2010年湖南各中考数学试题8套打包湖南益阳
2010年湖南省益阳市中考数学试题及答案

益阳市2010年普通初中毕业学业考试试卷数 学注意事项:1. 本学科试卷分试题卷和答题卡两部分;2. 请将姓名、准考证号等相关信息按要求填写在答题卡上;3. 请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效;4. 本学科为闭卷考试,考试时量为90分钟,卷面满分为120分;5. 考试结束后,请将试题卷和答题卡一并交回。
试 题 卷一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.数轴上的点A 到原点的距离是6,则点A 表示的数为A. 6或6-B. 6C. 6-D. 3或3-2.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的中位数和极差分别是 A .4,7B .7,5C .5,7D .3,73.下列计算正确的是A.030= B.33-=-- C.331-=- D.39±=4.小军将一个直角三角板(如图1)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是.C .5.如图2,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度y 之间的关系用图象描述大致是A. B . C . D .6.一元二次方程)0(02≠=++a cbx ax 有两个不相等...的实数根,则acb 42-满足的条件是A.ac b42-=0 B.ac b 42->01图2图ABCDC.ac b 42-<0 D.ac b 42-≥07. 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是A.203525-=x x B.x x 352025=- C.203525+=x x D.xx 352025=+ 8.如图3,已知△ABC ,求作一点P ,使P 到∠A 的两边的距离相等,且PA =PB .下列 确定P 点的方法正确的是A.P 为∠A 、∠B 两角平分线的交点B.P 为∠A 的角平分线与AB 的垂直平分线的交点 C.P 为AC 、AB 两边上的高的交点 D.P 为AC 、AB 两边的垂直平分线的交点二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡...中对应题号后的横线上. 9.若622=-n m ,且3=-n m ,则=+n m .10. 有三张大小、形状完全相同的卡片,卡片上分别写有数字1、2、3,从这三张卡片中随机同时抽取两张,用抽出的卡片上的数字组成两位数,这个两位数是偶数的概率是 .11.如图4,在△ABC 中,AB =AC =8,AD 是底边上的高,E 为AC 中点,则DE = .12.如图5,分别以A 、B 为圆心,线段AB 的长为半径的两个圆相交于C 、D 两点,则∠CAD 的度数为 . 13.如图6,反比例函数xky =的图象位于第一、三象限,其中第一象限内的图象经过点A (1,2),请在第三象限内的图象上找一个你喜欢的点P ,你选择的P 点坐标为 .三、解答题:本大题共3小题,每小题8分,共24分. 14.解不等式1315>--x x ,并将解集在数轴上表示出来.y1o x2A4图5图6图AB3图15.已知31=-x ,求代数式4)1(4)1(2++-+x x 的值.16.如图7,在菱形ABCD 中,∠A =60°,AB =4,O 为对角线BD 的中点,过O 点作OE ⊥AB ,垂足为E .(1) 求∠ABD 的度数; (2)求线段BE 的长.四、解答题:本大题共2小题,每小题10分,共20分.17.南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2009年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图: 请根据以上信息解答下列问题 ⑴ 种植油菜每亩的种子成本是多少元? ⑵农民冬种油菜每亩获利多少元?⑶2009年南县全县农民冬种油菜的总获利多少元?(结果用科学记数法表示)18.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,益阳地面温度为20℃,设高出地面x 千米处的温度为y ℃.(1)写出y 与x 之间的函数关系式;(2)已知益阳碧云峰高出地面约500米,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34℃,求飞机离地面的高度为多少千米?五、解答题:本题满分12分.19. 我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等..... 一条直线l 与方形环的边线有四个交点M 、'M 、'N 、N .小明在探究线段'MM 与N N ' 的数量关系时,从点'M 、'N 向对边作垂线段E M '、F N ',利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题: ⑴当直线l 与方形环的对边相交时(如图18-),直线l 分别交AD 、D A ''、C B ''、BC 于M 、'M 、'N 、N ,小明发现'MM 与N N '相等,请你帮他说明理由; ⑵当直线l 与方形环的邻边相交时(如图28-),l 分别交AD 、D A ''、C D ''、DC 于M 、'M 、'N 、N ,l 与DC 的夹角为α,你认为'MM 与N N '还相等吗?若 相等,说明理由;若不相等,求出NN MM ''的值(用含α的三角函数表示).油菜每亩生产成本统计图 7图六、解答题:本题满分12分.20.如图9,在平面直角坐标系中,已知A 、B 、C 三点的坐标分别为A (-2,0),B (6,0),C (0,3).(1)求经过A 、B 、C 三点的抛物线的解析式;(2)过C点作CD 平行于x 轴交抛物线于点D ,写出D 点的坐标,并求AD 、BC 的交点E 的坐标; (3)若抛物线的顶点为P,连结PC 、PD ,判断四边形CEDP 的形状,并说明理由.B P A CD E B o y 1-119图18-图28-图益阳市2010年普通初中毕业学业考试试卷数学参考答案及评分标准一.选择题:本大题共8小题,每小题4分,共32分.二.填空题:本大题共5小题,每小题4分,共20分. 9.2 10.3111.4 12. 120 13.答案不唯一,x 、y 满足2=xy 且0,0<<y x 即可 三.解答题:本大题共3小题,每小题8分,共24分.14.解:3315>--x x ……………………………2分 42>x ……………………………4分2>x ……………………………6分……………………………8分15.解法一:原式=2)21(-+x ……………………………2分 =2)1(-x ……………………………4分 当31=-x 时原式= 2)3( ……………………………6分 =3 ……………………………8分 解法二:由31=-x 得13+=x ……………………………1分化简原式=444122+--++x x x ……………………………3分=122+-x x ……………………………4分 =1)13(2)13(2++-+ …………………………5分=12321323+--++ …………………………7分 =3 ……………………………8分16.解:⑴ 在菱形ABCD 中,AD AB =,︒=∠60A∴ABD ∆为等边三角形∴︒=∠60ABD ……………………………4分⑵由(1)可知4==AB BD又∵O 为BD 的中点∴2=OB ……………………………6分 又∵AB OE ⊥,及︒=∠60ABD ∴︒=∠30BOE∴1=BE ……………………………8分四、解答题:本大题共2小题,每小题10分,共20分.17.解:⑴ %10%45%35%101=--- ……………………………1分 11%10110=⨯(元) ……………………………3分 ⑵ 2801103130=-⨯(元) ……………………………6分 ⑶ 1400000500000280=⨯ ……………………………8分 =8104.1⨯(元) ………………………10分 答:略.18.解:⑴ x y 620-= (0>x ) ……………………………4分 ⑵ 500米=5.0千米 …………………………5分 1750620=⋅⨯-=y (℃) ……………………………7分 ⑶ x 62034-=- ……………………………8分 9=x ……………………………10分答:略.五、解答题:本题满分12分. 19.⑴解: 在方形环中,∵AD BC F N AD E M ,',⊥⊥'∥BC∴NF N M EM FN N EM M F N E M ',90','∠='∠=∠='∠='︒∴△E MM '≌△F NN '∴N N M M '=' ……………………………5分⑵解法一:∵α='∠='∠︒='∠='∠M M E N FN M ME N NF ,90 ∴N NF '∆∽EM M '∆ ……………………………8分∴NFEM N N M M '='' ∵F N E M '='∴αtan ''='=NF F N N N MM (或ααcos sin )……………………………10分 ①当︒=45α时,tan α=1,则N N M M '=' ②当︒≠45α时,N N M M '≠' 则αtan =''NN M M (或ααcos sin ) ……………………………12分 解法二:在方形环中,︒=∠90D又∵CD F N AD E M ⊥⊥'', ∴E M '∥E M F N DC '=', ∴α=∠='∠NF N E M M ' 在F N N Rt '∆与E M M Rt '∆中, M M EM N N F N ''='=ααcos ,'sinN N M M E M M M N N F N ''=''⋅'=='cos sin tan ααα 即 αtan =''N N M M (或ααcos sin ) ……………………………10分 ①当︒=45α时,N N M M '=' ②当︒≠45α时,N N M M '≠' 则αtan =''N N M M (或ααcos sin ) ……………………………12分 六、解答题:本题满分12分.20.解:⑴ 由于抛物线经过点)3,0(C ,可设抛物线的解析式为)0(32≠++=a bx ax y ,则⎩⎨⎧=++=+-036360324b a b a ,解得⎪⎩⎪⎨⎧=-=141b a∴抛物线的解析式为3412++-=x x y ……………………………4分 ⑵ D 的坐标为)3,4(D ……………………………5分直线AD 的解析式为121+=x y 直线BC 的解析式为321+-=x y由⎪⎪⎩⎪⎪⎨⎧+-=+=321121x y x y求得交点E 的坐标为)2,2( ……………………………8分 ⑶ 连结PE 交CD 于F ,P 的坐标为)4,2(又∵E )2,2(,)3,4(),3,0(D C∴,1==EF PF 2==FD CF ,且PE CD ⊥∴四边形CEDP 是菱形 ……………………………12分。
湖南省益阳市中考数学试卷含答案(样卷)

湖南省益阳市中考数学试卷(样卷)一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)的相反数是()A. B.﹣C.D.2.(4分)下列各式化简后的结果为3的是()A.B. C. D.3.(4分)下列运算正确的是()A.2x+y=2xy B.x•2y2=2xy2C.2x÷x2=2x D.4x﹣5x=﹣14.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.5.(4分)下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形6.(4分)小为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为()A.67、68 B.67、67 C.68、68 D.68、677.(4分)关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,那么下列结论一定成立的是()A.b2﹣4ac>0 B.b2﹣4ac=0 C.b2﹣4ac<0 D.b2﹣4ac≤08.(4分)将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720° D.900°9.(4分)关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有两个重合的交点C.对称轴是直线x=1 D.当x>1时,y随x的增大而减小10.(4分)小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠PB′C=α(B′C 为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A .B .C .D .二、填空题:本题共8小题,每小题4分.11.(4分)将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第象限.12.(4分)甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为.13.(4分)如图,AB∥CD,CB平分∠ACD.若∠BCD=28°,则∠A的度数为.14.(4分)某学习小组为了探究函数y=x2﹣|x|的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m=.x (2)﹣1﹣0.500.51 1.52…1.5y…20.750﹣0.250﹣0.250m2…15.(4分)我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y=﹣的图象上有一些整点,请写出其中一个整点的坐标.16.(4分)如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为.(结果保留π)17.(4分)如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为.18.(4分)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是枚.三、解答题:本题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤19.(8分)计算:(﹣1)3+||﹣(﹣)0×(﹣).20.(8分)先化简,再求值:(﹣)÷,其中x=﹣.21.(8分)如图,在▱ABCD中,AE⊥BD于E,CF⊥BD于F,连接AF,CE.求证:AF=CE.22.(10分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15)30.15第二组(15≤x<30)6a第三组(30≤x<45)70.35第四组(45≤x<60)b0.20(1)频数分布表中a=,b=,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?23.(10分)某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?24.(10分)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.25.(12分)如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.26.(12分)如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.湖南省益阳市中考数学试卷(样卷)参考答案与试题解析一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)的相反数是()A. B.﹣C.D.【解答】解:∵﹣+=0,∴﹣的相反数是.故选:C.2.(4分)下列各式化简后的结果为3的是()A.B. C. D.【解答】解:A、不能化简;B、=2,此选项错误;C、=3,此选项正确;D、=6,此选项错误;故选:C.3.(4分)下列运算正确的是()A.2x+y=2xy B.x•2y2=2xy2C.2x÷x2=2x D.4x﹣5x=﹣1【解答】解:A、2x+y无法计算,故此选项错误;B、x•2y2=2xy2,正确;C、2x÷x2=,故此选项错误;D、4x﹣5x=﹣x,故此选项错误;故选:B.4.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【解答】解:,由①得,x>﹣3,由②得,x≤2,故不等式组的解集为:﹣3<x≤2,在数轴上表示为:.故选:A.5.(4分)下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形【解答】解:A、两组对边分别相等的四边形是平行四边形,正确,故本选项错误;B、四个内角都相等的四边形是矩形,正确,故本选项错误;C、四条边都相等的四边形是菱形,正确,故本选项错误;D、两条对角线垂直且平分的四边形是正方形,错误,应该是菱形,故本选项正确.故选:D.6.(4分)小为了了解本校运动员百米短跑所用步数的情况,对校运会中百米短跑决赛的8名男运动员的步数进行了统计,记录的数据如下:66、68、67、68、67、69、68、71,这组数据的众数和中位数分别为()A.67、68 B.67、67 C.68、68 D.68、67【解答】解:因为68出现了3次,出现次数最多,所以这组数据的众数是68.将这组数据从小到大排列得到:66,67,67,68,68,68,69,71,所以这组数据的中位数为68.故选:C.7.(4分)关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,那么下列结论一定成立的是()A.b2﹣4ac>0 B.b2﹣4ac=0 C.b2﹣4ac<0 D.b2﹣4ac≤0【解答】解:∵关于x的一元二次方程ax2+bx+c=0(a≠0)的两根为x1=1,x2=﹣1,∴b2﹣4ac>0,故选:A.8.(4分)将一矩形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是()A.360°B.540°C.720° D.900°【解答】解:①将矩形沿对角线剪开,得到两个三角形,两个多边形的内角和为:180°+180°=360°;②将矩形从一顶点剪向对边,得到一个三角形和一个四边形,两个多边形的内角和为:180°+360°=540°;③将矩形沿一组对边剪开,得到两个四边形,两个多边形的内角和为:360°+360°=720°,④将矩形沿一组邻边剪开,得到一个三角形和一个五边形,其内角和为:180°+540°=720°;故选:D.9.(4分)关于抛物线y=x2﹣2x+1,下列说法错误的是()A.开口向上B.与x轴有两个重合的交点C.对称轴是直线x=1 D.当x>1时,y随x的增大而减小【解答】解:画出抛物线y=x2﹣2x+1的图象,如图所示.A、∵a=1,∴抛物线开口向上,A正确;B、∵令x2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,∴该抛物线与x轴有两个重合的交点,B正确;C、∵﹣=﹣=1,∴该抛物线对称轴是直线x=1,C正确;D、∵抛物线开口向上,且抛物线的对称轴为x=1,∴当x>1时,y随x的增大而增大,D不正确.故选:D.10.(4分)小明利用测角仪和旗杆的拉绳测量学校旗杆的高度.如图,旗杆PA 的高度与拉绳PB的长度相等.小明将PB拉到PB′的位置,测得∠P B′C=α(B′C 为水平线),测角仪B′D的高度为1米,则旗杆PA的高度为()A.B.C.D.【解答】解:设PA=PB=PB′=x,在RT△PCB′中,sinα=,∴=sinα,∴x﹣1=xsinα,∴(1﹣sinα)x=1,∴x=.故选:A.二、填空题:本题共8小题,每小题4分.11.(4分)将正比例函数y=2x的图象向上平移3个单位,所得的直线不经过第四象限.【解答】解:将正比例函数y=2x的图象向上平移3个单位后得到的一次函数的解析式为:y=2x+3,∵k=2>0,b=3>0,∴该一次函数图象经过第一、二、三象限,即该一次函数图象不经过第四象限.故答案为:四.12.(4分)甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为.【解答】解:甲、乙、丙三个同学排成一排拍照有以下可能:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,全部6种情况,有4种甲没在中间,所以甲没排在中间的概率是=.故答案为.13.(4分)如图,AB∥CD,CB平分∠ACD.若∠BCD=28°,则∠A的度数为124°.【解答】解:∵AB∥CD,∴∠ABC=∠BCD=28°,∵CB平分∠ACD,∴∠ACB=∠BCD=28°,∴∠A=180°﹣∠ABC﹣∠ACB=124°,故答案为:124°.14.(4分)某学习小组为了探究函数y=x2﹣|x|的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m=0.75.x (2)﹣1﹣0.500.51 1.52…1.5y…20.750﹣0.250﹣0.250m2…【解答】解:(方法一)当x>0时,函数y=x2﹣|x|=x2﹣x,当x=1.5时,y=1.52﹣1.5=0.75,则m=0.75.(方法二)观察表格中的数据,可知:当x=﹣1和x=1时,y值相等,∴抛物线的对称轴为y轴,∴当x=1.5和x=﹣1.5时,y值相等,∴m=0.75.故答案为:0.75.15.(4分)我们把直角坐标系中横坐标与纵坐标都是整数的点称为整点.反比例函数y=﹣的图象上有一些整点,请写出其中一个整点的坐标(1,﹣3).【解答】解:任意取一个整数值如x=1,将x=1代入解析式得:y=﹣=﹣3,得到点坐标为(1,﹣3),则这个点坐标的横纵坐标都为整数,是符合要求的答案,本题可有多个答案.故答案为:(1,﹣3)(答案不唯一).16.(4分)如图是一个圆柱体的三视图,由图中数据计算此圆柱体的侧面积为24π.(结果保留π)【解答】解:由图可知,圆柱体的底面直径为4,高为6,所以,侧面积=4•π×6=24π.故答案为:24π.17.(4分)如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为115°.【解答】解:连接OC,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB,∴∠OCB=∠OBC=65°,∵四边形ABCD是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.18.(4分)小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是13枚.【解答】解:设第n个图形有a n个旗子,观察,发现规律:a1=1,a2=1+2=3,a3=3+1=4,a4=4+2=6,a5=6+1=7,…,a2n+1=3n+1,a2n+2=3(n+1)(n为自然数).当n=4时,a9=3×4+1=13.故答案为:13.三、解答题:本题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤19.(8分)计算:(﹣1)3+||﹣(﹣)0×(﹣).【解答】解:原式=﹣1+﹣1×(﹣)=﹣1++=.20.(8分)先化简,再求值:(﹣)÷,其中x=﹣.【解答】解:原式==.当时,原式=4.21.(8分)如图,在▱ABCD中,AE⊥BD于E,CF⊥BD于F,连接AF,CE.求证:AF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF.又∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,AE∥CF,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE.22.(10分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:分组频数频率第一组(0≤x<15)30.15第二组(15≤x<30)6a第三组(30≤x<45)70.35第四组(45≤x<60)b0.20(1)频数分布表中a=0.3,b=4,并将统计图补充完整;(2)如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?(3)已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?【解答】解:(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人);(3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况,∴所选两人正好都是甲班学生的概率是:=.23.(10分)某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.(1)该班男生和女生各有多少人?(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?【解答】解:(1)设该班男生有x人,女生有y人,依题意得:,解得:.∴该班男生有27人,女生有15人.(2)设招录的男生为m名,则招录的女生为(30﹣m)名,依题意得:50m+45(30﹣m)≥1460,即5m+1350≥1460,解得:m≥22,答:工厂在该班至少要招录22名男生.24.(10分)在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.【解答】解:如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14﹣x,由勾股定理得:AD2=AB2﹣BD2=152﹣x2,AD2=AC2﹣CD2=132﹣(14﹣x)2,故152﹣x2=132﹣(14﹣x)2,解之得:x=9.∴AD=12.=BC•AD=×14×12=84.∴S△ABC25.(12分)如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.【解答】解:(1)∵抛物线顶点为A(,1),设抛物线解析式为y=a(x﹣)2+1,将原点坐标(0,0)在抛物线上,∴0=a()2+1∴a=﹣.∴抛物线的表达式为:y=﹣x2+x.(2)令y=0,得0=﹣x2+x,∴x=0(舍),或x=2∴B点坐标为:(2,0),设直线OA的表达式为y=kx,∵A(,1)在直线OA上,∴k=1,∴k=,∴直线OA对应的一次函数的表达式为y=x.∵BD∥AO,设直线BD对应的一次函数的表达式为y=x+b,∵B(2,0)在直线BD上,∴0=×2+b,∴b=﹣2,∴直线BD的表达式为y=x﹣2.由得交点D的坐标为(﹣,﹣3),令x=0得,y=﹣2,∴C点的坐标为(0,﹣2),由勾股定理,得:OA=2=OC,AB=2=CD,OB=2=OD.在△OAB与△OCD中,,∴△OAB≌△OCD.(3)点C关于x轴的对称点C'的坐标为(0,2),∴C'D与x轴的交点即为点P,它使得△PCD的周长最小.过点D作DQ⊥y,垂足为Q,∴PO∥DQ.∴△C'PO∽△C'DQ.∴,∴,∴P O=,∴点P的坐标为(﹣,0).26.(12分)如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.【解答】解:(1)如图①,在△ABC中,∵∠ACB=90°,∠B=30°,AC=1,∴AB=2,又∵D是AB的中点,∴AD=1,,又∵EF是△ACD的中位线,∴,在△ACD中,AD=CD,∠A=60°,∴∠ADC=60°,在△FGD中,GF=DF•sin60°=,∴矩形EFGH的面积;(2)如图②,设矩形移动的距离为x,则,当矩形与△CBD重叠部分为三角形时,则,,∴.(舍去),当矩形与△CBD重叠部分为直角梯形时,则,重叠部分的面积S=,∴,即矩形移动的距离为时,矩形与△CBD重叠部分的面积是;(3)如图③,作H2Q⊥AB于Q,设DQ=m,则,又,.在Rt△H2QG1中,,解之得(负的舍去).∴.21 / 21。
DA湖南省益阳市中考真题

四、解答题(本题共2个小题,每小题8分,共16分)
20.解:设原计划每天挖土石方x万立方米,增调人员和设备后每天挖y万立方米1分
可列出方程组: 5分
解之得:
答:原计划每天挖土石方1.3万立方米,增调人员和设备后每天挖3.6万立方米8分
21.解:(1)根据题意可知:y=4+1.5(x-2),
∴y=1.5x+1(x≥2)4分
(2)依题意得:7.5≤1.5x+1<8.56分
∴ ≤x<58分
五、(本题10分)
22.Ⅰ.证明:∵DEFG为正方形,
∴GD=FE,∠GDB=∠FEC=90°2分
∵△ABC是等边三角形,∴∠B=∠C=60°3分
∴△BDG≌△CEF(AAS)5分
解法二:∵△ADH∽△ABE8分
∴
即:
∴ 9分
∴sinα= 10分
七、(本题12分)
24.解:(1)解法1:根据题意可得:A(-1,0),B(3,0);
则设抛物线的解析式为 (a≠0)
又点D(0,-3)在抛物线上,∴a(0+1)(0-3)=-3,解之得:a=1
∴y=x2-2x-33分
自变量范围:-1≤x≤34分
三、解答题(本题共3个小题,每个小题6分,满分18分)
17.解:原式=2+1-9+14分
=-56分
18.解:(1)∵DE∥BC,
∴∠EDB=∠DBC= 3分
(2)∵AB=BC,BD是∠ABC的平分线,∴D为AC的中点
∵DE∥BC,∴E为AB的中点,
∴DE= 6分
19.解:(1) 3分
(2)4阳市中考数学试卷
【试题】湖南省益阳市中考数学真题试题含答案

【关键字】试题益阳市普通初中毕业学业考试试卷数学注意事项:1.本学科试卷分试题卷和答题卡两部分;2.请将姓名、准考证号等相关信息按要求填写在答题卡上;3.请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效;4.本学科为闭卷考试,考试时量为90分钟,卷面满分为150分;5.考试结束后,请将试题卷和答题卡一并交回.试题卷一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列实数中,是无理数的为A.B.C.0 D.2.下列运算正确的是A.B.C.D.3.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75C.中位数是4,平均数是3.8 D.众数是2,平均数是3.8 4.一个几何体的三视图如图1所示,则这个几何体是A.三棱锥B.三棱柱C.圆柱D.长方体5.如图2,在矩形ABCD中,对角线AC、BD交于点O,以下说法错误的是A.B.C.D.6.下列等式成立的是A.B.C.D.7.沅江市近年来大力发展芦笋产业,某芦笋生产企业在两年内的销售额从20万元增加到80万元.设这两年的销售额的年平均增长率为x,根据题意可列方程为A.20(1+2x) =80 B.2×20(1+x) =80C.20(1+x2) =80 D.20(1+x)2 =808.若抛物线的顶点在第一象限,则m的取值范围为A.B.C.D.2、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡中对应题号后的横线上)9.计算:.图8图7 10.已知y 是x 的反比例函数,当x > 0时,y 随x 的增大而减小.请写出一个满足以上条件的函数表达式 .11.甲、乙、丙三位好朋友随机站成一排照合影,甲没有站在中间的概率为 .12.如图3,正六边形ABCDEF 内接于⊙O ,⊙O 的半径为1,则的长为 .13.图4是用长度相等的小棒按一定规律摆成的一组图案,第1个图案中有6根小棒,第2个图案中有11根小棒,…,则第n 个图案中有 根小棒.三、解答题(本大题共2小题,每小题8分,共16分)14.化简:.15.如图5,直线AB ∥CD ,BC 平分∠ABD ,,求的度数.四、解答题(本大题共3小题,每小题10分,共30分)16.如图6,直线l 上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l 上.(1)写出点P2的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l 上,并说明理由.17.2014年益阳市的地区生产总值(第一、二、三产业的增加值之和)已进入千亿元俱乐部,图7表示2014年益阳市第一、二、三产业增加值的部分情况,请根据图中提供的信息解答下列问题:(1)2014年益阳市的地区生产总值为多少亿元?(2)请将条形统计图中第二产业部分补充完整;(3)求扇形统计图中第二产业对应的扇形的圆心角度数.18.如图8,在□ABCD 中,对角线AC 与BD 相交于点O ,∠CAB =∠ACB ,过点B 作BE ⊥AB 交AC 于点E .(1)求证:AC ⊥BD ;(2)若AB =14,7cos 8CAB ∠=,求线段OE 的长. 五、解答题(本大题共2小题,每小题12分,共24分) 19.大学生小刘回乡创办小微企业,初期购得原材料若干吨,每天生产相同件数的某种产品,单件产品所耗费的原材料相同.当生产6天后剩余原材料36吨,当生产10天后剩余原材料30吨.若剩余原材料数量小于或等于3吨,则需补充原材料以保证正常生产.图9-2 图9-1 图9-3 图10-1 图10-2(1)求初期购得的原材料吨数与每天所耗费的原材料吨数;(2)若生产16天后,根据市场需求每天产量提高20%,则最多再生产多少天后必须补充原材料?20.已知点P 是线段AB 上与点A 不重合的一点,且AP <PB .AP 绕点A 逆时针旋转角α(090)α︒<≤︒得到AP 1,BP 绕点B 顺时针也旋转角α得到BP 2,连接PP 1、PP 2.(1)如图9-1,当90α=︒时,求12PPP ∠的度数;(2)如图9-2,当点P 2在AP 1的延长线上时,求证:21P PP △∽2P PA △;(3)如图9-3,过BP 的中点E 作l 1⊥BP ,过BP 2的中点F 作l 2⊥BP 2,l 1与l 2交于点Q ,连接PQ ,求证:P 1P ⊥PQ .六、解答题(本题满分15分)21.已知抛物线E 1:2y x =经过点A (1,m ),以原点为顶点的抛物线E 2经过点B (2,2),点A 、B 关于y 轴的对称点分别为点A B ''、.(1)求m 的值及抛物线E 2所表示的二次函数的表达式;(2)如图10-1,在第一象限内,抛物线E 1上是否存在点Q ,使得以点Q 、B 、B '为顶点的三角形为直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由;(3)如图10-2,P 为第一象限内的抛物线E 1上与点A 不重合的一点,连接OP 并延长与抛物线E 2相交于点P ',求PAA '∆与P BB ''∆的面积之比.益阳市 普通初中毕业学业考试数学参考答案及评分标准 题号 1 2 3 4 5 6 7 8 答案 A C C B D CD B 9.4;10.1y x =(不唯一);11.23;12.3π;13.51n +. 三、解答题(本大题共2小题,每小题8分,共16分). 14.解:原式=2221x x x x ++-- ····················· 6分=1x +. ··························· 8分15.解:∵AB ∥CD ,∴165ABC ∠=∠=︒,180ABD BDC ∠+∠=︒. ··········· 4分 ∵BC ABD ∠平分,∴2130ABD ABC ∠=∠=︒, ··················· 6分 ∴18050BDC ABD ∠=︒-∠=︒,∴250BDC ∠=∠=︒. ····················· 8分四、解答题(本大题共3小题,每小题10分,共30分)16.解:(1)P 2(3,3). ························ 3分(2)设直线l 所表示的一次函数的表达式为(0)y kx b k =+≠,∵点P 1(2,1),P 2(3,3)在直线l 上,∴2133k b k b +=⎧⎨+=⎩,,解得23k b =⎧⎨=-⎩,. ∴直线l 所表示的一次函数的表达式为23y x =-. ······· 7分(3)点P 3在直线l 上.由题意知点P 3的坐标为(6,9),∴2639⨯-=,∴点P 3在直线l 上.10分17.解:(1)237.519%1250÷=(亿元); ················· 3分(2)第二产业的增加值为1250237.5462.5550--=(亿元),画图如下:········ 7分(3)扇形统计图中第二产业部分的圆心角为550360158.41250⨯︒=︒. ··· 10分 18.解:(1)∵CAB ACB ∠=∠,∴AB CB =,∴□ABCD 是菱形.∴AC BD ⊥. ························ 3分(2)在Rt △AOB 中,7cos 8AO OAB AB ∠==,14AB =, ∴7491484AO =⨯=, 在Rt △ABE 中,7cos 8AB EAB AE ∠==,14AB =, ∴8167AE AB ==, ····················· 9分 ∴49151644OE AE AO =-=-=. ··············· 10分 五、解答题(本大题共2小题,每小题12分,共24分)19.解:(1)设初期购得原材料a 吨,每天所耗费的原材料为b 吨,根据题意得:6361030a b a b -=⎧⎨-=⎩,. ················· 3分 解得451.5a b =⎧⎨=⎩,. 答:初期购得原材料45吨,每天所耗费的原材料为1.5吨. ··· 6分(2)设再生产x 天后必须补充原材料,依题意得:4516 1.5 1.5(120%)3x -⨯-+≤, ·········· 9分 解得:10x ≥.答: 最多再生产10天后必须补充原材料. ··········· 12分20.解:(1)由旋转的性质得:AP = AP 1,BP = BP 2.∵90α=︒,∴12PAP PBP △和△均为等腰直角三角形,∴1245APP BPP ∠=∠=︒,∴121218090PPP APP BPP ∠=︒-∠-∠=︒. ············ 3分(2)由旋转的性质可知12APP BPP △和△均为顶角为α的等腰三角形,∴12902APP BPP α∠=∠=︒-, ∴1212180()1802(90)2PPP APP BPP αα∠=︒-∠+∠=︒-︒-=. ···· 5分 在21P PP △和2P PA △中,122PPP PAP α∠=∠=,又212PP P AP P ∠=∠,∴21P PP △∽2P PA △. ···················· 7分(3)如图,连接QB .∵l 1,l 2分别为PB ,P 2B 的中垂线,∴12EB BP =,212FB BP =. 又BP =BP 2,∴EB FB =.在Rt △QBE 和Rt △QBF 中,EB FB =,QB QB =,∴Rt △QBE ≌Rt △QBF ,∴2122QBE QBF PBP α∠=∠=∠=. ··············· 9分 由中垂线性质得:QP QB =,∴2QPB QBE ∠=∠=α.由(2)知1902APP α∠=︒-,∴11180180(90)9022PPQ APP QPB ∠=︒-∠-∠=︒-︒--=︒αα, 即 P 1P ⊥PQ . ························ 12分六、解答题(本题满分15分)21.解:(1)∵抛物线E 1经过点A (1,m ),∴m =12=1.∵抛物线E 2的顶点在原点,可设它对应的函数表达式为2y ax =(0a ≠),又点B (2,2)在抛物线E 2上,∴222a =⨯,解得:12a =, ∴抛物线E 2所对应的二次函数表达式为212y x =. ········ 3分 (2)假设在第一象限内 ,抛物线E 1上存在点Q ,使得△QB B '为直角三角形,由图象可知直角顶点只能为点B 或点Q .①当点B 为直角顶点时,过B 作BQ B B '⊥交抛物线E 1于Q ,则点Q 与B 的横坐标相等且为2,将x =2代入y =x 2得y =4 ,∴点Q 的坐标为(2,4). ·················· 5分 ②当点Q 为直角顶点时,则有222QB QB B B ''+=,过点Q 作QG BB '⊥于G ,设点Q 的坐标为(t ,t 2)( 0t >),则有()()()()222222222224t t t t ++-+-+-=, 20题解图整理得:4230t t -=,∵0t >, ∴230t -=,解得1t =2t =舍去),∴点Q 的坐标为3),综合①②,存在符合条件的点Q 坐标为(2,4)与3). ······ 9分(3)过点P 作PC ⊥x 轴,垂足为点C ,PC 交直线A A '于点E ,过点P '作P 'D ⊥x 轴,垂足为点D ,P 'D 交直线B B '于点F ,依题意可设P (c ,c 2)、P '(d ,212d ) (c >0,1c ≠), ∵tan tan POC P OD '∠=∠,∴ 2212d c c d=,∴d =2c . ·········· 12分 又A A '=2,B B '=4, ∴222211211122111422242222PAA P BB AA PE c c S S c BB P F d '∆''∆'⋅⨯⨯--====⨯-''⋅⨯⨯-. ······· 15分 21题解图1 21题解图2此文档是由网络收集并进行重新排版整理.word 可编辑版本!。
2010年湖南各中考数学试题8套打包湖南常德

2010年湖南常德市初中毕业学业考试数学试题卷一•填题(本大题8个小题,每小题3分,满分24分)1.2的倒数为 ________ .2. _______________________________________________ 函数y = J2x 一6中,自变量x 的取值范围是__________________________________________ .3. 如图1 ,已知直线AB// CD直线EF与直线AB CD分别交于点4. 分解因式:x2十6x + 9 = ___________ .5. 已知一组数据为:8, 9, 7,乙8, 7,则这组数据的众数为.6. 化简:屁一石= ____________ .7. 如图2,四边形ABCC中, AB// CD要使四边形ABCD为平行四边形,则可添加的条件为.(填一个即可)8. 如图3,一个数表有7行7列,设色表示第i行第j列上的数(其中i=1,2,3,...,j=1,2,3,....例如:第5行第3列上的数a53=7.则(1)a23 - a22 ' a52 - a53 =⑵此数表中的四个数a np,a nk,a mp,a mk,满足anp 一ank ' a mk 一a mp 匸12343212345432345654345676545678765678987678910987图3C图29. 四边形的内角和为(6 _____7 ___________________________ 62.58 10 元 C 。
0.258 10 元 D 。
25.8 10 元11.已知O O 的半径为5 cm , o Q 的半径为6 cm ,两圆的圆心距 OQ=11 cm,则两圆的位置关系为(12.方程x 2 -5x -6 =0的两根为( © ® O13.2%,提前两年实现了市委、市政府在“十一五规划”中 提出“到2010年全年GDP 过千亿元”的目标.如果按此增长速度,那么我市今年的GDP ^( )2 2A o 1050 X (1+13.2%)B 。
2010年初中毕业学业考试试卷参考答案

益阳市2010年普通初中毕业学业考试试卷
地理参考答案及评分标准
26.(6分)⑴1000E 23.50N ⑵甲乙
⑶2400千米⑷西南方⑸昼长
27.(6分)⑴合理就给分⑵B ⑶上升人为原因是:一方面燃烧煤、石油等,大量排放二氧化碳;(1分)另一方面,砍伐森林减少了森林对二氧化碳的吸收(1分)建议: ①改变能源结构,少用煤、石油,多用清洁能源;开发新能源;②植树造林,保护森林。
28.(7分)⑴摩尔曼斯克鄂毕河⑵北温带温带大陆性气候
⑶石油化工钢铁工业煤炭工业采矿业等(任意两个合理就可给分)
29.(7分)⑴①土耳其海峡②苏伊士运河③伊朗④尼罗河
⑵水资源气候干燥,河流稀少⑶白色人种
30.(6分)⑴人口大量增加(人口增长过多过快)实行计划生育
⑵耕地面积不断减少十分珍惜和合理利用每一寸土地,切实保护耕地
⑶人口问题人口增长过多过快,会对环境和资源造成过大的压力,从而
导致对资源和环境的破坏。
31.(6分)⑴草原荒漠(荒漠草原)海陆位置⑵④⑶D ⑷种植业
⑸D
32.(6分)⑴西南干旱玉树地震⑵海拔高(地势高),夏季不热;纬度较低,冬季不冷
⑶②丰富的热带雨林的动植物资源;③以傣族为主的多样性民族风情33.(6分)⑴①五强溪②韶山③雪峰山⑵B
⑶①亚热带季风气候,热量充足,降水丰沛,雨热同期;
②地形平坦,土壤肥沃;。
湖南省2010年中考数学模拟试题及答案

2010年湖南省中考数学模拟试题总分:120分 时量:120分钟一、选择题:(本题共7小题,每小题3分,共21分)将下列各题唯一正确的答案代号A 、B 、C 、D 填到题后的括号内.1.上升5cm,记作+5cm,下降6cm,记作( ) A.6cm B.-6cm C.+6cm D.负6cm2.在平面直角坐标系中,属于第二象限的点是 ( ) A.(2,3) B.(2,-3) C.(-2,3) D.(-2,-3)3.在Rt △ABC 中,∠C=90°,c=5,a=4,则cosA 的值是( ) A.35 B.45 C.34 D.434.关于x 的方程2x 2+mx-n=0的二根是-1和3,则2x 2+mx-n 因式分解的结果是( ) A.(x+1)(x-3) B.2(x+1)(x-3) C.(x-1)(x+3) D.2(x-1)(x+3) 5.⊙O 1和⊙O 2半径分别为4和5,O 1O 2=7,则⊙O 1和⊙O 2的位置关系是( ) A.外离 B.相交 C.外切 D.内含6.圆锥的母线长为3,底圆半径为1,则圆锥的侧面积为( ) A.3π B.4π C.π D.2π7.一天,小军和爸爸去登山,已知山脚到山顶的路程为200米,小军先走了一段路程,爸爸才开始出发,图中两条线段分别表示小军和爸爸离开山脚登山的路程s(米)与登山所用的时间t(分钟)的函数关系(从爸爸开始登山时计时).根据图象,下列说法错误..的是( ) A.爸爸开始登山时,小军已走了50米; B.爸爸走了5分钟,小军仍在爸爸的前面 C.小军比爸爸晚到山顶; D.10分钟后小军还在爸爸的前面二、填空题:(本题共7小题,每小题3分,共21分) 8.│-1│的结果是________. 9.方程x 2-2x-3=0的解是_________.10.函数y=3x -中,自变量x 的取值范围是_________.PO CBA11.圆心角为30°,半径为6的扇形的弧长为________.12.如图,PC 是⊙O 的切线,切点为C,PAB 为⊙O 的割线,交⊙O 于点A 、B,PC=2,•PA=1,则PB 的长为________.13.若a ∥b,b ∥c,证明a ∥c.用反证法证明的第一步是______________________. 14.设α和β是方程x 2-4x+5=0的二根,则α+β的值为________.三、解答题(本题共5小题,其中15、16题各8分,17、18、19题各10分,•20•题各12分,共58分.15.如图,在等腰梯形ABCD 中,已知∠B=44°,上底AD 长为4,梯形的高为2,•求梯形底边BC 的长(精确到0.1).DCBA16.已知关于x 的方程x 2+3kx+k 2-k+2=0,为判别这个方程根的情况,•一名同学的解答过程如下:“解:△=(3k)2-4×1×(k 2-k+2)=-k 2+4k-8 =(k-2)2+4.∵(k-2)2≥0,4>0,∴△=(k-2)2+4>0. ∴原方程有两个不相等的实数根.”请你判断其解答是否正确,若有错误,请你写出正确解答.17.某花木园,计划在园中栽96棵桂花树,开工后每天比原计划多栽2棵,•结果提前4天完成任务,问原计划每天栽多少棵桂花树.18.已知反比例函数y=kx的图象与一次函数y=kx+m的图象相交于点(2,1).(1)分别求出这两个函数的解析式;(2)试判断点P(-1,-5)是否在一次函数y=kx+m的图象上,并说明原因.19.如图4,平行四边形ABCD 中,以A 为圆心,AB 为半径的圆分别交AD 、BC 于F 、G,•延长BA 交圆于E.求证:EF=FGGFEDCB A20.当今,青少年视力水平的下降已引起全社会的广泛关注,•为了了解某初中毕业年级300名学生的视力情况,从中抽出了一部分学生的视力情况作为样本,•进行数据处理,可得到的频率分布表和频率分布直方图如下. 频率分布表:分组 频数 频率 3.95~4.25 2 0.04 4.25~6 0.12 ~4.85 23 4.85~5.15 5.15~5.45 1 0.02 合计1.00(1)填写频率分布表中部分数据;(2)在这个问题中,总体是_______;所抽取的样本的容量是_______.(3)若视力在4.85以上属正常,不需矫正,试估计毕业年级300名学生中约有多少名学生的视力不需要矫正.四、解答题(共20分)21.蛇的体温随外部环境温度的变化而变化.图5•表现了一条蛇在两昼夜之间体温变化情况.问题:(1)第一天,蛇体温的变化范围是什么?•它的体温从最低上升到最高需要多少时间? (2)第一天什么时间范围内蛇的体温是上升的?在什么时间范围内蛇的体温是下降的? (3)如果以后一天环境温度没有什么变化,请你画出这条蛇体温变化的大致图象.22.如图6,以△ACF 的边AC 为弦的圆交AF 、CF 于点B 、E,连结BC,且满足AC 2=CE ·CF.求证:△ABC 为等腰三角形.FECBA时间/小时23.已知二次函数的图象是经过点A(1,0),B(3,0),E(0,6)三点的一条抛物线.(1)求这条抛物线的解析式;(2)如图,设抛物线的顶点为C,对称轴交x轴于点D,在y轴正半轴上有一点P,•且以A、O、P为顶点的三角形与△ACD相似,求P点的坐标.2010年湖南省中考数学模拟试题答案:一、1.B 2.C 3.A 4.B 5.B 6.A 7.D二、8.1 9.x1=3,x2=-1 10.x≥3 11. 12.4 13.假设a与c不平行 14.4三、15.解:过A、D两点分别作AE⊥BC,DF⊥BC,垂足为E、F.∵梯形ABCD,∴AD∥BC,又∵AE⊥BC,DF⊥BC,∴AE∥DF,∴四边形AEFD是矩形.∴AD=EF,AE=DF=2.又∵等腰梯形ABCD,∴AB=CD,∠B=∠C,∴△ABE≌△DCF,∴BE=CF.∵在Rt△ABE中,cotB=BE AE,∴BE=AEcotB=2cot44°,∴BC=2BE+AD=4cot44°+4≈8.1. 答:梯形底边BC的长为8.1.16.解:解答过程不正确△=-k2+4k-8=-(k2-4k+8)=-[(k-2)2-4+8]=-(k-2)2-4∵(k-2)2≥0,∴-(k-2)2≤0∴-(k-2)2-4<0即△<0,所以方程没有实数根.17.解:设原计划每天栽树x棵根据题意,得96962x x-+=4整理,得x2+2x-48=0解得x1=6,x2=-8经检验x1=6,x2=-8都是原方程的根,但x2=-8不符合题意(舍去) 答:原计划每天栽树6棵.18.解:(1)∵y=kx经过(2,1),∴2=k.∵y=kx+m经过(2,1),∴1=2×2+m, ∴m=-3.∴反比例函数和一次函数的解析式分别是:y=2x和y=2x-3.(2)当x=-1时,y=2x-3=2×(-1)-3=-5.所以点P(-1,-5)在一次函数图像上.19.证明:连结AG.∵A为圆心,∴AB=AG.∴∠ABG=∠AGB.∵四边形ABCD为平行四边形.∴AD∥BC.∠AGB=∠DAG,∠EAD=∠ABG.∴∠DAG=∠EAD.∴EF FG=.20.解:频率分布表:(1)分组频数频率3.95~4.25 2 0.044.25~4.55 6 0.124.55~4.85 23 0.464.85~5.15 18 0.365.15~5.45 1 0.02合计50 1.00(2)总体某初中毕业年级300名学生的视力情况.样本容量:50.(3) 1950×300=114(名).答:300名学生中约有114名不需矫正.四、21.(1)变化范围是:35℃~40℃,12小时(2)4时~16时 16时~24时. (3)略22.证明:连结AE.∵AC2=CE·CF,∴AC CF CE AC=又∵∠ACE=∠FCA.∴△ACE∽△FCA.∴∠AEC=∠FAC. ∵AC BC=.∴AC=BC,∴△ABC为等腰三角形.23.解:(1)设抛物线解析式为:y=a(x-1)(x-3).∵过E(0,6),∴6=a×3∴a=2, ∴ y=2x2-8x+6(2)y=2x2-8x+6=2(x2-4x+3)-2=2(x-2)2-2,∴C(2,-2).对称轴直线x=2,D(2,0).△ACD为直角三角形,AD=1,CD=2,OA=1.当△AOP∽△ACD时, OA OPAD CD=,112OP=,∴OP=2.∵ P在y轴正半轴上,∴P(0,2).当△PAO∽△ACD时, OA OPCD AD=,122OP=,OP=12P在y轴正半轴上,∴P(0, 12 ).。
2010年湖南省各市州初中毕业学业考试数学试卷及学生答卷评析报告

2010年湖南省各市州初中毕业学业考试数学试卷及学生答卷评析报告为进一步推进新课程的落实与教学改革的深入,加强对基础教育质量的评价与监控,发挥初中毕业学业考试对初中数学教学的正确导向作用,提高我省各市(州)初中毕业学业考试数学试卷的命题质量,我们以《全日制义务教育数学课程标准(实验修订稿)》(以下简称《课程标准》)和《2010年湖南省初中毕业学业考试标准·数学》(以下简称《考试标准》)为依据,对2010年湖南省各市(州)报送的初中毕业学业考试数学试卷、试卷答案、学生试卷答题样本、试卷自评报告、试卷数据统计表以及阅卷基本信息表等材料进行了审阅、抽样统计、数据分析、信息整合,并进行简要评析如下。
一、基本情况评析工作所占有的资料(见图表一)为:2010年各市(州)报送的初中数学毕业学业考试数学试卷(纸质稿或电子稿)14份,参考答案与评分标准14份,分析报告14份,信息表13份,统计表13份,以及6个市(州)调集的学生纸质答卷(共610份)和8个市(州)的电子扫描答卷。
其中长沙、株洲、湘潭、衡阳、郴州、益阳、常德、娄底、怀化等市(州)资料报送齐全。
评析工作的基本结论是:2010年各市(州)数学试卷的命题质量又有了进一步提高,试卷内容分布合理,注重数学基础知识、基本技能的考查,凸显了初中毕业学业考试的特点;在试卷题量、考试时间、题型匹配等方面都在《考试标准》所规定的范围内,结合本地实际灵活而稳妥地展现各自的特色;能选取学生身边熟悉的、具有鲜明时代特色的生活元素命制试题,考查学生运用数学知识分析问题、解决问题的能力;能在命制开放性试题、探索性试题、学科综合性试题等方面稳步创新,大胆尝试;大都注意控制了题量和阅读量,有效的减轻了学生在考试中的不必要负担,保证了学生解答试题的时间;试卷主、客观试题的比例基本合理,难易程度基本符合《考试标准》要求和当地数学教育现状。
各市(州)均采用网上阅卷,实行了题卡分离,卷面形式发生了新的改变,有效地保证了评卷的公平公正。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
益阳市2010年普通初中毕业学业考试试卷数 学注意事项:1. 本学科试卷分试题卷和答题卡两部分;2. 请将姓名、准考证号等相关信息按要求填写在答题卡上;3. 请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效;4. 本学科为闭卷考试,考试时量为90分钟,卷面满分为120分;5. 考试结束后,请将试题卷和答题卡一并交回。
试 题 卷一、选择题:本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.数轴上的点A 到原点的距离是6,则点A 表示的数为A . 6或6-B . 6C . 6-D . 3或3- 2.某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进篮框的个数为6,10,5,3,4,8,4,这组数据的中位数和极差分别是 A .4,7B .7,5C .5,7D .3,73.下列计算正确的是A.030= B.33-=-- C.331-=- D.39±=4.小军将一个直角三角板(如图1)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是B .C .5.如图2,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y 之间的关系用图象描述大致是A. B . C . D .1图2图A BCD6.一元二次方程)0(02≠=++a c bx ax 有两个不相等...的实数根,则ac b 42-满足的条件是A.ac b 42-=0 B.ac b 42->0C.ac b 42-<0 D.ac b 42-≥07. 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x 千米/小时,依题意列方程正确的是A.203525-=x x B.x x 352025=- C.203525+=x x D.xx 352025=+ 8.如图3,已知△ABC ,求作一点P ,使P 到∠A 的两边的距离相等,且PA =PB .下列 确定P 点的方法正确的是A.P 为∠A 、∠B 两角平分线的交点B.P 为∠A 的角平分线与AB 的垂直平分线的交点 C.P 为AC 、AB 两边上的高的交点 D.P 为AC 、AB 两边的垂直平分线的交点二、填空题:本大题共5小题,每小题4分,共20分.把答案填在答题卡...中对应题号后的横线上.9.若622=-n m ,且3=-n m ,则=+n m .10. 有三张大小、形状完全相同的卡片,卡片上分别写有数字1、2、3,从这三张卡片中随机同时抽取两张,用抽出的卡片上的数字组成两位数,这个两位数是偶数的概率是 .11.如图4,在△ABC 中,AB =AC =8,AD 是底边上的高,E 为AC 中点,则DE = .12.如图5,分别以A 、B 为圆心,线段AB 的长为半径的两个圆相交于C 、D 两点,则∠CAD的度数为 . 13.如图6,反比例函数xky =的图象位于第一、三象限,其中第一象限内的图象经过点Ay1o x2A4图5图6图AB3图(1,2),请在第三象限内的图象上找一个你喜欢的点P ,你选择的P 点坐标为 .三、解答题:本大题共3小题,每小题8分,共24分. 14.解不等式1315>--x x ,并将解集在数轴上表示出来.15.已知31=-x ,求代数式4)1(4)1(2++-+x x 的值.16.如图7,在菱形ABCD 中,∠A =60°,AB =4,O 为对角线BD 的中点,过O 点作OE ⊥AB ,垂足为E . (1) 求∠ABD 的度数; (2)求线段BE 的长.四、解答题:本大题共2小题,每小题10分,共20分.17.南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2009年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图: 请根据以上信息解答下列问题⑴ 种植油菜每亩的种子成本是多少元? ⑵农民冬种油菜每亩获利多少元?⑶2009年南县全县农民冬种油菜的总获利多少元?(结果用科学记数法表示)18.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,益阳地面温度为20℃,设高出地面x 千米处的温度为y ℃. (1)写出y 与x 之间的函数关系式;(2)已知益阳碧云峰高出地面约500米,求这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过益阳上空,若机舱内仪表显示飞机外面的温度为-34℃,求飞机离地面的高度为多少千米?油菜每亩生产成本统计图7图五、解答题:本题满分12分.19. 我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等..... 一条直线l 与方形环的边线有四个交点M 、'M 、'N 、N .小明在探究线段'MM 与N N ' 的数量关系时,从点'M 、'N 向对边作垂线段E M '、F N ',利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题: ⑴当直线l 与方形环的对边相交时(如图18-),直线l 分别交AD 、D A ''、C B ''、BC 于M 、'M 、'N 、N ,小明发现'MM 与N N '相等,请你帮他说明理由; ⑵当直线l 与方形环的邻边相交时(如图28-),l 分别交AD 、D A ''、C D ''、DC于M 、'M 、'N 、N ,l 与DC 的夹角为α,你认为'MM 与N N '还相等吗?若 相等,说明理由;若不相等,求出NN MM ''的值(用含α的三角函数表示).六、解答题:本题满分12分.20.如图9,在平面直角坐标系中,已知A 、B 、C 三点的坐标分别为A (-2,0),B (6,0),C (0,3).(1)求经过A 、B 、C 三点的抛物线的解析式;(2)过C点作CD 平行于x 轴交抛物线于点D ,写出D 点的坐标,并求AD 、BC 的交点E 的坐标;(3)若抛物线的顶点为P,连结PC 、PD ,判断四边形CEDP 的形状,并说明理由.BP ACD E Boxy 1-1118-图28-图益阳市2010年普通初中毕业学业考试试卷数学参考答案及评分标准一.选择题:本大题共8小题,每小题4分,共32分.二.填空题:本大题共5小题,每小题4分,共20分. 9.2 10.31 11.4 12. 120 13.答案不唯一,x 、y 满足2=xy 且0,0<<y x 即可 三.解答题:本大题共3小题,每小题8分,共24分.14.解:3315>--x x ……………………………2分 42>x ……………………………4分2>x ……………………………6分……………………………8分15.解法一:原式=2)21(-+x ……………………………2分 =2)1(-x ……………………………4分 当31=-x 时原式= 2)3( ……………………………6分=3 ……………………………8分 解法二:由31=-x 得13+=x ……………………………1分化简原式=444122+--++x x x ……………………………3分=122+-x x ……………………………4分=1)13(2)13(2++-+ …………………………5分=12321323+--++ …………………………7分 =3 ……………………………8分16.解:⑴ 在菱形ABCD 中,AD AB =,︒=∠60A∴ABD ∆为等边三角形∴︒=∠60ABD ……………………………4分⑵由(1)可知4==AB BD9图又∵O 为BD 的中点∴2=OB ……………………………6分 又∵AB OE ⊥,及︒=∠60ABD ∴︒=∠30BOE∴1=BE ……………………………8分四、解答题:本大题共2小题,每小题10分,共20分.17.解:⑴ %10%45%35%101=--- ……………………………1分 11%10110=⨯(元) ……………………………3分 ⑵ 2801103130=-⨯(元) ……………………………6分 ⑶ 140000500000280=⨯ ……………………………8分 =8104.1⨯(元) ………………………10分 答:略.18.解:⑴ x y 620-= (0>x ) ……………………………4分 ⑵ 500米=5.0千米 …………………………5分 1750620=⋅⨯-=y (℃) ……………………………7分 ⑶ x 62034-=- ……………………………8分 9=x ……………………………10分答:略.五、解答题:本题满分12分. 19.⑴解: 在方形环中,∵AD BC F N AD E M ,',⊥⊥'∥BC∴NF N M EM FN N EM M F N E M ',90','∠='∠=∠='∠='︒∴△E MM '≌△F NN '∴N N M M '=' ……………………………5分⑵解法一:∵α='∠='∠︒='∠='∠M M E N FN M ME N NF ,90 ∴N NF '∆∽EM M '∆ ……………………………8分∴NFEM N N M M '='' ∵F N E M '='∴αtan ''='=NF F N N N MM (或ααcos sin )……………………………10分 ①当︒=45α时,tan α=1,则N N M M '=' ②当︒≠45α时,N N M M '≠' 则αtan =''N N M M (或ααcos sin ) ……………………………12分解法二:在方形环中,︒=∠90D又∵CD F N AD E M ⊥⊥'', ∴E M '∥E M F N DC '=', ∴α=∠='∠NF N E M M ' 在F N N Rt '∆与E M M Rt '∆中,MM EM N N F N ''='=ααcos ,'sin N N M M E M M M N N F N ''=''⋅'=='cos sin tan ααα 即 αtan =''N N M M (或ααcos sin ) ……………………………10分 ①当︒=45α时,N N M M '=' ②当︒≠45α时,N N M M '≠' 则αtan =''N N M M (或ααcos sin ) ……………………………12分 六、解答题:本题满分12分.20.解:⑴ 由于抛物线经过点)3,0(C ,可设抛物线的解析式为)0(32≠++=a bx ax y ,则⎩⎨⎧=++=+-036360324b a b a ,解得⎪⎩⎪⎨⎧=-=141b a∴抛物线的解析式为3412++-=x x y ……………………………4分 ⑵ D 的坐标为)3,4(D ……………………………5分直线AD 的解析式为121+=x y 直线BC 的解析式为321+-=x y由⎪⎪⎩⎪⎪⎨⎧+-=+=321121x y x y求得交点E 的坐标为)2,2( ……………………………8分 ⑶ 连结PE 交CD 于F ,P 的坐标为)4,2(又∵E )2,2(,)3,4(),3,0(D C∴,1==EF PF 2==FD CF ,且PE CD ⊥∴四边形CEDP 是菱形 ……………………………12分。