新型螺吡喃衍生物_ 离子传感和分子水平的信息处理
一种以光致变色材料螺吡喃为前驱体的化合物及其制备方法与应用[
专利名称:一种以光致变色材料螺吡喃为前驱体的化合物及其制备方法与应用
专利类型:发明专利
发明人:谢景力,徐昊,张俊勇,潘伟
申请号:CN202010344941.2
申请日:20200427
公开号:CN111517983A
公开日:
20200811
专利内容由知识产权出版社提供
摘要:本发明属于光致变色材料领域,公开了一种以光致变色材料螺吡喃为前驱体的化合物及其制备方法,独创性地通过水热合成法,以N‑羟乙基‑3,3‑二甲基‑6‑硝基吲哚啉螺吡喃为配体,合成了金属有机框架配合物CHCuNO,通过表征发现,螺吡喃配体与乙二胺发生了原位反应,形成了席夫碱配体,金属Cu与席夫碱配体配位形成四配位的配合物CHCuNO。
本发明还公开了所述以光致变色材料螺吡喃为前驱体的化合物在光催化降解染料中的应用。
申请人:嘉兴学院,嘉兴福诺生物科技有限公司
地址:314000 浙江省嘉兴市秀洲区康和路1288号光伏科创园2号楼
国籍:CN
代理机构:北京慕达星云知识产权代理事务所(特殊普通合伙)
代理人:赵徐平
更多信息请下载全文后查看。
螺吡喃的合成机理专利
螺吡喃的合成机理专利螺吡喃是一种具有广泛应用前景的新型有机材料,能够在太阳能电池、显示器等领域发挥重要作用。
而螺吡喃的合成机理是一项关键性的技术,其机理的研究以及相关的专利对于开发新型材料具有重要的意义。
在合成螺吡喃的过程中,通过咔唑、醛类化合物以及硝酸银等原料,采用磁性回旋、酸性催化等多种化学反应机制,通过多次筛选和调整实验条件,最终成功地合成了具有高度稳定性和光电性能的优质螺吡喃材料。
关于螺吡喃的合成机理,日本科学家针对该领域进行了大量的研究。
研究者发现,在醛类化合物的作用下,通过磁性回旋反应,可以生成2-(2-氧代螺环[3,2-b]吡喃-11-基)乙酸甲酯。
随后,通过一系列有机反应,最终得到了纯度高、稳定性好的螺吡喃材料。
此外,一些外国公司在研究螺吡喃的合成机理方面也做出了积极尝试,相关的专利已经得到了认可。
例如,美国工业巨头东芝公司在2004年就获得了一项关于螺吡喃合成的专利,其专利描述了一种通过质子化反应合成螺吡喃的方法,并且该方法可以得到优质的螺吡喃材料。
虽然螺吡喃的合成机理已经得到了较为完整的揭示,但是仍然面临着一些挑战。
例如,由于合成过程中原料的选择和反应条件的调控都具有一定的局限性,导致部分合成的材料未能达到优质的水平,这给后续材料的应用带来了一定的困难。
综上所述,螺吡喃的合成机理是一项重要的研究领域。
通过对螺吡喃的合成机理的深入探究,可以为开发新型有机材料打下坚实的基础,同时也可以为材料应用领域的发展提供广阔的空间。
虽然螺吡喃的合成机理在国内受到了一些限制,但是在国际上该领域已经受到了广泛关注,我们需要加强研究和合作,在相关领域保持前沿性的研究。
螺吡喃化合物在分析化学中的应用
螺吡喃化合物在分析化学中的应用
螺吡喃(Rhodamin)是一种有机红色染料分子,它由一个芳香平面和六条苯环构成,广泛应用于电子、医药、纺织、服装等领域。
近年来,螺吡喃化合物也用于分析化学。
它们具有许多特殊的性质,如光致变色性、抗氧化性、pH反应性、抗病毒性等,使得它们可以用
于许多不同的分析化学应用中。
在光致变色性方面,螺吡喃化合物具有优异的集色性,它们以可见光的偶联反应的方式改变其色调,可以作为引发机制的驱动力。
螺吡喃化学反应简单,反应时间短,可以用作高灵敏度的检测方法。
它们在电化学检测中也得到了广泛的应用,如化学传感器和电化学谱仪,具有很高的灵敏度和准确性。
此外,螺吡喃化合物在 pH应性方面也有显著优势,可以被用于研究和检测体液环境中 pH变化。
它们能够在低 pH件下发出蓝色,
在高 pH件下发出红色,因此在生化实验中,它们可以作为中性度指标化合物,而不需要考虑 pH误差。
螺吡喃化合物还具有抗氧化性,抗病毒性和抗菌性,从而使它们在药物检测、药罐抗菌、数据记录和安全防护等方面受到重视。
例如,它们可以用作药物检测,检测药物的有效性和有害物质的程度。
在食品中,它们可以用于检测残留药物,确保食品安全。
此外,它们还可以用于抗菌面罩和体表消毒液的制备,以防止传播病毒感染。
因此,螺吡喃化合物在分析化学中的应用广泛,可以用于改进检测方法的灵敏度,提高检测的精确度,并且可以针对不同的分析要求
和数据处理标准提出有效的解决方案。
它们的应用也可以推动新药开发,为疾病的治疗和抗病毒提供重要的技术支持。
未来,螺吡喃化合物可能会在更多的应用领域发挥重要作用,为人类创造更多的福利。
一种新型吡唑啉衍生物荧光受体的合成及其离子识别性能
摘 要 : 以苯 环 为 荧 光 基 团 合 成 了 一 种新 的 吡 唑 啉衍 生 物 荧 光 受 体 ; 采 用 核 磁 共 振 光 谱 对 目标 化 合 物 进 行 了 结 构表征 , 并 利 用 荧 光 光 谱 法 研 究 了其 对 常见 阳 离子 的选 择 性 识 别 .结 果 表 明 , 合成的吡唑啉衍生物对 N a 、 H 、 F e 、 C u 。 具有 良好 的识 别 络 合 效 果 . 关键词 : 吡唑啉衍生物 ; 荧光受体 ; 合成 ; 离 子 识 别 性 能
.
Ke y wo r d s:py r a z o l i ne d e r i v a t i ve ;f l u o r e s c e n t r e c e pt o r ;s y nt he s i s ;i o n r e c o gn i t i on c a pa bi l i t y
Ab s t r a c t :A n e w p y r a z ol i n e d e r i v a t i v e c on t a i n i ng be nz e n e r i n g a s t h e f l u o r op ho r e wa s s y n t he — s i z e d a s a f l u or e s c e nt r e c e pt o r . T he s t r u c t u r e o f a s — s y nt he s i z e d c o mp ou nd W3 S c ha r a c t e r i z e d b y nu c l e a r ma g ne t i c r e s o na n c e s pe c t r os c o p y,a nd i t s s e l e c t i v e r e c o g ni t i on c a p a bi l i t y t o wa r d s c o m— mo n c a t i o ns wa s s t ud i e d by f l u o r e s c e n c e s pe c t r om e t r y. R e s u l t s i nd i c a t e t h a t a s — s yn t he s i z e d py r a z o l i ne d e r i v a t i ve po s s e s s e s go od s e l e c t i v e r e c o gn i t i o n c a p a bi l i t y t o wa r ds a ni o ns s u c h a s Na + , H + , Fe 。 +a nd Cu +
螺吡喃和偶氮苯类光致异构化合物的合成及应用研究
螺吡喃和偶氮苯类光致异构化合物的合成及应用研究
近年来,螺吡喃和偶氮苯类光致异构化合物的合成及应用研究受到了广泛的关注。
螺吡喃和偶氮苯类光致异构化合物具有独特的结构和性质,可以用于各种应用领域,如光电子器件、光学器件、光谱分析仪器、光致变色材料、光致发光材料、光致发光器件、光致发光显示器件等。
螺吡喃和偶氮苯类光致异构化合物的合成主要包括两种方法:一种是采用有机
合成方法,如酰胺反应、硝基取代反应、烷基化反应、烯基化反应、烯基氧化反应等;另一种是采用物理合成方法,如溶剂沉淀法、溶剂蒸馏法、溶剂萃取法、溶剂萃取-溶剂沉淀法等。
螺吡喃和偶氮苯类光致异构化合物的应用研究主要集中在光电子器件、光学器件、光谱分析仪器、光致变色材料、光致发光材料、光致发光器件、光致发光显示器件等方面。
其中,光电子器件可以用于检测、控制、记录和传输信号;光学器件可以用于检测、控制、记录和传输光信号;光谱分析仪器可以用于分析物质的组成;光致变色材料可以用于检测、控制和记录光信号;光致发光材料可以用于检测、控制和记录光信号;光致发光器件可以用于检测、控制和记录光信号;光致发光显示器件可以用于显示和控制光信号。
总之,螺吡喃和偶氮苯类光致异构化合物的合成及应用研究具有重要的理论和
实际意义,可以为各种应用领域提供新的材料和新的技术。
光响应螺吡喃类衍生物的研究进展
第49卷第4期2021年2月广㊀州㊀化㊀工Guangzhou Chemical IndustryVol.49No.4Feb.2021光响应螺吡喃类衍生物的研究进展∗翁城武1,高功敏1,朱鸿达1,吴芸芸1,韩㊀辉2(1泉州海关综合技术服务中心,福建㊀泉州㊀362000;2山西大学环境科学研究所,山西㊀太原㊀030001)摘㊀要:螺吡喃类衍生物是最具代表性的光致变色化合物之一,受到不同波长的光照射后可以发生可逆的结构转变,其开环的部花菁结构通常可以发射长波长的荧光,同时开环前后呈现明显的颜色变化,这个特性使其在多领域具有广阔的应用前景㊂本文综述了螺吡喃及其衍生物在金属离子识别㊁氨基酸㊁小分子识别㊁生物成像㊁药物载体等方面的研究进展,并展望其研究前景㊂关键词:螺吡喃;部花菁;光致变性能;快速识别㊀中图分类号:O657.3㊀文献标志码:A文章编号:1001-9677(2021)04-0010-03㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀∗基金项目:2019年山西省高等学校科技创新项目(2019L0044);福建省科技厅项目(2020Y0075);厦门海关项目(2020XK09);泉州科技项目(2020N007s)㊂通讯作者:韩辉(1984-),男,博士,硕导,主要从事功能小分子合成与应用㊂Research Progress on Photoresponse Spiropyran Derivatives ∗WENG Cheng -wu 1,GAO Gong -min 1,ZHU Hong -da 1,WU Yun -yun 1,HAN Hui 2(1Comprehensive Technology Service Center of Quanzhou Customs,Fujian Quanzhou 362000;2Institute of Environmental Science,Shanxi University,Shanxi Taiyuan 030001,China)Abstract :Spiropyran is a well -known photochromic compound.Reversible structural changes could be shown while it s exposed to different wavelengths of light.The ring -opening part of the cyanine structure can usually emit near -infrared wavelength fluorescence,and the color changes obviously before and after the recognition system,which can be recognized by the naked eye,this characteristic makes it have a broad application prospect in many fields.The research progress on spiropyran and its derivatives in metal ion recognition,amino acid,small molecule recognition,bioimaging,drug carrier,and so on,was reviewed.Key words :spiropyran;partial cyanine;photolytic property;rapid recognition螺吡喃是众所周知的光致变色化合物,即通过紫外光和可见光(或热)可以在无色闭环构型与有色开环部花菁构型之间进行可逆的异构化㊂早在1965年,Phillips 等[1]发现部花菁的螯合能力;此后,人们对金属离子与螺吡喃的相互作用,特别是对其光化学和光物理性质的影响产生了浓厚的兴趣[2-5]㊂一个很重要的原因是能够被阳离子诱导异构化的螺吡喃衍生物在金属离子识别方面具有很好的应用前景,且开环的部花菁结构通常可以发射近红外波长的荧光,同时识别体系前后颜色变化明显,可肉眼识别㊂迄今为止,已报道的可以被金属离子诱导开环的螺吡喃衍生物结构大都是通过在N 原子或7-位修饰可以与金属离子发生配位作用的官能团㊂从分子键的角度来说,螺吡喃闭环与开环的转化是C -O 键的形成与断裂,因此任何能促进C -O 键断裂的方式都应该能促进部花菁结构的形成,而对能够光致开环的螺吡喃来说,其机理是紫外光照射导致电子跃迁,改变了轨道能量,使得C -O 键两个原子间参与成键的轨道不再匹配而发生断裂㊂1㊀在金属离子识别方面的应用目前为止,通过在N 和7-位修饰配位官能团得到的螺吡喃开环体系可结合的金属离子包括Na +,Li +,Cu 2+,Zn 2+,Hg 2+,Ni 2+,Co 2+,Cd 2+和Eu 3+等㊂早期研究中最有代表性的金属离子诱导的螺吡喃开环体系是大坂府立大学的Inouye 等[4]开发的碱金属诱导的体系,该体系中螺吡喃的结构特点是在N 原子引入了冠醚作为修饰基团,而冠醚是常用的碱金属识别基团,冠醚与碱金属离子络合后,螺吡喃的氧原子参与配位,促进了螺吡喃的开环,随后该课题组开发了一系列以冠醚为修饰基团的碱金属诱导的螺吡喃开环体系,并系统研究了不同碱金属离子与该螺吡喃结构结合后的光化学和光物理性质,为后来不同金属离子诱导的螺吡喃体系的结构设计提供了思路[5]㊂随后的研究主要围绕在螺吡喃的7-位引入识别基团来设计相关体系㊂1999年,华盛顿海军科学实验的Evans 等[6]制备了一类喹啉并螺吡喃结构,该结构可以与Hg 2+,Cd 2+,Co 2+,Cu 2+,Zn 2+和Ni 2+等重金属离子发生配位,但开环结构与金属离子形成的络合物在可见光条件不稳定,在可见光照射下能够从开环的配位结构变回闭环的螺吡喃构型㊂2005年,日本和歌山大学的Sakamoto 等[7]将冠醚引入螺吡喃的7-位得到了一类可以与碱金属诱导开环的螺吡喃化合物,文中作者对不同结构的化合物对碱金属的选择性诱导进行了详细研究,结果表明二氮杂-12-冠-4-双螺吡喃表现出优异第49卷第4期翁城武,等:光响应螺吡喃类衍生物的研究进展11㊀Li+选择性,并且紫外光和可见光可以加速或者减慢碱金属离子对该类结构的诱导开环㊂北京大学的邵娜及其合作者在螺吡喃的7-位引入了不同的氨基化合物得到了一系列可以选择性与铜离子(a,b)和锌离子(c)发生诱导开环作用的结构[8-11],其中他们还对结构a与铜离子的络合物用于半胱氨酸和高半胱氨酸的定性与定量分析㊂类似的研究还有香港浸会大学的朱等在7-位修饰了8-氨基喹啉(d,e),该类结构可以选择性与锌离子发生诱导开环作用[12-13]㊂另外也有研究是在N的位置引入非冠醚类结构实现金属离子对螺吡喃结构的诱导开环,台湾国立中山大学的Wu等[14]描述了一个螺吡喃功能化的半导体聚合物,可以作为荧光探针的对Cu2+进行比例检测,即Cu2+可以诱导该符合结构的螺吡喃开环,其中感应机制是荧光共振能量转移㊂2㊀在氨基酸㊁阴离子等小分子识别方面的应用另外,还有一些是有关利用氨基酸[15]㊁氟离子[16]㊁氰基[17]㊁pH[18]和强力[19]诱导螺吡喃结构开环的研究㊂螺吡喃的开环构型和闭环构型呈现出不同的光谱性质,并且容易受到pH㊁特定离子或者生物分子的诱导,继而发生SP 构型和MC构型的互变异构㊂基于这个机制,可以作为光学传感器,对相关离子和生物小分子进行检测[20-25]㊂Shiraishi等[26]制备了一种可以选择性检测CN-的香豆素修饰的螺吡喃荧光探针㊂探针结构没有荧光,加入CN-后,CN-和与螺吡喃的开环结构发生亲核加成反应,进而促进了螺吡喃的开环平衡向右进行,而开环结构显示强的蓝色荧光,继而实现了对CN-的荧光检测㊂Yin等[27]制备了一种可用于检测强酸强碱pH的螺吡喃类荧光探针㊂当该探针处于pH小于2.0的强酸环境中时,分子开环并发射强的红色荧光;在中性的环境中,探针不发射荧光;而当探针处于pH大于等于12.0的强碱环境中时,其构型发生改变,主要以闭环的构型为主,同时相关酸性的取代基质子被中和,溶液呈现蓝色荧光㊂这些性质使得探针可应用在强酸或者强碱的环境中㊂Sun等[28]设计并制备了一种可以选择性识别低聚物的探针㊂该探针的结构由螺吡喃和识别基团氨基萘2-氰基丙烯酸酯(ANCA)两部分构成,螺吡喃的空间刚性改性了低聚物的性质,同时增强了该复合物的荧光强度㊂基于该机理,探针可以特异性识别患有阿尔茨海默病模型小鼠大脑中的某类低聚物㊂3㊀在生物成像方面的应用螺吡喃类衍生物用做荧光探针时,检测物质引起的螺吡喃异构化的特性可以提高荧光成像的分辨率[29]㊂Johnson等[30]开发了一类 开-关 型荧光探针(Tu-SP)㊂在激发波长是375nm时,探针结构发生互变异构,并且发射强绿色荧光,借助此性质,该探针具备对HeLa细胞中微管蛋白进行高分辨荧光成像的能力㊂其原理可能是探针分子与秋水仙碱的复合结构可以选择性识别隐藏在HeLa细胞中的超痕量微管蛋白㊂Zhang等[31]开发了一种 开-关 型螺吡喃类衍生物探针(TPP-CY)㊂该探针的机理是基于线粒体膜电位的变化,这种变化可以使得螺吡喃发生构型转化,根据转变前后谱图参数的变化能够比率检测线粒体膜电位并且实现其高分辨荧光成像㊂该探针可以用于细胞健康的评估㊂4㊀在药物载体方面的应用螺吡喃衍生物在不同条件下呈现出的两种构型表现出不同的物理性质,其中闭环构型是中性分子,开环构型是双离子分子㊂这个性质的不同使其表现出不同不同的润湿性质㊂即开环部花青结构呈现出亲水性,关环的SP构型呈现疏水性,基于此理论,螺吡喃结构与多孔材料复合后可用于调控药物分子的释放[32-35]㊂Wen等[36]开发了一种螺吡喃桥链介孔二氧化硅的光控缓释药物载体㊂在365nm的光激发下,螺吡喃发生互变异构,转变成亲水性的部花青构型,表面变为亲水性,使得存储在介孔中的药物分子游离到溶液中㊂Liu等[37]开发了一种长波长红外光控制的药物控释体系,该体系采用上转化的纳米介孔二氧化硅作为载体,以负载在其表面的螺吡喃分子作为控制开关㊂当用波长980nm激发光照射时,上转换材料将其转化为可使螺吡喃开环的短波长紫外光,螺吡喃开环,药物从孔道中游离出来㊂5㊀其它方面的应用螺吡喃及其衍生物通常呈现受到压力㊁温度㊁光照等刺激而变色的性质,这些性质使其在应力指示㊁温度传感㊁变色油墨㊁温变油墨等领域有广阔的应用㊂Vamvakaki等[38]采用自由基聚合,将2-二甲胺基甲基丙烯酸乙酯和单体(SPMA)通过聚合反应形成二嵌段共聚物,该材料可以自组装形成胶束㊂同时呈现温度㊁pH和紫外光的刺激响应,这种响应表现为胶束物理性质的改变,此改变后可以选择性的释放包裹的物质㊂Boydston等[39]制备了一类压致变色的螺吡喃材料,将该材料均匀分散于聚己内酯材料(PDL)中,当该材料受到外力时,螺吡喃会发生结构转变,变成紫色部花青结构,或当拉伸该材料时,材料本身也会变为紫色㊂研究者还成功将该材料应用于3D打印机㊂6㊀结㊀语螺吡喃是众所周知的光致变色化合物,开环的部花菁结构通常可以发射近红外波长的荧光,同时识别体系前后颜色变化明显,可肉眼识别,这个特性使其在多领域具有广阔的应用前景,近年来已成为研究热点㊂根据已报道文献显示,仅有日本大阪大学的Shiraishi等在2012年和2013年两篇文献报道过在螺吡喃5-位修饰金属离子识别基团的研究[26,40],虽然实现了金属离子诱导螺吡喃开环,但其条件较为苛刻,一个需要在加热至60ħ和氧气的参与下才能实现开环,另一个则需要在紫外灯照射下实现开环,这些限制了此类探针进一步更广泛的应用㊂因此能否通过进一步优化修饰基团来实现5-位修饰的螺吡喃分子在温和条件下对金属离子的选择性开环进而实现选择性识别是该类探针发展的一个令人很感兴趣的方向㊂参考文献[1]㊀Phillips J P,Mueller A,Przystal F.Photochromic Chelating Agents[J].J.Am.Chem.Soc.,1965,87:4020-4020.[2]㊀Salhin A M A,Tanaka M,Kamada K,et al.Decisive Factors in thePhotoisomerization Behaviorof Crowned Spirobenzopyrans:Metal Ion Interaction with Crown Ether and Phenolate Anion Moieties[J].Eur..Chem.,2002:655-662.[3]㊀Inouye M,Akamatsu K,Nakazumi H.New Crown Spirobenzopyrans asLight-and Ion-Responsive Dual-Mode Signal Transducers[J].J.12㊀广㊀州㊀化㊀工2021年2月Am.Chem.Soc.,1997,119(39):9160-9165.[4]㊀Inouye M,Ueno M,Kitao T,et al.Alkali metal recognition inducedisomerization of spiropyrans[J].J.Am.Chem.Soc.,1990,112:8977-8979.[5]㊀Inouye M.Artificial-signaling receptors for biologically importantchemical species[J].Coordin.Chem.Rev.,1996,148:265-283.[6]㊀Evans L,Collins G E,Shaffer R E,et al.Selective MetalsDetermination with a Photoreversible Spirobenzopyran[J].Anal.Chem.,1999,71:5322-5327.[7]㊀Sakamoto H,Takagaki H,Nakamura M,et al.Photoresponsive LiquidMembrane Transport of Alkali Metal Ions Using Crowned Spirobenzopyran[J].Anal.Chem.,2005,77(7):1999-2006. [8]㊀Shao N,Zhang Y,Cheng S M,et al.Copper Ion-Selective FluorescentSensor Based on the Inner Filter Effect Using a Spiropyran Derivative [J].Anal.Chem.,2005,77(22):7294-7303.[9]㊀Shao N,Jin J Y,S Cheng M,et al.A Spiropyran-Based Ensemble forVisual Recognition and Quantification of Cysteine and Homocysteine at Physiological Levels[J].Angew.Chem.Int.Ed.,2006,45:4944-4948.[10]Shao N,Jin J Y,Wang H,et al.Tunable Photochromism ofSpirobenzopyran via Selective Metal Ion Coordination:An Efficient Visual and Ratioing Fluorescent Probe for Divalent Copper Ion[J].Anal.Chem.,2008,80(9):3466-3475.[11]Shao N,Wang H,Gao X D,et al.Spiropyran-Based FluorescentAnion Probe and Its Application for Urinary Pyrophosphate Detection [J].Anal.Chem.,2010,82(11):4628-4636.[12]Zhu J F,Yuan H,Chan W H,et al.A FRET fluorescent chemosensorSPAQ for Zn2+based on a dyad bearing spiropyran and8-aminoquinoline unit[J].Tetrahedron Lett.,2010,51:3550-3554.[13]Zhu J F,Yuan H,Chan W H,et al.A colorimetric and fluorescent turn-on chemosensor operative in aqueous media for Zn2+based on a multifunctionalized spirobenzopyran derivative[J].Org.Biomol.Chem.,2010,8:3957-3964.[14]Wu P J,Chen J L,Chen C P,et al.Photoactivated ratio metric copper(II)ion sensing with semiconducting polymer dots[J].Chem.Commun.,2013,49:898-900.[15]Lv G L,Sun A Y,Wei P,et al.A spiropyran-based fluorescent probefor the specific detection of b-amyloid peptide oligomers in Alzheimer s disease[J]mun.,2016,52:8865-8868. [16]Li Y H,Duan Y,Zheng J,et al.Self-Assembly of Graphene Oxidewith a Silyl-Appended Spiropyran Dye for Rapid and Sensitive Colorimetric Detection of Fluoride Ions[J].Anal.Chem.,2013,85(23):11456-11463.[17]Shiraishi Y,Nakamura M,Hayashi N,et al.Coumarin--SpiropyranDyad with a Hydrogenated Pyran Moiety for Rapid,Selective,and Sensitive Fluorometric Detection of Cyanide Anion[J].Anal.Chem., 2016,88:6805-6811.[18]Wan S L,Zheng Y,Shen J,et al. On-off-on Switchable Sensor:AFluorescent Spiropyran Responds to Extreme pH Conditions and Its Bioimaging Applications[J].ACS Appl.Mater.Interfaces,2014,6(22):19515-19519.[19]Chen H,Yang F Y,Chen Q,et al.A Novel Design of Multi-Mechanoresponsive and Mechanically Strong Hydrogels[J].Adv.Mater.,2017,29(21):1606900.[20]Zhu J F,Yuan H,Chan W H,et al.A FRET fluorescent chemosensorSPAQ for Zn2+based on a dyad bearing spiropyran and8-aminoquinoline unit[J].Tetrahedron Letters,2010,51:3550-3554.[21]Natali M,Aakeroy C,Desper J,et al.The role of metal ions andcounterions in the switching behavior of a carboxylic acid functionalized spiropyran[J].Dalton transactions,2010,39(35):8269-8277. [22]Parrot A,Izzet G,Chamoreau L M,et al.Photochromic properties ofpolyoxotungstates with grafted spiropyran molecules[J].Inorganic chemistry,2013,52(19):11156-11163.[23]Kumbhar H S,Gadilohar B L,Shankarling G S.A highly selectivequinaldine-indole based spiropyran with intramolecular H-bonding for visual detection of Cu(II)ions[J].Sensors and Actuators B: Chemical,2016,222:35-42.[24]Jiang X X,Günter M,Eric B.Reversible photodynamic chloride-selective sensor based on photochromic spiropyran[J].J Am Chem Soc.,2012,134(41):16929-16932.[25]Darwish T A,Evans R A,Michael J,et al.Spiropyran-amidine:amolecular canary for visual detection of carbon dioxide gas[J].Chemistry,2011,17(41):11399-11404.[26]Shiraishi Y,Matsunaga Y,Hirai T.Selective colorimetric sensing of Co(II)in aqueous media with a spiropyran-amide-dipicolylamine linkage under UV irradiation[J].Chem Commun,2012,48(44):5485-5487.[27]Johnson G A,Wilken C,Kirk E A,et al.Toward regulation of gonadalfunction by a synthetic hybrid molecule composed of gonadotropin and Fc fragment of immunoglobulin G[J].Am J Reprod Immunol,2013, 23:22-25.[28]Wan S,Zheng Y,Shen J,et al. On-off-on switchable sensor:afluorescent spiropyran responds to extreme pH conditions and its bioimaging applications[J].Acs Appl Mater Inter,2014,6(22):19515-19519.[29]Lv G,Sun A,Wei P,et al.A spiropyran-based fluorescent probe forthe specific detection ofβ-amyloid peptide oligomers in Alzheimer s disease[J].Chem Commun,2016,52(57):8865-8868. [30]Fan J,Lin C,Li H,et al.A ratiometric lysosomal pH chemosensorbased on fluorescence resonance energy transfer[J].Dyes&Pigments, 2013,99(3):620-626.[31]Wang C,Wang G,Li X,et al.Highly Sensitive Fluorescence MolecularSwitch for the Ratio Monitoring of Trace Change of Mitochondrial Membrane Potential[J].Anal Chem,2017,89:11514-11519. [32]Xue Y,Tian J,Tian W,et al.Significant Fluorescence Enhancement ofSpiropyran in Colloidal Dispersion and Its Light-Induced Size Tunability for Release Control[J].J Phys Chem C,2015,119:20762-20772.[33]Chen S,Gao Y,Cao Z,et al.Nanocomposites of Spiropyran-Functionalized Polymers and Upconversion Nanoparticles for Controlled Release Stimulated by Near-Infrared Light and pH[J].Macromolecules,2016,49:7490-7496.[34]Klajn R.Spiropyran-based dynamic materials[J].Chem Soc Rev.,2014,43(1):148-184.[35]Xing Q,Li N,Chen D,et al.Light-responsive amphiphilic copolymercoated nanoparticles as nanocarriers and real-time monitors for controlled drug release[J].J Mater Chem B,2014,2(9):1182-1189.[36]Chen L,Wang W,Su B,et al.A light-responsive release platform bycontrolling the wetting behavior of hydrophobic surface[J].Acs Nano, 2014,8:744-751.[37]Liu C,Zhang Y,Liu M,et al.A NIR controlled cage mimicking systemfor hydrophobic drug mediated cancer therapy[J].Biomaterials,2017, 139:151-162.[38]Falireas P G,Vamvakaki M.Triple-Responsive Block CopolymerMicelles with Synergistic pH and Temperature Response[J].Macromolecules,2018,51:6848-6858.[39]Peterson G I,Larsen M B,Ganter M A,et al.3D-printedmechanochromic materials[J].Acs Appl Mater Interfaces,2015,7(1):577-583.[40]Shiraishi Y,Tanaka K,Hirai T.Colorimetric sensing of Cu(II)inaqueous media with a spiropyran derivative via a oxidative dehydrogenation mechanism[J].ACS Appl.Mater.Interfaces,2013, 5:3456-3463.。
一种新型螺吡喃化合物的合成及其光致变色性质的研究
一种新型螺吡喃化合物的合成及其光致变色性质的研究作者:张伟华王川尚延江杨志范来源:《价值工程》2012年第08期摘要:通过连续反复的大量实验过程,最终合成一种未见报道的螺吡喃类化合物3,3-二甲基-N-甲基-5-氯-6,-氯-8,-硝基苯并螺吡喃。
利用核磁共振,红外光谱等检测手段对中间体以及螺吡喃化合物的结构进行了表征,并利用紫外光谱研究说明了其光致变色性能。
关键词:合成;螺吡喃;光致变色中图分类号:O641.37文献标识码:A文章编号:1006-4311(2012)08-0315-020引言光致变色材料是一种新型的功能材料。
在一定的波长和强度的光作用下分子结构会发生变化,从而导致其对光的吸收峰值即颜色的相应改变,且这种改变一般是可逆的。
由此光致变色特征,人类已经对光致变色材料的研究越来越深入。
作为光制安全材料[1]、光信息存储材料[2]、光计算器等[3]的基础材料已经引起了全世界的关注,并具有良好的市场和使用价值。
本文合成了一种新型光致变色材料,介绍其变色原理,并通过不同的光照时间、浓度、温度等因素对光致变色材料的变色性能的影响进行了详细研究和分析。
1实验分析1.1 实验设备与仪器简介实验中运用到668型真空干燥箱、循环水式多用真空泵、T-100型托盘天平、79-9型恒温磁力搅拌器、510型超级恒温器、烧杯、试管等试验设备;Perbin-ZLmen580G型傅立叶红外光谱仪、PerKinElmer Lambda25型紫外-可见光谱仪、HNMR谱由JEOL公司,Unity-400核磁共振仪、X-4数字显示显微熔点测定仪、PE-2400型元素分析仪等。
1.2 中间体的合成1.2.1 合成中间体5-氯水杨醛(见图1)将30g(0.8mol)氢氧化钠用286ml水溶解,升温至40℃,加入12.9g对氯苯酚,使之完全溶解,称量146ml氯仿放入并搅拌均匀,升温回流6小时,反应完全,等其冷却至室温,将其倒入1000ml的烧杯中,并加入3mol/L的稀盐酸至PH=2,抽滤后分离取其中有机层,蒸掉溶剂,得紫红色液体,并析出少量黑色物质,利用层析法,最终得到浅黄色晶体8.62g。
新型螺吡喃衍生物_ 离子传感和分子水平的信息处理
[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.⁃Chim.Sin .2012,28(10),2471-2479October Received:March 31,2012;Revised:May 14,2012;Published on Web:May 15,2012.∗Corresponding authors.GUO Xue-Feng,Email:guoxf@.QI Chuan-Min,Email:qichuanmin@.The project was supported by the National Key Basic Research Program of China (973)(2009CB623703,2012CB921404),National Natural Science Foundation of China (20833001,51121091,2112016,21071022),and Foundation for the Author of National Excellent Doctoral Dissertation of Higher Education,China (2007B21).国家重点基础研究发展规划项目(973)(2009CB623703,2012CB921404),国家自然科学基金(20833001,51121091,2112016,21071022)及全国高等学校优秀博士论文作者专项基金(2007B21)资助ⒸEditorial office of Acta Physico ⁃Chimica Sinicadoi:10.3866/PKU.WHXB 201205155新型螺吡喃衍生物:离子传感和分子水平的信息处理李颖若1张洪涛2齐传民1,*郭雪峰2,3,*(1北京师范大学化学学院,放射性药物教育部重点实验室,北京100875;2北京大学化学与分子工程学院,北京分子科学国家实验室,分子动态与稳态结构国家重点实验室,北京100871;3北京大学工学院先进材料与纳米技术系,北京100871)摘要:为实现金属离子检测和分子水平的信息处理,合成了一类新型的含有功能配位基团的螺吡喃衍生物(SP1-SP4).研究发现:在没有UV 光照的条件下,金属离子可以促进螺吡喃(SP2和SP4)开环并形成稳定可逆的络合物(MC-M n +).紫外-可见吸收光谱研究表明,在UV 光照前加入不同的金属离子会引起SP2和SP4的光学性质的特征变化,因此提供了一种简易的通过裸眼就能辨别金属离子的比色方法.荧光光谱研究表明,这类化合物能够高灵敏高选择性地检测锌离子.此外,基于吸收光谱和荧光光谱的变化,这类螺吡喃衍生物可以用于构建组合的逻辑门,执行分子水平的信息处理,从而展现了其在化学或环境传感和未来的分子计算机领域的潜在应用前景.关键词:螺吡喃;化学传感;逻辑门;紫外-可见吸收光谱;荧光光谱中图分类号:O641New Spiropyran Derivatives:Ion Sensing and InformationProcessing at the Molecular LevelLI Ying-Ruo 1ZHANG Hong-Tao 2QI Chuan-Min 1,*GUO Xue-Feng 2,3,*(1Key Laboratory of Radiopharmaceuticals,College of Chemistry,Beijing Normal University,Beijing 100875,P .R.China ;2Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P .R.China ;3Department of AdvancedMaterials and Nanotechnology,College of Engineering,Peking University,Beijing 100871,P .R.China )Abstract:We have designed and synthesized a new class of spiropyran derivatives (SP1-SP4)with functional chelating groups,such as pyridine or quinoline moieties and a methoxy group (―OMe),for use in metal ion sensing and information processing at the molecular level.It is notable that metal ions can favor coordination with chelating groups and facilitate the photoisomerization of spiropyran molecules from the closed form to the open merocyanine form without UV irradiation,thus leading to significant changes in their chemical and physical properties.UV-Vis absorption studies indicated that SP2and SP4exhibited metal ion-dependent reversible binding affinities that result in different hypsochromic shifts for the MC-M n +complexes.These changes in color can be recognized by eye,thus offering an easy colorimetric method for metal ion detection.Further emission studies distinguished them as promising candidates for Zn 2+detection with good sensitivity and selectivity.Moreover,on the basis of their absorption and fluorescence spectra,several combinational logic gates were constructed for information processing at the molecular level.These results demonstrate that spiropyran derivatives with desired functionalities show great potential not only for chemical or environmental sensors,but also for future molecular computing.2471Acta Phys.⁃Chim.Sin.2012V ol.28Key Words:Spiropyran;Chemical sensor;Logic gate;UV-Vis absorption spectrum;Fluorescent spectrum1IntroductionPhotochromic compounds have been extensively investigat-ed in recent years for their high potential applications in opti-cally rewritable storage,1optical switching,2chemical3and bio-logical4sensings.In particular,considerable attention has been paid to spiropyran molecules,one of the most promising fami-lies of photochromic compounds,because of their unique opti-cal and physical properties.5-10The stimulus-induced transfor-mation of the ring-closed structure of spiropyrans(SPs)into their fullyπ-conjugated isomeric merocyanine forms(MCs)re-sults not only in the variations of absorption spectra,but also in the profound alterations of other physical and chemical prop-erties of the system,such as the dipole moments,nonlinear op-tic properties,emission spectra,and macroscopic properties (for example,conductance,rheological property,and surface wettability).By taking advantage of these remarkable charac-teristics of SPs,a number of spiropyran derivatives containing diverse functional groups have so far been designed and used as molecular sensors and molecular switches.11-17Among the remarkable characteristics of SPs,one unique feature is that the photogenerated open merocyanine form pro-cesses the charge-separated zwitterionic state with a free nega-tively-charged oxygen atom,which can further interact with ex-ternal stimuli through dipole-dipole interactions and coordina-tion chemistry(Scheme1).Recently,several groups have suc-cessfully utilized this for the purpose of optically detecting met-al ions,18-20anions,21nucleobases,22amino acids,23and DNA,24 etc.In this study,a new class of spirobenzopyrans SP2and SP4bearing electron-donating―OMe group and pyridine or quinoline moiety as binding sites were designed and synthe-sized(Scheme1).We will explore the changes in their chemi-cal and physical properties upon addition of different metal ions before and after UV irradiation and show the capability of selectively detecting metal ions with high sensitivity and con-structing logic gates for information processing at the molecu-lar level.25-312ExperimentalFunctional spirobenzopyran derivatives SP1-SP4were syn-thesized as shown in pounds2-1and2-2were prepared by modification of the procedure reported by Raymo and Giordani32bearing―OH as a functional group for the fol-lowing reaction step.The pyridine or quinoline moiety was then linked to compounds2-1and2-2using EDCI/DMAP (EDCI:1-ethyl-3-(3-dimethylaminopropyl)carbodiimide,DMAP: 4-dimethylaminopyridine)esterification reaction to give SP1-SP4as yellow crystals in high yield(~90%).2.11-(2-hydroxyethyl)-2,3,3-trimethylindoliumbro-mide(1)Under nitrogen atmosphere,a mixture of2,3,3-trimethyl-3H-indole(4.77g,30.0mmol)and2-bromoethanol(4.50g, 36.0mmol)in dry CH3CN(30mL)was heated under reflux for 12h.Removal of CH3CN and excess of2-bromoethanol under the reduced pressure gave a dark purple residue.Repeated washing with anhydrous ether gave compound1(7.85g, 92.1%)as a white solid.All the reagents used are AR grade.1H NMR(DMSO-d6,400MHz):1.55(s,6H),3.38(s,3H), 3.87(t,2H,J=6.8Hz),4.60(t,2H,J=6.8Hz),7.60-7.64(m, 2H),7.84-7.87(m,1H),7.94-7.98(m,1H).Fourier transform mass spectroscopy(FTMS):m/z=204.1,[M-Br]+.2.22-(3ʹ,3ʹ-dimethyl-6-nitrospiro[chromene-2,2ʹ-indolin]-1ʹ-yl)ethanol(2-1)Under nitrogen atmosphere,Compound1(1.14g,4.0mmol) and2-hydroxy-5-nitrob-enzaldehyde(0.80g,4.8mmol)were dissolved in dry tetrahydrofuran(THF)(25mL).The solution was heated to reflux then triethylamine(0.49g,4.8mmol)in Scheme1Illustrations of the reversible structural transformations of SP2and SP4in responses to light,heat,and metal ions 2472LI Ying-Ruo et al .:New Spiropyran Derivatives:Ion Sensing and Information Processing at the Molecular LevelNo.10THF (5mL)was added dropwise.The mixture was refluxed for 4h.The solvent was removed by evaporation under re-duced pressure.The crude residue was recrystallized from ab-solute ethanol giving compound 2-1(1.30g,92.2%)as red pur-ple crystals.1H NMR (CDCl 3,400MHz):1.20(s,3H),1.29(s,3H),3.33-3.50(m,2H),3.68-3.77(m,2H),5.89(d,1H,J =13.6Hz), 6.67(d,1H,J =10.4Hz), 6.76(d,1H,J =12.4Hz),6.87-6.93(m,2H),7.10(d,1H,J =9.0Hz),7.20(t,1H,J =10.0Hz ),7.99-8.04(m,2H).FTMS:m /z =353.1,[M+H]+.2.32-(8-methoxy-3ʹ,3ʹ-dimethyl-6-nitrospiro[chromene-2,2ʹ-indolin]-1ʹ-yl)ethanol (2-2)Compound 2-2was prepared according to a procedure simi-lar to compound 2-1.After column chromatography on silica gel with ethyl acetate/petroleum (60-90°C)(1:1,V /V )as elu-ent,compound 2-2was obtained as dark blue crystals (3.82g,91.6%).1H NMR (CDCl 3,400MHz):1.18(s,3H),1.29(s,3H),3.35-3.43(m,2H),3.51-3.63(m,2H),3.78(s,3H),5.82(d,1H,J =14.0Hz),6.65(d,1H,J =10.4Hz),6.84-6.90(m,2H),7.08(d,1H,J =10.0Hz),7.15-7.21(m,1H),7.63(d,1H,J =3.6Hz),7.69(d,1H,J =3.6Hz).FTMS:m /z =383.2,[M+H]+.2.42-(3ʹ,3ʹ-dimethyl-6-nitrospiro [chromene-2,2ʹ-indolin]-1ʹ-yl)ethylpicolinate (SP1)Under nitrogen atmosphere,compound 2-1(0.35g, 1.0mmol),picolinic acid (0.12g,1.0mmol),EDCI (0.38g,2.0mmol),DMAP (0.01g,0.1mmol)were dissolved into dry di-chloromethane (15mL).The reaction mixture was stirred at room temperature overnight.Evaporation of the solvent gave a brown tar.The obtained brown tar was dissolved into ethyl ace-tate,washed with H 2O three times,and dried over anhydrous magnesium sulfate.Evaporation of the solvent gave a light brown residue.The crude residue was recrystallized from ethyl acetate/n -hexane giving SP1(0.82g,90.5%)as a light yellow crystals.1H NMR (CDCl 3,400MHz):1.15(s,3H),1.29(s,3H),3.55-3.63(m,1H),3.68-3.74(m,1H),4.55-4.58(m,2H), 5.96(d,1H,J =10.4Hz),6.73(d,1H,J =8.4Hz),6.79(d,1H,J =8.0Hz), 6.87-6.92(m,2H),7.09(d,1H,J =6.4Hz),7.19-7.23(m,1H),7.46-7.49(m,1H),7.80-7.84(m,1H),7.95-7.98(m,2H),8.06(d,1H,J =7.2Hz),8.74(d,1H,J =4.8Hz).13C NMR (CDCl 3,100MHz):165.05,159.32,149.87,147.72,146.46,141.06,137.03,135.75,128.41,127.92,127.05,125.92,125.19,122.76,121.86,121.83,119.97,118.45,115.53,106.78,106.49,63.30,52.87,42.21,25.86,19.85.FTMS:m /z =458.15,[M+H]+.2.52-(8-methoxy-3ʹ,3ʹ-dimethyl-6-nitrospiro[chromene-2,2ʹ-indolin]-1ʹ-yl)ethyl picolinate (SP2)SP2was prepared according to a procedure similar to pound 2-2was used instead of compound 2-1.SP2was obtained as yellow crystals (0.64g,88.9%).1H NMR (CDCl 3,400MHz):1.15(s,3H),1.27(s,3H),3.58-3.66(m,1H),3.73(s,3H),3.74-3.80(m,1H),4.56(t,2H,J =6.6Hz),5.93(d,1H,J =10.4Hz),6.78(d,1H,J =7.6Hz),6.83-6.90(m,2H),7.08(d,1H,J =6.4Hz),7.17-7.21(m,1H),7.45-7.48(m,1H),7.56(d,1H,J =2.8Hz),7.66(d,1H,J =2.4Hz),7.65-7.66(m,1H),8.02(d,1H,J =7.6Hz),8.73(d,1H,J =5.6Hz).13C NMR (CDCl 3,100MHz):164.10,149.84,149.03,147.73,147.33,146.42,140.45,136.99,135.79,128.36,127.73,126.99,125.15,121.88,121.84,119.68,118.18,115.30,107.72,106.70,106.33,63.27,56.12,52.84,41.97,25.98,19.79.FTMS:m /z =488.19,[M+H]+.2.62-(3ʹ,3ʹ-dimethyl-6-nitrospiro [chromene-2,2ʹ-indolin]-1ʹ-yl)ethylisoquinol-ine-3-carboxylate (SP3)SP3was prepared according to a procedure similar to SP1.Quinoline-2-carboxylic was used instead of acid picolinic acid.SP3was obtained as light yellow crystals (0.69g,90.6%).1H NMR (CDCl 3,400MHz):1.20(s,3H),1.40(s,3H),3.45-3.54(m,1H),3.81-3.91(m,1H),4.64-4.69(m,2H),6.37(d,1H,J =14.4Hz),6.77(d,1H,J =10.4Hz),6.85-6.90(m,2H),7.08(d,1H,J =10.0Hz),7.15-7.19(m,1H),7.22(d,1H,J =11.6Hz),7.66-7.71(m,1H),7.81-7.87(m,1H),2Synthesis of spirobenzopyrans SP1-SP42473Acta Phys.⁃Chim.Sin.2012V ol.287.89-7.93(m,2H),8.02(d,1H,J=4.0Hz),8.16(d,1H,J=11.6Hz),8.28-8.33(m,2H).13C NMR(CDCl3,100MHz):165.37,159.41,147.67,147.57,146.46,141.00,137.29,135.78,130.58,130.44,129.34,128.79,128.28,127.93,127.64,125.87,122.72,122.27,121.88,120.95,119.94,118.54,115.52,106.75,106.65,63.54,52.97,42.30,25.88,19.88.FTMS:m/z=508.17,[M+H]+.2.72-(8-methoxy-3ʹ,3ʹ-dimethyl-6-nitrospiro[chromene-2,2ʹ-indolin]-1ʹ-yl)ethyl isoquinoline-3-carboxylate(SP4)SP4was prepared according to a procedure similar to SP1.Compound2-2was used instead of compound2-1and quino-line-2-carboxylic was used instead of acid picolinic acid.SP4 was obtained as yellow crystals(0.72g,90.1%).1H NMR(CDCl3,400MHz):1.17(s,3H),1.27(s,3H),3.65-3.70(m,1H), 3.72(s,3H), 3.80-3.87(m,1H),4.58-4.66(m,2H),6.10(d,1H,J=10.4Hz),6.82(d,1H,J= 7.6Hz),6.86(d,1H,J=10.4Hz),6.88(t,1H,J=7.4Hz),7.08 (d,1H,J=6.4Hz),7.21(t,1H,J=7.6Hz),7.53(d,1H,J=2.4 Hz),7.64(d,1H,J=2.4Hz),7.67(t,1H,J=8.0Hz),7.81(t, 1H,J=7.6Hz),7.88(d,1H,J=9.2Hz),8.09(d,1H,J=8.8Hz), 8.27(d,2H,J=8.4Hz).13C NMR(CDCl3,100MHz):165.31, 149.12,147.70,147.54,147.32,146.42,140.40,137.22, 135.82,130.56,130.39,129.28,128.73,128.26,127.73, 127.60,122.33,121.86,120.92,119.64,118.28,115.28, 107.68,106.67,106.51,63.50,56.11,52.95,42.05,25.97, 19.79.FTMS:m/z=538.17,[M+H]+.3Results and discussion3.1Photochromic propertiesPrevious reports demonstrated that the introduction of an electron-withdrawing group(e.g.,―NO2,―CF3)into the ben-zene ring enhances the stability of the open form of SPs33,34 whereas an electron-donating group(e.g.,―t-Bu,―OMe)pro-duces a more stable photostationary closed form.35,36To gather the kinetic data of SP1-SP4to evaluate the effect of―OMe on the properties of spiropyrans,we monitored the evolutions of the absorption spectra and the time dependence of absor-bance atλmax(maximum absorption wavelength)of SP1-SP4 in ethanol solution upon UV irradiation,visible irradiation and in the dark(Figs.S1-S4(Supporting Information)).The kinetic of each process can be fit with a single ing the method from literature,32,11the rate constants and the percent conversions(χe)were calculated and summarized in Table1. As expected,the rate constants for the conversions of MC2to SP2and MC4to SP4in the dark were determined to be~(1.4±0.1)×10-2s-1,which is much larger than those for MC1to SP1 (~(1.3±0.1)×10-3s-1)and MC3to SP3(~(1.7±0.1)×10-3s-1). This indicates that MC2and MC4can thermally isomerize back to the corresponding SP2and SP4faster than the cases of SP1and SP3.Visible irradiation can accelerate the conversion from MC to SP.Consistently,the rate constants for MC2to SP2(~(1.1±0.1)×10-1s-1)and MC4to SP4(~(8.9±0.1)×10-2s-1)under visible irradiation are still larger than those for MC1 to SP1(~(7.2±0.1)×10-3s-1)and MC3to SP3(~(7.1±0.1)×10-3 s-1),separately.On the basis of kinetic data listed in Table1, the calculated conversions(χe)of SP2and SP4are6.7%and 8.7%,respectively,which are much smaller than the cases for SP1and SP3(56.4%and50.3%,respectively),indicating that the introduction of―OMe apparently shifts the SP/MC equi-librium to favor the closed form of spiropyrans and thus de-crease the stability of the open form most likely due to the in-crease of the electron density of the phenoxide ion unit affect-ed by the electron-donating―OMe group.193.2Sensing propertiesFig.1and Fig.S5(Supporting Information)show the absorp-tion spectra of SP1-SP4(5.0×10-5mol·L-1)in ethanol in the absence and the presence of1equivalent(equiv.)ofdifferentFig.1Absorption spectra of SP1(a)and SP2(b)after addition of 1equivalent of different metal ions in the dark concentrations of SP1and SP2:5.0×10-5mol·L-1,solvent:ethanol,temperature:293KTable1Calculated rate constants and conversions ofSP1-SP4at293KUVK dark:the rate constant for the conversions of MC to SP in the dark;K visible:the rate constant for the conversions of MC to SP under visible irradiation;χe:the calculated conversion2474LI Ying-Ruo et al.:New Spiropyran Derivatives:Ion Sensing and Information Processing at the Molecular Level No.10metal ions before and after UV irradiation.Interestingly,we found that the spectra for the solutions of SP2and SP4after ad-dition of metal ions were significantly changed depending on the kind of metal ions(Figs.1b and S5a)whereas no obvious spectral changes were observed for control compounds SP1 and SP3(Figs.1a and S5b)before UV irradiation.In contrast, after further UV irradiation,SP1/SP3showed the obvious ab-sorption changes in the presences of different metal ions(Fig. S5(c,d))whereas SP2/SP4showed the negligible spectral changes(data not shown).Tables2and S1give a summary of the maximum absorption wavelength(λmax)of SP1-SP4in the absence and the presence of different metal ions after UV irra-diation and the corresponding changes in maximum absorption wavelengths(Δλmax).On the basis of data in Tables2and S1,we found that the ab-sorbance maxima of SP1and SP3in the presence of metal ions after UV irradiation showed the hyperchromatic shifts to differ-ent extents depending on different metal ions(Summaries of some important parameters for different metal ions can be found in Table S2and Fig.S6).After separate additions of Fe3+, Cr3+,Cu2+,and Pb2+,the shoulder peaks at~400-450nm with the large hypsochromic shifts of>100nm appeared due to the formation of MC-M n+complexes(Scheme1),showing that the interactions between metal ions and MC are very strong.In the cases of Zn2+,Ni2+,Co2+,and Cd2+,only slight hypsochromic shifts of9-14nm were observed after addition of them,reflect-ing that the interactions between metal ions and MC are moder-ate.However,the maximum absorption wavelength(λmax)of MC did not change at all upon addition of Ca2+and Mg2+,show-ing that the interactions between Ca2+/Mg2+and MC are quite weak.Fig.S7(a,b)shows the corresponding photographs of SP1upon addition of1equiv.of metal ions before and after UV irradiation,respectively,from which the observed color changes are consistent with UV-Vis absorption studies dis-cussed above.Further irradiation of the UV-irradiated solutions of SP1and SP3with visible light can turn all of them back to the original.In conjunction with UV-Vis studies before UV ir-radiation in Figs.1a and S5b,these results demonstrate that on-ly the addition of metal ions can not lead to the conversion of SP1and SP3from the close form to the open form and that up-on UV irradiation,metal ions can reversibly interact with the photoreleased negatively-charged phenolate oxygen with the different strengths and form MC-M n+complexes. Remarkably,we found that only addition of metal ions led to the ring-opening isomerization of SP2and SP4with distinct color changes as shown in Figs.1b and S5a.For example,addi-tion of Fe3+and Cr3+produced an immediate color changes from colorless to brilliant yellow.Correspondingly,a shoulder at about420nm,a significant hypsochromic shift in compari-son with the open form,37was observed,which should be as-cribed to MC-M n+complexes as demonstrated above.Irradiat-ing the colored solution with visible light did not liberate metal ions with regeneration of the original absorbance,showing the strong interactions between metal ions and MC.It is well known that metal ions with high charge density(Z2/r,where Z is the ion charge and r is the ionic radius)tend to form firm combinations with ligands.19,38-40Among metal ions studied here,both Cr3+and Fe3+possessing more charges and relatively smaller ionic radii afford a higher charge density,consistent with the experimental observation.In comparison with SP1 and SP3,we hypothesize that the metal-generated ring opening of SP should be ascribed to the synergistic effect of the strong affinity between metal ions and SP and the presence of the―OMe group that favors the formation of stable chelate complexes(MC-M n+).When transition metals,such as Cu2+, Zn2+,Ni2+,Co2+and an IV A group metal ion Pb2+were used,the hypsochromic shifts in absorbance maxima in the range of 60-96nm were detected.From Fig.S6,we can see that these metal ions have smaller but approximate charge density,thus resulting in the moderate binding between metal ions and MC that affords the reversible photochromism upon exposure to visible light.These also led to different hypsochromic shifts of λmax of the resulted MC-M n+complexes with the different colors that can be differentiated by a naked eye(Fig.S7(c,d)).For ex-ample,an orange color was observed for the Cu2+and Pb2+com-plexes withλmax of490and480nm,respectively,while a pink color was observed for Ni2+and Co2+complexes withλmax of 512and516nm,respectively.The absorbance maxima of Zn2+ complex(497nm)was situated between them with a pink-or-ange color.In contrast,in the presence of Ca2+,Mg2+,and Cd2+, the absorption spectra change only slightly whenever spiropy-ran molecules were closed or open,reflecting that the interac-tions between metal ions and molecules are weak.For the alka-line-earth metal ions Mg2+and Ca2+,the missing of d electrons may decrease the coordination ability of metal ions with SP. Cd2+is another metal ion of group IIB similar to Zn2+,but the hypsochromic shift in absorbance maxima of Cd2+is smaller than that observed with Zn2+probably because of the largerTable2Summaries of the maximum absorption wavelengths(λmax)of SP1and SP2in ethanol solution in the absence andpresence of different metal ions and the corresponding changes in2475Acta Phys.⁃Chim.Sin.2012V ol.28size of Cd2+(ionic radius=97pm)relative to Zn2+(ionic radius= 74pm).The findings demonstrate that the interactions of metal ions with SP2and SP4are highly metal ion-dependent,thus potentially providing a useful colorimetric approach for detect-ing different metal ions with high sensitivity.To further detect the capability of ion sensing,we investigat-ed the emission properties of SP1-SP4.When excited at the maximum absorption wavelength of SP1-SP4/MC1-MC4,it was found that the closed forms SP1-SP4had no emission while the zwitterionic opened forms MC1-MC4fluoresced with the maximum absorption wavelengths of ca626,650, 636,and660nm(Fig.2a),respectively,consistent with the pre-vious report.41Importantly,addition of1equiv.of Zn2+to the SP2solution led to a dramatic increase in emission intensity at 600nm excited atλ=493nm.Similar results were obtained with SP4(Fig.S8).The fluorescence increase is majorly due to the coordination of Zn2+with―OMe and fluorophores(pyri-dine or quinoline moiety)together with phenolate oxygen.The coordination can decrease the electron densities of the―OMe and the phenolate oxygen and thus increase theπ-conjugation degree of the complex.On the other hand,the coordination of the ligands with the diamagnetic Zn2+containing a closed-shell d10electronic configuration would shut down the photoinduced electron-transfer pathway of the excited free ligand upon Zn2+ coordination42-44and thus turn on the fluorescence.Another pos-sibility is that the coordination would inhibit the photoinduced tautomerization of the phenolate moiety which leads to nonra-diative deexcitation and thus improve the fluorescence by re-ducing the probability of radiationless relaxation.45,46Addition of metal ions such as Pb2+,Mg2+,Cd2+to the solu-tion of SP2or SP4also resulted in the fluorescence enhance-ment.However,the magnitude of the fluorescent enhancement of SP2or SP4in the presence of them is smaller than that ob-served with Zn2+,which could be attributed to the different binding affinities of pyridine and quinoline with them.Ca2+ cannot turn on the fluorescence because of the larger ionic size (ionic radius=99pm)and relative lower ionic electronegativity (1.01).Other metal ions studied,such as Fe3+,Cr3+,Cu2+,Co2+, and Ni2+,were unable to turn on the fluorescent signal of SP2 or SP4,which may be attributed to the proximity of the para-magnetic metal ions to the unpaired electrons of the ligands which lead to spin-orbit coupling and intersystem crossing.47 To further explore the selectivity of Zn2+,competition experi-ments were also conducted in which solutions of SP2or SP4 was first added with1equiv.of other metal ions separately and Zn2+was then added to the mixture.As shown in Figs.2d and S8b,the fluorescence of SP2or SP4after addition of Zn2+dra-matically increased,demonstrating the excellent selectivity of Zn2+detection.It should be noted that the fluorescence increase was relatively small when Zn2+was added to the solution of SP2in the presence of1equiv.of Fe3+,Cr3+,and Cu2+.This may be ascribed to the stronger coordination of the metal ions with the ligands as is already clear from the absorption spectra analysis.Finally,the bingding mode of the complex was stud-ied by Jobʹs plot analysis.Fig.3a shows the typical UV-Vis spectroscopic responses of a SP2ethanolic solution containing Zn2+with the increasing concentrations.The absorbance at576 nm decreased and the absorbance at350and497nm increased with the concentration increase.The stoichiometry of the zinc complex has been investigated via Jobʹs method(Figs.3b and S9)and it has been found to be1:1.Note that the detection of metal ions should be also performed in water or other polar sol-vents since SP1-SP4could be readily soluble in these solvents with aid of ethanol.3.3Combinational logic circuitsAs mentioned above,SP2and SP4response to the stimuli of metal ions and visible light,accompanying significant changes in physical and chemical properties.By taking use of these fea-tures,logic gates and combinational logic circuits can be con-structed.It is well known that,the three basic types of logic gates are NOT,AND,and OR gates.The NOT gate is often called inverter which can converts the input signal(I)of1into the output signal(O)of0and vice versa.In the instant of AND gate,output O is1only when both inputs I1and I2are1.The OR gate also combines the two inputs I1and I2into the output O,when I1and/or I2is1,O binational logic circuits are assembled connecting NOT,AND,and OR gates.The in-hibit(INH)gates are basic AND gates with one of the inputs in-verted through a NOT function.Several examples of INH gate based on molecules have been reported in recent years.48-50 Fig.4illustrates that SP2(or SP4)can work as an INH logic gate upon the stimulation of metal ions and visible light.The two inputs signals are I1(Zn2+)and I2(Vis)and the output is O, the absorbance maxima of the complex(A497)or the fluores-cence emission intensity at600nm(F600).According to the re-sults of the spectral study,the increase in the absorbance maxi-ma of the complex or the emission intensity at600nm is ob-served only in the presence of Zn2+and the absence of visible light.That is to say,only when I1=1and I2=0,the output signal O=1.O is always0in other cases.In particular,using the new photochromic compounds SP2 and SP4,we can develop more complicated combinational log-ic circuits to convert three inputs into two outputs.In the case of the combinational logic circuit shown in Fig.5,the three in-puts signals are I1(Zn2+),I2(Ni2+),and I3(Vis)and the two out-puts are O1(A497)and O2(F600).Binary digits can be encoded on each signal applying positive logic conventions(low=0,high= 1).Consequently,SP2(or SP4)can read a string of three bina-ry inputs and write two specific optical outputs.The corre-sponding truth table and equivalent logic circuit are demon-strated in Fig.5.One portion of this logic circuit converts the three inputs I1,I2,and I3into the output O1through OR,NOT, and AND operations.The other fragment transduces the inputs of I1and I3into the output O2through NOT and AND opera-tions.The optical output O1is high(O1=1)when only the input I1is applied(I1=1,I2=0,I3=0)or when only the input I2is ap-2476LI Ying-Ruo et al .:New Spiropyran Derivatives:Ion Sensing and Information Processing at the Molecular LevelNo.10plied (I 1=0,I 2=1,I 3=0)or when only the input I 3is not applied (I 1=1,I 2=1,I 3=0)(Fig.S10a).The optical output O 2is high (O 2=1)when only the input I 1is applied (I 1=1,I 2=0,I 3=0)or when only the input I 3is not applied (I 1=1,I 2=1,I 3=0).The combina-tional logic circuit shows that all three inputs determine the out-put O 1,while only I 1and I 3control the value of O 2.As mentioned above,in the combinational logic circuit illus-trated in Fig.5,one of the output O 2was not affected by the in-put I 2,while in the instance of the logic circuit shown in Fig.6,both the outputs O 1and O 2are dependent on the three inputs I 1,I 2,and I 3.The combinational logic circuit also consists of three inputs,two of which are chemical inputs I 1(Zn 2+)and I 2(Cu 2+)and the other is optical input I 3(Vis),the two outputs are O 1(A 497)and O 2(F 600).When positive conventions are applied to all signals,the two independent optical outputs (O 1and O 2)can be modulated by stimulating the molecular switch (SP2or SP4)with the three terminal inputs (I 1,I 2,and I 3).According to the fluorescence spectral study,addition of Cu 2+to the solution of SP2(or SP4)containing 1equiv.Zn 2+can cause the fluores-cence quenching.Then,the output O 2is closely related totheFig.3(a)UV-Vis spectroscopic response of SP2ethanolsolution containing Zn 2+with the increasing concentrations;(b)Job ʹs plot of SP2with Zn 2+in ethanol solution(b)Total concentration of [SP2]+[Zn 2+]was kept constant.The absorbance at 497nm wasused.Fig.2(a)Fluorescence emission spectra of SP1-SP4/MC1-MC4;(b)fluorescence emission spectra (λex =493nm)of SP2(5.0×10-5mol ·L -1,ethanol,293K)upon addition of 1equiv.of metal ions (Zn 2+,Fe 3+,Cr 3+,Cu 2+,Ni 2+,Co 2+,Cd 2+,Ca 2+,Mg 2+,and Pb 2+);(c)changes in fluorescence emission spectra (λex =493nm)of SP2(5.0×10-5mol ·L -1,ethanol,293K)upon addition of different concentrations of Zn 2+;(d)detection selectivity of SP2(5.0×10-5mol ·L -1,ethanol,293K)in the presence of various metal ions (λex =493nm):(black bars)fluorescence emission intensity at 600nm in the presence of 1equiv.of Fe 3+,Cr 3+,Cu 2+,Pb 2+,Ni 2+,Co 2+,Cd 2+,Ca 2+,Mg 2+,and Zn 2+;(red bars)fluorescence emission intensity at 600nm after further addition of 1equiv.of Zn 2+2477。
螺吡喃环小分子化合物的构建及其性能研究的开题报告
螺吡喃环小分子化合物的构建及其性能研究的开题报告一、题目螺吡喃环小分子化合物的构建及其性能研究。
二、研究背景螺吡喃环是一种具有广泛应用前景的芳香环,具有多种药理活性,如抗癌、抗病毒、抗菌等,因此广受关注。
近年来,研究人员开始将螺吡喃环应用于有机光电材料、有机场效应晶体管等领域。
螺吡喃环的化学合成和构建是实现这些应用的基础。
三、研究目的本研究旨在通过化学合成的方法,构建具有螺吡喃环的小分子化合物,并对其结构和性能进行研究。
四、研究内容1.选择适当的有机小分子作为反应原料,通过合成反应构建出具有螺吡喃环结构的化合物。
2.采用核磁共振、紫外可见光谱等技术对合成的化合物进行表征,验证其结构。
3.研究化合物的光电性能及电学性质,包括吸收光谱特性、荧光光谱特性、电荷迁移过程等。
五、预期结果本研究将合成具有螺吡喃环结构的小分子化合物,并对其结构和性能进行表征和分析,为进一步开发和应用螺吡喃环材料提供基础实验的支持。
六、研究方法本研究采用化学合成的方法构建具有螺吡喃环结构的小分子化合物,并利用核磁共振谱、紫外可见光谱等技术对其进行结构表征。
对化合物的光电性能及电学性质进行研究,包括吸收光谱特性、荧光光谱特性、电荷迁移过程等。
七、研究意义本研究将具有一定理论指导意义,有助于更好地理解和应用螺吡喃环材料。
此外,本研究还有望为制备高性能、可控制备的螺吡喃环材料打下坚实基础。
八、研究进度安排第一年:收集文献、确定反应条件、选取化合物、构建螺吡喃环小分子化合物。
第二年:合成化合物并进行表征,包括核磁共振、紫外可见光谱等;研究化合物的光电性质。
第三年:完善实验结果,撰写论文,并准备参加相关学术会议。
螺吡喃类光致变色化合物的合成与研究
螺吡喃类光致变色化合物的合成与研究近年来,螺吡喃类光致变色化合物受到广泛关注,由于它们的正禁止加合和统调性,可实现高度的配位介导的光致变色,大大提高了彩色材料的应用性能。
此外,它们的晶格结构可以很好地调控和调节其光致变色性能,从而为其应用提供了更大的可能性。
一、合成技术
1、硅酸自由基法:螺吡喃类离子晶体试剂以硅酸为原料,混合酸性金属配位剂,采用反应溶液温控方式,有助于螺吡喃类离子晶体试剂可形态调控。
2、降温法:该方法利用了温度对螺吡喃类化合物态相结构影响显著的特性,采用温度降低的方式,以硅酸锡、硅酸钠、硅酸钡、以及碱性配位剂为原料,进行一、二次放电聚合,可以合成出新的螺吡喃类化合物。
3、添加剂法:根据其特殊的晶体结构和构象,利用添加剂的方式,有利于调控变色耦合平衡性及材料的荧光量子产率,进而调控螺吡喃类离子晶体试剂光致变色性能。
二、研究方法
1、合成试剂表征:扫描电子显微镜(SEM)和X射线衍射(XRD)检测螺
吡喃类离子晶体的表征;二氧化碳吸附剂(TGA)和热重分析(DTA)研究其热稳定性;核磁共振(NMR)分析其结构;原子力显微镜(AFM)研究其表面自组装性能。
2、变色特性分析:UV-Vis分光光度计研究螺吡喃类离子晶体的吸收光谱;紫外可见光源分析仪研究其可见光谱;拉曼光谱研究其螺吡喃类离子晶体反应物及产物组成;偏光显微镜研究其极化率。
3、应用性能分析:激光手环法研究其分子配位相的相态转变;热透射膜研究其可见至红外的长期变色;离子交换树脂研究其离子晶格结构的稳定性;活性测试仪研究其光学活性性能。
以上研究可以帮助我们了解螺吡喃类光致变色化合物的特性和性质,为其实现实际应用提供参考,并促进螺吡喃类光致变色材料在新材料领域的广泛应用与发展。
光响应螺吡喃基聚合物纳米粒子的制备与性能研究
光响应螺吡喃基聚合物纳米粒子的制备与性能研究摘要:在本研究中,我们报道了一种新颖的光响应的聚合物纳米粒子制备方法,该方法使用了螺吡喃基聚合物作为主要材料。
通过紫外光引发聚合反应制备出具有光敏性的螺吡喃基聚合物纳米粒子,并通过紫外光谱、透射电子显微镜等表征技术对制备的纳米粒子进行了详细的表征。
研究结果表明,所制备的纳米粒子呈现光响应性,并且能够发生可逆的体积变化。
同时,我们也发现,在弱酸性条件下,该纳米粒子呈现了可逆光开关的性质。
该研究的结果为光敏感纳米粒子的制备提供了一种新的思路。
关键词:螺吡喃基聚合物,光响应性,纳米粒子1. 引言纳米材料作为一种新型材料,在材料科学和纳米技术领域得到了广泛的应用。
其中,聚合物纳米粒子因其理化性能的可调性和多样性,在生物医学、化学催化等领域展现了潜在的应用价值。
目前,许多研究人员致力于探索制备具有特殊性质的聚合物纳米粒子的方法。
光响应性的聚合物纳米粒子在生物医学递药、智能可控材料等领域具有广泛的应用前景。
各种光响应性聚合物,如环氧乙烷(EO)型、醚酰胺(EN)型、聚丙烯腈(PAN)型等,在近年来被广泛报道。
其中,螺吡喃基聚合物因具有良好的光响应性以及独特的芳香结构,受到了广泛研究的关注。
在本研究中,我们将螺吡喃基聚合物作为主要材料,通过紫外光引发聚合反应制备出具有光响应性的聚合物纳米粒子,并对其进行表征和性能研究。
本研究结果有望为制备具有特殊性质的聚合物纳米粒子提供新的思路和方法。
2. 实验2.1 材料与仪器丙烯酰氧乙基三甲氧基硅烷(TESPT),N-异丙基丙烯酰胺(NIPAAm),二氧化钛(TiO2)等化学试剂均为AR级别,均从阿拉丁公司购买;四丁基溴化铵(TBAB),乙酰丙酮(Acac)等化学试剂均为保证纯度的化学品,均从Sigma-Aldrich公司购买。
所有试剂均在使用前进行了处理和干燥,以保证其纯度。
紫外光谱仪(UV-vis),透射电子显微镜(TEM)等仪器均从国内知名厂家购买,用于对制备的聚合物纳米粒子进行表征和性能研究。
螺吡喃聚合物PAA-SP光学性质的研究
第8期 收稿日期:2018-03-11作者简介:张星华,女,山东菏泽人,主要从事化学研究。
螺吡喃聚合物PAA-SP光学性质的研究张星华,田进涛(中国海洋大学材料科学与工程学院,山东青岛 266100)摘要:本实验以聚丙烯酸和螺吡喃为原料,利用DCC/DMAP为催化剂,通过酯化反应制备了螺吡喃接枝的聚丙烯酸。
通过红外光谱对产物的结构进行表征,对其光响应性能运用紫外-可见吸收光谱,荧光发射光谱进行了研究。
关键词:螺吡喃;聚合物;光学性能中图分类号:O626.3 文献标识码:A 文章编号:1008-021X(2018)08-0041-02StudyonOpticalPropertiesofSpiropyranPolymerPAA-SPZhangXinghua,TianJintao(SchoolofMaterialsScienceandEngineering,OceanUniversityofChina,ShandongProvince,Qingdao 266100,China)Abstract:Inthisexperiment,polyacrylicacidandspiropyranwereusedasrawmaterials.Spiropyran-graftedpolyacrylicacidwaspreparedbyesterificationusingDCC/DMAPascatalyst.ThestructureoftheproductwascharacterizedbyIRandNMR.TheUV-Visabsorptionandfluorescenceemissionspectraoftheproductwerecharacterized.Keywords:spiropyran;polymer;opticalproperties 螺吡喃(Spiropran),作为一种光致变色化合物,在外部刺激下,发生异构化过程,从而引起性质发生相应的变化[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.⁃Chim.Sin .2012,28(10),2471-2479October Received:March 31,2012;Revised:May 14,2012;Published on Web:May 15,2012.∗Corresponding authors.GUO Xue-Feng,Email:guoxf@.QI Chuan-Min,Email:qichuanmin@.The project was supported by the National Key Basic Research Program of China (973)(2009CB623703,2012CB921404),National Natural Science Foundation of China (20833001,51121091,2112016,21071022),and Foundation for the Author of National Excellent Doctoral Dissertation of Higher Education,China (2007B21).国家重点基础研究发展规划项目(973)(2009CB623703,2012CB921404),国家自然科学基金(20833001,51121091,2112016,21071022)及全国高等学校优秀博士论文作者专项基金(2007B21)资助ⒸEditorial office of Acta Physico ⁃Chimica Sinicadoi:10.3866/PKU.WHXB 201205155新型螺吡喃衍生物:离子传感和分子水平的信息处理李颖若1张洪涛2齐传民1,*郭雪峰2,3,*(1北京师范大学化学学院,放射性药物教育部重点实验室,北京100875;2北京大学化学与分子工程学院,北京分子科学国家实验室,分子动态与稳态结构国家重点实验室,北京100871;3北京大学工学院先进材料与纳米技术系,北京100871)摘要:为实现金属离子检测和分子水平的信息处理,合成了一类新型的含有功能配位基团的螺吡喃衍生物(SP1-SP4).研究发现:在没有UV 光照的条件下,金属离子可以促进螺吡喃(SP2和SP4)开环并形成稳定可逆的络合物(MC-M n +).紫外-可见吸收光谱研究表明,在UV 光照前加入不同的金属离子会引起SP2和SP4的光学性质的特征变化,因此提供了一种简易的通过裸眼就能辨别金属离子的比色方法.荧光光谱研究表明,这类化合物能够高灵敏高选择性地检测锌离子.此外,基于吸收光谱和荧光光谱的变化,这类螺吡喃衍生物可以用于构建组合的逻辑门,执行分子水平的信息处理,从而展现了其在化学或环境传感和未来的分子计算机领域的潜在应用前景.关键词:螺吡喃;化学传感;逻辑门;紫外-可见吸收光谱;荧光光谱中图分类号:O641New Spiropyran Derivatives:Ion Sensing and InformationProcessing at the Molecular LevelLI Ying-Ruo 1ZHANG Hong-Tao 2QI Chuan-Min 1,*GUO Xue-Feng 2,3,*(1Key Laboratory of Radiopharmaceuticals,College of Chemistry,Beijing Normal University,Beijing 100875,P .R.China ;2Beijing National Laboratory for Molecular Sciences,State Key Laboratory for Structural Chemistry of Unstable and Stable Species,College of Chemistry and Molecular Engineering,Peking University,Beijing 100871,P .R.China ;3Department of AdvancedMaterials and Nanotechnology,College of Engineering,Peking University,Beijing 100871,P .R.China )Abstract:We have designed and synthesized a new class of spiropyran derivatives (SP1-SP4)with functional chelating groups,such as pyridine or quinoline moieties and a methoxy group (―OMe),for use in metal ion sensing and information processing at the molecular level.It is notable that metal ions can favor coordination with chelating groups and facilitate the photoisomerization of spiropyran molecules from the closed form to the open merocyanine form without UV irradiation,thus leading to significant changes in their chemical and physical properties.UV-Vis absorption studies indicated that SP2and SP4exhibited metal ion-dependent reversible binding affinities that result in different hypsochromic shifts for the MC-M n +complexes.These changes in color can be recognized by eye,thus offering an easy colorimetric method for metal ion detection.Further emission studies distinguished them as promising candidates for Zn 2+detection with good sensitivity and selectivity.Moreover,on the basis of their absorption and fluorescence spectra,several combinational logic gates were constructed for information processing at the molecular level.These results demonstrate that spiropyran derivatives with desired functionalities show great potential not only for chemical or environmental sensors,but also for future molecular computing.2471Acta Phys.⁃Chim.Sin.2012V ol.28Key Words:Spiropyran;Chemical sensor;Logic gate;UV-Vis absorption spectrum;Fluorescent spectrum1IntroductionPhotochromic compounds have been extensively investigat-ed in recent years for their high potential applications in opti-cally rewritable storage,1optical switching,2chemical3and bio-logical4sensings.In particular,considerable attention has been paid to spiropyran molecules,one of the most promising fami-lies of photochromic compounds,because of their unique opti-cal and physical properties.5-10The stimulus-induced transfor-mation of the ring-closed structure of spiropyrans(SPs)into their fullyπ-conjugated isomeric merocyanine forms(MCs)re-sults not only in the variations of absorption spectra,but also in the profound alterations of other physical and chemical prop-erties of the system,such as the dipole moments,nonlinear op-tic properties,emission spectra,and macroscopic properties (for example,conductance,rheological property,and surface wettability).By taking advantage of these remarkable charac-teristics of SPs,a number of spiropyran derivatives containing diverse functional groups have so far been designed and used as molecular sensors and molecular switches.11-17Among the remarkable characteristics of SPs,one unique feature is that the photogenerated open merocyanine form pro-cesses the charge-separated zwitterionic state with a free nega-tively-charged oxygen atom,which can further interact with ex-ternal stimuli through dipole-dipole interactions and coordina-tion chemistry(Scheme1).Recently,several groups have suc-cessfully utilized this for the purpose of optically detecting met-al ions,18-20anions,21nucleobases,22amino acids,23and DNA,24 etc.In this study,a new class of spirobenzopyrans SP2and SP4bearing electron-donating―OMe group and pyridine or quinoline moiety as binding sites were designed and synthe-sized(Scheme1).We will explore the changes in their chemi-cal and physical properties upon addition of different metal ions before and after UV irradiation and show the capability of selectively detecting metal ions with high sensitivity and con-structing logic gates for information processing at the molecu-lar level.25-312ExperimentalFunctional spirobenzopyran derivatives SP1-SP4were syn-thesized as shown in pounds2-1and2-2were prepared by modification of the procedure reported by Raymo and Giordani32bearing―OH as a functional group for the fol-lowing reaction step.The pyridine or quinoline moiety was then linked to compounds2-1and2-2using EDCI/DMAP (EDCI:1-ethyl-3-(3-dimethylaminopropyl)carbodiimide,DMAP: 4-dimethylaminopyridine)esterification reaction to give SP1-SP4as yellow crystals in high yield(~90%).2.11-(2-hydroxyethyl)-2,3,3-trimethylindoliumbro-mide(1)Under nitrogen atmosphere,a mixture of2,3,3-trimethyl-3H-indole(4.77g,30.0mmol)and2-bromoethanol(4.50g, 36.0mmol)in dry CH3CN(30mL)was heated under reflux for 12h.Removal of CH3CN and excess of2-bromoethanol under the reduced pressure gave a dark purple residue.Repeated washing with anhydrous ether gave compound1(7.85g, 92.1%)as a white solid.All the reagents used are AR grade.1H NMR(DMSO-d6,400MHz):1.55(s,6H),3.38(s,3H), 3.87(t,2H,J=6.8Hz),4.60(t,2H,J=6.8Hz),7.60-7.64(m, 2H),7.84-7.87(m,1H),7.94-7.98(m,1H).Fourier transform mass spectroscopy(FTMS):m/z=204.1,[M-Br]+.2.22-(3ʹ,3ʹ-dimethyl-6-nitrospiro[chromene-2,2ʹ-indolin]-1ʹ-yl)ethanol(2-1)Under nitrogen atmosphere,Compound1(1.14g,4.0mmol) and2-hydroxy-5-nitrob-enzaldehyde(0.80g,4.8mmol)were dissolved in dry tetrahydrofuran(THF)(25mL).The solution was heated to reflux then triethylamine(0.49g,4.8mmol)in Scheme1Illustrations of the reversible structural transformations of SP2and SP4in responses to light,heat,and metal ions 2472LI Ying-Ruo et al .:New Spiropyran Derivatives:Ion Sensing and Information Processing at the Molecular LevelNo.10THF (5mL)was added dropwise.The mixture was refluxed for 4h.The solvent was removed by evaporation under re-duced pressure.The crude residue was recrystallized from ab-solute ethanol giving compound 2-1(1.30g,92.2%)as red pur-ple crystals.1H NMR (CDCl 3,400MHz):1.20(s,3H),1.29(s,3H),3.33-3.50(m,2H),3.68-3.77(m,2H),5.89(d,1H,J =13.6Hz), 6.67(d,1H,J =10.4Hz), 6.76(d,1H,J =12.4Hz),6.87-6.93(m,2H),7.10(d,1H,J =9.0Hz),7.20(t,1H,J =10.0Hz ),7.99-8.04(m,2H).FTMS:m /z =353.1,[M+H]+.2.32-(8-methoxy-3ʹ,3ʹ-dimethyl-6-nitrospiro[chromene-2,2ʹ-indolin]-1ʹ-yl)ethanol (2-2)Compound 2-2was prepared according to a procedure simi-lar to compound 2-1.After column chromatography on silica gel with ethyl acetate/petroleum (60-90°C)(1:1,V /V )as elu-ent,compound 2-2was obtained as dark blue crystals (3.82g,91.6%).1H NMR (CDCl 3,400MHz):1.18(s,3H),1.29(s,3H),3.35-3.43(m,2H),3.51-3.63(m,2H),3.78(s,3H),5.82(d,1H,J =14.0Hz),6.65(d,1H,J =10.4Hz),6.84-6.90(m,2H),7.08(d,1H,J =10.0Hz),7.15-7.21(m,1H),7.63(d,1H,J =3.6Hz),7.69(d,1H,J =3.6Hz).FTMS:m /z =383.2,[M+H]+.2.42-(3ʹ,3ʹ-dimethyl-6-nitrospiro [chromene-2,2ʹ-indolin]-1ʹ-yl)ethylpicolinate (SP1)Under nitrogen atmosphere,compound 2-1(0.35g, 1.0mmol),picolinic acid (0.12g,1.0mmol),EDCI (0.38g,2.0mmol),DMAP (0.01g,0.1mmol)were dissolved into dry di-chloromethane (15mL).The reaction mixture was stirred at room temperature overnight.Evaporation of the solvent gave a brown tar.The obtained brown tar was dissolved into ethyl ace-tate,washed with H 2O three times,and dried over anhydrous magnesium sulfate.Evaporation of the solvent gave a light brown residue.The crude residue was recrystallized from ethyl acetate/n -hexane giving SP1(0.82g,90.5%)as a light yellow crystals.1H NMR (CDCl 3,400MHz):1.15(s,3H),1.29(s,3H),3.55-3.63(m,1H),3.68-3.74(m,1H),4.55-4.58(m,2H), 5.96(d,1H,J =10.4Hz),6.73(d,1H,J =8.4Hz),6.79(d,1H,J =8.0Hz), 6.87-6.92(m,2H),7.09(d,1H,J =6.4Hz),7.19-7.23(m,1H),7.46-7.49(m,1H),7.80-7.84(m,1H),7.95-7.98(m,2H),8.06(d,1H,J =7.2Hz),8.74(d,1H,J =4.8Hz).13C NMR (CDCl 3,100MHz):165.05,159.32,149.87,147.72,146.46,141.06,137.03,135.75,128.41,127.92,127.05,125.92,125.19,122.76,121.86,121.83,119.97,118.45,115.53,106.78,106.49,63.30,52.87,42.21,25.86,19.85.FTMS:m /z =458.15,[M+H]+.2.52-(8-methoxy-3ʹ,3ʹ-dimethyl-6-nitrospiro[chromene-2,2ʹ-indolin]-1ʹ-yl)ethyl picolinate (SP2)SP2was prepared according to a procedure similar to pound 2-2was used instead of compound 2-1.SP2was obtained as yellow crystals (0.64g,88.9%).1H NMR (CDCl 3,400MHz):1.15(s,3H),1.27(s,3H),3.58-3.66(m,1H),3.73(s,3H),3.74-3.80(m,1H),4.56(t,2H,J =6.6Hz),5.93(d,1H,J =10.4Hz),6.78(d,1H,J =7.6Hz),6.83-6.90(m,2H),7.08(d,1H,J =6.4Hz),7.17-7.21(m,1H),7.45-7.48(m,1H),7.56(d,1H,J =2.8Hz),7.66(d,1H,J =2.4Hz),7.65-7.66(m,1H),8.02(d,1H,J =7.6Hz),8.73(d,1H,J =5.6Hz).13C NMR (CDCl 3,100MHz):164.10,149.84,149.03,147.73,147.33,146.42,140.45,136.99,135.79,128.36,127.73,126.99,125.15,121.88,121.84,119.68,118.18,115.30,107.72,106.70,106.33,63.27,56.12,52.84,41.97,25.98,19.79.FTMS:m /z =488.19,[M+H]+.2.62-(3ʹ,3ʹ-dimethyl-6-nitrospiro [chromene-2,2ʹ-indolin]-1ʹ-yl)ethylisoquinol-ine-3-carboxylate (SP3)SP3was prepared according to a procedure similar to SP1.Quinoline-2-carboxylic was used instead of acid picolinic acid.SP3was obtained as light yellow crystals (0.69g,90.6%).1H NMR (CDCl 3,400MHz):1.20(s,3H),1.40(s,3H),3.45-3.54(m,1H),3.81-3.91(m,1H),4.64-4.69(m,2H),6.37(d,1H,J =14.4Hz),6.77(d,1H,J =10.4Hz),6.85-6.90(m,2H),7.08(d,1H,J =10.0Hz),7.15-7.19(m,1H),7.22(d,1H,J =11.6Hz),7.66-7.71(m,1H),7.81-7.87(m,1H),2Synthesis of spirobenzopyrans SP1-SP42473Acta Phys.⁃Chim.Sin.2012V ol.287.89-7.93(m,2H),8.02(d,1H,J=4.0Hz),8.16(d,1H,J=11.6Hz),8.28-8.33(m,2H).13C NMR(CDCl3,100MHz):165.37,159.41,147.67,147.57,146.46,141.00,137.29,135.78,130.58,130.44,129.34,128.79,128.28,127.93,127.64,125.87,122.72,122.27,121.88,120.95,119.94,118.54,115.52,106.75,106.65,63.54,52.97,42.30,25.88,19.88.FTMS:m/z=508.17,[M+H]+.2.72-(8-methoxy-3ʹ,3ʹ-dimethyl-6-nitrospiro[chromene-2,2ʹ-indolin]-1ʹ-yl)ethyl isoquinoline-3-carboxylate(SP4)SP4was prepared according to a procedure similar to SP1.Compound2-2was used instead of compound2-1and quino-line-2-carboxylic was used instead of acid picolinic acid.SP4 was obtained as yellow crystals(0.72g,90.1%).1H NMR(CDCl3,400MHz):1.17(s,3H),1.27(s,3H),3.65-3.70(m,1H), 3.72(s,3H), 3.80-3.87(m,1H),4.58-4.66(m,2H),6.10(d,1H,J=10.4Hz),6.82(d,1H,J= 7.6Hz),6.86(d,1H,J=10.4Hz),6.88(t,1H,J=7.4Hz),7.08 (d,1H,J=6.4Hz),7.21(t,1H,J=7.6Hz),7.53(d,1H,J=2.4 Hz),7.64(d,1H,J=2.4Hz),7.67(t,1H,J=8.0Hz),7.81(t, 1H,J=7.6Hz),7.88(d,1H,J=9.2Hz),8.09(d,1H,J=8.8Hz), 8.27(d,2H,J=8.4Hz).13C NMR(CDCl3,100MHz):165.31, 149.12,147.70,147.54,147.32,146.42,140.40,137.22, 135.82,130.56,130.39,129.28,128.73,128.26,127.73, 127.60,122.33,121.86,120.92,119.64,118.28,115.28, 107.68,106.67,106.51,63.50,56.11,52.95,42.05,25.97, 19.79.FTMS:m/z=538.17,[M+H]+.3Results and discussion3.1Photochromic propertiesPrevious reports demonstrated that the introduction of an electron-withdrawing group(e.g.,―NO2,―CF3)into the ben-zene ring enhances the stability of the open form of SPs33,34 whereas an electron-donating group(e.g.,―t-Bu,―OMe)pro-duces a more stable photostationary closed form.35,36To gather the kinetic data of SP1-SP4to evaluate the effect of―OMe on the properties of spiropyrans,we monitored the evolutions of the absorption spectra and the time dependence of absor-bance atλmax(maximum absorption wavelength)of SP1-SP4 in ethanol solution upon UV irradiation,visible irradiation and in the dark(Figs.S1-S4(Supporting Information)).The kinetic of each process can be fit with a single ing the method from literature,32,11the rate constants and the percent conversions(χe)were calculated and summarized in Table1. As expected,the rate constants for the conversions of MC2to SP2and MC4to SP4in the dark were determined to be~(1.4±0.1)×10-2s-1,which is much larger than those for MC1to SP1 (~(1.3±0.1)×10-3s-1)and MC3to SP3(~(1.7±0.1)×10-3s-1). This indicates that MC2and MC4can thermally isomerize back to the corresponding SP2and SP4faster than the cases of SP1and SP3.Visible irradiation can accelerate the conversion from MC to SP.Consistently,the rate constants for MC2to SP2(~(1.1±0.1)×10-1s-1)and MC4to SP4(~(8.9±0.1)×10-2s-1)under visible irradiation are still larger than those for MC1 to SP1(~(7.2±0.1)×10-3s-1)and MC3to SP3(~(7.1±0.1)×10-3 s-1),separately.On the basis of kinetic data listed in Table1, the calculated conversions(χe)of SP2and SP4are6.7%and 8.7%,respectively,which are much smaller than the cases for SP1and SP3(56.4%and50.3%,respectively),indicating that the introduction of―OMe apparently shifts the SP/MC equi-librium to favor the closed form of spiropyrans and thus de-crease the stability of the open form most likely due to the in-crease of the electron density of the phenoxide ion unit affect-ed by the electron-donating―OMe group.193.2Sensing propertiesFig.1and Fig.S5(Supporting Information)show the absorp-tion spectra of SP1-SP4(5.0×10-5mol·L-1)in ethanol in the absence and the presence of1equivalent(equiv.)ofdifferentFig.1Absorption spectra of SP1(a)and SP2(b)after addition of 1equivalent of different metal ions in the dark concentrations of SP1and SP2:5.0×10-5mol·L-1,solvent:ethanol,temperature:293KTable1Calculated rate constants and conversions ofSP1-SP4at293KUVK dark:the rate constant for the conversions of MC to SP in the dark;K visible:the rate constant for the conversions of MC to SP under visible irradiation;χe:the calculated conversion2474LI Ying-Ruo et al.:New Spiropyran Derivatives:Ion Sensing and Information Processing at the Molecular Level No.10metal ions before and after UV irradiation.Interestingly,we found that the spectra for the solutions of SP2and SP4after ad-dition of metal ions were significantly changed depending on the kind of metal ions(Figs.1b and S5a)whereas no obvious spectral changes were observed for control compounds SP1 and SP3(Figs.1a and S5b)before UV irradiation.In contrast, after further UV irradiation,SP1/SP3showed the obvious ab-sorption changes in the presences of different metal ions(Fig. S5(c,d))whereas SP2/SP4showed the negligible spectral changes(data not shown).Tables2and S1give a summary of the maximum absorption wavelength(λmax)of SP1-SP4in the absence and the presence of different metal ions after UV irra-diation and the corresponding changes in maximum absorption wavelengths(Δλmax).On the basis of data in Tables2and S1,we found that the ab-sorbance maxima of SP1and SP3in the presence of metal ions after UV irradiation showed the hyperchromatic shifts to differ-ent extents depending on different metal ions(Summaries of some important parameters for different metal ions can be found in Table S2and Fig.S6).After separate additions of Fe3+, Cr3+,Cu2+,and Pb2+,the shoulder peaks at~400-450nm with the large hypsochromic shifts of>100nm appeared due to the formation of MC-M n+complexes(Scheme1),showing that the interactions between metal ions and MC are very strong.In the cases of Zn2+,Ni2+,Co2+,and Cd2+,only slight hypsochromic shifts of9-14nm were observed after addition of them,reflect-ing that the interactions between metal ions and MC are moder-ate.However,the maximum absorption wavelength(λmax)of MC did not change at all upon addition of Ca2+and Mg2+,show-ing that the interactions between Ca2+/Mg2+and MC are quite weak.Fig.S7(a,b)shows the corresponding photographs of SP1upon addition of1equiv.of metal ions before and after UV irradiation,respectively,from which the observed color changes are consistent with UV-Vis absorption studies dis-cussed above.Further irradiation of the UV-irradiated solutions of SP1and SP3with visible light can turn all of them back to the original.In conjunction with UV-Vis studies before UV ir-radiation in Figs.1a and S5b,these results demonstrate that on-ly the addition of metal ions can not lead to the conversion of SP1and SP3from the close form to the open form and that up-on UV irradiation,metal ions can reversibly interact with the photoreleased negatively-charged phenolate oxygen with the different strengths and form MC-M n+complexes. Remarkably,we found that only addition of metal ions led to the ring-opening isomerization of SP2and SP4with distinct color changes as shown in Figs.1b and S5a.For example,addi-tion of Fe3+and Cr3+produced an immediate color changes from colorless to brilliant yellow.Correspondingly,a shoulder at about420nm,a significant hypsochromic shift in compari-son with the open form,37was observed,which should be as-cribed to MC-M n+complexes as demonstrated above.Irradiat-ing the colored solution with visible light did not liberate metal ions with regeneration of the original absorbance,showing the strong interactions between metal ions and MC.It is well known that metal ions with high charge density(Z2/r,where Z is the ion charge and r is the ionic radius)tend to form firm combinations with ligands.19,38-40Among metal ions studied here,both Cr3+and Fe3+possessing more charges and relatively smaller ionic radii afford a higher charge density,consistent with the experimental observation.In comparison with SP1 and SP3,we hypothesize that the metal-generated ring opening of SP should be ascribed to the synergistic effect of the strong affinity between metal ions and SP and the presence of the―OMe group that favors the formation of stable chelate complexes(MC-M n+).When transition metals,such as Cu2+, Zn2+,Ni2+,Co2+and an IV A group metal ion Pb2+were used,the hypsochromic shifts in absorbance maxima in the range of 60-96nm were detected.From Fig.S6,we can see that these metal ions have smaller but approximate charge density,thus resulting in the moderate binding between metal ions and MC that affords the reversible photochromism upon exposure to visible light.These also led to different hypsochromic shifts of λmax of the resulted MC-M n+complexes with the different colors that can be differentiated by a naked eye(Fig.S7(c,d)).For ex-ample,an orange color was observed for the Cu2+and Pb2+com-plexes withλmax of490and480nm,respectively,while a pink color was observed for Ni2+and Co2+complexes withλmax of 512and516nm,respectively.The absorbance maxima of Zn2+ complex(497nm)was situated between them with a pink-or-ange color.In contrast,in the presence of Ca2+,Mg2+,and Cd2+, the absorption spectra change only slightly whenever spiropy-ran molecules were closed or open,reflecting that the interac-tions between metal ions and molecules are weak.For the alka-line-earth metal ions Mg2+and Ca2+,the missing of d electrons may decrease the coordination ability of metal ions with SP. Cd2+is another metal ion of group IIB similar to Zn2+,but the hypsochromic shift in absorbance maxima of Cd2+is smaller than that observed with Zn2+probably because of the largerTable2Summaries of the maximum absorption wavelengths(λmax)of SP1and SP2in ethanol solution in the absence andpresence of different metal ions and the corresponding changes in2475Acta Phys.⁃Chim.Sin.2012V ol.28size of Cd2+(ionic radius=97pm)relative to Zn2+(ionic radius= 74pm).The findings demonstrate that the interactions of metal ions with SP2and SP4are highly metal ion-dependent,thus potentially providing a useful colorimetric approach for detect-ing different metal ions with high sensitivity.To further detect the capability of ion sensing,we investigat-ed the emission properties of SP1-SP4.When excited at the maximum absorption wavelength of SP1-SP4/MC1-MC4,it was found that the closed forms SP1-SP4had no emission while the zwitterionic opened forms MC1-MC4fluoresced with the maximum absorption wavelengths of ca626,650, 636,and660nm(Fig.2a),respectively,consistent with the pre-vious report.41Importantly,addition of1equiv.of Zn2+to the SP2solution led to a dramatic increase in emission intensity at 600nm excited atλ=493nm.Similar results were obtained with SP4(Fig.S8).The fluorescence increase is majorly due to the coordination of Zn2+with―OMe and fluorophores(pyri-dine or quinoline moiety)together with phenolate oxygen.The coordination can decrease the electron densities of the―OMe and the phenolate oxygen and thus increase theπ-conjugation degree of the complex.On the other hand,the coordination of the ligands with the diamagnetic Zn2+containing a closed-shell d10electronic configuration would shut down the photoinduced electron-transfer pathway of the excited free ligand upon Zn2+ coordination42-44and thus turn on the fluorescence.Another pos-sibility is that the coordination would inhibit the photoinduced tautomerization of the phenolate moiety which leads to nonra-diative deexcitation and thus improve the fluorescence by re-ducing the probability of radiationless relaxation.45,46Addition of metal ions such as Pb2+,Mg2+,Cd2+to the solu-tion of SP2or SP4also resulted in the fluorescence enhance-ment.However,the magnitude of the fluorescent enhancement of SP2or SP4in the presence of them is smaller than that ob-served with Zn2+,which could be attributed to the different binding affinities of pyridine and quinoline with them.Ca2+ cannot turn on the fluorescence because of the larger ionic size (ionic radius=99pm)and relative lower ionic electronegativity (1.01).Other metal ions studied,such as Fe3+,Cr3+,Cu2+,Co2+, and Ni2+,were unable to turn on the fluorescent signal of SP2 or SP4,which may be attributed to the proximity of the para-magnetic metal ions to the unpaired electrons of the ligands which lead to spin-orbit coupling and intersystem crossing.47 To further explore the selectivity of Zn2+,competition experi-ments were also conducted in which solutions of SP2or SP4 was first added with1equiv.of other metal ions separately and Zn2+was then added to the mixture.As shown in Figs.2d and S8b,the fluorescence of SP2or SP4after addition of Zn2+dra-matically increased,demonstrating the excellent selectivity of Zn2+detection.It should be noted that the fluorescence increase was relatively small when Zn2+was added to the solution of SP2in the presence of1equiv.of Fe3+,Cr3+,and Cu2+.This may be ascribed to the stronger coordination of the metal ions with the ligands as is already clear from the absorption spectra analysis.Finally,the bingding mode of the complex was stud-ied by Jobʹs plot analysis.Fig.3a shows the typical UV-Vis spectroscopic responses of a SP2ethanolic solution containing Zn2+with the increasing concentrations.The absorbance at576 nm decreased and the absorbance at350and497nm increased with the concentration increase.The stoichiometry of the zinc complex has been investigated via Jobʹs method(Figs.3b and S9)and it has been found to be1:1.Note that the detection of metal ions should be also performed in water or other polar sol-vents since SP1-SP4could be readily soluble in these solvents with aid of ethanol.3.3Combinational logic circuitsAs mentioned above,SP2and SP4response to the stimuli of metal ions and visible light,accompanying significant changes in physical and chemical properties.By taking use of these fea-tures,logic gates and combinational logic circuits can be con-structed.It is well known that,the three basic types of logic gates are NOT,AND,and OR gates.The NOT gate is often called inverter which can converts the input signal(I)of1into the output signal(O)of0and vice versa.In the instant of AND gate,output O is1only when both inputs I1and I2are1.The OR gate also combines the two inputs I1and I2into the output O,when I1and/or I2is1,O binational logic circuits are assembled connecting NOT,AND,and OR gates.The in-hibit(INH)gates are basic AND gates with one of the inputs in-verted through a NOT function.Several examples of INH gate based on molecules have been reported in recent years.48-50 Fig.4illustrates that SP2(or SP4)can work as an INH logic gate upon the stimulation of metal ions and visible light.The two inputs signals are I1(Zn2+)and I2(Vis)and the output is O, the absorbance maxima of the complex(A497)or the fluores-cence emission intensity at600nm(F600).According to the re-sults of the spectral study,the increase in the absorbance maxi-ma of the complex or the emission intensity at600nm is ob-served only in the presence of Zn2+and the absence of visible light.That is to say,only when I1=1and I2=0,the output signal O=1.O is always0in other cases.In particular,using the new photochromic compounds SP2 and SP4,we can develop more complicated combinational log-ic circuits to convert three inputs into two outputs.In the case of the combinational logic circuit shown in Fig.5,the three in-puts signals are I1(Zn2+),I2(Ni2+),and I3(Vis)and the two out-puts are O1(A497)and O2(F600).Binary digits can be encoded on each signal applying positive logic conventions(low=0,high= 1).Consequently,SP2(or SP4)can read a string of three bina-ry inputs and write two specific optical outputs.The corre-sponding truth table and equivalent logic circuit are demon-strated in Fig.5.One portion of this logic circuit converts the three inputs I1,I2,and I3into the output O1through OR,NOT, and AND operations.The other fragment transduces the inputs of I1and I3into the output O2through NOT and AND opera-tions.The optical output O1is high(O1=1)when only the input I1is applied(I1=1,I2=0,I3=0)or when only the input I2is ap-2476LI Ying-Ruo et al .:New Spiropyran Derivatives:Ion Sensing and Information Processing at the Molecular LevelNo.10plied (I 1=0,I 2=1,I 3=0)or when only the input I 3is not applied (I 1=1,I 2=1,I 3=0)(Fig.S10a).The optical output O 2is high (O 2=1)when only the input I 1is applied (I 1=1,I 2=0,I 3=0)or when only the input I 3is not applied (I 1=1,I 2=1,I 3=0).The combina-tional logic circuit shows that all three inputs determine the out-put O 1,while only I 1and I 3control the value of O 2.As mentioned above,in the combinational logic circuit illus-trated in Fig.5,one of the output O 2was not affected by the in-put I 2,while in the instance of the logic circuit shown in Fig.6,both the outputs O 1and O 2are dependent on the three inputs I 1,I 2,and I 3.The combinational logic circuit also consists of three inputs,two of which are chemical inputs I 1(Zn 2+)and I 2(Cu 2+)and the other is optical input I 3(Vis),the two outputs are O 1(A 497)and O 2(F 600).When positive conventions are applied to all signals,the two independent optical outputs (O 1and O 2)can be modulated by stimulating the molecular switch (SP2or SP4)with the three terminal inputs (I 1,I 2,and I 3).According to the fluorescence spectral study,addition of Cu 2+to the solution of SP2(or SP4)containing 1equiv.Zn 2+can cause the fluores-cence quenching.Then,the output O 2is closely related totheFig.3(a)UV-Vis spectroscopic response of SP2ethanolsolution containing Zn 2+with the increasing concentrations;(b)Job ʹs plot of SP2with Zn 2+in ethanol solution(b)Total concentration of [SP2]+[Zn 2+]was kept constant.The absorbance at 497nm wasused.Fig.2(a)Fluorescence emission spectra of SP1-SP4/MC1-MC4;(b)fluorescence emission spectra (λex =493nm)of SP2(5.0×10-5mol ·L -1,ethanol,293K)upon addition of 1equiv.of metal ions (Zn 2+,Fe 3+,Cr 3+,Cu 2+,Ni 2+,Co 2+,Cd 2+,Ca 2+,Mg 2+,and Pb 2+);(c)changes in fluorescence emission spectra (λex =493nm)of SP2(5.0×10-5mol ·L -1,ethanol,293K)upon addition of different concentrations of Zn 2+;(d)detection selectivity of SP2(5.0×10-5mol ·L -1,ethanol,293K)in the presence of various metal ions (λex =493nm):(black bars)fluorescence emission intensity at 600nm in the presence of 1equiv.of Fe 3+,Cr 3+,Cu 2+,Pb 2+,Ni 2+,Co 2+,Cd 2+,Ca 2+,Mg 2+,and Zn 2+;(red bars)fluorescence emission intensity at 600nm after further addition of 1equiv.of Zn 2+2477。