电力电子实验报告

合集下载

电力电子技术实验报告全

电力电子技术实验报告全

电力电子技术实验报告全一、实验目的本次电力电子技术实验旨在加深学生对电力电子器件工作原理的理解,掌握其基本应用和设计方法,提高学生的动手能力和解决实际问题的能力。

二、实验原理电力电子技术是利用电子器件对电能进行高效转换和控制的技术。

通过电力电子器件,可以实现电能的变换、分配和控制,广泛应用于工业、交通、能源等领域。

常见的电力电子器件包括二极管、晶闸管、IGBT等。

三、实验设备和材料1. 电力电子实验台2. 晶闸管、IGBT等电力电子器件3. 电阻、电容、电感等基本电子元件4. 示波器、万用表等测量仪器5. 连接线、焊锡等辅助材料四、实验内容1. 晶闸管触发电路的搭建与测试2. 单相桥式整流电路的设计和测试3. 三相桥式整流电路的设计与测试4. PWM控制技术在电能转换中的应用5. IGBT驱动电路的设计与测试五、实验步骤1. 根据实验要求,设计电路图,并选择合适的电力电子器件和电子元件。

2. 在实验台上搭建电路,注意器件的连接方式和电路的布局。

3. 使用示波器和万用表等测量仪器,对电路进行测试,记录实验数据。

4. 分析实验数据,验证电路设计的正确性和性能指标。

5. 根据实验结果,调整电路参数,优化电路性能。

六、实验结果与分析通过本次实验,我们成功搭建了晶闸管触发电路、单相桥式整流电路、三相桥式整流电路,并对PWM控制技术在电能转换中的应用进行了测试。

实验结果表明,所设计的电路能够满足预期的性能要求,验证了电力电子器件在电能转换和控制方面的重要作用。

七、实验总结通过本次电力电子技术实验,我们不仅加深了对电力电子器件工作原理的理解,而且提高了实践操作能力和问题解决能力。

实验过程中,我们学会了如何设计电路、选择合适的器件和元件,以及如何使用测量仪器进行测试和数据分析。

这些技能对于我们未来的学习和工作都具有重要意义。

八、实验心得在本次实验中,我们体会到了理论与实践相结合的重要性。

通过亲自动手搭建电路,我们更加深刻地理解了电力电子技术的原理和应用。

四川大学电力电子实验报告2

四川大学电力电子实验报告2

三相全控桥整流电路工作原理:三相全控桥整流电路三相全控桥整流电路是由两个三相半波整流电路发展而来,其中一组三相半波可控整流电路为共阴极连接,一组为共阳极连接。

其电路图如商上图所示,共阴极组晶闸管编号为1-3-5,共阳极晶闸管编号为4-6-2,这样编号的目的是为了和晶闸管的导通顺序一致,即晶闸管的导通按照1-2-3-4-5-6时,电路处于临界连续状态°时,带阻感性负载:°时,α=90°时,有源逆变原理:名称——电力电子及电气传动教学实验台型号——MCL-III型包括:降压变压器、MCL-35、两组晶闸管阵列,电力二极管阵列,大功率滑动变阻器,可调电感、导线若干。

:o 0=αUd的波形 U VT的波形Ud的波形 U VT的波形3、α=90°时Ud的波形 U VT的波形4、α=0°,封锁1只晶闸管的脉冲信号时,Ud=120V,其波形为:6、α=0°,封锁共阴极组的2只晶闸管(1号和3号)的脉冲信号时,Ud=67V,其波形为:(2)阻感负载(300Ω+700mH):1、α=30°时Ud的波形 U VT的波形2、α=90°时Ud的波形 U VT的波形3、α=0°,封锁1只晶闸管的脉冲信号时,Ud=122V,其波形为:二、逆变工作Ud的波形 U VT的波形Ud的波形 U VT的波形(2)测定电网实际吸收直流功率Pk=f(Ud)的函数曲线1、数据处理678910(α=30°)图1 带阻感负载时,以封锁VT2的触发信号为例。

由三相桥式全控整流电路(图2)可知,在U(ab)过零变负之前,其情况和带阻性负载时相同。

在U(ab)过零变负之后,由于有电感的存在,段时间内U= U。

,所以波形出现负值。

在下一个自然换相点到来后,通, VT1关断, U再次等于U。

电力电子技术实验报告-三相半波可控整流电路实验等

电力电子技术实验报告-三相半波可控整流电路实验等

实验一三相半波可控整流电路实验一、实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻电感性负载时的工作情况。

二、实验所需挂件及附件三、实验线路及原理三相半波可控整流电路用了三只晶闸管,与单相电路比较,其输出电压脉动小,输出功率大。

不足之处是晶闸管电流即变压器的副边电流在一个周期内只有1/3 时间有电流流过,变压器利用率较低。

图3.1中晶闸管用DJK02 正桥组的三个,电阻R 用D42 三相可调电阻,将两个900Ω接成并联形式,L d电感用DJK02面板上的700mH,其三相触发信号由DJK02-1 内部提供,只需在其外加一个给定电压接到Uct端即可。

直流电压、电流表由DJK02 获得。

图3.1 三相半波可控整流电路实验原理图四、实验内容(1)研究三相半波可控整流电路带电阻性负载。

(2)研究三相半波可控整流电路带电阻电感性负载。

五、预习要求阅读电力电子技术教材中有关三相半波整流电路的内容。

六、思考题(1)如何确定三相触发脉冲的相序,主电路输出的三相相序能任意改变吗?(2)根据所用晶闸管的定额,如何确定整流电路的最大输出电流?七、实验方法(1)DJK02和DJK02-1上的“触发电路”调试①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。

②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。

③用10芯的扁平电缆,将DJK02的“三相同步信号输出”端和DJK02-1“三相同步信号输入”端相连,打开DJK02-1电源开关,拨动“触发脉冲指示”钮子开关,使“窄”的发光管亮。

④观察A、B、C三相的锯齿波,并调节A、B、C三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。

⑤将DJK06上的“给定”输出Ug直接与DJK02-1上的移相控制电压Uct相接,将给定开关S2拨到接地位置(即Uct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔” VT1的输出波形,使α=170°。

电力电子实验报告

电力电子实验报告

电力电子实验报告————————————————————————————————作者:————————————————————————————————日期:实验一SCR(单向和双向)特性与触发实验一、实验目的1、了解晶闸管的基本特性。

2、熟悉晶闸管的触发与吸收电路。

二、实验内容1、晶闸管的导通与关断条件的验证。

2、晶闸管的触发与吸收电路。

三、实验设备与仪器1、典型器件及驱动挂箱(DSE01)—DE01单元2、触发电路挂箱Ⅰ(DST01)—DT02单元3、触发电路挂箱Ⅰ(DST01)—DT03单元(也可用DG01取代)4、电源及负载挂箱Ⅰ(DSP01)或“电力电子变换技术挂箱Ⅱa(DSE03)”—DP01单元5、逆变变压器配件挂箱(DSM08)—电阻负载单元6、慢扫描双踪示波器、数字万用表等测试仪器四、实验电路的组成及实验操作图1-1 晶闸管及其驱动电路1、晶闸管的导通与关断条件的验证:晶闸管电路面板布置见图1-1,实验单元提供了一个脉冲变压器作为脉冲隔离及功率驱动,脉冲变压器的二次侧有相同的两组输出,使用时可以任选其一;单元中还提供了一个单向晶闸管和一个双向晶闸管供实验时测试,此外还有一个阻容吸收电路,作为实验附件。

打开系统总电源,将系统工作模式设置为“高级应用”。

将主电源电压选择开关置于“3”位置,即将主电源相电压设定为220V;将“DT03”单元的钮子开关“S1”拨向上,用导线连接模拟给定输出端子“K”和信号地与“DE01”单元的晶闸管T1的门极和阴极;取主电源“DSM00”单元的一路输出“U”和输出中线“L01”连接到“DP01”单元的交流输入端子“U”和“L01”,交流主电源输出端“AC15V”和“O”分别接至整流桥输入端“AC1”和“AC2”,整流桥输出接滤波电容(“DC+”、“DC-”端分别接“C1”、“C2”端);“DP01”单元直流主电源输出正端“DC+”接“DSM08”单元R1的一端,R1的另一端接“DE01”单元单向可控硅T1的阳极,T1的阴极接“DP01”单元直流主电源输出负端“DC-”。

电力电子技术实验报告解答

电力电子技术实验报告解答

实验一锯齿波同步移相触发电路实验一、实验目的(1)加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

(2)掌握锯齿波同步移相触发电路的调试方法。

三、实验线路及原理锯齿波同步移相触发电路的原理图如图1-11所示。

锯齿波同步移相触发电路由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其工作原理可参见1-3节和电力电子技术教材中的相关内容。

四、实验内容(1)锯齿波同步移相触发电路的调试。

(2)锯齿波同步移相触发电路各点波形的观察和分析。

五、预习要求(1)阅读本教材1-3节及电力电子技术教材中有关锯齿波同步移相触发电路的内容,弄清锯齿波同步移相触发电路的工作原理。

(2)掌握锯齿波同步移相触发电路脉冲初始相位的调整方法。

六、思考题(1)锯齿波同步移相触发电路有哪些特点?(2)锯齿波同步移相触发电路的移相范围与哪些参数有关?(3)为什么锯齿波同步移相触发电路的脉冲移相范围比正弦波同步移相触发电路的移相范围要大?七、实验方法(1)将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V 10%,而“交流调速”侧输出的线电压为240V。

如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。

在“DZSZ-1型电机及自动控制实验装置”上使用时,通过操作控制屏左侧的自藕调压器,将输出的线电压调到220V左右,然后才能将电源接入挂件),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察锯齿波同步触发电路各观察孔的电压波形。

①同时观察同步电压和“1”点的电压波形,了解“1”点波形形成的原因。

②观察“1”、“2”点的电压波形,了解锯齿波宽度和“1”点电压波形的关系。

③调节电位器RP1,观测“2”点锯齿波斜率的变化。

电力电子实验报告

电力电子实验报告

实验一:单相半波可控整流电路的仿真一、实验名称:单相半波可控整流电路的仿真二、实验原理:在大功率的电力电子电路中广泛采用可控整流电路对输出电压进行控制和调整,以满足各种功率较大的用电器对电源的要求。

可控整流电路最常用的控制器件是晶闸管,因为晶闸管性能可靠、价格低廉、控制电路简单。

整流电路按负载的不同可以分为带电阻负载和带阻感负载两种情况。

在生产实践中,更常见的是后者,即既有电感又有电阻,若负载中感抗ωL>>电阻R时,负载主要呈现为电感,成为电感负载。

三、仿真电路图各项参数为:图中V3 为220V, 50Hz 的正弦交流电源,X1 为晶闸管,V2 为晶闸管的触发脉冲信号源。

触发脉冲的幅度为-10V(对门、阴极间而言是+10V),脉冲宽度为0.lms,上升、下降时间均为1us,周期等于输入电源V3 的周期(20ms)。

电组R=2Ω,电感L取6.5mH。

四、波形图分析:电压波形图:现象:电压有跳变!上面是电阻电压,下面是电感电压。

相加大概为110V 左右,实验时占空比是50%,正好是110V。

电压突变是晶闸管由断态转向触发时所致。

电感两端的电压电流波形图:现象:上面是电感电流,下面是电感电压。

电压跳变是电流过0点时,晶闸管由断态触发开通时,由于电感L作用使电流不能突变。

电感很大的时候会没有跳变或跳变很小。

电阻电压电流波形图:结论:有跳变,电流从正向负跳变时候跳变要剧烈一点。

五、心得体会:通过本次实验基本上学会了此软件的基本用法。

同时仿真了单相半波可控整流电路,验证了晶闸管的作用及观察到其对电路的影响。

实验二:三相半波可控整流电路的仿真刘峻玮222007322042015 工程技术学院自动化1班一、实验名称:三相半波可控整流电路的仿真二、实验原理:当整流负载容量很大时,或要求直流电压脉动较小时,应采用三相整流电流,其交流侧由三相电源供电。

三相可控整流电路中,最基本的是三相电路可控整流电路,应用最为广泛的是三相桥式全控整流电路以及双反星形可控整流电路等等,均可在三相半波的基础上分析。

电力电子报告

电力电子报告

专业:电气工程及其自动化班级:电气10-3班姓名:学号:指导老师:实验日期:2013年6月25日1实验一锯齿波同步移相触发电路实验一.实验目的1.加深理解锯齿波同步移相触发电路的工作原理及各元件的作用。

2.掌握锯齿波同步触发电路的调试方法。

无三相调压器,直接合上主电源。

以下均同同时观察“1”、“2”孔的波形,了解锯齿波宽度和“1”点波形的关系。

观察“3”~“5”孔波形及输出电压U G1K1的波形,调整电位器RP1,使“3”的锯齿波刚出现平顶,记下各波形的幅值与宽度,比较“3”孔电压U3与U5的对应关系。

3.调节脉冲移相范围将MCL—18的“G”输出电压调至0V,即将控制电压Uct调至零,用示波器观察U2电压(即“2”孔)及U5的波形,调节偏移电压Ub(即调RP),使α=180O,其波形如图2-2所示。

图2-2 脉冲移相范围调节MCL—18的给定电位器RP1,增加Uct,观察脉冲的移动情况,要求Uct=0时,α=180O,Uct=Umax时,α=30O,以满足移相范围α=30O~180O的要求。

4.调节Uct,使α=60O,观察并记录U1~U5及输出脉冲电压U G1K1,U G2K2的波形,并标出其幅值与宽度。

用导线连接“K1”和“K3”端,用双踪示波器观察U G1K1和U G3K3的波形,调节电位器RP3,使U G1K1和U G3K3间隔1800。

六.实验报告1.整理,描绘实验中记录的1、2、3、4、5、6各点的波形,并标出幅值与宽度。

答:“1”孔(上)、“2”孔(下)波形:“3”孔波形(上)、“2”孔(下):UU34“4”孔波形: “5”孔波形:“6”孔波形(下):U G1K1波形: U G2K2波形2、调节脉冲移相范围⑴U2、U5波形:⑵、U G1K1、 U G2K2波形⑶、U G1K1、 U G3K3波形:2.总结锯齿波同步触发电路移相范围的调试方法,移相范围的大小与哪些参数有关?答:锯齿波同步触发电路移相范围的调试方法:调节电位器RP2,改变偏移电压Ub,从而改变α。

电力电子技术实验报告

电力电子技术实验报告

7实验一直流斩波电路实验一. 实验目的熟悉降压斩波电路、升压斩波电路及斩波控制电路的结构和工作原理,掌握以上两种基本斩波电路的工作状态和波形情况及调试方法。

二. 实验内容(1) 了解驱动电路的结构和实验电路的工作原理。

(2) 降压斩波电路的波形观察及电压测试。

(3) 升压斩波电路的波形观察及电压测试。

(4) 升降压斩波电路的波形观察及电压测试(选做,建议做)。

(5) Cuk 斩波电路的波形观察及电压测试(选做)。

(6) Sepic 斩波电路的波形观察及电压测试(选做)。

(7) Zeta 斩波电路的波形观察及电压测试(选做)。

(8) 电流测量(选做)。

三. 实验设备及仪器(1) 电力电子与运动控制教学实验平台(2) 示波器及高压隔离探头(3) 万用表(4) 连接导线四. 实验数据记录及整理分析1、了解MC0511 控制单元的工作原理,分析不同占空比和开关频率时波形的变化情况;分析驱动信号在连接MOSFET 前后波形的变化情况;说明“输出限幅”和“禁止”功能的作用。

在图1.1/1.2/1.3中,开关频率均为低频(5kHz),占空比依次为递增为20/40/60在图1.4/1.5/1.6中,占空比均为60,开关频率依次为为低频/高频/中频图1.7/1.8分别是将占空比旋钮调至最大所得到的波形。

输出限幅的接入可以限制输出波形占空比。

2、降压斩波电路性能研究(1)搭建电路如下所示(2)降压斩波电路测试结果表2.1 斩波电路测试结果电路形式:降压斩波电路开关频率:低频(5kHZ)负载情况:重载36V/90W表2.2 斩波电路测试结果电路形式:降压斩波电路开关频率:中频(12kHZ)负载情况:重载36V/90W表2.3 斩波电路测试结果电路形式:降压斩波电路开关频率:高频(20kHZ)负载情况:重载36V/90W(3)调节MC0511 控制单元上的“脉冲宽度调节”旋钮至约30%处,观察灯泡亮度的变化,用万用表测量并记录灯泡负载上的电压Uo 和斩波器输入直流电压E 的值。

电力电子技术实验报告

电力电子技术实验报告

实验一单相桥式半控整流电路整流二极管两端电压U VD1的波形。

顺时针缓慢调节移相控制电位器RP1,使其阻值逐渐增大,观察并记录在不同α角时U d、U VT、U VD1的波形,测量相应电源电压U2和负载电压U d的数值,记录于下表中。

计算公式:Ud = 0.9U2(1+cosα)/2(3) 单相桥式半控整流电路带电阻、电感性负载①将单结晶体管触发电路的移相控制电位器RP1逆时针调到阻值最小位置、按下电源控制屏DJK01上的停止按扭断开主电路电源后,将负载换成电阻、电感性负载,即将平波电抗器L d(70OmH)与电阻R(双臂滑线变阻器和灯泡串联构成)串联。

②断开开关S1,先不入接续流二极管VD3。

接通主电路电源,顺时针缓慢调节移相控制电位器RP1,使其阻值逐渐增大,用示波器观察控制角α在不同角度时的Ud、UVT、UVD1、Id波形,并测定相应的U2、Ud数值,记录于下表中:③在α=60°时,移去触发脉冲(将单结晶体管触发电路上的“G”或“K”拔掉),观察并记录移去脉冲前后Ud、UVT1、UVT3、UVD1、UVD2、Id的波形。

④将相控制电位器RP1逆时针调至最小,闭合开关S1,接入续流二极管VD3,然后顺时针缓慢调节移相控制电位器RP1,使其阻值逐渐增大,观察不同控制角α时Ud、UVD3、Id 的波形,并测定相应的U2、Ud数值,记录于下表中:⑤在接有续流二极管VD3及α=60°时,移去触发脉冲(将单结晶体管触发电路上的“G”或“K”拔掉),观察并记录移去脉冲前后Ud、UVT1、UVT3、UVD2、UVD1和Id的波形。

八、实验报告(1) 画出电阻性负载、电阻电感性负载时U d/U2=f(α)的曲线。

(2)画出电阻性负载、电阻电感性负载,α角分别为30°、60°、90°时的U d、U VT的波形。

(3) 说明续流二极管对消除失控现象的作用。

在整流桥接电阻电感性负载、不接续流二极管时,如晶闸管VT3的触发脉冲消失,VT3始终不导通,则输出电压ud失控。

电力电子技术实验报告

电力电子技术实验报告

实验一三相半波可控整流电路实验一、实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻电感性负载时的工作情况。

二、实验所需挂件及附件三、实验线路图图3.1 三相半波可控整流电路实验原理图四、实验内容(1)研究三相半波可控整流电路带电阻性负载。

(2)研究三相半波可控整流电路带电阻电感性负载。

五、思考题(1)如何确定三相触发脉冲的相序,主电路输出的三相相序能任意改变吗?答:三相触发脉冲应该与电源电压同步,每相相差120°;主电路输出的三相相序不能任意改变。

三相触发脉冲的相序和触发脉冲的电路及主电源变压器时钟(钟点数)有关。

(2)根据所用晶闸管的定额,如何确定整流电路的最大输出电流?答:晶闸管的额定工作电流可作为整流电路的最大输出电流。

六、实验结果(1)三相半波可控整流电路带电阻性负载按图3-10接线,将电阻器放在最大阻值处,按下“启动”按钮,DJK06上的“给定”从零开始,慢慢增加移相电压,使α能从30°到170°范围内调节,用示波器观察并纪录α=30°、60°、90°、120°、150°时整流输出电压Ud和晶闸管两端电压UVT的波形,并纪录相应d2U d=0.675U2[1+cos(a+π/6))] (30°~150°)(2)三相半波整流带电阻电感性负载将DJK02上700mH 的电抗器与负载电阻R 串联后接入主电路,观察不同移相角α时Ud、α=90°时的Ud 及Id波形图。

七、实验报告1)整流输出电压Ud和晶闸管两端电压UVT的波形(2)绘出当α=90°时,整流电路供电给电阻性负载、电阻电感性负载时的U d及I d的波形,并进行分析讨论。

α =30o 时Ud的波形α =30o 时Uvt的波形α =60o 时Ud的波形α =60o 时Uvt的波形α =90o 时Ud的波形α =90o 时Uvt的波形α =120o 时Ud的波形α =120o 时Uvt的波形α =150o 时Ud的波形α =150o 时Uvt的波形α =90o 时Ud的波形实验总结:第一次去实验的时候,并没有完成第一个实验,只是熟悉了实验仪器,加上没有对实验内容进行预习,所以没有完成实验内容。

电力电子实验报告

电力电子实验报告

西安电子科技大学电力电子实验报告实验一控制电路及交流调压实验一、实验内容1.单结晶体管BT33构成的控制电路调试,记录各级波形,形成控制脉冲。

2.单相交流调压电路调试,实现灯光亮度调节。

二、实验仪器、设备(软、硬件)及仪器使用说明)1.单相或三相电源变压器一台。

2.模拟或数字示波器一台。

3.单结晶体管、可控硅及实验板一套。

四、实验原理1.把交流电整流成脉动直流电,再经过二极管限幅,形成同步梯形波,再把此电压加给电容器,使其充电,当其电压到达单结晶体管的峰点电压时,单结晶体管导通,电容器放电。

我们正是利用单结晶体管BT33的负阻区形成触发脉冲,如图1所示。

2.双向晶闸管具有双向调节电压的的作用,图2的上半部分给出了双向晶闸管调压电路,所采用的双向晶闸管是BT136塑封管,其管脚图如图2的右下角BT136管脚的正视图,有字一面正对自己,最左边的为第一脚是门极,最右边的一脚是T1极,中间的是T2极。

3.利用单结晶体管BT33在负阻区形成触发脉冲作为控制信号,加在门极和T1极上去控制双向晶闸管工作,使其在交流电的正半周和负半周各有一段时间不导通,控制不导通的时间长短就达到了调压调光目的。

4.利用示波器找出脉冲变压器的同名端,目的是把正极性的控制信号加到可控硅的门极上,图中有黑点的端为同名端。

五、实验方法与步骤1.图1的电路给出了控制电路的几种形式,包括了了脉冲形成电路、同步电路、移相电路、输出电路等。

同学们可参照图1的电路在面包板上插接电路:1)先用整流桥搭接整流电路,把交流电整流成脉动直流电,通电后观察并在座标纸上记录A点显示的波形;2)断电后串电阻接上稳压二极管,经过二极管限幅,形成同步梯形波;再加电测量并记录B点显示的同步梯形波波形;3)断电后插上R2、R3、W1、C1、BT33和R4,再加电后用示波器测量C点、D 点波形,看C点是否是锯齿波,D点有无脉冲输出。

4)若有波形,看脉冲多少,应控制脉冲在5~20个之间,并调节W1,看锯齿波的个数有无增加或减少,有变化为正常。

电力电子技术实验报告

电力电子技术实验报告

电力电子技术实验报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT实验一三相半波可控整流电路实验一、实验目的了解三相半波可控整流电路的工作原理,研究可控整流电路在电阻负载和电阻电感性负载时的工作情况。

二、实验所需挂件及附件三、实验线路图图三相半波可控整流电路实验原理图四、实验内容(1)研究三相半波可控整流电路带电阻性负载。

(2)研究三相半波可控整流电路带电阻电感性负载。

五、思考题(1)如何确定三相触发脉冲的相序,主电路输出的三相相序能任意改变吗答:三相触发脉冲应该与电源电压同步,每相相差120°;主电路输出的三相相序不能任意改变。

三相触发脉冲的相序和触发脉冲的电路及主电源变压器时钟(钟点数)有关。

(2)根据所用晶闸管的定额,如何确定整流电路的最大输出电流答:晶闸管的额定工作电流可作为整流电路的最大输出电流。

六、实验结果(1)三相半波可控整流电路带电阻性负载按图3-10接线,将电阻器放在最大阻值处,按下“启动”按钮,DJK06上的“给定”从零开始,慢慢增加移相电压,使α能从30°到170°范围内调节,用示波器观察并纪录α=30°、60°、90°、120°、150°时整流输出电压Ud和晶闸管两端电压UVT的波形,并纪录相应的电源电压U2及U d的数值于下表中dU d=[1+cos(a+π/6))] (30°~150°)(2)三相半波整流带电阻电感性负载将DJK02上700mH 的电抗器与负载电阻R 串联后接入主电路,观察不同移相角α时Ud 、Id的输出波形,并记录相应的电源电压U2及Ud、Id值,画出α=90°时的Ud及Id波形图。

七、1)整流输出电压Ud和晶闸管两端电压UVT的波形(2)绘出当α=90°时,整流电路供电给电阻性负载、电阻电感性负载时的U d及I d的波形,并进行分析讨论。

电力电子学基本实验报告

电力电子学基本实验报告

电气学科大类级《信号与控制综合实验》课程电力电子基本实验实验报告姓名:学号:专业班号:指导教师:日期:实验成绩:评阅人:目录本实验报告的主要内容有:(一)正文部分<一>实验二十八:PWM信号的生成和PWM的控制实现<二>实验二十九:DC/DC PWM升压、降压变换电路性能研究<三>实验三十:三相桥式相控整流电路性能研究<四>实验三十一:DC/AC 单相桥式SPWM逆变电路性能研究<五>实验总结与自我评价(二)关于团队分工的说明(三)致谢(四)参考文献(一)正文部分<一> 实验二十八:PWM信号的生成和PWM的控制实现一、实验原理及思路:在本实验当中,必须首先搞清楚PWM控制的基本原理:将宽度变化而频率不变的的脉冲作为电力电子变换器电路中的开关管驱动信号,控制开关管的适时、适式的通断;而脉冲宽度的变化与变换器的输出反馈有着密切的联系,当输出变化时,通过输出反馈调节开关管脉冲驱动信号,调节驱动脉冲的宽度,进而改变开关管在每个周期中的导通时间,以此来抵消输出电压的变化,从而满足电能变换的需要。

本实验中采用实验室中已有的PWM控制芯片TL494来完成实验,当然在进行具体的PWM控制之前,我们必须要详细的了解和认识该控制芯片的工作原理和方式,如何输出?输出地双路信号存在怎样的关系?参考信号是如何形成的?反馈信号是如何加载到控制芯片上,同时又是如何以此反馈信号来完成输出反馈的?另外我们也必须了解和认识到对不同开关管进行驱动时,为保证开关管的完全可关断,保证电路的正常可靠工作,死区时间的控制方式。

最后我们也要了解为防止电力电子变换器在突然启动时,若开放较宽脉冲而带来的较大冲击电流的影响(和会给整个电路带来许多不利影响),控制芯片要采用“软启动”的方式,这也是本实验中认识的一个重点。

二、确定实验目标:1. 掌握PWM控制芯片TL494的工作原理。

电力电子实验报告

电力电子实验报告

电力电子实验报告实验一 SCR (单向和双向)特性与触发实验一、实验目的1、了解晶闸管的基本特性。

2、熟悉晶闸管的触发与吸收电路、实验内容1、晶闸管的导通与关断条件的验证2、晶闸管的触发与吸收电路。

三、实验设备与仪器1、典型器件及驱动挂箱(DSE01) —DE01单元2、触发电路挂箱1( DST01) —DT02单元3、触发电路挂箱1( DST01) —DT03单元(也可用DG01取代)4、电源及负载挂箱I ( DSP01)或“电力电子变换技术挂箱U a( DSE03) —DP01单元5、逆变变压器配件挂箱(DSM08)—电阻负载单元6、慢扫描双踪示波器、数字万用表等测试仪器四、实验电路的组成及实验操作DE01图1-1晶闸管及其驱动电路1、晶闸管的导通与关断条件的验证:晶闸管电路面板布置见图1-1,实验单元提供了一个脉冲变压器作为脉冲隔离及功率驱动,脉冲变压器的二次侧有相同的两组输出,使用时可以任选其一;单元中还提供了一个单向晶闸管和一个双向晶闸管供实验时测试,此外还有一个阻容吸收电路,作为实验附件。

打开系统总电源,将系统工作模式设置为“高级应用”。

将主电源电压选择开关置于“ 3”位置,即将主电源相电压设定为220V;将“DT03 ”单元的钮子开关“ S1”拨向上,用导线连接模拟给定输出端子“ K ” 和信号地与“ DE01 ”单元的晶闸管T1的门极和阴极;取主电源“ DSM00”单元的一路输出“ U”和输出中线“ L01 ”连接到“ DP01 ”单元的交流输入端子“U”和“ L01 ”,交流主电源输出端“ AC15V”和“0”分别接至整流桥输入端“ AC1 ”和“ AC2 ”,整流桥输出接滤波电容(“DC+ ”、“ DC-”端分别接“C1 ”、“C2”端);“DP01 ”单元直流主电源输出正端“ DC+ ”接“ DSM08” 单元R1 的一端,R1 的另一端接“ DE01” 单元单向可控硅T1 的阳极,T1 的阴极接“ DP01 ”单元直流主电源输出负端“ DC-”。

电力电子技术三相桥式全控整流及有源逆变电路实验报告

电力电子技术三相桥式全控整流及有源逆变电路实验报告

纯阻性:
α
30°
U2
139.7
Id
0.66
Ud(记录值)
305
ቤተ መጻሕፍቲ ባይዱ
Ud(计算值)
283.1
60° 141.2 0.42 195 165.7
90° 142.2 0.12
55 44.6
七、 实验结果与分析 1.纯阻性 Ud=f(a)的相位图片:
三相桥式全控整流电路带纯电阻负载时的移相范围为 0~120°,当α>60°时,阻感性 质负载时的电压出现负值,但是纯阻性负载的电压 Ud 不会出现负值(而是断续),纯电阻 负载时和阻感性负载时的负载电流有差异,这是因为电感的平波作用导致的,电感越大, 对电流的平直作用越强,输出的 Id 越接近于水平的直线。
关 S2 拨到接地位置(即 Uct=0),调节 PE-11 上的偏移电压电位器 RP,用数字存储示波
器同时观察 A 相同步电压信号和“双脉冲观察孔” VT1 的输出波形,使α=170°。
适当增加给定 Ug 的正电压输出,观测 PE-11 上“脉冲观察孔”的波形,此时应观测到
双窄触发脉冲
用 20 芯的扁平电缆,将 PE-11 的“触发脉冲输出”端与“触发脉冲输入”端相连,并
150°范围内调节,同时,根据需要不断调整负载电阻 R,使得负载电流 Id 保持在 0.6A 左右
注意 Id 不得超过 0.82A、。用示波器观察并记录α=30°、60°及 90°时的整流电压 Ud 和
晶闸管两端电压 Uvt 的波形,并记录相应的 Ud 数值。
3、三相桥式有源逆变电路
六、 实验记录与处理
在三相桥式有源逆变电路中,电阻将并联形式改为串联形式、电感的取值与整流的完全 一致,而三相不控整流及心式变压器均在电源控制屏上,其中心式变压器用作升压变压器, 逆变输出的电压接心式变压器的中压端 Am、Bm、Cm,返回电网的电压从高压端 A、B、C 输出,变压器接成 Y/Y 接法。

电力电子技术实验报告

电力电子技术实验报告

实验一 SCR、GTO、MOSFET、GTR、IGBT特性实验一、实验目的(1)掌握各种电力电子器件的工作特性。

(2)掌握各器件对触发信号的要求。

二、实验所需挂件及附件序号型号备注1 DJK01 电源控制屏该控制屏包含“三相电源输出〞等几个模块。

2 DJK06 给定及实验器件该挂件包含“二极管〞等几个模块。

3 DJK07 新器件特性实验4 DJK09 单相调压与可调负载5 万用表自备三、实验线路及原理将电力电子器件(包括SCR、GTO、MOSFET、GTR、IGBT五种)和负载电阻R串联后接至直流电源的两端,由DJK06上的给定为新器件提供触发电压信号,给定电压从零开始调节,直至器件触发导通,从而可测得在上述过程中器件的V/A特性;图中的电阻R用DJK09 上的可调电阻负载,将两个90Ω的电阻接成串联形式,最大可通过电流为1.3A;直流电压和电流表可从DJK01电源控制屏上获得,五种电力电子器件均在DJK07挂箱上;直流电源从电源控制屏的输出接DJK09上的单相调压器,然后调压器输出接DJK09上整流及滤波电路,从而得到一个输出可以由调压器调节的直流电压源。

实验线路的具体接线如下列图所示:四、实验内容(1)晶闸管〔SCR〕特性实验。

(2)可关断晶闸管〔GTO〕特性实验。

(3)功率场效应管〔MOSFET〕特性实验。

(4)大功率晶体管〔GTR〕特性实验。

(5)绝缘双极性晶体管〔IGBT〕特性实验。

五、实验方法(1)按图3-26接线,首先将晶闸管〔SCR〕接入主电路,在实验开始时,将DJK06上的给定电位器RP1沿逆时针旋到底,S1拨到“正给定〞侧,S2拨到“给定〞侧,单相调压器逆时针调到底,DJK09上的可调电阻调到阻值为最大的位置;翻开DJK06的电源开关,按下控制屏上的“启动〞按钮,然后缓慢调节调压器,同时监视电压表的读数,当直流电压升到40V时,停止调节单相调压器(在以后的其他实验中,均不用调节);调节给定电位器RP1,逐步增加给定电压,监视电压表、电流表的读调节数,当电压表指示接近零〔表示管子完全导通〕,停止调节,记录给定电压Ug根据得到的数据,绘出各器件的输出特性。

电力电子装置及系统实验报告之Flyback电路讨论

电力电子装置及系统实验报告之Flyback电路讨论

电力电子装置及系统实验报告之Flyback电路讨论目录课堂讨论内容 (4)提要 (4)1.问题一:论证Flyback能否实现PFC功能 (4)1.1Flyback电路原理及PFC功能: (4)1.2论证及分析: (5)2.问题二:若可以,将如何实现该Flyback? 需涉及:主要元器件和IC的选择及理由 (6)2.1PFC反激电路设计: (6)2.2UC3854内部结构 (6)2.3完整电路 (6)3.问题三:若Flyback采用MOSFET的同步整流技术,将如何解决该MOSFET的驱动问题? (8)3.1同步整流: (8)3.2MOSFET驱动电路 (8)3.3同步整流驱动电路特点 (9)3.4其中:二极管起保护作用 (10)4.问题四:论证MOSFET同步整流的Flyback能否实现节能? (11)4.1同步整流原理 (11)4.2整流损耗分析开关电源的整流损耗: (12)4.2.1整流管的正向导通压降 (12)4.2.2反向漏电流及反向电压 (12)4.2.3反向恢复时间引起的 (12)4.3节能条件 (13)课堂讨论内容(1)论证Flyback能否实现PFC功能(2)若可以,将如何实现该Flyback0? 需涉及:主要元器件和IC的选择及理由(3)若Flyback采用MOSFET的同步整流技术,将如何解决该MOSFET的驱动问题?(4)论证MOSFET同步整流的FLyback能否实现节能?若能,有条件吗?提要本次对于Flyback电路的讨论,我们详细研究及讨论了Flyback电路的工作原理,并在清楚了其工作原理的基础上,仔细查阅资料和并将其与课本知识的结合,进行了上述四个问题的详细讨论并研究。

1.问题一:论证Flyback能否实现PFC功能1.1Flyback电路原理及PFC功能:Flyback电路图:PFC的功能: PFC的英文全称为“Power Factor Correction”,意思是“功率因数校正”,功率因数指的是有效功率与总耗电量(视在功率)之间的关系,也就是有效功率除以总耗电量(视在功率)的比值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力电子实验报告姓名:不告诉你班级:O(∩_∩)O~指导老师:钟春富实验一控制电路及交流调压实验一、实验目的和要求本实验是利用单结晶体管来构成的最简单的控制电路。

但具有触发电路的四要素,这种电路的中小功率电路中仍广泛使用。

1. 每一个人都必须学会制作单结晶体管控制电路,以实现对小功率电力电子电路的控制,通过实验学习触发电路的设计及测量方法。

2. 了解脉冲变压器在可控硅触发电路中的应用,学习脉冲变压器的制作及同名端的测试方法。

3. 学习双向晶闸管在调压电路中的应用,在制作简单的控制电路的基础上,完成用双向晶闸管实现交流调压,用来控制灯光的亮度。

二、实验内容1.单结晶体管BT33构成的控制电路调试,记录各级波形,形成控制脉冲。

2.单相交流调压电路调试,实现灯光亮度调节。

三、实验仪器、设备(软、硬件)及仪器使用说明)1.单相或三相电源变压器一台。

2.模拟或数字示波器一台。

3.单结晶体管、可控硅及实验板一套。

四、实验原理1.把交流电整流成脉动直流电,再经过二极管限幅,形成同步梯形波,再把此电压加给电容器,使其充电,当其电压到达单结晶体管的峰点电压时,单结晶体管导通,电容器放电。

我们正是利用单结晶体管BT33的负阻区形成触发脉冲,如图1所示。

2.双向晶闸管具有双向调节电压的的作用,图2的上半部分给出了双向晶闸管调压电路,所采用的双向晶闸管是BT136塑封管,其管脚图如图2的右下角BT136管脚的正视图,有字一面正对自己,最左边的为第一脚是门极,最右边的一脚是T1极,中间的是T2极。

3.利用单结晶体管BT33在负阻区形成触发脉冲作为控制信号,加在门极和T1极上去控制双向晶闸管工作,使其在交流电的正半周和负半周各有一段时间不导通,控制不导通的时间长短就达到了调压调光目的。

4.利用示波器找出脉冲变压器的同名端,目的是把正极性的控制信号加到可控硅的门极上,图中有黑点的端为同名端。

五、实验方法与步骤1.图1的电路给出了控制电路的几种形式,包括了了脉冲形成电路、同步电路、移相电路、输出电路等。

同学们可参照图1的电路在面包板上插接电路:1)先用整流桥搭接整流电路,把交流电整流成脉动直流电,通电后观察并在座标纸上记录A点显示的波形;2)断电后串电阻接上稳压二极管,经过二极管限幅,形成同步梯形波;再加电测量并记录B点显示的同步梯形波波形;3)断电后插上R2、R3、W1、C1、BT33和R4,再加电后用示波器测量C点、D 点波形,看C点是否是锯齿波,D点有无脉冲输出。

4)若有波形,看脉冲多少,应控制脉冲在5~20个之间,并调节W1,看锯齿波的个数有无增加或减少,有变化为正常。

正常后调节到脉冲较少时记录波形,注意用双踪示波器对应测量C点和D点波形,观察D点的脉冲是在锯齿波的上升边还是在锯齿波的下降沿。

5)去掉电阻R4,换上脉冲变压器B,(1)测量变压器输出头的同名端,方法是用示波器探头的接地端接一个输出头,用示波器探头接另一个输出头,若输出脉冲为正极性则示波器探头所接的输出头为同名端,如图2中脉冲变压器B中分别带点的输出头。

(2)测量输出脉冲的波形,这时脉冲的波形有正有负,这是由于脉冲变压器的电感引起的。

并上反向二极管,可去掉负半边。

2.图2给出了单结晶体管控制电路组成的调光电路。

这里包括了调光主回路用的双向晶闸管BT136和发光元件普通的220V/40W灯泡。

从图上显而易见脉冲变压器同名端是接到了BT136的门极上(这就是同名端的用处)。

1)控制电路调整好后,接上双向晶闸管BT136,连上40W灯泡;2)查看无误后再把BT136的T2端接到变压器的110伏输出的一个端子上,40W 灯泡的另一端接到变压器的110伏输出的另一个端子上。

3)最后接上控制脉冲信号,脉冲变压器的同名端接BT136的G极,另一端接BT136的T1端。

4)通电,灯泡应该亮,若不亮,用示波器查看控制脉冲有无、BT136好坏、电源接通与否;5)正常后,调节W1,灯泡的亮度应随着调节而变化;6)测量并记录可控硅两端的波形和负载灯泡两端的波形(分别标明BT136导通段和截止段)。

六、实验数据1.A点显示的波形:2.B点的波形3.C点波形。

由于稳压管的作用,使当电压超过某一值时,电压不变,出现稳压,形成梯形波。

图中下面的为C点处的正确波形。

由此波形可以看出,平均一个梯形波可产生三个锯齿波,说明半个周期内电容充放电三次。

而改变可变电阻W1的值可改变电容充放电的时间,W1越大电容器电压上升时间越长,振荡频率越低,半周期内产生的脉冲越少。

4.D点的波形其中上面的为电容器两端的波形,下面的为D点即输出的脉冲波。

由图可看出,每个锯齿波的下降沿都对应一个脉冲波的上升沿。

因为每个锯齿波的下降沿都对应一个电容放电过程,这个过程单结晶体管处于负阻状态,对随着发射极电压减小,发射极电流反而增大,同时b1端电流增大,故电阻两端电压在极短时间内骤增,形成脉冲波。

当W1阻值变大时,产生的周期内的脉冲波会减少,即振荡频率降低。

1.负载电路:由于没有获得标准脉冲波,所以这个实验也没有成功。

但从网上找到理论波形如下图:其中u vt 为BT136两端电压波形,u0 为灯泡两端电压波形,u1为输入的交流电波形。

BT136为双向晶闸管,可双向导通。

在一个周期内的波形变化为:开始输入电压处于正半周,BT136导通,此时电源电压全部加在灯泡两端。

当输入电压过零点时,由于BT136承受反向电压,BT136截止,灯泡两端电压变为0,电源电压全加在BT136两端。

当给BT136加触发脉冲时,BT136重新导通,电源电压又回到灯泡两端。

由实验原理可知调节W1的电阻值可改变控制脉冲在半周期内的数量,当电阻值增大时,半周期内脉冲数减少,第一个脉冲相对于交流电过零点往后推迟的时间就长,相对应的电角度就大,BT136截止的时间就变长,灯泡亮的时间变短,则灯泡亮度减小。

九、讨论与思考1.晶闸管的控制电路由哪几部分组成?答:由同步电路、移相电路、脉冲形成电路、脉冲放大电路、脉冲输出电路组成。

2.Re变得太大或太小时都可以使单结晶体管停振,为什么?答:Re太大会使电容器上的电压上升到最大的时间长,振荡频率低,这样第一个脉冲相对于交流电过零往后推迟的时间就大大加长,电角度过大而使单结晶管停震。

同理,Re太小会使电容器上的电压上升到最大的时间短,振荡频率高,这样第一个脉冲相对于交流电过零往后推迟的时间就大大缩短,电角度过小而使单结晶管停震。

3.要使振荡频率升高,Re是变大还是变小?答:变小。

八、实验中遇到的问题、原因及解决问题的方法。

实验开始时有些波折,原因是板子上没有电压,及线路中多出断路,最终找到合适的板子,成功做出实验。

实验由于电路的电阻,电容及电感非理想状态,输出波形中有毛刺和干扰,但整体变化趋势与理论相符,本次实验成功。

实验四三相桥式可控整流电路实验一、实验目的和要求通过三相全桥可控整流实验掌握三相电路中电流的流向及负载特性,进一步理解晶闸管的驱动电路在桥式电路中的的作用特点。

1.学会用示波器观察三相桥式电路中田闸管的工作波形来了解晶闸管的工作状况2.根据实验,研究电路在不同负载下的特性3.验证晶闸管导通角与负载的关系及三相桥式整流电路中平均电压的计算公式二、实验内容1.调试三相可控整流电路2.调试和测量三相可控整流电路的控制回路实验板3.测量三相桥式整流电路电阻负载下不同α角的输出电压的波形和有效值4.测量三相桥式整流电路电阻负载下不同α角的晶闸管两端电压波形5.测量三相桥式整流电路电机负载下不同α角的输出电压波形和有效值6.测量三相桥式整流电路电机负载下不同α角的晶闸管两端电压波形三、实验仪器、设备(软、硬件)及仪器使用说明1.三相变压器一台、三相同步变压器一台、可控硅实验盒一台,三相电实验台2.模拟或数字示波器一台3.350W直流电机一台(包括220V激磁电源一台)4.数字或模拟三用表一只四、实验原理1.三相可控整流电路是由共阴极的三相半桥和共阳极的三相半桥组成的。

实验电路分为主回路和控制回路,主回路由6个晶闸管组成,控制回路由TA787A集成电路芯片为主的控制电路板来完成的。

2.三相电源和三相同步信号是经过CZ1插座引入到可控硅实验盒中,三相电源再经交流接触器J1引入到主回路上,三相同步电源是经CZ1直接引入,另外CZ1还引入了双15V的交流电源,用以在控制板上形成正负15V直流电源供给集成电路工作。

3.控制电路板是把三相30V的同步信号形成三相同步锯齿波,通过TA787A集成电路芯片产生六路双脉冲控制信号,经过放大,再经脉冲变压器隔离驱动六个晶闸管工作。

4.控制板是插入在CZ2的插座上。

其产生的6路双脉冲信号,经过放大通过CZ2直接加到 6 个脉冲变压器上,经隔离后加到六个晶闸管的门极上。

6路脉冲信号是按照DT1-DT2、DT2-DT3、DT3-DT4、DT4-DT5、DT5-DT6、DT6-DT1、DT1-DT2的顺序循环供给6个晶闸管,6个晶闸管则按照这个顺序循环工作,每60度有一个晶闸管换相,每个晶闸管各导通120度,完成三相整流工作。

调节α角就调节了延迟时间,也就调节了输出电压的值。

5.整流输出的直流电源也是经CZ1插座输出的,如图8所示。

五、实验方法与步骤1.如图7线路和图8实物图,插上CZ1插头和J2插头。

1)合上电源开关,三相变压器工作,控制板上已有三路30V的同步电压,2)按下K0自锁开关,K0上指示灯亮,接触器吸合,再按一下K开关,接触器断开,即断开给晶闸管的供电电源。

2.测量控制板1)测量三路控制脉冲波形:(1)用示波器双路探头测量控制板上的三路锯齿波,记录比较三路锯齿波的相位,(2)打开禁止钮子开关,用示波器双路探头测量实验盒上的六个测试点,测量脉冲变压器输入端的脉冲电压波形,比较其相位关系(测量时按照管子1-2-3-4-5-6-1的顺序比较测量,看是否在驱动DT1的时候也给DT6的门极加上驱动信号,驱动DT2的时候也给DT1的门极加上驱动信号------)每隔60度应有两个对应的晶闸管工作。

(3)用一路探头测量各个门极的驱动信号(注意要断开另一个探头的地线!!)2)测量相移角α双踪示波器一个探头接A相锯齿波,另一个探头接A相的双脉冲信号,调节α角调节旋钮,查看双脉冲相对于180度的锯齿波移相了多少即测量了相移角α。

3.测量电路电阻负载下的输出特性1)接灯负载,用示波器观看并记录电阻负载两端的输出电压波形2)固定灯负载的大小,测量不同α下输入电压和输出电压的有效值:3)根据测量值作U d=f (α)关系曲线。

4)用示波器观看并记录电阻负载下晶闸管两端的电压波形4.测量直流电机负载下的输出特性1)把输出直流电压通过电流表接直流电动机,用示波器观看电机负载下的输出波形,调节α角观察并记录输出波形2)固定电机负载的大小,测量不同α角下输入电压和输出电压的有效值.3)根据测量值作U d=f (α)关系曲线。

相关文档
最新文档