圆锥曲线离心率专题 历年真题
(完整版)圆锥曲线离心率专题历年真题

1.(福建卷)已知双曲线12222=-by a x (a >0,b <0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A.( 1,2)B. (1,2]C.[2,+∞)D.(2,+∞)2.(湖南卷)过双曲线M:2221y x b-=的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 ( )3.(辽宁卷)方程22520x x -+=的两个根可分别作为()A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率4.(全国II )已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为( )(A )53 (B )43 (C )54 (D )325.(陕西卷)已知双曲线x 2a 2 - y 22 =1(a>2)的两条渐近线的夹角为π3 ,则双曲线的离心率为A.2B. 3C.263D.2336. (全国卷)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )(A (B )12(C )2 (D 1 7. (广东卷)若焦点在x 轴上的椭圆2212x y m +=的离心率为12,则m=( )(B)32(C)83(D)238.(福建卷)已知F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是( ) A .324+B .13-C .213+D .13+9.[全国]设双曲线的焦点在x 轴上,两条渐近线为x y 21±=,则该双曲线的离心率=e ( )A .5 B . 5 C .25 D .45 10.( 福建理)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A .33B .32 C .22 D .2311.( 重庆理)已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为:( )A .43B .53C .2D .7312.(福建卷11)又曲线22221x y a b==(a >0,b >0)的两个焦点为F 1、F 2,若P 为其上一点,且|PF 1|=2|PF 2|,则双曲线离心率的取值范围为( )A.(1,3)B.(]1,3 C.(3,+∞)D.[)3,+∞13.(江西卷 7)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=u u u u r u u u u r的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1) B .1(0,]2C .(0,2D .,1)2 14.(全国二9)设1a >,则双曲线22221(1)x y a a -=+的离心率e 的取值范围是( )A .B .C .(25),D .(215.(陕西卷8)双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别是12F F ,,过1F 作倾斜角为30o的直线交双曲线右支于M 点,若2MF 垂直于x 轴,则双曲线的离心率为( )ABC D16.(天津卷(7)设椭圆22221x y m n+=(0m >,0n >)的右焦点与抛物线28y x =的焦点相同,离心率为12,则此椭圆的方程为( )(A )2211216x y += (B )2211612x y += (C )2214864x y += (D )2216448x y +=17.(江苏卷12)在平面直角坐标系中,椭圆2222x y a b+=1( a b >>0)的焦距为2,以O 为圆心,a 为半径的圆,过点2,0a c ⎛⎫⎪⎝⎭作圆的两切线互相垂直,则离心率e = . 18.(全国一15)在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e= .19、(全国2理11)设F 1,F 2分别是双曲线22221x y a b-=的左、右焦点。
重难点专题 圆锥曲线离心率压轴题(含二级结论)十九大题型汇总(学生版)

重难点专题 圆锥曲线离心率压轴题(含二级结论)十九大题型汇总题型1直接型题型2二级结论之通径型题型3双曲线渐近线相关题型4坐标法题型5二级结论之焦点弦定比分点题型6二级结论之焦点已知底角题型7焦点三角形已知顶角型题型8焦点三角形双余弦定理题型9利用图形求离心率题型10利用椭圆双曲线的对称性求离心率题型11点差法题型12二级结论之中点弦问题题型13角平分线相关题型14圆锥曲线与圆相关题型15内切圆相关题型16与立体几何相关题型17二级结论之切线方程题型18正切公式的运用题型19圆锥曲与内心结合题型1直接型椭圆与双曲线的离心率公式为:e =ca,注意椭圆的离心率范围(0,1),双曲线的离心率范围(1,+♾)1(2021·江西南昌·统考模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 2的直线l 交C 的右支于A ,B 两点,且AB ⋅AF 1 =0,12|AB |=5|AF 1|,则C 的离心率为1(2021·全国·高三开学考试)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|BF 1|,若cos ∠AF 2B =35,则椭圆E 的离心率为.2(2021·河北秦皇岛·统考二模)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,过点F 1的直线l 交椭圆C 于A ,B 两点,已知AF 2 +F 1F 2 ⋅AF 1 =0,AF 1 =43F 1B,则椭圆C 的离心率为()A.57B.22C.53D.133(2023·江西九江·二模)青花瓷又称白地青花瓷,常简称青花,中华陶瓷烧制工艺的珍品,是中国瓷器的主流品种之一,属釉下彩瓷.如图为青花瓷大盘,盘子的边缘有一定的宽度且与桌面水平,可以近似看成由大小两个椭圆围成.经测量发现两椭圆的长轴长之比与短轴长之比相等.现不慎掉落一根质地均匀的长筷子在盘面上,恰巧与小椭圆相切,设切点为P ,盘子的中心为O ,筷子与大椭圆的两交点为A 、B ,点A 关于O 的对称点为C .给出下列四个命题:①两椭圆的焦距长相等;②两椭圆的离心率相等;③PA =PB ;④BC 与小椭圆相切.其中正确的个数是()A.1B.2C.3D.44(22·23下·恩施·模拟预测)已知F 1,F 2分别为双曲线C :x 24-y 2b2=1b >0 的左右焦点,且F 1到渐近线的距离为1,过F 2的直线l 与C 的左、右两支曲线分别交于A ,B 两点,且l ⊥AF 1,则下列说法正确的为()A.△AF 1F 2的面积为2B.双曲线C 的离心率为2C.AF 1 ⋅BF 1=10+46D.1AF 2 +1BF 2=6+2题型2二级结论之通径型椭圆与双曲线的半通径是b 2a , 通径是2b 2a1(2023·重庆·模拟预测)如图,椭圆C :x 2a 2+y 2b2=1a >b >0 的左焦点为F 1,右顶点为A ,点Q 在y 轴上,点P 在椭圆上,且满足PQ ⊥y 轴,四边形F 1APQ 是等腰梯形,直线F 1P 与y 轴交于点N 0,34b,则椭圆的离心率为( ).A.14B.32C.22D.121(23·24高三上·湖北·阶段练习)已知A ,B 是椭圆x 2a 2+y 2b2=1(a >b >0)的左右顶点,P 是双曲线x 2a 2-y 2b 2=1在第一象限上的一点,直线PA ,PB 分别交椭圆于另外的点M ,N .若直线MN 过椭圆的右焦点F ,且tan ∠AMN =3,则椭圆的离心率为.2(2023·湖北武汉·三模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,点A ,B 分别为椭圆C 的左右顶点,点F 为椭圆C 的右焦点,Р为椭圆上一点,且PF 垂直于x 轴.过原点О作直线PA 的垂线,垂足为M ,过原点О作直线PB 的垂线,垂足为N ,记S 1,S 2分别为△MON ,△PAB 的面积.若S 2S 1=409,则椭圆C 的离心率为.3(22·23·赣州·二模)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左右焦点分别为F 1,F 2,点P 在E 上,满足△F 1PF 2为直角三角形,作OM ⊥PF 1于点M (其中O 为坐标原点),且有PM =2MF1,则E 的离心率为.4(2023·河北保定·统考二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,B 为虚轴上端点,M 是BF 中点,O 为坐标原点,OM 交双曲线右支于N ,若FN 垂直于x 轴,则双曲线C 的离心率为() A.2B.2C.3D.233题型3双曲线渐近线相关双曲线的渐近线求离心率可以直接使用公式:e =1+b 2a2,1(2023·山东潍坊·二模)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,O 为坐标原点,过F 1作C 的一条浙近线的垂线,垂足为D ,且DF 2 =22OD ,则C 的离心率为()A.2B.2C.5D.31(2022·贵州毕节·统考模拟预测)已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,点A 是C 的左顶点,过点F 2作C 的一条渐近线的垂线,垂足为P ,过点P 作x 轴的垂线,垂足为M ,O 为坐标原点,且PO 平分∠APM ,则C 的离心率为()A.2B.2C.3D.32(多选)(2023·山东潍坊·三模)函数y =ax +bx(ab >0)的图象是双曲线,且直线x =0和y =ax 是它的渐近线.已知函数y =33x +1x,则下列说法正确的是()A.x ≠0,y ≥243B.对称轴方程是y =3x ,y =-33x C.实轴长为23D.离心率为2333(2020上·广西桂林·高三广西师范大学附属中学校考阶段练习)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,左顶点为A ,过F 作C 的一条渐近线的垂线,垂足为M ,若tan ∠MAF =12,则C 的离心率为.4(2022·陕西咸阳·统考二模)已知双曲线C :(a >0,b >0)的左焦点为F ,过F 且与双曲线C 的一条渐近线垂直的直线l 与另一条渐近线交于点P ,交y 轴于点A ,若A 为PF 的中点,则双曲线C 的离心率为 .5(多选)(2023·河北唐山·模拟预测)已知双曲线C :x 2a2-y 24=1(a >0)的左、右焦点分别为F 1,F 2,过F 2作直线y =2a x 的垂线,垂足为P ,O 为坐标原点,且∠F 1PO =π6,过P 作C 的切线交直线y =-2ax 于点Q ,则()A.C 的离心率为213B.C 的离心率为133C.△OPQ 的面积为23D.△OPQ 的面积为43题型4坐标法相对运算较麻烦的一种方法,可以通过联立方程,求出点的坐标,构造等式求出离心率1(2023·河南·模拟预测)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左顶点为A ,P 为C 的一条渐近线上一点,AP 与C 的另一条渐近线交于点Q ,若直线AP 的斜率为1,且A 为PQ 的三等分点,则C 的离心率为.1(2023·山东潍坊·模拟预测)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左焦点为F ,过F 的直线交E 的左支于点P ,交E 的渐近线于点M ,N ,且P ,M 恰为线段FN 的三等分点,则双曲线E 的离心率为()A.2B.52C.5D.32(24·25高三上·浙江·开学考试)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,过点F 作倾斜角为π4的直线交椭圆C 于A 、B 两点,弦AB 的垂直平分线交x 轴于点P ,若PF AB=14,则椭圆C 的离心率e =.3(2023·湖北襄阳·模拟预测)如图,已知有公共焦点P 1(-c ,0)、P 2(c ,0)的椭圆C 1和双曲线C 2相交于A 、B 、C 、D 四个点,且满足OA =OB =OC =OD =c ,直线AB 与x 轴交于点P ,直线CP 与双曲线C 2交于点Q ,记直线AC 、AQ 的斜率分别为k 1、k 2,若k 1⋅k 2=2,则椭圆C 1的离心率为.4(22·23高三上·河南洛阳·阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1-c ,0 ,F 2c ,0 ,过点F 1的直线l 与双曲线C 的左支交于点A ,与双曲线C 的一条渐近线在第一象限交于点B ,且F 1F 2 =2OB (O 为坐标原点).下列四个结论正确的是()①BF 1 =4c 2-BF 2 2;②若AB =2F 1A ,则双曲线C 的离心率1+102;③BF 1 -BF 2 >2a ;④c -a <AF 1 <2c -a .A.①②B.①③C.①②④D.①③④5(22·23高三上·河北石家庄·期中)椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2,过F 1的直线交C 于A ,B 两点,若3OF 1 =OA +2OB ,AB =BF 2,其中O 为坐标原点,则椭圆的离心率为题型5二级结论之焦点弦定比分点1.点F 是椭圆的焦点,过F 的弦AB 与椭圆焦点所在轴的夹角为θ,θϵ0,π2,k 为直线AB 的斜率,且AF =λFB (λ>0),则e =1+k 2λ-1λ+1当曲线焦点在y 轴上时,e =1+1k 2λ-1λ+1注:λ=AF BF 或者λ=BF AF ,而不是AF AB 或者BFAB点F 是双曲线焦点,2.过F 弦AB 与双曲线焦点所在轴夹角为θ,θϵ0,π2,k 为直线AB 斜率,且AF =λFB (λ>0),则e =1+k 2λ-1λ+1当曲线焦点在y 轴上时,e =1+1k 2λ-1λ+1 1(23·24高三上·云南·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点F 2且倾斜角为60°的直线l 与C 交于A ,B 两点.若△AF 1F 2的面积是△BF 1F 2面积的2倍,则C 的离心率为.1(2022上·辽宁鞍山·高三鞍山一中校考期中)已知椭圆C :x 2a 2+y 2b2=1的左焦点为F ,过F 斜率为3的直线l 与椭圆C 相交于A 、B 两点,若AF BF =32,则椭圆C 的离心率e =.2(2022·全国·高三专题练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的右焦点为F ,过F 且斜率为3的直线交C 于A 、B 两点,若AF =4FB,则C 的离心率为()A.58B.65C.75D.953(2023·浙江温州·乐清市知临中学校考二模)已知椭圆x 2a 2+y 2b2=1的右焦点为F 2,过右焦点作倾斜角为π3的直线交椭圆于G ,H 两点,且GF 2 =2F 2H ,则椭圆的离心率为()A.12B.22C.23D.324(2023·贵州·统考模拟预测)椭圆C :x 2a 2+y 2b2=1(a >b >0)的上顶点为A ,F 是C 的一个焦点,点B 在C 上,若3AF +5BF =0,则C 的离心率为()A.12B.35C.22D.32题型6二级结论之焦点已知底角1. 已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则椭圆的离心率e =c a =sin (α+β)sin α+sin β2. 已知双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0)两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则e =ca =sin α+sin β|sin α-sin β|,1(2008·全国·高考真题)设△ABC 是等腰三角形,∠ABC =120°,则以A ,B 为焦点,且过点C 的双曲线的离心率为()A.1+22 B.1+32C.1+2D.1+31(2022秋·山东青岛·高二山东省青岛第五十八中学校考期中)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c ,若直线y =3(x +c )与椭圆C 的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于()A.3-1B.2-1C.32D.222(2020秋·贵州贵阳·高二统考期末)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左右焦点分别为F 1,F 2,焦距为2c .若直线y =33x +c 与椭圆的一个交点M 满足∠MF 2F 1=2∠MF 1F 2,则该椭圆的离心率等于()A.3-5B.5-3C.3+1D.3-13(2023·全国·高二专题练习)已知椭圆E 的两个焦点分别为F 1,F 2,点Р为椭圆上一点,且tan ∠PF 1F 2=23,tan ∠PF 2F 1=2,则椭圆E 的离心率为 .4(2023秋·江西吉安·高三吉安一中校考开学考试)点P 是双曲线C 1:x 2a 2-y 2b2=1(a >0,b >0)和圆C 2:x 2+y 2=a 2+b 2的一个交点,且2∠PF 1F 2=∠PF 2F 1,其中F 1,F 2是双曲线C 1的两个焦点,则双曲线C 1的离心率为.5(2023秋·湖南衡阳·高三衡阳市八中校考阶段练习)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,点A 是双曲线C 的右顶点,点P 在过点A 且斜率为334的直线上,△PF 1F 2为等腰三角形,∠PF 2F 1=120°,则双曲线的离心率为.题型7焦点三角形已知顶角型可以通过焦点三角形的特征进行解决1(20·21高二上·吉林白城·阶段练习)已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,椭圆的离心率为e 1,双曲线的离心率e 2,则1e 21+3e 22=.1(2021·重庆·校联考三模)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左右焦点分别为F 1,F 2,过F 1的直线交双曲线C 的左支于P ,Q 两点,若PF 2 2=PF 2 ⋅QF 2,且△PQF 2的周长为12a ,则双曲线C 的离心率为() A.102B.3C.5D.222(2021·山东烟台·统考二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点A 在C 的右支上,AF 1与C 交于点B ,若F 2A ⋅F 2B =0,且|F 2A |=|F 2B|,则C 的离心率为()A.2B.3C.6D.73(2021·浙江·模拟预测)已知F 1,F 2分别是双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,直线y =kx 与E 交于A ,B 两点,且∠F 1AF 2=60°,四边形F 1AF 2B 的周长C 与面积S 满足163S =C 2,则E 的离心率为()A.62B.52C.32D.34(2023·上海崇明·一模)已知椭圆Γ1与双曲线Γ2的离心率互为倒数,且它们有共同的焦点F 1、F 2,P是Γ1与Γ2在第一象限的交点,当∠F 1PF 2=π6时,双曲线Γ2的离心率等于 .5(2022上·江苏南京·高三南京师大附中校考期中)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点,过点F 2且斜率为1的直线l 与双曲线C 的右支交于P ,Q 两点,若△F 1PQ 是等腰三角形,则双曲线C 的离心率为.题型8焦点三角形双余弦定理1(22·23高二下·河南安阳·开学考试)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,过F 1的直线与椭圆C 交于M ,N 两点,MF 2 -MF 1 =a ,MF 1 +NF 1 =NF 2 ,则椭圆C 的离心率为()A.25B.105C.155D.641(22·23上·河南·模拟预测)双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,过F 2的直线与C 交于A ,B 两点,且AF 2 =2F 2B,∠ABF 1=60°,则双曲线C 的离心率为()A.73B.2C.53D.432(2023·浙江·一模)已知双曲线C :x 2a 2-y 2b2=1的左右焦点分别为F 1,F 2,O 为坐标原点,A ,B 为C 上位于x 轴上方的两点,且AF 1⎳BF 2,∠AF 1F 2=60°.记AF 2,BF 1交点为P ,过点P 作PQ ⎳AF 1,交x 轴于点Q .若OQ =2PQ ,则双曲线C 的离心率是.3(23·24高三上·江苏淮安·开学考试)椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,上顶点为A ,直线AF 1与椭圆C 交于另一点B ,若∠AF 2B =120°,则椭圆C 的离心率为.4(22·23高三下·山东菏泽·开学考试)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左右焦点分别为F 1,F 2,点A 在C 上,点B 在y 轴上,F 1A ⋅F 1B =0,BF 2 =35BA,则C 的离心率为.5(2023·湖南株洲·一模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左右焦点为F 1,F 2,过F 1的直线交椭圆C 于P ,Q 两点,若PF 1 =43F 1Q ,且PF 2 =F 1F 2,则椭圆C 的离心率为.题型9利用图形求离心率1(2023·安徽安庆·二模)在平面直角坐标系xOy 中,已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与双曲线C 的右支相交于点P ,过点O ,F 2作ON ⊥PF 1,F 2M ⊥PF 1,垂足分别为N ,M ,且M 为线段PN 的中点,ON =a ,则双曲线C 的离心率为()A.2B.5+12C.3+12D.1321(22·23·包头·二模)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点为F 1-c ,0 ,F 2c ,0 ,以C 的虚轴为直径的圆记为D ,过F 1作D 的切线与C 的渐近线y =-b a x 交于点H ,若△F 1HO 的面积为24ac ,则C 的离心率为.2(2023秋·江西宜春·高三江西省宜丰中学校考阶段练习)双曲线C :x 2a 2-y 2b2=1a ,b >0 的左焦点为F ,直线FD 与双曲线C 的右支交于点D ,A ,B 为线段FD 的两个三等分点,且OA =OB =22a (O为坐标原点),则双曲线C 的离心率为.3(2023·湖南邵阳·邵阳市第二中学校考模拟预测)已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点,A 是C 的上顶点,点P 在过A 且斜率为23的直线上,△PF 1F 2为等腰三角形,∠PF 1F 2=120°,则C 的离心率为()A.1010B.714C.39D.144(2023·海南省直辖县级单位·文昌中学校考模拟预测)已知椭圆T :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,左顶点为A ,上顶点为B ,点P 是椭圆上位于第一象限内的点,且△ABO ∼△F 1PF 2,O 为坐标原点,则椭圆的离心率为.题型10利用椭圆双曲线的对称性求离心率1(22·23高二下·湖南·期末)如图,已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1的左、右焦点,P ,Q 为双曲线C 上两点,满足F 1P ∥F 2Q ,且F 2Q =F 2P =3F 1P ,则双曲线C 的离心率为()A.105B.52C.153D.1021(2023·河南商丘·模拟预测)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M ,N 是C 的一条渐近线上的两点,且MN =2MO(O 为坐标原点),MN =F 1F 2 .若P 为C 的左顶点,且∠MPN =135°,则双曲线C 的离心率为()A.3B.2C.5D.72(2023·福建宁德·模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的右焦点是F ,直线y =kx 交椭圆于A ,B 两点﹐直线AF 与椭圆的另一个交点为C ,若OA OF=AF2CF =1,则椭圆的离心率为.3(23·24高三上·山西大同·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,过点P (3c ,0)作直线l 交椭圆C 于M ,N 两点,若PM =2NM ,F 2M =4F 2N则椭圆C 的离心率为4(2022·全国·校联考模拟预测)已知双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点分别是F 1,F 2,过F 2的直线l 交双曲线C 于P ,Q 两点且使得PF 2 =λF 2Q 0<λ<1 .A 为左支上一点且满足F 1A +F 2P=0 ,F 1F 2 =23AF 2 +13AQ ,△AF 2P 的面积为b 2,则双曲线C 的离心率为()A.33B.2C.102D.35(2021下·山西·高三校联考阶段练习)如图,O 是坐标原点,P 是双曲线E :x 2a 2-y 2b2=1(a >0,b >0)右支上的一点,F 是E 的右焦点,延长PO ,PF 分别交E 于Q ,R 两点,已知QF ⊥FR ,且|QF |=2|FR |,则E 的离心率为()A.174B.173C.214D.213题型11点差法1.根与系数关系法:联立直线方程和椭圆(或双曲线)方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决;2.点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆(或双曲线)方程,然后作差,构造出中点坐标和斜率的关系,具体如下:已知A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b2=1(a >b >0)上的两个不同的点M (x 0,y 0)是线段AB 的中点,x 21a 2+y 21b 2=1,=1\*GB 3\*MERGEFORMAT ①x 22a 2+y 22b 2=1,=2\*GB 3\*MERGEFORMAT ② 由①-②,得1a 2(x 21-x 22)+1b 2(y 21-y 22)=0,变形得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·x 0y 0,(x 1-x 2≠0,x 1+x 2≠0)1(22·23·吉安·一模)椭圆E :x 2a 2+y 2b2=1a >b >0 的内接四边形ABCD 的对角线AC ,BD 交于点P 1,1 ,满足AP =2PC ,BP =2PD ,若直线AB 的斜率为-14,则椭圆的离心率等于()A.14B.32C.12D.131(2023·湖北·模拟预测)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率e ≠22,C 的左右焦点分别为F 1,F 2,点A 在椭圆C 上满足∠F 1AF 2=π2.∠F 1AF 2的角平分线交椭圆于另一点B ,交y 轴于点D .已知AB =2BD ,则e =.2(2022下·云南昭通·高二校联考期末)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)斜率为-18的直线与E 的左右两支分别交于A ,B 两点,P 点的坐标为(-1,2),直线AP 交E 于另一点C ,直线BP 交E 于另一点D ,如图1.若直线CD 的斜率为-18,则E 的离心率为()A.2B.72C.62D.523(22·23·河北·模拟预测)已知斜率为-2的直线l 1与双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右两支分别交于点A ,B ,l 2⎳l 1,直线l 2与E 的左、右两支分别交于点D ,C ,AC 交BD 于点P ,若点P 恒在直线l :y =-3x 上,则E 的离心率为.4(2023·云南·统考模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F (c ,0)(b >c )和上顶点B ,若斜率为65的直线l 交椭圆C 于P ,Q 两点,且满足FB +FP +FQ =0 ,则椭圆的离心率为.5(2020上·重庆沙坪坝·高三重庆八中校考阶段练习)如图,过原点O 的直线AB 交椭圆C :x 2a 2+y 2b2=1(a >b >0)于A ,B 两点,过点A 分别作x 轴、AB 的垂线AP ,AQ 分别交椭圆C 于点P ,Q ,连接BQ 交AP 于一点M ,若AM =34AP,则椭圆C 的离心率是.题型12二级结论之中点弦问题1.椭圆或者双曲线,已知中点时,当椭圆或双曲线的焦点在x 轴,K AB ∙K OM =e 2-12.P 为椭圆上一点,e 为离心率,①A 1,A 2为两个顶点,则k PA 1⋅k PA 2=e 2-1;②A 1,A 2为关于原点对称的两点,则k PA 1⋅k PA 2=e 2-1;以上结论也适用于双曲线.1(22·23上·徐州·期末)已知椭圆C :x 2a 2+y 2b2=1a >b >0 ,经过原点O 的直线交C 于A ,B 两点.P 是C 上一点(异于点A ,B ),直线BP 交x 轴于点D .若直线AP ,BP 的斜率之积为49,且∠BDO =∠BOD ,则椭圆C 的离心率为.1(22·23下·安徽·一模)已知直线l 与椭圆E :x 2a 2+y 2b2=1(a >b >0)交于M ,N 两点,线段MN 中点P 在直线x =-1上,且线段MN 的垂直平分线交x 轴于点Q -34,0 ,则椭圆E 的离心率是 .2(2023·贵州·模拟预测)设О为坐标原点,A 为椭圆C :x 2a 2+y 2b2=1a >b >0 上一个动点,过点A 作椭圆C 内部的圆E :x 2-2mx +y 2=0m >0 的一条切线,切点为D ,与椭圆C 的另一个交点为B ,D 为AB 的中点,若OD 的斜率与DE 的斜率之积为2,则C 的离心率为.3(2021·全国·模拟预测)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的短轴长为4,上顶点为B ,O 为坐标原点,点D 为OB 的中点,双曲线E :x 2m 2-y 2n2=1(m >0,n >0)的左、右焦点分别与椭圆C 的左、右顶点A 1,A 2重合,点P 是双曲线E 与椭圆C 在第一象限的交点,且A 1,P ,D 三点共线,直线PA 2的斜率k PA 2=-43,则双曲线E 的离心率为()A.355B.32C.810-105D.5+41094(22·23下·南通·阶段练习)已知两点A ,M 在双曲C :x 2a 2-y 2b2=1(a >0,b >0)的右支上,点A 与点B 关于原点对称,BM 交y 轴于点N ,若AB ⊥AM ,且ON 2+8OA ⋅ON=0,则双曲线C 的离心率为()A.5B.6C.7D.22题型13角平分线相关1.角平分线“拆”面积:S △ABC =S △ACD +S △ABD2.角平分线定理性质:AB BD =ACCD1(22·23下·山西·模拟预测)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,P 是双曲线E 上一点,PF 2⊥F 1F 2,∠F 1PF 2的平分线与x 轴交于点Q ,S △PF 1Q S △PF 2Q=53,则双曲线E 的离心率为()A.2B.2C.52D.31(22·23下·湖北·模拟预测)已知F 1,F 2分别是双曲线Γ:x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点,过F 1的直线分别交双曲线左、右两支于A ,B 两点,点C 在x 轴上,CB =3F 2A,BF 2平分∠F 1BC ,则双曲线Γ的离心率为()A.7B.5C.3D.22(22·23高三·云南·阶段练习)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右顶点分别为A ,B ,右焦点为F ,P 为椭圆上一点,直线AP 与直线x =a 交于点M ,∠PFB 的角平分线与直线x =a 交于点N ,若PF ⊥AB ,△MAB 的面积是△NFB 面积的6倍,则椭圆C 的离心率是.3(2023·山东烟台·校考模拟预测)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的焦点为F 1-c ,0 ,F 2c ,0 ,点P 是C 与圆x 2+y 2=c 2的交点,∠PF 1F 2的平分线交PF 2于Q ,若PQ =12QF 2 ,则椭圆C 的离心率为()A.33B.2-1C.22D.3-14(2023春·江西赣州·高三统考阶段练习)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1,F 2.椭圆C 在第一象限存在点M ,使得MF 1 =F 1F 2 ,直线F 1M 与y 轴交于点A ,且F 2A 是∠MF 2F 1的角平分线,则椭圆C 的离心率为()A.6-12B.5-12C.12D.3-12题型14圆锥曲线与圆相关1(2023·福建漳州·模拟预测)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别为F 1、F 2,以F 2为圆心的圆与x 轴交于F 1,B 两点,与y 轴正半轴交于点A ,线段AF 1与C 交于点M .若BM 与C 的焦距的比值为313,则C 的离心率为()A.3-12B.12C.3+14D.7-121(23·24高三上·福建福州·开学考试)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1、F 2,以F 2为圆心的圆与x 轴交于F 1,B 两点,与y 轴正半轴交于点A ,线段AF 1与C 交于点M .若BM与C 的焦距的比值为313,则C 的离心率为()A.3+12B.32C.5+12D.7+122(2023·全国·二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左,右顶点分别是A 1,A 2,圆x 2+y 2=a 2与C 的渐近线在第一象限的交点为M ,直线A 1M 交C 的右支于点P .设△MPA 2的内切圆圆心为I ,A 2I ⊥x 轴,则C 的离心率为()A.2B.2C.3D.53(22·23·马鞍山·三模)已知F 1 , F 2分别是双曲线C :x 2a 2-y 2b2=1 (a >0 , b >0)的左,右焦点,点M 在双曲线上,MF 1⊥MF 2,圆O :x 2+y 2=32(a 2+b 2),直线MF 1与圆O 相交于A ,B 两点,直线MF 2与圆O 相交于P ,Q 两点,若四边形APBQ 的面积为27b 2,则C 的离心率为()A.62B.324C.32D.984(22·23上·全国·阶段练习)已知圆C 1:x 2+y -2332=163过双曲线C 2:x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点F 1,F 2,曲线C 1与曲线C 2在第一象限的交点为M ,若MF 1 ⋅MF 2 =12,则双曲线C 2的离心率为()A.2B.3C.2D.3题型15内切圆相关1(22·23高三下·江西·阶段练习)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2.点P 在C 上且位于第一象限,圆O 1与线段F 1P 的延长线,线段PF 2以及x 轴均相切,△PF 1F 2的内切圆为圆O 2.若圆O 1与圆O 2外切,且圆O 1与圆O 2的面积之比为9,则C 的离心率为()A.12B.35C.22D.321(2023·山东潍坊·模拟预测)已知双曲线C 1:x 2a 2-y 2b2=1a >0,b >0 的左,右焦点分别为F 1,F 2,点F 2与抛物线C 2:y 2=2px p >0 的焦点重合,点P 为C 1与C 2的一个交点,若△PF 1F 2的内切圆圆心的横坐标为4,C 2的准线与C 1交于A ,B 两点,且AB =92,则C 1的离心率为()A.94B.54C.95D.742(22·23下·宁波·阶段练习)已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上不与顶点重合的任意一点,I 为△PF 1F 2的内心,记直线OP ,OI 的斜率分别为k 1,k 2,若k 1=32k 2,则椭圆E 的离心率为() A.13B.12C.33D.223(23·24高三上·云南昆明·期中)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点为F 1-c ,0 ,F 2c ,0(c >0),过F 1作倾斜角为π4的直线交椭圆于A ,B 两点,若△ABF 2的内切圆半径r =26c ,则该椭圆的离心率为.4(2023·山西·二模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),点M x 0,y 0 x 0>c 是C 上一点,点A 是直线MF 2与y 轴的交点,△AMF 1的内切圆与MF 1相切于点N ,若|MN |=2F 1F 2 ,则椭圆C 的离心率e =.5(22·23·红河·一模)已知双曲线E :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1、F 2,若E 上存在点P ,满足OP =12F 1F 2 ,(O 为坐标原点),且△PF 1F 2的内切圆的半径等于a ,则E 的离心率为.题型16与立体几何相关1(2023·安徽安庆·一模).如图是数学家Ger min al Dandelin 用来证明一个平面截圆锥得到的截口曲线是椭圆的模型(称为“Dandelin 双球”);在圆锥内放两个大小不同的小球,使得它们分别与圆锥的侧面、截面相切,设图中球O 1,球O 2的半径分别为4和1,球心距O 1O 2 =6,截面分别与球O 1,球O 2切于点E ,F ,(E ,F 是截口椭圆的焦点),则此椭圆的离心率等于()A.339B.63C.22D.161(22·23高三下·河北衡水·阶段练习)已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过点F 2作直线AB ⊥F 1F 2交C 于A ,B 两点. 现将C 所在平面沿直线F 1F 2折成平面角为锐角α的二面角,如图,翻折后A ,B 两点的对应点分别为A ,B ,且∠A F 1B =β⋅若1-cos α1-cos β=2516,则C 的离心率为()A.3B.22C.3D.322(2023·云南大理·模拟预测)某同学所在的课外兴趣小组计划用纸板制作一个简易潜望镜模型(图甲),该模型由两个相同的部件拼接粘连制成,每个部件由长方形纸板NCEM (图乙)沿虚线裁剪后卷一周形成,其中长方形OCEF 卷后为圆柱O 1O 2的侧面.为准确画出裁剪曲线,建立如图所示的以O 为坐标原点的平面直角坐标系,设P x ,y 为裁剪曲线上的点,作PH ⊥x 轴,垂足为H .图乙中线段OH 卷后形成的圆弧OH (图甲),通过同学们的计算发现y 与x 之间满足关系式y =3-3cos x3(0≤x <6π),现在另外一个纸板上画出曲线y =1-cos x2(0≤x <4π),如图丙所示,把沿虚线裁剪后的长方形纸板卷一周,求该裁剪曲线围成的椭圆的离心率为()A.255B.55C.12D.533(2022·辽宁沈阳·一模)如图,在底面半径为1,高为6的圆柱内放置两个球,使得两个球与圆柱侧面相切,且分别与圆柱的上下底面相切.一个与两球均相切的平面斜截圆柱侧面,得到的截线是一个椭圆.则该椭圆的离心率为.4(22·23下·辽宁·阶段练习)如图所示圆锥,C 为母线SB 的中点,点O 为底面圆心,AB 为底面圆的直径,且SC ,OB ,SB 的长度成等比数列,一个平面过A ,C ,与圆锥面相交的曲线为椭圆,若该椭圆的短轴与圆锥底面平行,则该椭圆的离心率为.5(多选)(2023·江苏南通·模拟预测)如图,已知圆锥PO 的轴PO 与母线所成的角为α,过A 1的平面与圆锥的轴所成的角为ββ>α ,该平面截这个圆锥所得的截面为椭圆,椭圆的长轴为A 1A 2,短轴为B 1B 2,长半轴长为a ,短半轴长为b ,椭圆的中心为N ,再以B 1B 2为弦且垂直于PO 的圆截面,记该圆与直线PA 1交于C 1,与直线PA 2交于C 2,则下列说法正确的是()A.当β<α时,平面截这个圆锥所得的截面也为椭圆B.|NC 1|⋅|NC 2|=a 2sin β+α sin β-αcos 2αC.平面截这个圆锥所得椭圆的离心率e =cos βcos αD.平面截这个圆锥所得椭圆的离心率e =sin αsin β题型17二级结论之切线方程圆锥曲线切线方程的常用结论【结论1】(1)经过圆x 2+y 2=r 2上一点M x 0,y 0 的切线方程为x 0x +y 0y =r 2.(2)当M x 0,y 0 在圆外时,过M 点引切线有且只有两条,过两切点的弦所在直线方程为x 0x +y 0y =r 2.【结论2】(1)若圆心不在原点,圆的方程:x -a 2+y -b 2=r 2,若M x 0,y 0 为圆上一点,则过M x 0,y 0 切线方程:x 0-a x -a +y 0-b y -b =r2(2)若M x 0,y 0 在圆外,过M 点切线有两条:切点弦所在直线方程:x 0-a x -a +y 0-b y -b =r2方便记忆,求切线和切点弦的方法,统一称为“代一留一”.【结论3】(1)过圆x 2a 2+y 2b 2=1a >b >0 上一点M x 0,y 0 切线方程为x 0x a 2+y 0y b2=1;(2)当M x 0,y 0 在椭圆x 2a 2+y 2b 2=1的外部时,过M 引切线有两条,过两切点的弦所在直线方程为x 0x a2+y 0yb 2=1.(3)设过椭圆x 2a 2+y 2b2=1a >b >0 外一点M x 0 , y 0 引两条切线,切点分别为A x 1,y 1 ,B x 2,y 2 .由(1)可知过A , B 两点的切线方程分别为:x 1xa 2+y 1yb 2=1,x 2x a 2+y 2y b2=1.又因M x 0,y 0 是两条切线的交点,∴有x 1x 0a 2+y 1y 0b 2=1,x 2x 0a 2+y 2y 0b 2=1.观察以上两个等式,发现A x 1,y 1 ,B x 2,y 2 满足直线x 0xa2+y 0y b 2=1,∴过两切点A , B 两点的直线方程为x 0xa 2+y 0yb 2=1.同理可得焦点在y 轴上的情形.【结论4】(1)过圆y 2a 2+x 2b 2=1a >b >0 上一点M x 0,y 0 切线方程为y 0y a 2+x 0x b2=1;(2)当M x 0,y 0 在椭圆y 2a 2+x 2b2=1a >b >0 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为y 0y a 2+x 0xb2=1.【结论5】(1)过双曲线x 2a 2-y 2b 2=1a >0,b >0 上一点M x 0,y 0 处的切线方程为x 0x a 2-y 0y b2=1;(2)当M x 0,y 0 在双曲线x 2a 2-y 2b 2=1的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:x 0x a2-y 0yb2=1.(3)设过双曲线x 2a 2-y 2b2=1a >0,b >0 外一点M x 0,y 0 引两条切线,切点分别为A x 1,y 1 、B x 2,y 2 .由(1)可知过A , B 两点的切线方程分别为:x 1xa 2-y 1yb 2=1 , x 2x a 2-y 2y b2=1.又因M x 0,y 0 是两条切线的交点,∴有x 1x 0a 2-y 1y 0b 2=1 , x 2x 0a 2-y 2y 0b 2=1.观察以上两个等式,发现A x 1,y 1 ,B x 2,y 2 满足直线x 0xa2-y 0y b 2=1,∴过两切点A , B 两点的直线方程为x 0x a 2-y 0y b 2=1.同理可得焦点在y 轴上的情形.【结论6】(1)过双曲线y 2a 2-x 2b 2=1a >0,b >0 上一点M x 0,y 0 处的切线方程为y 0y a 2-x 0x b2=1;(2)当M x 0,y 0 在双曲线y 2a 2-x 2b2=1a >0,b >0 的外部时,过M 引切线有两条,过两切点的弦所在直线方程为:y 0y a 2-x 0xb2=1.1(2023·重庆·模拟预测)已知F 1,F 2分别为双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点,点A x 1,y 1 为双曲线C 在第一象限的右支上一点,以A 为切点作双曲线C 的切线交x 轴于点B ,若cos ∠F 1AF 2=12,且F 1B =2BF 2 ,则双曲线C 的离心率为()A.22B.5C.2D.31(22·23高三上·全国·阶段练习)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 上的一点M (异于顶点),过点M 作双曲线C 的一条切线l .若双曲线C 的离心率e =233,O 为坐标原点,则直线OM 与l 的斜率之积为()A.13B.23C.32D.32(2022·全国·统考二模)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 与椭圆x 24+y 23=1.过椭圆上一点P -1,32作椭圆的切线l ,l 与x 轴交于M 点,l 与双曲线C 的两条渐近线分别交于N 、Q ,且N 为MQ的中点,则双曲线C 的离心率为()。
(完整版)圆锥曲线离心率专题

圆锥曲线离心率专题训练1.已知F1,F2是椭圆的两个焦点,若椭圆上存在点P,使得PF1⊥PF2,则椭圆离心率的取值范围是()A.[,1)B.[,1)C.(0,]D.(0,]2.二次曲线时,该曲线离心率e的范围是()A.B.C.D.3.椭圆焦点在x轴上,A为该椭圆右顶点,P在椭圆上一点,∠OPA=90°,则该椭圆的离心率e的范围是()A.[,1)B.(,1)C.[,)D.(0,)4.双曲线的离心率e∈(1,2),则k的取值范围是()A.(﹣∞,0)B.(﹣3,0)C.(﹣12,0)D.(﹣60,﹣12)5.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()A.B.C.D.6.已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围()A.B.C.D.7.已知椭圆x2+my2=1的离心率,则实数m的取值范围是()A.B.C.D.8.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x轴上,左、右焦点分别为F1,F2且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,双曲线的离心率的取值范围为(1,2),则该椭圆的离心率的取值范围是()A.(0,)B.(,)C.(,)D.(,1)9.椭圆的内接矩形的最大面积的取值范围是[3b2,4b2],则该椭圆的离心率e的取值范围是()A.B.C.D.10.如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值范围为()A.[2,+∞)B.(,+∞)C.[,+∞)D.(,+∞)11.已知双曲线的焦距为2c,离心率为e,若点(﹣1,0)与点(1,0)到直线的距离之和为S,且S,则离心率e的取值范围是()A.B.C.D.12.已知F1,F2是椭圆的两个焦点,若存在点P为椭圆上一点,使得∠F1PF2=60°,则椭圆离心率e的取值范围是()A.B.C.D.13.已知方程x3+2ax2+3bx+c=0(a,b,c∈R)的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则的取值范围是()A.B.C.D.14.已知椭圆上到点A(0,b)距离最远的点是B(0,﹣b),则椭圆的离心率的取值范围为()A.B.C.D.15.已知双曲线的中心在原点,焦点x轴上,它的一条渐近线与x轴的夹角为α,且,则双曲线的离心率的取值范围是()A.B.C.(1,2)D.16.已知双曲线﹣=1的两焦点为F1、F2,点P在双曲线上,∠F1PF2的平分线分线段F1F2的比为5:1,则双曲线离心率的取值范围是()A.(1,]B.(1,)C.(2,]D.(,2]17.椭圆+=1(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=a,且a∈[,],则该椭圆离心率的取值范围为()A.[,1]B.[,]C.[,1)D.[,]18.已知椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),若椭圆上存在点P使,则该椭圆的离心率的取值范围为()A.(0,)B.()C.(0,)D.(,1)19.已知直线l:y=kx+2(k为常数)过椭圆的上顶点B和左焦点F,且被圆x2+y2=4截得的弦长为L,若,则椭圆离心率e的取值范围是()A.B.C.D.20.双曲线的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l的距离之和.则双曲线的离心率e的取值范围是()A.B.C.D.21.点A是抛物线C1:y2=2px(p>0)与双曲线C2:(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于()A.B.C.D.22.在椭圆上有一点M,F1,F2是椭圆的两个焦点,若,则椭圆离心率的范围是()A.B.C.D.23.椭圆+y2=1上存在一点P,使得它对两个焦点F1,F2的张角∠F1PF2=,则该椭圆的离心率的取值范围是()A.B.C.D.24.椭圆(a>b>0)上存在点P到原点的距离等于该椭圆的焦距,则椭圆的离心率的取值范围是()A.(0,1)B.(0,C.D.25.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A.B.C.D.26.设A1、A2为椭圆的左右顶点,若在椭圆上存在异于A1、A2的点P,使得,其中O为坐标原点,则椭圆的离心率e的取值范围是()A.B.C.D.27.已知点F1、F2分别是双曲线=1的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点,若A、B和双曲线的一个顶点构成的三角形为锐角三角形,则该双曲线的离心率e的取值范围是()A.(1,1+)B.(1,)C.(﹣1,1+)D.(1,2)28.如图,已知A(﹣2,0),B(2,0),等腰梯形ABCD满足|AB|=﹣2|CD|,E为AC上一点,且.又以A、B为焦点的双曲线过C、D、E三点.若,则双曲线离心率e的取值范围为()A.B.C.D.29.已知椭圆(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值范围为()A.B.C.D.30.已知P为椭圆(a>b>0)上一点,F1,F2是椭圆的左、右焦点,若使△PF1F2为直角三角形的点P 有且只有4个,则椭圆离心率的取值范围是()A.(0,)B.(,1)C.(1,)D.(,+∞)参考答案与试题解析1.已知F1,F2是椭圆的两个焦点,若椭圆上存在点P,使得PF1⊥PF2,则椭圆离心率的取值范围是()A.[,1)B.[,1)C.(0,]D.(0,]解:如图所示,下面证明椭圆的短轴的一个端点是到椭圆的中心距离最短的点.设椭圆上任意一点P(x0,y0),则,可得.∴|OP|2==+=≥b2,当且仅当x0=0时取等号.∴椭圆的短轴的一个端点是到椭圆的中心距离最短的点.若椭圆上存在点P,使得PF1⊥PF2,则c≥b,∴c2≥b2=a2﹣c2,化为,解得.又e<1,∴.故选B.2.二次曲线时,该曲线离心率e的范围是()A.B.C.D.解:∵m∈[﹣2,﹣1],∴该曲线为双曲线,a=2,b2=﹣m,∴c=离心率e==∵m∈[﹣2,﹣1],∴∈[,],∴e∈故选C3.椭圆焦点在x轴上,A为该椭圆右顶点,P在椭圆上一点,∠OPA=90°,则该椭圆的离心率e的范围是()A.[,1)B.(,1)C.[,)D.(0,)解:可设椭圆的标准方程为:(a>b>0).设P(x,y),∵∠OPA=90°,∴点P在以OA为直径的圆上.该圆为:,化为x2﹣ax+y2=0.联立化为(b2﹣a2)x2+a3x﹣a2b2=0,则,解得,∵0<x<a,∴,化为c2>b2=a2﹣c2,∴,又1>e>0.解得.∴该椭圆的离心率e的范围是.故选:C.4.双曲线的离心率e∈(1,2),则k的取值范围是()A.(﹣∞,0)B.(﹣3,0)C.(﹣12,0)D.(﹣60,﹣12)解:∵双曲线的离心率e∈(1,2),∴双曲线标准方程为:﹣=1∴k<0,∴1<e2<4,1<<4,﹣12<k<0,故答案选C5.设F1,F2为椭圆的两个焦点,若椭圆上存在点P满足∠F1PF2=120°,则椭圆的离心率的取值范围是()A.B.C.D.解:F1(﹣c,0),F2(c,0),c>0,设P(x1,y1),则|PF1|=a+ex1,|PF2|=a﹣ex1.在△PF1F2中,由余弦定理得cos120°==,解得x12=.∵x12∈(0,a2],∴0≤<a2,即4c2﹣3a2≥0.且e2<1∴e=≥.故椭圆离心率的取范围是e∈.故选A.6.已知椭圆的内接三角形有一个顶点在短轴的顶点处,其重心是椭圆的一个焦点,求该椭圆离心率e的取值范围()A.B.C.D.解:不防设椭圆方程:(a>b>0),再不妨设:B(0,b),三角形重心G(c,0),延长BG至D,使|GD|=,设D(x,y),则,,由,得:,解得:,.而D是椭圆的内接三角形一边AC的中点,所以,D点必在椭圆内部,则.把b2=a2﹣c2代入上式整理得:.即.又因为椭圆离心率e∈(0,1),所以,该椭圆离心率e的取值范围是.故选B.7.已知椭圆x2+my2=1的离心率,则实数m的取值范围是()A.B.C.D.解:椭圆x2+my2=1化为标准方程为①若1>,即m>1,,∴,∴,∴②若,即0<m<1,,∴,∴,∴∴实数m的取值范围是故选C.8.已知有公共焦点的椭圆与双曲线的中心为原点,焦点在x轴上,左、右焦点分别为F1,F2且它们在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,双曲线的离心率的取值范围为(1,2),则该椭圆的离心率的取值范围是()A.(0,)B.(,)C.(,)D.(,1)解:设椭圆的方程为+=1(a>b>0),其离心率为e1,双曲线的方程为﹣=1(m>0,n>0),|F1F2|=2c,∵有公共焦点的椭圆与双曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,∴在椭圆中,|PF1|+|PF2|=2a,而|PF2|=|F1F2|=2c,∴|PF1|=2a﹣2c;①同理,在该双曲线中,|PF1|=2m+2c;②由①②可得a=m+2c.∵e2=∈(1,2),∴<=<1,又e1==,∴==+2∈(,3),故选C.9.椭圆的内接矩形的最大面积的取值范围是[3b2,4b2],则该椭圆的离心率e的取值范围是()A.B.C.D.解:在第一象限内取点(x,y),设x=acosθ,y=bsinθ,(0<θ<)则椭圆的内接矩形长为2acosθ,宽为2bsinθ,内接矩形面积为2acosθ•2bsinθ=2absin2θ≤2ab,由已知得:3b2≤2ab≤4b2,∴3b≤2a≤4b,平方得:9b2≤4a2≤16b2,9(a2﹣c2)≤4a2≤16(a2﹣c2),5a2≤9c2且12a2≥16c2,∴≤≤即e∈故选B.10.如图,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B为焦点,且过点D的双曲线的离心率为e1;以C,D为焦点,且过点A的椭圆的离心率为e2,则e1+e2的取值范围为()D.(,+∞)A.[2,+∞)B.(,+∞)C.[,+∞)解:BD==,∴a1=,c1=1,a2=,c2=x,∴e1=,e2=,e1e2=1但e1+e2中不能取“=”,∴e1+e2=+=+,令t=﹣1∈(0,﹣1),则e1+e2=(t+),t∈(0,﹣1),∴e1+e2∈(,+∞)∴e1+e2的取值范围为(,+∞).故选B.11.已知双曲线的焦距为2c,离心率为e,若点(﹣1,0)与点(1,0)到直线的距离之和为S,且S,则离心率e的取值范围是()A.B.C.D.解:直线l的方程为,即bx﹣ay﹣ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线l的距离d1=,同理得到点(﹣1,0)到直线l的距离.d2=,s=d1+d2==.由S,即得•a≥2c2.于是得4e4﹣25e2+25≤0.解不等式,得.由于e>1>0,所以e的取值范围是e∈.故选A.12.已知F1,F2是椭圆的两个焦点,若存在点P为椭圆上一点,使得∠F1PF2=60°,则椭圆离心率e的取值范围是()A.B.C.D.解:如图,当动点P在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P对两个焦点的张角∠F1PF2渐渐增大,当且仅当P点位于短轴端点P0处时,张角∠F1PF2达到最大值.由此可得:∵存在点P为椭圆上一点,使得∠F1PF2=60°,∴△P0F1F2中,∠F1P0F2≥60°,可得Rt△P0OF2中,∠OP0F2≥30°,所以P0O≤OF2,即b c,其中c=∴a2﹣c2≤3c2,可得a2≤4c2,即≥∵椭圆离心率e=,且a>c>0∴故选C13.已知方程x3+2ax2+3bx+c=0(a,b,c∈R)的三个实根可分别作为一椭圆,一双曲线、一抛物线的离心率,则的取值范围是()A.B.C.D.解:设f(x)=x3+2ax2+3bx+c,由抛物线的离心率为1,可知f(1)=1+2a+3b+c=0,故c=﹣1﹣2a﹣3b,所以f(x)=(x﹣1)[x2+(2a+1)x+(2a+3b+1)]的另外两个根分别是一个椭圆一个双曲线的离心率,故g(x)=x2+(2a+1)x+(2a+3b+1),有两个分别属于(0,1),(1,+∞)的零点,故有g(0)>0,g(1)<0,即2a+3b+1>0且4a+3b+3<0,则a,b满足的可行域如图所示,由于,则P(﹣1,)而表示(a,b)到(0,0)的距离,且(0,0)到P(﹣1,)的距离为d=可确定的取值范围是(,+∞).故答案为:A.14.已知椭圆上到点A(0,b)距离最远的点是B(0,﹣b),则椭圆的离心率的取值范围为()A.B.C.D.解:设点P(x,y)是椭圆上的任意一点,则,化为.∴|PA|2=x2+(y﹣b)2===f(y),∵椭圆上的点P到点A(0,b)距离最远的点是B(0,﹣b),由二次函数的单调性可知:f(y)在(﹣b,b)单调递减,∴,化为c2≤b2=a2﹣c2,即2c2≤a2,∴.又e>0.∴离心率的取值范围是.故选:C.15.已知双曲线的中心在原点,焦点x轴上,它的一条渐近线与x轴的夹角为α,且,则双曲线的离心率的取值范围是()A.B.C.(1,2)D.解:∵双曲线的焦点在x轴上,故其渐近线方程为y=x则tanα=∵,∴1<tanα<,即1<<∴1<=<3求得<<2故选B.16.已知双曲线﹣=1的两焦点为F1、F2,点P在双曲线上,∠F1PF2的平分线分线段F1F2的比为5:1,则双曲线离心率的取值范围是()A.(1,]B.(1,)C.(2,]D.(,2]解:根据内角平分线的性质可得=,再由双曲线的定义可得5PF2﹣PF2=2a,PF2=,由于PF2=≥c﹣a,∴≥c,≤.再由双曲线的离心率大于1可得,1<e≤,故选A.17.椭圆+=1(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=a,且a∈[,],则该椭圆离心率的取值范围为()A.[,1]B.[,]C.[,1)D.[,]解:∵B和A关于原点对称∴B也在椭圆上设左焦点为F′根据椭圆定义:|AF|+|AF′|=2a又∵|BF|=|AF′|∴|AF|+|BF|=2a …①O是Rt△ABF的斜边中点,∴|AB|=2c又|AF|=2csinα…②|BF|=2ccosα…③②③代入①2csinα+2ccosα=2a∴=即e==∵a∈[,],∴≤α+π/4≤∴≤sin(α+)≤1∴≤e≤故选B18.已知椭圆的左、右焦点分别为F1(﹣c,0),F2(c,0),若椭圆上存在点P使,则该椭圆的离心率的取值范围为()A.(0,)B.()C.(0,)D.(,1)解:在△PF1F2中,由正弦定理得:则由已知得:,即:aPF1=cPF2设点P(x0,y0)由焦点半径公式,得:PF1=a+ex0,PF2=a﹣ex0则a(a+ex0)=c(a﹣ex0)解得:x0==由椭圆的几何性质知:x0>﹣a则>﹣a,整理得e2+2e﹣1>0,解得:e<﹣﹣1或e>﹣1,又e∈(0,1),故椭圆的离心率:e∈(﹣1,1),故选D.19.已知直线l:y=kx+2(k为常数)过椭圆的上顶点B和左焦点F,且被圆x2+y2=4截得的弦长为L,若,则椭圆离心率e的取值范围是()A.B.C.D.解:圆x2+y2=4的圆心到直线l:y=kx+2的距离为d=∵直线l:y=kx+2被圆x2+y2=4截得的弦长为L,∴由垂径定理,得2,即,解之得d2≤∴≤,解之得k2∵直线l经过椭圆的上顶点B和左焦点F,∴b=2且c==﹣,即a2=4+因此,椭圆的离心率e满足e2===∵k2,∴0<≤,可得e2∈(0,]故选:B20.双曲线的焦距为2c,直线l过点(a,0)和(0,b),且点(1,0)到直线l的距离与点(﹣1,0)到直线l的距离之和.则双曲线的离心率e的取值范围是()A.B.C.D.解:直线l的方程为+=1,即bx+ay﹣ab=0.由点到直线的距离公式,且a>1,得到点(1,0)到直线l的距离,同理得到点(﹣1,0)到直线l的距离.,.由,得..于是得5≥2e2,即4e4﹣25e2+25≤0.解不等式,得≤e2≤5.由于e>1>0,所以e的取值范围是.故选D.21.点A是抛物线C1:y2=2px(p>0)与双曲线C2:(a>0,b>0)的一条渐近线的交点,若点A到抛物线C1的准线的距离为p,则双曲线C2的离心率等于()A.B.C.D.解:取双曲线的其中一条渐近线:y=x,联立⇒;故A(,).∵点A到抛物线C1的准线的距离为p,∴+=p;∴=.∴双曲线C2的离心率e===.故选:C.22.在椭圆上有一点M,F1,F2是椭圆的两个焦点,若,则椭圆离心率的范围是()A.B.C.D.解:由椭圆定义可知:|MF1|+|MF2|=2a,所以…①,在△MF1F2中,由余弦定理可知…②又,…③,由①②③可得:4c2=4a2﹣4b2﹣2|MF1|•|MF2|cosθ.所以|MF1|•|MF2|cosθ=0.所以c≥b,即c2≥b2=a2﹣c2,2c2≥a2,,所以e∈.故选B.23.椭圆+y2=1上存在一点P对两个焦点F1,F2的张角∠F1PF2=,则该椭圆的离心率的取值范围是()A.(0,]B.[,1)C.(0,]D.[,1)解:∵椭圆方程为:+y2=0,∴b2=1,可得c2=a2﹣1,c=∴椭圆的离心率为e=又∵椭圆上一点P,使得角∠F1PF2=,∴设点P的坐标为(x0,y0),结合F1(﹣c,0),F2(c,0),可得=(﹣c﹣x0,﹣y0),=(c﹣x0,﹣y0),∴=+=0…①∵P(x0,y0)在椭圆+y2=1上,∴=1﹣,代入①可得+1﹣=0将c2=a2﹣1代入,得﹣a2﹣+2=0,所以=,∵﹣a≤x0≤a∴,即,解之得1<a2≤2∴椭圆的离心率e==∈[,1).24.如果椭圆(a>b>0)上存在点P,使P到原点的距离等于该椭圆的焦距,则椭圆的离心率的取值范围是()A.(0,1)B.C.D.(0,解:设P(x,y),∵P到原点的距离等于该椭圆的焦距,∴x2+y2=4c2①∵P在椭圆上,∴②联立①②得,∵0≤x2≤a2∴∴∴∴e∈故选C25.椭圆的左右焦点分别为F1,F2,若椭圆C上恰好有6个不同的点P,使得△F1F2P为等腰三角形,则椭圆C的离心率的取值范围是()A.B.C.D.解:①当点P与短轴的顶点重合时,△F1F2P构成以F1F2为底边的等腰三角形,此种情况有2个满足条件的等腰△F1F2P;②当△F1F2P构成以F1F2为一腰的等腰三角形时,以F2P作为等腰三角形的底边为例,∵F1F2=F1P,∴点P在以F1为圆心,半径为焦距2c的圆上因此,当以F1为圆心,半径为2c的圆与椭圆C有2交点时,存在2个满足条件的等腰△F1F2P,此时a﹣c<2c,解得a<3c,所以离心率e当e=时,△F1F2P是等边三角形,与①中的三角形重复,故e≠同理,当F1P为等腰三角形的底边时,在e且e≠时也存在2个满足条件的等腰△F1F2P这样,总共有6个不同的点P使得△F1F2P为等腰三角形综上所述,离心率的取值范围是:e∈(,)∪(,1)26.设A1、A2为椭圆的左右顶点,若在椭圆上存在异于A1、A2的点P,使得,其中O为坐标原点,则椭圆的离心率e的取值范围是()A.B.C.D.解:A1(﹣a,0),A2(a,0),设P(x,y),则=(﹣x,﹣y),=(a﹣x,﹣y),∵,∴(a﹣x)(﹣x)+(﹣y)(﹣y)=0,y2=ax﹣x2>0,∴0<x<a.代入=1,整理得(b2﹣a2)x2+a3x﹣a2b2=0 在(0,a )上有解,令f(x)=(b2﹣a2)x2+a3x﹣a2b2=0,∵f(0)=﹣a2b2<0,f(a)=0,如图:△=(a3)2﹣4×(b2﹣a2)×(﹣a2b2)=a2(a4﹣4a2b2+4b4)=a2(a2﹣2c2)2≥0,∴对称轴满足0<﹣<a,即0<<a,∴<1,>,又0<<1,∴<<1,故选D.27.已知点F1、F2分别是双曲线=1的左、右焦点,过F1且垂直于x轴的直线与双曲线交于A、B两点,若A、B和双曲线的一个顶点构成的三角形为锐角三角形,则该双曲线的离心率e的取值范围是()A.(1,1+)B.(1,)C.(﹣1,1+)D.(1,2):解:根据双曲线的对称性,得△ABE中,|AE|=|BE|,∴△ABE是锐角三角形,即∠AEB为锐角由此可得Rt△AF1E中,∠AEF<45°,得|AF1|<|EF1|∵|AF1|==,|EF1|=a+c∴<a+c,即2a2+ac﹣c2>0两边都除以a2,得e2﹣e﹣2<0,解之得﹣1<e<2∵双曲线的离心率e>1∴该双曲线的离心率e的取值范围是(1,2)故选D.28.如图,已知A(﹣2,0),B(2,0),等腰梯形ABCD满足|AB|=﹣2|CD|,E为AC上一点,且.又以A、B为焦点的双曲线过C、D、E三点.若,则双曲线离心率e的取值范围为()A.B.C.D.解:如图,以AB的垂直平分线为γ轴,直线AB为x轴,建立直角坐标系xOγ,则CD⊥γ轴.因为双曲线经过点C、D,且以A、B为焦点,由双曲线的对称性知C、D关于γ轴对称,设c为双曲线的半焦距(c=2),依题意,记,h是梯形的高,由定比分点坐标公式得,.设双曲线的方程为,则离心率,由点C、E在双曲线上,将点C、E坐标和代入双曲线的方程,得,①.②由①式得,③将③式代入②式,整理得,故由题设得,,解得,所以,双曲线的离心率的取值范围为[].故选A.29.已知椭圆(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=α,且,则该椭圆离心率e的取值范围为()A.B.C.D.解:把x=c代入椭圆的方程可得,解得.取A,则B,∵∠OBF=∠AOF﹣∠OFB,,=∴tanα=tan∠OBF=====,∵,∴,∴.解得.故选A.30.已知P为椭圆(a>b>0)上一点,F1,F2是椭圆的左、右焦点,若使△PF1F2为直角三角形的点P 有且只有4个,则椭圆离心率的取值范围是()A.(0,)B .(,1)C.(1,)D.(,+∞)解:①当PF1⊥x轴时,由两个点P满足△PF1F2为直角三角形;同理当PF2⊥x轴时,由两个点P满足△PF1F2为直角三角形.∵使△PF1F2为直角三角形的点P有且只有4个,∴以原点为圆心,c为半径的圆与椭圆无交点,∴c<b,∴c2<b2=a2﹣c2,∴,又e >0,解得.故选A.21。
圆锥曲线中求离心率题解

23 ,2
A. 3 23 ,+∞
D. 3
23 ,2
B. 3
23 ,+∞
C. 3
解析:由双曲线的对称性知,满足题意的这一对直线也关于
x 轴(或 y 轴)对称。由题意知有且只有一对这样的直线,故 该双曲线在第一象限的渐近线的倾斜角范围是大于30°且小
于或等于60°,不失一般性,设双曲线方程
x2 a2
y2 b2
AB
1 的斜率为- ,
2
所以
b2 a2
1 2
。由
a2=b2+c2
可知 a2
2b2
2a2
2c2 ,即 a2
2c2
,
再两边同时除以 a2 得 ( c )2 1 即 e2 1 ,所以 e 2 ,故选 D.
a2
2
2
例 5.[2015·新课标卷Ⅱ(理)] 已知 A,B 为双曲线 E 的左, 右顶点,点 M 在 E 上,∆ABM 为等腰三角形,且顶角为 120°, 则 E 的离心率为( )
4a 2
8c 2
0
,又因
e
1,解得
e
2 2
,
1
。
解法 2:(利用 x 或 y 的有界性建立不等式)可知 F(1 c,0)F(2 c,0),
设
P(x,y),则有
F1P
(x
c,
y),
F2 P
(x
c,
y) 。由
F1PF2
90
知
F1P
F2 P
,
则
F1P
F2 P
0
,即 (x
c)( x
C. (2,5)
D. (2,5)
解析:根据题意可知 e2
高中数学《圆锥曲线的离心率问题》基础知识与练习题(含答案解析)

高中数学《圆锥曲线的离心率问题》基础知识与练习题(含答案解析)离心率是圆锥曲线的一个重要几何性质,一方面刻画了椭圆,双曲线的形状,另一方面也体现了参数,a c 之间的联系。
一、基础知识: 1、离心率公式:ce a=(其中c 为圆锥曲线的半焦距) (1)椭圆:()0,1e ∈ (2)双曲线:()1,+e ∈∞2、圆锥曲线中,,a b c 的几何性质及联系 (1)椭圆:222a b c =+,① 2a :长轴长,也是同一点的焦半径的和:122PF PF a += ② 2b :短轴长 ③ 2:c 椭圆的焦距 (2)双曲线:222c b a =+① 2a :实轴长,也是同一点的焦半径差的绝对值:122PF PF a −=② 2b :虚轴长 ③ 2:c 椭圆的焦距3、求离心率的方法:求椭圆和双曲线的离心率主要围绕寻找参数,,a b c 的比例关系(只需找出其中两个参数的关系即可),方法通常有两个方向:(1)利用几何性质:如果题目中存在焦点三角形(曲线上的点与两焦点连线组成的三角形),那么可考虑寻求焦点三角形三边的比例关系,进而两条焦半径与a 有关,另一条边为焦距。
从而可求解 (2)利用坐标运算:如果题目中的条件难以发掘几何关系,那么可考虑将点的坐标用,,a b c 进行表示,再利用条件列出等式求解2、离心率的范围问题:在寻找不等关系时通常可从以下几个方面考虑:(1)题目中某点的横坐标(或纵坐标)是否有范围要求:例如椭圆与双曲线对横坐标的范围有要求。
如果问题围绕在“曲线上存在一点”,则可考虑该点坐标用,,a b c 表示,且点坐标的范围就是求离心率范围的突破口(2)若题目中有一个核心变量,则可以考虑离心率表示为某个变量的函数,从而求该函数的值域即可(3)通过一些不等关系得到关于,,a b c 的不等式,进而解出离心率注:在求解离心率范围时要注意圆锥曲线中对离心率范围的初始要求:椭圆:()0,1e ∈,双曲线:()1,+e ∈∞ 二、典型例题:例1:设12,F F 分别是椭圆()2222:10x y C a b a b +=>>的左、右焦点,点P 在椭圆C 上,线段1PF 的中点在y 轴上,若1230PF F ∠=,则椭圆的离心率为( ) A .33 B .36C .13D .16思路:本题存在焦点三角形12PF F ,由线段1PF 的中点在y 轴上,O 为12F F 中点可得2PF y ∥轴,从而212PF F F ⊥,又因为1230PF F ∠=,则直角三角形12PF F 中,1212::2:1:3PF PF F F =,且12122,2a PF PF c F F =+=,所以12122323F F c c e a a PF PF ∴====+ 答案:A小炼有话说:在圆锥曲线中,要注意O 为12F F 中点是一个隐含条件,如果图中存在其它中点,则有可能与O 搭配形成三角形的中位线。
圆锥曲线离心率专题 历年真题

圆锥曲线离心率专题历年真题1.题目:已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b<0)$的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是?答案:D.(2,+∞)改写:双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b<0)$的右焦点为F。
过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,求此双曲线离心率的取值范围。
答案为D.(2,+∞)。
2.题目:过双曲线M:$x-\frac{y^2}{b^2}=1$的左顶点A作斜率为1的直线l,若l与双曲线M的两条渐近线分别相交于B、C,且$|AB|=|BC|$,则双曲线M的离心率是?答案:$\frac{10}{3}$改写:双曲线M:$x-\frac{y^2}{b^2}=1$的左顶点为A。
作斜率为1的直线l过点A,与双曲线M的两条渐近线分别相交于B、C,且$|AB|=|BC|$,求双曲线M的离心率。
答案为$\frac{10}{3}$。
3.题目:方程$2x-5x+2=$的两个根可分别作为()A.一椭圆和一双曲线的离心率C.一椭圆和一抛物线的离心率B.两抛物线的离心率D.两椭圆的离心率答案:无法确定改写:方程$2x-5x+2=$的两个根可分别作为哪些图形的离心率?答案无法确定。
4.题目:已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一条渐近线方程为$y=x$,则双曲线的离心率为?答案:$\frac{\sqrt{3}}{3}$改写:已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的一条渐近线方程为$y=x$,求双曲线的离心率。
答案为$\frac{\sqrt{3}}{3}$。
5.题目:已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>2)$的两条渐近线的夹角为$\frac{\pi}{3}$,则双曲线的离心率为?答案:D.$\frac{3}{\sqrt{23}}$改写:已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>2)$的两条渐近线的夹角为$\frac{\pi}{3}$,求双曲线的离心率。
圆锥曲线离心率求法专题训练-含答案

圆锥曲线离心率求法专题训练(一)1.已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点P 在椭圆上,且1230PF F ∠=︒,2160PF F ∠=︒,则椭圆的离心率等于( )A 1B 1CD -2.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是1F ,2F ,过右焦点2F 相交于A ,B 两点,若满足223AF F B =,则椭圆的离心率为( )A .35B .12C D3.在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>上存在点P ,使得12||3||PF PF =,其中1F 、2F 分别为椭圆的左、右焦点,则该椭圆的离心率取值范围是( ) A .1[,1)4B .1(,1)4C .1(,1)2D .1[,1)24.已知椭圆22221(0)x y a b a b+=>>,1F ,2F 分别为椭圆的左、右焦点,若椭圆上存在一点P ,使得12||||2PF PF b -=,则该椭圆离心率的取值范围为( )A .1(0,]2B .1[.1)2C .D .5.已知平行四边形ABCD 内接于椭圆2222:1(0)x y a b a bΩ+=>>,且AB ,AD 斜率之积的取值范围为43(,)54--,则椭圆Ω的离心率的取值范围为( )A .1)2B .C .1(4D .11(,)546.在椭圆222211x y m m +=-,(1)m >的左、右焦点分别为1F ,2F ,过2F 垂直于x 轴的直线交椭圆于A ,B 两点,且83ABO S ∆=,则椭圆的离心率为( )A .13B .12C .2D .167.已知椭圆C 的两个焦点分别为1F ,2F ,以12F F 为直径的圆交椭圆于点P ,且21122PF F PF F ∠=∠,则C 的离心率为( )A .1-B .2-CD 18.椭圆2222:1(0,0)x y M a b a b+=>>的左、右焦点分别为1F ,2F ,P 为椭圆M 上任一点,且12||||PF PF ⋅最大值取值范围为2[2c ,23]c (其中222)c a b =-,则椭圆M 的离心率的取值范围是( )A .B .C .D .11[,]32圆锥曲线离心率求法专题训练(二)1.已知1F ,2F 是椭圆22221(0)x y a b a b+=>>的左、右焦点,椭圆上一点M 满足1260F MF ∠=︒,则该椭圆离心率取值范围是( )A .1(0,]2B .1[,1)2C .D .2.已知1F ,2F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点P ,Q 是C 上位于x 轴上方的任意两点,且12//PF QF .若12||||PF QF b +,则C 的离心率的取值范围是( )A .1(0,]2B .1[,1)2C .D .3.已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为(1,0)F ,一个顶点为(2,0)A ,设(,0)B t ,点P 是椭圆C上的动点,若||||PB AB 恒成立,则t 的取值范围是( )A .1[0,]2B .1[,)2+∞C .[2-,2]D .(2,)+∞4.已知双曲线22221(0,0)y x a b a b-=>>的上下焦点分别为1F ,2F ,过1F 作双曲线渐近线的垂线1F P ,垂足为点P ,若1POF ∆2,则双曲线的离心率为( )A .2BC D5.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,过右焦点作平行于其中一条渐近线的直线交双曲线于点A ,若△12AF F 的内切圆半径为3b,则双曲线的离心率为( )A B .2CD .36.设双曲线2222:1x y C a b-=的左、右焦点分别为1F 、2F ,右顶点为A ,M 为双曲线上一点,且2212MF A MAF MF A ∠=∠=∠,则双曲线的离心率为( )A .2BCD .37.已知双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线为1l ,2l ,若双曲线C 的右支上存在一点P ,使得点P 到1l ,2l 的距离之和为b ,则双曲线C 离心率的取值范围是( )A .)+∞B .C .[2,)+∞D .(1,2]8.双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为A ,右焦点为F ,过点A 的直线交双曲线C 于另一点B ,当BF AF ⊥时满足||2||AF BF >,则双曲线离心率e 的取值范围是( )A .12e <<B .312e <<C .322e << D .1e <<圆锥曲线离心率求法专题训练(三)1.已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且[6πα∈,]4π,则该椭圆离心率e 的取值范围为( )A .[2B .[2,1) C .[21] D .2.椭圆22110064x y +=的焦点为1F 、2F ,椭圆上的点P 满足1260F PF ∠=︒,则△12F PF 的面积是( )A B C D .6433.已知椭圆22221(0)x y a b a b+=>>的右顶点为A ,点P 在椭圆上,O 为坐标原点,且90OPA ∠=︒,则椭圆的离心率的取值范围为( )A . B .(2 C .2 D .4.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,椭圆C 上的两点A 、B 关于原点对称,且满足0FA FB =,||||2||FB FA FB ,则椭圆C 的离心率的取值范围是( )A .B .1)C .1]D .1,1)5.椭圆22221(0)x y a b a b+=>>的两个焦点为1F ,2F ,若P 为椭圆上一点,且12||3||PF PF =,则该椭圆离心率的取值范围为( )A .(0,1]3 B .1[3,1) C .(0,1]2 D .1[2,1)6.设椭圆2222:1(0)x y E a b a b+=>>的一个焦点为(1,0)F ,点(1,1)A -为椭圆E 内一点,若椭圆E 上存在一点P ,使得||||9PA PF +=,则椭圆E 的离心率的取值范围是( ) A .1[,1)2B .11[,]32C .11[,]54D .12[,]237.已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为(,0)F c ,上顶点为(0,)A b ,直线2a x c=上存在一点P 满足FP AP FA AP =-,则椭圆的离心率的取值范围为( )A .1[,1)2B .C .D .8.椭圆2221x y a +=上存在一点P ,使得它对两个焦点1F ,2F 的张角122F PF π∠=,则该椭圆的离心率的取值范围是( )A .(0B .,1)C .(0,1]2D .1[2,1)圆锥曲线离心率求法专题训练(四)1.设椭圆方程为22221(0)x y a b a b+=>>,焦距为2c ,(2,0)A c -,(2,0)B c ,如果椭圆上存在一点P ,使得AP BP ⊥,则离心率的取值范围为( )A .1)2B .4)5C .D .2.设椭圆22221(0)x y a b a b+=>>的两焦点为1F 、2F ,若椭圆上存在一点Q ,使12120FQF ∠=︒,椭圆离心率e 的取值范围为( )A 1e <B 1e <<C .603e< D .112e <<3.已知椭圆22221(0)x y a b a b+=>>的左,右焦点分别为1F ,2F ,若椭圆上存在点P ,使得12PF PF ⊥,则椭圆离心率的取值范围是( )A .B .C .D .4.已知点1F ,2F 为椭圆22221(0)x y a b a b+=>>的左右焦点,若椭圆上存在点P 使得12||2||PF PF =,则此椭圆的离心率的取值范围是( )A .1(0,)3 B .(0,1]2 C .1(3,1]2D .1[3,1)5.已知椭圆22221(0)x y a b a b+=>>的两个焦点分别为1F ,2F ,若椭圆上存在点P 使得12F PF ∠是钝角,则椭圆离心率的取值范围是( )A . B . C .1(0,)2D .1(,1)26.已知椭圆22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,且12||2F F c =,若椭圆上存在点M 使得1221sin sin a cMF F MF F =∠∠,则该椭圆离心率的取值范围为( )A .1)B .1)C .D .1,1)7.已知椭圆的左、右焦点为1F 、2F ,若椭圆上存在点P 使1260F PF ∠=︒,则椭圆的离心率的取值范围为()A .,1)B .(0C .1[2,1)D .(0,1]28.设1F ,2F 为椭圆的两个焦点,若椭圆上存在点P 满足12120F PF ∠=︒,则椭圆的离心率的取值范围是( )A . B . C . D .圆锥曲线离心率求法专题训练(五)1.已知椭圆:22221(,0)x y a b a b+=>和圆222:O x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为A ,B .若椭圆上存在点P ,使得0PA PB =,则椭圆离心率e 的取值范围是( )A .1[2,1)B .(0C.,1) D .1[22.若双曲线22221(0,0)x y a b a b-=>>的两个焦点为1F ,2F ,若双曲线上存在一点P ,满足12||3||PF PF =,则该双曲线的离心率的取值范围是( ) A .12e << B .12eC .12e <D .12e <3.设椭圆22221x y a b+=的左、右焦点分别是1F ,2F ,如果在椭圆上存在一点p ,使12F PF ∠为钝角,则椭圆离心率的取值范围是 .4.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,若双曲线上存在一点P 使21||||PF aPF c=,则该双曲线的离心率的取值范围是 .5.已知1F 、2F 分别为双曲线22221(0,0)xy a b ab-=>>的左、右焦点,若双曲线左支上存在一点P 使得221||8||PF a PF =,则双曲线的离心率的取值范围是 .圆锥曲线离心率求法专题训练(一)1.(2021秋•昌邑区校级期中)已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点P 在椭圆上,且1230PF F ∠=︒,2160PF F ∠=︒,则椭圆的离心率等于( )A1B1CD-解:1230PF F ∠=︒,2160PF F ∠=︒,12||2F F c =,∴△12PF F 是直角三角形,2||PF c =,1||PF =,由椭圆的定义可得,12||||2PF PF a +=,∴2c a +=,∴1c e a ==.故选:B . 2.(2021秋•平城区校级月考)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是1F ,2F ,过右焦点2F的直线与椭圆相交于A ,B 两点,若满足223AF F B =,则椭圆的离心率为( ) A .35B .12C.2D解:设直线方程为x y c +,设1(A x ,1)y ,2(B x ,2)y ,与椭圆方程联立得222241()02a b y cy b +-=,12222y y a b+=+4122212b y y a b =-+①223AF F B =,1(c x ∴-,12)3(y x c -=-,2)y ,得123y y =-②,由①②联立可得,22213242a b c +=,即22222323c a b a c =+=-,得2243c a =,椭圆的离心率c e a ==D . 3.(2021秋•青羊区校级月考)在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b+=>>上存在点P ,使得12||3||PF PF =,其中1F 、2F 分别为椭圆的左、右焦点,则该椭圆的离心率取值范围是( )A .1[,1)4B .1(,1)4C .1(,1)2D .1[,1)2解:12||3||PF PF =,又点P 在椭圆上,∴由椭圆的定义可得,12||||2PF PF a +=, 2||2a PF ∴=,点P 在椭圆上,2||PF a c ∴-,∴2a a c -,即12ce a=, 又1e <,∴112e <,故椭圆的离心率取值范围是1[,1)2.故选:D . 4.(2021秋•五华区校级月考)已知椭圆22221(0)x y a b a b+=>>,1F ,2F 分别为椭圆的左、右焦点,若椭圆上存在一点P ,使得12||||2PF PF b -=,则该椭圆离心率的取值范围为( )A .1(0,]2B .1[.1)2C. D. 解:由题意可得122||||2c PF PF c --,由题意可得22b c ,而222b a c =-,c e a=, 所以可得:22e,而(0,1)e ∈,故选:D . 5.(2021春•河南期中)已知平行四边形ABCD 内接于椭圆2222:1(0)x y a b a bΩ+=>>,且AB ,AD 斜率之积的取值范围为43(,)54--,则椭圆Ω的离心率的取值范围为( )A.1)2B. C.1(4D .11(,)54解:设1(A x ,1)y ,2(B x ,2)y ,由平行四边形对角线互相平分可得A 与C ,B 与D 关于原点对称, 所以可得2(D x -,2)y -,所以2221121222211212AB ADy y y y y y k k x x x x x x -+-⋅=⋅=-+-, 将A ,B 的坐标代入可得22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩相减可得22221212220x x y y a b --+=, 可得2221222212y y b x x a -=--,由题意可得:224354b a -<-<-,即223445b a <<, 可得:2234145c a <-<,解得:c e a =∈,1)2,故选:A .6.(2021秋•洛南县校级月考)在椭圆222211x y m m +=-,(1)m >的左、右焦点分别为1F ,2F ,过2F 垂直于x 轴的直线交椭圆于A ,B 两点,且83ABO S ∆=,则椭圆的离心率为( )A .13B .12CD .16解:由椭圆的方程可得22a m =,221b m =-,所以2221c a b =-=,可得1c =,设A 的坐标为0(,)c y ,则220221y c a b +=,所以20||b y a =,所以20182||23AOB b S c y c a ∆=⋅⋅=⋅=,可得3a =,所以离心率13c e a ==,故选:A .7.(2021•迎江区校级三模)已知椭圆C 的两个焦点分别为1F ,2F ,以12F F 为直径的圆交椭圆于点P ,且21122PF F PF F ∠=∠,则C 的离心率为( )A.1-B.2-CD1解:在△12F PF 中,1290F PF ∠=︒,2160PF F ∠=︒设2||PF m =,则1212||2,||c F F m PF ===,又由椭圆定义可知122||||1)a PF PF m =+=则离心率212c c e a a ===,故选:D . 8.(2021•新华区校级开学)椭圆2222:1(0,0)x y M a b a b+=>>的左、右焦点分别为1F ,2F ,P 为椭圆M 上任一点,且12||||PF PF ⋅最大值取值范围为2[2c ,23]c (其中222)c a b =-,则椭圆M 的离心率的取值范围是( )A .2B .[2C .D .11[,]32解:由题意的定义可得:12||||2PF PF a +=, 再由均值不等式可得:2221212||||2||||()()22PF PF aPF PF a +⋅==,12||||PF PF ⋅的最大值为2a ,由题意可得22223c a c 可得21132e,解得22e ,故选:A . 圆锥曲线离心率求法专题训练(二)1.(2021•安徽开学)已知1F ,2F 是椭圆22221(0)x y a b a b+=>>的左、右焦点,椭圆上一点M 满足1260F MF ∠=︒,则该椭圆离心率取值范围是( )A .1(0,]2B .1[,1)2C .D . 解:设11||MF r =,22||MF r =,由余弦定理得:222121212||||||2||||cos60F F MF MF MF MF =+-︒,∴22212124r r r r c +-=,又122r r a +=,即222121224r r r r a ++=,解得222212483a c r r ++=,2212443a c r r -=,2212122r r r r +,∴2222488833a c a c +-, 得224c a ,01e <<,∴1[,1)2e ∈.故选:B .2.(2021秋•河北月考)已知1F ,2F 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,点P ,Q 是C 上位于x 轴上方的任意两点,且12//PF QF .若12||||PF QF b +,则C 的离心率的取值范围是( )A .1(0,]2B .1[,1)2C .D . 解:如图,延长1PF ,交椭圆C 于M ,根据椭圆的对称性可知,21||||QF F M =,则1211||||||||||PF QF PF MF PM +=+=,因为焦点弦||PM 的最小值为22b a ,由题意可知,22b b a ,所以12b a ,则2302e <=.所以C 的离心率的取值范围.故选:C .3.(2021春•泗县校级期末)已知椭圆2222:1(0)x yC a b a b+=>>的一个焦点为(1,0)F ,一个顶点为(2,0)A ,设(,0)B t ,点P 是椭圆C 上的动点,若||||PB AB 恒成立,则t 的取值范围是( )A .1[0,]2B .1[,)2+∞C .[2-,2]D .(2,)+∞解:由已知可得1c =,2a =,则2223b a c =-=,所以22143x y +=,设0(P x ,0)y ,则2200143x y +=,所以220003(22)4x y x =--,若||||PB AB 恒成立,则||2||2PB AB 恒成立,所以200()2(2)2x t y t -+-,整理可得000(2)(2)(2)8x x t x -+-,当02x =时,不等式恒成立,当022x -<,不等式可化为028x t+恒成立,因为021()82max x +=,所以12t , 综上,t 的取值范围是1[2,)+∞.故选:B .4.(2021秋•南充月考)已知双曲线22221(0,0)y x a b a b-=>>的上下焦点分别为1F ,2F ,过1F 作双曲线渐近线的垂线1F P ,垂足为点P ,若1POF ∆23,则双曲线的离心率为( ) A .2B 3C 39D 23解:焦点1(0,)F c ,设曲线的渐近线的方程为ay x b=,因为1F P OP ⊥, 所以直线1F P 的方程为b y c x a -=-,即a y x c b =+,联立b y x c aa y xb ⎧=-+⎪⎪⎨⎪=⎪⎩,解得ab x c =,所以121322OPF ab ab Sc c =⋅⋅=,所以3b a =2222232311()3c c b e a a a ===+=+, 故选:D .5.(2021秋•许昌月考)已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F ,2F ,过右焦点作平行于其中一条渐近线的直线交双曲线于点A ,若△12AF F 的内切圆半径为3b,则双曲线的离心率为( )A .3B .2C .5D .3解:设双曲线的左、右焦点,1(,0)F c -,2(,0)F c ,设双曲线的一条渐近线方程为by x a=, 可得直线2AF 的方程()by x c a =-,联立双曲线22221(0)x y b a a b -=>>,可得22(2c a A c +,22())2b a c ac -,设1||AF m =,2||AF n =,由三角形的面积的等积法可得,2211()(2)22322b b c a m n c c ac-⋅++=⋅⋅,化简可得2332c m n a c a+=--①,由双曲线的定义可得2m n a -=②,在三角形12AF F 中,22()sin 2b c a n ac θ-=,(θ为直线2AF 的倾斜角),由tan b a θ=,22sin cos 1θθ+=,可得22sin b b c a bθ==+,可得222c a n a -=③, 由①②③化简可得2220c ac a --=,()(2)0c a c a +-=,所以c a =-(舍),2c a =,所以离心率2ce a==, 故选:B .6.(2021秋•南宁月考)设双曲线2222:1x y C a b-=的左、右焦点分别为1F 、2F ,右顶点为A ,M 为双曲线上一点,且2212MF A MAF MF A ∠=∠=∠,则双曲线的离心率为( ) A .2BCD .3解:因为22MF A MAF ∠=∠,所以2||||AM MF =+,故M 在2AF 中垂线上,则M 在曲线右支上, 所以21112MAF MF A AMF MF A ∠=∠+∠=∠,所以11MF A AMF ∠=∠,所以1||||AF AM =, 所以12||||AF MF =,(,0)A a ,2(,0)F c ,故2M a cx +=,22||M MF c a a x c=-, 所以22||()2c a c a MF a c +=⋅-,1||AF c a =+,所以2()2c a c a c a a c+⋅-=+,即22ac c a c a a +-=+,即2242ac c a ac +=+,所以2()42c c c a a a+=+⋅,即240e e --=,所以e =1e >,所以e =B . 7.(2021•浙江开学)已知双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线为1l ,2l ,若双曲线C 的右支上存在一点P ,使得点P 到1l ,2l 的距离之和为b ,则双曲线C 离心率的取值范围是( ) A.)+∞B.C .[2,)+∞D .(1,2]解:由题意可得直线1l ,2l 的方程分别为:0bx ay +=,0bx ay -=,设0(P x ,0)y ,则2200221x y a b-=,所以22222200b x a y a b -=,即220000()()bx ay bx ay a b +-=, 所以220000a b bx ay bx ay +=-,设P 到直线1l ,2l 的距离分别为1d ,2d,则001||bx ay d c +==, 同理可得:002||bx ay d c-=, 由题意两点22002200000012||||||||22a b bx ay bx ay bx ay bx ay a b abd d c cc c +-++--+===, 当且仅当22200()bx ay a b -=,即00bx ay ab -=±,时取等号,由题意可得2ab b c ,所以可得2ca ,故选:C .8.(2021秋•恩施州月考)双曲线2222:1(0,0)x y C a b a b-=>>的左顶点为A ,右焦点为F ,过点A 的直线交双曲线C 于另一点B ,当BF AF ⊥时满足||2||AF BF >,则双曲线离心率e 的取值范围是( )A .12e <<B .312e <<C .322e << D .3312e +<<解:如图,(,0)F c ,把x c =代入22221x y a b -=,得2b y a =±,不妨设B 在第一象限,则2(,)b B c a ,由题意可得22b a c a +>,即2222()a ac c a +>-,可得2230e e --<,解得:312e -<<.又1e >,∴双曲线离心率e 的取值范围是312e <<.故选:B .圆锥曲线离心率求法专题训练(三)1.(2021•江西模拟)已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且[6πα∈,]4π,则该椭圆离心率e 的取值范围为( )A .2[3B .2[,1) C .2[31] D .3[6 解:由已知,点B 和点A 关于原点对称,则点B 也在椭圆上,设椭圆的左焦点为1F ,则根据椭圆定义:1||||2AF AF a +=,根据椭圆对称性可知:1||||AF BF =,因此||||2AF BF a +=①;因为AF BF ⊥,则在Rt ABF ∆中,O 为斜边AB 中点,则||2||2AB OF c ==,那么||2sin AF c α=②,||2cos BF c α=③;将②、③代入①得,2sin 2cos 2c c a αα+=,则离心率11sin cos 2)4c e a πααα===++,由[6πα∈,]4π,5[412ππα+∈,]2π,由562sin 12π+62sin()[4πα++∈1],则2[e ∈31],故选:C .2.(2020秋•潞州区校级期末)椭圆22110064x y +=的焦点为1F 、2F ,椭圆上的点P 满足1260F PF ∠=︒,则△12F PF 的面积是( )A 643B 913C 163D .643 解:椭圆22110064x y +=的焦点为1F 、2F ,椭圆上的点P 满足1260F PF ∠=︒,∴由椭圆定义得:12||||20PF PF +=,221212||||2||||400PF PF PF PF ∴++=,① 由余弦定理得:22121212||||2||||cos 436PF PF PF PF F PF +-∠=⨯,② 联立①②,得:12256||||3PF PF =,∴△12F PF 的面积是12112563643||||sin 60223S PF PF =︒=⨯=故选:A .3.(2020秋•尖山区校级月考)已知椭圆22221(0)x y a b a b+=>>的右顶点为A ,点P 在椭圆上,O 为坐标原点,且90OPA ∠=︒,则椭圆的离心率的取值范围为( ) A .3(B .2(C .2D .3 解:设(,)P x y ,90OPA ∠=︒,∴点P 在以OA 为直径的圆上.该圆为:22()(2a x y -+=2)2a,化为220x ax y -+=.联立椭圆方程可化为222322()0b a x a x a b -+-=,解得22P ab x c=,0x a <<,220ab a c ∴<<,化为2222c b a c >=-,212e ∴>,又10e >>21e <<.故选:B .4.(2020•镇海区校级模拟)设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,椭圆C 上的两点A 、B 关于原点对称,且满足0FA FB =,||||2||FB FA FB ,则椭圆C 的离心率的取值范围是( )A .2[5B .5[1) C .2[31] D .[31,1)解:作出椭圆的左焦点F ',由椭圆的对称性可知,四边形AFBF '为平行四边形, 又0FA FB =,即FA FB ⊥,故平行四边形AFBF '为矩形,||||2AB FF c '∴==,设AF n '=,AF m =,则在直角三角形ABF 中,2m n a +=,2224m n c +=,① 得22mn b =,②①÷②得222m n c n m b +=,令mt n=,得2212c t t b +=,又由||||2||FB FA FB ,得[1m t n =∈,2],2212[2c t t b ∴+=∈,5]2,即22[1c b ∈,5]4即22514c b ,得22415b c , 即222415a c c -,即224115a c -,则22925a c ,即221529c a ,得1529e 得2523e 则椭圆的离心率的取值范围是2[2,5]3,故选:A .5.(2020•永康市模拟)椭圆22221(0)x y a b a b+=>>的两个焦点为1F ,2F ,若P 为椭圆上一点,且12||3||PF PF =,则该椭圆离心率的取值范围为( )A .(0,1]3B .1[3,1)C .(0,1]2D .1[2,1)解:P 为椭圆22221(0)x y a b a b+=>>上一点,1F ,2F 为椭圆焦点,且12||3||PF PF =,可得12||||2PF PF a +=,13||2PF a a c =+,12e ∴.∴椭圆离心率的范围是1[2,1)故选:D .6.(2018•恩施州一模)设椭圆2222:1(0)x y E a b a b+=>>的一个焦点为(1,0)F ,点(1,1)A -为椭圆E 内一点,若椭圆E 上存在一点P ,使得||||9PA PF +=,则椭圆E 的离心率的取值范围是( ) A .1[,1)2B .11[,]32C .11[,]54D .12[,]23解:记椭圆的左焦点为1(1,0)F -,则1||1AF =,11||||||PF PA AF +,112||||||||||1910a PF PF PA AF PF ∴=++++=,即5a ;11||||||PF PA AF -,112||||||||||918a PF PF PA AF PF ∴=+-+-=,即4a ,45a ∴,∴11[,]54c a ∈故选:C .7.(2020秋•安顺期末)已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为(,0)F c ,上顶点为(0,)A b ,直线2a x c=上存在一点P 满足FP AP FA AP =-,则椭圆的离心率的取值范围为( )A .1[,1)2B .2[C .51[-D .2] 解:设2(a P c ,)y ,由FP AP FA AP =-,可得()0FP FA AP +=,则2(a FP FA c c+=-,)(y c +-,2)(2a b c c =-,)y b +,2(a AP c =,)y b -,所以由()0FP FA AP +=,可得:22(2)()()0a a c y b y b c c -++-=,可得:4222220a a b y c--=-,整理可得:4222222()0a a c a c c ---,即42310e e -+,235352e -+,即51512e-+,由于椭圆的离心率小于1511e -<, 故选:C .8.(2012•西安一模)椭圆2221x y a +=上存在一点P ,使得它对两个焦点1F ,2F 的张角122F PF π∠=,则该椭圆的离心率的取值范围是( ) A .(02B .2[,1) C .(0,1]2D .1[2,1)解:椭圆方程为:2220x y a +=,21b ∴=,可得221c a =-,21c a =-椭圆的离心率为21a e -=又椭圆上一点P ,使得角122F PF π∠=,∴设点P 的坐标为0(x ,0)y ,结合1(,0)F c -,2(,0)F c ,可得10(PF c x =--,0)y -,20(PF c x =-,0)y -,∴22212000PF PF x c y =-+=⋯① 0(P x ,0)y 在椭圆2221x y a+=上,∴220021x y a =-,代入①可得22200210x x c a -+-=将221c a =-代入,得22200220x x a a --+=,所以4220221a a x a -=-,0a x a -∴220x a ,即4222201a a a a --,解之得22a ∴椭圆的离心率221121[a e a -=-,1).圆锥曲线离心率求法专题训练(四)1.(2015秋•南关区校级期末)设椭圆方程为22221(0)x y a b a b+=>>,焦距为2c ,(2,0)A c -,(2,0)B c ,如果椭圆上存在一点P ,使得AP BP ⊥,则离心率的取值范围为( )A .1)2B .4)5C .D . 解:椭圆方程为22221(0)x y a b a b+=>>,焦距为2c ,(2,0)A c -,(2,0)B c ,椭圆上存在一点P ,使得AP BP ⊥,∴设(cos ,sin )P a b αα,则(cos 2,sin )AP a c b αα=+,(cos 2,sin )BP a c b αα=-,AP BP ⊥,∴22222cos 4sin 0AP BP a c b αα=-+=,22222222444c a cos b sin e a a θθ+∴==222222sin 4a cos a sin c a θθθ+-=22224a c sin a θ-=,02θπ<<,∴当0θ→时,12e =;当2πθ=时,e =,∴离心率的取值范围为1)2.2.(2013秋•安吉县校级月考)设椭圆22221(0)x y a b a b+=>>的两焦点为1F 、2F ,若椭圆上存在一点Q ,使12120FQF ∠=︒,椭圆离心率e 的取值范围为( )A 1e <B 1e <<C .603e< D .112e << 解:椭圆的焦点在x 轴,设椭圆的上顶点为A ,椭圆上存在一点Q ,12120FQF ∠=︒,160F AO ∴∠︒, 1tan 3c F AO b∴∠=,∴33b c∴2222222113b a c a c c c -==-,故2234c a ,32ce a ∴=,又1e <.∴1e <.故选:A . 3.(2020•池州模拟)已知椭圆22221(0)x y a b a b+=>>的左,右焦点分别为1F ,2F ,若椭圆上存在点P ,使得12PF PF ⊥,则椭圆离心率的取值范围是( )A .B .C .D . 解:由12PF PF ⊥,知△12F PF 是直角三角形,||OP c b ∴=,即222c a c -,2ac ∴,ce a=,01e <<,∴1e <,故选:C .4.(2015秋•晋安区校级期末)已知点1F ,2F 为椭圆22221(0)x y a b a b+=>>的左右焦点,若椭圆上存在点P使得12||2||PF PF =,则此椭圆的离心率的取值范围是( ) A .1(0,)3B .(0,1]2C .1(3,1]2D .1[3,1)解:由题意设12||2||2PF PF x ==,则22x x a +=,解得23a x =,故14||3a PF =,22||3a PF =,当P 与两焦点1F ,2F 能构成三角形时,由余弦定理可得222121644242cos 9933a a a ac F PF =+-⨯⨯⨯∠,由12cos (1,1)F PF ∠∈-可得222212201644cos (999a a a c F PF =-∠∈,236)9a ,即222436499a a c <<,∴22119c a <<,即2119e <<,∴113e <<; 当P 与两焦点1F ,2F 共线时,可得2()a c a c +=-,解得13c e a ==;综上可得此椭圆的离心率的取值范围为1[3,1)故选:D .5.(2015秋•西城区期末)已知椭圆22221(0)x y a b a b+=>>的两个焦点分别为1F ,2F ,若椭圆上存在点P 使得12F PF ∠是钝角,则椭圆离心率的取值范围是( )A .2(0,)2 B .2(,1)2 C .1(0,)2D .1(,1)2解:如图,当动点P 在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角12F PF ∠渐渐增大,当且仅当P 点位于短轴端点0P 处时,张角12F PF ∠达到最大值.由此可得:椭圆上存在点P 使得12F PF ∠是钝角,∴△012P F F 中,10290F P F ∠>︒,Rt ∴△02P OF 中,0245OP F ∠>︒, 所以02P O OF <,即b c <,222a c c ∴-<,可得222a c <,22e ∴>,01e <<,∴212e <<.故选:B .6.(2018秋•城厢区校级期末)已知椭圆22221(0)x y a b a b+=>>的左、右焦点分别为1F ,2F ,且12||2F F c =,若椭圆上存在点M 使得1221sin sin a cMF F MF F =∠∠,则该椭圆离心率的取值范围为( ) A .(0,21)- B .2(2,1) C .2(0,)2D .(21-,1)解:在△12MF F 中,由正弦定理可得,122112||||sin sin MF MF MF F MF F =∠∠, 又1221sin sin a cMF F MF F =∠∠,即有1222||2||||||MF a MF c a MF MF -==,解得222||a MF a c=+, 由于2||a c MF a c -<<+,即有22()()2()a c a c a a c -+<<+,即为2222a c a -<,显然成立; 又2a a c <+,即有(21)c a >-,则离心率(21ce a=∈-,1).故选:D .7.已知椭圆的左、右焦点为1F 、2F ,若椭圆上存在点P 使1260F PF ∠=︒,则椭圆的离心率的取值范围为()A .3[2,1) B .(0,3]2 C .1[2,1) D .(0,1]2解:如图,当动点P 在椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角12F PF ∠渐渐增大,当且仅当P 点位于短轴端点0P 处时,张角12F PF ∠达到最大值.存在点P 为椭圆上一点, 使得1260F PF ∠=︒,∴△012P F F 中,10260F P F ∠︒, Rt ∴△02P OF 中,0230OP F ∠︒,所以023P OOF ,即3b c ,2223a c c ∴-,可得224a c ,∴12ca ,01e <<,∴112e <.故选:C . 8.(2015•怀化二模)设1F ,2F 为椭圆的两个焦点,若椭圆上存在点P 满足12120F PF ∠=︒,则椭圆的离心率的取值范围是( ) A .3[,1)2B .3(,1)2C .3(0,)2D .3(0,]2解:1(,0)F c -,2(,0)F c ,0c >,设1(P x ,1)y ,则11||PF a ex =+,21||PF a ex =-.在△12PF F 中,由余弦定理得2221111()()41cos12022()()a ex a ex c a ex a ex ++--︒=-=+-,解得2221243c a x e -=.21(0x ∈,2]a ,2222430c a a e -∴<,即22430c a -.且21e <32c e a ∴=. 故椭圆离心率的取范围是3[,1)2e ∈.故选:A .圆锥曲线离心率求法专题训练(五)1.(2013•天心区校级二模)已知椭圆:22221(,0)x y a b a b+=>和圆222:O x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为A ,B .若椭圆上存在点P ,使得0PA PB =,则椭圆离心率e 的取值范围是( )A .1[2,1) B .(0,]2 C.[2,1) D .1[2,2解:由0PA PB =,可得90APB ∠=︒,利用圆的性质,可得||OP =,222||2OP b a ∴=,222a c ∴ 212e ∴,01e <<∴1e <故选:C .2.(2017秋•海淀区校级期末)若双曲线22221(0,0)x y a b a b -=>>的两个焦点为1F ,2F ,若双曲线上存在一点P ,满足12||3||PF PF =,则该双曲线的离心率的取值范围是( ) A .12e <<B .12eC .12e <D .12e <解根据双曲线定义可知12||||2PF PF a -=,即223||||2PF PF a -=.2||a PF ∴=,1||3PF a = 在△12PF F 中,1212||||||F F PF PF <+,224||c PF <,22||2c PF a <=,∴2ca<, 当p 为双曲线顶点时,2ca=又双曲线1e >,12e ∴<故选:C . 3.(2016秋•双台子区校级期中)设椭圆22221x y a b+=的左、右焦点分别是1F ,2F ,如果在椭圆上存在一点p ,使12F PF ∠为钝角,则椭圆离心率的取值范围是. 解:设0(P x ,0)y ,则0||x a <,又12F PF ∠为钝角,当且仅当120PF PF <有解, 即22200c x y >+有解,即22200()minc x y >+.又2222002b y b x a =-,2222220002[c x y b x b a∴+=+∈,2)a ,即2220()minx y b +=.故22c b >,222c a c >-,∴2212c a >,即e >,又01e <<,∴1e <<.故答案为:. 4.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,若双曲线上存在一点P 使21||||PF aPF c=,则该双曲线的离心率的取值范围是1] . 解:21||||PF aPF c=,P ∴在双曲线右支,设P 点的横坐标为o x ,注意到o x a . 由双曲线第二定义得:1||o PF a ex =+,2||o PF ex a =-,则有00ex a a a ex c -=+,得()o a a c x a ec ea+=-,分子分母同时除以a ,得:2a ca e e+-,∴211ee e+-,解得121e<+.故答案为:(11].5.(2012•江苏模拟)已知1F 、2F 分别为双曲线22221(0,0)xy a b a b-=>>的左、右焦点,若双曲线左支上存在一点P 使得221||8||PF a PF =,则双曲线的离心率的取值范围是 (1,3] . 解:P 为双曲线左支上一点,12||||2PF PF a ∴-=-,21||||2PF PF a ∴=+,①又221||8||PF a PF =,②∴由①②可得,1||2PF a =,2||4PF a =.1212||||||PF PF F F ∴+,即242a a c +,∴3c a ,③ 又1122||||||PF F F PF +>,224a c a ∴+>,∴1ca>.④ 由③④可得13c a <. 故答案为:(1,3].。
高考复习圆锥曲线中的离心率问题(含详细答案)

圆锥曲线中的离心率问题(答案)圆锥曲线中的离心率问题(答案)一、直接求出a 、c ,求解e 已知标准方程或a 、c 易求时,可利用离心率公式ace =来求解。
来求解。
例1. 过双曲线C :)0b (1by x 222>=-的左顶点A 作斜率为1的直线l ,若l 与双曲线M的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是(的离心率是( )A. 10B. 5C. 310D. 25 分析:这里的1b ,c 1a 2+==,故关键是求出2b ,即可利用定义求解。
,即可利用定义求解。
解:易知A (-1,0),则直线l 的方程为1x y +=。
直线与两条渐近线bx y -=和bx y =的交点分别为B )1b b ,1b 1(++-、C )1b b ,1b 1(--,又|AB|=|BC|,可解得9b 2=,则10c =故有10ac e ==,从而选A 。
二、变用公式,整体求出e 例2. 已知双曲线)0b ,0a (1by a x 2222>>=-的一条渐近线方程为x 34y =,则双曲线的离心率为(心率为( )A. 35B. 34C. 45D. 23 分析:本题已知=a b 34,不能直接求出a 、c ,可用整体代入套用公式。
,可用整体代入套用公式。
解:由22222222k 1a b 1a b a ab a ace +=+=+=+==(其中k 为渐近线的斜率)。
这里34a b =,则35)34(1a c e 2=+==,从而选A 。
三、第二定义法三、第二定义法由圆锥曲线的统一定义(或称第二定义)知离心率e 是动点到焦点的距离与相应准线的距离比,特别适用于条件含有焦半径的圆锥曲线问题。
距离比,特别适用于条件含有焦半径的圆锥曲线问题。
例 3. 在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为(则该椭圆的离心率为( )A. 2B. 22C. 21D. 42解:由过焦点且垂直于长轴的弦又称为通径,设焦点为F ,则x F M ^轴,知|MF|是通径的一半,则有22|MF |=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(福建卷)已知双曲线(a >0,b <0)的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是A.( 1,2)B. (1,2]C.[2,+∞)D.(2,+∞)2.(湖南卷)过双曲线M:的左顶点A 作斜率为1的直线,若与双曲线M 的两条渐近线分别相交于B 、C,且|AB|=|BC|,则双曲线M 的离心率是 ( )A. B. C. D.3.(辽宁卷)方程的两个根可分别作为( )A.一椭圆和一双曲线的离心率B.两抛物线的离心率C.一椭圆和一抛物线的离心率D.两椭圆的离心率4.(全国II )已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为( ) (A )53 (B )43 (C )54 (D )325.(陕西卷)已知双曲线x2a2-y22 =1(a>2)的两条渐近线的夹角为π3,则双曲线的离心率为 A.2 B. 3 C.263 D.2336.(全国卷)设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( )(A )(B )(C )(D )7.(广东卷)若焦点在x 轴上的椭圆的离心率为,则m=()(A)(B)(C)(D)8.(福建卷)已知F 1、F 2是双曲线的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是()A.B.C.D.9.[全国]设双曲线的焦点在轴上,两条渐近线为,则该双曲线的离心率()A.B.C.D.10.(福建理)已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是正三角形,则这个椭圆的离心率是()A.B.C.D.11.(重庆理)已知双曲线的左,右焦点分别为,点P在双曲线的右支上,且,则此双曲线的离心率e的最大值为:()A.B.C.D.12.(福建卷11)又曲线(a>0,b>0)的两个焦点为F1、F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为()A.(1,3)B. C.(3,+)D.13.(江西卷7)已知、是椭圆的两个焦点,满足的点总在椭圆内部,则椭圆离心率的取值范围是()A. B. C. D.14.(全国二9)设,则双曲线的离心率的取值范围是()A.B.C.D.15.(陕西卷8)双曲线(,)的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点,若垂直于轴,则双曲线的离心率为()A.B.C.D.16.(天津卷(7)设椭圆(,)的右焦点与抛物线的焦点相同,离心率为,则此椭圆的方程为()(A)(B)(C)(D)17.(江苏卷12)在平面直角坐标系中,椭圆1( 0)的焦距为2,以O为圆心,为半径的圆,过点作圆的两切线互相垂直,则离心率=.18.(全国一15)在中,,.若以为焦点的椭圆经过点,则该椭圆的离心率.19、(全国2理11)设F1,F2分别是双曲线的左、右焦点。
若双曲线上存在点A,使∠F1AF2=90º,且|AF1|=3|AF2|,则双曲线离心率为( ) (A)(B)(C)(D)20、(全国2 文11)已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于()A.B.C.D.21、(安徽理9)如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且△是等边三角形,则双曲线的离心率为(A)(B)(C)(D)22、(北京文4)椭圆的焦点为,,两条准线与轴的交点分别为,若,则该椭圆离心率的取值范围是()A.B.C.D.23、(江苏3)在平面直角坐标系中,双曲线中心在原点,焦点在轴上,一条渐近线方程为,则它的离心率为()A.B.C.D.24、(江西理9文12)设椭圆的离心率为,右焦点为,方程的两个实根分别为和,则点()A.必在圆内B.必在圆上C.必在圆外D.以上三种情形都有可能25、(福建理14)已知正方形ABCD,则以A、B为焦点,且过C、D两点的椭圆的离心率为__________;26、(福建文15)已知长方形ABCD,AB=4,BC=3,则以A、B为焦点,且过C、D两点的椭圆的离心率为。
27.(江西)椭圆x2a2+y2b2=1(a>b>0)的左、右顶点分别是A、B,左、右焦点分别是F1、F2,若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为 ( )A.14B.55 C.12 D.5-228.(全国)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B两点,|AB|为C的实轴长的2倍,则C的离心率为( )A.2B.3C.2 D.329.已知以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,则双曲线C的离心率为________.30.设双曲线的一个焦点为F,虚轴的一个端点为B,如果直线FB与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A.2B.3C.3+12D.5+1231.已知点F是双曲线x2a2-y2b2=1(a>0,b>0)的左焦点,点E是该双曲线的右顶点,过F且垂直于x轴的直线与双曲线交于A,B两点,若△AB E是钝角三角形,则该双曲线的离心率e的取值范围是 ( )A .(1,+∞)B .(1,2)C .(1,1+2)D .(2,+∞)32.已知双曲线x2a2-y2b2=1 (a >0,b >0)的左、右焦点分别为F 1、F 2,点P 在双曲线的右支上,且|PF 1|=4|PF 2|,则此双曲线的离心率e 的最大值为________.离心率专题解析1.解析:双曲线的右焦点为F ,若过点F 且倾斜角为的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率,∴≥,离心率e 2=,∴ e ≥2,选C2.解析:过双曲线的左顶点(1,0)作斜率为1的直线:y=x -1, 若与双曲线的两条渐近线分别相交于点, 联立方程组代入消元得,∴,x 1+x 2=2x 1x 2,又,则B 为AC 中点,2x 1=1+x 2,代入解得,∴ b 2=9,双曲线的离心率e=,选A.3.解:方程的两个根分别为2,,故选A4.解析:双曲线焦点在x 轴,由渐近线方程可得,故选A5.解:双曲线(a>2)的两条渐近线的夹角为π3,则,∴a2=6,双曲线的离心率为233,选D.6.D7.B8. D9.C 10. A 11. B12.B 13.C 14 B 15.B 16.B 17.18.19.解.设F1,F2分别是双曲线的左、右焦点。
若双曲线上存在点A,使∠F1AF2=90º,且|AF1|=3|AF2|,设|AF2|=1,|AF1|=3,双曲线中,,∴离心率,选B。
20.解.已知椭圆的长轴长是短轴长的2倍,∴,椭圆的离心率,选D。
21.解析:如图,和分别是双曲线的两个焦点,和是以为圆心,以为半径的圆与该双曲线左支的两个交点,且△是等边三角形,连接AF1,∠AF2F1=30°,|AF1|=c,|AF2|=c,∴,双曲线的离心率为,选D。
22.解析:椭圆的焦点为,,两条准线与轴的交点分别为,若,,,则,该椭圆离心率e≥,选D。
23.解析:由,选A24.解析:由=得a=2c ,b=,所以,所以点到圆心(0,0)的距离为,所以点P 在圆内,选A25.解析:设c=1,则26.解析:由已知C=2,27.答案 B 解析 由题意知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c , 且三者成等比数列,则|F 1F 2|2=|AF 1|·|F 1B |,即4c 2=a 2-c 2,a 2=5c 2,所以e 2=15,所以e =55. 28.答案 B 解析 设双曲线的标准方程为x2a2-y2b2=1(a >0,b >0),由于直线l 过双曲线的焦点且与对称轴垂直,因此直线l 的方程为l :x =c 或x =-c ,代入x2a2-y2b2=1得y 2=b 2(c2a2-1)=b4a2,∴y =±b2a ,故|AB |=2b2a ,依题意2b2a =4a ,∴b2a2=2,∴c2-a2a2=e 2-1=2,∴e =3. 29.解析 如图,∠B 1F 1B 2=60°,则c =3b ,即c 2=3b 2,由c 2=3(c 2-a 2),得c2a2=32,则e =62. 30.解析 设双曲线方程为x2a2-y2b2=1(a >0,b >0),如图所示,双曲线的一条渐近线方程为y =b a x ,而k BF =-b c ,∴b a ·(-b c)=-1,整理得b 2=ac . ∴c 2-a 2-ac =0,两边同除以a 2,得e 2-e -1=0,解得e =1+52或e =1-52(舍去),故选D. 31.解析 根据双曲线的对称性,若△ABE 是钝角三角形,则只要0<∠BAE <π4即可.直线AB :x =-c ,代入双曲线方程得y 2=b4a2,取点A ⎝⎛⎭⎫-c ,b2a ,则|AF |=b2a ,|EF |=a +c ,只要|AF |>|EF |就能使∠BAE <π4,故b2a >a +c ,即b 2>a 2+ac ,即c 2-ac -2a 2>0,即e 2-e -2>0,得e >2或e <-1,又e >1,故e >2.故选D.32.解析 由定义,知|PF 1|-|PF 2|=2a .又|PF 1|=4|PF 2|,∴|PF 1|=83a ,|PF 2|=23a .在△PF 1F 2中,由余弦定理,得cos ∠F 1PF 2=649a2+49a2-4c22·83a ·23a=178-98e2.要求e 的最大值,即求cos ∠F 1PF 2的最小值,∴当cos ∠F 1PF 2=-1时,得e =53,。