹣2和表示3的点的距离之和是5的点的坐标,∴﹣2≤a≤3,其中整数有﹣2,﹣1,0,1,2,3共6个,故答案为:﹣2≤a≤3,6.③|a﹣3|+|a+2017|表示数轴到表示3与表示﹣2017的点距离之和,由两点之间线段最短可知:当﹣2017≤a≤3时,|a﹣3|+|a+2017|有最小值,最小值为2017﹣(﹣3)=2020,故答案为:2020.【点评】本题主要考查的是绝对值的定义的应用,理解并应用绝对值的定义及两点间的距离公式是解题的关键.23.(8分)23、如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出的值吗?【分析】观察图形发现部分①的面积为:,部分②的面积为:=,…,部分的面积,据此规律解答即可.解:∵观察图形发现部分①的面积为:,部分②的面积为:=,…,部分的面积,∴(1)阴影部分的面积是=;(2)=1﹣=;【点评】本题考查了图形的变化类问题,解题的关键是仔细观察图形并发现图形变化的规律.人教版七年级第一学期期中模拟数学试卷(含答案)一、选择题(每小题3分,共计36分)1.﹣6的倒数是()A.6 B.﹣6 C.D.﹣2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨3.计算(﹣0.5)2013×(﹣2)2014的结果是()A.﹣0.5 B.0.5 C.﹣2 D.24.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.5.下列计算中正确的是()A.5a3﹣6a3=﹣a B.3a2+4a2=7a4C.7a+3a2=10a3D.a2+4a2=5a26.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c是单项式C.是多项式D.中,系数是7.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个8.长方形的一边长等于3x+2y,另一边长比它长x﹣y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y9.在(﹣1)3,(﹣1)2,﹣22,(﹣3)2,这四个数中,最大的数与最小的数的和等于()A.6 B.﹣5 C.8 D.510.若|x|=7,|y|=5,且x+y>0,那么x+y的值是()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣12 11.已知整式x2﹣2x的值为3,则2x2﹣4x+6的值为()A.7 B.9 C.12 D.1812.对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0 B.1 C.3 D.5二、填空题(每小题3分,共计12分)13.单项式﹣y的系数是.14.a、b互为相反数,c、d互为倒数,则=.15.设[x]表示不大于x的最大整数,例如[1.8]表示不超过1.8的最大整数就是1,[﹣3.8]表示不超过﹣3.8的最大整数﹣4,计算[2.7]+[﹣4.5]的值为.16.如图,是一个数值转换机,根据所给的程序计算,若输入x的值为1,则输出y的值为.三.解答题(共计52分)17.(12分)计算:(1)25.7+(﹣7.3)+(﹣13.7)+7.3(2)(3)(4)﹣14﹣(1﹣0.5)×18.(6分)先化简,再求值:(3a+2a﹣4a3)﹣(﹣a+3a3﹣2a2),其中a=﹣219.(6分)一个物体是由棱长为3cm的正方体模型堆砌而成的,其视图如图:(1)请在俯视图上标出小正方体的个数(2)求出该物体的体积是多少.(3)该物体的表面积是多少?20.(6分)有理数a、b、c在数轴上的点如图所示:化简:|c|+|a﹣c|﹣2|c+b|+|a+b|.21.(6分)某商场销售一种西装和领带,西装每套定价500元,领带每条定价100元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.现某客户要到商场购买西服20套,领带x条(x>20).方案一:买一套西装送一条领带;方案二:西装和领带都按定价的90%付款.(1)若客户按方案一购买,需付款元;若客户按方案二购买,需付款元;(2)若x=30,请通过计算说明此时按哪种方案购买较为合算?(3)当x=30时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算此方案需要付款多少元?22.(8分)我们知道,|a|可以理解为|a﹣0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a﹣b|,反过来,式子|a﹣b|的几何意义是:数轴上表示数a 的点和表示数b的点之间的距离.利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是,数轴上表示数﹣1的点和表示数﹣3的点之间的距离是.(2)数轴上点A用数a表示,若|a|=5,那么a的值为.(3)数轴上点A用数a表示,①若|a﹣3|=5,那么a的值是.②当|a+2|+|a﹣3|=5时,数a的取值范围是,这样的整数a有个③|a﹣3|+|a+2017|有最小值,最小值是.23.(8分)23、如图,将一个边长为1的正方形纸片分割成7个部分,部分①是边长为1的正方形纸片面积的一半,部分②是部分①面积的一半,部分③是部分②面积的一半,依此类推.(1)阴影部分的面积是多少?(2)受此启发,你能求出的值吗?参考答案一、选择题1.﹣6的倒数是()A.6 B.﹣6 C.D.﹣【分析】根据倒数的定义求解.解:﹣6的倒数是﹣.故选:D.【点评】倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨【分析】科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤a<10,n 表示整数.n为整数位数减1,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.11 000 000=1.1×107.解:11 000 000=1.1×107.故选:B.【点评】本题考查学生对科学记数法的掌握.科学记数法要求前面的部分的绝对值是大于或等于1,而小于10,小数点向左移动7位,应该为1.1×107.3.计算(﹣0.5)2013×(﹣2)2014的结果是()A.﹣0.5 B.0.5 C.﹣2 D.2【分析】把(﹣2)2014写成(﹣2)×(﹣2)2013,然后根据有理数的乘方的定义,先乘积再乘方进行计算即可得解.解:(﹣0.5)2013×(﹣2)2014,=(﹣0.5)2013×(﹣2)×(﹣2)2013,=(﹣2)×[(﹣0.5)×(﹣2)]2013,=﹣2×1,=﹣2.故选:C.【点评】本题考查了有理数的乘方,此类题目,转化为同指数幂相乘是解题的关键,也是难点.4.如图,有一个无盖的正方体纸盒,下底面标有字母“M”,沿图中粗线将其剪开展成平面图形,想一想,这个平面图形是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.解:选项A、D经过折叠后,标有字母“M”的面不是下底面,而选项C折叠后,不是沿沿图中粗线将其剪开的,故只有B正确.故选:B.【点评】正方体共有11种表面展开图,把11种展开图都去掉一个面得无盖的正方体展开图,把相同的归为一种得无盖正方体有8种表面展开图.5.下列计算中正确的是()A.5a3﹣6a3=﹣a B.3a2+4a2=7a4C.7a+3a2=10a3D.a2+4a2=5a2【分析】根据合并同类项的法则,结合选项进行判断即可.解:A、5a3﹣6a3=﹣a3,故本选项错误;B、3a2+4a2=7a2,故本选项错误;C、7a和3a2不是同类项,不能合并,故本选项错误;D、a2+4a2=5a2,故本选项正确;故选:D.【点评】此题考查了合并同类项的知识,属于基础题,关键是掌握合并同类项的法则.6.下列判断中错误的是()A.1﹣a﹣ab是二次三项式B.﹣a2b2c是单项式C.是多项式D.中,系数是【分析】直接利用单项式的系数以及多项式的次数与项数确定方法分别分析得出答案.解:A、1﹣a﹣ab是二次三项式,正确,不合题意;B、﹣a2b2c是单项式,正确,不合题意;C、是多项式,正确,不合题意;D、πr2中,系数是:π,故此选项错误,符合题意.故选:D.【点评】此题主要考查了单项式和多项式,正确把握相关定义是解题关键.7.下列说法:①﹣a一定是负数;②|﹣a|一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是1;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】根据正数和负数的意义,可判断①;根据绝对值的意义,可判断②;根据倒数的意义,可判断③;根据绝对值的性质,可判断④;根据平方的意义,可判断⑤.解:①﹣a可能是负数、零、正数,故①说法错误;②|﹣a|一定是非负数,故②说法错误;③倒数等于它本身的数是±1,故③说法正确;④绝对值等于它本身的数是非负数,故④说法错误;⑤平方等于它本身的数是0或1,故⑤说法错误;故选:A.【点评】本题考查了有理数的乘方,注意0的平方等于0,﹣a不一定是负数,绝对值都是非负数.8.长方形的一边长等于3x+2y,另一边长比它长x﹣y,这个长方形的周长是()A.4x+y B.12x+2y C.8x+2y D.14x+6y【分析】根据题意表示另一边的长,进一步表示周长,化简.解:依题意得:周长=2(3x+2y+3x+2y+x﹣y)=14x+6y.故选D.【点评】此题考查了整式的加减,列式表示出长方形的周长是关键.9.在(﹣1)3,(﹣1)2,﹣22,(﹣3)2,这四个数中,最大的数与最小的数的和等于()A.6 B.﹣5 C.8 D.5【分析】先根据有理数的乘方运算法则将各数化简,找到最大的数与最小的数,然后根据有理数的加法法则求得计算结果.解:∵(﹣1)3=﹣1,(﹣1)2=1,﹣22=﹣4,(﹣3)2=9,且﹣4<﹣1<1<9,∴最大的数与最小的数的和等于﹣4+9=5.故选:D.【点评】解决此类题目的关键是熟记有理数的运算法则.10.若|x|=7,|y|=5,且x+y>0,那么x+y的值是()A.2或12 B.2或﹣12 C.﹣2或12 D.﹣2或﹣12【分析】根据题意,利用绝对值的代数意义,以及有理数的加法法则判断即可.解:∵|x|=7,|y|=5,且x+y>0,∴x=7,y=5;x=7,y=﹣5,则x+y=12或2,故选:A.【点评】此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键.11.已知整式x2﹣2x的值为3,则2x2﹣4x+6的值为()A.7 B.9 C.12 D.18【分析】先把代数式进行适当的变形,然后直接把已知整式的值代入代数式即可求出代数式的值.解:2x2﹣4x+6=2(x2﹣2x)+6,将x2﹣2x=3代入上面的代数式得,2x2﹣4x+6,=2×3+6,=12,故选:C.【点评】本题主要考查了代数式的求值方法,通车分为三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.12.对正整数n,记n!=1×2×3×…×n,则1!+2!+3!+…+10!的末尾数为()A.0 B.1 C.3 D.5【分析】根据n!=1×2×3×…×n得到1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,且5!、…、10!的数中都含有2与5的积,则5!、…、10!的末尾数都是0,于是得到1!+2!+3!+…+10!的末尾数为3.解:∵1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,而5!、…、10!的数中都含有2与5的积,∴5!、…、10!的末尾数都是0,∴1!+2!+3!+…+10!的末尾数为3.故选:C.【点评】本题考查了规律型:数字的变化类:通过特殊数字的变化规律探讨一般情况下的数字变化规律.二、填空题(每小题3分,共计12分)13.单项式﹣y的系数是﹣.【分析】直接利用单项式的系数确定方法分析得出答案.解:单项式﹣y的系数是:﹣.故答案为:﹣.【点评】此题主要考查了单项式,正确把握单项式的系数确定方法是解题关键.14.a、b互为相反数,c、d互为倒数,则=.【分析】由a、b互为相反数,c、d互为倒数可知a+b=0,cd=1,然后代入求值即可.解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1.∴原式=﹣3×0﹣﹣=﹣.故答案为:﹣.【点评】本题主要考查的是有理数的运算,根据题意得到a+b=0,cd=1是解题的关键.15.设[x]表示不大于x的最大整数,例如[1.8]表示不超过1.8的最大整数就是1,[﹣3.8]表示不超过﹣3.8的最大整数﹣4,计算[2.7]+[﹣4.5]的值为﹣3 .【分析】根据[x]表示不大于x的最大整数,进而得出答案.解:由题意可得:[2.7]+[﹣4.5]=2﹣5=﹣3.。

广东深圳龙华区2023-2024学年七年级上学期期中数学试题(解析版)

广东深圳龙华区2023-2024学年七年级上学期期中数学试题(解析版)

2023-2024学年第一学期期中学情调查七年级数学2023.11本试卷分两部分,试卷共4页,满分100分,考试时间90分钟.注意事项:1.答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名和考生号;将条形码横贴在答题卡指定区域.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求. 1. 2023−的相反数是( )A. 2023−B. 2023C. 12023D. 12023− 【答案】B【解析】【分析】根据只有符号不同的两个数互为相反数判断即可,熟练掌握定义是解题的关键.【详解】2023−相反数是2023,故选B .2. “力箭一号”(ZK -1A )运载火箭在酒泉卫星发射中心采用“一箭六星”的方式,成功将六颗卫星送入预定轨道,首次飞行任务取得圆满成功.把卫星看成点,则卫星在预定轨道飞行留下的痕迹体现了( )A. 点动成线B. 线动成面C. 面动成体D. 面面相交成线 【答案】A【解析】【分析】根据点动成线,线动成面,面动成体,面面相交成线的特点求解即可.【详解】∵把卫星看成点,∴卫星在预定轨道飞行留下的痕迹体现了点动成线. 的故选:A .【点睛】此题考查了点动成线,解题的关键是熟练掌握点动成线的特点.3. 先贤孔子曾说过“鼓之舞之”,这是“鼓舞”一词最早的起源,如图是喜庆集会时击鼓瞬间的情景及鼓的立体图形,该立体图形的主视图是( )A. B. C. D.【答案】B【解析】【分析】通过观察立体图形即可.【详解】解:该立体图形的主视图是,故选:B .4. 手机信号的强弱通常采用负数来表示,绝对值越小表示信号越强(单位:dBm ),则下列信号最强的是( )A. 50−B. 60−C. 70−D. 80− 【答案】A【解析】【分析】根据题意,比较各数的绝对值大小,即可解答. 【详解】解:50607080−<−<−<− ,则信号最强的是50−,故选:A .【点睛】本题考查了有理数的大小比较,负数比较大小时,绝对值大的反而小,熟知比较法则是解题的关键.5. 一个物体的外形是长方体,其内部构造不详.用一组水平的平面截这个物体时,得到了一组(自下而上)截面,截面形状如图所示,这个长方体的内部构造可能是( )A. 圆柱B. 棱柱C. 棱锥D. 圆锥【答案】D【解析】 【分析】通过观察可以发现:在长方体内部的三角形自下而上由大圆逐渐变成小圆、最后变成点,由此判定即可.【详解】解:∵通过观察可以发现:在正方体内部圆自下而上由大圆逐渐变成小圆、最后变成点, ∴这个长方体内部构造可能是圆锥,故D 正确.故选:D .【点睛】由截面形状去想象几何体与给一个几何体想象它的截面是一个互逆的思维过程,要根据所给截面形状仔细分析,展开想象.6. 规定3a b a b +−−△,则()42−△的值为( )A. 5−B. 1C. 9D. 3−【答案】A【解析】【分析】把相应的值代入新定义的运算,再结合有理数的相应的法则进行运算即可.【详解】解:()42−△ 423=−+−−23=−−=5−.故选:A .【点睛】本题主要考查有理数的混合运算,解答的关键是对相应的运算法则的掌握.7. 若代数式28x y −+的值为18,则代数式364x y −+的值为( )A. 30B. 26−C. 30−D. 34【答案】D 的的【解析】【分析】利用已知代数式的值求出2x y −,再将所求代数式变形整体代入即可.【详解】解:∵2818x y −+=∴210x y −=364x y −+=()324x y −+=3104×+=34故选D.【点睛】此题考查的是求代数式的值,解决此题的关键找出前后代数式的关系并利用整体代入求值. 8. 时差的计算方法:两个时区标准时间(即时区数)相减就是时差,时区的数值大的时间早.比如中国北京是东八区(8+),美国纽约是西五区(5−),两地的时差是13小时,北京比纽约要早13个小时,如北京时间2月1日18:00时,美国纽约为2月1日5:00.若美国纽约时间为3月1日20:00时,埃及开罗时间为3月2日3:00,则开罗所在的时区是( )A. 西二区B. 西三区C. 东二区D. 东三区【答案】C【解析】【分析】根据正数和负数的实际意义,有理数的加减,进行解答即可.【详解】解: 美国纽约时间为3月1日20:00时,埃及开罗时间为3月2日3:00, ∴两地的时差为242037−+=小时,美国纽约是西五区(5−),572∴−+=,∴开罗所在的时区是东二区,故选:C .【点睛】本题主要考查了正数和负数的实际应用,有理数的加减,熟练掌握正数和负数表示的量具有相反意义,读懂题意,是解题的关键.9. 如图所示,直径为单位1的圆从原点沿着数轴无滑动的逆时针滚动一周到达A 点,则A 点表示的数是( )A. 2π−B. 1π−+C. 12π−+D. π−【答案】D【解析】【分析】先求出圆的周长π,即得到OA π=,然后根据数轴上的点与实数一一对应的关系即可得到点A 表示的数.【详解】∵直径为单位1的圆的周长1ππ=×=,∴OA π=,∴点A 表示的数为π−,故选:D .【点睛】本题考查了实数与数轴,解题的关键是熟知数轴上的点与实数一一对应.10. 如图是长为 a ,宽为 b 的小长方形卡片,把六张这样的小长方形卡片不重叠地放在一个底面为长方形(长为 8,宽为 6)的盒子底部(如图 2),盒子底部未被卡片覆盖的部分用阴影 表示,则两块阴影部分的周长之和为( )A. 16B. 24C. 20D. 28【答案】B【解析】 【分析】根据图形得到表示出两个阴影部分周长之和,然后根据整式加减运算法则进行计算即可求出值.【详解】根据题意得:两个阴影部分周长之和:2(6363)21224a b a b −+++−=×=.故选:B .【点睛】此题考查了整式的加减的应用,准确识图,正确表示出阴影部分周长之和并熟练掌握运算法则是解本题的关键.二.填空题(本大题共5小题,每小题3分,共15分)11. 习近平总书记指出“善于学习,就是善于进步”.“国家中小学智慧云平台”上线的某天,全国大约有5450000人在平台上学习,将这个数据用科学记数法表示为 ___________.【答案】65.4510×【解析】【分析】科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:65450000 5.4510=×,故答案为:65.4510×【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.12. 某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“点”字所在面相对面上的汉字是__________.【答案】春【解析】【分析】根据立方体的展开图判断即可.【详解】根据立方体的展开图的意义,得点与春是相对的,故答案为:春.【点睛】本题考查了立方体展开图,熟练掌握来立方体的展开图是解题的关键.13. 互为相反数的两个数(0除外)的商是______.【答案】-1【解析】【分析】两个互为相反数的数的和为0,其形式为a 和-a ,由于不为0,相除即可.【详解】解:两个互为相反数的形式为a 和-a ,由于不为0,1a a−=−,的故答案为-1.【点睛】此题主要考查了有理数的除法和相反数,关键是掌握相反数的定义:只有符号不同的两个数叫做互为相反数.0和0是相反数.14. 若2m x y 与3n x y −的和为0,则mn =_________.【答案】6【解析】【分析】此题考查的是合并同类项,根据同类项的概念可得m 、n 的值,代入代数式计算可得答案.【详解】解:根据题意,得3m =,2n =,∴326mn =×=.故答案为:6.15. 如图所示的运算程序中,若开始输入的 x 值为 100,我们发现第 1 次输出的结果为 50,第 2 次输出的结果为 25,……,第 2022 次输出的结果为___________.【答案】4【解析】【分析】根据设计的程序进行计算,找到循环的规律,根据规律推导计算.【详解】解:∵第1次输出的数为:100250÷=,第2次输出的数为:50225÷=,第3次输出的数为:25732+=,第4次输出的数为:32216÷=,第5次输出的数为:1628÷=,第6次输出的数为:824÷=,第7次输出的数为:422÷=,第8次输出的数为:221÷=,第9次输出的数为:178+=,第10次输出的数为:824÷=,……,∴从第5次开始,输出的数分别为:8、4、2、1、8、…,每4个数一个循环;∵()2022445042−÷=…,∴第2021次输出的结果为4.故答案为:4.【点睛】本题考查了有理数的计算,正确发现循环的规律是解题的关键.三.解答题(本大题共7小题,共55分)16. 计算:(1)()()23716−−+−;(2)()()3434−÷−×−; (3)4111623 −−×− . 【答案】(1)14 (2)16−(3)2−【解析】【分析】本题主要考查有理数的混合运算,计算过程中注意正负号,(1(2)根据有理数乘除运算法则,从左至右依次计算即可;(3)根据有理数运算法则,先计算幂的乘方,再去括号,最后加减运算即可;【小问1详解】解:原式=23716=14+−;【小问2详解】 原式()416=43=31633××−−×=−; 【小问3详解】原式()132112=−−−=−−=−;17. 先化简,再求值:()()222232122a b aba b ab +−−−−,其中1a =−,2b =.【答案】22a b ab +,2−【解析】【分析】本题考查了整式的加减中的化简求值,熟练掌握“整式的加减中的化简求值的步骤:先去括号,然后合并同类项化简,再把满足条件的字母的值代入计算得到对应的整式的值”是解题的关键.【详解】解:原式2222332222a b ab a b ab =+−+−−2222323222a b a b ab ab22a b ab +,当1a =−,2b =时,22a b ab +221212 121424=−2=−.18. 如图是由一些棱长都为1cm 的小正方体组合成的简单几何体.(1)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图;(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加 块小正方体.【答案】(1)见解析 (2)6【解析】【分析】此题主要考查了作三视图,在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.(1)左视图有2列,每列小正方数形数目分别为3,1,俯视图有4列,每列小正方形数目分别为2,1,1,1.据此可画出图形.(2)持俯视图和左视图不变,可以在第1列后面一排添加2个,第3列添加2个,第4列添加2个,最多添加6个小正方体.【小问1详解】解:如图所示:;【小问2详解】保持俯视图和左视图不变,最多可以再添加6块小正方体,故答案为:6.19. 深圳市某学校一教室前有一块长为12米,宽为4x 米的长方形空地,学校向全校师生征集这块地的绿化设计方案并要求绿地面积大于这块地总面积的58,如图是学生小明的设计方案,阴影部分是绿地.(1)用含x 的式子分别表示这块空地的总面积________2m ,绿地的面积________2m (结果保留π). (2)若2x =米时,试问小明的设计方案是否合乎要求?请说明理由(其中π取3). 【答案】(1)48x ,21362x x π−(2)符合要求【解析】【分析】本题主要考查列代数式和整式的混合运算,(1)根据正方形面积公式和圆的面积公式即可求得答案;(2)将x 代入第一问所列代数式即可求得空地总面积和绿地面积,按设计要求验算即可.【小问1详解】解:这块空地的总面积212448m x x ×=, 绿地的面积22211482636m 22x x x x x ππ −⋅×−=− ; 【小问2详解】当2x =米时,这块空地的总面积24896m x =,绿地的面积2213672266m 2x x ππ−=−=, 596=60668×<. 则小明的设计方案符合要求.20. 某市出租车的计价标准为:行驶路程不超过3千米收费10元,超过3千米的部分按每千米2.4元收费.(1)若某人乘坐了(3)x x >千米,则他应支付车费______元;(用含有x 的代数式表示) (2)一出租车公司坐落于东西方向的大道边,驾驶员王师傅从公司出发,在此大道上连续接送4批客人,行驶路程记录如下(规定向东为正,向西为负,单位:千米) 第1批 第2批 第3批 第4批1.6+ 9−2.9+ 7−①送完第4批客人后,王师傅在公司的______边(填“东”或“西”),距离公司______千米的位置; ②在整个过程中,王师傅共收到车费多少钱?③若王师傅的车平均每千米耗油0.1升,则送完第4批客人后,王师傅的车用了多少升油?【答案】(1)(2.4 2.8)x +(2)①西,11.5;②64;③2.05升【解析】【分析】(1)根据题意,可以用含x 代数式表示出某人应支付的车费;(2)①将表格中的数据相加,即可解答本题;②根据题意,可以计算出在整个过程中,王师傅共收到的车费;③根据表格中的数据和题意,可以计算出送完第4批客人后,王师傅用了多少升油.【小问1详解】解:由题意可得,他应支付车费:10(3) 2.410 2.47.2(2.4 2.8)x x x +−×=+−=+元,故答案为:(2.4 2.8)x +;【小问2详解】①( 1.6)(9)( 2.9)(7)11.5++−+++−=−,即送完第4批客人后,王师傅在公司的西边,距公司11.5千米,故答案为:西,11.5;②在整个过程中,王师傅共收到车费:10[10(93) 2.4]10[10(73) 2.4]64++−×+++−×=(元), 故答案为:64;③(| 1.6||9|| 2.9||7|)0.1++−+++−×(1.69 2.97)0.1=+++×20.50.1×2.05=(升), 答:送完第4批客人后,王师傅用了2.05升油.的【点睛】本题考查列代数式、正数和负数、数轴,解答本题的关键是明确题意,列出相应的代数式,求出相应的式子的值.21. 探究规律,完成相关题目.定义“*”运算:()22(2)(4)24+∗+=++;22(4)(7)(4)(7) −∗−=+−+− ;22(2)(4)(2)(4) −∗+=−−++ ;22(5)(7)(5)(7) +∗−=−++− ;20(5)(5)0(5)∗−=−∗=−;2(3)00(3)(3)+∗=∗+=+.2200000∗=+=(1)归纳*运算的法则:两数a ,b 进行*运算时,________.(文字语言或符号语言均可)特别地,0和任何数进行*运算,或任何数和0进行*运算,________.(2)计算:(1)[0(2)]+∗∗−=________. (3)是否存在有理数m ,n ,使得(1)(2)0m n −∗+=,若存在,求出m ,n 的值,若不存在,说明理由;【答案】(1)同号得正,异号得负,并把两数的平方相加.等于这个数的平方.(2)17 (3)1m =,2n =−【解析】*运算的运算法则进行运算,(1)根据*运算归纳出*运算的运算法则即可;(2)根据*运算的运算法则,以及有理数的混合运算即可求得答案;(3)根据*运算的运算法则,将原式化简,再结合平方的非负性即可解得答案;【小问1详解】解:两数a ,b 进行∗运算时,同号得正,异号得负,并把两数的平方相加.特别地,0和任何数进行∗运算,或任何数和0进行*运算,等于这个数的平方.【小问2详解】原式()()222121417=+∗−=+=,【小问3详解】 ∵(1)(2)0m n −∗+=, ∴()()22120m n ±−++=, ∴10m −=,20n +=,解得1m =,2n =−,22. 结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;表示3−和2两点之间的距离是 ;一般地,数轴上表示数m 和数n 的两点之间的距离等于m n −.如果表示数a 和2−的两点之间的距离是3,那么a = ;(2)若数轴上表示数a 的点位于4−与2之间,求42a a ++−的值;(3)代数式514a a a a ++−+−+的最小值是 .【答案】(1)3,5,5−和1(2)6(3)10【解析】【分析】本题考查了绝对值在数轴上的应用(1)直接用两数相减的绝对值求出两点的距离;(2)根据a 的大小判断出绝对值符号里面结果的正负,再去掉绝对值符号求值;(3)根据(2)的方法,分析出01a ≤≤,化简绝对值,即可得出最小值.【小问1详解】 解:413−=,325−−=, 23a −−= ,23a ∴−−=,23a −−=−,解得5a =−和1a =,故答案为:3,5,5−和1.【小问2详解】42a −<< ,44a a ∴+=+,22a a −=−, 则42426a a a a ++−=++−=,【小问3详解】代数式514a a a a ++−+−+表示a 到5,0,1,4−的距离之和 同(2)可得,当01a ≤≤时,514a a a a ++−+−+取最小值, 514a a a a ++−+−+51451410a a a a =++−+−+=++=故答案为:10.。

七年级数学上学期期中习题[新人教版]1

七年级数学上学期期中习题[新人教版]1

南苑中学2016-2017学年度第一学期期中测试七年级数学试卷时刻:120分钟 总分值:150分一、选择题(每题3分,共30分)一、-2 016的绝对值是 ( )A .-2 016B .2 016 D .-12 016 二、已知以下各式:abc ,2πR ,x +3y ,0,x -y 2,其中单项式的个数有 ( ) A .2个 B .3个C .4个D .5个 3、如图,数轴上A ,B 两点别离对应实数a ,b ,那么以下结论正确的选项是 ( ) A .a+b >0 B .ab >0 C .a ﹣b >0 D .|a|﹣|b|>0 4、已知|a |=5,|b |=2,且|a -b |=b -a ,则a +b 的值为 ( ) A .3或7 B .-3或-7 C .-3 D .-7 5、已知方程1(2)60a a x --+=是关于x 的一元一次方程,那么a 的值为 ( ) A .2± B .-2 C .1 D .2 6、以下方程变形中,正确的选项是 ( ) A.方程1223+=-x x ,移项,得2123+-=-x x B.方程)1(523--=-x x ,去括号,得1523--=-x x C.方程2332=t ,系数化为1,得1=t D.方程521x x =-,去分母,得x x 2)1(5=- 7、.据萧山区劳动保障局统计,到“十二五”末,全区累计参加各类养老保险总人数达到万人,比“十一五”末增加万人,参加各类医疗保险总人数达到万人.将数据万用科学记数法(精准到十万位)表示为 ( )A.1.3×102 、今天数学课上,教师讲了多项式的加减,下学后,小明回抵家拿出课堂笔记,认真地温习教师讲的内容,他突然发觉一道题()2222221131342222x xy y x xy y x y ⎛⎫⎛⎫-+---+-=-++ ⎪ ⎪⎝⎭⎝⎭空格的地址被钢笔水弄污了,那么括号中的一项为哪一项 ( )A .-7xy B. 7xy学校 班级 姓名 学号 考号九、在一次美化校园活动中,先安排32人去拔草,18人去植树,后又增派20人去支援他们,结果拔草的人数是植树人数的2倍、问支援拔草和支援植树的别离有多少人?假设设支援拔草的有x人,那么以下方程中正确的选项是()A.32+x=2×18 B.32+x=2(38﹣x)C.52﹣x=2(18+x)D.52﹣x=2×1810、某商场在“五一”期间举行促销活动,依照顾客按商品标价一次性购物总额,规定相应的优惠方式:①若是不超过500元,那么不予优惠;②若是超过500元,但不超过800元,那么按购物总额给予8折优惠;③若是超过800元,那么其中800元给予8折优惠,超过800元的部份给予6折优惠.促销期间,小红和她母亲别离看中一件商品,假设各自单独付款,那么应别离付款480元和520元;假设归并付款,那么她们总共只需付款多少元()A.838 B.924 C.924或838 D.838或910二、填空题(每题3分,共24分)1一、假设代数式﹣2a3b m与3a n+1b4是同类项,那么mn=1二、数轴上与表示数-3的点的距离是5的点表示的数是________。

新人教版2016-2017学年七年级(上)期中数学试卷(三)及答案

新人教版2016-2017学年七年级(上)期中数学试卷(三)及答案

新人教版2016-2017学年七年级(上)期中数学试卷(三)2017.1.26一、选择题(本大题共10个小题,每小题只有一个正确选项,每小题4分,满分40分)1.下列计算正确的是()A.﹣5+4=﹣9 B.﹣8﹣8=0 C.23=6 D.﹣42=﹣162.下列计算正确的是()A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b3.下列说法正确的是()A.近似数1.50和1.5是相同的B.3520精确到百位等于3500C.6.610精确到千分位D.2.70×104精确到百分位4.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃5.下列说法错误的是()A.﹣xy的系数是﹣1B.﹣c是五次单项式C.2x2﹣3xy﹣1是二次三项式D.把多项式﹣2x2+3x3﹣1+x按x的降幂排列是3x3﹣2x2+x﹣16.已知a﹣b=﹣2,则代数式3(a﹣b)2﹣a+b的值为()A.10 B.12 C.﹣10 D.147.已知单项式2x a y2与﹣3xy b的和是一个单项式,则(a﹣b)3=()A.﹣8 B.8 C.﹣1 D.18.图中表示阴影部分面积的代数式是()A.ad+bc B.c(b﹣d)+d(a﹣c)C.ad+c(b﹣d)D.ab﹣cd9.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是()A.B.C.D.10.如果有4个不同的正整数m、n、p、q满足=4,那么m+n+p+q等于()A.8038 B.8049 C.8052 D.8056二、填空题(本大题共5个小题,每小题4分,满分20分)11.比较大小:﹣0.0260;|﹣5| ﹣(﹣5).12.“珍惜水资源,节约用水”是公民应具备的优秀品质.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.如果某个同学在洗手后,没有把水龙头拧紧,当他离开5小时后水龙头滴了毫升水.(必须用科学记数法表示,否则0分)13.观察规定一种新运算:a⊕b=a b,如2⊕3=23=8,计算:(﹣)⊕2=.14.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是,最小的积是.15.已知|x|=a,|y|=b,给出下列结论:①若x﹣y=0,则a﹣b=0;②若a﹣b=0,则x﹣y=0;③若a+b=0,则x+y=0;④若x2﹣y2=0,则a﹣b=0.其中正确的结论有(将所有正确结论的序号填写在横线上).三、解答题(本大题共有8个小题,满分90分)16.计算:(1)4﹣2×(﹣3)2+6÷(﹣)(2)(﹣﹣+)×36+|﹣24|17.化简与计算(1)已知:多项式A=2x2﹣xy,B=x2+xy﹣6,(2)3x2y﹣|2xy2﹣(2xy﹣3x2y|﹣2xy,求:①4A﹣B;其中x=3,y=﹣.②当x=1,y=﹣2时,4A﹣B的值.18.为了有效控制酒后驾车,某天无为县交警大队的一辆警车在东西方向的通江大道上巡视,警车从某地A处出发,规定向东方向为正,当天行驶纪录如下(单位:千米)+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)此时,这辆巡逻的汽车司机如何向队长描述他的位置?(2)如果警车行驶1千米耗油0.2升,油箱有油10升,现在警车要回到出发点A处,那么油箱的油够不够?若不够,途中至少需补充多少升油?19..观察下列算式:①(1+)(1﹣)=×=1;②(1+)(1﹣)=×=1;③(1+)(1﹣)=×=1;根据以上算式的规律,解决下列问题:(1)第⑩个等式为:;(2)计算:(1+)×(1+)×(1+)×…×(1+)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣).20.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负,单位:辆):(1)根据记录可知前三天共生产辆.(2)产量最多的一天比产量最少的一天多生产辆.(3)该厂实行计件工资制,每生产一辆自行车50元,超额完成任务每辆车奖20元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?21.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a(1)用含a,b的式子表示这个三角形的周长,并化简;(2)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.22.某大型超市上周日购进新鲜的黄瓜1000公斤,每公斤1.5元,受暴发的“毒黄瓜”的影响,销售价格出现较大的波动,表中为一周内黄瓜销售价格的涨跌情况(涨为正,跌为负,其中星期一的销售价格是与进价比较,单位:元):(1)到星期二时,每公斤的黄瓜售价是多少元?(2)本周最低售价是每公斤多少元?(3)已知截止到星期五,已卖出黄瓜700公斤,销售总额为935元.如果超市星期六能将剩下的黄瓜全部卖出.不考虑损耗等其他因素,请算算该超市本周销售黄瓜是盈还是亏?盈亏是多少?23.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示1和4的两点之间的距离是;表示﹣3和2的两点之间的距离是;表示数a和﹣2的两点之间的距离是3,那么a=;一般地,数轴上表示数m和数n的两点之间的距离等于.(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)存在不存在数a,使代数式|a+3|+|a﹣2|+|a﹣4|的值最小?如果存在,请写出数a=,此时代数式|a+3|+|a﹣2|+|a﹣4|最小值是.(注:本小题是填空题,可不写解答过程.).2016-2017学年安徽省巢湖市和县七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题只有一个正确选项,每小题4分,满分40分)1.下列计算正确的是()A.﹣5+4=﹣9 B.﹣8﹣8=0 C.23=6 D.﹣42=﹣16【考点】有理数的乘方;有理数的加法;有理数的减法.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=﹣1,错误;B、原式=﹣16,错误;C、原式=8,错误;D、原式=﹣16,正确,故选D2.下列计算正确的是()A.2x+3y=5xy B.2a2+2a3=2a5C.4a2﹣3a2=1 D.﹣2ba2+a2b=﹣a2b【考点】合并同类项.【分析】根据合并同类项的法则,系数相加字母部分不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D.3.下列说法正确的是()A.近似数1.50和1.5是相同的B.3520精确到百位等于3500C.6.610精确到千分位D.2.70×104精确到百分位【考点】近似数和有效数字.【分析】根据近似数的精确度对各选项进行判断.【解答】解:A、近似数1.50精确到百分位,1.5精确到十分位,所以A选项错误;B、3520精确到百位等于3.5千,所以B选项错误;C、6.610精确到千分位,所以C选项错误;D、2.70×104精确到百位,所以D选项错误.故选C.4.某种速冻水饺的储藏温度是﹣18±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是()A.﹣17℃B.﹣22℃C.﹣18℃D.﹣19℃【考点】正数和负数.【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案.【解答】解:﹣18﹣2=﹣20℃,﹣18+2=﹣16℃,温度范围:﹣20℃至﹣16℃,A、﹣20℃<﹣17℃<﹣16℃,故A不符合题意;B、﹣22℃<﹣20℃,故B不符合题意;C、﹣20℃<﹣18℃<﹣16℃,故C不符合题意;D、﹣20℃<﹣19℃<﹣16℃,故D不符合题意;故选:B.5.下列说法错误的是()A.﹣xy的系数是﹣1B.﹣c是五次单项式C.2x2﹣3xy﹣1是二次三项式D.把多项式﹣2x2+3x3﹣1+x按x的降幂排列是3x3﹣2x2+x﹣1【考点】多项式;单项式.【分析】根据单项式、多项式的概念及单项式的次数、系数的定义解答.【解答】解:A、﹣xy的系数是﹣1,正确,不合题意;B、﹣c是六次单项式,故选项错误,符合题意;C、2x2﹣3xy﹣1是二次三项式,正确,不合题意;D、把多项式﹣2x2+3x3﹣1+x按x的降幂排列是3x3﹣2x2+x﹣1,正确,不合题意;故选:B.6.已知a﹣b=﹣2,则代数式3(a﹣b)2﹣a+b的值为()A.10 B.12 C.﹣10 D.14【考点】代数式求值.【分析】将代数式中的﹣a+b变为﹣(a﹣b),将a﹣b=﹣2,整体代入即得代数式的值为14.【解答】解:3(a﹣b)2﹣a+b=3(a﹣b)2﹣(a﹣b),将a﹣b=﹣2代入,得原式=14.故选D.7.已知单项式2x a y2与﹣3xy b的和是一个单项式,则(a﹣b)3=()A.﹣8 B.8 C.﹣1 D.1【考点】合并同类项.【分析】由题意可知:这两个单项式是同类项,由此可求出a与b的值.【解答】解:由题意可知:a=1,2=b,∴a﹣b=﹣1,∴原式=(﹣1)3=﹣1,故选(C)8.图中表示阴影部分面积的代数式是()A.ad+bc B.c(b﹣d)+d(a﹣c)C.ad+c(b﹣d)D.ab﹣cd【考点】整式的加减.【分析】把图形补成一个大矩形,则很容易表达出阴影部分面积.【解答】解:把图形补成一个大矩形,则阴影部分面积=ab﹣(a﹣c)(b﹣d)=ab ﹣[ab﹣ad﹣c(b﹣d)]=ab﹣ab+ad+c(b﹣d)=ad+c(b﹣d).故选C.9.小王利用计算机设计了一个程序,输入和输出的数据如下表:那么,当输入数据8时,输出的数据是()A.B.C.D.【考点】规律型:数字的变化类.【分析】根据图表找出输出数字的规律:输出的数字中,分子就是输入的数,分母是输入的数字的平方加1,直接将输入数据代入即可求解.【解答】解:输出数据的规律为,当输入数据为8时,输出的数据为=.故选:C.10.如果有4个不同的正整数m、n、p、q满足=4,那么m+n+p+q等于()A.8038 B.8049 C.8052 D.8056【考点】有理数的乘法;有理数的加法.【分析】因为m,n,p,q都是四个不同正整数,所以、、、都是不同的整数,四个不同的整数的积等于4,这四个整数为(﹣1)、(﹣2)、1、2,由此求得m,n,p,q的值,问题得解.【解答】解:根据4个不同的正整数m、n、p、q满足=4,得到每一个因数都是整数且都不相同,只可能是﹣1,1,﹣2,2,可得2014﹣m=﹣1,2014﹣n=1,2014﹣p=﹣2,2014﹣q=2,解得:m=2015,n=2013,p=2016,q=2012,则m+n+p+q=8056,故选D二、填空题(本大题共5个小题,每小题4分,满分20分)11.比较大小:﹣0.026<0;|﹣5| =﹣(﹣5).【考点】有理数大小比较.【分析】根据负数的性质及有理数比较大小的法则进行解答即可.【解答】解:∵﹣0.026是负数,∴﹣0.026<0;∵|﹣5|=5,﹣(﹣5)=5,∴|﹣5|=﹣(﹣5).故答案为:<,=.12.“珍惜水资源,节约用水”是公民应具备的优秀品质.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.如果某个同学在洗手后,没有把水龙头拧紧,当他离开5小时后水龙头滴了 1.8×103毫升水.(必须用科学记数法表示,否则0分)【考点】科学记数法—表示较大的数.【分析】求出5小时的秒数,再乘以2乘以0.05,然后根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数解答.【解答】解:5×60×60×2×0.05=1800=1.8×103毫升.故答案为:1.8×103.13.观察规定一种新运算:a⊕b=a b,如2⊕3=23=8,计算:(﹣)⊕2=.【考点】有理数的乘方.【分析】利用题中的新定义计算即可.【解答】解:根据题中新定义得:(﹣)⊕2=(﹣)2=,故答案为:14.在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积是75,最小的积是﹣30.【考点】有理数的乘法.【分析】根据题意知,任取的三个数是﹣5,﹣3,5,它们最大的积是(﹣5)×(﹣3)×5=75.任取的三个数是﹣5,﹣3,﹣2,它们最小的积是(﹣5)×(﹣3)×(﹣2)=﹣30.【解答】解:在数﹣5,1,﹣3,5,﹣2中任取三个数相乘,其中最大的积必须为正数,即(﹣5)×(﹣3)×5=75,最小的积为负数,即(﹣5)×(﹣3)×(﹣2)=﹣30.故答案为:75;﹣30.15.已知|x|=a,|y|=b,给出下列结论:①若x﹣y=0,则a﹣b=0;②若a﹣b=0,则x﹣y=0;③若a+b=0,则x+y=0;④若x2﹣y2=0,则a﹣b=0.其中正确的结论有①③④(将所有正确结论的序号填写在横线上).【考点】有理数的混合运算.【分析】根据绝对值的性质对各小题进行逐一分析即可.【解答】解:①∵x﹣y=0,∴x与y相等或互为相反数,∴a=b,∴a﹣b=0,故本小题正确;②∵a﹣b=0,∴x与y相等或互为相反数,当x、y互为相反数时x﹣y≠0,故本小题错误;③∵a+b=0,∴x=y=0,∴x+y=0,故本小题正确;④∵x2﹣y2=0,∴x2=y2,∴a=b,∴a﹣b=0,故本小题正确.故答案为:①③④.三、解答题(本大题共有8个小题,满分90分)16.计算:(1)4﹣2×(﹣3)2+6÷(﹣)(2)(﹣﹣+)×36+|﹣24|【考点】有理数的混合运算.【分析】根据有理数的运算法则即可求出答案.【解答】解:(1)原式=4﹣2×9+(﹣12)=﹣26;(2)原式=﹣27﹣20+21+24=﹣47+45=﹣217.化简与计算(1)已知:多项式A=2x2﹣xy,B=x2+xy﹣6,(2)3x2y﹣|2xy2﹣(2xy﹣3x2y|﹣2xy,求:①4A﹣B;其中x=3,y=﹣.②当x=1,y=﹣2时,4A﹣B的值.【考点】整式的加减—化简求值;绝对值.【分析】①把A与B代入4A﹣B中,去括号合并得到最简结果,将x与y的值代入计算即可求出值;②把x=1,y=﹣2代入计算即可求出值.【解答】解:①∵A=2x2﹣xy,B=x2+xy﹣6,∴4A﹣B=8x2﹣4xy﹣x2﹣xy+6=7x2﹣5xy+6,当x=3,y=﹣时,原式=63+5+6=74;②当x=1,y=﹣2时,4A﹣B=7x2﹣5xy+6=7+10+6=23.18.为了有效控制酒后驾车,某天无为县交警大队的一辆警车在东西方向的通江大道上巡视,警车从某地A处出发,规定向东方向为正,当天行驶纪录如下(单位:千米)+10,﹣9,+7,﹣15,+6,﹣5,+4,﹣2(1)此时,这辆巡逻的汽车司机如何向队长描述他的位置?(2)如果警车行驶1千米耗油0.2升,油箱有油10升,现在警车要回到出发点A 处,那么油箱的油够不够?若不够,途中至少需补充多少升油? 【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据单位耗油量乘以路程,可得总耗油量,根据有理数的减法,可得答案. 【解答】解:(1)10+(﹣9)+7+(﹣15)+6+(﹣5)+4+(﹣2)=﹣4(千米).答:他在出发点的西方,距出发点4千米;(2)总耗油量(10+|﹣9|+7+|﹣15|+6+|﹣5|+4+|﹣2|)×0.2=58×0.2=11.6(升),11.6﹣10=1.6(升).答:不够,途中至少需补充1.6升油.19..观察下列算式:①(1+)(1﹣)=×=1;②(1+)(1﹣)=×=1;③(1+)(1﹣)=×=1;根据以上算式的规律,解决下列问题:(1)第⑩个等式为: (1+)(1﹣)=×=1 ;(2)计算:(1+)×(1+)×(1+)×…×(1+)×(1﹣)×(1﹣)×(1﹣)×…×(1﹣).【考点】规律型:数字的变化类.【分析】(1)根据式子的序号与分母之间的关系即可求解; (2)利用交换律,转化为已知中的式子进行求解即可.【解答】解:(1)第⑩个等式是(1+)(1﹣)=×=1.故答案是:(1+)(1﹣)=×=1;(2)原式=(1+)(1﹣)×(1+)(1﹣)×…×(1+)(1﹣)=1.20.某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入,下表是某周的生产情况(超产为正,减产为负,单位:辆):(1)根据记录可知前三天共生产599辆.(2)产量最多的一天比产量最少的一天多生产26辆.(3)该厂实行计件工资制,每生产一辆自行车50元,超额完成任务每辆车奖20元,少生产一辆扣10元,那么该厂工人这一周的工资总额是多少?【考点】正数和负数;有理数的加法.【分析】(1)分别表示出前三天的自行车生产数量,再求其和即可;(2)根据出入情况:用产量最高的一天﹣产量最低的一天;(3)首先计算出生产的自行车的总量,再根据工资标准计算工资即可.【解答】解:(1)200+5++=599(辆),故答案为:599;(2)﹣=26(辆),故答案为:26;(3)5﹣2﹣4+13﹣10+16﹣9=9(辆)200×7×50+9×(50+20)=70630(元).21.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a(1)用含a,b的式子表示这个三角形的周长,并化简;(2)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.【考点】整式的加减;绝对值;非负数的性质:偶次方;代数式求值.【分析】(1)先用a,b表示出三角形其余两边的长,再求出其周长即可;(2)根据非负数的性质求出ab的值,代入(1)中三角形的周长式子即可.【解答】解:(1)∵三角形的第一条边长为2a+5b,第二条边比第一条边长3a ﹣2b,第三条边比第二条边短3a,∴第二条边长=2a+5b+3a﹣2b=5a+3b,第三条边长=5a+3b﹣3a=2a+3b,∴这个三角形的周长=2a+5b+5a+3b+2a+3b=9a+11b;(2)∵a,b满足|a﹣5|+(b﹣3)2=0,∴a﹣5=0,b﹣3=0,∴a=5,b=3,∴这个三角形的周长=9×5+11×3=45+33=78.答:这个三角形的周长是78.22.某大型超市上周日购进新鲜的黄瓜1000公斤,每公斤1.5元,受暴发的“毒黄瓜”的影响,销售价格出现较大的波动,表中为一周内黄瓜销售价格的涨跌情况(涨为正,跌为负,其中星期一的销售价格是与进价比较,单位:元):(1)到星期二时,每公斤的黄瓜售价是多少元?(2)本周最低售价是每公斤多少元?(3)已知截止到星期五,已卖出黄瓜700公斤,销售总额为935元.如果超市星期六能将剩下的黄瓜全部卖出.不考虑损耗等其他因素,请算算该超市本周销售黄瓜是盈还是亏?盈亏是多少?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据有理数的加法,可得答案;(3)根据单价乘以数量量,可得销售额,根据销售额减去成本,可得答案.【解答】解:(1)1.5+0.3+0.4=2.2元,到星期二时,每公斤的黄瓜售价是2.2元;(2)1.5+0.3+0.4﹣0.5﹣0.6﹣0.7=0.4元,本周最低售价是每公斤0.4元;(3)周六的价格是0.4+0.1=0.5元,300×0.5+935﹣1000×1.5=﹣415元.故该超市本周销售黄瓜亏了415元.23.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示1和4的两点之间的距离是3;表示﹣3和2的两点之间的距离是5;表示数a和﹣2的两点之间的距离是3,那么a=﹣5或1;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n| .(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)存在不存在数a,使代数式|a+3|+|a﹣2|+|a﹣4|的值最小?如果存在,请写出数a=2或3,此时代数式|a+3|+|a﹣2|+|a﹣4|最小值是4.(注:本小题是填空题,可不写解答过程.).【考点】数轴;绝对值.【分析】(1)根据题意,结合数轴即可得到结果;(2)由a的范围,利用绝对值的代数意义化简即可;(3)分类讨论a的范围,利用绝对值的代数意义化简,确定出最小值,以及此时a的值即可.【解答】解:(1)数轴上表示1和4的两点之间的距离是3;表示﹣3和2的两点之间的距离是5;表示数a和﹣2的两点之间的距离是3,那么a=﹣5或1;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|;(2)根据题意得:﹣4<a<2,即a+4>0,a﹣2<0,则原式=a+4+2﹣a=6;(3)①a≤1时,原式=1﹣a+2﹣a+3﹣a+4﹣a=10﹣4a,则a=1时有最小值6;②1≤a≤2时,原式=a﹣1+2﹣a+3﹣a+4﹣a=8﹣2a,则a=2时有最小值4;③2≤a≤3时,原式=a﹣1+a﹣2+3﹣a+4﹣a=4;④3≤a≤4时,原式=a﹣1+a﹣2+a﹣3+4﹣a=2a﹣2;则a=3时有最小值4;⑤a≥4时,原式=a﹣1+a﹣2+a﹣3+a﹣4=4a﹣10;则a=4时有最小值6;综上所述,当a=2或3时,原式有最小值4.故答案为:(1)3;5;﹣5或1;|m﹣n|;(3)2或3;42017年1月22日。

深圳市XX中学2016-2017学年七年级上期中数学试卷含答案解析

深圳市XX中学2016-2017学年七年级上期中数学试卷含答案解析
A.AC>BD B.AC<BD C.AC=BD D.无法确定 9.钓鱼岛周围海域面积约为 170000 平方千米,170000 用科学记数法表示为 () A.1.7×103B.1.7×104C.17×104 D.1.7×105 10.如图,C 是线段 AB 上一点,M 是线段 AC 的中点,若 AB=8cm,BC=2cm, 则 MC 的长是( )
参考答案与试题解析
一、选择题:(每题 3 分,共 12 分) 1.计算﹣﹣2 A.9 B.的﹣9结果C是.(6 D.)﹣6 【考点】有理数的乘方. 【分析】根据有理数的乘方的定义解答. 【解答】解:﹣﹣2=﹣9. 故选:B.
2.下面几组数中,不相等的是( ) A.﹣﹣ 和+(﹣﹣) B.﹣5 和﹣(+5) C.﹣7 和﹣(﹣7) D.+2 和|﹣2| 【考点】绝对值;相反数. 【分析】根据有理数的符号法则以及绝对值的性质,把各数进行化简计算,最 后得出结论. 【解答】解:A、﹣﹣ 和+(﹣﹣)都等于 3,故它们相等; B、﹣5 和﹣(+5)都等于﹣5 ,故它们相等; C、﹣7 和﹣(﹣7)互为相反数,故它们不相等; D、+2 和|﹣2 都等于 2,故它们相等. 故选:C.
4.下列计算正确的是( ) A.﹣7﹣8 =﹣﹣B.5+(﹣2)=3 C.﹣6+0=0 D.4﹣﹣﹣=9 【考点】有理数的加减混合运算. 【分析】先利用加减法法则计算每个小题,再判断正确的选择支. 【解答】解:因为﹣7﹣8 =﹣﹣5 ≠﹣﹣;5+(﹣2)=3;﹣6+0 =﹣6≠0,4﹣﹣﹣=﹣9≠9 所以只有选项 B 正确. 故选 B.
6.将一个圆分割成四个大小相同的扇形,则每个扇形的圆心角是( A.45 B.60 C.90 D.120 【考点】认识平面图形. 【分析】圆心处构成一个周角,四等分,可得答案. 【解答】解:∵圆心处构成一个周角, ∴圆心角为 360°,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年广东省深圳市龙华区福苑学校七年级(上)期中数学试卷一、选择题(本题12小题,每题3分,共36分)每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卷相应位置上.1.(3分)﹣的绝对值是()A.﹣2 B .﹣ C .D.22.(3分)数轴上,到﹣3对应点距离为5个单位长度的数是()A.﹣8或1 B.8 C.﹣8或2 D.23.(3分)2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球.已知地球距离月球表面约为384 000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为()A.3.84×104千米B.3.84×105千米C.3.84×106千米D.38.4×104千米4.(3分)下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是()A.北京B.武汉C.广州D.哈尔滨5.(3分)下列计算正确的是()A.B.C.﹣1+2=﹣3 D.6.(3分)下列各等式不一定成立的是()A.0﹣a=﹣a B.1×a=a C.(﹣a)2=a2D.0÷a=07.(3分)下列说法正确的是()A.平方是它本身的数只有0 B.立方是它本身的数只有±1C.绝对值是它本身的数是正数D.倒数是它本身的数是±18.(3分)下列各式中,其中两项是同类项的是()A.a2b和a2c B.2mn和2mnp C.0.2pq和0.3pq D.3a3b和2ab39.(3分)下列各式正确的是()A.a﹣(b﹣c+d)=a﹣b﹣c+d B.a﹣2(b﹣c+d)=a﹣2b+2c+dC.a﹣(b﹣c+d)=a﹣b+c+d D.a﹣(b﹣c+d)=a﹣b+c﹣d10.(3分)a的平方的7倍减去3的差,应写成()A.7a2﹣3 B.7(a2﹣3)C.(7a)2﹣3 D.a2(7﹣3)11.(3分)若要使得如图中平面展开图折叠成正方体后,相对面上的数互为相反数,则a+b+c的值是()A.﹣2 B.2 C.4 D.312.(3分)若|a+1|+(b﹣2016)2=0,那么a b的值是()A.1 B.﹣1 C.2016 D.1或﹣1二、填空题(本题4小题,每题3分,共计12分)请把答案填到答题卷相应位置上.13.(3分)如果盈利15万元记作+15万元,那么亏损3万元记作.14.(3分)若﹣a2b m与4a n b是同类项,则m+n=.15.(3分)按照如图计算转换机计算,输出结果为.16.(3分)观察下列图形,它们是按一定规律排列的,依照此规律,第16个图形共有个★.三、解答题(共计52分)17.(16分)计算题.(1)20﹣17﹣(﹣7)(2)3×(﹣2)﹣(﹣28)÷7(3)(4)﹣23+3×(﹣1)2010﹣(﹣2)2.18.(10分)计算题.(1)﹣4x2y﹣8xy2+2x2y﹣3xy2(2)(7y﹣3z)﹣(8y﹣5z)19.(6分)求代数式的值:4x2+3xy﹣x2﹣9,其中x=2,y=﹣3.20.(6分)如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.21.(3分)如图,一个边长为a的正方形内画了一个圆,其直径也是a(1)用代数式表示图中阴影部分的面积.(2)当a=8,π取3时,阴影部分的面积是多少?22.(5分)“十•一”黄金周期间,九寨沟在7天假期中每天接待游客的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)若9月30日的游客人数为a万人,则10月2日的游客人数为万人;(2)七天内游客人数最大的是10月日;(3)若9月30日游客人数为3万人,门票每人220元.请求出黄金周期间九寨沟门票总收入是多少万元?23.(6分)请观察下列算式,找出规律并填空,,,(1)则第10个算式是=,(2)第n个算式是=,根据以上规律解答下题:(3)+++…+.2016-2017学年广东省深圳市龙华区福苑学校七年级(上)期中数学试卷参考答案与试题解析一、选择题(本题12小题,每题3分,共36分)每小题有四个选项,其中只有一个是正确的,请把答案按要求填涂到答题卷相应位置上.1.(3分)﹣的绝对值是()A.﹣2 B.﹣ C.D.2【解答】解:|﹣|=.故选:C.2.(3分)数轴上,到﹣3对应点距离为5个单位长度的数是()A.﹣8或1 B.8 C.﹣8或2 D.2【解答】解:数轴上,到﹣3对应点距离为5个单位长度的数是:﹣3﹣5=﹣8或﹣3+5=2.故选:C.3.(3分)2007年中国月球探测工程的“嫦娥一号”卫星将发射升空飞向月球.已知地球距离月球表面约为384 000千米,那么这个距离用科学记数法(保留三个有效数字)表示应为()A.3.84×104千米B.3.84×105千米C.3.84×106千米D.38.4×104千米【解答】解:384 000=3.84×105.故选:B.4.(3分)下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是()A.北京B.武汉C.广州D.哈尔滨【解答】解:因为﹣19.4<﹣4.6<3.8<13.1,所以气温最低的城市是哈尔滨.故选:D.5.(3分)下列计算正确的是()A.B.C.﹣1+2=﹣3 D.【解答】解A、原式=﹣2×(﹣2)=4,错误;B、原式=﹣,错误;C、原式=1,错误;D、原式=﹣,正确,故选:D.6.(3分)下列各等式不一定成立的是()A.0﹣a=﹣a B.1×a=a C.(﹣a)2=a2D.0÷a=0【解答】解:A、原式=0+(﹣a)=﹣a,不符合题意;B、原式=a,不符合题意;C、原式=a2,不符合题意;D、当a=0时,原式没有意义,不一定成立,符合题意,故选:D.7.(3分)下列说法正确的是()A.平方是它本身的数只有0 B.立方是它本身的数只有±1 C.绝对值是它本身的数是正数D.倒数是它本身的数是±1【解答】解:A、平方是它本身的数有0和1,故本选项错误;B、立方是它本身的数有±1、0,故本选项错误;C、绝对值是它本身的数是正数和0,故本选项错误;D、正确.故选:D.8.(3分)下列各式中,其中两项是同类项的是()A.a2b和a2c B.2mn和2mnp C.0.2pq和0.3pq D.3a3b和2ab3【解答】解:0.2pq和0.3pq是同类项,故选:C.9.(3分)下列各式正确的是()A.a﹣(b﹣c+d)=a﹣b﹣c+d B.a﹣2(b﹣c+d)=a﹣2b+2c+dC.a﹣(b﹣c+d)=a﹣b+c+d D.a﹣(b﹣c+d)=a﹣b+c﹣d【解答】解:A、原式=a﹣b+c﹣d,故本选项错误;B、原式=a﹣2b+2c﹣2d,故本选项错误;C、原式=a﹣b+c﹣d,故本选项错误;D、原式=a﹣b+c﹣d,故本选项正确;故选:D.10.(3分)a的平方的7倍减去3的差,应写成()A.7a2﹣3 B.7(a2﹣3)C.(7a)2﹣3 D.a2(7﹣3)【解答】解:依题意得:7a2﹣3.故选:A.11.(3分)若要使得如图中平面展开图折叠成正方体后,相对面上的数互为相反数,则a+b+c的值是()A.﹣2 B.2 C.4 D.3【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“2”与面“b”相对,面“﹣1”与面“a”相对,面“﹣3”与面“c”相对.∵相对面上的数互为相反数,∴a=1,b=﹣2,c=3,∴a+b+c=2.故选:B.12.(3分)若|a+1|+(b﹣2016)2=0,那么a b的值是()A.1 B.﹣1 C.2016 D.1或﹣1【解答】解:由题意得,a+1=0,b﹣2016=0,解得,a=﹣1,b=2016,则a b=1,故选:A.二、填空题(本题4小题,每题3分,共计12分)请把答案填到答题卷相应位置上.13.(3分)如果盈利15万元记作+15万元,那么亏损3万元记作﹣3万元.【解答】解:“正”和“负”相对,如果盈利15万元记作+15万元,那么亏损3万元记作﹣3万元.故答案为:﹣3万元.14.(3分)若﹣a2b m与4a n b是同类项,则m+n=3.【解答】解:由同类项的定义可知n=2,m=1,则m+n=3.故答案为:3.15.(3分)按照如图计算转换机计算,输出结果为.【解答】解:根据题意得:[(﹣3+3)×2﹣3]÷(﹣2)=,故答案为:16.(3分)观察下列图形,它们是按一定规律排列的,依照此规律,第16个图形共有49个★.【解答】解:观察图形会发现,第一个图形的五角星数为:1×3+1;第二个图形的五角星数为:2×3+1;第三个图形的五角星数为:3×3+1;第四个图形的五角星数为:4×3+1;则第16个图形的五角星数为:16×3+1=49个五角星.三、解答题(共计52分)17.(16分)计算题.(1)20﹣17﹣(﹣7)(2)3×(﹣2)﹣(﹣28)÷7(3)(4)﹣23+3×(﹣1)2010﹣(﹣2)2.【解答】解:(1)原式=20﹣17+7=10;(2)原式=﹣6+4=﹣2;(3)原式=4﹣6﹣2=﹣4;(4)原式=﹣8+3﹣4=﹣9.18.(10分)计算题.(1)﹣4x2y﹣8xy2+2x2y﹣3xy2(2)(7y﹣3z)﹣(8y﹣5z)【解答】解:(1)原式=﹣2x2y﹣11xy2;(2)原式=7y﹣3z﹣8y+5z=﹣y+2z.19.(6分)求代数式的值:4x2+3xy﹣x2﹣9,其中x=2,y=﹣3.【解答】解:原式=3x2+3xy﹣9,当x=2,y=﹣3时,原式=3×4+3×2×(﹣3)﹣9=﹣15.20.(6分)如图,这是一个由小立方块塔成的几何体的俯视图,小正方形中的数字表示该位置的小立方块的个数.请你画出它的主视图与左视图.【解答】解:如图所示:21.(3分)如图,一个边长为a的正方形内画了一个圆,其直径也是a(1)用代数式表示图中阴影部分的面积.(2)当a=8,π取3时,阴影部分的面积是多少?【解答】解:(1)根据题意得:S阴影=S正方形﹣S圆=a2﹣(a)2π=a2﹣πa2;(2)当a=8,π=3时,S阴影=64﹣48=16.22.(5分)“十•一”黄金周期间,九寨沟在7天假期中每天接待游客的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)若9月30日的游客人数为a万人,则10月2日的游客人数为a+2.4万人;(2)七天内游客人数最大的是10月3日;(3)若9月30日游客人数为3万人,门票每人220元.请求出黄金周期间九寨沟门票总收入是多少万元?【解答】解:(1)若9月30日的游客人数为a万人,则10月2日的游客人数为a+2.4万人;故答案为:a+2.4.(2)七天内游客人数最大的是10月3日;故答案为:3.(3)[(3+1.6)+(3+1.60+0.8)+(3+1.60+0.8+0.4)+(3+1.60+0.8+0.4﹣0.4)+(3+1.60+0.8+0.4﹣0.4﹣0.8)+(3+1.60+0.8+0.4﹣0.4﹣0.8+0.2)+(3+1.60+0.8+0.4﹣0.4﹣0.8+0.2﹣1.4)]×220=(4.6+5.4+5.8+5.4+4.6+4.8+3.4)×220=34×220=7480(万元).答:黄金周期间九寨沟门票总收入是7480万元.23.(6分)请观察下列算式,找出规律并填空,,,(1)则第10个算式是=,(2)第n个算式是=﹣,根据以上规律解答下题:(3)+++…+.【解答】解:(1)由规律得:第10个算式为=;(2)第n个算式为=;(3)原式=1+…=1=.故答案为:;;;.。

相关文档
最新文档