优秀教案2018-2019学年最新华东师大版九年级上学期数学《二次根式1》教学设计
华师大版数学九年级上册《21.1 二次根式》教学设计2
华师大版数学九年级上册《21.1 二次根式》教学设计2一. 教材分析华东师范大学版数学九年级上册《21.1 二次根式》是学生在初中阶段学习二次根式的起点,也是为高中阶段进一步学习函数、不等式等知识做铺垫。
本节课主要让学生理解二次根式的概念,掌握二次根式的性质和运算方法,并能够解决一些实际问题。
教材通过引入二次根式,让学生感受数学与现实生活的联系,提高学生学习数学的兴趣。
二. 学情分析学生在学习本节课之前,已经掌握了实数、有理数、无理数等基础知识,具备一定的逻辑思维能力和运算能力。
但学生对二次根式这一概念较为陌生,对其性质和运算方法的认识需要通过实例和练习逐步建立。
此外,学生对于将实际问题转化为二次根式问题的能力有待提高。
三. 教学目标1.理解二次根式的概念,掌握二次根式的性质和运算方法。
2.能够将实际问题转化为二次根式问题,并运用二次根式解决实际问题。
3.培养学生的逻辑思维能力和运算能力,提高学生学习数学的兴趣。
四. 教学重难点1.二次根式的概念及其性质。
2.二次根式的运算方法。
3.将实际问题转化为二次根式问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究二次根式的概念、性质和运算方法。
2.利用实例和练习,让学生在实际操作中掌握二次根式的应用。
3.采用小组合作学习,培养学生的团队协作能力和沟通能力。
4.运用多媒体辅助教学,提高课堂趣味性和教学效果。
六. 教学准备1.准备相关课件和教学素材。
2.设计具有代表性的练习题和实际问题。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如测量物体高度、计算物体体积等,引导学生思考如何利用数学知识解决这些问题。
然后引入二次根式的概念,让学生初步了解二次根式在实际问题中的应用。
2.呈现(15分钟)讲解二次根式的定义,引导学生通过实例理解二次根式的概念。
同时,介绍二次根式的性质,如:二次根式具有非负性、单调性等。
让学生通过实际问题,运用二次根式的性质解决问题。
最新华东师大版九年级数学上册《二次根式复习课》教学设计
本章复习【知识与技能】掌握本章重要知识,能熟练运用二次根式的有关运算法则进行运算.【过程与方法】通过梳理本章知识,回顾解决问题中所涉及的类比思想,分类讨论思想的过程,加深对本章知识的理解.【情感态度】在运用本章知识解决具体问题的过程中,进一步体会数学与生活的密切联系,增强数学应用意识,感受数学的应用价值,激发学生兴趣.【教学重点】回顾本章知识点,构建知识体系.【教学难点】利用二次根式的有关运算法则、性质解决实际问题.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示本章知识结构框图,使学生系统地了解本章知识及它们之间的关系,边回顾边建立结构图.二、释疑解感,加深理解1.二次根式的意义:形如a(a≥0)的式子叫做二次根式,注意二次根式有意义的条件是被开方数a≥0,a表示a的算术平方根,它具有双重非负性,即a ≥0(a ≥0).2.二次根式的性质:主要要理解公式的应用.①)(2a =a (a ≥0),3.二次根式的化简与运算:(1)掌握的应用.(2)掌握二次根式的乘法运算:ab b a =∙(a ≥0,b ≥0).(3)掌握积的算术平方根的运算b a ab ∙=(a ≥0,b ≥0).(4)掌握二次根式的除法运算:b a b a =(a ≥0,b >0),反过来ba b a =(a ≥0,b >0).(5)掌握二次根式的加减法运算:先化成最简二次根式再进行合并,在二次根式的运算过程中,多项式乘法法则和乘法公式仍然适用,最后结果一定要化成最简二次根式.三、典例精析,复习新知例1 若21-+x x 在实数范围内有意义,则x 的取值范围是 . 【分析】1+x 有意义的条件为x+1≥0,同时注意分母x-2≠0这一条件,所以x 的取值范围为x ≥-1且x ≠2.例2若5-a +(b+2)2=0,则a+b 的值为 .四、复习训练,巩固提高五、师生互动,课堂小结本堂课你能完整地回顾本章所学的有关二次根式的知识吗?能熟练进行二次根式的有关运算吗?你还有哪些困惑与疑问?【教学说明】教师引导学生回顾本章知识,尽可能让学生自主交流与反思,对于学生的困惑与疑问,教师应予以补充和点评.1.布置作业:从教材本章“复习题”中选取.2.完成练习册中“本章热点专题训练”.本节课通过学习归纳本章内容,以二次根式的概念及其有意义的条件、二次根式的性质及应用、二次根式的化简与运算等知识点为支撑,力求以点带面,查漏补缺,让学生对本章知识了然于胸,此外通过例题加以分析,加强对重点知识的训练,使学生在全面掌握知识点的前提下抓住重点.。
九年级数学上册二次根式时教案新华东师大(1)
21.1 二次根式第二课时教学内容2=a(a≥0),a(a≥0)教学目标2=a(a≥0(a≥0),并利用它进行计算和化简.通过具体数据的解答,探究(a≥0),并利用这个结论解决具体问题.教学重难点关键 1.重点:2=a(a≥0a(a≥0)及其运用.2.难点:探究结论.3.关键:讲清a≥0a才成立.教学方法三疑三探教学过程一、设疑自探――解疑合探自探1.做一做:根据算术平方根的意义填空:2=_______;2=_______;2=______;2=_______;2=______;2=_______;2=_______.44的非负数,因此有2=4.,)2=0,所以同理可得:2=2,2=9,,2=72自探2(一)计算1.2(x≥0) 2.2 3.24. 2分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)2≥0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.所以上面的42=a(a≥0)的重要结论解题.(二)在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3分析:(略)自探3(学生活动)填空:=______;.自探4化简(1(2(3(4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a≥0)•去化简.二、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!三、应用拓展1. 填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?分析(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“()2”中的数是正数,因为,当a≤0-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.2.当x>2分析:(略)四、归纳小结(师生共同归纳)本节课应掌握:(2=a(a≥0)(a≥0)及其运用,同时理解当a<0a的应用拓展.五、作业设计一、选择题1).A.0 B.23 C.423D.以上都不对2.当a≥0).AC.二、填空题1..2m的最小值是________.三计算1.2 2.(2 3.2 4.(2)22.计算下列各式的值:2222( 2四、综合提高题1.先化简再求值:当a=9时,求甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│教后反思:。
2018届九年级数学上册21.1二次根式教案新版华东师大版20171127316
21.1 二次根式第1课时二次根式的概念及化简【知识与技能】1.了解二次根式的定义.2.会求二次根式被开方数中字母的取值范围.3.会利用二次根式的非负性解题.【过程与方法】经历观察、比较、总结二次根式的定义,培养学生的归纳能力.【情感态度】经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用意识.【教学重点】二次根式的概念.【教学难点】利用二次根式的非负性解决具体问题.一、创设情境,导入新知1.什么是平方根、算术平方根?2.试一试,说出下列代数式的意义.16,81,0,15,0.2.3.根据下图所示的直角三角形、正方形和等边三角形的条件,完成以下填空:(1)直角三角形的斜边长是________;(2)正方形的边长是________;(3)等边三角形的边长是________.(让学生在实际情境中写出表示算术平方根的式子)4.第2题及第3题中所得的各代数式的共同特点是什么?(学生通过观察,从中感知二次根式的特征.鼓励学生用自己的语言总结出共同特征,从而引出课题.教师鼓励学生大胆表述意见,然后作适当点评,板书本课课题)二、合作探究,理解新知1.二次根式的概念(1)引导学生概括二次根式的定义:像a2+4,b-3,2s这样表示的算术平方根,且根号内含字母的代数式大于或等于0,这样的式子叫做二次根式.为了方便,我们把一个数的算术平方根也叫做二次根式.因此我们把形如a (a ≥0)的式子叫做二次根式.(2)概念深化: 提问:a +1是不是二次根式?a +1呢?议一议:二次根式a +1表示什么意义?此算术平方根的被开方数是什么?被开方数必须满足什么条件的二次根式才有意义?其中字母a 需满足什么条件?为什么?经学生讨论后,让学生回答,并让其他学生点评.教师总结:强调二次根式根号内字母的取值范围必须满足被开方数大于或等于零.(3)思考:根据你已有知识,说说你对二次根式a 的认识.学生分组讨论,回答,最后教师总结:①表示a 的算术平方根;②a 可以是数,也可以是代数式;③从形式上含有二次根号“ ”;④a ≥0,a ≥0;⑤表示开平方运算,也可表示运算结果.2.例题讲解例1:下列式子,哪些是二次根式,哪些不是二次根式?2,33,1x ,x (x >0),0,42,-2,1x +y ,x +y (x ≥0,y ≥0). 分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0. 解:二次根式有:2,x (x >0),0,-2,x +y (x ≥0,y ≥0);不是二次根式的有:33,1x ,42,1x +y. 交流归纳:从形式上看,一个代数式是二次根式必须具备以下两个条件:(1)必须有二次根号;(2)被开方数不能小于0.例2:x 取何值时,下列二次根式有意义? (1)x -1;(2)11-2x;(3)(1-x )2. 教师提问,学生回答,教师板书解题过程.问题是:①被开方数需满足什么?②由此可得怎样的不等式?③第(1)、(2)题可以转化为解怎样的不等式?第(3)题不解不等式就能确定x 的取值范围吗?解:(1)由x -1≥0,得x ≥1.所以当x ≥1时二次根式x -1有意义.(2)由11-2x >0,得1-2x >0,x <12.所以当x <12时,二次根式11-2x 有意义. (3)因为无论x 取何值,都有(1-x )2≥0,所以当x 取全体实数时,二次根式(1-x )2都有意义.交流归纳:由于二次根式的被开方数只能取非负值,因此二次根式要有意义就必须满足被开方数大于或等于0,而求二次根式被开方数中字母取值范围可列不等式求解.三、尝试练习,掌握新知 1.下列式子哪些是二次根式?32,4,-12,-x ,x 2+1,35,xy (x ,y 异号),2-x (x <2).2.教材练习第2题.3.请同学们完成《探究在线·高效课堂》“随堂练习”部分.四、课堂小结,梳理新知本节课你有什么收获或困惑?(学生自己完成,教师引导学生总结)(1)式子a (a ≥0)叫做二次根式,实质是一个非负实数的算术平方根的表达式;(2)式子a 中,被开方数(式)必须大于或等于零;(3)求二次根式中字母取值范围的方法:①观察配方法,如例2中的(3)题;②列不等式或不等式组求解.五、深入练习,巩固新知请同学们完成《探究在线·高效课堂》“课时作业”部分.1.教材习题21.1第1题.2.当x 是多少时,2x +3+1x +1在实数范围内有意义?(答案:x ≥-32且x ≠-1) 3.已知y =2-x +x -2+5,求x y 的值.(答案:25) 3.若a +1+b -1=0,求a2009+b 2009的值.(答案:0)第2课时 二次根式的性质【知识与技能】理解二次根式的基本性质:(a )2=a (a ≥0)及a 2=|a |,并能利用它们进行化简或计算.【过程与方法】通过对二次根式性质的探究,提高数学探究能力和归纳能力.【情感态度】经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.【教学重点】二次根式性质的应用.【教学难点】 二次根式性质a 2=|a |的应用.一、创设情境,导入新知1.什么叫二次根式?2.当a ≥0时,a 叫什么?当a <0时,a 有意义吗?3.(2)2,22表示的意义分别是什么?分别等于多少?教师点评,由3引出新课.二、合作探究,理解新知(一)(a )2=a (a ≥0)的探究1.做一做:根据算术平方根的意义填空:(4)2=______;(2)2=______;(9)2=______;(3)2=______;(13)2=______;(72)2=______;(0)2=______. 教师点评:4是4的算术平方根,根据算术平方根的意义,4是一个平方等于4的非负数,因此有(4)2=4. 同理可得:(2)2=2,(9)2=9,(3)2=3,(13)2=13,(72)2=72,(0)2=0. 2.思考:根据上面的计算,你得出了什么结论? 学生讨论,得出结论:(a )2=a (a ≥0).3.例题讲解例1:计算: (1)(32)2;(2)(56)2;(3)(3 5)2; (4)(72)2.分析:我们可以直接利用(a )2=a (a ≥0)的结论解题. 解:(1)(32)2=32;(2)(56)2=56;(3)(3 5)2=32×(5)2=9×5=45;(4)(72)2=(7)222=74.4.练习:计算:(1)(18)2;(2)(0)2;(3)(94)2;(4)(4 78)2;(5)(3 5)2-(5 3)2.(二)二次根式性质a 2=|a |的探究1.做一做:(学生活动)填空:22=________;0.012=________;(110)2=________;(23)2=________;02=________;(37)2=________.教师点评:根据算术平方根的意义,我们可以得到:22=2;0.012=0.01;(110)2=110;(23)2=23;02=0;(37)2=37.2.根据上面的计算你得出了什么结论?学生讨论得出,一般地:a 2=a (a ≥0).3.思考:当a <0时,a 2=a 还成立吗?学生小组讨论,教师举反例说明结论不成立,最后得出结论:当a <0时,a 2=-a .4.通过上面的学习你认为a 2等于多少?a 2=|a |.5.例题讲解例2:化简: (1)9;(2)(-4)2;(3)25;(4)(-3)2.分析:因为:(1)9=32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用a 2=a (a ≥0)去化简.解:(1)9=32=3;(2)(-4)2=42=4;(3)25=52=5;(4)(-3)2=32=3.(三)应用拓展1.计算: (1)(x +1)2(x ≥0);(2)(a 2+2a +1)2;(3)(4x 2-12x +9)2.提示:(1)因为x ≥0,所以x +1>0;(2)a 2+2a +1=(a +1)2≥0;(3)4x 2-12x +9=(2x )2-2·2x ·3+32=(2x -3)2≥0.2.当x >2时,化简(x -2)2-(1-2x )2.(四)巩固练习1.(-3)2=________;(-1.5)2=________.2.a 2=a 成立的条件是________.3.(213)2+(-213)2的值是( )A .0 B.23C .423D .以上都不对4.教材练习第1、3题.三、尝试练习,掌握新知请同学们完成《探究在线·高效课堂》“随堂练习”部分.四、课堂小结,梳理新知通过本节课的学习,你有什么收获或困惑?五、深入练习,巩固新知请同学们完成《探究在线·高效课堂》“课时作业”部分.1.教材习题21.1第2、3题.2.(选做题) (1)把下列非负数写成一个数的平方的形式:①5;②3.4;③16;④x (x ≥0).(2)先化简再求值:当a =9时,求a +1-2a +a 2的值,甲、乙两人的解答如下: 甲的解答为:原式=a +(1-a )2=a +(1-a )=1.乙的解答为:原式=a +(1-a )2=a +a -1=2a -1=17.两种解答中,______的解答是错误的,错误的原因是______.(3)在实数范围内分解下列因式:①x2-2;②x4-9;③3x2-5.。
2018-2019华东师大版九年级数学上全册教案
22.1. 二次根式(1)教学内容: 二次根式的概念及其运用教学目标:1a ≥0)的意义解答具体题目. 2、提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键:1a ≥0)的式子叫做二次根式的概念;2a ≥0)”解决具体问题. 教学过程:一、回顾当a 是正数时,a 表示a 的算术平方根,即正数a 的正的平方根. 当a 是零时,a 等于0,它表示零的平方根,也叫做零的算术平方根. 当a 是负数时,a 没有意义.二、概括:a (a ≥0)表示非负数a 的算术平方根,也就是说,a (a ≥0)是一个非负数,它的平方等于a .即有: (1)a ≥0(a ≥0); (2)2)(a =a (a ≥0).形如a (a ≥0)的式子叫做二次根式.注意:在二次根式a 中,字母a 必须满足a ≥0,即被开方数必须是非负数.三、例题讲解例题: x 是怎样的实数时,二次根式1-x 有意义?分析 要使二次根式有意义,必须且只须被开方数是非负数.解: 被开方数x-1≥0,即x ≥1.所以,当x ≥1时,二次根式1-x 有意义.思考:2a 等于什么?我们不妨取a 的一些值,如2,-2,3,-3,……分别计算对应的a2的值,看看有什么规律:概括: 当a ≥0时,a a =2; 当a <0时,a a -=2.这是二次根式的又一重要性质.如果二次根式的被开方数是一个完全平方,运用这个性质,可以将它“开方”出来,从而达到化简的目的.例如:22)2(4x x ==2x (x ≥0); 2224)(x x x ==.四、练习: x 取什么实数时,下列各式有意义.(1)x 43-; (2)23-x ; (3)2)3(-x ; (4)x x 3443-+-五、 拓展例:当x 11x +在实数范围内有意义?分析:11x +在实数范围内有意义,0和11x +中的x+1≠0. 解:依题意,得23010x x +≥⎧⎨+≠⎩由①得:x ≥-32由②得:x ≠-1当x ≥-32且x ≠-111x +在实数范围内有意义.例:(1)已知y=,求xy的值.(答案:2)(2),求a2004+b 2004的值.(答案:25)六、 归纳小结(学生活动,老师点评) 本节课要掌握:1a ≥0)的式子叫做二次根式,2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数. 七、布置作业:教材P4:1、2 八、反思及感想:22.1 二次根式(2)教学内容:1a ≥0)是一个非负数; 2.2=a (a ≥0).教学目标:1a ≥02=a (a ≥0),并利用它们进行计算和化简.2、 a ≥0)是一个非负数,用具体数据2=a (a ≥0);最后运用结论严谨解题.教学重难点关键:1.重点:a ≥0)是一个非负数;2=a (a ≥0)及其运用.2a ≥0)是一个非负数;•用探究的方法导出2=a (a ≥0).教学过程: 一、复习引入(学生活动)口答 1.什么叫二次根式?2.当a ≥0a<0二、探究新知议一议:(学生分组讨论,提问解答)a ≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:2=_______;2=_______;2=______;2=_______;2=______;2=_______;2=_______.4的算术平方根,根据算术平方根的意义,42=4.同理可得:2=2,2=9,2=3,2=13,2=72,2=0,所以 :三、例题讲解例1 计算: 1.2 , 2.(2 , 3.2 , 4.)22=a (a ≥0)的结论解题.解:1. 2 =32, 2.(2 =32²2=32²5=45,3.2=56,4.(2)2=22724 . 四、巩固练习计算下列各式的值:2222(222-五、应用拓展例2 计算1.2(x≥0),2.2,3.2,4.2分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2²2x²3+32=(2x-3)2≥0.所以上面的42=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>0,2=x+1(2)∵a2≥02=a2(3)∵a2+2a+1=(a+1)2 , 又∵(a+1)2≥0,∴a2+2a+1≥0 2+2a+1(4)∵4x2-12x+9=(2x)2-2²2x²3+32=(2x-3)2 , 又∵(2x-3)2≥0∴4x2-12x+9≥02=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3 (2)x4-4 (3) 2x2-3六、归纳小结:本节课应掌握:1a≥0)是一个非负数;2.2=a(a≥0);反之:a=2(a≥0).七、布置作业:教材P4:3、4八、反思及感想:22.1 二次根式(3)教学内容a(a≥0)教学目标:1(a≥0)并利用它进行计算和化简.2、(a≥0),并利用这个结论解决具体问题.教学重难点关键:1.重点:a(a≥0).2.难点:探究结论.3.关键:讲清a≥0a才成立.教学过程: 一、复习引入:(老师口述并板收上两节课的重要内容)1a ≥0)的式子叫做二次根式;2a ≥0)是一个非负数;3.2=a (a ≥0).那么,我们猜想当a ≥0是否也成立呢?下面我们就来探究这个问题. 二、探究新知:(学生活动)填空:=_______=______;=________. (老师点评):根据算术平方根的意义,我们可以得到:=0.01=1102337.三、例题讲解:例1 化简:(1 (2 (3 (4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,(a ≥0)•去化简.解:(1 (2=4(3 (4=3四、巩固练习:(见小黑板) 五、应用拓展例2 填空:当a ≥0;当a<0,•并根据这一性质回答下列问题.(1,则a 可以是什么数? (2,则a 可以是什么数?(3,则a 可以是什么数?(a ≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a ≤0-a ≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2│a │,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1,所以a≥0;(2,所以a≤0;(3)因为当a≥0,,即使a>a所以a不存在;当a<0,,即使-a>a,a<0综上,a<0例3当x>2(a≥0)及运用,同时理解当a<0a的应用拓展.七、布置作业:1.先化简再求值:当a=9时,求甲的解答为:原式=a+(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│,求a-19952的值.(提示:注意根式有意义的隐含条件)3. 若-3≤x≤2时,试化简│x-2│八、反思及感想:22.2 二次根式的乘除(1)a≥0,b≥0)a≥0,b≥0)及其运用.教学目标:1(a≥0,b≥0)a≥0,b≥0),并利用它们进行计算和化简2a≥0,b≥0)并运用它进行计算;•利用逆(a≥0,b≥0)并运用它进行解题和化简.教学重难点关键1a≥0,b≥0)a≥0,b≥0)及它们的运用.2a≥0,b≥0).a⨯3a<0,b<0)=b教学过程:一、设疑自探——解疑合探自探.(学生活动)请同学们完成下列各题.1.填空:(1=____;(2=_____.(3.参考上面的结果,用“>、<或=”填空.2.利用计算器计算填空(1(2(3(4(5.(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为反过来:合探1. 计算:(1,(2,(3,(4a≥0,b≥0)计算即可.合探2 化简(1,(2,(3,(4(5a≥0,b≥0)直接化简即可.二、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!三、应用拓展:判断下列各式是否正确,不正确的请予以改正:(1=(2四、巩固练习(1)计算(生练,师评)①②(2) 化简: ;五、归纳小结(师生共同归纳)本节课掌握:(1(a≥0,b≥0)a≥0,b≥0)及运用.六、作业设计(写在小黑板上)(一)、选择题1,•那么此直角三角形斜边长是()A.B.C.9cm D.27cm2.化简).A B C.D.3=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-14.下列各等式成立的是().A.B.C.D.(二)、填空题:1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.(三)、综合提高题探究过程:观察下列各式及其验证过程.(1)验证:==(2)验证:=同理可得:==通过上述探究你能猜测出:(a>0),并验证你的结论.七、反思及感想:22.2 二次根式的乘除(2)a≥0,b>0)a≥0,b>0)及利用它们进行计算和化简.教学目标;1a≥0,b>0a≥0,b>0)及利用它们进行运算.2、利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点关键1a≥0,b>0)a≥0,b>0)及用它们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程; 一、设疑自探——解疑合探自探.(学生活动)请同学们完成下列各题:1.填空(1=____;(2;(3=_____;(4.2.利用计算器计算填空:(1,(2,(3,(4=_____.每组推荐一名学生上台阐述运算结果.(老师点评),根据大家的练习和回答,我们进行合探:二次根式的除法规定:一般地,对二次根式的除法规定:下面我们利用这个规定来计算和化简一些题目.合探1.计算:(1(2(3(4a≥0,b>0)便可直接得出答案.分析:上面4合探2.化简:(1(2(3(4a≥0,b>0)就可以达到化简之目的.二、应用拓展,且x为偶数,求(1+x的值.=a≥0,b>0时才能成立.因此得到9-x≥0且x-6>0,即6<x≤9,又因为x为偶数,所以x=8.三、归纳小结(师生共同归纳)a≥0,b>0a≥0,b>0)及其运用.四、作业:(写在小黑板上)(一)、选择题:1的结果是( ).A .27; B .27; C ; D2====数学上将这种把分母的根号去掉的过程称作“分母有理化”).A .2B .6C .13D(二)、填空题 1.分母有理化:(1)=________;(3)=______.2.已知x=3,y=4,z=5_______.(三)、综合提高题 计算(1²(m>0,n>0)(2)(a>0) 五、反思及感想:22.2 二次根式的乘除(3)教学内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.教学目标:1、理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.2、通过计算或化简的结果来提炼出最简二次根式的概念,并根据它的特点来检验最后结果是否满足最简二次根式的要求.重难点关键:1.重点:最简二次根式的运用.2.难点关键:会判断这个二次根式是否是最简二次根式. 教学过程一、设疑自探——解疑合探自探1.(学生活动)请同学们完成下列各题(请三位同学上台板书)计算(1(2,(3AC自探2. 观察上面计算题的最后结果,可以发现这些式子中的二次根式有什么特点?(有如下两个特点:1.被开方数不含分母; 2.被开方数中不含能开得尽方的因数或因式.)我们把满足上述两个条件的二次根式,叫做最简二次根式.合探1. 把下面的二次根式化为最简二次根式:(1); (2); (3) 合探2.如图,在Rt △ABC 中,∠C=90°,AC=2.5cm ,BC=6cm ,求AB 的长.132====6.5(cm ) 因此AB 的长为6.5cm .二、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下! 三、应用拓展观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:121=-,=从计算结果中找出规律,并利用这一规律计算+))的值.分析:由题意可知,本题所给的是一组分母有理化的式子,因此,分母有理化后就可以达到化简的目的.四、归纳小结(师生共同归纳):本节课应掌握:最简二次根式的概念及其运用. 五、作业设计(写在小黑板上) (一)、选择题 1(y>0)是二次根式,那么,化为最简二次根式是( ).A(y>0) By>0) Cy>0) D .以上都不对2.把(a-1中根号外的(a-1)移入根号内得( ).ABC .D .3.在下列各式中,化简正确的是( )AB±12C2D .的结果是()A.;B.;C.;D.4(二)、填空题1.(x≥0)2._________.(三)、综合提高题1.已知a•请写出正确的解答过程:(a-1²1a2.若x、y为实数,且六、反思及感想:22.3 二次根式的加减(1)教学内容:二次根式的加减教学目标:理解和掌握二次根式加减的方法.重难点关键:1.重点:二次根式化简为最简根式.2.难点关键:会判定是否是最简二次根式.教学过程:一、设疑自探——解疑合探自探(学生活动):计算下列各式.(1);(2);(3;(4)因此,二次根式的被开方数相同是可以合并的,如吗?可以的.(板书)和所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.合探1.计算:(1 (2分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.合探2.计算(1) (2)+ 二、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!三、应用拓展已知4x 2+y 2-4x-6y+10=0,求(23+y -(x 2)的值.分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,即x=12,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,•再合并同类二次根式,最后代入求值.四、归纳小结(师生共同归纳):本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式; (2)相同的最简二次根式进行合并. 五、作业设计(写在小黑板上) (一)、选择题1 ). A .①和② B .②和③ C .①和④ D .③和④2.下列各式:①17有( ). A .3个 B .2个 C .1个 D .0个 (二)、填空题1、是同类二次根式的有________.2.计算二次根式________. (三)、综合提高题1 2.236-(结果精确到0.01)2.先化简,再求值.(-(,其中x=32,y=27. 六、反思及感想:22.3 二次根式的加减(2)教学内容:利用二次根式化简的数学思想解应用题.教学目标:运用二次根式、化简解应用题.重难点关键:讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.教学过程:一、设疑自探——解疑合探上节课,我们已经学习了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们研究三道题以做巩固.自探1.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)分析:设x秒后△PBQ的面积为35平方厘米,那么PB=x,BQ=2x,•根据三角形面积公式就可以求出x的值.解:设x 后△PBQ 的面积为35平方厘米. 则有PB=x ,BQ=2x依题意,得:12x ²2x=35 x 2=35PBQ 的面积为35平方厘米.===PBQ 的面积为35平方厘米,PQ 的距离为 自探2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m )?解:由勾股定理,得 =所需钢材长度为 ≈3³2.24+7≈13.7(m )答:要焊接一个如图所示的钢架,大约需要13.7m 的钢材.)三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下! 四、应用拓展若最简根式3a a 、b 的值.注:(•同类二次根式就是被开方数相同的最简二次根式)分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式|b|式的定义得3a-•b=•2,2a-b+6=4a+3b .由题意得432632a b a b a b +=-+⎧⎨-=⎩ ∴24632a b a b +=⎧⎨-=⎩ ∴a=1,b=1五、归纳小结(师生共同归纳):本节课应掌握运用最简二次根式的合并原理解决实际问题. 六、作业设计(写在小黑板上) (一)、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为( ).A .BC .D .以上都不对2.小明想自己钉一个长与宽分别为30cm 和20cm 的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为( )米.A .BC .D . (二)、填空题1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m 2,•鱼塘的宽是_______m .2•那么这个等腰直角三角形的周长是________.(三)、综合提高题1n m、n的值.2.同学们,我们以前学过完全平方公式a2±2ab+b2=(a±b)2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=2,5=2,你知道是谁的二次根式呢?下面我们观察:)2=2-2²12反之,)2∴)2求:(1(2(3(4,则m、n与a、b的关系是什么?并说明理由.六、反思及感想:22.3 二次根式的加减(3)教学内容:含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.教学目标:1、含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.2、复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.重难点关键:1、重点:二次根式的乘除、乘方等运算规律;2、难点关键:由整式运算知识迁移到含二次根式的运算.教学过程一、设疑自探——解疑合探自探1.(学生活动):请同学们完成下列各题:1.计算:(1)(2x+y)²zx (2)(2x2y+3xy2)÷xy2.计算:(1)(2x+3y)(2x-3y)(2)(2x+1)2+(2x-1)2老师点评:这些内容是对八年级上册整式运算的再现.它主要有(1)•单项式³单项式;(2)单项式³多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用.如果把上面的x、y、z改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立.整式运算中的x 、y 、z 是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.自探2.计算:(1) (2)( 分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.自探3. 计算:(1))( (2)分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立. 二、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下! 三、应用拓展:已知x b a-=2-x a b-,其中a 、b 是实数,且a+b ≠0,=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x 的值,代入化简得结果即可.解:原式=(x+1)=4x+2∵x b a-=2-x a b - ∴b (x-b )=2ab-a (x-a ) ∴bx-b 2=2ab-ax+a 2 ∴(a+b )x=a 2+2ab+b 2 ∴(a+b )x=(a+b )2 ∵a+b ≠0 ∴x=a+b∴原式=4x+2=4(a+b )+2四、归纳小结(师生共同归纳):本节课应掌握二次根式的乘、除、乘方等运算. 五、作业设计(写在小黑板上) (一)、选择题1. ).A .203B .23C .23D .2032 ).A .2 B .3 C .4 D .1 (二)、填空题1.(-122的计算结果(用最简根式表示)是________.2.((-()2的计算结果(用最简二次根式表示)是_______.3.若,则x 2+2x+1=________.4.已知a 2b-ab 2=_________.(三)、综合提高题12.当的值.(结果用最简二次根式表示)六、反思及感想:23.1 一元二次方程教学目标:1、知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式02=++c bx ax (a ≠0)2、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
二次根式教案华东师大版九年级数学上册
第三步:展学要求(“学法指导”设计)
(1)声音洪亮,语言流畅,逻辑思维清晰。
(2)各小组认真倾听,积极补充,质疑提问对小组进行评价。
主问题1设计意图
学生通过自己解决问题,充分发挥学习的主动性,同时也培养了学生归纳问题的能力。
主问题1预设答案
形如 (a≥0)_的式子叫做二次根式,二次根式的被开方数必须是非负数。
第一学程:
学习任务:二次根式定义
主问题1.(1)什么是二次根式?说说一个式子要想成为二
次根式应该具备哪些条件?
(2)下列各式是二次根式吗?
学法指导
第一步:自学要求(“学法指导”设计)
学生独立思考,完成学习任务
第二步:互学要求(“学法指导”设计)
(1)有序交流。组长主持,组内互学,及时纠错。
(2)汇总意见。组内总结方法。
学生独立思考,完成学习任务
第二步:互学要求(“学法指导”设计)
(1)有序交流。组长主持,组内互学,及时纠错。
(2)汇总意见。组内总结方法。
(3)展学准备。组长做好组员任务分工,做好展讲准备。
第三步:展学要求(“学法指导”设计)
(1)声音洪亮,语ຫໍສະໝຸດ 流畅,逻辑思维清晰。(2)各小组认真倾听,积极补充,质疑提问对小组进行评价。
主问题3设计意图
引导学生通过自主探究与合作探究(学生有困难时,教师在小组内适当的给予帮助)得出新知。
主问题3预设答案
(1)( )2=a,
(2) =a(a≥0); =-a(a<0)
第四学程:
学习任务当堂检测
主问题4.1.下列式子中,是二次根式的是()
A.- B. C. D.x
华东师大版九年级数学上册第21章《二次根》教案设计
一、情境导入 计算下列各题,观察有什么规律?
(1) 36=________; 49
3469=________.
(2) 9 =________; 16
196=________.
36________ 49
3469;
9 ________ 16
196.
二、合作探究 探究点一:二次根式的除法 【类型一】 二次根式的除法运算 例 1:计算:
解析:根据题意得x2+ -1x≥ ≥00, ,解得
-1≤x≤2.故选 C.
方法总结:运用二次根式的乘法法则: a· b= ab(a≥0,b≥0),必须注意被开方数均 是非负数这一条件.
【类型二】 二次根式的乘法运算
例 2:计算:
(1) 3× 5;(2) 64;
(3)6 27×(-3 3);
(4)34 18ab·-a2 6ab2.
21.2 二次根式的乘除
第 3 课时
教学目标
1.掌握二次根式的除法法则和商的算术平方根的性质,会运用其进行相关运算; 2.能综合运用已学性质进行二次根式的化简与运算.
教学重难点
【教学重点】 二次根式的除法法则和商的算术平方根的性质. 【教学难点】 运用已学性质进行二次根式的化简与运算.
课前准备
无
教学过程
21.2 二次根式的乘除
第 2 课时
教学目标
1.掌握积的算术平方根的性质; 2.会用积的算术平方根的性质对二次根式进行化简.
教学重难点
【教学重点】 积的算术平方根的性质. 【教学难点】 用积的算术平方根的性质对二次根式进行化简.
课前准备
无
教学过程
一、情境导入 计算: (1) 4× 25与 4×25; (2) 16× 9与 16×9. 思考: 对于 2× 3与 2×3呢? 从计算的结果我们发现 2× 3= 2×3,这是什么道理呢? 二、合作探究 探究点一:积的算术平方根的性质 例 1:化简: (1) (-36)×16×(-9); (2) 362+482;
2019年九年级数学上册 21.1 二次根式教案 (新版)华东师大版.doc
要求学生会用算术平 方根的意义解释
2
2
2.
师生共同归纳得出性 质 2: 活动 8、 对 a2 中的运算顺序、 运算结果进行分析, 归纳出: 一个非负数先平方再开方,结果不变;一个负数先平方再 开方结果为相反数. 仍要求用算术平方根 练习:课本例 3 补充练习:1、化简: ( 4) 2 , (2 3 )2 ; 2、直角三角形的三边分别为 a,b,c,其中 c 为斜边,则 式子 a - c 与式子 (a c) 2 有什么关系?
2 2
a
2
a ( a ≥0)
对运算顺序的分 析在于弄清两种 运算的区别,从 而弄清对字母 a 的要求不同,计 算结果也因 a 而 异. 补充练习在于强 化二次根式的结 果具有非负性, 也促使学生养成 解题先观察的习 惯。
的意义解释 2 2 . 师生共同归纳出性质 3:
2
a 2 a ( a ≥0)
学生掌握情况,并集 中订正.
数式”即可,不 要求掌握“什么 叫代数式”.
教师归纳总结,学生 边听边作笔记.
教
学
反
思
算术平方根的意 义是得出二次根 式的性质的基 础,复习算术平 方根的意义便于 理解定义、归纳 性质. 让学生理解二次 根式是按形式定 义的,并理解二 次根式存在的条 件和运算结果的 非负性.
65 可 读 作 二 次 根
号 65 , 简 称 根 号 65( 只 有 二 次 可 简 称),也可读作 65 的 算术平方根. 可由学生思考后进行 讨论, 然后教师订正, 最后师生共同归纳得 出性质 1:
例 1、当 x 是怎样的实数时,下列二次根式有意义?在下列 二次根式有意义的情况下,其运算结果是怎样的实数?
x2,
华师大版九年级数学上册《二次根式》精品教案
华师大版九年级数学上册《二次根式》精品教案一、教学内容本节课,我们将学习华师大版九年级数学上册《二次根式》第一章节,详细内容为二次根式定义、性质以及运算规则。
具体包括二次根式概念、化简、乘除法运算和性质等。
二、教学目标1. 理解并掌握二次根式定义及性质。
2. 学会化简二次根式,并掌握二次根式乘除法运算。
3. 培养学生逻辑思维能力和解决问题能力。
三、教学难点与重点教学难点:二次根式化简和乘除法运算。
教学重点:二次根式定义及性质。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入以一个实际问题引入二次根式概念:一块正方形菜地,边长为√10米,求菜地面积。
2. 例题讲解(1)二次根式定义与性质。
(2)化简二次根式。
(3)二次根式乘除法运算。
3. 随堂练习(1)化简二次根式:√18、√48、√75。
(2)计算二次根式乘除法:√6 × √8,√27 ÷ √3。
4. 课堂小结六、板书设计1. 二次根式定义及性质。
2. 化简二次根式步骤。
3. 二次根式乘除法运算规则。
七、作业设计1. 作业题目:(1)化简下列二次根式:√20、√50、√72。
(2)计算下列二次根式乘除法:√15 × √12,√45 ÷ √9。
2. 答案:(1)√20 = 2√5,√50 = 5√2,√72 = 6√2。
(2)√15 × √12 = 6√5,√45 ÷ √9 = √5。
八、课后反思及拓展延伸1. 反思:本节课学生对二次根式定义和性质掌握情况,以及化简和乘除法运算熟练程度。
2. 拓展延伸:探讨二次根式加减法运算,以及与代数式结合运用。
重点和难点解析在教学过程中,有几个细节是我需要重点关注。
是实践情景引入部分,这关系到学生能否从实际问题中理解并感受到数学知识应用。
是例题讲解和随堂练习设计,这两部分直接关系到学生对二次根式定义、性质、化简方法和乘除法运算理解和掌握。
华东师大版九年级上册 数学 教案 21.1 二次根式
华东师范大学出版社九年级上册第21章第一节
21.1.1二次根式(第1课时)教学设计
一、教材分析
1、地位作用:本章主要内容是初中代数运算的基础内容,在整个中学代数中起承上启下的重要作用,内容有两部分,它们是二次根式的有关概念、性质和二次根式的四则运算。
本章的第一部分是二次根式的有关概念、性质。
它是把前面学习的实数写成式子进行运算,体现了由特殊到一般的数学思想,同时二次根式的概念和性质又是今后学习根式运算、函数的知识储备.
2.对象分析
(1)学生是乡镇普通初中九年级的学生,班级学生学习方面存在一定的差异;但学生对数学抱有浓厚的兴趣。
(2)学生在前面已学习了平方根,基本上掌握了平方根。
3.环境分析
(1)教师自制多媒体课件。
(2)上课环境为多媒体教室。
二、教学目标:
知识技能:积极参与构建二次根式的概念、探究二次根式的特征与性质的活动,在活动中体验成功的喜悦.
过程与方法:(1)了解二次根式的概念,能判断一个式子是不是二次根式。
(2) 掌握二次根式有意义的条件。
(3) 掌握二次根式的基本性质:)0
a
≥a
(0≥
情感、态度、价值观:通过计算、观察、类比、归纳、猜想,探索二次根式的概念、
性质的发生过程;发展学生合情推理能力和演绎推理能力.
三、教学重点、难点
教学重点:掌握二次根式的有关概念、性质;能熟练地运用二次根式的有关概念、
性质进行计算,并能利用它解决简单的实际问题.
教学难点:能熟练地运用二次根式的有关概念、性质进行计算,并能利用它解决简单的实际问题.
教学重点、难点突破方法:通过类比平方根和算术平方根的有关概念、性质突破难点
四、教学过程。
华师大版九年级数学上册《二次根式》教案
华师大版九年级数学上册《二次根式》教案一、教学内容二、教学目标1. 理解二次根式的概念,掌握二次根式的性质与运算方法。
2. 能够正确化简二次根式,解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点教学难点:二次根式的化简与运算。
教学重点:二次根式的概念、性质与运算方法。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。
2. 学具:练习本、铅笔、直尺。
五、教学过程1. 实践情景引入以一个实际情景为例,如“计算一个正方形的对角线长度”,引导学生回顾勾股定理,进而引出二次根式的概念。
2. 教学新课(1)讲解6.1节“二次根式的概念”,让学生理解二次根式的定义。
(2)通过例题讲解,引导学生学习6.2节“二次根式的性质与运算”。
(3)进行随堂练习,巩固所学知识。
3. 课堂小结4. 课堂练习设计一些具有代表性的习题,让学生当堂完成,检查学习效果。
六、板书设计1. 二次根式的概念2. 二次根式的性质与运算3. 化简二次根式的方法4. 课堂练习题及答案七、作业设计1. 作业题目(1)化简二次根式:√18,√50,√27。
(2)计算题:计算√9 + √16 √25的结果。
(3)应用题:一个正方形的边长为a,求其对角线长度。
2. 答案(1)√18 = 3√2,√50 = 5√2,√27 = 3√3。
(2)√9 + √16 √25 = 3 + 4 5 = 2。
(3)对角线长度为a√2。
八、课后反思及拓展延伸1. 反思:本节课学生对二次根式的概念和性质掌握程度较高,但在运算方面还存在一些问题,需要在课后加强练习。
2. 拓展延伸:引导学生研究二次根式的更多性质和运算规律,如分母有理化等。
同时,鼓励学生运用所学知识解决生活中的实际问题。
重点和难点解析1. 教学目标中的能力培养2. 教学难点与重点的区分3. 教学过程中的实践情景引入和例题讲解4. 作业设计中的题目类型和答案解析5. 课后反思及拓展延伸的深入探讨一、教学目标中的能力培养1. 理解并掌握二次根式的概念,能够正确区分哪些表达式是二次根式。
华师大版-数学-九年级上册-22.1二次根式(1) 教案
华师大版 九年级(上) 《第二十二章·二次根式》 第一节22.1 二次根式(1) 教案【三维教学目标】知识与技能:a ≥0)判断一个式子是否是二次根式,并能确定被开方数中字母的取值范围。
过程与方法:引导-自学-探究-交流-展示(探究结果确立与班级内分享)情感态度与价值观:经历知识产生的过程,探索新知识。
教学重点:a ≥0)的式子叫做二次根式的概念。
教学难点:a ≥0)”的灵活应用。
【课堂导入】 (学生活动)请同学们独立完成下列三个问题:问题1:什么叫有理数?什么叫无理数?什么叫实数?问题2:什么叫算术平方根?在正数、零、负数中哪些数有算术平方根?哪些数没有算术平方根?为什么?【教学过程】A 自 学:请同学们用10---15分钟时间自学教科书上本节内容。
B 探究与交流:8,都是一些正数的算术平方根.像这样一些正数的算术平方根a ≥0)•的式子叫做二次根式,由于二次根式的被开方数只能取非负值,因此二次根式要有意义就必须被开方数大于等于0。
从形式上看,二次根式必须具备以下两个条件:( 1 ) 必须有二次根号;( 2 ) 被开方数不能小于0 。
(学生活动)议一议:1、4的平方根是_____;0的平方根是______; 5的平方根是______;5的算术平方根是____.2、-1有算术平方根吗?3、0的算术平方根是多少?4、当a<0有意义吗?C 探 究:例1. 下列式子,哪些是二次根式,哪些不是二次根式? (1)32 (2)6 (3)12- (4))0(≤-m m (5) 35 (6)12+a (7)4 (8)x xy (、y 异号)例2. x 是怎样的实数时,式子5-x 在实数范围内有意义?分析:根据二次根式的定义,被开方数a ≥0,因此要使5-x 有意义,必须要使x-5≥0即可。
例3.12+m 、2n -、2a 、2-a 、y x -.应满足什么条件时才是二次根式 解:12+m : ∵m 2≥0, ∴m 2+1>0 ∴12+m 是二次根式. 2a : ∵a 2≥0, ∴2a 是二次根式; 2n -: ∵n 2≥0,∴-n 2≤0,∴当n=0时2n -才是二次根式; 2-a : 当a-2≥0时是二次根式,当a -2<0时不是二次根式;即当a ≥2是二次根式,当a <0时不是二次根式;y x -: 当x -y ≥0时是二次根式,当 x -y <0时不是二次根式;即当x ≥y 是二次根式,当x <y 时不是二次根式.【课堂作业】1、 x 是怎样的实数时,下列各式实数范围内有意义? ( 1 ) 2)1(+x ( 2 ) 11-x2、23-x ;3、x x 3443-+-4、当x 11x +在实数范围内有意义?《作业答案与解析》 1、解: ( 1 ) 由2)1(+x ≥ 0 ,解得:x 取任意实数∴ 当 x 取任意实数时,二次根式2)1(+x 在实数范围内都有意义。
华东师大版九年级数学上册教案全册
华东师大版九年级数学上册教案全册目录21.1《二次根式》教案21.2.1《二次根式的乘法》教案21.2.2《积的算术平方根》教案21.2.3《二次根式的除法》教案21.3《二次根式的加减》教案22.1《一元二次方程》教案22.2.1《直接开平方法和因式分解法》教案22.2.2《配方法》教案22.2.3《公式法》教案22.2.4《一元二次方程根的判别式》教案22.2.5《一元二次方程的根与系数的关系》教案22.3《实践与探索》教案23.1.1《成比例线段》教案23.1.2《平行线分线段成比例》教案23.2《相似图形》教案23.3.1《相似三角形》教案23.3.2《相似三角形的判定(第1课时)》教案23.3.2《相似三角形的判定(第2课时)》教案23.3.3《相似三角形的性质》教案23.3.4《相似三角形的应用》教案23.4《中位线》教案23.5《位似图形》教案23.6.1《用坐标确定位置》教案23.6.2《图形的变换与坐标》教案24.1《测量》教案24.2《直角三角形的性质》教案24.3.1《锐角三角函数(第1课时)》教案24.3.1《锐角三角函数(第2课时)》教案24.3.2《用计算器求锐角三角函数值》教案24.4《解直角三角形(第1课时)》教案24.4《解直角三角形(第2课时)》教案24.4《解直角三角形(第3课时)》教案25.1《在重复试验中观察不确定现象》教案25.2.1《概率及其意义》教案25.2.2《频率与概率》教案25.2.3《列举所有机会均等的结果》教案第21章《二次根式》复习》教案第22章《一元二次方程》复习》教案第23章《图形的相似》复习》教案第24章《解直角三角形》复习》教案第25章《随机事件的概率》复习》教案第25章《随机事件的概率》复习教案二次根式21.1 二次根式【知识与技能】1.理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.2.理解a(a≥0)是非负数和(a)2=a.3.理解2a=a(a≥0)并利用它进行计算和化简.【过程与方法】1.提出问题,根据问题给出概念,应用概念解决实际问题.2.通过复习二次根式的概念,用逻辑推理的方法推出a(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a)2=a(a≥0),最后运用结论严谨解题.3.通过具体数据的解答,探究并利用这个结论解决具体问题.【情感态度】通过具体的数据体会从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质.【教学重点】1.形如a(a≥0)的式子叫做二次根式.2. a(a≥0)是一个非负数;(a)2=a(a≥0)及其运用.3.【教学难点】利用“a(a≥0)”解决具体问题.关键:用分类思想的方法导出a(a≥0)是一个非负数;用探究的方法导出一、情境导入,初步认识回顾:当a是正数时,a表示a的算术平方根,即正数a的正的平方根.当a是零时,a等于0,它表示零的平方根,也叫做零的算术平方根.当a是负数时,a没有意义.【教学说明】通过对算术平方根的回顾引入二次根式的概念.二、思考探究,获取新知概括:a(a≥0)表示非负数a的算术平方根,也就是说,a(a≥0)是一个非负数,它的平方等于a.即有:(1)a≥0;(2)(a)2=a(a≥0).形如a(a≥0)的式子叫做二次根式.注意:在a中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数.思考:2a等于什么?我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的2a的值,看看有什么规律.概括:当a≥0时,2a=a;当a<0时,2a=-a.三、运用新知,深化理解1.x取什么实数时,下列各式有意义?2.计算下列各式的值:【教学说明】可由学生抢答完成,再由老师总结归纳.四、师生互动,课堂小结1.师生共同回顾二次根式的概念及有关性质:(1)(a)2=a(a≥0);(2)当a≥0时,2a=a;当a<0时,2a=-a.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.布置作业:从教材相应练习和“习题21.1”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课从复习算术平方根入手引入二次根式的概念,再通过特殊数据的计算,理解二次根式的有关性质,经历观察、归纳、分类讨论等思维过程,从中获得数学知识与技能,体验教学活动的方法.二次根式的乘除法1.二次根式的乘法【知识与技能】a•=ab(a≥b,b≥0),并利用它们进行计算和化简.理解b【过程与方法】a•=ab(a≥0,b≥0)并运用它进行计算.由具体数据发现规律,导出b【情感态度】a•=ab(a≥0,b≥0),培养特殊到一般的探究精神,培养学生对事通过探究b物规律的观察发现能力,激发学生的学习兴趣.【教学重点】a•=ab(a≥0,b≥0),及它的运用.b【教学难点】a•=ab(a≥0,b≥0).发现规律,导出b一、情境导入,初步认识1.填空:参照上面的结果,用“>”、“<”或“=”填空.2.利用计算器计算填空.a•=ab(a≥0,b≥0).【教学说明】由学生通过具体数据,发现规律,导出b二、思考探究,获取新知(学生活动)让3、4个同学上台总结规律.教师点评:(1)被开方数都是正数;(2)两个二次根式的积等于这样一个二次根式,它的被开方数等于前两个二次根式的被开方数的积.一般地,对二次根式的乘法规定为a•=ab(a≥0,b≥0).:b【教学说明】引导学生应用公式a•=ab(a≥0,b≥0).b三、运用新知,深化理解1.直角三角形两条直角边的长分别为15cm和12cm,那么此直角三角形斜边长是()A.32cmB.33cmC.9cmD.27cm【答案】1.B 2.C 3.A 4.D【教学说明】可由学生抢答完成,再由教师总结归纳.四、师生互动,课堂小结1.由学生小组讨论汇报通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.a•=ab(a≥0,b≥0).2.教师总结归纳二次根式的乘法规定b【教学说明】教师引发学习回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.布置作业:从教材“习题21.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.a•=ab(a≥0,b≥0),这节课教师引导学生通过具体数据,发现规律,导出b并学会它的应用,培养学生由特殊到一般的探究精神,培养学生对于事物规律的观察、发现能力,激发学生的学习兴趣.积的算术平方根【知识与技能】a•(a≥0,b≥0);1.理解ab=ba•(a≥0,b≥0).2.运用ab=b【过程与方法】a•(a≥0,b≥0),并运用它解题和化简.利用逆向思维,得出ab=b【情感态度】a•(a≥0,b≥0)以训练逆向思维,通过严谨解题,增强学生让学生推导ab=b准确解题的能力.【教学重点】a•(a≥0,b≥0)及其运用.ab=b【教学难点】a•(a≥0,b≥0)的理解与应用.ab=b一、情境导入,初步认识a•=ab(a≥0,b≥0).反过来,一般地,对二次根式的乘法规定为ba•(a≥0,b≥0).ab=b【教学说明】引导让学生通过复习上节课学习的二次根式的规定,利用逆向思维,得出a•(a≥0,b≥0).ab=b二、思考探究,获取新知例1化简:【教学说明】引导学生利用ab =b a •(a ≥0,b ≥0)直接化简即可.例2判断下列各式是否正确,不正确的请改正:【教学说明】注意引导学生理解并掌握积的算术平方根应用的条件:a ≥0,b ≥0.三、运用新知,深化理解1.化简:(1)20;(2)18;(3)24;(4)54.2.自由落体的公式为s=21gt 2(g 为重力加速度,它的值为10m/s 2),若物体下落的高度为120m ,则下落的时间是 s.【教学说明】可由学生自主完成分组讨论,小组代表汇报,再由老师总结归纳.四、师生互动,课堂小结1.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.2.教师总结归纳积的算术平方根等于各因式算术平方根的积,即ab =b a •(a ≥0,b ≥0).【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.1.布置作业:从教材“习题21.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.本课时教学以“自主探究——合作交流”为主体形式,先给学生独立思考的时间,提供学生创新的空间与可能,再给不同层次的学生提供一个交流合作的机会,培养学生独立探究、合作学习的能力,训练逆向思维,通过严谨解题,增加学生准确解题的能力.二次根式的除法【知识与技能】 1.理解b a b a =(a ≥0,b >0)和bab a =(a ≥0,b >0),并运用它们进行计算. 2.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式. 【过程与方法】1.先由具体数据,发现规律,导出b aba = (a ≥0,b >0),并用它进行计算. 2.再利用逆向思维,得出bab a =(a ≥0,b >0),并运用它进行解题和化简. 3.理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式. 【情感态度】 通过探究b aba =(a ≥0,b >0)培养学生由特殊到一般的探究精神;让学生推导bab a =(a ≥0,b >0)以训练逆向思维,通过严谨解题,增强学生准确解题的能力. 【教学重点】 1.理解b a b a =(a ≥0,b >0),bab a =(a ≥0,b >0)及利用它们进行计算和化简.2.最简二次根式的运用. 【教学难点】发现规律,归纳出二次根式的除法规定.最简二次根式的运用.一、情境导入,初步认识(学生活动)请同学们完成下列各题.1.写出二次根式的乘法规定及逆向公式.2.填空:3.利用计算器计算填空:【教学说明】每组推荐一名学生上台阐述运算结果,最后教师点评. 二、思考探究,获取新知刚才同学们都练习得很好,上台的同学也回答得十分准确,根据大家的练习和回答,我们可以得到:一般地,对二次根式的除法规定:b aba (a ≥0,b >0)反过来,bab a =(a ≥0,b >0) 下面我们利用这个规定来计算和化简一些题目. 例1 计算:【教学说明】 直接利用b aba =(a ≥0,b >0) 例2化简:观察上面各小题的最后结果,发现这些二次根式有这些特点:(1)被开方数中不含分母;(2)被开方数中所含的因数(或因式)的幂的指数都小于2.【教学说明】利用二次根式的乘法、除法规定来化简,要求最后结果化成最简二次根式.三、运用新知,深化理解1.化简:3.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.【教学说明】第1题可由学生自主完成,第2题、3题教师可给予相应的指导.四、师生互动,课堂小结请若干学生口述小结,老师再利用电子课件将小结放映在屏幕上.1.布置作业:从教材“习题21.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.本课时教学突出学生主体性原则,即通过探究学习,指导学生独立思考,通过具体数据得出规律,再让学生相互交流,或上台展示自己的发现,或表述个人的体验,从中获取成功的体验后,激发学生探究的激情.二次根式的加减法【知识与技能】1.掌握同类二次根式的概念,会判断同类二次根式,会合并同类二次根式.2.掌握二次根式加减乘除混合运算的方法.【过程与方法】通过二次根式的加减法运算培养学生的运算能力.【情感态度】形成良好的思维习惯,学会从数学的角度提出问题、理解问题,并能运用所学的知识解决问题.【教学重点】二次根式加减法的运算.【教学难点】探讨二次根式加减法的运算方法,快速准确进行二次根式加减法的运算.一、情境导入,初步认识1.合并同类项:(1)2x+3x;(2)2x2-3x2+5x2.解:(1)5x;(2)4x2.这几道题是你运用什么知识做的?加减法则.2.化简:3.如何进行二次根式的加减计算?先化简,再合并.4.同类二次根式:几个二次根式化成最简二次根式后,它们的被开方数相同,这些二次根式就称为同类二次根式,就是本书中所讲的被开方数相同的二次根式.如22与32;28、38与58.二、思考探究,获取新知例1计算:例2计算:【教学说明】进行二次根式的加减运算时,必须先将其化简,是同类二次根式才可合并. 例3计算:【教学说明】在二次根式的运算中,多项式乘法法则和乘法公式仍然适用.三、运用新知,深化理解.1.下列计算是否正确?为什么?【教学说明】这类计算的简便方法是先变形,再代入求值.四、师生互动,课堂小结请学生分组讨论,小组代表汇报,教师展示本节课学习的知识要点.1.布置作业:从教材相应练习和“习题21.3”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课通过复习整式的加减法合并同类项,引入二次根式的概念及二次根式的合并方法,对法则的教学与整式的加减比较学习,在理解、掌握和运用二次根式的加减法运算法则的学习过程中,渗透了分析、概括、类比等数学思想方法,提高学生的思维品质和兴趣.一元二次方程22.1 一元二次方程【知识与技能】1.知道一元二次方程的意义,能熟练地把一元二次方程整理成一般形式ax2+bx+c=0(a ≠0).2.在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中,使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识.【过程与方法】通过解决实际问题,把实际问题转化为数学模型,引入一元二次方程的概念,让学生认识一元二次方程及其相关概念,提高学生利用方程思想解决实际问题的能力.【情感态度】通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.【教学重点】判定一个数是否是方程的根.【教学难点】由实际问题列出的一元二次方程解出根后,还要考虑这些根是否确定是实际问题的根.一、情境导入,初步认识问题1 绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长和宽各为多少?【分析】设长方形绿地的宽为x米,不难列出方程x(x+10)=900,整理可得x2+10x-900=0.(1)问题2 学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.解:设这两年的年平均增长率为x,我们知道,去年年底的图书数是5万册,则今年年底的图书数是5(1+x)万册,同样,明年年底的图书数又是今年年底的(1+x)倍,即5(1+x)·(1+x)=5(1+x)2万册.可列得方程5(1+x)2=7.2,整理可得5x2+10x-2.2=0(2)【教学说明】教师引导学生列出方程,解决问题.二、思考探究,获取新知思考、讨论问题1和问题2分别归结为解方程(1)和(2).显然,这两个方程都不是一元二次方程.那么这两个方程与一元二次方程的区别在哪里?它们有什么共同特点呢?共同特点:(1)都是整式方程(2)只含有一个未知数(3)未知数的最高次数是2【归纳总结】上述两个整式方程中都只含有一个未知数,并且未知数的最高次数是2,这样的方程叫做一元二次方程.通常可写成如下的一般形式:ax2+bx+c=0(a、b、c是已知数,a≠0).其中ax2叫做二次项,a叫做二次项系数,bx叫做一次项系数,c叫做常数项.例1判断下列方程是否为一元二次方程:解:①是;②不是;③是;④不是;⑤不是;⑥是.【教学说明】(1)一元二次方程为整式方程;(2)类似⑤这样的方程要化简后才能判断.例2 将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数.一次项系数及常数项.解:2x2-13x+11=0;2,-13,11.【教学说明】将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.三、运用新知,深化理解1.将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.(1)5x2-1=4x(2)4x2=81(3)4x(x+2)=25(4)(3x-2)(x+1)=8x-3解:(1)5x2-4x-1=0;5,-4,-1;(2)4x 2-81=0;4,0,-81(3)4x 2+8x-25=0;4,8,-25(4)3x 2-7x+1=0;3,-7,1.2.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式.(1)4个完全相同的正方形的面积之和是25,求正方形的边长x ;(2)一个长方形的长比宽多2,面积是100,求长方形的长x ;(3)把长为1的木条分成两段,使较短一段的长与全长的积,等于较长一段的长的平方,求较短一段的长x.解:(1)4x 2=25;4x 2-25=0;(2)x (x-2)=100;x 2-2x-100=0;(3)x=(1-x )2;x2-3x+1=0.3.若x=2是方程ax 2+4x-5=0的一个根,求a 的值.解:∵x=2是方程ax2+4x-5=0的一个根.∴4a+8-5=0解得:a=-43. 四、师生互动,课堂小结1.只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程.2.一元二次方程的一般形式为ax 2+bx+c=0(a ≠0),一元二次方程的项及系数都是根据一般式定义的,这与多项式中的项、次数及其系数的定义是一致的.3.在实际问题转化为数学模型(一元二次方程)的过程中,体会学习一元二次方程的必要性和重要性.1.布置作业:从教材相应练习和“习题22.1”中选取.2.完成练习册中本课时练习的“课时作业”部分.学习本课时,可让学生先自主探索再合作交流,小组内,小组之间充分交流后概括所得结论,从而强化学生对一元二次方程的有关概念的认识,掌握建模思想,利用一元二次方程解决实际问题.一元二次方程的解法1.直接开平方法和因式分解法【知识与技能】1.会用直接开平方法解形如a(x-k)2=b(a≠0,ab≥0)的方程.2.灵活应用因式分解法解一元二次方程.3.使学生了解转化的思想在解方程中的应用.【过程与方法】创设学生熟悉的问题情境,综合运用探究式、启发式、活动式等几种方法进行教学.【情感态度】鼓励学生积极主动的参与“教”与“学”的整个过程,激发求知的欲望,体验求知的成功,增强学习的兴趣和自信心.【教学重点】利用直接开平方法和因式分解法解一元二次方程.【教学难点】合理选择直接开平方法和因式分解法较熟练地解一元二次方程.一、情境导入,初步认识问:怎样解方程(x+1)2=256?解:方法1:直接开平方,得x+1=±16所以原方程的解是x1=15,x2=-17方法2:原方程可变形为:(x+1)2-256=0,方程左边分解因式,得(x+1+16)(x+1-16)=0即(x+17)(x-15)=0所以x+17=0或x-15=0原方程的解x1=15,x2=-17【教学说明】让学生说出作业中的解法,教师板书.二、思考探究,获取新知例1 用直接开平方法解下列方程(1)(3x+1)2=7;(2)y2+2y+1=24;(3)9n2-24n+16=11.【教学说明】运用开平方法解形如(x+m)2=n(n≥0)的方程时,最容易出现的错误是漏掉负根.例2 用因式分解法解下列方程:(1)5x2-4x=0(2)3x(2x+1)=4x+2(3)(x+5)2=3x+15【教学说明】解这里的(2)(3)题时,注意整体划归的思想.三、运用新知,深化理解1.用直接开平方法解下列方程(1)3(x-1)2-6=0(2)x2-4x+4=5(3)(x+5)2=25(4)x2+2x+1=42.用因式分解法解下列方程:3.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为xm.则可列方程2πx2=π(x+5)2.解得x1=5+52,x2=5-52(舍去).答:小圆形场地的半径为(5+52)m.【教学说明】可由学生自主完成例题,分小组展示结果,教师点评.四、师生互动,课堂小结1.引导学生回忆用直接开平方法和因式分解法解一元二次方程的一般步骤.2.对于形如a(x-k)2=b(a≠0,b≥0)的方程,只要把(x-k)看作一个整体,就可转化为x2=n(n≥0)的形式用直接开平方法解.3.当方程出现相同因式(单项式或多项式)时,切不可约去相同因式,而应用因式分解法解.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.本节课教师引导学生探讨直接开平方法和因式分解法解一元二次方程,让学生小组讨论,归纳总结探究,掌握基本方法和步骤,合理、恰当、熟练地运用直接开平方法和因式分解法,在整个教学过程中注意整体划归的思想.2.配方法【知识与技能】1.使学生掌握配方法的推导过程,熟练地用配方法解一元二次方程.2.在配方法的应用过程中体会“转化”的思想,掌握一些转化的技能.【过程与方法】通过探索配方法的过程,让学生体会转化的数学思想方法.【情感态度】学生在独立思考和合作探究中感受成功的喜悦,并体验数学的价值,增加学生学习数学的兴趣.【教学重点】使学生掌握用配方法解一元二次方程.【教学难点】发现并理解配方的方法.一、情境导入,初步认识问题要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽分别是多少?设场地的宽为xm,则长为(x+6)m,根据矩形面积为16m2,得到方程x(x+6)=16,整理得到x2+6x-16=0.【教学说明】创设实际问题情境,让学生感受到生活中处处有数学,激发学生的主动性和求知欲.二、思考探究,获取新知探究如何解方程x2+6x-16=0?问题1 通过上节课的学习,我们现在会解什么样的一元二次方程?举例说明.【教学说明】用问题唤起学生的回忆,明确我们现在会解的一元二次方程的特点:等号左边是一个完全平方式,右边是一个非负常数,即(x+m)2=n(n≥0),运用直接开平方法可求解.问题2 你会用直接开平方法解下列方程吗?(1)(x+3)2=25(2)x 2+6x+9=25 (3)x 2+6x=16(4)x 2+6x-16=0【教学说明】教师启发学生逆向思考问题的思维方式,将x 2+6x-16=0转化为(x+3)2=25的形式,从而求得方程的解.解:移项得:x2+6x=16,两边都加上9即(26)2,使左边配成x 2+bx+(b2)2的形式,得: x 2+6x+9=16+9,左边写成完全平方形式,得:(x+3)2=25,开平方,得:x+3=±5,(降次)即x+3=5或x+3=-5解一次方程得:x 1=2,x 2=-8.【归纳总结】将方程左边配成一个含有未知数的完全平方式,右边是一个非负常数,从而可以直接开平方求解,这种解一元二次方程的方法叫做配方法.例1填空:(1)x 2+8x+16=(x+4)2 (2)x 2-x+41=(x-21)2 (3)4x 2+4x+1=(2x+1)2例2 列方程:(1)x 2+6x+5=0 (2)2x 2+6x+2=0 (3)(1+x )2+2(1+x )-4=0【教学说明】教师可让学生自主完成例题,小组展示,教师点评归纳.【归纳总结】利用配方法解方程应该遵循的步骤:(1)把方程化为一般形式ax 2+bx+c=0;(2)把常数项移到方程的右边;(3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方形式,然后利用直接开平方法来解.三、运用新知,深化理解1.用配方法解下列方程:(1)2x 2-4x-8=0(2)x 2-4x+2=0(3)x 2-21x-1=0 2.如果x 2-4x+y2+6y+2 z +13=0,求(xy )z 的值.【教学说明】学生独立解答,小组内交流,上台展示并讲解思路.四、师生互动,课堂小结1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的注意事项.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中课时练习的“课时作业”部分.本节课先创设情境导入一元二次方程的解法,引导学生将要解决的问题转化为已学过的直接开平方法来解,从而探索出配方法的一般步骤,熟练运用配方法来解一元二次方程.公式法【知识与技能】1.理解一元二次方程求根公式的推导过程,了解公式法的概念.2.会熟练应用公式法解一元二次方程.【过程与方法】通过复习配方法解一元二次方程,引导学生推导出求根公式,使学生进一步认识特殊与一般的关系.【情感态度】经历探索求根公式的过程,培养学生抽象思维能力,渗透辩证唯物主义观点.【教学重点】求根公式的推导和公式法的应用.【教学难点】一元二次方程求根公式的推导.一、情境导入,初步认识用配方法解方程:(1)x2+3x+2=0 (2)2x2-3x+5=0解:(1)x1=-1,x2=-2 (2)无解二、思考探究,获取新知如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?问题已知ax2+bx+c=0(a≠0),试推导它的两个根【分析】因为前面具体数字的题目已做得很多,现在不妨把a,b,c也当成具体数字,根据上面的解题步骤就可以推导下去.探究一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c 代入式子aac b b x 242-±-=就得到方程的根,当b 2-4ac <0时,方程没有实数根. (2)aac b b x 242-±-=叫做一元二次方程ax 2+bx+c=0(a ≠0)的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法.【教学说明】教师可以引导学生利用配方法推出求根公式,体验获取知识的过程,体会成功的喜悦,可让学生小组展示.例1 用公式法解下列方程:①2x 2-4x-1=0 ②5x+2=3x2 ③(x-2)(3x-5)=0 ④4x 2-3x+1=0解:①x 1=1+26,x 2=1-26 ②x 1=2,x 2=-31 ③x 1=2,x 2=35 ④无解【教学说明】(1(2)强调确定a,b,c 的值,注意它们的符号;(3)先计算b 2-4ac 的值,再代入公式.三、运用新知,深化理解1.用公式法解下列方程:(1)x 2+x-12=0(2)x 2-2x-41=0 (3)x 2+4x+8=2x+11(4)x (x-4)=2-8x(5)x 2+2x=0(6)x 2+25x+10=0 解:(1)x 1=3,x 2=-4;(2)x 1=232+,x 2=232-;(3)x1=1,x2=-3;(4)x1=-2+6,x2=-2-6;(5)x1=0,x2=-2;(6)无解.【教学说明】用公式法解方程关键是要先将方程化为一般形式.四、师生互动,课堂小结1.求根公式的概念及其推导过程.2.公式法的概念.3.应用公式法解一元二次方程.1.布置作业:从教材相应练习和“习题22.2”中选取.2.完成练习册中本课时练习的“课时作业”部分.在学习活动中,要求学生主动参与,认真思考,比较观察,交流与表述,体验知识的获取的过程,激发学生的学习兴趣,利用师生的双边活动,适时调试,从而提高学习效率.。
推荐K12学习2018届九年级数学上册21.1二次根式教案新版华东师大版
21.1 二次根式第1课时二次根式的概念及化简【知识与技能】1.了解二次根式的定义.2.会求二次根式被开方数中字母的取值范围.3.会利用二次根式的非负性解题.【过程与方法】经历观察、比较、总结二次根式的定义,培养学生的归纳能力.【情感态度】经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用意识.【教学重点】二次根式的概念.【教学难点】利用二次根式的非负性解决具体问题.一、创设情境,导入新知1.什么是平方根、算术平方根?2.试一试,说出下列代数式的意义.16,81,0,15,0.2.3.根据下图所示的直角三角形、正方形和等边三角形的条件,完成以下填空:(1)直角三角形的斜边长是________;(2)正方形的边长是________;(3)等边三角形的边长是________.(让学生在实际情境中写出表示算术平方根的式子)4.第2题及第3题中所得的各代数式的共同特点是什么?(学生通过观察,从中感知二次根式的特征.鼓励学生用自己的语言总结出共同特征,从而引出课题.教师鼓励学生大胆表述意见,然后作适当点评,板书本课课题)二、合作探究,理解新知1.二次根式的概念(1)引导学生概括二次根式的定义:像a2+4,b-3,2s这样表示的算术平方根,且根号内含字母的代数式大于或等于0,这样的式子叫做二次根式.为了方便,我们把一个数的算术平方根也叫做二次根式.因此我们把形如a (a ≥0)的式子叫做二次根式.(2)概念深化: 提问:a +1是不是二次根式?a +1呢?议一议:二次根式a +1表示什么意义?此算术平方根的被开方数是什么?被开方数必须满足什么条件的二次根式才有意义?其中字母a 需满足什么条件?为什么?经学生讨论后,让学生回答,并让其他学生点评.教师总结:强调二次根式根号内字母的取值范围必须满足被开方数大于或等于零.(3)思考:根据你已有知识,说说你对二次根式a 的认识.学生分组讨论,回答,最后教师总结:①表示a 的算术平方根;②a 可以是数,也可以是代数式;③从形式上含有二次根号“ ”;④a ≥0,a ≥0;⑤表示开平方运算,也可表示运算结果.2.例题讲解例1:下列式子,哪些是二次根式,哪些不是二次根式?2,33,1x ,x (x >0),0,42,-2,1x +y ,x +y (x ≥0,y ≥0). 分析:二次根式应满足两个条件:第一,有二次根号“ ”;第二,被开方数是正数或0. 解:二次根式有:2,x (x >0),0,-2,x +y (x ≥0,y ≥0);不是二次根式的有:33,1x ,42,1x +y. 交流归纳:从形式上看,一个代数式是二次根式必须具备以下两个条件:(1)必须有二次根号;(2)被开方数不能小于0.例2:x 取何值时,下列二次根式有意义? (1)x -1;(2)11-2x;(3)(1-x )2. 教师提问,学生回答,教师板书解题过程.问题是:①被开方数需满足什么?②由此可得怎样的不等式?③第(1)、(2)题可以转化为解怎样的不等式?第(3)题不解不等式就能确定x 的取值范围吗?解:(1)由x -1≥0,得x ≥1.所以当x ≥1时二次根式x -1有意义.(2)由11-2x >0,得1-2x >0,x <12.所以当x <12时,二次根式11-2x 有意义. (3)因为无论x 取何值,都有(1-x )2≥0,所以当x 取全体实数时,二次根式(1-x )2都有意义.交流归纳:由于二次根式的被开方数只能取非负值,因此二次根式要有意义就必须满足被开方数大于或等于0,而求二次根式被开方数中字母取值范围可列不等式求解.三、尝试练习,掌握新知1.下列式子哪些是二次根式?32,4,-12,-x ,x 2+1,35,xy (x ,y 异号),2-x (x <2).2.教材练习第2题.3.请同学们完成《探究在线·高效课堂》“随堂练习”部分.四、课堂小结,梳理新知本节课你有什么收获或困惑?(学生自己完成,教师引导学生总结)(1)式子a (a ≥0)叫做二次根式,实质是一个非负实数的算术平方根的表达式;(2)式子a 中,被开方数(式)必须大于或等于零;(3)求二次根式中字母取值范围的方法:①观察配方法,如例2中的(3)题;②列不等式或不等式组求解.五、深入练习,巩固新知请同学们完成《探究在线·高效课堂》“课时作业”部分.1.教材习题21.1第1题.2.当x 是多少时,2x +3+1x +1在实数范围内有意义?(答案:x ≥-32且x ≠-1) 3.已知y =2-x +x -2+5,求x y 的值.(答案:25) 3.若a +1+b -1=0,求a2009+b 2009的值.(答案:0)第2课时 二次根式的性质【知识与技能】理解二次根式的基本性质:(a )2=a (a ≥0)及a 2=|a |,并能利用它们进行化简或计算. 【过程与方法】通过对二次根式性质的探究,提高数学探究能力和归纳能力.【情感态度】经历观察、比较、总结和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.【教学重点】二次根式性质的应用.【教学难点】 二次根式性质a 2=|a |的应用.一、创设情境,导入新知1.什么叫二次根式?2.当a ≥0时,a 叫什么?当a <0时,a 有意义吗?3.(2)2,22表示的意义分别是什么?分别等于多少?教师点评,由3引出新课.二、合作探究,理解新知(一)(a )2=a (a ≥0)的探究1.做一做:根据算术平方根的意义填空: (4)2=______;(2)2=______;(9)2=______;(3)2=______;(13)2=______;(72)2=______;(0)2=______. 教师点评:4是4的算术平方根,根据算术平方根的意义,4是一个平方等于4的非负数,因此有(4)2=4.同理可得:(2)2=2,(9)2=9,(3)2=3,(13)2=13,(72)2=72,(0)2=0. 2.思考:根据上面的计算,你得出了什么结论?学生讨论,得出结论:(a )2=a (a ≥0).3.例题讲解例1:计算: (1)(32)2;(2)(56)2;(3)(3 5)2; (4)(72)2. 分析:我们可以直接利用(a )2=a (a ≥0)的结论解题. 解:(1)(32)2=32;(2)(56)2=56; (3)(3 5)2=32×(5)2=9×5=45; (4)(72)2=(7)222=74. 4.练习:计算:(1)(18)2;(2)(0)2;(3)(94)2; (4)(4 78)2;(5)(3 5)2-(5 3)2. (二)二次根式性质a 2=|a |的探究1.做一做:(学生活动)填空:22=________;0.012=________;(110)2=________;(23)2=________; 02=________;(37)2=________. 教师点评:根据算术平方根的意义,我们可以得到:22=2;0.012=0.01;(110)2=110;(23)2=23; 02=0;(37)2=37. 2.根据上面的计算你得出了什么结论?学生讨论得出,一般地:a 2=a (a ≥0).3.思考:当a <0时,a 2=a 还成立吗?学生小组讨论,教师举反例说明结论不成立,最后得出结论:当a <0时,a 2=-a .4.通过上面的学习你认为a 2等于多少? a 2=|a |.5.例题讲解例2:化简: (1)9;(2)(-4)2;(3)25;(4)(-3)2.分析:因为:(1)9=32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用a2=a (a ≥0)去化简. 解:(1)9=32=3;(2)(-4)2=42=4;(3)25=52=5;(4)(-3)2=32=3.(三)应用拓展1.计算: (1)(x +1)2(x ≥0);(2)(a 2+2a +1)2;(3)(4x 2-12x +9)2.提示:(1)因为x ≥0,所以x +1>0;(2)a 2+2a +1=(a +1)2≥0;(3)4x 2-12x +9=(2x )2-2·2x ·3+32=(2x -3)2≥0.2.当x >2时,化简(x -2)2-(1-2x )2.(四)巩固练习1.(-3)2=________;(-1.5)2=________.2.a 2=a 成立的条件是________.3.(213)2+(-213)2的值是( ) A .0 B.23C .423D .以上都不对 4.教材练习第1、3题.三、尝试练习,掌握新知请同学们完成《探究在线·高效课堂》“随堂练习”部分.四、课堂小结,梳理新知通过本节课的学习,你有什么收获或困惑?五、深入练习,巩固新知请同学们完成《探究在线·高效课堂》“课时作业”部分.1.教材习题21.1第2、3题.2.(选做题)(1)把下列非负数写成一个数的平方的形式:①5;②3.4;③16;④x (x ≥0).(2)先化简再求值:当a=9时,求a+1-2a+a2的值,甲、乙两人的解答如下:甲的解答为:原式=a+(1-a)2=a+(1-a)=1.乙的解答为:原式=a+(1-a)2=a+a-1=2a-1=17.两种解答中,______的解答是错误的,错误的原因是______.(3)在实数范围内分解下列因式:①x2-2;②x4-9;③3x2-5.。
2019—2020年最新华东师大版九年级数学上册《21.1 二次根式》教案(获奖教学设计).doc
《21.1二次根式》教案教学内容二次根式的概念及其运用.教学目标A≥0)的意义解答具体题目.提出问题,根据问题给出概念,应用概念解决实际问题.教学重难点关键A≥0)的式子叫做二次根式的概念.12A≥0)”解决具体问题.教学过程一、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3,那么它的图象在第一象限x横、纵坐标相等的点的坐标是___________.问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.AC问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.老师点评:问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x,所以所求点的坐标).问题2:由勾股定理得AB问题3:由方差的概念得S.二、探索新知这样一些正数的算术平方根的式子,我们就把它称二次根A≥0)的式子叫做二次根”称为二次根号.(学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少? 3.当A <0例1.下列式子,哪些是二次根式,哪些不是二次根式:、1xx 、1x y +(x ≥0,y ≥0). 分析:二次根式应满足两个条件:第一,第二,被开方数是正数或0.x >0)(x ≥0,y ≥0)1x1x y +.例2.当x在实数范围内有意义?分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x -1≥0才能有意义.解:由3x -1≥0,得:x ≥13当x ≥13在实数范围内有意义.三、应用拓展例3.当x+11x +在实数范围内有意义? 分析:要使+11x +在实数范围内有意义,必须同时0和11x +中的x +1≠0. 解:依题意,得23010x x +≥⎧⎨+≠⎩由①得:x ≥-32由②得:x ≠-1 当x ≥-32且x ≠-1+11x +在实数范围内有意义. 例4.(1)已知y =,求xy的值.(答案:2)(2) 二、做一做根据算术平方根的意义填空:2=_______;2=_______;2=______;2=_______;2=______;2=_______;2=_______.三、巩固练习 教材P 5练习1、2、3.填空:当a≥0;当a<0,并根据这一性质回答下列问题.(1)a,则a可以是什么数?a,则a可以是什么数?(2)a,则a可以是什么数?a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a≤0时,-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)│a│,而│a│要大于a,只有什么时候才能保证呢?a<0.解:(1)a,所以a≥0;(2)a,所以a≤0;(3)因为当a≥0a a,即使a>a所以a不存在;当a<0a a,即使-a>a,a<0综上,a<0.四、归纳小结本节课要掌握:A≥0)“1.形如号.2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.3.a(a≥0)及其运用,同时理解当a<0a 的应用拓展.。
华师大版-数学-九年级上册--21.1.1 二次根式(1) 教案(二)
九年级数学上册《(第1课时)》教案教 学 目标知识技能使学生理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围.数学思考使学生理解二次根式被开方数的取值范围的重要性.解决问题培养学生根据条件处理问题的能力及分类讨论问题.情感态度培养学生辩证唯物主义观点.重点 二次根式中被开方数的取值范围. 难点 二次根式的取值范围.课题:21.1 二次根式问题:1,2,3,4 2.例题与练习1.二次根式的定义 总结收获课后反思板书设计教学任务分析教学过程设计活动一回顾与思考 1.4的平方根是_____; 0的平方根是______; -16的平方根是____. 2.5的平方根是_______; 5的算术平方根是____. 3.直角三角形的两条直角边分别为7和4,斜边为__. 4.正方形的面积为s,则它 的边长为_____. 活动二接触新知上面3、4题的结果是65, s 他们表示一些正数的算术平方根.1. 二次根式的定义:一般 的,我们把形如a (a ≥0)的式子叫做二次根式,“” 称为二次根号. 2.例题与练习例 1.下列各式是否为二次根式?(1)12+m ;(2)2a ;(3)2n -;(4)2-a ;(5)y x -.解:(1)∵m 2≥0, ∴m 2+1>0 ∴12+m 是二次根式. (2)∵a 2≥0,1,2两题学生口答: 1. 4的平方根是±2; 0的平方根是0; -16没有平方根. 2. 5的平方根是±5; 5的算术平方根是5. 3.题经过计算后回答65;4.题学生口答s .请同学们思考:为什么一定要加上 a ≥0这一条件?引导学生说出只有正数和零才有平方根,负数没有平方根.(1)小题与学生一起分析;(2)小题请学生分析;(3)小题请学生认真思考后回答;使学生回忆平方根和算术平方根的内容利用开方开不进的式子引出二次根式的定义.进一步巩固被开方数一定要大于等于零这一条件.∴2a 是二次根式;(3)∵n 2≥0,∴-n 2≤0, ∴当n=0时2n 才是二次根式;(4)当a -2≥0时是二次 根式,当a -2<0时不是二次根式;即当a ≥2是二次根式,当a <0时不是二次根式; (5)当x -y ≥0时是二次根式,当 x -y <0时不是二次根式;即当x ≥y 是二次根式,当x <y 时不是二次根式.(4)(5)两小题需要分情况讨论,请学生考虑清楚在回答.问题与情境师生行为设计意图教学过程设计例2.当x 为何值时,下列各式在实数范围内有意义? (1)3-x(2)x 432- (3)x5-(4)1+x解:(1)由x -3≥0,得x ≥3. 当 x ≥3时,3-x 在实数范围内有意义; (2) 由x 432-≥0,得x ≤61.当 x ≤61时,x 432-在实数范围内有意义; (3)由-5x ≥0,得x ≤0; 当x ≤0时,x 5-在实数范围内有意义; (4)∵x ≥0,∴x +1>0, ∴x 为任意实数1+x 都有意义. 练习:1. 一个矩形的面积是18cm 2,它的边长之比为2:3,它的边(1)(2)小题学生自己能够解决.(3)小题注意符号问题;(4)小题请学生思考后解答.使学生进一步掌握二次根式取值范围的习题.对第四小题试着讨论.教学过程设计问题与情境 师生行为 设计意图活动三.总结收获1.二次根式的定义及被开方数的取值范围;2.被开方数的取值范围在计算中经常作为隐含条件给出,注意合理应用. 作业:1.下列各式是否为二次根式?32+x ; 2a ; 2a -;7-m . 2.当a 是怎样的实数时,下列各式在实数范围内有意义? (1) a 3; (2) 1--a ; (3) 226a +.学生总结有何收获和经验教训,教师补充.有助于培养学生的总结能力,并让学生总结经验教训有助于学生大胆的说出自己的错误避免今后再出现同样的失误.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式
21.1 二次根式
【知识与技能】
1.理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.
2.理解a(a≥0)是非负数和(a)2=a.
3.理解2a=a(a≥0)并利用它进行计算和化简.
【过程与方法】
1.提出问题,根据问题给出概念,应用概念解决实际问题.
2.通过复习二次根式的概念,用逻辑推理的方法推出a(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a)2=a(a≥0),最后运用结论严谨解题.
3.通过具体数据的解答,探究并利用这个结论解决具体问题.
【情感态度】
通过具体的数据体会从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质.
【教学重点】
1.形如a(a≥0)的式子叫做二次根式.
2.a(a≥0)是一个非负数;(a)2=a(a≥0)及其运用.
3.
【教学难点】
利用“a(a≥0)”解决具体问题.
关键:用分类思想的方法导出a(a≥0)是一个非负数;用探究的方法导出
一、情境导入,初步认识
回顾:
当a是正数时,a表示a的算术平方根,即正数a的正的平方根.
当a是零时,a等于0,它表示零的平方根,也叫做零的算术平方根.
当a是负数时,a没有意义.
【教学说明】通过对算术平方根的回顾引入二次根式的概念.
二、思考探究,获取新知
概括:a(a≥0)表示非负数a的算术平方根,也就是说,a(a≥0)是一个非负数,它的平方等于a.即有:
(1)a≥0;(2)(a)2=a(a≥0).
形如a(a≥0)的式子叫做二次根式.
注意:在a中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数.
思考:2a等于什么?
我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的2a的值,看看有什么规律.
概括:当a≥0时,2a=a;当a<0时,2a=-a.
三、运用新知,深化理解
1.x取什么实数时,下列各式有意义?
2.计算下列各式的值:
【教学说明】可由学生抢答完成,再由老师总结归纳.
四、师生互动,课堂小结
1.师生共同回顾二次根式的概念及有关性质:(1)(a)2=a(a≥0);(2)当a≥0时,2
a=a;当a<0时,2a=-a.
2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.
【教学说明】教师引导学生回顾知识点,让学生大胆发言,进行知识提炼和知识归纳.
1.布置作业:从教材相应练习和“习题21.1”中选取.
2.完成练习册中本课时练习的“课时作业”部分.
本节课从复习算术平方根入手引入二次根式的概念,再通过特殊数据的计算,理解二次根式的有关性质,经历观察、归纳、分类讨论等思维过程,从中获得数学知识与技能,体验教学活动的方法.。