贵州省毕节地区2016年中考数学试卷及答案解析(word版)

合集下载

2016学年贵州省毕节中考数学年试题答案

2016学年贵州省毕节中考数学年试题答案

D. 无解 ()
D. 3和4之间
9.某村耕地总面积为 50 公顷,且该村人均耕地面积 y (单位:公顷/人)与总人口 x (单位:
人)的函数图象如图所示,则下列说法正确的是
()
A.该村人均耕地面积随总人口的增多而增多 B.该村人均耕地面积 y 与总人口 x 成正比例
C.若该村人均耕地面积为 2 公顷,则总人口有100 人
21.(本小题满分 8 分)
在太空种子种植体验实践活动中,为了解“宇番 2 号”番茄,某校科技小组随机调查 60
株番茄的挂果数量 x (单位:个),并绘制如下不完整的统计图表:
“宇番 2 号”番茄挂果数量统计表
“宇番 2 号”番茄挂果数量频数分布直方图
挂果数量 x (个) 频数(株) 频率
25≤x<35
B. 2 016
1 C.
2 016
()
1 D.
2 016
2.若代数式 x 2 的值为1,则 x
()
A.1
B. 1
C. 3
D. 3

3.如图是由四个相同的小正方体组成的几何体,则它的主视图为
()

A
B
C
D
4.某班 7 名女生的体重(单位: kg )分别是 35 , 37 , 38 , 40 , 42 , 42 , 74 ,这组数据的众
数学试卷 第 4 页(共 6 页)
毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- ---------------

贵州毕节市 2016年中考数学真题试卷附解析

贵州毕节市 2016年中考数学真题试卷附解析
【考点】众数.
【分析】根据众数的定义找出出现次数最多的数即可.
【解答】解:∵数据中52和54均出现了2次,出现的次数最多,
∴这组数据的众数是52和54,
故选:A.
6.(2016·贵州毕节)到三角形三个顶点的距离都相等的点是这个三角形的( )
A.三条高的交点B.三条角平分线的交点
C.三条中线的交点D.三条边的垂直平分线的交点
【分析】利用二元一次方程的定义判断即可.
【解答】解:∵方程x2m﹣n﹣2+4ym+n+1=6是二元一次方程,
∴ ,
解得: ,
故选A
10.(2016·贵州毕节)如图,点A为反比例函数 图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为( )
A.﹣4 B.4 C.﹣2 D.2
【考点】反比例函数系数k的几何意义.
B.有两边及一角对应相等的两个三角形全等
C.矩形的对角线相等
D.平行四边形是轴对称图形
【考点】矩形的性质;全等三角形的判定;菱形的判定;轴对称图形.
【分析】由菱形的判定方法得出选项A错误;由全等三角形的判定方法得出选项B错误;由矩形的性质得出选项C正确;由平行四边形的性质得出选项D错误;即 .
故选:C.
2.(2016·贵州毕节)2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学记数法表示为( )
A.89×103B.8.9×104C.8.9×103D.0.89×105
【考点】科学记数法—表示较大的数.
C、原式不能合并,错误;
D、原式利用单项式乘单项式法则计算得到结果,即可作出判断.
【解答】解:A、原式=﹣2a﹣2b,错误;

2016年毕节市中考数学真题(解析版)

2016年毕节市中考数学真题(解析版)

2016年毕节市中考数学真题(解析版)一、选择题(本大题共15小题,每小题3分,共45分)1.的算术平方根是()A.2 B.±2 C.D.【解答】解:=2,2的算术平方根是.故选:C.2.2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学记数法表示为()A.89×103B.8.9×104C.8.9×103D.0.89×105【解答】解:将89000用科学记数法表示为:8.9×104.故选:B.3.下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.(a2)3=a5C.a3+4a=a3D.3a2•2a3=6a5【解答】解:A、原式=﹣2a﹣2b,错误;B、原式=a6,错误;C、原式不能合并,错误;D、原式=6a5,正确,故选D4.图中是一个少数名族手鼓的轮廓图,其主视图是()A.B.C.D.【解答】解:由几何体可得:其主视图为:.故选:B.5.为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54 B.52 C.53 D.54【解答】解:∵数据中52和54均出现了2次,出现的次数最多,∴这组数据的众数是52和54,故选:A.6.到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点【解答】解:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,故选:D.7.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【解答】解:∵2=<=3,∴3<<4,故选B.8.如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()A.85° B.60° C.50° D.35°【解答】解:在△ABC中,∵∠1=85°,∠2=35°,∴∠4=85°﹣35°=50°,∵a∥b,∴∠3=∠4=50°,故选C.9.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.【解答】解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,故选A10.如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4 B.4 C.﹣2 D.2【解答】解:△ABO的面积为:×|﹣4|=2,故选D.11.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形【解答】解:∵对角线互相垂直的四边形不一定是菱形,∴选项A错误;∵有两边及一角对应相等的两个三角形不一定全等,∴选项B错误;∵矩形的对角线相等,∴选项C正确;∵平行四边形是中心对称图形,不一定是轴对称图形,∴选项D错误;故选:C.12.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100° B.72° C.64° D.36°【解答】解:连接OA,∵OA=OC,∴∠OAC=∠C=28°,∴∠OAB=64°,∵OA=OB,∴∠B=∠OAB=64°,故选:C.13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.【解答】解:设现在平均每天植树x棵,则原计划每天植树(x﹣30)棵,根据题意,可列方程:=,故选:A.14.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【解答】解:A、由抛物线可知,a<0,由直线可知,故本选项错误;B、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;C、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0故本选项错误.故选C.15.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【解答】解:由题意设CH=xcm,则DH=EH=(9﹣x)cm,∵BE:EC=2:1,∴CE=BC=3cm∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4cm.故选(B)二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.分解因式3m4﹣48=3(m2+4)(m+2)(m﹣2).【解答】解:3m4﹣48=3(m4﹣42)=3(m2+4)(m2﹣4)=3(m2+4)(m+2)(m﹣2).故答案为:3(m2+4)(m+2)(m﹣2).17.若a2+5ab﹣b2=0,则的值为5.【解答】解:∵a2+5ab﹣b2=0,∴﹣===5.故答案为:5.18.掷两枚质地均匀的骰子,其点数之和大于10的概率为.【解答】解:列表如下:1 2 3 4 5 61 2 3 4 5 6 72 3 4 5 6 7 83 4 5 6 7 8 94 5 6 7 8 9 105 6 7 8 9 10 116 7 8 9 10 11 12∵两次抛掷骰子总共有36种情况,而和大于10的只有:(5,6),(6,5),(6,6)三种情况,∴点数之和大于10的概率为:.故答案为:.19.在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD=.【解答】解:∵∠BCD=∠A,∠B=∠B,∴△DCB≌△CAB,∴=,∴=,∴BD=.故答案为.20.如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为π﹣1.【解答】解:如图,连接PA、PB、OP;==,S△ABP=AB•OP=×1×=,则S半圆O﹣S△ABP)由题意得:图中阴影部分的面积=4(S半圆O=4(﹣)=π﹣1,故答案为:π﹣1.三、解答题(本大题共7小题,各题分值见题号后,共80分,请解答在答题卡相应题号后,应写出必要的文字说明,证明过程或演算步骤)21.计算:.【解答】解:原式=1+﹣1﹣﹣2×+1=﹣﹣+1=1﹣.22.已知(1)化简A;(2)若x满足不等式组,且x为整数时,求A的值.【解答】解:(1)A=(x﹣3)•﹣1=﹣1==;(2),由①得:x<1,由②得:x>﹣1,∴不等式组的解集为﹣1<x<1,即整数x=0,则A=﹣.23.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【解答】解:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x=0.2=20%,答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.24.为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:组别成绩x(分)频数(人数)频率一50≤x<60 2 0.04二60≤x<70 10 0.2三70≤x<80 14 b四80≤x<90 a 0.32五90≤x<100 8 0.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有50名学生参加;(2)直接写出表中a=16,b=0.28;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为48%.【解答】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%,故答案为:48%.25.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.【解答】解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.26.如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.【解答】(1)证明:∵CD=CB,∴∠CBD=∠CDB,∵AB是⊙O的直径,∴∠CBE=90°,∴∠CBD+∠BCE=∠CDB+∠DCE,∴∠BCE=∠DCE,即∠BCD=2∠BCE,∵∠BCD=2∠ABD,∴∠ABD=∠BCE,∴∠CBD+∠ABD=∠CBD+∠BCE=90°,∴CB⊥AB,∵CB为直径,∴AB是⊙O的切线;(2)∵∠A=60°,DF=,∴在Rt△AFD中,AF===1,在Rt△BFD中,BF=DF•tan60°=×=3,∵DF⊥AB,CB⊥AB,∴DF∥BC,∴∠ADF=∠ACB,∵∠A=∠A,∴△ADF∽△ACB,∴=,∴=,∴CB=4.27.如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.【解答】解:(1)∵A(a,8)是抛物线和直线的交点,∴A点在直线上,∴8=2a+4,解得a=2,∴A点坐标为(2,8),又A点在抛物线上,∴8=22+2b,解得b=2,∴抛物线解析式为y=x2+2x;(2)联立抛物线和直线解析式可得,解得,,∴B点坐标为(﹣2,0),如图,过A作AQ⊥x轴,交x轴于点Q,则AQ=8,OQ=OB=2,即O为BQ的中点,当C为AB中点时,则OC为△ABQ的中位线,即C点在y轴上,∴OC=AQ=4,∴C点坐标为(0,4),又PC∥x轴,∴P点纵坐标为4,∵P点在抛物线线上,∴4=x2+2x,解得x=﹣1﹣或x=﹣1,∵P点在A、B之间的抛物线上,∴x=﹣1﹣不合题意,舍去,∴P点坐标为(﹣1,4),∴PC=﹣1﹣0=﹣1;(3)∵D(m,n),且四边形PCDE为矩形,∴C点横坐标为m,E点纵坐标为n,∵C、E都在直线y=2x+4上,∴C(m,2m+4),E(,n),∵PC∥x轴,∴P点纵坐标为2m+4,∵P点在抛物线上,∴2m+4=x2+2x,整理可得2m+5=(x+1)2,解得x=﹣1或x=﹣﹣1(舍去),∴P点坐标为(﹣1,2m+4),∴DE=﹣m,CP=﹣1﹣m,∵四边形PCDE为矩形,∴DE=CP,即﹣m=﹣1﹣m,整理可得n2﹣4n﹣8m﹣16=0,即m、n之间的关系式为n2﹣4n﹣8m﹣16=0.。

贵州省毕节市2016年中考数学试题

贵州省毕节市2016年中考数学试题

毕节市2016年初中毕业生学业(升学)统一考试试卷数学注意事项:1.答题前,务必将自己的姓名,准考证号填写在答题卡规定的位置。

2.答题时,卷I必须使用2B铅笔,卷II必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置,字体工整,笔记清楚。

3.所有题目必须在答题卡上作答,在试卷上答题无效。

4.本试题共6题,满分150分,考试用时120分钟。

5.考试结束后,将试卷和答题卡一并交回。

I卷一.选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.38的算术平方根是()± C.2A.2B.2D.2±2. 2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学计数法表示为( )A.31089⨯B.4109.8⨯C.3109.8⨯D.51089.0⨯3.下列运算正确的是( )A.b a b a 22)(2+-=+-B.532)(a a =C.33414a a a =+ D.532623a a a =⋅ 4.图中是一个少数名族手鼓的轮廓图,其主视图是( )5.为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是( ) A.52和54 B.52 C.53 D.54 6.到三角形三个顶点的距离都相等的点是这个三角形的( ) A.三条高的交点 B. 三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点 7.估计16+的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间 8.如图,直线a//b,,, 352851=∠=∠则=∠3( )A.85 B.60 C. 50D. 359.已知关于y x ,的方程64122=+++--n m n m y x 是二元一次方程,则n m ,的值为( )A.1,1-==n mB.1,1=-=n mC.34,31-==n mD.34,31-==n m10.如图,点A 为反比例函数xy 4-=图象上一点,过A 作AB ⊥x 轴于点B ,链接OA,则ABO ∆的面积为( )11.下列语句正确的是( )A.对角线互相垂直的的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形12.如图,点A,B,C 在☉O 上,, 28,36=∠=∠C A 则=∠B ( )A. 100B. 72C. 64D. 36 13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x 棵,则列出的方程为( ) A.30300400-=x xB.xx 30030400=-C.xx 30030400=+ D.30300400+=x x14.一次函数)0(≠+=a c ax y 与二次函数)0(2≠++=a c bx ax y 在同一个坐标系中的 图象可能是( )15.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH,若BE:EC=2:1,则线段CH 的长是( )A.3B.4C.5D.6卷II二.填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.分解因式=-4834m 。

贵州省毕节地区2016年中考数学试卷及答案解析(word版)

贵州省毕节地区2016年中考数学试卷及答案解析(word版)

2016年贵州省毕节地区中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.的算术平方根是()A.2 B.±2 C.D.2.2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学记数法表示为()A.89×103B.8.9×104C.8.9×103D.0.89×1053.下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.(a2)3=a5C.a3+4a=a3D.3a2•2a3=6a54.图中是一个少数名族手鼓的轮廓图,其主视图是()A.B.C.D.5.为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54 B.52 C.53 D.546.到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点7.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间8.如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()A.85° B.60° C.50° D.35°9.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.10.如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4 B.4 C.﹣2 D.211.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形12.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100° B.72° C.64° D.36°13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.14.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.15.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.分解因式3m4﹣48=.17.若a2+5ab﹣b2=0,则的值为.18.掷两枚质地均匀的骰子,其点数之和大于10的概率为.19.在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD=.20.如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为.三、解答题(本大题共7小题,各题分值见题号后,共80分,请解答在答题卡相应题号后,应写出必要的文字说明,证明过程或演算步骤)21.计算:.22.已知(1)化简A;(2)若x满足不等式组,且x为整数时,求A的值.23.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.24.为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:组别成绩x(分)频数(人数)频率一50≤x<60 2 0.04二60≤x<70 10 0.2三70≤x<80 14 b四80≤x<90 a 0.32五90≤x<100 8 0.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有名学生参加;(2)直接写出表中a=,b=;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.25.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.26.如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.27.如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.2016年贵州省毕节地区中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.的算术平方根是()A.2 B.±2 C.D.【考点】立方根;算术平方根.【分析】首先根据立方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:=2,2的算术平方根是.故选:C.2.2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学记数法表示为()A.89×103B.8.9×104C.8.9×103D.0.89×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将89000用科学记数法表示为:8.9×104.故选:B.3.下列运算正确的是()A.﹣2(a+b)=﹣2a+2b B.(a2)3=a5C.a3+4a=a3D.3a2•2a3=6a5【考点】单项式乘单项式;合并同类项;去括号与添括号;幂的乘方与积的乘方.【分析】A、原式去括号得到结果,即可作出判断;B、原式利用幂的乘方运算法则计算得到结果,即可作出判断;C、原式不能合并,错误;D、原式利用单项式乘单项式法则计算得到结果,即可作出判断.【解答】解:A、原式=﹣2a﹣2b,错误;B、原式=a6,错误;C、原式不能合并,错误;D、原式=6a5,正确,故选D4.图中是一个少数名族手鼓的轮廓图,其主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】直接利用几何体的形状结合主视图的观察角度得出答案.【解答】解:由几何体可得:其主视图为:.故选:B.5.为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54 B.52 C.53 D.54【考点】众数.【分析】根据众数的定义找出出现次数最多的数即可.【解答】解:∵数据中52和54均出现了2次,出现的次数最多,∴这组数据的众数是52和54,故选:A.6.到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点【考点】线段垂直平分线的性质;角平分线的性质.【分析】根据线段的垂直平分线上的点到线段的两个端点的距离相等解答即可.【解答】解:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,故选:D.7.估计的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间【考点】估算无理数的大小.【分析】利用”夹逼法“得出的范围,继而也可得出的范围.【解答】解:∵2=<=3,∴3<<4,故选B.8.如图,直线a∥b,∠1=85°,∠2=35°,则∠3=()A.85° B.60° C.50° D.35°【考点】平行线的性质.【分析】先利用三角形的外角定理求出∠4的度数,再利用平行线的性质得∠3=∠4=50°.【解答】解:在△ABC中,∵∠1=85°,∠2=35°,∴∠4=85°﹣35°=50°,∵a∥b,∴∠3=∠4=50°,故选C.9.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C.D.【考点】二元一次方程的定义.【分析】利用二元一次方程的定义判断即可.【解答】解:∵方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,∴,解得:,故选A10.如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4 B.4 C.﹣2 D.2【考点】反比例函数系数k的几何意义.【分析】根据反比例函数系数k的几何意义:在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变,可计算出答案.【解答】解:△ABO的面积为:×|﹣4|=2,故选D.11.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形【考点】矩形的性质;全等三角形的判定;菱形的判定;轴对称图形.【分析】由菱形的判定方法得出选项A错误;由全等三角形的判定方法得出选项B错误;由矩形的性质得出选项C正确;由平行四边形的性质得出选项D错误;即可得出结论.【解答】解:∵对角线互相垂直的四边形不一定是菱形,∴选项A错误;∵有两边及一角对应相等的两个三角形不一定全等,∴选项B错误;∵矩形的对角线相等,∴选项C正确;∵平行四边形是中心对称图形,不一定是轴对称图形,∴选项D错误;故选:C.12.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100° B.72° C.64° D.36°【考点】圆周角定理.【分析】连接OA,根据等腰三角形的性质得到∠OAC=∠C=28°,根据等腰三角形的性质解答即可.【解答】解:连接OA,∵OA=OC,∴∠OAC=∠C=28°,∴∠OAB=64°,∵OA=OB,∴∠B=∠OAB=64°,故选:C.13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设现在平均每天植树x棵,则原计划每天植树(x﹣30)棵,根据:现在植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.【解答】解:设现在平均每天植树x棵,则原计划每天植树(x﹣30)棵,根据题意,可列方程:=,故选:A.14.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=ax+b图象得到字母系数的正负,再与二次函数y=ax2+bx+c 的图象相比较看是否一致.【解答】解:A、由抛物线可知,a<0,由直线可知,故本选项错误;B、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;C、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;D、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b>0故本选项错误.故选C.15.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6【考点】正方形的性质;翻折变换(折叠问题).【分析】根据折叠的性质可得DH=EH,在直角△CEH中,若设CH=x,则DH=EH=9﹣x,CE=3cm,可以根据勾股定理列出方程,从而解出CH的长.【解答】解:由题意设CH=xcm,则DH=EH=(9﹣x)cm,∵BE:EC=2:1,∴CE=BC=3cm∴在Rt△ECH中,EH2=EC2+CH2,即(9﹣x)2=32+x2,解得:x=4,即CH=4cm.故选(B)二、填空题(本大题共5小题,每小题5分,共25分,请把答案填在答题卡相应题号后的横线上)16.分解因式3m4﹣48=3(m2+4)(m+2)(m﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式,再利用平方差公式把原式进行因式分解即可.【解答】解:3m4﹣48=3(m4﹣42)=3(m2+4)(m2﹣4)=3(m2+4)(m+2)(m﹣2).故答案为:3(m2+4)(m+2)(m﹣2).17.若a2+5ab﹣b2=0,则的值为5.【考点】分式的化简求值.【分析】先根据题意得出b2﹣a2=5ab,再由分式的减法法则把原式进行化简,进而可得出结论.【解答】解:∵a2+5ab﹣b2=0,∴﹣===5.故答案为:5.18.掷两枚质地均匀的骰子,其点数之和大于10的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其点数之和大于10的情况,再利用概率公式求解即可求得答案.【解答】解:列表如下:1 2 3 4 5 61 2 3 4 5 6 72 3 4 5 6 7 83 4 5 6 7 8 94 5 6 7 8 9 105 6 7 8 9 10 116 7 8 9 10 11 12∵两次抛掷骰子总共有36种情况,而和大于10的只有:(5,6),(6,5),(6,6)三种情况,∴点数之和大于10的概率为:.故答案为:.19.在△ABC中,D为AB边上一点,且∠BCD=∠A.已知BC=,AB=3,则BD=.【考点】相似三角形的判定与性质.【分析】证明△DCB≌△CAB,得=,由此即可解决问题.【解答】解:∵∠BCD=∠A,∠B=∠B,∴△DCB≌△CAB,∴=,∴=,∴BD=.故答案为.20.如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为π﹣1.【考点】扇形面积的计算.【分析】如图,作辅助线;首先求出半圆O的面积,其次求出△ABP的面积;观察图形可以发现:阴影部分的面积=4(S﹣S△ABP),求出值,即可解决问题.半圆O【解答】解:如图,连接PA、PB、OP;==,S△ABP=AB•OP=×1×=,则S半圆O由题意得:图中阴影部分的面积=4(S﹣S△ABP)半圆O=4(﹣)=π﹣1,故答案为:π﹣1.三、解答题(本大题共7小题,各题分值见题号后,共80分,请解答在答题卡相应题号后,应写出必要的文字说明,证明过程或演算步骤)21.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质化简,进而求出答案.【解答】解:原式=1+﹣1﹣﹣2×+1=﹣﹣+1=1﹣.22.已知(1)化简A;(2)若x满足不等式组,且x为整数时,求A的值.【考点】分式的混合运算;一元一次不等式组的整数解.【分析】(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,确定出整数x的值,代入计算即可求出A的值.【解答】解:(1)A=(x﹣3)•﹣1=﹣1==;(2),由①得:x<1,由②得:x>﹣1,∴不等式组的解集为﹣1<x<1,即整数x=0,则A=﹣.23.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【考点】一元二次方程的应用.【分析】(1)设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;(2)根据2016年该县投入教育经费和每年的增长率,直接得出2017年该县投入教育经费为8640×(1+0.2),再进行计算即可.【解答】解:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x=0.2=20%,答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.24.为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x(分),且50≤x<100,将其按分数段分为五组,绘制出以下不完整表格:组别成绩x(分)频数(人数)频率一50≤x<60 2 0.04二60≤x<70 10 0.2三70≤x<80 14 b四80≤x<90 a 0.32五90≤x<100 8 0.16请根据表格提供的信息,解答以下问题:(1)本次决赛共有50名学生参加;(2)直接写出表中a=16,b=0.28;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为48%.【考点】频数(率)分布直方图;频数(率)分布表.【分析】(1)根据表格中的数据可以求得本次决赛的学生数;(2)根据(1)中决赛学生数,可以求得a、b的值;(3)根据(2)中a的值,可以将频数分布直方图补充完整;(4)根据表格中的数据可以求得本次大赛的优秀率.【解答】解:(1)由表格可得,本次决赛的学生数为:10÷0.2=50,故答案为:50;(2)a=50×0.32=16,b=14÷50=0.28,故答案为:16,0.28;(3)补全的频数分布直方图如右图所示,(4)由表格可得,决赛成绩不低于80分为优秀率为:(0.32+0.16)×100%=48%,故答案为:48%.25.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.【考点】旋转的性质;全等三角形的判定与性质;菱形的性质.【分析】(1)由旋转的性质得到三角形ABC与三角形ADE全等,以及AB=AC,利用全等三角形对应边相等,对应角相等得到两对边相等,一对角相等,利用SAS得到三角形AEC 与三角形ADB全等即可;(2)根据∠BAC=45°,四边形ADFC是菱形,得到∠DBA=∠BAC=45°,再由AB=AD,得到三角形ABD为等腰直角三角形,求出BD的长,由BD﹣DF求出BF的长即可.【解答】解:(1)由旋转的性质得:△ABC≌△ADE,且AB=AC,∴AE=AD,AC=AB,∠BAC=∠DAE,∴∠BAC+∠BAE=∠DAE+∠BAE,即∠CAE=∠DAB,在△AEC和△ADB中,,∴△AEC≌△ADB(SAS);(2)∵四边形ADFC是菱形,且∠BAC=45°,∴∠DBA=∠BAC=45°,由(1)得:AB=AD,∴∠DBA=∠BDA=45°,∴△ABD为直角边为2的等腰直角三角形,∴BD2=2AB2,即BD=2,∴AD=DF=FC=AC=AB=2,∴BF=BD﹣DF=2﹣2.26.如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,DF=,求⊙O的直径BC的长.【考点】切线的判定.【分析】(1)由CD=CB,∠BCD=2∠ABD,可证得∠BCE=∠ABD,继而求得∠ABC=90°,则可证得AB是⊙O的切线;(2)由∠A=60°,DF=,可求得AF、BF的长,易证得△ADF∽△ACB,然后由相似三角形的对应边成比例,求得答案.【解答】(1)证明:∵CD=CB,∴∠CBD=∠CDB,∵AB是⊙O的直径,∴∠CBE=90°,∴∠CBD+∠BCE=∠CDB+∠DCE,∴∠BCE=∠DCE,即∠BCD=2∠BCE,∵∠BCD=2∠ABD,∴∠ABD=∠BCE,∴∠CBD+∠ABD=∠CBD+∠BCE=90°,∴CB⊥AB,∵CB为直径,∴AB是⊙O的切线;(2)∵∠A=60°,DF=,∴在Rt△AFD中,AF===1,在Rt△BFD中,BF=DF•tan60°=×=3,∵DF⊥AB,CB⊥AB,∴DF∥BC,∴∠ADF=∠ACB,∵∠A=∠A,∴△ADF∽△ACB,∴=,∴=,∴CB=4.27.如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.【考点】二次函数综合题.【分析】(1)把A点坐标代入直线方程可求得a的值,再代入抛物线可求得b的值,可求得抛物线解析式;(2)联立抛物线和直线解析式可求得B点坐标,过A作AQ⊥x轴,交x轴于点Q,可知OC=AQ=4,可求得C点坐标,结合条件可知P点纵坐标,代入抛物线解析式可求得P点坐标,从而可求得PC的长;(3)根据矩形的性质可分别用m、n表示出C、P的坐标,根据DE=CP,可得到m、n的关系式.【解答】解:(1)∵A(a,8)是抛物线和直线的交点,∴A点在直线上,∴8=2a+4,解得a=2,∴A点坐标为(2,8),又A点在抛物线上,∴8=22+2b,解得b=2,∴抛物线解析式为y=x2+2x;(2)联立抛物线和直线解析式可得,解得,,∴B点坐标为(﹣2,0),如图,过A作AQ⊥x轴,交x轴于点Q,则AQ=8,OQ=OB=2,即O为BQ的中点,当C为AB中点时,则OC为△ABQ的中位线,即C点在y轴上,∴OC=AQ=4,∴C点坐标为(0,4),又PC∥x轴,∴P点纵坐标为4,∵P点在抛物线线上,∴4=x2+2x,解得x=﹣1﹣或x=﹣1,∵P点在A、B之间的抛物线上,∴x=﹣1﹣不合题意,舍去,∴P点坐标为(﹣1,4),∴PC=﹣1﹣0=﹣1;(3)∵D(m,n),且四边形PCDE为矩形,∴C点横坐标为m,E点纵坐标为n,∵C、E都在直线y=2x+4上,∴C(m,2m+4),E(,n),∵PC∥x轴,∴P点纵坐标为2m+4,∵P点在抛物线上,∴2m+4=x2+2x,整理可得2m+5=(x+1)2,解得x=﹣1或x=﹣﹣1(舍去),∴P点坐标为(﹣1,2m+4),∴DE=﹣m,CP=﹣1﹣m,∵四边形PCDE为矩形,∴DE=CP,即﹣m=﹣1﹣m,整理可得n2﹣4n﹣8m﹣16=0,即m、n之间的关系式为n2﹣4n﹣8m﹣16=0.2016年7月7日。

2016年贵州省毕节市中考数学试卷(含答案与解析)

2016年贵州省毕节市中考数学试卷(含答案与解析)

数学试卷第2页(共14页)绝密★启用前贵州省毕节市2016年初中毕业生学业(升学)统一考试数学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题共45分)一、选择题(本大题共15小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.38的算术平方根是()A.2B.2±C.2D.2±2.2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有000人,将89000用科学计数法表示为()A.38910⨯B.48.910⨯C.38.910⨯D.50.8910⨯3.下列运算正确的是 ()A.2()22a b a b-+=-+B.235()a a=C.33144a a a+=D.235326a a a=4.图中是一个少数名族手鼓的轮廓图,其主视图是()A B C D5.为迎接“义务教育均衡发展”检查,毕节市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54.这组数据的众数是()A.52和54B.52C.53D.546.到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高线的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点7.估计61+的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间8.如图,直线a b∥,185235∠=∠=,,则3∠=( )A.85B.60C.50D.359.已知关于x,y的方程22146m n m nx y--+++=是二元一次方程,则,m n的值为 ( )A.1,1m n==-B.1,1m n=-=C.14,33m n==-D.14,33m n=-=10.如图,点A为反比例函数4yx=-图象上一点,过A作AB x⊥轴于点B,链接OA,则ABO△的面积为()A.4-B.4C.2-D.211.下列语句正确的是( )A.对角线互相垂直的的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形12.如图,点A,B,C在O上,36A∠=,28C∠=,则B∠= ( )A.100B.72C.64D.3613.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同.设现在平均每天植树x棵,则列出的方程为()A.40030030x x=-B.40030030x x=-C.40030030x x=+D.40030030x x=+毕业学校_____________姓名________________考生号_____________________________________________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷第1页(共14页)数学试卷 第3页(共14页) 数学试卷 第4页(共14页)14.一次函数(0)y ax c a =+≠与二次函数2(0)y ax bx c a =++≠在同一个坐标系中的图象可能是( )ABCD15.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH ,若:21BE EC =:,则线段CH 的长是 ( )A .3B .4C .5D .6第Ⅱ卷(非选择题 共105分)二、填空题(本大题共5小题,每小题5分,共25分.请把答案填写在题中的横线上)16.分解因式4348m -= .17.若2250,a ab b +-=则b aa b-的值为 .18.掷两枚质地均匀的骰子,其点数之和大于10的概率为 . 19.在ABC △中,D 为AB 边上一点,且BCD A ∠=∠,已知22BC =,3AB =,则BD = .20.如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为 .三、解答题(本大题共7小题,共80分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分8分)计算:1020162(π 3.14)|21|2sin 45(1)2-⎛⎫-+---+- ⎪ ⎪⎝⎭.22.(本小题满分8分)已知22(2)(69)(3)14x x x A x x +-+=-÷--. (1)化简A ;(2)若x 满足不等式组21,41,33x x x -<⎧⎪⎨-<⎪⎩且x 为整数时,求A 的值.23.(本小题满分10分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入.2014年该县投入教育经费6000万元,2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县将投入教育经费多少万元.24.(本小题满分12分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”.学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分.本次决赛,学生成绩为x (分),且50100x ≤<,将其按分数段分为五组,绘制出以组别 成绩x (分)频数(人数)频率一5060x ≤< 2 0.04 二 6070x ≤< 10 0.2 三 7080x ≤< 14b 四 8090x ≤< a0.32 五90100x ≤<80.16数学试卷 第5页(共14页)数学试卷 第6页(共14页)请根据表格提供的信息,解答以下问题: (1)本次决赛共有 名学生参加;(2)直接写出表格中a = ,b = ; (3)请补全下面相应的频数分布直方图;(4)决赛成绩的中位数在第 组;(5)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为 .25.(本小题满分12分)如图,已知ABC △中,AB AC =,把ABC △绕A 点沿顺时针方向旋转得到ADE △,连接BD ,CE 交于点F . (1)求证:AEC ADB △≌△;(2)若2AB =,45BAC ∠=,当四边形ADFC 是菱形时,求BF 的长.26.(本小题满分14分)如图,在ABC △中,D 为AC 上一点,且CD CB =,以BC 为直径作O ,交BD 于点E ,连接CE ,过点D 作DF AB ⊥于点F ,2BCD ABD ∠=∠.(1)求证:AB 是O 的切线;(2)若60A ∠=,3DF =,求O 的直径BC 的长.27.(本小题满分16分)如图,已知抛物线2y x bx =+与直线24y x =+交于(,8)A a ,B 两点,点P 是抛物线上A ,B 之间的一个动点,过点P 分别作x 轴、y 轴的平行线与直线AB 交于点C 和点E . (1)求抛物线的解析式;(2)若C 为AB 中点,求PC 的长;(3)如图,以PC ,PE 为边构造矩形PCDE ,设点D 的坐标为(,)m n .请求出m ,n 之间的关系式.贵州省毕节市2016年初中毕业生学业(升学)统一考试数学答案解析第Ⅰ卷一、选择题 1.【答案】C【解析】因为382=,所以,2的算术平方根为2. 【考点】三次方根,算术平方根. 2.【答案】B【解析】科学记数的表示形式为n a 10⨯形式,其中1|a |10≤<,n 为整数,489 0008.910⨯=. 【考点】本题考查科学记数法. 3.【答案】D毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共14页) 数学试卷 第8页(共14页)【解析】A 中,去括号应为2(a b)2a 2b -+=--,故错误;B 中,236(a )a =,故错误;对于C ,等号左边不是同类项,不能合并;只有D 正确. 【考点】整式的运算. 4.【答案】B【解析】主视图是由前面往后面看,手鼓看到的是B. 【考点】三视图. 5.【答案】A【解析】数据52和54都出现2次,其它只出现一次,所以,众数为52和54. 【考点】众数,数据处理. 6.【答案】D【解析】依题意,这个点到三角形每边的两个端点的距离相等,所以,它是三条边的垂直平分线的交点.【考点】线段垂直平分线. 7.【答案】B【解析】因为23<,所以,314<<,选B. 8.【答案】C【考点】根式,实数估算.【解析】两直线平行,同位角相等,三角形的外角等于与它不相邻的两个内角和,对顶角相等,所以,有3853550∠=-=.【考点】两直线平行的性质,对顶角相等,三角形的外角和定理. 9.【答案】A【解析】依题意,有2m n 21m n 11--=⎧⎨++=⎩,解得m 1,n 1==-【考点】二元一次方程的概念,解二元一次方程组. 10.【答案】D【解析】设点A 的坐标为(m,n),因为点A 在图象上,所以,有mn 4=-,ABO ∆的面积为1|mn |22=,选D.【考点】反比函数,三角形的面积公式. 11.【答案】C【解析】对角线互相垂直且平分的四边形是菱形,故A 错;两边及其夹角对应相等的两个三角形全等,故B 错;矩形的对角线相等是正确的,C 正确;平行四边是中心对称图形,D 错,故选C.【考点】特殊四边形的判定与性质,三角形全等的判定,轴对称图形的识别. 12.【答案】C【解析】设OB 与AC 交点为E ,因为A 36∠=,所以,O 72∠=,所以,AEB OEC 180722880∠∠--===,所以,B 180803664∠--==【考点】圆周角定理,三角形内角和定理. 13.【答案】A【解析】现在平均每天植树x 棵,则原计划植树(x -30)棵,根据植树时间相同,可以得到分式方程400300x x 30=-. 【考点】列方程解应用题,分式方程. 14.【答案】D【解析】当x 0=时,都有y c =,所以,一次函数与二次函数都过点(0,c),排除A ;对于B ,由直线知a 0<,由二次函数知a 0>,矛盾;对于C ,由直线知a 0>,由二次函数图象知a 0<,矛盾,只有D 符合. 【考点】一次函数与二次函数的图象. 15.【答案】B【解析】设CH x =,因为BEEC 21=,BC 9=,所以,EC 3=,由折叠知,EH DH 9x ==-, 在Rt ECH ∆中,由勾股定理,得222(9x)3x -=+,解得x 4=,故选B. 【考点】图形的折叠,勾股定理.第Ⅱ卷二、填空题16.【答案】23(m 4)(m 2)(m 2)++-【解析】4422223m 483(m 4)3(m 4)(m 4)3(m 4)(m 2)(m 2)-=-=+-=++-数学试卷 第9页(共14页) 数学试卷 第10页(共14页)【考点】因式分解. 17.【答案】5【解析】222222b a b a 5aba 5ab b 0b -a 5ab 5a b ab ab-+-=⇒=∴-===由【考点】分式的计算,整体思想. 18.【答案】112【解析】因为两次抛掷骰子总共有36种情况,而和大于10的只有(5,6),(6,5),(6,6)三种情况,所以概率为313612= 【考点】概率的计算. 19.【答案】3【解析】由BCD A ∠=∠,且BDC A ACD ACB ABC ~CBD ∠=∠+∠=∠⇒∆∆BD AB BD 3BC CB ==⇒= 【考点】三角形相似的判定及其性质. 20.【答案】12π- 【解析】由题意可知阴影部分面积为8个弓形的面积之和, 而2111111S S -S ()42222168∆π==π⨯-⨯⨯=-弓形扇 S 8S -12π∴==阴影扇【考点】弓形、扇形面积的计算,整体思想. 三、解答题21.【答案】11211=+--=原式 【考点】实数的计算. 22.【答案】(1)22222(x 2)(x 6x 9)A (x 3)1x 4x 4(x 3)-1(x 2)(x 6x 9)(x 2)(x 2)(x 3)-1(x 2)(x 3)1x 3+-+=-÷---=-⨯+-++-=-⨯+-=-(2)2x 1x x 4133-<⎧⎪⎨-<⎪⎩且x 为整数x 1x 0x 1<⎧∴⇒=⎨>-⎩11A x 33∴==-【考点】分式的化简,一元一次不等式组.23.【答案】(1)设该县投入教育经费的年平均增长率为x ,则有:26000(1x)8640+=解得x 0.2=所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20% 所以2017年该县投入教育经费y 8640(10.2)10368=⨯+=(万元) 【考点】列方程解应用题,一元二次方程. 24.【答案】(1)50 (2)16 0.28 (3)数学试卷 第11页(共14页) 数学试卷 第12页(共14页)(4)三(5)0.48(或48%或1225或2450) 【解析】将80-90分数段的条形图不全,以16为高,因为分数不低于80分的人数a 824=+=,所以本次大赛的优秀率245048%=÷=.【考点】频数分布直方图,数据处理能力. 25.【答案】(1)ABC ADE AB AC ∆≅∆=且AE AD,AC AB ∴==BAC BAE DAE BAE CAE DAB ∠+∠=∠+∠⇒∠=∠AE AD CAE DAB AEC ADB SAS AC AB =⎧⎪∴∠=∠⇒∆≅∆⎨⎪=⎩由()(2)四边形ADFC 是菱形,且BAC 45∠=DBA BAC 45∴∠=∠=(两直线平行内错角相等)又由(1)有AB=ADDBA BDA 45∴∠=∠=(等边对等角)所以ABD ∆是直角边上为2的等腰直角三角形22BD 2AB BD ∴=⇒=又因为四边形ADFC 是菱形AD DF FC AC AB 2∴=====BF BD -DF 2∴==【考点】三角形全等的性质与判定,菱形的性质. 26.【答案】(1)CB CD =CBD CDB ∴∠=∠又CEB 2π∠=(直径所对的圆周角为直角)CBD BCE CDE DCE ∴∠+∠=∠+∠ BCE DCE BCD 2ABD ∴∠=∠∠=∠且ABD BCE ∴∠=∠CBD ABD CBD BCE 90∴∠+∠=∠+∠=CB AB ∴⊥垂足为B ,又CB 为直径∴AB 是圆O 的切线.(2)A 60∠=,DF =∴在Rt AFD ∆中DF 3AF 1tan 603===,在Rt BFD∆中BF DF tan 6033=•=∴在ADF ∆和ACF ∆中由DF AB DF //CB ADF ACB ADF ~ACB CB AB A A ⎫⊥⎫⇒⇒∠=∠⎬⎪⇒∆∆⊥⎬⎭⎪∠=∠⎭又AF DF 1CB AB CB 4∴=⇒=⇒=【考点】圆的切线的判定,三角函数,三角形相似的判定. 27.【答案】(1)A (A ,8)是抛物线与直线的交点 ∴ A (A ,8)在直线上82a 4a 2∴=+⇒=∴将A (2,8)代入2y x bx =+得:282b 2b 2=+⨯⇒=抛物线的解析式为:2y x 2x =+(2)由2y x 2xB(2,0)y 2x 4⎧=+⇒-⎨=+⎩∴由重点坐标公式可知:C (0,4)点P 在抛物线且其纵坐标与C 相同,1,4)∴PC101∴-=数学试卷 第13页(共14页) 数学试卷 第14页(共14页)(3)D (m,n)n 4C(m,2m 4),E(1,2m 4)2-∴++ ∴由DE CP =得:n 4m 1m 2--=-2n 4n 8m 160⇒---=【考点】二次函数的解析式,应用数学知识综合解决问题的能力.。

贵州毕节市 2016年中考数学真题试卷附解析

贵州毕节市 2016年中考数学真题试卷附解析
B.有两边及一角对应相等的两个三角形全等
C.矩形的对角线相等
D.平行四边形是轴对称图形
【考点】矩形的性质;全等三角形的判定;菱形的判定;轴对称图形.
【分析】由菱形的判定方法得出选项A错误;由全等三角形的判定方法得出选项B错误;由矩形的性质得出选项C正确;由平行四边形的性质得出选项D错误;即可得出结论.
【考点】估算无理数的大小.
【分析】利用”夹逼法“得出 的范围,继而也可得出 的范围.
【解答】解:∵2= < =3,
∴3< <4,
故选B.
8.(2016·贵州毕节)如图,直线a∥b,∠1=85°,∠2=35°,则∠3=( )
A.85°B.60°C.50°D.35°
【考点】平行线的性质.
【分析】先利用三角形的外角定理求出∠4的度数,再利用平行线的性质得∠3=∠4=50°.
A. B. C. D.
【考点】由实际问题抽象出分式方程.
【分析】设现在平均每天植树x棵,则原计划每天植树(x﹣30)棵,根据:现在植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.
【解答】解:设现在平均每天植树x棵,则原计划每天植树(x﹣30)棵,
根据题意,可列方程: = ,
【考点】线段垂直平分线的性质;角平分线的性质.
【分析】根据线段的垂直平分线上的点到线段的两个端点的距离相等解答即可.
【解答】解:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点,
故选:D.
7.(2016·贵州毕节)估计 的值在( )
A.2到3之间B.3到4之间C.4到5之间D.5到6之间
【解答】解:如图,连接PA、PB、OP;
则S半圆O= = ,S△ABP= AB•OP= ×1× = ,

贵州毕节2016中考试题数学卷(解析版)

贵州毕节2016中考试题数学卷(解析版)

一、选择题(本大题共15小题,每小题3分,共45分)1.38的算术平方根是( )A.2B.±2C.2D.2±【答案】C 【解析】试题分析:因为38=2,所以,2的算术平方根为2 考点: (1)、三次方根;(2)、算术平方根2.2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学计数法表示为( ) A.31089⨯ B.4109.8⨯ C.3109.8⨯D.51089.0⨯ 【答案】B考点:科学记数法3.下列运算正确的是( )A.b a b a 22)(2+-=+-B.532)(a a=C.33414a a a =+ D.532623a a a =⋅ 【答案】D 【解析】试题分析:A 中,去括号应为-2(a+b)=-2a-2b ,故错误;B 中,同底数幂的乘方,底数不变,指数相乘,原式=6a ,故错误;对于C ,等号左边不是同类项,不能合并;只有D 正确。

考点:整式的运算4.图中是一个少数名族手鼓的轮廓图,其主视图是( )【答案】B【解析】试题分析:主视图是由前面往后面看,手鼓看到的是B,A为俯视图.考点:三视图5.为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是()A.52和54B.52C.53D.54【答案】【解析】试题分析:众数是指一组数据中出现次数最多的数字,数据52和54都出现2次,其它只出现一次,所以,众数为52和54。

考点:众数的计算6.到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B. 三条角平分线的交点C.三条中线的交点D. 三条边的垂直平分线的交点【答案】D考点:线段垂直平分线6 的值在()7.估计1A.2到3之间B.3到4之间C.4到5之间D.5到6之间【答案】B【解析】试题分析:因为23,所以,31<4,选B考点:实数的估算8.如图,直线a//b,,, 352851=∠=∠则=∠3( )A. 85B. 60C. 50D. 35 【答案】C考点:(1)、两直线平行的性质;(2)、对顶角相等;(3)、三角形的外角和定理. 9.已知关于y x ,的方程64122=+++--n m n m y x 是二元一次方程,则n m ,的值为( ) A.1,1-==n m B.1,1=-=n m C.34,31-==n m D.34,31-==n m 【答案】A 【解析】试题分析:二元一次方程是指含有两个未知数,且未知数的次数都是一次的整式方程,依题意,有:22111m n m n --=⎧⎨++=⎩,解得:m=1,n=-1.考点:(1)、二元一次方程的概念;(2)、解二元一次方程组 10.如图,点A 为反比例函数xy 4-=图象上一点,过A 作AB ⊥x 轴于点B ,链接OA,则△ABO 的面积为( )A.-4B.4C.-2D.2【答案】D试题分析:设点A 的坐标为(m ,n ),因为点A 在图象上,所以,有mn =-4,△ABO 的面积为1||2mn =2 考点:(1)、反比例函数;(2)、三角形的面积公式 11.下列语句正确的是( )A.对角线互相垂直的的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形 【答案】C考点:(1)、特殊四边形的判定与性质;(2)、三角形全等的判定;(3)、轴对称图形的识别12.如图,点A,B,C 在☉O 上,, 28,36=∠=∠C A 则=∠B ( )A. 100B. 72C. 64D. 36 【答案】C 【解析】试题分析:设OB 与AC 交点为E ,因为∠A =36°,所以,∠O =72°,所以,∠AEB =∠OEC =180°-72°-28°=80°,所以,∠B =180°-80°-36°=64°. 考点:(1)、圆周角定理;(2)、三角形内角和定理13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x 棵,则列出的方程为( ) A.30300400-=x x B.x x 30030400=- C.x x 30030400=+ D.30300400+=x x 【答案】A试题分析:现在平均每天植树x 棵,则原计划植树(x -30)棵,根据植树时间相同,可以得到分式方程:30300400-=x x 考点:分式方程的应用 14.一次函数)0(≠+=a c ax y 与二次函数)0(2≠++=a c bx ax y 在同一个坐标系中的图象可能是( )【答案】D 【解析】试题分析:当x =0时,都有y =c ,所以,一次函数与二次函数都过点(0,c ),排除A ;对于B ,由直线知a <0,由二次函数知a >0,矛盾;对于C ,由直线知a >0,由二次函数图象知a <0,矛盾,只有D 符合。

2016年贵州省毕节地区中考数学试题及参考答案(word解析版)

2016年贵州省毕节地区中考数学试题及参考答案(word解析版)

2016年贵州省毕节地区中考数学试题及参考答案与解析一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确)1 )A .2B .±2CD .2.2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学记数法表示为( )A .89×103B .8.9×104C .8.9×103D .0.89×105 3.下列运算正确的是( )A .﹣2(a+b )=﹣2a+2bB .(a 2)3=a 5C .a 3+4a=314a D .3a 2•2a 3=6a 5 4.图中是一个少数名族手鼓的轮廓图,其主视图是( )A .B .C .D .5.为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是( ) A .52和54 B .52 C .53 D .546.到三角形三个顶点的距离都相等的点是这个三角形的( ) A .三条高的交点 B .三条角平分线的交点 C .三条中线的交点 D .三条边的垂直平分线的交点71的值在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间 8.如图,直线a ∥b ,∠1=85°,∠2=35°,则∠3=( )A .85°B .60°C .50°D .35°9.已知关于x,y的方程x2m﹣n﹣2+4y m+n+1=6是二元一次方程,则m,n的值为()A.m=1,n=﹣1 B.m=﹣1,n=1 C.14,33m n==-D.14,33m n=-=10.如图,点A为反比例函数4yx=-图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4 B.4 C.﹣2 D.211.下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形12.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=()A.100°B.72°C.64°D.36°13.为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.40030030x x=-B.40030030x x=-C.40030030x x=+D.40030030x x=+14.一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.15.如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是()A.3 B.4 C.5 D.6二、填空题(本大题共5小题,每小题5分,共25分) 16.分解因式3m 4﹣48= . 17.若a 2+5ab ﹣b 2=0,则b aa b-的值为 . 18.掷两枚质地均匀的骰子,其点数之和大于10的概率为 .19.在△ABC 中,D 为AB 边上一点,且∠BCD=∠A .已知BC=AB=3,则BD= .20.如图,分别以边长等于1的正方形的四边为直径作半圆,则图中阴影部分的面积为 .三、解答题(本大题共7小题,共80分,应写出必要的文字说明,证明过程或演算步骤)21.(8分)计算:()()1020163.14|1|2sin 4512π-⎛-+--︒+- ⎝⎭. 22.(8分)已知()()()22269314x x x A x x +-+=-÷--.(1)化简A ;(2)若x 满足不等式组214133x xx -⎧⎪⎨-⎪⎩<<,且x 为整数时,求A 的值.23.(10分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.24.(12分)为了提高学生书写汉字的能力,增强保护汉子的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为x (分),且50≤x <100,将其按分数段分为五组,绘制出以下不完整表格:请根据表格提供的信息,解答以下问题:(1)本次决赛共有名学生参加;(2)直接写出表中a=,b=;(3)请补全下面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为.25.(12分)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.26.(14分)如图,在△ABC中,D为AC上一点,且CD=CB,以BC为直径作⊙O,交BD于点E,连接CE,过D作DF⊥AB于点F,∠BCD=2∠ABD.(1)求证:AB是⊙O的切线;(2)若∠A=60°,O的直径BC的长.27.(16分)如图,已知抛物线y=x2+bx与直线y=2x+4交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作x轴、y轴的平行线与直线AB交于点C和点E.(1)求抛物线的解析式;(2)若C为AB中点,求PC的长;(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式.参考答案与解析一、选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确)1)A.2 B.±2 C D.【知识考点】立方根;算术平方根.=,22故选:C.=.22.2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学记数法表示为()A.89×103B.8.9×104C.8.9×103D.0.89×105【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.。

2016年贵州省毕节市初中毕业生学业(升学)统一考试试卷数学试卷

2016年贵州省毕节市初中毕业生学业(升学)统一考试试卷数学试卷

机密 启用前毕节市2016年初中毕业生学业(升学)统一考试试卷数 学注意事项:1.答题前,务必将自己的姓名,准考证号填写在答题卡规定的位置。

2.答题时,卷I 必须使用2B 铅笔,卷I I 必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置,字体工整,笔记清楚。

3.所有题目必须在答题卡上作答,在试卷上答题无效。

4.本试题共6题,满分150分,考试用时120分钟。

5.考试结束后,将试卷和答题卡一并交回。

卷 I一.选择题(本大题共15小题,每小题3分,共45分,在每道小题的四个选项中,只有一个选项正确,请把你认为正确的选项填涂在相应的答题卡上)1.38的算术平方根是( )A.2B.2±C.2 D.2±2. 2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学计数法表示为( )A.31089⨯B.4109.8⨯C.3109.8⨯D.51089.0⨯3.下列运算正确的是( )A.b a b a 22)(2+-=+-B.532)(a a =C.33414a a a =+ D.532623a a a =⋅4.图中是一个少数名族手鼓的轮廓图,其主视图是( )5.为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是( )A.52和54B.52C.53D.546.到三角形三个顶点的距离都相等的点是这个三角形的( )A.三条高的交点B. 三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点7.估计16+的值在( )A.2到3之间B.3到4之间C.4到5之间D.5到6之间8.如图,直线a//b,,,οο352851=∠=∠则=∠3( )A.ο85B.ο60C.ο50D.ο359.已知关于y x ,的方程64122=+++--n m n m y x 是二元一次方程,则n m ,的值为( )A.1,1-==n mB.1,1=-=n mC.34,31-==n mD.34,31-==n m。

毕节市中考数学试卷及答案(Word解析版)

毕节市中考数学试卷及答案(Word解析版)

贵州省毕节市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分.在每小题的四个选项中只有一个选项正确,请你把认为正确的选项天灾相应的答题卡上)1.(3分)(•毕节地区)计算﹣32的值是()A .9 B.﹣9 C.6 D.﹣6考点:有理数的乘方.分析:根据有理数的乘方的定义解答.解答:解:﹣32=﹣9.故选B.点评:本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.2.(3分)(•毕节地区)如图是某一几何体的三视图,则该几何体是()A .三棱柱B.长方体C.圆柱D.圆锥考点:由三视图判断几何体分析:三视图中有两个视图为矩形,那么这个几何体为柱体,根据第3个视图的形状可得几何体的具体形状.解答:解:∵三视图中有两个视图为矩形,∴这个几何体为柱体,∵另外一个视图的形状为圆,∴这个几何体为圆柱体,故选C.点评:考查由三视图判断几何体;用到的知识点为:三视图中有两个视图为矩形,那么这个几何体为柱体,根据第3个视图的形状可得几何体的形状.A .π﹣3.14=0 B.+=C.a•a=2a D.a3÷a=a2考点:同底数幂的除法;实数的运算;同底数幂的乘法.分析:根据是数的运算,可判断A,根据二次根式的加减,可判断B,根据同底数幂的乘法,可判断C,根据同底数幂的除法,可判断D.解答:解;A、π≠3.14,故A错误;B、被开方数不能相加,故B错误;C、底数不变指数相加,故C错误;D、底数不变指数相减,故D正确;故选:D.点评:本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.A .2x2﹣2=2(x+1)(x﹣1)B.x2+2x﹣1=(x﹣1)2C.x2+1=(x+1)2D.x2﹣x+2=x(x﹣1)+2考点:提公因式法与公式法的综合运用分析:A直接提出公因式a,再利用平方差公式进行分解即可;B和C不能运用完全平方公式进行分解;D是和的形式,不属于因式分解.解答:解:A、2x2﹣2=2(x2﹣1)=2(x+1)(x﹣1),故此选项正确;B、x2﹣2x+1=(x﹣1)2,故此选项错误;C、x2+1,不能运用完全平方公式进行分解,故此选项错误;D、x2﹣x+2=x(x﹣1)+2,还是和的形式,不属于因式分解,故此选项错误;故选:A.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.A.方差越大,说明数据就越稳定B.在不等式两边同乘或同除以一个不为0的数时,不等号的方向不变C.不在同一直线上的三点确定一个圆D.两边及其一边的对角对应相等的两个三角形全等考点:方差;不等式的性质;全等三角形的判定;确定圆的条件分析:利用方差的意义、不等号的性质、全等三角形的判定及确定圆的条件对每个选项逐一判断后即可确定正确的选项.解答:解:A、方差越大,越不稳定,故选项错误;B、在不等式的两边同时乘以或除以一个负数,不等号方向改变,故选项错误;C、正确;D、两边及其夹角对应相等的两个三角形全等,故选项错误.故选C.点评:本题考查了方差的意义、不等号的性质、全等三角形的判定及确定圆的条件,属于基本定理的应用,较为简单.6.(3分)(•毕节地区)如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A .6 B.5 C.4 D.3考点:垂径定理;勾股定理分析:过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.解答:解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.点评:本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.7.(3分)(•毕节地区)我市5月的某一周每天的最高气温(单位:℃)统计如下:A .23,24 B.24,22 C.24,24 D.22,24考点:众数;中位数分析:根据众数的定义即众数是一组数据中出现次数最多的数和中位数的定义即中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数,即可得出答案.解答:解:24出现了2次,出现的次数最多,则众数是24;把这组数据从小到大排列19,20,22,24,24,26,27,最中间的数是24,则中位数是24;故选C.点评:此题考查了众数和中位数,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.8.(3分)(•毕节地区)如图,菱形ABCD中,对角线AC、BC相交于点O,H为AD 边中点,菱形ABCD的周长为28,则OH的长等于()A .3.5 B.4 C.7 D.14考点:菱形的性质;直角三角形斜边上的中线;三角形中位线定理分析:根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.解答:解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选A.点评:本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.9.(3分)(•毕节地区)如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A .13 B.14 C.15 D.16考点:多边形内角与外角分析:根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.解答:解:设新多边形是n边形,由多边形内角和公式得(n﹣2)180°=2340°,解得n=15,原多边形是15﹣1=14,故选:B.点评:本题考查了多边形内角与外角,多边形的内角和公式是解题关键.10.(3分)(•毕节地区)若分式的值为零,则x的值为()A .0 B.1 C.﹣1 D.±1考点:分式的值为零的条件.专题:计算题.分析:分式的值是0的条件是:分子为0,分母不为0,由此条件解出x.解答:解:由x2﹣1=0,得x=±1.当x=1时,x﹣1=0,故x=1不合题意;当x=﹣1时,x﹣1=﹣2≠0,所以x=﹣1时分式的值为0.故选C.点评:分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.11.(3分)(•毕节地区)抛物线y=2x2,y=﹣2x2,共有的性质是()A .开口向下B.对称轴是y轴C .都有最低点D.y随x的增大而减小考点:二次函数的性质分析:根据二次函数的性质解题.解答:解:(1)y=2x2开口向上,对称轴为y轴,有最低点,顶点为原点;(2)y=﹣2x2开口向下,对称轴为y轴,有最高点,顶点为原点;(3)y=x2开口向上,对称轴为y轴,有最低点,顶点为原点.故选B.点评:考查二次函数顶点式y=a(x﹣h)2+k的性质.二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.12.(3分)(•毕节地区)如图,△ABC中,AE交BC于点D,∠C=∠E,AD:DE=3:5,AE=8,BD=4,则DC的长等于()A .B.C.D.考点:相似三角形的判定与性质分析:根据已知条件得出△ADC∽△BDE,然后依据对应边成比例即可求得.解答:解:∵∠C=∠E,∠ADC=∠BDE,△ADC∽△BDE,∴=,又∵AD:DE=3:5,AE=8,∴AD=3,DE=5,∵BD=4,∴=,∴DC=,故应选A.点评:本题考查了相似三角形的判定和性质:对应角相等的三角形是相似三角形,相似三角形对应边成比例.13.(3分)(•毕节地区)若﹣2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A .2 B.0 C.﹣1 D.1考点:合并同类项分析:根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,根据乘方,可得答案.解答:解:若﹣2a m b4与5a n+2b2m+n可以合并成一项,,解得,m n=20=1,故选:D.点评:本题考查了合并同类项,同类项是字母相同且相同字母的指数也相同是解题关键.14.(3分)(•毕节地区)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为()A .x≥B.x≤3 C.x≤D.x≥3考点:一次函数与一元一次不等式分析:将点A(m,3)代入y=2x得到A的坐标,再根据图形得到不等式的解集.解答:解:将点A(m,3)代入y=2x得,2m=3,解得,m=,∴点A的坐标为(,3),∴由图可知,不等式2x≥ax+4的解集为x≥.故选A.点评:本题考查了一次函数与一元一次不等式,要注意数形结合,直接从图中得到结论.15.(3分)(•毕节地区)如图是以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.已知cos∠ACD=,BC=4,则AC的长为()A .1 B.C.3 D.考点:圆周角定理;解直角三角形分析:由以△ABC的边AB为直径的半圆O,点C恰好在半圆上,过C作CD⊥AB交AB于D.易得∠ACD=∠B,又由cos∠ACD=,BC=4,即可求得答案.解答:解:∵AB为直径,∴∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠BCD+∠B=90°,∴∠B=∠ACD,∵cos∠ACD=,∴cos∠B=,∴tan∠B=,∵BC=4,∴tan∠B===,∴AC=.故选D.点评:此题考查了圆周角定理以及三角函数的性质.此题难度适中,注意掌握数形结合思想的应用.二、填空题(本大题共5小题,每小题5分,共25分)16.(5分)(•毕节地区)1纳米=10﹣9米,将0.00305纳米用科学记数法表示为 3.05×10﹣12米.考点:科学记数法—表示较小的数分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.00305纳米=3.05×10﹣3×10﹣9=3.05×10﹣12米,故答案为:3.05×10﹣12.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.(5分)(•毕节地区)不等式组的解集为﹣4≤x≤1.考点:解一元一次不等式组分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x≤1,由②得,x≥﹣4,故此不等式组的解集为:﹣4≤x≤1.故答案为:﹣4≤x≤1.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(5分)(•毕节地区)观察下列一组数:,,,,,…,它们是按一定规律排列的,那么这一组数的第n个数是.考点:规律型:数字的变化类专题:规律型.分析:观察已知一组数发现:分子为从1开始的连线奇数,分母为从2开始的连线正整数的平方,写出第n个数即可.解答:解:根据题意得:这一组数的第n个数是.故答案为:.点评:此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.19.(5分)(•毕节地区)将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),则这个平行四边形的最小内角为 30度.考点:矩形的性质;含30度角的直角三角形;平行四边形的性质.分析:根据矩形以及平行四边形的面积求法得出当AE=AB,则符合要求,进而得出答案.解答:解:过点A作AE⊥BC于点E,∵将四根木条钉成的长方形木框变形为平行四边形ABCD的形状,并使其面积为长方形面积的一半(木条宽度忽略不计),∴当AE=AB,则符合要求,此时∠B=30°,即这个平行四边形的最小内角为:30度.故答案为:30.点评:此题主要考查了矩形的性质和平行四边形面积求法等知识,得出AE= AB是解题关键.20.(5分)(•毕节地区)如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为.考点:翻折变换(折叠问题)分析:利用勾股定理求出BC=4,设BE=x,则CE=4﹣x,在Rt△B'EC中,利用勾股定理解出x的值即可.解答:解:BC==4,由折叠的性质得:BE=BE′,AB=AB′,设BE=x,则B′E=x,CE=4﹣x,B′C=AC﹣AB′=AC﹣AB=2,在Rt△B′EC中,B′E2+B′C2=EC2,即x2+22=(4﹣x)2,解得:x=.故答案为:.点评:本题考查了翻折变换的知识,解答本题的关键是掌握翻折变换的性质及勾股定理的表达式.三、解答及证明(本大题共7小题,共80分)21.(8分)(•毕节地区)计算:(﹣)﹣2﹣|﹣﹣2|+(﹣1.414)0﹣3tan30°﹣.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值专题:计算题.分析:原式第一项利用负指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用零指数幂法则计算,第四项利用特殊角的三角函数值计算,最后一项利用平方根定义化简,计算即可得到结果.解答:解:原式=4﹣(2﹣)+1﹣3×﹣2=4﹣2++1﹣﹣2=1.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(8分)(•毕节地区)先化简,再求值:(﹣)÷,其中a2+a﹣2=0.考点:分式的化简求值;解一元二次方程-因式分解法分析:先把原分式进行化简,再求a2+a﹣2=0的解,代入求值即可.解答:解:解a2+a﹣2=0得a1=1,a2=﹣2,∵a﹣1≠0,∴a≠1,∴a=﹣2,∴原式=÷=•=,∴原式===﹣.点评:本题考查了分式的化简求值以及因式分解法求一元二次方程的解,是重点内容要熟练掌握.23.(10分)(•毕节地区)在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.考点:作图-旋转变换专题:作图题.分析:(1)根据网格结构找出点B、C的对应点B1、C1的位置,然后与点A顺次连接即可;(2)以点B向右3个单位,向下5个单位为坐标原点建立平面直角坐标系,然后写出点A、C的坐标即可;(3)根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可.解答:解:(1)△AB1C1如图所示;(2)如图所示,A(0,1),C(﹣3,1);(3)△A2B2C2如图所示,B2(3,﹣5),C2(3,﹣1).点评:本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.(12分)(•毕节地区)我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修易门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.考点:频数(率)分布直方图;扇形统计图;列表法与树状图法.分析:(1)根据C类有12人,占24%,据此即可求得总人数,然后利用总人数乘以对应的比例即可求得E类的人数;(2)利用列举法即可求解.解答:解:(1)该班总人数是:12÷24%=50(人),则E类人数是:50×10%=5(人),A类人数为:50﹣(7+12+9+5)=17(人).补全频数分布直方图如下:;(2)画树状图如下:,或列表如下:共有12种等可能的情况,恰好1人选修篮球,1人选修足球的有4种,则概率是:=.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25.(12分)(•毕节地区)某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产第x档次的产品一天的总利润为y元(其中x为正整数,且1≤x≤10),求出y关于x的函数关系式;(2)若生产第x档次的产品一天的总利润为1120元,求该产品的质量档次.考点:二次函数的应用;一元二次方程的应用分析:(1)每件的利润为6+2(x﹣1),生产件数为95﹣5(x﹣1),则y=[6+2(x﹣1)][95﹣5(x﹣1)];(2)由题意可令y=1120,求出x的实际值即可.解答:解:(1)∵第一档次的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润加2元,但一天生产量减少5件.∴第x档次,提高的档次是x﹣1档.∴y=[6+2(x﹣1)][95﹣5(x﹣1)],即y=﹣10x2+180x+400(其中x是正整数,且1≤x≤10);(2)由题意可得:﹣10x2+180x+400=1120整理得:x2﹣18x+72=0解得:x1=6,x2=12(舍去).答:该产品的质量档次为第6档.点评:本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.26.(14分)(•毕节地区)如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连接CD.(1)求证:∠A=∠BCD;(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.考点:切线的判定分析:(1)根据圆周角定理可得∠ADC=90°,再根据直角三角形的性质可得∠A+∠DCA=90°,再由∠DCB+∠ACD=90°,可得∠DCB=∠A;(2)当MC=MD时,直线DM与⊙O相切,连接DO,根据等等边对等角可得∠1=∠2,∠4=∠3,再根据∠ACB=90°可得∠1+∠3=90°,进而证得直线DM与⊙O相切.解答:(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠DCA=90°,∵∠ACB=90°,∴∠DCB+∠ACD=90°,∴∠DCB=∠A;(2)当MC=MD(或点M是BC的中点)时,直线DM与⊙O相切;解:连接DO,∵DO=CO,∴∠1=∠2,∵DM=CM,∴∠4=∠3,∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切.点评:此题主要考查了切线的判定,以及圆周角定理,关键是掌握切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.27.(16分)(•毕节地区)如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).(1)求抛物线的解析式;(2)求直线Ac的解析式及B点坐标;(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E点,若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求P点的坐标,若不存在,请说明理由.考点:二次函数综合题分析:(1)利用顶点式将(﹣1,﹣1)代入求出函数解析式即可;(2)首先根据题意得出C点坐标,进而利用待定系数法求出直线AC的解析式,进而联立二次函数解析式,即可得出B点坐标;(3)首先求出直线EF的解析式,进而得出BP的解析式,进而将y=﹣2x﹣7和y=x+联立求出P点坐标即可.解答:解:(1)设抛物线解析式为:y=a(x+1)2﹣1,将(1,0)代入得:0=a(1+1)2﹣1,解得;a=,∴抛物线的解析式为:y=(x+1)2﹣1;(2)∵A(﹣1,﹣1),∴∠COA=45°,∵∠CAO=90°,∴△CAO是等腰直角三角形,∴AC=AO,∴C(﹣2,0),设直线AC的解析式为:y=kx+b,将A,C点代入得出:,解得:,∴直线AC的解析式为:y=﹣x﹣2,将y=(x+1)2﹣1和y=﹣x﹣2联立得:,解得:,,∴直线AC的解析式为:y=﹣x﹣2,B点坐标为:(﹣5,3);(3)过点B作BP⊥EF于点P,由题意可得出:E(﹣5,﹣2),设直线EF的解析式为:y=dx+c,则,解得:,∴直线EF的解析式为:y=x+,∵直线BP⊥EF,∴设直线BP的解析式为:y=﹣2x+e,将B(﹣5,3)代入得出:3=﹣2×(﹣5)+e,解得:e=﹣7,∴直线BP的解析式为:y=﹣2x﹣7,∴将y=﹣2x﹣7和y=x+联立得:,解得:,∴P(﹣3,﹣1),故存在P点使得BP⊥EF,此时P(﹣3,﹣1).点评:此题主要考查了待定系数法求一次函数解析式以及顶点式求二次函数解析式以及垂直的两函数系数关系等知识,求出C点坐标是解题关键.。

2016年贵州省毕节市中考试题 数学

2016年贵州省毕节市中考试题 数学

毕节市2016年初中毕业生学业(升学)统一考试试卷数 学卷 I一、选择题(本大题共15小题,每小题3分,共45分) 1.38的算术平方根是( )A.2B.2±C.2D.2± 答案:C考点:三次方根,算术平方根。

解析:因为38=2,所以,2的算术平方根为2。

2. 2016年5月下旬,中国大数据博览会在贵阳举行,参加此次大会的人数约有89000人,将89000用科学计数法表示为( )A.31089⨯ B.4109.8⨯ C.3109.8⨯ D.51089.0⨯ 答案:B考点:本题考查科学记数法。

解析:科学记数的表示形式为10n a ⨯形式,其中1||10a ≤<,n 为整数,89000=8.9×104。

故选B 。

3、下列运算正确的是( )A.b a b a 22)(2+-=+-B.532)(a a =C.33414a a a =+ D.532623a a a =⋅ 答案:D考点:整式的运算。

解析:A 中,去括号应为-2(a+b)=-2a-2b ,故错误;B 中,236()a a =,故错误; 对于C ,等号左边不是同类项,不能合并;只有D 正确。

4、图中是一个少数名族手鼓的轮廓图,其主视图是( )答案:B考点:三视图。

解析:主视图是由前面往后面看,手鼓看到的是B 。

5、为迎接“义务教育均衡发展”检查,我市抽查了某校七年级8个班的班额人数,抽查数据统计如下:52,49,56,54,52,51,55,54,这四组数据的众数是( ) A.52和54 B.52 C.53 D.54 答案:A考点:众数,数据处理。

解析:数据52和54都出现2次,其它只出现一次,所以,众数为52和54。

6、到三角形三个顶点的距离都相等的点是这个三角形的( )A.三条高的交点B. 三条角平分线的交点C.三条中线的交点D. 三条边的垂直平分线的交点答案:D考点:线段垂直平分线。

解析:依题意,知这个点到三角形每边的两个端点的距离相等,所以,它是三条边的垂直平分线的交点。

2016年贵州省毕节市中考数学试卷

2016年贵州省毕节市中考数学试卷

二、填空题(本大题共 5 小题,每小题 5 分,共 25 分.请把答案填写在题中的横线上) . . .
b a 17.若 a 5 ab b 0, 则 的值为 a b
入教育经费多少万元.
18.掷两枚质地均匀的骰子,其点数之和大于 10 的概率为
19. 在 △ABC 中 , D 为 AB 边 上 一 点 , 且 BCD A , 已 知
A.
400 300 x 30 x 400 300 D. x x 30
B. 数学试卷 第 2 页(共 6 页)
14.一次函数 y ax c (a 0) 与二次函数 y ax 2 bx c ( a 0) 在同一个坐标系中的 图象可能是 ( )
三、解答题(本大题共 7 小题,共 80 分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分 8 分)

)
本试卷满分 150 分,考试时间 120 分钟.
B. 60

姓名________________ 考生号________________ ________________ _____________
第Ⅰ卷(选择题 共 45 分)
一、选择题(本大题共 15 小题,每小题 3 分,共 45 分.在每小题给出的四个选项中,只有 一项是符合题目要求的) 1. 3 8 的算术平方根是 ( )
毕业学校_____________
B
A B C D ( ) A. 100 C. 64

( B. 72

)
5.为迎接“义务教育均衡发展”检查,毕节市抽查了某校七年级 8 个班的班额人数,抽查 数据统计如下:52,49,56,54,52,51,55,54.这组数据的众数是 A.52 和 54 A.三条高线的交点 B.三条角平分线的交点 C.三条中线的交点 D.三条边的垂直平分线的交点 数学试卷 第 1 页(共 6 页) B.52 C.53 D.54 ( ) 6.到三角形三个顶点的距离都相等的点是这个三角形的
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档