新课标12016年高考数学(文、理科)试卷分析
2016年高考数学试卷分析及复习建议
2016年高考数学试卷分析及复习建议
赵杰
【期刊名称】《学苑教育》
【年(卷),期】2017(000)010
【摘要】一、试题总体特点2016年高考新课标1数学卷在试卷结构、题目数量、分值分布、主干知识等方面与往年基本一致,立足于高中数学基础知识,重点考查主
干内容,在基础知识和通性通法的考查上浓墨重彩.理科数学题遵循了往届全国卷命
题原则,尤其是考试说明中的大部分知识点,选择题、填空题考查了函数图像、三角
函数、概率、解析几何、向量、框图、二项式定理(理科)、数列等知识点,大部
分属于常规题型和常规难度,是学生在高三平时的训练中常见的类型.同时,
【总页数】1页(P46-46)
【作者】赵杰
【作者单位】河南郵城一高
【正文语种】中文
【中图分类】G633
【相关文献】
1.2016年上海高考数学理科试卷评析及复习教学建议 [J], 管恩臣;
2.近年上海高考数学试卷分析及2009年复习建议 [J], 吴超琴
3.2009年江苏省高考数学试卷分析及备考工作总结——从2009年江苏高考数学
试题看2010年高考复习 [J], 张敏
4.稳中求变变中出新——2013年上海市高考数学试卷赏析与高三复习建议 [J],
张亚东
5.稳定为前提,思维为导向——2016年高考数学全国I卷理科试卷评析及高三复习建议 [J], 许晓天
因版权原因,仅展示原文概要,查看原文内容请购买。
2016年全国统一高考数学试卷文科全国一附带答案解析
2016年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.33.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.35.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.2016年全国统一高考数学试卷(文科)(新课标Ⅰ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}【考点】1E:交集及其运算.【专题】11:计算题;29:规律型;5J:集合.【分析】直接利用交集的运算法则化简求解即可.【解答】解:集合A={1,3,5,7},B={x|2≤x≤5},则A∩B={3,5}.故选:B.【点评】本题考查交集的求法,考查计算能力.2.(5分)设(1+2i)(a+i)的实部与虚部相等,其中a为实数,则a等于()A.﹣3B.﹣2C.2D.3【考点】A5:复数的运算.【专题】11:计算题;29:规律型;35:转化思想;5N:数系的扩充和复数.【分析】利用复数的乘法运算法则,通过复数相等的充要条件求解即可.【解答】解:(1+2i)(a+i)=a﹣2+(2a+1)i的实部与虚部相等,可得:a﹣2=2a+1,解得a=﹣3.故选:A.【点评】本题考查复数的相等的充要条件的应用,复数的乘法的运算法则,考查计算能力.3.(5分)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.B.C.D.【考点】CB:古典概型及其概率计算公式.【专题】12:应用题;34:方程思想;49:综合法;5I:概率与统计.【分析】确定基本事件的个数,利用古典概型的概率公式,可得结论.【解答】解:从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,有=6种方法,红色和紫色的花在同一花坛,有2种方法,红色和紫色的花不在同一花坛,有4种方法,所以所求的概率为=.另解:由列举法可得,红、黄、白、紫记为1,2,3,4,即有(12,34),(13,24),(14,23),(23,14),(24,13),(34,12),则P==.故选:C.【点评】本题考查等可能事件的概率计算与分步计数原理的应用,考查学生的计算能力,比较基础.4.(5分)△ABC的内角A、B、C的对边分别为a、b、c.已知a=,c=2,cosA=,则b=()A.B.C.2D.3【考点】HR:余弦定理.【专题】11:计算题;35:转化思想;4R:转化法;58:解三角形.【分析】由余弦定理可得cosA=,利用已知整理可得3b2﹣8b﹣3=0,从而解得b的值.【解答】解:∵a=,c=2,cosA=,∴由余弦定理可得:cosA===,整理可得:3b2﹣8b﹣3=0,∴解得:b=3或﹣(舍去).故选:D.【点评】本题主要考查了余弦定理,一元二次方程的解法在解三角形中的应用,考查了计算能力和转化思想,属于基础题.5.(5分)直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为()A.B.C.D.【考点】K4:椭圆的性质.【专题】11:计算题;29:规律型;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】设出椭圆的方程,求出直线的方程,利用已知条件列出方程,即可求解椭圆的离心率.【解答】解:设椭圆的方程为:,直线l经过椭圆的一个顶点和一个焦点,则直线方程为:,椭圆中心到l的距离为其短轴长的,可得:,4=b2(),∴,=3,∴e==.故选:B.【点评】本题考查椭圆的简单性质的应用,考查点到直线的距离公式,椭圆的离心率的求法,考查计算能力.6.(5分)将函数y=2sin(2x+)的图象向右平移个周期后,所得图象对应的函数为()A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x﹣)D.y=2sin(2x﹣)【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】33:函数思想;48:分析法;57:三角函数的图像与性质.【分析】求得函数y的最小正周期,即有所对的函数式为y=2sin[2(x﹣)+],化简整理即可得到所求函数式.【解答】解:函数y=2sin(2x+)的周期为T==π,由题意即为函数y=2sin(2x+)的图象向右平移个单位,可得图象对应的函数为y=2sin[2(x﹣)+],即有y=2sin(2x﹣).故选:D.【点评】本题考查三角函数的图象平移变换,注意相位变换针对自变量x而言,考查运算能力,属于基础题和易错题.7.(5分)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是,则它的表面积是()A.17πB.18πC.20πD.28π【考点】L!:由三视图求面积、体积.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5F:空间位置关系与距离.【分析】判断三视图复原的几何体的形状,利用体积求出几何体的半径,然后求解几何体的表面积.【解答】解:由题意可知三视图复原的几何体是一个球去掉后的几何体,如图:可得:=,R=2.它的表面积是:×4π•22+=17π.故选:A.【点评】本题考查三视图求解几何体的体积与表面积,考查计算能力以及空间想象能力.8.(5分)若a>b>0,0<c<1,则()A.log a c<log b c B.log c a<log c b C.a c<b c D.c a>c b【考点】4M:对数值大小的比较.【专题】35:转化思想;4R:转化法;51:函数的性质及应用.【分析】根据指数函数,对数函数,幂函数的单调性结合换底公式,逐一分析四个结论的真假,可得答案.【解答】解:∵a>b>0,0<c<1,∴log c a<log c b,故B正确;∴当a>b>1时,0>log a c>log b c,故A错误;a c>b c,故C错误;c a<c b,故D错误;故选:B.【点评】本题考查的知识点是指数函数,对数函数,幂函数的单调性,难度中档.9.(5分)函数y=2x2﹣e|x|在[﹣2,2]的图象大致为()A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】27:图表型;48:分析法;51:函数的性质及应用.【分析】根据已知中函数的解析式,分析函数的奇偶性,最大值及单调性,利用排除法,可得答案.【解答】解:∵f(x)=y=2x2﹣e|x|,∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,故函数为偶函数,当x=±2时,y=8﹣e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2﹣e x,∴f′(x)=4x﹣e x=0有解,故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,故选:D.【点评】本题考查的知识点是函数的图象,对于超越函数的图象,一般采用排除法解答.10.(5分)执行下面的程序框图,如果输入的x=0,y=1,n=1,则输出x,y的值满足()A.y=2x B.y=3x C.y=4x D.y=5x【考点】EF:程序框图.【专题】11:计算题;28:操作型;5K:算法和程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量x,y的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:输入x=0,y=1,n=1,则x=0,y=1,不满足x2+y2≥36,故n=2,则x=,y=2,不满足x2+y2≥36,故n=3,则x=,y=6,满足x2+y2≥36,故y=4x,故选:C.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.11.(5分)平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m、n所成角的正弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;29:规律型;31:数形结合;35:转化思想;5G:空间角.【分析】画出图形,判断出m、n所成角,求解即可.【解答】解:如图:α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABA1B1=n,可知:n∥CD1,m∥B1D1,∵△CB1D1是正三角形.m、n所成角就是∠CD1B1=60°.则m、n所成角的正弦值为:.故选:A.【点评】本题考查异面直线所成角的求法,考查空间想象能力以及计算能力.12.(5分)若函数f(x)=x﹣sin2x+asinx在(﹣∞,+∞)单调递增,则a的取值范围是()A.[﹣1,1]B.[﹣1,]C.[﹣,]D.[﹣1,﹣]【考点】6B:利用导数研究函数的单调性.【专题】35:转化思想;4C:分类法;53:导数的综合应用.【分析】求出f(x)的导数,由题意可得f′(x)≥0恒成立,设t=cosx(﹣1≤t ≤1),即有5﹣4t2+3at≥0,对t讨论,分t=0,0<t≤1,﹣1≤t<0,分离参数,运用函数的单调性可得最值,解不等式即可得到所求范围.【解答】解:函数f(x)=x﹣sin2x+asinx的导数为f′(x)=1﹣cos2x+acosx,由题意可得f′(x)≥0恒成立,即为1﹣cos2x+acosx≥0,即有﹣cos2x+acosx≥0,设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,当t=0时,不等式显然成立;当0<t≤1时,3a≥4t﹣,由4t﹣在(0,1]递增,可得t=1时,取得最大值﹣1,可得3a≥﹣1,即a≥﹣;当﹣1≤t<0时,3a≤4t﹣,由4t﹣在[﹣1,0)递增,可得t=﹣1时,取得最小值1,可得3a≤1,即a≤.综上可得a的范围是[﹣,].另解:设t=cosx(﹣1≤t≤1),即有5﹣4t2+3at≥0,由题意可得5﹣4+3a≥0,且5﹣4﹣3a≥0,解得a的范围是[﹣,].故选:C.【点评】本题考查导数的运用:求单调性,考查不等式恒成立问题的解法,注意运用参数分离和换元法,考查函数的单调性的运用,属于中档题.二、填空题:本大题共4小题,每小题5分13.(5分)设向量=(x,x+1),=(1,2),且⊥,则x=.【考点】9T:数量积判断两个平面向量的垂直关系.【专题】11:计算题;41:向量法;49:综合法;5A:平面向量及应用.【分析】根据向量垂直的充要条件便可得出,进行向量数量积的坐标运算即可得出关于x的方程,解方程便可得出x的值.【解答】解:∵;∴;即x+2(x+1)=0;∴.故答案为:.【点评】考查向量垂直的充要条件,以及向量数量积的坐标运算,清楚向量坐标的概念.14.(5分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.【考点】GP:两角和与差的三角函数.【专题】11:计算题;35:转化思想;49:综合法;56:三角函数的求值.【分析】由θ得范围求得θ+的范围,结合已知求得cos(θ+),再由诱导公式求得sin()及cos(),进一步由诱导公式及同角三角函数基本关系式求得tan(θ﹣)的值.【解答】解:∵θ是第四象限角,∴,则,又sin(θ+)=,∴cos(θ+)=.∴cos()=sin(θ+)=,sin()=cos(θ+)=.则tan(θ﹣)=﹣tan()=﹣=.故答案为:﹣.【点评】本题考查两角和与差的正切,考查诱导公式及同角三角函数基本关系式的应用,是基础题.15.(5分)设直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,若|AB|=2,则圆C的面积为4π.【考点】J8:直线与圆相交的性质.【专题】11:计算题;35:转化思想;5B:直线与圆.【分析】圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,利用圆的弦长公式,求出a值,进而求出圆半径,可得圆的面积.【解答】解:圆C:x2+y2﹣2ay﹣2=0的圆心坐标为(0,a),半径为,∵直线y=x+2a与圆C:x2+y2﹣2ay﹣2=0相交于A,B两点,且|AB|=2,∴圆心(0,a)到直线y=x+2a的距离d=,即+3=a2+2,解得:a2=2,故圆的半径r=2.故圆的面积S=4π,故答案为:4π【点评】本题考查的知识点是直线与圆相交的性质,点到直线的距离公式,难度中档.16.(5分)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为216000元.【考点】7C:简单线性规划.【专题】11:计算题;29:规律型;31:数形结合;33:函数思想;35:转化思想.【分析】设A、B两种产品分别是x件和y件,根据题干的等量关系建立不等式组以及目标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可;【解答】解:(1)设A、B两种产品分别是x件和y件,获利为z元.由题意,得,z=2100x+900y.不等式组表示的可行域如图:由题意可得,解得:,A(60,100),目标函数z=2100x+900y.经过A时,直线的截距最大,目标函数取得最大值:2100×60+900×100=216000元.故答案为:216000.【点评】本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,不等式组解实际问题的运用,不定方程解实际问题的运用,解答时求出最优解是解题的关键.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a nb n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【考点】8H:数列递推式.【专题】11:计算题;4O:定义法;54:等差数列与等比数列.【分析】(Ⅰ)令n=1,可得a1=2,结合{a n}是公差为3的等差数列,可得{a n}的通项公式;(Ⅱ)由(1)可得:数列{b n}是以1为首项,以为公比的等比数列,进而可得:{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,+b n+1=nb n.(Ⅱ)由(I)知:(3n﹣1)b n+1即3b n=b n.+1即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.【点评】本题考查的知识点是数列的递推式,数列的通项公式,数列的前n项和公式,难度中档.18.(12分)如图,已知正三棱锥P﹣ABC的侧面是直角三角形,PA=6,顶点P 在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.(Ⅰ)证明:G是AB的中点;(Ⅱ)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.【考点】LF:棱柱、棱锥、棱台的体积;MK:点、线、面间的距离计算.【专题】11:计算题;35:转化思想;5F:空间位置关系与距离.【分析】(Ⅰ)根据题意分析可得PD⊥平面ABC,进而可得PD⊥AB,同理可得DE⊥AB,结合两者分析可得AB⊥平面PDE,进而分析可得AB⊥PG,又由PA=PB,由等腰三角形的性质可得证明;(Ⅱ)由线面垂直的判定方法可得EF⊥平面PAC,可得F为E在平面PAC内的正投影.由棱锥的体积公式计算可得答案.【解答】解:(Ⅰ)证明:∵P﹣ABC为正三棱锥,且D为顶点P在平面ABC内的正投影,∴PD⊥平面ABC,则PD⊥AB,又E为D在平面PAB内的正投影,∴DE⊥面PAB,则DE⊥AB,∵PD∩DE=D,∴AB⊥平面PDE,连接PE并延长交AB于点G,则AB⊥PG,又PA=PB,∴G是AB的中点;(Ⅱ)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC 内的正投影.∵正三棱锥P﹣ABC的侧面是直角三角形,∴PB⊥PA,PB⊥PC,又EF∥PB,所以EF⊥PA,EF⊥PC,因此EF⊥平面PAC,即点F为E在平面PAC内的正投影.连结CG,因为P在平面ABC内的正投影为D,所以D是正三角形ABC的中心.由(Ⅰ)知,G是AB的中点,所以D在CG上,故CD=CG.由题设可得PC⊥平面PAB,DE⊥平面PAB,所以DE∥PC,因此PE=PG,DE=PC.由已知,正三棱锥的侧面是直角三角形且PA=6,可得DE=2,PG=3,PE=2.在等腰直角三角形EFP中,可得EF=PF=2.所以四面体PDEF的体积V=×DE×S=×2××2×2=.△PEF【点评】本题考查几何体的体积计算以及线面垂直的性质、应用,解题的关键是正确分析几何体的各种位置、距离关系.19.(12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得如图柱状图:记x表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ)若n=19,求y与x的函数解析式;(Ⅱ)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【考点】3H:函数的最值及其几何意义;5C:根据实际问题选择函数类型;B8:频率分布直方图.【专题】11:计算题;51:函数的性质及应用;5I:概率与统计.【分析】(Ⅰ)若n=19,结合题意,可得y与x的分段函数解析式;(Ⅱ)由柱状图分别求出各组的频率,结合“需更换的易损零件数不大于n”的频率不小于0.5,可得n的最小值;(Ⅲ)分别求出每台都购买19个易损零件,或每台都购买20个易损零件时的平均费用,比较后,可得答案.【解答】解:(Ⅰ)当n=19时,y==(Ⅱ)由柱状图知,更换的易损零件数为16个频率为0.06,更换的易损零件数为17个频率为0.16,更换的易损零件数为18个频率为0.24,更换的易损零件数为19个频率为0.24又∵更换易损零件不大于n的频率为不小于0.5.则n≥19∴n的最小值为19件;(Ⅲ)假设这100台机器在购机的同时每台都购买19个易损零件,所须费用平均数为:(70×19×200+4300×20+4800×10)=4000(元)假设这100台机器在购机的同时每台都购买20个易损零件,所须费用平均数为(90×4000+10×4500)=4050(元)∵4000<4050∴购买1台机器的同时应购买19台易损零件.【点评】本题考查的知识点是分段函数的应用,频率分布条形图,方案选择,难度中档.20.(12分)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连结ON并延长交C于点H.(Ⅰ)求;(Ⅱ)除H以外,直线MH与C是否有其它公共点?说明理由.【考点】K8:抛物线的性质.【专题】15:综合题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】(Ⅰ)求出P,N,H的坐标,利用=,求;(Ⅱ)直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,利用判别式可得结论.【解答】解:(Ⅰ)将直线l与抛物线方程联立,解得P(,t),∵M关于点P的对称点为N,∴=,=t,∴N(,t),∴ON的方程为y=x,与抛物线方程联立,解得H(,2t)∴==2;(Ⅱ)由(Ⅰ)知k MH=,∴直线MH的方程为y=x+t,与抛物线方程联立,消去x可得y2﹣4ty+4t2=0,∴△=16t2﹣4×4t2=0,∴直线MH与C除点H外没有其它公共点.【点评】本题考查直线与抛物线的位置关系,考查学生的计算能力,正确联立方程是关键.21.(12分)已知函数f(x)=(x﹣2)e x+a(x﹣1)2.(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个零点,求a的取值范围.【考点】52:函数零点的判定定理;6B:利用导数研究函数的单调性.【专题】35:转化思想;48:分析法;51:函数的性质及应用;53:导数的综合应用.【分析】(Ⅰ)求出f(x)的导数,讨论当a≥0时,a<﹣时,a=﹣时,﹣<a<0,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由f(x)=(x﹣2)e x+a(x﹣1)2,可得f′(x)=(x﹣1)e x+2a(x﹣1)=(x﹣1)(e x+2a),①当a≥0时,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1,即有f(x)在(﹣∞,1)递减;在(1,+∞)递增(如右上图);②当a<0时,(如右下图)若a=﹣,则f′(x)≥0恒成立,即有f(x)在R上递增;若a<﹣时,由f′(x)>0,可得x<1或x>ln(﹣2a);由f′(x)<0,可得1<x<ln(﹣2a).即有f(x)在(﹣∞,1),(ln(﹣2a),+∞)递增;在(1,ln(﹣2a))递减;若﹣<a<0,由f′(x)>0,可得x<ln(﹣2a)或x>1;由f′(x)<0,可得ln(﹣2a)<x<1.即有f(x)在(﹣∞,ln(﹣2a)),(1,+∞)递增;在(ln(﹣2a),1)递减;(Ⅱ)①由(Ⅰ)可得当a>0时,f(x)在(﹣∞,1)递减;在(1,+∞)递增,且f(1)=﹣e<0,x→+∞,f(x)→+∞;当x→﹣∞时f(x)>0或找到一个x<1使得f(x)>0对于a>0恒成立,f(x)有两个零点;②当a=0时,f(x)=(x﹣2)e x,所以f(x)只有一个零点x=2;③当a<0时,若a<﹣时,f(x)在(1,ln(﹣2a))递减,在(﹣∞,1),(ln(﹣2a),+∞)递增,又当x≤1时,f(x)<0,所以f(x)不存在两个零点;当a≥﹣时,在(﹣∞,ln(﹣2a))单调增,在(1,+∞)单调增,在(1n(﹣2a),1)单调减,只有f(ln(﹣2a))等于0才有两个零点,而当x≤1时,f(x)<0,所以只有一个零点不符题意.综上可得,f(x)有两个零点时,a的取值范围为(0,+∞).【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-1:几何证明选讲]22.(10分)如图,△OAB是等腰三角形,∠AOB=120°.以O为圆心,OA为半径作圆.(Ⅰ)证明:直线AB与⊙O相切;(Ⅱ)点C,D在⊙O上,且A,B,C,D四点共圆,证明:AB∥CD.【考点】N9:圆的切线的判定定理的证明.【专题】14:证明题;35:转化思想;49:综合法;5M:推理和证明.【分析】(Ⅰ)设K为AB中点,连结OK.根据等腰三角形AOB的性质知OK⊥AB,∠A=30°,OK=OAsin30°=OA,则AB是圆O的切线.(Ⅱ)设圆心为T,证明OT为AB的中垂线,OT为CD的中垂线,即可证明结论.【解答】证明:(Ⅰ)设K为AB中点,连结OK,∵OA=OB,∠AOB=120°,∴OK⊥AB,∠A=30°,OK=OAsin30°=OA,∴直线AB与⊙O相切;(Ⅱ)因为OA=2OD,所以O不是A,B,C,D四点所在圆的圆心.设T是A,B,C,D四点所在圆的圆心.∵OA=OB,TA=TB,∴OT为AB的中垂线,同理,OC=OD,TC=TD,∴OT为CD的中垂线,∴AB∥CD.【点评】本题考查了切线的判定,考查四点共圆,考查学生分析解决问题的能力.解答此题时,充分利用了等腰三角形“三合一”的性质.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,曲线C1的参数方程为(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cosθ.(Ⅰ)说明C1是哪种曲线,并将C1的方程化为极坐标方程;(Ⅱ)直线C3的极坐标方程为θ=α0,其中α0满足tanα0=2,若曲线C1与C2的公共点都在C3上,求a.【考点】Q4:简单曲线的极坐标方程;QE:参数方程的概念.【专题】11:计算题;35:转化思想;4A:数学模型法;5S:坐标系和参数方程.【分析】(Ⅰ)把曲线C1的参数方程变形,然后两边平方作和即可得到普通方程,可知曲线C1是圆,化为一般式,结合x2+y2=ρ2,y=ρsinθ化为极坐标方程;(Ⅱ)化曲线C2、C3的极坐标方程为直角坐标方程,由条件可知y=x为圆C1与C2的公共弦所在直线方程,把C1与C2的方程作差,结合公共弦所在直线方程为y=2x可得1﹣a2=0,则a值可求.【解答】解:(Ⅰ)由,得,两式平方相加得,x2+(y﹣1)2=a2.∴C1为以(0,1)为圆心,以a为半径的圆.化为一般式:x2+y2﹣2y+1﹣a2=0.①由x2+y2=ρ2,y=ρsinθ,得ρ2﹣2ρsinθ+1﹣a2=0;(Ⅱ)C2:ρ=4cosθ,两边同时乘ρ得ρ2=4ρcosθ,∴x2+y2=4x,②即(x﹣2)2+y2=4.由C3:θ=α0,其中α0满足tanα0=2,得y=2x,∵曲线C1与C2的公共点都在C3上,∴y=2x为圆C1与C2的公共弦所在直线方程,①﹣②得:4x﹣2y+1﹣a2=0,即为C3 ,∴1﹣a2=0,∴a=1(a>0).【点评】本题考查参数方程即简单曲线的极坐标方程,考查了极坐标与直角坐标的互化,训练了两圆公共弦所在直线方程的求法,是基础题.[选修4-5:不等式选讲]24.已知函数f(x)=|x+1|﹣|2x﹣3|.(Ⅰ)在图中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.【考点】&2:带绝对值的函数;3A:函数的图象与图象的变换.【专题】35:转化思想;48:分析法;59:不等式的解法及应用.【分析】(Ⅰ)运用分段函数的形式写出f(x)的解析式,由分段函数的画法,即可得到所求图象;(Ⅱ)分别讨论当x≤﹣1时,当﹣1<x<时,当x≥时,解绝对值不等式,取交集,最后求并集即可得到所求解集.【解答】解:(Ⅰ)f(x)=,由分段函数的图象画法,可得f(x)的图象,如右:(Ⅱ)由|f(x)|>1,可得当x≤﹣1时,|x﹣4|>1,解得x>5或x<3,即有x≤﹣1;当﹣1<x<时,|3x﹣2|>1,解得x>1或x<,即有﹣1<x<或1<x<;当x≥时,|4﹣x|>1,解得x>5或x<3,即有x>5或≤x<3.综上可得,x<或1<x<3或x>5.则|f(x)|>1的解集为(﹣∞,)∪(1,3)∪(5,+∞).【点评】本题考查绝对值函数的图象和不等式的解法,注意运用分段函数的图象的画法和分类讨论思想方法,考查运算能力,属于基础题.。
2016年高考新课标1卷文科数学试题解析版.docx
)))))2016 年高考数学新课标Ⅰ(文)试题及答案解析(使用地区山西、河南、河北、湖南、湖北、江西、安徽、福建、广东)一、选择题,本大题共12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.【 2016 新课标Ⅰ(文) 】 1.设集合 A= {1,3,5,7} ,B= { x|2 ≤x ≤5},则 A ∩B= ()A . {1,3}B .{3,5}C .{5,7}D . {1,7}【答案】 B【解析】取 A , B 中共有的元素是 {3,5} ,故选 B【 2016 新课标Ⅰ(文) 】2.设 (1+2i)(a+i )的实部与虚部相等,其中a 为实数,则 a= ()A . -3B . -2C . 2D . 3 【答案】 A【解析】 (1+2i)(a+i )= a-2+(1+2 a)i ,依题 a-2=1+2a ,解得 a= -3,故选 A【 2016 新课标Ⅰ(文) 】3.为美化环境,从红、黄、白、紫 4 种颜色的花中任选 2 种花种在一个花坛中,余下的2 种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概 率是 ( )11 2 D .5A .B .C .6323【答案】 C【解析】设红、黄、白、紫 4 种颜色的花分别用 1,2,3,4 来表示,则所有基本事件有(12,34),(13,24), (14,23), (23,14), (24,13), (34,12),共 6 个,其中 1 和 4 不在同一花坛的事件有4个, 其概率为 P=42 ,故选 C 6 3【 2016 新 课 标 Ⅰ ( 文 )】 4 .ABC 的 内 角 A,B,C 的 对 边 分 别 为 a,b,c. 已 知a5 , c 2 , c oAs 23,则 b= ()A . 2B . 3C .2D . 3【答案】 D【解析】由余弦定理得:5=4+b 22 2,故选 D-4b ×, 则 3b-8b-3=0 ,解得 b=33【 2016 新课标Ⅰ(文) 】5.直线 l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的1,则该椭圆的离心率为 ()41 1C .23A .B .3D .324【答案】 B【解析】由直角三角形的面积关系得bc=12b b 2 c 2 ,解得 ec 1 ,故选 B4a 2)))))【 2016 新课标Ⅰ(文) 】 6.若将函数 y=2sin (2x+ )的图像向右平移1个周期后,所得图像对应的函数为 ()64A . y=2sin(2x+ )B . y=2sin(2x+ )C . y=2sin(2x – )D .y=2sin(2 x – )【答案】 D4343【解析】对应的函数为y=2sin[ 2( x-1)+ ] ,即 y=2sin(2 x – ),故选 D4 63【 2016 新课标Ⅰ(文) 】 7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径 .若该几何体的体积是 28 , 则它的表面积是 ()3A . 17πB . 18πC . 20πD . 28π 【答案】 A【解析】依图可知该几何体是球构成截去了八分之一,其体积V4 R 3728 ,解得 R=2,表面积 S 4 227 + 32217 ,故选 B3838 4【 2016 新课标Ⅰ(文) 】 8.若 a>b>0,0<c<1,则 ()A . log a c<log b cB . log c a<log c bC . a c <b cD . c a >c b 【答案】 B【解析】取特值 a=1, b=0.5, c=0.5,可排除 A , C ,D ,故选 B【 2016 新课标Ⅰ(文) 】 9.函数 y=2x 2–e |x|在 [ –2,2] 的图像大致为 ()yyyy1111-2 O2 x -2O2 x -2 O 2 x -2O2 xA BCD【答案】 D【解析】当 0≤x ≤2时, y'=4x –e x ,函数先减后增,且 y'|x=0.5>0,最小值在 (0,0.5) 内 .故选 D 【 2016 新课标Ⅰ(文) 】 10.执行右面的程序框图,如果输入的 x=0, y=1, n=1,则输出 x , y 的值满足 ( )C开始A . y=2xB . y=3 x 输入 x,y,nC . y=4xD . y=5 xn 1, y ny 【答案】 Cn , x , y 依次为 n=n+ 1 x x 【解析】运行程序,循环节内的2 (1,0,1) , (2,0.5,2) ,(3,1.5,6) , 输出 x=1.5, y= 6, 否故选 Cx 2+y 2≥36? 【 2016 新课标Ⅰ(文) 】 11.平面 α过正方体 ABCD -A 1B 1C 1D 1 的顶点 A ,是)))))则 m , n 所成角的正弦值为 ()32C .31A .B .3D .223【答案】 A【解析】平面 A 1B 1C 1D 1∩平面 CB 1D 1= B 1D 1 与 m 平行,平面 CDD 1C 1∩平面 CB 1 D 1= CD 1与 n 平行,所以 m , n 所成角就是 B 1D 1 与 CD 1 所成角,而 CB 1D 1 是等边三角形,则所成角 是 60°,故选 A 【 2016 新课标Ⅰ(文)】12.若函数 f (x) x- 1sin2x asinx 在(- ∞ ,+ ∞)单调递增,则 a 的取值范围是 ()3A . [-1,1]B . [-1, 1C . [-,1 ] D . [-1,-1]3 ]【答案】 C33【解析】f (x)x- 2sinxcosxasin x , f '(x) 1- 2(cos 2 xsin 2 x)a cosx ,3acosx ≥ 2cos2x3依 题 f' (x) ≥0 恒 成 立 , 即1 恒 成 立 , 而 (acosx)min =-|a| ,321 1 1 1cos2x 1,|a |,解得 a [,] ,故选 C3333 3二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.把答案填在横线上.【 2016 新课标Ⅰ(文) 】 13.设向量 a =( x ,x+1) , b =(1, 2),且 a ⊥ b ,则 x=.【答案】232 【解析】依题 x+2( x+1)=0 ,解得 x=3π 3【 2016 新课标Ⅰ(文) 】14.已知 θ是第四象限角,且,则 tan(θ- π.sin(θ+)= )=4454【答案】34【解析】依题 ππππθ+ 是第一象限角,cos(θ+ )=, tan(θ- )=- tan( -θ)44 5 444 π ππ ππππ π=- tan[-(θ+)]=- sin[-(θ+ )]/cos[-(θ+)]=- cos( θ+)/ sin( θ+ )=324242444【 2016 新课标Ⅰ(文) 】 15.设直线 y=x +2a 与圆 C :x 2+y 2-2ay-2=0 相交于 A ,B 两点,若|AB |= 2 3 ,则圆 C 的面积为.【答案】 4π【解析】圆方程可化为x 2+ (y-a)2 =a 2+2,圆心 C 到直线距离 d=| a |,由 d 2+3= a 2+2,解得 a 2=2,所以圆半径为 2,则圆面积为 4π2【 2016 新课标Ⅰ(文) 】 16.某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料 .)))))生 一件 品 A 需要甲材料 1.5kg ,乙材料 1kg ,用 5 个工 ; 生 一件 品 B 需要甲材 料 0.5kg ,乙材料 0.3kg ,用 3 个工 ,生 一件 品 A 的利 2100 元,生 一件品 B 的利 900 元 . 企 有甲材料 150kg ,乙材料 90kg , 在不超 600 个工 的条件下,生 品 A 、 品 B 的利 之和的最大 元 .【答案】 216000【解析】 生A 、B 两种 品各 x 件、 y 件,利 之和是 z = 2100x+900 y , 1.5x 0.5 y 150 3x y 300 yx 0.3 y 90 10 x 3 y 900束条件是,即5x 3y6005x 3 y 600300Cx 0, y 0x 0, y 0200作出可行域四 形 OABC ,如 .B画出直 l 0: 7x+3y =0,平移 l 0 到 l ,OAx当 l 点 B z 最大, 立 10x+ 3y= 900 与 5x+ 3y= 600②③解得交点 B(60,100),所以 z max = 126000+ 90000=216000.l 0①三、解答 :解答 写出文字 明, 明 程或演算步.只做 6 ,共 70 分 .【 2016 新 Ⅰ(文) 】 17.(本 分 12 分)已知 { a n } 是公差3 的等差数列,数列 { b n } 足 b 1=1, b 2 =1, a n b n+1+b n+1=nb n .3(Ⅰ )求 { a n } 的通 公式;(Ⅱ )求 { b n } 的前 n 和 .【解析】 (Ⅰ )依 a 1b 2+b 2=b 1 ,b 1=1, b 2=1,解得 a 1=2⋯ 2 分a n =2+3( n-1)=3n-13通 公式⋯ 6 分(Ⅱ )由 (Ⅰ )知 3nb n +1=nb n , b n+1= 1 b n ,所以 { b n } 是公比1的等比数列 .⋯ 9 分331 ( 1) n3 1所以 { b n } 的前 n 和 S n =3⋯ 12 分1223n 113【 2016 新 Ⅰ(文) 】 18.(本 分 12 分)如 ,已知正三棱P-ABC 的 面是直角三角形, PA=6, 点 P 在平面 ABC 内的正投 影 点 D ,D 在平面 PAB 内的正投影 点 E , P 接 PE 并延 交 AB 于点 G.F(Ⅰ ) 明 G 是 AB 的中点;(Ⅱ )在答 卡第( 18) 中作出点 E 在平面 PAC AEC内的正投影 F( 明作法及理由 ),并求四面体 PDEF 的体 .GD【解析】 (Ⅰ ) 明: PD ⊥平面 ABC ,∴ PD ⊥ AB .B又 DE ⊥平面 PAB ,∴ DE ⊥ AB .∴ AB ⊥平面 PDE .⋯ 3 分又 PG 平面 PDE ,∴ AB ⊥ PG .依 PA=PB ,∴ G 是 AB 的中点.⋯ 6 分(Ⅱ )在平面 PAB 内作 EF ⊥ PA (或 EF// PB )垂足 F ,F 是点 E 在平面 PAC 内的正投影 .⋯ 7 分理由如下:∵ PC ⊥ PA , PC ⊥ PB ,∴ PC ⊥平面 PAB . ∴ EF ⊥ PC作 EF ⊥PA ,∴ EF ⊥平面 PAC .即 F 是点 E 在平面 PAC 内的正投影 .⋯ 9 分 接 CG ,依 D 是正 ABC 的重心,∴ D 在中 CG 上,且 CD =2DG .)))))易知 DE// PC, PC=PB=P A= 6,∴ DE =2, PE = 2PG2 3 2 2 2 .33在等腰直角PEF 中, PF=EF= 2,∴PEF 的面 S=2.14⋯12 分所以四面体 PDEF 的体VS DE.33【 2016 新Ⅰ(文)】19.(本小分12分)某公司划 1 台机器,种机器使用三年后即被淘汰. 机器有一易零件,在机器,可以外种零件作件,每个200 元 . 在机器使用期,如果件不足再,每个 500元 .需决策在机器同几个易零件,此搜集并整理了100台种机器在三年使用期内更的易零件数,得下面柱状:x 表示 1 台机器在三年使用期内需更的易零件数,y 表示 1 台机器在易零件上所需的用(位:元), n 表示机的同的易零件数.(Ⅰ )若 n=19 ,求 y 与 x 的函数解析式;(Ⅱ )若要求“需更的易零件数不大于n”的率不小于0.5,求 n 的最小;(Ⅲ )假 100 台机器在机的同每台都19 个易零件,或每台都20 个易零件,分算100 台机器在易零件上所需用的平均数,以此作决策依据,1 台机器的同19 个是 20个易零件?【解析】 (Ⅰ )当 x≤19 , y=3800 ;当 x>19 , y=3800+500( x-19)=500 x-5700.所以 y 与 x 的函数解析式y 3800,x19⋯ 3 分500x5700,x(x N*)19(Ⅱ )由柱状知,需更的易零件数不大于18 0.46,不大于 19 0.7,所以 n 的最小 19.⋯ 6 分(Ⅲ )若每台机器都19 个易零件,有70 台的用3800, 20 台的用 4300,10 台的用4800,所以100 台机器易零件用的平均数1(3800 ×70+4300 ×20+4800 ×10)=4000.⋯ 9 分100若每台机器都 20 个易零件,有 90 台的用4000, 10 台的用4500,所以 100 台机器易零件用的平均数1(4000 ×90+4500 ×10)=4050.⋯ 11 分100比两个平均数可知, 1 台机器的同 19 个易零件 .⋯ 12 分【 2016 新Ⅰ(文)】20.(本小分12 分)在直角坐系xoy 中,直 l : y=t(t≠0)交 y 于点 M,交抛物 C: y2=2px(p>0) 于点 P,M 关于点 P 的称点 N, ON 并延交 C 于点 H.)))))(Ⅰ )求OH; (Ⅱ )除 H 以外,直 MH 与 C 是否有其它公共点? 明理由.ON【解析】 (Ⅰ )依 M (0, t), P(t 2t 2, t),ON 的方程 y px ., t). 所以 N(2 p pt22⋯ 4 分立 y =2px ,消去 x 整理得 y =2 ty. 解得 y 1=0, y 2=2 t.所以 H (2t 2OH⋯ 6 分,2t). 所以 N 是 OH 的中点,所以=2.pON(Ⅱ )直 MH 的方程 y tpx , 立 y 2=2px ,消去 x 整理得 y 2 -4ty+4 t 2=0.2t解得 y 1=y 2=2 t. 即直 MH 与 C 只有一个交点 H.所以除 H 以外,直 MH 与 C 没有其它公共点 .⋯12 分【 2016 新 Ⅰ(文) 】 21.(本小 分12 分)已知函数 x2f(x)=( x -2)e +a(x -1) .(Ⅰ )f(x)的 性; (Ⅱ )若有两个零点,求a 的取 范 .【解析】xxx ∈ R ⋯ 2 分 (Ⅰ ) f '(x)=( x -1)e +a(2x -2)=(x -1)(e +2a). (1) 当 a ≥0 ,在 (-∞,1)上, f '(x)<0 , f( x) 减;在 (1,+ ∞)上, f '( x)>0 ,f(x) 增 . ⋯ 3 分 (2) 当 a<0 ,令 f' (x)=0,解得 x =1 或 x=ln(-2 a).①若 a=e, ln(-2 a) =1 , f '(x)≥0 恒成立,所以 f(x)在 (-∞,+ ∞)上 增 .2②若 a>e, ln(-2 a)<1 ,在 (ln(-2 a),1)上, f '(x)<0 , f( x) 减;2在 (-∞, ln(-2 a))与 (1,+ ∞)上, f '(x)>0 , f(x) 增 .③若 a<e, ln(-2 a)>1 ,在 (1,ln(-2 a))上, f '(x)<0 , f( x) 减;2在 (-∞,1)与(ln(-2 a),+∞)上, f '(x)>0 , f(x) 增 .⋯ 7分x⋯ 8 分(Ⅱ ) (1)当 a=0 , f(x)=(x -2)e 只有一个零点,不合要求 .(2) 当 a>0 ,由 (Ⅰ )知 f(x)在 (-∞,1)上 减;在 (1,+∞)上 增 .ab a最小 f(1)=- e<0,又 f(2)= a>0,若取 b<0 且 b<ln, e < .2 2从而 f( b)> a(b 2)a(b 1)2a(b 23b ) 0 ,所以 f( x)有两个零点 . ⋯ 10 分22e (3)当 a<0 ,在 (-∞,1] 上, f(x)<0 恒成立;若 a ≥,由 (Ⅰ )知 f(x)在 (1,+∞)上 增,e 2不存在两个零点 .若 a< ,f(x)在 (1,ln(-2 a)) 上 减;在 (ln(-2 a),+∞)上 增,也不存在两个零点 .2上 a 的取 范 是(0,1).⋯ 12 分)))))【 2016 新Ⅰ(文)】22.(本小分10 分)修4-1:几何明如,OAB 是等腰三角形,∠AOB=120°. 以 O 心,1OA 半径作 .2 (Ⅰ )明:直AB 与⊙ O 相切;(Ⅱ )点 C,D 在⊙ O 上,且 A,B,C,D 四点共,明:AB∥ CD.明: (Ⅰ ) E 是 AB 的中点,接OE,因 OA=OB ,∠ AOB=120°. 所以 OE⊥AB ,∠ AOE=60°.⋯3分在Rt AOE 中, OE= 1OA. 即心 O 到直 AB 的2距离等打半径,所以直AB 与⊙ O 相切 .⋯5分1(Ⅱ )因 OD=OA,所以 O 不是 A,B,C,D 四点共的心,故其心O', O'在2AB 的垂直平分上 .又 O 在 AB 的垂直平分上,作直O O' ,所以 O O' ⊥ AB.⋯ 8 分同理可 O O' ⊥ CD .所以 AB∥ CD .⋯ 10 分【 2016 新Ⅰ(文)】23.(本小分10 分)修4—4:坐系与参数方程在直坐系xoy 中,曲 C1的参数方程x a cost( t 参数, a>0).在以坐y1a sin t原点极点, x 正半极的极坐系中,曲C2:ρ=4cosθ.(Ⅰ )明 C1是哪种曲,并将C1的方程化极坐方程;(Ⅱ )直C3的极坐方程θ=α,其中α足 tanαC1与 C2的公共点都在000=2,若曲C3上,求 a.【解析】 (Ⅰ )消去参数 t 得到 C1的普通方程 x2+(y-1) 2=a2.所以 C1是以 (0,1) 心 a 半径的 .⋯ 3 分将 x= cos, y=sin 代入可得 C1的极坐方程2-2sin+1-a2=0. ⋯ 5 分(Ⅱ )立2-2sin+1- a2=0 与ρ=4cosθ消去ρ得 16cos2-8sin cos +1- a2=0,由 tanθ=2 可得 16cos2-8sin cos= 0. 从而 1-a2=0,解得 a=1.⋯ 8 分当 a=1 ,极点也是C1与 C2的公共点,且在C3上,上 a=1.⋯10 分【2016 新Ⅰ(文)】24.(本小分10分),修4—5:不等式已知函数 f(x)=| x+1| -|2x-3|.(Ⅰ )在答卡第24 中画出y=f(x)的像;(Ⅱ )求不等式 | f(x)|>1的解集 .x4,x1【解析】 (Ⅰ ) f ( x)3x2,3 1 x2x4,3 x2)))))y=f(x)的 像如 所示 . ⋯ 5 分(Ⅱ )由 f(x)的 像和表达式知,当 f(x)=1 ,解得 x=1 或 x=3.当 f(x)=-1 ,解得 x=1或 x=5.⋯ 8 分31或 1< x<3 或 x>5}.合 f( x)的 像可得 | f(x)|>1 的解集 { x|x<⋯ 10 分32016 年全国高考新 第Ⅰ卷 一、 ,本大 共 12 小 ,每小 5 分,共 一 是符合 目要求的.1. 集合 A= {1,3,5,7} ,B= { x|2 ≤x ≤ 5}, A ∩B= (A . {1,3}B .{3,5}C .{5,7}1 卷文科数学60 分.在每小 出的四个 中,只有)D . {1,7}2. (1+2i)(a+i )的 部与虚部相等,其中 a 数,A . -3B . -2C . 2 a= (D .3)3. 美化 境,从 、黄、白、紫 4 种 色的花中任 2 种花种在一个花 中,余下的种花种在另一个花 中, 色和紫色的花不在同一花 的概率是 ( )21 12 5 A .B .C .D .32364. ABC 的内角 A,B,C 的 分 a,b,c.已知 a5, c2,2,cos Ab= ( )3A . 2B . 3C .2D . 35.直 l 的一个 点和一个焦点,若 中心到l 的距离 其短 的1, 的离心率()411C .23A .B .3D .3246.若将函数 y=2sin (2 x+)的 像向右平移1个周期后,所得 像 的函数()64A . y=2sin(2x+) B . y=2sin(2x+ ) C . y=2sin(2x – ) D .y=2sin(2 x – )43437.如 ,某几何体的三 是三个半径相等的 及每个中两条相互垂直的半径 .若 几何体的体 是 28 , 它的表面 是 ()3A . 17πB . 18πC . 20πD . 28π8.若 a>b>0, 0<c<1, ( )C . a c <b cD . c a >cbA . log a c<log b cB . log c a<log c b 9.函数 y=2x 2–e |x|在[ –2,2] 的 像大致 ()-2O 2 x -2O 2 x -2O 2 x -2O 2 x)))))开始 10.执行右面的程序框图,如果输入的x=0 ,y=1, n=1,输入 x,y,n则输出 x , y 的值满足 ( )A . y=2xB . y=3 xn=n+ 1x xn1, y nyC . y=4xD . y=5 x211.平面 α过正方体 ABCD -A 1B 1C 1D 1 的顶点 A ,否22≥36? α//平面 CB 1D 1, α∩平面 ABCD=m ,x +y是α∩平面 ABB 1A 1=n ,则 m , n 所成角的正弦值为 ()x,y32 C .3 D .1输出 A .B .3322结束12.若函数 f (x)x - 1sin2x asin x 在 (-∞ ,+ ∞)单调递增,则 a 的取值范围是 ()3 1 1 1 1A . [-1,1]]D . [-1,-B . [-1,C . [-, ]]33 33第Ⅱ卷本卷包括必考题和选考题两部分.第 13 题~第 21 题为必考题, 每个试题考生都必须作答, 第 22 题 ~第 24 题为选考题,考生根据要求作答.二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.把答案填在横线上. 13.设向量 a =(x , x+1) , b =(1 , 2),且 a ⊥ b ,则 x= .14.已知 θ是第四象限角,且 sin(θ+π π .4)= 3,则 tan(θ-)=5415.设直线 y=x +2a 与圆 C : x 2+y 2-2ay-2=0 相交于 A ,B 两点,若 |AB|= 23 ,则圆 C 的面积为 .16.某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料 .生产一件产品 A 需要甲材 料 1.5kg ,乙材料 1kg ,用 5 个工时;生产一件产品 B 需要甲材料 0.5kg ,乙材料 0.3kg , 用 3 个工时,生产一件产品 A 的利润为 2100 元,生产一件产品 B 的利润为 900 元 .该企 业现有甲材料 150kg ,乙材料 90kg ,则在不超过 600 个工时的条件下,生产产品 A 、产 品 B 的利润之和的最大值为 元 . 三、解答题:解答应写出文字说明,证明过程或演算步骤 .只做 6 题,共 70 分 .17.(本题满分 12 分)1, a n b n+1+b n+1=nb n .已知 { a n } 是公差为 3 的等差数列,数列 { b n } 满足 b 1=1, b 2 = (Ⅰ )求 { a n } 的通项公式;(Ⅱ )求 { b n } 的前 n 项和 .3)))))18.(本题满分12 分)如图,已知正三棱锥 P-ABC 的侧面是直角三角形, PA=6,顶点影为点 D ,D 在平面 PAB 内的正投影为点 E,连接 PE 并延长交 AB 于点 G.(Ⅰ )证明 G 是 AB 的中点;(Ⅱ )在答题卡第( 18)题图中作出点 E 在平面 PAC内的正投影F(说明作法及理由),并求四面体PDEF 的体积.P 在平面 ABC 内的正投PEA CGDB19.(本小题满分12 分)某公司计划购买 1 台机器,该种机器使用三年后即被淘汰. 机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200 元 . 在机器使用期间,如果备件不足再购买,则每个500 元 .现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记 x 表示 1 台机器在三年使用期内需更换的易损零件数,y 表示 1 台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(Ⅰ )若 n=19 ,求 y 与 x 的函数解析式;(Ⅱ )若要求“需更换的易损零件数不大于n”的频率不小于0.5,求 n 的最小值;(Ⅲ )假设这 100 台机器在购机的同时每台都购买19 个易损零件,或每台都购买20 个易损零件,分别计算这 100 台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买 1 台机器的同时应购买 19 个还是 20 个易损零件?20.(本小题满分12 分)在直角坐标系 xoy 中,直线 l : y=t(t≠0)交 y 轴于点 M,交抛物线 C: y2=2px(p>0) 于点 P, M 关于点 P 的对称点为 N,连结 ON 并延长交 C 于点 H.)))))(Ⅰ )求OH;(Ⅱ )除H以外,直线MH 与 C 是否有其它公共点?说明理由. ON21.(本小题满分12 分)已知函数 f(x)=( x -2)e x+a(x -1)2.(Ⅰ )讨论 f(x)的单调性;(Ⅱ )若有两个零点,求 a 的取值范围 .请考生在 22、23、24 题中任选一题作答 ,如果多做 ,则按所做的第一题计分 ,做答时请写清题号22.(本小题满分 10 分)选修 4-1:几何证明选讲如图,OAB 是等腰三角形,∠AOB=120°. 以 O 为圆心,1OA为半径作圆. 2(Ⅰ )证明:直线AB 与⊙ O 相切;(Ⅱ )点 C,D 在⊙ O 上,且 A,B,C,D 四点共圆,证明:AB∥ CD.)))))23.(本小 分10 分) 修 4— 4:坐 系与参数方程x a cost在直 坐 系 xoy 中,曲 C 1 的参数方程( t 参数, a>0).在以坐y 1 a sin t原点 极点, x 正半 极 的极坐 系中,曲C 2: ρ=4cos θ. (Ⅰ ) 明 C 1 是哪种曲 ,并将 C 1 的方程化 极坐 方程;(Ⅱ )直 C 3 的极坐 方程θ=α,其中 α 足 tan α C 1与 C 的公共点都在0 0 0=2,若曲2C 3 上,求 a.24.(本小 分 10 分), 修 4—5:不等式 已知函数 f(x)=|x+1| -|2x-3|.(Ⅰ )在答 卡第 24 中画出 y=f(x)的 像; (Ⅱ )求不等式 | f(x)|>1 的解集 .2016 年全国高考新 1 卷文科数学 参考答案一、 ,本大 共 12 小 ,每小 5 分,共 60 分.1B 2A 3C 4D 5B 6D 7A 8B 9D 10C 11A 12C二、填空 :本大 共 4 小 ,每小 5 分,共 20 分.2 14.413.15. 4π16. 21600033.只做 6 ,共 70 分 .三、解答 :解答 写出文字 明, 明 程或演算步 17.【解析】 (Ⅰ )依 a 1 b 2+b 2=b 1,b 1=1, b 2=1,解得 a 1=2⋯ 2 分a n =2+3( n-1)=3n-13通 公式⋯ 6 分(Ⅱ )由 (Ⅰ )知 3nb n +1=nb n , b n+1= 1 b n ,所以 { b n } 是公比 1的等比数列 .⋯ 9 分3 3)))))11 nP( )31所以 { b n } 的前 n 和 S n =3⋯ 12 分F12 2 3n 113AEC18.【解析】 (Ⅰ ) 明: PD ⊥平面 ABC ,∴ PD ⊥AB .GD又 DE ⊥平面 PAB ,∴ DE ⊥ AB .∴ AB ⊥平面 PDE . ⋯ 3 分B又 PG 平面 PDE ,∴ AB ⊥ PG .依 PA=PB ,∴ G 是 AB 的中点.⋯6 分(Ⅱ )在平面 PAB 内作 EF ⊥ PA (或 EF// PB )垂足 F ,F 是点 E 在平面 PAC 内的正投影 .⋯ 7 分理由如下:∵ PC ⊥ PA , PC ⊥ PB ,∴ PC ⊥平面 PAB . ∴ EF ⊥ PC作 EF ⊥PA ,∴ EF ⊥平面 PAC .即 F 是点 E 在平面 PAC 内的正投影 .⋯ 9 分 接 CG ,依 D 是正 ABC 的重心,∴ D 在中 CG 上,且 CD =2DG . 易知 DE// PC , PC=PB=P A= 6,∴ DE =2, PE = 2PG2 3 2 2 2 .33在等腰直角 PEF 中, PF=EF= 2,∴ PEF 的面 S=2.所以四面体 PDEF 的体 V1 S DE 4 . ⋯12 分3319.【解析】 (Ⅰ )当 x ≤19 , y=3800;当 x>19 , y=3800+500( x-19)=500x-5700. 所以 y 与 x 的函数解析式y3800, x 19N*)⋯ 3 分500x5700,x(x19(Ⅱ )由柱状 知,需更 的易 零件数不大于18 0.46,不大于 19 0.7,所以 n 的最小 19.⋯ 6 分(Ⅲ )若每台机器都 19 个易 零件, 有 70 台的 用3800, 20 台的 用4300,10 台的 用 4800,所以 100 台机器 易 零件 用的平均数1 (3800 ×70+4300 ×20+4800 ×10)=4000.⋯ 9 分100若每台机器都 20 个易 零件, 有90 台的 用4000, 10 台的 用4500,所以 100 台机器 易 零件 用的平均数1 (4000 ×90+4500 ×10)=4050.⋯ 11 分100比 两个平均数可知, 1 台机器的同 19 个易 零件 .⋯ 12 分20.【解析】 (Ⅰ )依 M(0, t), P(t 2 , t). 所以 N( t 2, t), ON 的方程 ypx .2 ppt立 y 2=2px ,消去 x 整理得 y 2=2 ty.解得 y 1=0, y 2=2 t.⋯ 4 分 2t 2 OH⋯ 6 分所以 H (,2t). 所以 N 是 OH 的中点,所以=2.pON(Ⅱ )直 MH的方程 y tp2222t x , 立 y =2px ,消去 x 整理得 y -4ty+4 t =0.解得 y 1=y 2=2 t. 即直 MH 与 C 只有一个交点 H.所以除 H 以外,直 MH 与 C 没有其它公共点 .⋯12 分)))))21.【解析】 (Ⅰ ) f '( x)=( x -1)e x +a(2x -2)=( x -1)( e x +2a).x ∈ R⋯2 分(1) 当 a ≥0 ,在 (-∞,1)上, f '(x)<0 , f( x) 减;在 (1,+ ∞)上, f '( x)>0 ,f(x) 增 .⋯ 3 分(2) 当 a<0 ,令 f' (x)=0,解得 x =1 或 x=ln(-2 a).①若 a=e f(x)在 (-∞,+ ∞)上 增 ., ln(-2 a) =1 , f '(x)≥0 恒成立,所以2②若 a>e , ln(-2 a)<1 ,在 (ln(-2 a),1)上,f '(x)<0 , f( x) 减;2在 (-∞, ln(-2 a))与 (1,+ ∞)上, f '(x)>0 , f(x) 增 .e ③若 a<, ln(-2 a)>1 ,在 (1,ln(-2 a))上, f '(x)<0 , f( x) 减; 2在 (-∞,1)与(ln(-2 a),+∞)上, f '(x)>0 , f(x) 增 .⋯ 7 分(Ⅱ ) (1)当 a=0 , f(x)=(x -2)e x 只有一个零点,不合要求 . ⋯ 8 分(2) 当 a>0 ,由 (Ⅰ )知 f(x)在 (-∞,1)上 减;在 (1,+∞)上 增 . 最小 f(1)=- e<0,又 f(2)= a>0,若取 b<0 且 b<lna, e b < a .22从而 f( b)> a(b 2)a(b 1)2a(b 23b) 0 ,所以 f(x) 有两个零点 . ⋯ 10 分22 e(3)当 a<0 ,在 (-∞,1] 上, f(x)<0 恒成立;若 a ≥,由 (Ⅰ )知 f(x)在 (1,+∞)上 增,e 2不存在两个零点 .若 a<,f(x)在 (1,ln(-2 a)) 上 减;在 (ln(-2 a),+∞)上 增,也不存在两个零点 .2上 a 的取 范 是(0,1). ⋯ 12 分。
2016高考数学(理)试题分析的报告
2016 年高考数学(理科)试题剖析及备考反省汉台中学曾正乾一、对 2016 年高考理科数学试题(全国卷Ⅱ)的剖析2016 年全国高考理科数学Ⅱ卷按照《课程标准》的基本理念,严格贯彻《2016 年全国 ( 新课标卷 ) 考试说明》基本要求,试卷坚持对基础知识、特别是数学观点的观察,重视学生的数学思想能力,着重应意图识与创新意识的观察,真切表现了新课标理念,试卷难度构造合理,有优秀的划分度。
附: 2016 年高考理科数学(Ⅱ)试卷构造及考点散布表题号题型分值试题难度主要知识及主要思想方法易中难1 5 分√复数的几何意义2 5 分√解不等式、会合的运算3 5 分√平面向量的垂直4 5 分√圆、点到直线的距离5 5 分√计数原理6选择题5 分√三视图,几何体的表面积7 5 分√三角函数图像性质8 5 分√算法流程图9 5 分√三角倍角公式10 5 分√模拟方法、线性规划11 5 分√双曲线离心率、正弦定理的应用12 5 分√函数的对称性质应用13 5 分√解三角形14 填空题 5 分√立体几何定理的观察15 5 分√逻辑关系、分类思想16 5 分√曲线的切线17 12 分√数列、取整函数18 12 分√概率、统计19 解答题12 分√立体几何证明与计算20 12 分√椭圆、直线与椭圆21 12 分√函数导数的应用22 10 分√几何证明23 选考题10 分√直线参数方程与圆的极坐标方程24 10 分√绝对值不等式的求解与证明整体来看,骨干知识中,函数与导数 22 分,立体几何 22 分,圆锥曲线 17 分,三角函数与此中解三角形 15 分,概率统计与模拟方法 17 分,数列约 12 分,不等式及其应用约 15 分,平面向量约 5 分,算法 5 分,会合 5 分、复数 5 分,逻辑 5 分,计数原理 5 分。
知识点覆盖比较全面,要点内容几乎全都观察到了,特别是立体几何加大了对空间想象能力的观察,分值比早年增添了 5 分,还有就是增添了知识点间互相的交汇和交融,如 17 题取整函数、对数与数列融合在一同观察加大了难度。
2016高考数学试卷分析及教学得与失
2016高考数学试卷分析及教学得与失一.试卷分析:2016年的试卷结构与往年全国卷保持了高度的一致,理科试卷的解答题的考查内容和顺序与前四年基本一致,与2015年全国卷不同的,仅是第17题理科改为解三角形,其它没有变化。
今年的试卷仍坚持重点内容重点考的原则,支撑学科知识体系的主干内容,如函数与导数、数列、三角函数、立体几何、解析几何、概率统计等重点知识在试卷中占主导地位,其中主干知识,理科分值达到110分。
理科立体几何、解析几何、函数与导数各占22分,概率统计占17分,三选一题占10分,理科数列占10分,三角占17分。
而集合、复数、程序框图、平面向量、线性规划问题各有一题各占5分,二项式定理占5分。
2016高考数学注重基础,回归教材。
试卷强调数学的基础性,更强调回归教材,不少题目是课本例练的习题改编的。
重视应用,联系实际。
线性规划与概率统计都是与实际联系密切的应用题。
二、2015-2016学年三年级数学教学工作总结经过一学期的工作和努力,在此,我主要针对三年级的基本情况,以及在教学中所取得的一些经验和出现的一些问题来进一步分析,以便于和大家共同探讨,从而,不断的提高自己的教学水平,改进自己的教学方法;并且,不仅使自己在教学工作中,而且在各方面上都能有较大的突破。
今年担任高三三班和四班数学教学工作。
三班是理科普通班,四班是理科音乐班,虽然学生高考成绩不很理想,但是也来之不易。
也有几个学生数学吃九十多分(一)、得方面:(1)开学之初,在罗主任、马组长的带领下,在第一个教研会上,我们共同研究学习往年的考纲。
确立教学方向及教学重点。
为这一年的教学少走弯路、组织教学、力量都用在刀刃上奠定了基础。
(2)配合班主任研究学生的学习、特长、潜力及生活情况,制定学生的培养计划,使得在这一年教学中有的放矢、因材施教,集中精力使有希望的学生都能在高考中取得优异的成绩。
(3)根据考纲自己努力钻研教材,归纳题型、总结知识和方法。
2016年高考理科数学(全国新课标卷1)(含解析)
绝密★启用前2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学使用地区:山西、河南、河北、湖南、湖北、江西、安徽、福建、广东本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分. 考生注意:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3. 考试结束,监考员将本试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合2430={|}A x x x -+<,3{}0|2x B x ->=,则A B =( ) A .3(3,)2--B .3(3,)2-C .3(1,)2D .3(,3)22.设(1i)1i x y +=+,其中x ,y 是实数,则|i |x y +=( )A .1 BCD .23.已知等差数列{}n a 前9项的和为27,108a =,则100a =( )A .100B .99C .98D .974.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( )A .13 B .12 C .23D .345.已知方程222213xym nm n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )A .(1,3)-B.(1-C .(0,3)D.6.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是 ( )A .17πB .18πC .20πD .28π7.函数2|x|2y x e =-在[2,2]-的图象大致为( )ABC D 8. 若0a b >>,01c <<,则( )A .cca b <B .ccab ba > C .alog log b a c b c <D .log log a b c c<9.执行右面的程序框图,如果输入的0x =,1y =,1n =,则输出x ,y 的值满足( )A .2y x =B .3y x =C .4y x =D .5y x =10.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点,已知||AB =||DE =C 的焦点到准线的距离为( )A .2B .4C .6D .811.平面α过正方体1111ABCD A B C D -的顶点A ,//α平面11CB D ,α平面=ABCD m ,α平面11=ABB A n ,则m ,n 所成角的正弦值为( )A B CD .1312.已知函数()sin()(0,||)2f x x πωϕωϕ=+>≤,4x π=-为()f x 的零点,4x π=为()y f x =图象的对称轴,且()f x 在5(,)1836ππ单调,则ω的最大值为( )A .11B .9C .7D .5姓名________________ 准考证号_____________--------在--------------------此-------------------卷-------------------上--------------------答-------------------题--------------------无------------------效----------第II 卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答,若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22~24题为选考题,考生根据要求作答. 二、填空题:本题共4小题,每小题5分.13.设向量a (,1)m =,b (1,2)=,且|a +b ||2=a ||2+b 2|,则m = . 14.5(2x 的展开式中,3x 的系数是 (用数字填写答案).15.设等比数列{}n a 满足1310a a +=,245a a +=,则12n a a a …的最大值为 . 16.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos )C a B b A c +=. (Ⅰ)求C ;(Ⅱ)若c =ABC △,求ABC △的周长.18.(本小题满分12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D AF E --与二面角C BE F --都是60. (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E BC A --的余弦值.19.(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图: 以这100台机器更换的易损零件数的 频率代替1台机器更换的易损零件数 发生的概率,记X 表示2台机器三年 内共需更换的易损零件数,n 表示购 买2台机器的同时购买的易损零件数. (Ⅰ)求X 的分布列;(Ⅱ)若要求()0.5P X n ≤≥,确定n 的最小值;(Ⅲ)以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?20.(本小题满分12分)设圆22215=0x y x ++-的圆心为A ,直线l 过点(10)B ,且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(Ⅰ)证明||||EA EB +为定值,并写出点E 的轨迹方程;(Ⅱ)设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.21.(本小题满分12分)已知函数2()(2)(1)xf x x e a x =-+-有两个零点.(Ⅰ)求a 的取值范围;(Ⅱ)设1x ,2x 是()f x 的两个零点,证明:122x x +<.请考生在第22~24题中任选一题作答,如果多做,则按所做的第一题计分. 22.(本小题满分10分)选修41-:几何证明选讲如图,OAB △是等腰三角形,120AOB ∠=.以O 为圆心,12OA 为半径作圆. (Ⅰ)证明:直线AB 与⊙O 相切;(Ⅱ)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB CD ∥.23.(本小题满分10分)选修44-:坐标系与参数方程在直线坐标系xOy 中,曲线1C 的参数方程为cos ,1sin ,x a t y a t =⎧⎨=+⎩(t 为参数,0a >).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2:4cos C ρθ=. (Ⅰ)说明1C 是哪一种曲线,并将1C 的方程化为极坐标方程;(Ⅱ)直线3C 的极坐标方程为0θα=,其中0α满足0tan 2α=,若曲线1C 与2C 的公共点都在3C 上,求a .24.(本小题满分10分),选修45-:不等式选讲已知函数()|1||23|f x x x =+--. (Ⅰ)在图中画出()y f x =的图象; (Ⅱ)求不等式|()|1f x >的解集.ABCDEF2016年普通高等学校招生全国统一考试(全国新课标卷1)理科数学答案解析第Ⅰ卷一、选择题 1.【答案】D【解析】{}{}2A x x 4x 30x 1x 3=-+<=<<,{}3B x 2x 30x x 2⎧⎫=->=>⎨⎬⎩⎭,故3B x 2⎧=⎨⎩【提示】解不等式求出集合【考点】交集及其运算【解析】(1i)x 1yi +=+,x xi 1yi ∴+=+,即x 1x y =⎧⎨=,解得x 1y 1=⎧⎨=,即x y i 1i 2+=+=【解析】等差数列,又10a 8=,【提示】根据已知可得【考点】等差数列的性质】双,方【解析】f (x)y =时,y 8=-x4x e 0-=【解析】a b 1>>线的距离为4.【提示】画出图形,设出抛物线方程,利用勾股定理以及圆的半径列出方程求解即可.【考点】圆与圆锥曲线的综合,抛物线的简单性质11.【答案】A【解析】如图,α∥平面CB α平面ABCD α平面ABA,11CB D △60,则m 32.【提示】画出图形,判断出m 【考点】异面直线及其所成的角【解析】πx 4=-为1πT 2=,即12ππ(n N 2=∈ω为正奇数,f (x)在5π36⎛⎫⎪⎝⎭上单调,πππ361812-=时,11π4-+π2ϕ≤,9π4-+ϕ,π2ϕ≤,ω【答案】2-222a b a b +=+,可得a b 0=,向量a (m,1)=,b (1,2)=,n123n (q++++-…6264==.【提示】设A ,B 两种产品分别是标函数,利用线性规划作出可行域,通过目标函数的几何意义,求出其最大值即可.【考点】简单线性规划的应用三、解答题17.【答案】(Ⅰ)在ABC △已知等式利用正弦定理化简得12ab2,(a ∴的周长为5+(Ⅰ)A BEF 为正方形,AFD 90∠=,A F DF ∴⊥,DF EF F =,AF ∴⊥平面EFDCAF ⊂平面∴平面A BEF (Ⅱ)由A BE EF ⊥BE ∴⊥平面可得DFE 60∠.A B EF ∥EFDC AB ∴∥平面平面EFDC 平面ABCD ,EB (0,2a,0)∴=,a BC ,⎛= ,AB (2a,0,0)=-设平面BEC 的法向量为m (x ,=,则m EB 0m BC 0⎧=⎪⎨=⎪⎩,则m (3,0,=设平面ABC 的法向量为n (x ,y ,z =n BC=0n AB 0⎧⎪⎨=⎪⎩,则,取n (0,3,4)=的大小为θ,m n |m ||n |31316==++【提示】(Ⅰ)证明AF ⊥平面EFDC 平面EFDC ;(Ⅱ)证明四边形EFDC 为等腰梯形,4040=1EX EX <解法二:购买零件所用费用含两部分,一部分为购买零件的费用,另一部分为备件不足时额外购222222143m 41m1m||MN |12242423m 41m3m 4+++===+++时,S 取得最小值12,又10>,可得3S 24833<=【提示】(Ⅰ)求得圆A EB ED =,再由圆的定义和椭圆的定义,b ,c ,即可得到所求轨迹方程;(Ⅱ)设直线l :x my =+0)1x ,2x 1x 121(x 2)e (x 1)-=-2[(x 2)g (x)-+'=∴当x 1<时,e 1,OA OB =120,OK ∴30,1OK OAsin30OA 2=直线AB 与O 相切;D 四点所在圆的圆心,设四点所在圆的圆心,OA OB =的中垂线,∴AB 中点,连结30,1OK OAsin30OA 2=曲线如图:(Ⅱ)由f (x)1>,可得,当3当x ≥时,4x 1->,解得x 5>或x 3<,即有x 3≤<或x 5>.(1,3)(5,)⎫+∞⎪⎭(Ⅰ)运用分段函数的形式写出f (x)的解析式,由分段函数的画法,即可得到所。
2016年全国高考(新课标1)数学试卷分析
2016年高考新课标Ⅰ卷数学试卷分析卢宝东一、试题总体特点2016年高考新课标1卷数学试卷与近几年的高考试卷相比变化不大,试卷结构与往年保持不变,。
在题目设置上考查对于基础知识、基本技能的考查,符合考试说明的各项要求,又在一定程度上强化学生对知识点的联系,综合性比较强,也注重考查学生对实际生活的具体应用。
二、试卷特点1、回归教材,注重基础选择题,填空题考查了集合、复数、三角函数、概率、解析几何、向量、框架图、二项式定理,线性规划等知识点,大部分属于常规题型,是学生平时训练中常见的类型。
例如第四题,还是课本必修3上的习题的改编,包括填空题最后一题都是实际生活的应用结合数学知识点。
2、适当设置题目难度与区分度与往年新课标相对比,今年的选填难度仍然设置在选择题和填空题的最后两题,尤其是以第12题和第16题为代表。
但是对比往年难说,这2题难度明显降低很多,一个三角函数,一个是线性规划都是平常练的非常多的题目,很多学生可以处理。
解答题考法都是特别常规,解三角形,概率,立体几何都可以在模拟试题中找到相似题,解析几何考查面积的最值也是常规题,导数题是试卷最难的一题,但我们以往给高三学生的建议是不要在这类型的题目花费过多的时间,影响整体的答题,同时也影响考试状态。
3、布局合理,考查全面,着重数学方法与数学思想在选择填空中就有几个题可以用特殊值法处理,还有数形结合的应用,这也是全国卷的一大特色。
高中数学六大版块:函数、三角函数、立体几何、概率统计、数列,解析几何分布平均。
4、试卷的新颖在保持以往的基础上,也有一些改变。
出现了第16题应用题,第12题也不是函数,改成三角函数。
没有出现以往常考的逻辑用语。
三、试卷考点分布四、学习建议1、依“纲”靠“本”,注重基础。
学生的考试试题,都注重对基础知识、基本技能和基本思想方法的考查。
在学习中必须切实抓好基本概念及其性质、基本技能和基本思想方法,真正理解和掌握,并形成合理的网络结构。
16年高考数学卷评析
2016高考数学全国I卷(理科)评析:深度尚可,创新不足高考数学作为典型的标准化考试,在全国I卷中涉及到的知识点相对固定。
高考题可以被研究到什么程度?在平时的授课过程中,我们可以用非常简单的语言给学生总结每一章的知识点,对于高考的每一道大题,都能总结出固定的解题思路,通常考题无法超出讲解范围,只要有适度的练习,正常程度的孩子,都能做出除了最后一道题的大题。
拿到今年的高考卷,仍然感觉到的是强烈的“熟悉”感,大部分题目仍然在射程范围内。
这一次全国I卷整体上说偏稳定,甚至偏保守,但是也不乏相对较新的题型,细细品味,也能看出出题人在高考已经被研究的非常透的情况下所做的调整和努力。
在选择题中,第一道有亮点的题目是第5题。
圆锥曲线的定义是选择填空中必考的内容,今年这道题,把最常见的两种题目融合到一起,并且包装了“不等式”的外衣,确实是在简单题中做了创新。
这道题其实有两个考点,第一个是2c=4,求m的值;第二个是如果一个式子表示双曲线,那么其中参数的范围是多少。
这两道题在平时的练习中出现频率非常高,放到一起,既多考查了知识点,又感觉这道题“略难”,这种创新会让孩子如果要做出这道题需要真正的思考,这道题要点赞。
紧接着,对于三视图的考察,一般来说,三视图考察的是锥体,就是“可以站在桌子上的",解题的方法,通常是先看俯视图,然后看哪个点被拔起来。
今年的高考,考察的是一个球体“缺一块”——这道题看起来是超出了平时常见题型的范围,但是细细想来,“球”只是一个外壳,并不是核心,关键是“缺了哪一块”。
所以,如果从这个角度思考,那么这道题的外壳是球还是正方体,就没有区别。
当然,能想到这一点的孩子,一定是平时对于上课讲解的三视图的基本原理掌握非常透彻的,无论拿到什么题目,都能够迅速使用上课讲过的方法去解决。
这道题,空间想象能力强的孩子和逻辑推理能力强的孩子都能做出来,而没有接受过正式的三视图做题方法论,只是刷题的孩子,就会有很大压力。
2016年高考新课标Ⅰ卷理数试题解析(正式版)
绝密★启封并使用完毕前试题类型:A2016年普通高等学校招生全国统一考试理科数学本试题卷共5页,24题(含选考题)。
全卷满分150分。
考试用时120分钟。
注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x =-+< ,{|230}B x x =->,则A B =(A )3(3,)2-- (B )3(3,)2- (C )3(1,)2 (D )3(,3)2【答案】D考点:集合运算(2)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +(A )1 (B )2 (C )3 (D )2 【答案】B 【解析】试题分析:因为(1)=1+,i x yi +所以=1+,=1,1,||=|1+|2,x xi yi x y x x yi i +==+=所以故故选B. 考点:复数运算(3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a(A )100 (B )99 (C )98 (D )97 【答案】C 【解析】试题分析:由已知,1193627,98a d a d +=⎧⎨+=⎩所以110011,1,9919998,a d a a d =-==+=-+=故选C.考点:等差数列及其运算(4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 (A )13 (B )12 (C )23 (D )34【答案】B考点:几何概型(5)已知方程x 2m 2+n –y 23m 2–n=1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(–1,3) (B )(–1,3) (C )(0,3) (D )(0,3) 【答案】A【解析】由题意知:双曲线的焦点在x 轴上,所以2234m n m n ++-=,解得:21m =,因为方程22113x y n n -=+-表示双曲线,所以1030n n +>⎧⎨->⎩,解得13n n >-⎧⎨<⎩,所以n 的取值范围是()1,3-,故选A . 考点:双曲线的性质(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,则它的表面积是(A )17π (B )18π (C )20π (D )28π【答案】A【解析】试题分析:由三视图知:该几何体是78个球,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是22734221784πππ⨯⨯+⨯⨯=,故选A .考点:三视图及球的表面积与体积(7)函数y =2x 2–e |x |在[–2,2]的图像大致为(A ) (B )(C )(D )【答案】D考点:函数图像与性质(8)若101a b c >><<,,则 (A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <【答案】C考点:指数函数与对数函数的性质(9)执行右面的程序框图,如果输入的011x y n ===,,,则输出x ,y 的值满足(A )2y x = (B )3y x = (C )4y x = (D )5y x = 【答案】C 【解析】试题分析:当0,1,1x y n ===时,110,1112x y -=+=⨯=,不满足2236x y +≥;2112,0,21222n x y -==+==⨯=,不满足2236x y +≥;13133,,236222n x y -==+==⨯=,满足2236x y +≥;输出3,62x y ==,则输出的,x y 的值满足4y x =,故选C.考点:程序框图与算法案例(10)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE|=25,则C 的焦点到准线的距离为(A )2 (B )4 (C )6 (D )8 【答案】B 【解析】试题分析:如图,设抛物线方程为22y px =,圆的半径为r ,,AB DE 交x 轴于,C F 点,则22AC =,即A 点纵坐标为22,则A 点横坐标为4p ,即4OC p=,由勾股定理知2222DF OF DO r +==,2222AC OC AO r +==,即22224(5)()(22)()2pp+=+,解得4p =,即C 的焦点到准线的距离为4,故选B.考点:抛物线的性质(11)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,αI 平面ABCD =m ,αI 平面ABB 1 A 1=n ,则m ,n 所成角的正弦值为(A )32 (B )22 (C )33(D )13【答案】A考点:平面的截面问题,面面平行的性质定理,异面直线所成的角(12)已知函数ππ()sin()(0),24f x x+x ,ωϕωϕ=>≤=-为()f x 的零点,π4x =为()y f x =图像的对称轴,且()f x 在π5π()1836,单调,则ω的最大值为 (A )11 (B )9 (C )7 (D )5 【答案】B考点:三角函数的性质第II 卷本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(24)题为选考题,考生根据要求作答.二、填空题:本题共4小题,每小题5分.(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m = . 【答案】2- 【解析】试题分析:由222||||||+=+a b a b ,得⊥a b ,所以1120m ⨯+⨯=,解得2m =-.考点:向量的数量积及坐标运算(14)5(2)x x +的展开式中,x 3的系数是 .(用数字填写答案)【答案】10 【解析】 试题分析:5(2)x x +的展开式的通项为555255C (2)()2C r r rr rr x x x---=(0r =,1,2,…,5),令532r -=得4r =,所以3x 的系数是452C 10=.考点:二项式定理(15)设等比数列{}n a 满足a 1+a 3=10,a 2+a 4=5,则a 1a 2鬃?a n 的最大值为 . 【答案】64考点:等比数列及其应用(16)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为 元.【答案】216000 【解析】试题分析:设生产产品A 、产品B 分别为x 、y 件,利润之和为z 元,那么由题意得约束条件1.50.5150,0.390,53600,0,0.x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩……………目标函数2100900z x y =+.约束条件等价于3300,103900,53600,0,0.x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩?…………①作出二元一次不等式组①表示的平面区域,即可行域,如图中阴影部分所示.将2100900z x y =+变形,得73900z y x =-+,作直线:73y x =-并平移,当直线73900zy x =-+经过点M 时,z 取得最大值. 解方程组10390053600x y x y +=⎧⎨+=⎩,得M 的坐标为(60,100).所以当60x =,100y =时,max 210060900100216000z =⨯+⨯=. 故生产产品A 、产品B 的利润之和的最大值为216000元. 考点:线性规划的应用三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c =(I )求C ;(II )若7,c ABC △=的面积为332,求ABC △的周长. 【答案】(I )C 3π=(II )57+【解析】试题解析:(I )由已知及正弦定理得,()2cosC sin cos sin cos sinC A B+B A =,()2cosCsin sinC A+B =.故2sin Ccos C sin C =. 可得1cos C 2=,所以C 3π=.考点:正弦定理、余弦定理及三角形面积公式 (18)(本小题满分12分)如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,面ABEF 为正方形,AF =2FD ,90AFD ∠=,且二面角D -AF -E 与二面角C -BE -F 都是60.(I )证明:平面ABEF ⊥平面EFDC ; (II )求二面角E -BC -A 的余弦值. 【答案】(I )见解析(II )21919- 【解析】试题分析:(I )证明F A ⊥平面FDC E ,结合F A ⊂平面F ABE ,可得平面F ABE ⊥平面FDC E .(II )建立空间坐标系,利用向量求解.试题解析:(I )由已知可得F DF A ⊥,F F A ⊥E ,所以F A ⊥平面FDC E . 又F A ⊂平面F ABE ,故平面F ABE ⊥平面FDC E .(II )过D 作DG F ⊥E ,垂足为G ,由(I )知DG ⊥平面F ABE .以G 为坐标原点,GF 的方向为x 轴正方向,GF为单位长,建立如图所示的空间直角坐标系G xyz -.由(I )知DF ∠E 为二面角D F -A -E 的平面角,故DF 60∠E =,则D F 2=,DG 3=,可得()1,4,0A ,()3,4,0B -,()3,0,0E -,()D 0,0,3.学科&网考点:垂直问题的证明及空间向量的应用 (19)(本小题满分12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. (I )求X 的分布列;(II )若要求()0.5P X n ≤≥,确定n 的最小值;(III )以购买易损零件所需费用的期望值为决策依据,在19n =与20n =之中选其一,应选用哪个? 【答案】(I )见解析(II )19(III )19n =考点:概率与统计、随机变量的分布列 (20)(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.【答案】(Ⅰ)13422=+y x (0≠y )(II ))38,12[ 【解析】试题分析:利用椭圆定义求方程;(II )把面积表示为关于斜率k 的函数,再求最值。
2016年新课标I高考数学(理科)答案与解析
...2016年新课标I 高考数学(理科)答案与解析1.{}{}243013A x x x x x =-+<=<<,{}32302B x x x x ìü=->=>íýîþ.故332AB x x ìü=<<íýîþ.故选D .2. 由()11i x yi +=+可知:1x xi yi +=+,故1x x y =ìí=î,解得:11x y =ìí=î. 所以,222x yi x y +=+=. 故选B .3. 由等差数列性质可知:()1959599292722a a a S a +´====,故53a =,而108a =,因此公差1051105a a d -==- ∴100109098a a d =+=. 故选C .4. 如图所示,画出时间轴:如图所示,画出时间轴:8:208:107:507:408:308:007:30BACD小明到达的时间会随机的落在图中线段AB 中,而当他的到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟分钟 根据几何概型,所求概率10101402P +==. 故选B .5. 222213xy m n m n-=+-表示双曲线,则()()2230m n m n +-> ∴223m n m -<< 由双曲线性质知:()()222234c m n m n m =++-=,其中c 是半焦距是半焦距∴焦距2224c m =×=,解得1m = ∴13n -<< 故选A .6. 原立体图如图所示:原立体图如图所示:是一个球被切掉左上角的18后的三视图后的三视图表面积是78的球面面积和三个扇形面积之和的球面面积和三个扇形面积之和2271=42+32=1784S p p p ´´´´ 故选A .7. ()22288 2.80f e =->->,排除A()22288 2.71f e =-<-<,排除B 0x >时,()22x f x x e =-()4xf x x e ¢=-,当10,4x æöÎç÷èø时,()01404f x e ¢<´-=因此()f x 在10,4æöç÷èø单调递减,排除C故选D .8. 对A : 由于01c <<,∴函数cy x =在R 上单调递增,因此1cca b a b >>Û>,A 错误错误对B : 由于110c -<-<,∴函数1c y x-=在()1,+¥上单调递减,上单调递减,∴111c c c c a b a b ba ab -->>Û<Û<,B 错误错误对C : 要比较log b a c 和log a b c ,只需比较ln ln a c b 和ln ln b c a,只需比较ln ln cb b 和ln lnc a a ,只需ln b b 和ln a a构造函数()()ln 1f x x x x =>,则()'l n 110f x x =+>>,()f x 在()1,+¥上单调递增,因此()()110ln ln 0ln ln f a f b a a b b a a b b >>Û>>Û<又由01c <<得ln 0c <,∴ln ln log log ln ln a b c cb c a c a a b b<Û<,C 正确正确对D : 要比较log a c 和log b c ,只需比较ln ln c a 和ln ln cb而函数ln y x =在()1,+¥上单调递增,故111ln ln 0ln ln a b a b a b>>Û>>Û<又由01c <<得ln 0c <,∴ln ln log log ln ln a b c cc c a b>Û>,D 错误错误故选C . 9. 如下表:如下表:循环节运行次数行次数 12n x x x -æö=+ç÷èø()y y ny = 判断判断 2236x y +³ 是否输出输出 ()1n n n =+运行前运行前 0 1 / / 1 第一次第一次 01否 否 2 第二次第二次 12 2否 否 3第三次第三次 326是是输出32x =,6y =,满足4y x = 故选C .10. 以开口向右的抛物线为例来解答,其他开口同理开口向右的抛物线为例来解答,其他开口同理设抛物线为22y px =()0p >,设圆的方程为222x y r +=,题目条件翻译如图:,题目条件翻译如图:F设(),22A x ,,52p D æö-ç÷èø, 点()0,22A x 在抛物线22ypx =上,∴082px =……①……①点,52p D æö-ç÷èø在圆222x y r +=上,∴2252p r æö+=ç÷èø……②……②点()0,22A x 在圆222x y r +=上,∴2208x r +=……③……③联立①②③解得:4p =,焦点到准线的距离为4p =.故选B .11. 如图所示:图所示:αAA 1BB 1DCC 1D 1∵11CB D a ∥平面,∴若设平面11CB D 平面1ABCD m =,则1m m ∥又∵平面ABCD ∥平面1111A B C D ,结合平面11B D C 平面111111A B C D B D =∴111B D m ∥,故11B D m ∥ 同理可得:1CD n ∥故m 、n 的所成角的大小与11B D 、1CD 所成角的大小相等,即11CD B Ð的大小.的大小. 而1111B C B D CD ==(均为面对交线),因此113CD B pÐ=,即113sin 2CD B Ð=. 故选A .12. 由题意知:题意知:12π+π4ππ+π+ 42k k w j w j ì-=ïïíï=ïî则21k w =+,其中k ÎZ()f x 在π5π,1836æöç÷èø单调,5π,123618122T p p w \-=££接下来用排除法接下来用排除法若π11,4w j ==-,此时π()sin 114f x xæö=-ç÷èø,()f x 在π3π,1844æöç÷èø递增,在3π5π,4436æöç÷èø递减,不满足()f x 在π5π,1836æöç÷èø单调单调若π9,4w j ==,此时π()sin 94f x x æö=+ç÷èø,满足()f x 在π5π,1836æöç÷èø单调递减单调递减故选B .13. 由已知得:()1,3a b m +=+∴()22222222213112a b a b m m +=+Û++=+++,解得2m =-.14. 设展开式的第1k +项为1k T +,{}0,1,2,3,4,5k Î∴()()5552155C 2C 2k kkkk kk T x x x---+==.当532k -=时,4k =,即454543255C 210T x x --==故答案为10.15.由于{}n a 是等比数列,设11nn a a q -=,其中1a 是首项,q 是公比.是公比.∴2131132411101055a a a a q a a a q a q ì+=+=ìïÛíí+=+=ïîî,解得:1812a q =ìïí=ïî. 故412n n a -æö=ç÷èø,∴()()()()21174932 (472)22412111...222n n n n n a a a éùæö-+-++----êúç÷èøêúëûæöæöæö×××===ç÷ç÷ç÷èøèøèø当3n =或4时,21749224n éùæö--êúç÷èøêúëû取到最小值6-,此时2174922412n éùæö--êúç÷èøêúëûæöç÷èø取到最大值62.所以12...n a a a ×××的最大值为64.16. 设生产A 产品x 件,B 产品y 件,根据所耗费的材料要求、工时要求等其他限制条件,构造线性规则约束为件,根据所耗费的材料要求、工时要求等其他限制条件,构造线性规则约束为**1.50.51500.3905360000x y x y x y x y x N y Nì+ï+ïï+ïïíïïÎïÎïî≤≤≤≥≥ 目标函数2100900z x y =+作出可行域为图中的四边形,包括边界,顶点为(60,100)(0,200)(0,0)(90,0)在(60,100)处取得最大值,210060900100216000z =´+´=17.⑴.⑴()2cos cos cos C a B b A c += 由正弦定理得:()2cos sin cos sin cos sin C A B B A C ×+×=()2cos sin sin C A B C ×+=∵πA B C ++=,()0πA B C Î、、, ∴()sin sin 0A B C +=> ∴2cos 1C =,1cos 2C = ∵()0πC Î, ∴π3C =⑵ 由余弦定理得:2222cos c a b ab C =+-×221722a b ab =+-×()237a b ab +-=1333sin 242S ab C ab =×==∴6ab = ∴()2187a b +-= 5a b +=∴ABC △周长为57a b c ++=+18.⑴.⑴ ∵ABEF 为正方形为正方形∴AF EF ^ ∵90AFD Ð=° ∴AF DF ^∵=DF EF F ∴AF ^面EFDCAF ^面ABEF∴平面ABEF ^平面EFDC⑵ 由⑴知由⑴知60DFE CEF Ð=Ð=°∵AB EF ∥ AB Ë平面EFDCEF Ì平面EFDC∴AB ∥平面ABCDAB Ì平面ABCD∵面ABCD 面EFDC CD =∴AB CD ∥ ∴CD EF ∥∴四边形EFDC 为等腰梯形为等腰梯形以E 为原点,如图建立坐标系,设FD a =()()000020E B a ,,,,()3022022a C a A a a æöç÷ç÷èø,,,,()020EB a =,,,3222a BC a a æö=-ç÷ç÷èø,,,()200AB a =-,, 设面BEC 法向量为()m x y z =,,.00m EB m BC ì×=ïí×=ïî,即11112032022a y a x ay a z ×=ìïí×-+×=ïî 111301x y z ===-,,()301m =-,,设面ABC 法向量为()222n x y z =,, =00n BC n AB ì×ïí×=ïî.即22223202220a x ay az ax ì-+=ïíï=î 222034x y z ===,, ()034n =,,设二面角E BC A --的大小为q . 4219cos 1931316m n m n q×-===-+×+× ∴二面角E BC A --的余弦值为21919-19.⑴.⑴每台机器更换的易损零件数为8,9,10,11 记事件i A 为第一台机器3年内换掉7i +个零件()1,2,3,4i =记事件i B 为第二台机器3年内换掉7i +个零件()1,2,3,4i =由题知()()()()()()1341340.2P A P A P A P B P B P B ======,()()220.4P A P B ==设2台机器共需更换的易损零件数的随机变量为X ,则X 的可能的取值为16,17,18,19,20,21,22()()()11160.20.20.04P X P A P B ===´=()()()()()1221170.20.40.40.20.16P X P A P B P A P B ==+=´+´=()()()()()()()132231180.20.20.20.20.40.40.24P X P A P B P A P B P A P B ==++=´+´+´= ()()()()()()()()()14233241190.20.20.20.20.40.2P X P A P B P A P B P A P B P A P B ==+++=´+´+´0.20.40.24+´=()()()()()()()243342200.40.20.20.40.20.20.2P X P A P B P A P B P A P B ==++=´+´+´= ()()()()()3443210.20.20.20.20.08P x P A P B P A P B ==+=´+´= ()()()44220.20.20.04P x P A P B ===´=X 16 17 18 19 20 21 22 P 0.04 0.16 0.24 0.24 0.2 0.08 0.04⑵ 要令()0.5P x n ≤≥,0.040.160.240.5++<,0.040.160.240.240.5+++≥ 则n 的最小值为19 ⑶ 购买零件所需费用含两部分,一部分为购买机器时购买零件的费用,另一部分为备件不足时额外购买的费用费用当19n =时,费用的期望为192005000.210000.0815000.044040´+´+´+´= 当20n =时,费用的期望为202005000.0810000.044080´+´+´= 所以应选用19n =20.⑴.⑴ 圆A 整理为()22116x y ++=,A 坐标()1,0-,如图,,如图,432112344224xEDABCBE AC ∥,则C EBD =∠∠,由,AC AD D C ==则∠∠, EBD D \=∠∠,则EB ED =4AE EB AE ED AD \+=+==所以E 的轨迹为一个椭圆,方程为22143x y +=,(0y ¹);⑵ 221:143x y C +=;设:1l x my =+,因为PQ l ⊥,设():1PQ y m x =--,联立1l C 与椭圆221143x my x y =+ìïí+=ïî得()2234690m y my ++-=; 则()()2222222363634121||1||13434M N m m m MN m y y m m m +++=+-=+=++; 432112344224xQPN MAB圆心A 到PQ 距离()22|11||2|11m m d m m ---==++, 所以2222224434||2||21611m m PQ AQ d m m +=-=-=++, ())2222222121114342411||||2412,831223413431MPNQm m m S MN PQ m m m m +++é\=×=××==Îë+++++21.⑴.⑴由已知得:()()()()()'12112x xf x x e a x x e a =-+-=-+ ① 若0a =,那么()()0202x f x x e x =Û-=Û=,()f x 只有唯一的零点2x =,不合题意;,不合题意;② 若0a >,那么20x xe a e +>>, 所以当1x >时,()'0f x >,()f x 单调递增单调递增 当1x <时,()'0f x <,()f x 单调递减单调递减 即:即:x(),1-¥1()1,+¥()'f x -+()f x↓ 极小值极小值 ↑故()f x 在()1,+¥上至多一个零点,在(),1-¥上至多一个零点上至多一个零点 由于()20f a =>,()10f e =-<,则()()210f f <, 根据零点存在性定理,()f x 在()1,2上有且仅有一个零点.上有且仅有一个零点. 而当1x <时,x xe e <,210x -<-<,故()()()()()()()222212111x f x x e a x e x a x a x e x e =-+->-+-=-+--则()0f x =的两根21412e e ae t a --+=+,22412e e aet a -++=+,12t t <,因为0a >,故当1x t <或2x t >时,()()2110a x e x e -+--> 因此,当1x <且1x t <时,()0f x >又()10f e =-<,根据零点存在性定理,()f x 在(),1-¥有且只有一个零点.有且只有一个零点. 此时,()f x 在R 上有且只有两个零点,满足题意.上有且只有两个零点,满足题意. ③ 若02ea -<<,则()ln 2ln 1a e -<=,当()ln 2x a <-时,()1ln 210x a -<--<,()ln 2220a xe a ea -+<+=,即()()()'120xf x x e a =-+>,()f x 单调递增;单调递增;当()ln 21a x -<<时,10x -<,()ln 2220a xe a e a -+>+=,即()()()'120xf x x e a =-+<,()f x 单调递减;减;当1x >时,10x ->,()ln 2220a xe a e a -+>+=,即()'0f x >,()f x 单调递增.单调递增.即:即:x()(),ln 2a -¥- ()ln 2a - ()()ln 2,1a -1()1,+¥()'f x+-+()f x↑ 极大值极大值 ↓ 极小值极小值 ↑而极大值而极大值()()()(){}22ln 22ln 22ln 21ln 2210f a a a a a a a -=---+--=--+<éùéùéùéùëûëûëûëû 故当1x ≤时,()f x 在()ln 2x a =-处取到最大值()ln 2f a -éùëû,那么()()ln 20f x f a -<éùëû≤恒成立,即()0f x =无解无解而当1x >时,()f x 单调递增,至多一个零点单调递增,至多一个零点 此时()f x 在R 上至多一个零点,不合题意.上至多一个零点,不合题意.④ 若2ea =-,那么()ln 21a -=当()1ln 2x a <=-时,10x -<,()ln 2220ax e a ea -+<+=,即()'0f x >,()f x 单调递增单调递增当()1ln 2x a >=-时,10x ->,()ln 2220a xe a ea -+>+=,即()'0f x >,()f x 单调递增单调递增又()f x 在1x =处有意义,故()f x 在R 上单调递增,此时至多一个零点,不合题意.上单调递增,此时至多一个零点,不合题意. ⑤ 若2e a <-,则()ln 21a ->当1x <时,10x -<,()ln 212220a xe a e a ea -+<+<+=,即()'0f x >,()f x 单调递增单调递增当()1ln 2x a <<-时,10x ->,()ln 2220a xe a e a -+<+=,即()'0f x <,()f x 单调递减单调递减当()ln 2x a >-时,()1ln 210x a ->-->,()ln 2220a xe a ea -+>+=,即()'0f x >,()f x 单调递增单调递增 即:即:x(),1-¥1()()1,ln 2a - ()ln 2a - ()()ln 2,a -+¥()'f x+-+()f x↑ 极大值极大值 ↓ 极小值极小值 ↑故当()ln 2x a -≤时,()f x 在1x =处取到最大值()1f e =-,那么()0f x e -<≤恒成立,恒成立,即即()0f x =无解当()ln 2x a >-时,()f x 单调递增,至多一个零点单调递增,至多一个零点 此时()f x 在R 上至多一个零点,不合题意.上至多一个零点,不合题意.综上所述,当且仅当0a >时符合题意,即a 的取值范围为()0,+¥.⑵ 由已知得:()()120f x f x ==,不难发现11x ¹,21x ¹, 故可整理得:()()()()121222122211xxx e x e ax x ---==--设()()()221xx e g x x -=-,则()()12g x g x =那么()()()2321'1xx g x e x -+=-,当1x <时,()'0g x <,()g x 单调递减;当1x >时,()'0g x >,()g x 单调递增.增.设0m >,构造代数式:,构造代数式: ()()111222211111111mmm m m m m m g m g me e e e m m m m +-----+-æö+--=-=+ç÷+èø设()2111m m h m e m -=++,0m >则()()2222'01m m h m e m =>+,故()h m 单调递增,有()()00h m h >=.因此,对于任意的0m >,()()11g m g m +>-.由()()12g x g x =可知1x 、2x 不可能在()g x 的同一个单调区间上,不妨设12x x <,则必有121x x << 令110m x =->,则有()()()()()1111211112g x g x g x g x g x+->--Û->=éùéùëûëû 而121x ->,21x >,()g x 在()1,+¥上单调递增,因此:()()121222g x g x x x ->Û-> 整理得:122x x +<.22.⑴.⑴设圆的半径为r ,作OK AB ^于K ∵120OA OB AOB =Ð=°,∴30sin302OA OK AB A OK OA r ^Ð=°=×°==,,∴AB 与O ⊙相切相切 ⑵ 方法一:方法一:假设CD 与AB 不平行不平行 CD 与AB 交于F2FK FC FD =×① ∵A B C D 、、、四点共圆四点共圆∴()()FC FD FA FB FK AK FK BK ×=×=-+ ∵AK BK = ∴()()22FC FD FK AK FK AK FK AK ×=-+=-② 由①②可知矛盾由①②可知矛盾 ∴AB CD∥方法二:方法二:因为,,,A B C D 四点共圆,不妨设圆心为T ,因为,OA OB TA TB ==,所以,O T 为AB 的中垂线上,同理,OC OD TC TD ==,所以OT CD 为的中垂线,所以AB CD ∥.23.⑴.⑴ cos 1sin x a t y a t =ìí=+î (t 均为参数)均为参数)∴()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-=∵222sin x y y r r q +==,∴222sin 10a r r q -+-= 即为1C 的极坐标方程的极坐标方程⑵24cos C r q =: 两边同乘r 得22224cos cos x y x r r qr r q ==+=,224x y x \+= 即()2224x y -+= ②3C :化为普通方程为2y x =由题意:1C 和2C 的公共方程所在直线即为3C ①—②得:24210x y a -+-=,即为3C∴210a -= ∴1a =24.⑴.⑴ 如图所示:如图所示:⑵()4133212342x x f x x x x x ìï--ïï=--<<íï-ïî,≤,,≥ ()1f x >当1x -≤,41x ->,解得5x >或3x < 1x -∴≤当312x -<<,321x ->,解得1x >或13x <113x -<<∴或312x <<当32x ≥,41x ->,解得5x >或3x <332x <∴≤或5x >综上,13x <或13x <<或5x >()1f x >∴,解集为()()11353æö-¥+¥ç÷èø,,,。
2016高考理科数学答案解析(新课标全国卷
绝密*启用前2016年普通高等学校招生全国统一考试理科数学注息事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。
2.问答第Ⅰ卷时。
选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其它答案标号。
写在本试卷上无效.3.回答第Ⅱ卷时。
将答案写在答题卡上.写在本试卷上无效·4.考试结束后.将本试卷和答且卡一并交回。
第一卷一. 选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
(1)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为( )()A 3 ()B 6 ()C 8 ()D 10【解析】选D5,1,2,3,4x y ==,4,1,2,3x y ==,3,1,2x y ==,2,1x y ==共10个 (2)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有( )()A 12种 ()B 10种 ()C 9种 ()D 8种【解析】选A甲地由1名教师和2名学生:122412C C =种(3)下面是关于复数21z i=-+的四个命题:其中的真命题为( ) 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1-()A 23,p p ()B 12,p p ()C ,p p 24 ()D ,p p 34【解析】选C 22(1)11(1)(1)i z i i i i --===---+-+--1:p z =22:2p z i =,3:p z 的共轭复数为1i -+,4:p z 的虚部为1-(4)设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为( )()A 12 ()B 23 ()C 34()D 45【解析】选C∆21F PF 是底角为30的等腰三角形221332()224cPF F F a c c e a ⇒==-=⇔==(5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )()A 7 ()B 5()C -5 ()D -7【解析】选D472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-=471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-(6)如果执行右边的程序框图,输入正整数(2)N N ≥和实数12,,...,n a a a ,输出,A B ,则( )()A A B +为12,,...,n a a a 的和 ()B 2A B+为12,,...,n a a a 的算术平均数 ()C A 和B 分别是12,,...,n a a a 中最大的数和最小的数 ()D A 和B 分别是12,,...,n a a a 中最小的数和最大的数【解析】选C(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【解析】选B该几何体是三棱锥,底面是俯视图,高为3 此几何体的体积为11633932V =⨯⨯⨯⨯=(8)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线x y 162=的准线交于,A B两点,AB =C 的实轴长为( )()A ()B ()C 4 ()D 8【解析】选C设222:(0)C x y a a -=>交x y 162=的准线:4l x =-于(4,A -(4,B --得:222(4)4224a a a =--=⇔=⇔=(9)已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减。
2016年全国各地高考理科数学新课标I试卷及其解析
2016年全国各地高考理科数学新课标I 试卷及其解析注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合2{|430}A x x x =-+<,{|230}B x x =->,则AB =(A )3(3,)2-- (B )3(3,)2- (C )3(1,)2(D )3(,3)2(2)设(1i)1i x y +=+,其中x ,y 是实数,则i =x y +(A )1 (B (C (D )2 (3)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a(A )100 (B )99 (C )98 (D )97(4)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(A )13 (B )12 (C )23(D )34(5)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )(–1,3) (B )(–1,3) (C )(0,3) (D )(0,3)(6)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π(7)函数||22x e x y -=在[–2,2]的图像大致为(A )(B)(C )(D)(8)若101a b c >><<,,则(A )c c a b < (B )c c ab ba < (C )log log b a a c b c < (D )log log a b c c <(9)执行右面的程序图,如果输入的011x y n ===,,,则输出x ,y 的值满(A )2y x = (B )3y x = (C )4y x = (D )5y x =(10) 以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB|=DE|=则C 的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a 过正方体ABCD -A 1B 1C 1D 1的顶点A ,a //平面CB 1D 1,a ⋂平面ABCD =m ,a ⋂平面ABA 1B 1=n ,则m 、n 所成角的正弦值为(B (D)1312.已知函数()s i n ()(0),24f x x+x ππωϕωϕ=>≤=-,为()f x 的零点,4x π=为()y f x =图像的对称轴,且()f x 在51836ππ⎛⎫⎪⎝⎭,单调,则ω的最大值为(A )11 (B )9 (C )7 (D )5第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每小题5分(13)设向量a =(m ,1),b =(1,2),且|a +b |2=|a |2+|b |2,则m =_________。
2016年高考文科数学试卷及答案解析(新课标全国1卷)【WORD版】
绝密★启封并使用完毕前2016年普通高等学校招生全国统一考试 1文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷4至6页。
注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目"与考生本人准考证号、姓名是否一致.2。
第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3。
考试结束,监考员将试题卷、答题卡一并收回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B中元素的个数为(A)5 (B)4 (C)3 (D)2(2)已知点A(0,1),B(3,2),向量AC=(—4,-3),则向量BC=(A)(—7,-4)(B)(7,4) (C)(-1,4) (D)(1,4)(3)已知复数z满足(z-1)i=i+1,则z=(A)-2—I (B)-2+I (C)2—I (D)2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A)103(B)15(C)110(D)120(5)已知椭圆E的中心在坐标原点,离心率为12,E的右焦点与抛物线C:y²=8x的焦点重合,A,B是C的准线与E的两个焦点,则|AB|= (A)3 (B)6 (C)9 (D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?"已知1斛米的体积约为1。
2016年高考全国课标Ⅰ卷数学试题分析
2016年高考全国课标Ⅰ卷数学试题分析诏安一中沈玉川自2004年以来,福建高考今年首次使用全国卷,2016年高考新课标Ⅰ卷数学试题,试卷结构、考点、题型与往年基本一致,延续了前几年的命题风格,保持了“总体稳定,稳中有变”的命题理念,理科数学难度总体适中,文科数学难度相对于福建卷略有提高,没有偏题怪题,大多是常见题型,但求解方法也是灵活多样;对于学生整体数学素质的要求相比去年有所提高,对于数学成绩不是很稳定的学生来说是个不小的挑战,可以说,今年的高考数学试卷经过前面几年的积累完成了质的飞跃。
一、对试卷整体评析2016年高考数学新课标全国Ⅰ卷遵循《课程标准》基本理念,严格贯彻《2016年全国统一高考考试大纲》基本要求,试卷的结构保持了新课程高考数学试卷的一贯风格,以能力立意,在多角度多层次地考查基础知识和基本技能的同时,关注数学的应用意识与创新意识,注重对考生数学思想和学科能力的考查。
整个试卷呈“由易到难,循序渐进”的趋势,难度合理,区分度较好,有利于高校选拔人才,依然体现了“以学生为本”,“在基础中考察能力”的要求。
1.注重基础性,覆盖全面重点突出2016年高考数学新课标Ⅰ卷对基础知识与基础技能的考察既注重全面,又突出重点,贴切教学实际,试卷所涉及的知识几乎覆盖了高中所学的全部重要内容,许多试题都是单一知识点或是最基础的知识交汇点上设置,例如理科第1题考查集合的关系与运算,第2题考查复数的概念与模,第3题、第15题考查等差数列与等比数列的基本运算,第4题考查几何概型,第13题考查平面向量的坐标运算,第14题考查二项展开式的系数,第17题考查正弦、余弦定理及三角形面积公式,这是和新课标数学“两年数列两年三角” 的命题规律完全吻合的,应该说是在预料当中;文科第3题考查考查古典概型,第4题考查余弦定理,第5题考查椭圆的几何性质,第6题考查三角函数图象的平移,第17题考查等差数列与等比数列的基本运算,这些都是课本中的问题,大部分属于常规题型,是学生在高三平时的训练中常见的类型,难度适中。
2016年高考数学新课标卷1解析及思考
立体几何解答题 (1)理科鼓励向量法,但需要基本的几何基础 (反映在第一问的条件或设问上)
(2)文科不鼓励向量法 (很多题不可能用向量法解决)
立体几何复习策略:
(1) 三视图、球体:专题复习,总结方法和规律 (2) 空间位置关系:准确理解定理,总结常规方法 (3) (理科)向量法:一次做对 (文科)总结体积计算、线面角计算 (4) 提升能力:立体向平面的转移;空间想象力;运动 与变化
函数与导数
专题讲解与训练(方法导向)
二次函数的综合研究方法 因式分解 变量替换 分类讨论 非常规函数 (观察证明) 极值点存在不可求 预处理 缩放法(基本不等式)
分段研究
三角函数 题型及分值:1大1小,或3小,15分 难度:简单—较难 特点:(1) 弱化三角恒等变形技巧 (2) 强化三角函数图像与性质 (3) 解答题考察三角函数在三角形中的综合应用 (4) 选择填空会出现难题 (综合几何、函数、不等 式)
第22-24题
3选 1 3选 1 3选 1 3选 1
理 科
2013年 2014年 2015年 2016年
文 科
年份 2013年 2014年 2015年 2016年
第17题 数列 数列 三角 数列
第18题 概率与统计 概率与统计 立体几何 立体几何
第19题 立体几何 立体几何 统计(回归) 统计
第20题 函数与导数 解析几何 解析几何 解析几何
函数与导数
命题特点 (解答题) (1)切线问题:基础;简单 (2)求解函数单调性、极值、最值: 中等难度,2个变化: 1、参数的分类讨论 2、非常规的导函数 (3)不等式的证明与讨论:难题 (4)零点的讨论:难题
函数与导数复习策略
专题讲解与训练(问题导向) 求解单调性、极值、最值 极值点的研究 证明不等式 讨论不等式 零点研究 (函数与方程) 多变量问题
2016年高考数学试卷分析
2016年高考数学试卷分析随着2016年高考的结束,,作为一线教师,也应该是对今年的高考试题进行一番细致的研究了。
陕西省是即课改后首次使用全国卷。
2015年的陕西卷已经为下一年的平稳过度做好了铺垫。
首先在题型设置上,与全国卷保持一致,这已给师生做好了思想工作,当2016年的高考数学进入人们眼帘的时候,似乎也不是很陌生,很有老朋友相见的感觉。
今年的全国卷数学试题从试题结构与去年相比变化不大,严格遵守考试大纲说明,五偏题,怪题现象。
试卷难度呈阶梯型分布,试题更灵活。
入口容易出口难,有利于高校选拔新生。
一、总体分析:1,试题的稳定性:从文理试卷整体来看,考查的内容注重基础考查,又在一定的程度上进行创新。
知识覆盖全面且突出重点。
高中知识“六大板块”依旧是考查的重点。
无论大小体目90%均属于常规题型,难度适中。
是学生训练时的常见题型。
其中,5,15,18注重考查了数学在实际中的应用能力。
这就提示我们数学的教学要来源实际,回归生活,既有基础与创新的结合,又能增加学生的自信心,发挥自己的最佳水平。
试题的变化:有些复课中的重点“二项式定理”,“线性规划”,“定积分”。
“均值不等式”等知识点并没有被纳入,而“条件概率”则出现在大题中,这也对试题的难度进行区分。
在难度方面,选择题的12题,填空题的16题,对学生造成较大困扰。
这也有利于对人才的选拔。
解答题中的20,21题第一问难度适中,第二问都提高了难度。
这也体现了入口易,出口难,对人才的选拔非常有利。
今年的高考数学试题更注重了试题的广度,而简化了试题的深度。
而这对陕西高考使用全国卷的过度上起到了承上启下的作用。
平稳过度已是事实。
给学生,教师都增加了信心。
试题的详细分析:选择题部分(1),考查复数,注重的是知识点的考查。
对负数的运算量则降低要求,这要求我们不仅要求对运算过关,更强调知识点的全面性(2)集合的运算:集合的交并补三种运算应是同等对待。
在平时的教学中,出现的交集运算比较多,。
2016高考数学新课标1卷解析一
2016高考数学新课标1卷解析(一)新东方在线赵俊今年高考的数学科目考试6月7日已经结束,新东方在线赵俊老师为大家带来了数学新课标1卷的试题解析以及试卷难易程度和解题思路的说明。
新课标1卷是非常重要的一套卷子,有奠定基调的作用。
衡量一张卷子出题命题的尺度,会有两个重要的评价指标,一是试卷整体难度和区分度,二是命题创新性和稳定性。
首先同学们应该了解区分度,什么样的题目最具有区分度。
其实不是像大家想象的最困难的题目,因为困难的题目占比重是非常低的。
所以真正将同学拉开差距的是中档题目,如果想做区分可以有两种方式,第一种就是通过题目计算量的大小。
所以可以将题目难度保持不变,但计算量增大,考核大家的计算能力,做区分。
还有做题的思路上设置小问题,也会导致基础不扎实的同学不是很清晰。
所以大家要明白真正让同学产生区分差别的,是在这些题目当中,下边我们开始真题的解析。
[真题][赵俊老师解析]今年新课标理科1卷当中的15题,出现等比数列AN。
之前说过,等比数列搞定A1Q,搞定一切。
求出之后进行代入就行了,这道题思路上不困难,麻烦就是计算的部分。
A1Q 解出后求的是积,要把所有的式子乘到一起,最终将指数进行相加,然后求和,求得整个式子最大值的问题。
这道题就是典型的在计算上设置一些小的问题跟步骤。
[真题][赵俊老师解析]文科卷第12题,给了我们fx的一个式子,X-三分之一sin2X,不管后面三角函数的处理是否会,第一反应一定是首先求到fx’,应该是1-三分之二倍的cos2x,再加上2cosx,一定可以通过公式展开的,应该有三个公式。
然后得出2cos2-1,将这个函数拆分成两个函数的复合,根据这个范围进行求解。
因为cos的范围在-1到1,所以将-1和1带到这个式子当中即可,中间的范围要大于等于0。
这两道题是为了告诉大家,我们在考场上区分度通常出现在哪里。
真正我们高考当中最重要的,就是今天高考中命题的稳定性和创新性的部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数,概率的运算,三角函数(余弦定理)第10题是函数图像与算法案例,第13题是向量数量积及坐标运算,第16题是线性规划的应用,前16道选择填空题考查的知识点没有变化。
3.稳中有变
文科数学的考查中,解答题的顺序有调整,和2015年比较,15年第17
题考查的正弦定理与三角形面积而16年与第16题第17题考查的等差数列与等
比数列,第18题没有变化,第18题是空间几何问题第(1)问由证明垂直问题
变成了证明中点问题。
第19题是解析几何问题,第二问考查定值问题,第20
题是直线与抛物线的位置关系与交点问题,和2015年类似但第(1)问提问发生
了变化,学生不熟悉,可能给学生造成一定困扰。
.
二、对理科试卷的评价
2016高考数学北京卷已经呈现在大家眼前了,除了一贯的平和大气,该卷在考查学生应用意识、探索精神和理性思维等方面,也切实有效,亮点颇多。
这份试题注重基础知识的理解,重视主干知识的掌握,强调数学的基本素养和数学思想方法的应用。
具体来说,体现在以下几点:
试卷结构、难度及重点考查的内容相对稳定,题目表述简明扼要,选择题的前五题、填空题的前四题、解答题前三题的考查比较基础,入手容易,对稳定考生的心理起到了很好的作用。
如解答题采用分层设问的方式,难点分散,同时关注各问之间内在的联系,体现整体性,为学生提供了很好的展示平台。
试卷的稳定还体现在注重基础知识、基本技能、基本思想方法的考查。
例如:与往年相同,依然考查了三角、复数、算法、线性规划、极坐标、立体几何等基础知识,读图、计算、数据处理等基本技能,数形结合、转化与化归、函数与方程等基本数学思想方法。
二、以能力为立意,体现选拔功能
课标指出,不同的学生学习不同的数学,不同的学生在数学上有不同的收获。
试卷在适当控制难度的前提下,通过设计一定难度和区分度的试题,在让不同能力水平的学生得到充分展示的机会的同时,体现了选拔功能。
三、强调知识的应用,注重发展学生的数学能力
试卷关注了数学知识的应用,以期借此发展学生的数学能力,这一特点在数学的应用题和创新问题都有所体现。
四、关注数学本质,正确引导教学
在考查基本知识、基本方法的同时,试题关注命题的新颖,避开了模式化的解题思路,在问题的考查角度和呈现方式上有所改变,突出了数学的本质。
因对试卷的分析时间较短,缺少测试数据和蓝图等信息,以上认识还很肤浅,有不当之处,敬请谅解。
2016.6.15。