深孔爆破震动的观测与分析

合集下载

爆破振动观测报告

爆破振动观测报告
安全允许振速/(cm/s)
<10Hz
10Hz~50Hz
50Hz~100Hz
1
土窖洞、土坯房、毛石房屋a
0.5~1.0
0.7~1.2
1.1~1.5
2
一般砖房、非抗震的大型砌块建筑物a
2.0~2.5
2.3~2.8
2.7~3.0
3
钢筋混凝土结构房屋a
3.0~4.0
3.5~4.5
4.2~5.0
4
一般古建筑与古迹b
******公司
爆破
工程爆破振动观测报告
记录人:
工程编号:
记录日期:
爆破振动观测报告
一、
平盘
位置
台阶高度
岩石种类
普氏系数
地质结构(层理、节理、断层、溶洞等情况)
二、
岩石类型
台阶高度/m
孔径/mm
钻孔角度/度
超深/m
孔深/m
堵长/m
炸药类型
线装药密度
kg/m
单孔装药量/kg
平均单耗
kg/m3
孔距/m
排距/m
主频
(Hz)
波延
(ms)
b)
质点峰值振动速度范围
(mm/s)
主频率变化范围
(Hz)
质点振动持续时间范围
(ms)
c)
结果分析内容及存在问题:






八、爆破效果及分析
爆破效果
大块数目
前冲距离
后翻距离
有无根底






0.1~0.3
0.2~0.4
0.3~0.5
5

关于露天矿山深孔爆破振动效应测试与分析

关于露天矿山深孔爆破振动效应测试与分析

关于露天矿山深孔爆破振动效应测试与分析摘要:本文对露天矿山深孔爆破振动进行研究,首先对露天矿山深孔爆破振动效应进行分析,随后对影响振动效果的因素进行分析,提出了对应的措施,以对爆破振动进行合理控制,这不仅有助于降低爆破振动造成的不良影响,哈能提高矿山开采效率,为开采工作的顺利进行奠定基础。

关键词:露天矿山;爆破;振动效应爆破是矿山作业中必不可少的环节,且从实际的矿山开采现状来看,爆破环节具有次数多、规模大、震动时间长等特点,使得此过程带有较高的风险性。

同时,剧烈的振动现象也会在一定程度上加剧地质灾害问题的影响,这使得工作人员需在爆破前对其振动效应进行测试,并对测试结果进行分析,从而对爆破环节进行合理管控,以免出现安全事故。

1 露天矿山深孔爆破振动效应分析在矿山爆破作业中,检测人员需先对振动数据进行准确收集,再利用萨道夫斯基公式对其进行分析,从而实现对现场振动效果的合理监测。

该公式内容为。

随后,检测人员还可以对该公式进行变形,如令P等于,即可得。

基于此,测试人员可以将数据输入该公式中,即可得到K与a的回归数值,最终得出爆破振动衰减公式。

随后,其再利用将相关参数输入该公式中,就能够确定本次爆破工程所需的药量。

而在对现场进行频谱分析时,监测人员也可以将公式计算结果与现场监测数值进行对比分析,从而确定爆破助阵频率范围[1]。

另外,根据现场检测与数据计算结果可得,Z方向振动速度对爆破振动的影响最大,使得现场管理人员应当在具体施工中对Z方向的振动速度加强管控。

此外,为保障振动效应测试方法的准确性,检测人员还可以采用对比分析法,通过计算机软件构建爆破峰值的神经网络模型。

经试验发现,通过对该模型进行分析,同样可以得出所需的数值,且基于该模型得出的预算结果,在精准度上要高于通过公式计算得来的结果。

但是,在应用该方式进行分析时,需对现场监测这一环节加以重视,保证监测结果的准确性,并在后续参数输入环节进行监督,避免有输入错误的问题。

关于露天矿山深孔爆破振动效应测试与分析

关于露天矿山深孔爆破振动效应测试与分析

的位置设置测点。此外,在测点布置过程中,为避免现场环
境对监测结果产生不利影响,需做好场地清洁、整理工作,
做好传感器、测振仪的防护工作。
2.2 深孔爆破振动效应测试结果
通常情况下,在对爆破地震强度进行分析时,可用介质
爆破时间长等特点,对此为满足工程实践需求,提升测量精
准度,应用成都中科测控 TC-4850 爆破振动检测仪进行爆破
振动测试。TC-4850 爆破振动检测仪具有质量轻、体积小、
可靠性强等特征,其频响范围可达到 10kHz,历程的最大值
为 35cm/s(10V),记录精度度为 0.01cm/s,能够实现爆破
B 爆破技术 lasting technique
关于露天矿山深孔爆破振动效应测试与分析
严振勇
(广东爆破工程有限公司,广东 广州 510700)
摘 要 :为实现露天矿山深孔爆破振动效应的科学管控,本文以某矿山治理项目深孔爆破工程为例,采用萨道夫斯基 公式与神经网络原理对深孔爆破振动速度进行分析,结合现场振动监测数据,实现露天矿山深孔爆破振动效应的有效 测试与分析。用以丰富露天矿山深孔爆破振动效应理论研究体系,为露天矿山深孔爆破实践的科学管控提供有益参考。 关键词 :露天矿山 ;爆破振动 ;振动效应 中图分类号 :TD235.33 文献标识码 :A 文章编号 :1002-5065(2018)11-0173-2
项目 地盘抵抗线(Wa)
垂直炮孔孔径 孔深 孔距
平均孔深 排距
堵塞长度 超深 单耗
最大单响药量 总装药数量
参数 3.0~3.5m 115 mm 12~17m 4.45~5m
14.6m 3~3.5m 3.0~3.5m
1m 0.39~0.45 kg/m

爆破振速监测

爆破振速监测

爆破振速监测(1)监测目的隧道施工对地面建筑的影响主要有两个方面:地表不均匀沉降和爆破振动,当这两者的作用超过建筑的承受能力,会造成楼房等地表建筑的开裂,后果非常严重。

其中,爆破振动具有瞬时性,是居民对隧道施工最直接的感受,对居民的生活产生较大干扰同时也引发居民对建筑安全的担心和质疑。

因此必须进行爆破振动监测,严格将爆破震动危害控制在允许的范围内,监测对象安全评价,为后续施工提供精确可靠的数据和指导后续施工爆破方案设计等是爆破振动监测的主要目的。

(2)工作内容工作内容为对爆破影响范围内需保护的建(构)筑物进行实时振动监测,确保振速控制在规范规定和建、构筑物安全范围内,具体的工作内容有:现场熟悉、了解和掌握场址影响区范围内构筑物状况;配备先进监测设备、按有关规范对爆破影响区建(构)筑物进行爆破振动监测,对监测数据进行处理分析:A.对振动技术参数即频率、振幅、周期、振动时间、振动相位等的监测。

B.对振动量即速度、加速度、位移等物理量的监测。

(3)爆破振动监测原理爆破振动监测原理如流程图由于炸药在岩石中的爆炸作用,使安装布置在监测质点上的传感器随质点振动而振动,使传感器内部的磁系统、空气隙、线圈之间作相对的运动,变成电动势信号,电动势信号通过导线输入可变增益放大器将信号放大,进入AD转换,再通过时钟、触发电路,同时也通过存储器信号保护,再通过CPU系统输入计算机,采用波形显示和数据处理软件进行波形分析和数据处理。

(4)监测方法爆破振动监测是实时监测,所以在爆破前根据实地调查结果进行细致的准备工作,并严格按照工作流程进行工作。

为确保监测的准确可靠,首先对爆破点附近的监测对象进行详细准确的调查后,确定监测对象,然后在爆破前对监测系统进行检查、检测和标定,同时根据监测对象与爆破点相对位置关系,确定测点位置及布置方法,提前进入现场进行安置,根据爆破时间进行监测。

A 测点布置根据设计要求,将爆破振动测点布置在所需监测的地表、建筑物结构支撑柱、隧道侧壁上。

爆破振动监测分析仪可开设的实验和使用方法

爆破振动监测分析仪可开设的实验和使用方法

仪器名词:爆破震动监测分析仪一:可开设的实验1.爆破震动监测实验2.爆破震动波形预测实验3.爆破药量预测实验4.爆破震动强度预测实验5.单一质点震速安全判据实验6.速度—频率相关安全判据实验7.爆破震动对邻近建筑物的破坏规律实验8.研究爆破地震波在不同传播介质性和场地条件而变化的规律。

二:原理及目的爆破震动测试采用电测法对爆炸载荷在介质中的电学量进行转换,从而达到测震目的,该过程利用敏感元件在磁场中的相对运动,产生与地震形成一定比例关系的电信号,经过放大器和记录装置得到震动信号,将震动信号进行频谱分析和能量衰减分析,获得震动速度、震动主频等安全判据参数,最终实现波形、药量、震动强度预测。

三操作规程方法3.1仪器面板说明(1)监测分析仪面板(图3-1)仪器左右面板接口依次是:网络接口、充电接口、震动信号仪器操作界面从左到右依次是:待机、背光、记录、取消、确定及方向键网络接口:仪器连接计算机数据通信充电接口:给机内电池充电震动接口:连接传感器,震动信号的入口待机:关闭背光情况下等待震动信号的工作状态背光:打开或关闭显示屏背光记录:进入记录震动信号快捷键,默认上次记录参数,功能模式取消:返回上一步,取消功能确定:进入下一步,选定功能方向键:移动光标,波形数值切换,记录时间上下翻阅3.2电源适配器说明电源适配器有两种功能:(1)给仪器供电(6V);(2)给机内电池充电(6V/1.5A);电源适配器前面板上方的指示灯为红灯时表示充电状态,指示灯为绿灯时表示充电完毕。

正确的充电、用电方法:爆破震动监测分析仪内部装有高能量镍氢可充电电池,充满电后可供仪器连续工作72小时以上。

正确的镍氢电池充、放电方法及注意事项:(1)最好是电池能量快用完时才充电;(2)每次充电要充足(建议用户白天在室外工作一天后,晚上给电池充电一晚上,使用快速充电电源者除外);(3)电源适配器中装有专用的镍氢电池充电器,当电池充满电后指示灯会转为绿灯。

爆破振动监测方案

爆破振动监测方案

爆破振动监测方案爆破是一种常见的工程施工方式,可以用于矿山开采、建筑拆除等工程领域。

然而,爆破施工会伴随着强烈的振动,可能对周围环境和结构物造成不可忽视的影响。

因此,为了保证工程施工的安全性和可持续发展,爆破振动监测方案应运而生。

1. 振动监测原理爆破振动监测方案的核心是对爆破引起的振动进行实时监测和记录。

通常采用的方法是利用振动传感器将振动信号转化为电信号,并通过数据采集系统进行数据的存储和分析。

振动监测方案的目标是获得准确、全面的振动参数,包括振动速度、振动加速度和振动位移等指标。

2. 振动监测方案的关键技术(1)传感器选择:选择适合的振动传感器对于监测方案至关重要。

常见的振动传感器有加速度传感器、速度传感器和位移传感器等。

根据实际需要和监测要求,选择合适的传感器进行布置。

(2)布置方案:根据监测目标和工程施工的具体情况,合理规划传感器的布置位置和数量。

一般来说,应根据工程施工区域的大小和结构物的分布等因素进行布置,以确保监测数据的准确性和可靠性。

(3)数据采集与处理:振动监测方案需要结合现代信息技术手段,通过数据采集系统对监测数据进行实时采集和处理。

数据处理包括数据存储、传输和分析等环节,可以借助计算机、云平台和人工智能等技术手段进行。

3. 爆破振动监测方案的应用(1)工程施工监测:爆破振动监测方案可以应用于各类工程施工中,如建筑拆除、地铁隧道开挖等。

通过监测振动参数,可以评估工程施工对周围环境和结构物的影响,及时采取相应的措施进行调整和改进。

(2)安全评估与预警:振动监测方案可以提供全面的数据支持,对爆破施工产生的振动进行准确评估。

一旦发现超过安全限值的振动情况,可以及时预警并采取措施,以保证工程施工的安全性。

(3)环境保护与监管:爆破振动监测方案可以用于环境保护和监管领域,对工程施工中的爆破振动进行监测和评估。

通过振动监测数据,可以了解爆破施工对周边生态环境的影响程度,提出相应的环境保护措施和监管建议。

爆破振动测量报告

爆破振动测量报告

爆破振动测量报告1. 引言爆破振动测量是一种常用的地震监测手段,用于记录爆破活动引起的地面振动情况。

本报告旨在分析某爆破活动的振动测量数据,并对其进行评估和总结。

2. 测量设备与方法本次测量使用了三个加速度计(Accelerometers),分别安装在离爆破点一定距离的不同位置,以测量不同方向上的振动。

加速度计的采样频率为500Hz,并以数字方式记录数据。

3. 测量数据与分析通过对测量数据进行处理和分析,得到了以下结果:3.1 最大振动幅值在三个测点的振动数据中,分别选取了最大振动幅值。

结果显示:•离爆破点最近的测点振动幅值为5.1mm/s。

•离爆破点较远的测点振动幅值为2.8mm/s。

•另外一个测点振动幅值为3.5mm/s。

3.2 频谱分析对测量数据进行频谱分析,得到了下图所示的频谱图:![Frequency Spectrum](path/to/frequency_spectrum.png)从频谱图可以观察到主要能量集中在10Hz附近,并有一些低频和高频成分。

3.3 振动时间历程下图展示了三个测点的振动时间历程:![Time History](path/to/time_history.png)从时间历程图可以看出,振动信号具有明显的脉冲性质,持续时间较短,峰值出现在爆破后不久,并逐渐衰减。

4. 评估与总结结合测量数据和分析结果,对本次爆破活动的振动进行评估和总结:•本次爆破活动引起的振动幅值较小,远离爆破点的振动更加微弱。

•振动频谱主要集中在10Hz附近,具有一些低频和高频成分。

•振动时间历程显示了明显的脉冲特征,持续时间较短。

综上所述,本次爆破活动对周围地面的振动影响较小,不会对周围建筑物和设施产生明显的损害。

5. 结论根据对测量数据的分析,本次爆破活动引起的地面振动幅值较小且持续时间较短。

振动频谱主要集中在10Hz附近,具有一些低频和高频成分。

基于这些分析结果,可以判断该爆破活动对周围建筑物和设施的影响较小,不会造成严重的损害。

矿井爆破掘进的振动监测与分析

矿井爆破掘进的振动监测与分析

煤矿技术2015.12︱383︱矿井爆破掘进的振动监测与分析陈道云(淮南矿业集团顾桥煤矿,安徽 淮南232001)【摘 要】对某煤矿井下巷道掘进产生的爆破振动进行监测和分析,并总结出巷道爆破掘进时,巷道内岩体的质点振动速度受震源距离影响的一般衰减规律。

这对保障巷道结构的整体稳定性具有重要的意义。

【关键词】巷道掘进;爆破振动;监测分析中图分类号:TD82 文献标识码:A 文章编号:1006-8465(2015)12-0383-01 引言 煤矿井下进行爆破式掘进时产生的爆破振动效应会在一定程度上使煤矿井下巷道围岩产生松动、开裂甚至破坏。

因此,进行煤矿井下巷道掘进爆破振动监测控制对到达安全生产的目的是有现实意义的。

本文通过对某煤矿进行现场爆破振动测试,分析巷道爆破地震波的特性、传播规律以及对巷道周围岩体的影响,对通过改进爆破方案以求保证巷道的整体稳定性具有指导性意义。

1 工程概况某矿岩石水平巷道,直墙拱形断面,采用两种断面尺寸,靠近井底车场段断面稍大,此段断面设计巷道净宽5.2m,净高4.4m,净断面积19.97m 2,采用锚喷网支护,喷层厚度为150mm,巷道穿过的岩石以砂岩、泥岩为主,岩石坚固性系数为f=6~8。

掘进开采面的设计炮眼深度为2.2m,采用楔形斜眼掏槽,掏槽眼深度2.4m,在槽腔中心布置两个与主掏槽眼同深的直眼,并装药同时起爆,周边眼采用光面爆破技术,炮眼应布置在巷道掘进轮廓线上,炮眼间距在300~400mm,水垫层轴向不耦合装药。

采用三级煤矿安全水胶炸药,药卷规格为φ927mm 430mm 280g,1~5段毫秒电雷管,矿用防爆型起爆器。

2 爆破振动监测 2.1 测振仪器 大量实测表明,爆破振动破坏程度与振动速度大小关系密切,而且《爆破安全规程》(XGB6722-2003)规定以地面质点振动速度作为建筑物振动安全标准,故在实际工作中,大都采用质点振动速度作为衡量爆破振动波强度的标准。

爆破振动测量报告

爆破振动测量报告

爆破振动测量报告1. 引言爆破振动测量是一种常用的工程测量方法,通过检测爆破产生的振动信号来评估其对周围环境的影响。

本报告将介绍在一次爆破活动中所进行的振动测量过程,并分析测量数据。

2. 测量设备和方法在本次测量中,我们使用了专业的振动测量仪器,包括加速度计和数据记录仪。

测量过程中,我们将加速度计固定在距离爆破现场一定距离的地面上,并通过数据记录仪记录加速度计所测得的振动信号。

3. 测量数据和分析通过测量,我们获得了一组振动信号数据。

下面是对这些数据的分析结果:•振动强度随距离增加而减弱。

我们将测量点分为不同的距离范围,并对每个范围内的振动强度进行了统计。

结果显示,距离爆破现场越远,振动强度越小。

•振动信号具有明显的频率特征。

通过对振动信号进行频谱分析,我们发现在特定的频率范围内存在明显的峰值。

这些频率峰值可能与爆破活动的特定频率振动有关。

4. 振动对周围环境的影响评估为了评估爆破振动对周围环境的影响,我们参考了相关标准和规范,并进行了以下分析:•比较测量数据与标准限值。

根据相关标准,我们将测量数据与限值进行比较,以确定是否存在超标情况。

根据我们的测量结果,振动强度在合理范围内,未超过标准限值。

•分析振动对周围建筑物的影响。

我们对测量点附近的建筑物进行了观察和调查,并与建筑物的设计和结构特点进行对比。

根据分析,爆破振动对这些建筑物的影响可以忽略不计,不会引起结构的破坏或安全隐患。

5. 结论通过本次爆破振动测量及数据分析,我们得出以下结论:1.爆破振动强度随距离增加而减弱。

2.振动信号具有明显的频率特征。

3.爆破振动对周围环境的影响在合理范围内,未超过相关标准限值。

4.爆破振动对附近建筑物的影响可以忽略不计。

根据以上结论,我们可以认为本次爆破活动对周围环境和建筑物的影响是可控的,在合理范围内。

建议在类似的工程活动中,继续使用振动测量方法进行监测和评估,以确保工程施工的安全和可持续发展。

爆破振动监测方案

爆破振动监测方案

爆破振动监测方案爆破工程是一种常见的施工方式,它在矿山、隧道建设、道路拓宽等领域有着广泛的应用。

然而,爆破工程会产生较大的振动,给周围环境和结构物带来潜在的安全风险。

为了有效控制爆破振动,我们需要制定一套科学合理的爆破振动监测方案。

1. 监测目的爆破振动监测的主要目的是保护周围环境和结构物的安全。

通过监测爆破振动的参数,如振动速度、振动加速度等,可以及时判断振动是否超过预定的安全限值,从而采取相应的措施进行风险控制。

2. 监测方案爆破振动监测方案应包括监测设备的选用、监测点的布设以及监测参数的设置等内容。

2.1 监测设备的选用在爆破振动监测中常用的设备有振动传感器、数据采集仪等。

振动传感器用于测量振动参数,数据采集仪用于接收并存储振动信号。

在选用设备时,应考虑设备的准确性、稳定性和适应性,以确保监测结果的准确性和可靠性。

2.2 监测点的布设监测点的布设应充分考虑爆破工程的施工特点和结构物的分布情况。

一般来说,监测点应位于离爆破源较近的区域,并覆盖主要的观测对象,如结构物、管线等。

监测点的数量和位置应根据实际情况进行合理调整,以保证监测结果的全面性和代表性。

2.3 监测参数的设置监测参数的设置是爆破振动监测方案中的重要环节。

合理设置监测参数能够更准确地评估爆破振动的影响程度。

监测参数的设置应参考相关标准和规范,如国家标准《爆破振动测量规范》等。

常见的监测参数包括振动速度、振动加速度、频率等。

3. 监测方法爆破振动监测可采用实时监测和事后分析两种方法,具体应根据实际情况选择合适的监测方法。

3.1 实时监测方法实时监测方法可以通过在线监测系统进行。

监测系统应具备实时数据传输和处理功能,并能够及时将监测结果反馈给工程现场人员。

该方法的优点是能够实时掌握振动参数的变化,及时采取措施进行调整和控制。

3.2 事后分析方法事后分析方法是通过事后处理监测数据来评估爆破振动的影响程度。

监测数据可通过数据采集仪导出并进行分析处理。

爆破振动监测方案

爆破振动监测方案

爆破振动监测方案爆破振动监测是一种常用的工程技术手段,用于评估和控制爆破活动可能带来的振动影响。

本文将介绍一个完整的爆破振动监测方案,旨在帮助工程师和相关专业人员了解并合理应用该方案。

一、方案目的爆破振动监测方案的主要目的是通过对振动参数的测量和分析,评估爆破活动对周围结构物和环境的振动影响,以达到以下目标:1. 确保爆破活动对周围结构物和环境的振动水平不超过预定的安全标准;2. 监测和记录振动数据,为后续评估和调整提供依据;3. 提供数据支持,用于改进爆破方案和优化爆破参数。

二、方案内容1. 振动监测点布置根据具体工程情况,选取一定数量的监测点进行振动监测。

监测点应以被保护结构物或敏感环境为中心,合理布置,确保能够全面监测到爆破活动可能产生的振动影响。

2. 振动参数测量利用专业的振动测量设备对选定的监测点进行振动参数测量。

常见的振动参数包括振动速度、振动加速度、振动位移等。

在测量过程中,应确保测量设备的准确性和稳定性,并遵循相应的测量标准和规范。

3. 数据记录和分析将振动测量得到的数据进行记录和分析。

数据记录可以使用数据采集仪器进行实时监测和记录,也可通过传感器与数据采集系统相连,将数据传输到中央控制室进行实时处理和分析。

4. 振动监测报告根据测量数据和分析结果,编制振动监测报告。

报告应包括监测点的位置、测量时间和各个监测点的振动参数数据。

同时,结合相关标准和规范,对振动水平进行评估和分析,判断爆破活动是否符合安全标准。

5. 振动控制与调整根据振动监测报告的评估结果,对爆破活动进行必要的调整和控制。

可以通过调整爆破参数、减小药量或采取其他措施,来减少振动影响,确保周围结构物和环境的安全。

三、方案执行步骤1. 制定爆破振动监测方案,并明确方案的具体要求和目标;2. 根据方案要求,选择适当的振动测量设备和传感器,并确保其准确性和可靠性;3. 进行振动监测点的布置和标定,并安装测量设备和传感器;4. 开展爆破活动,并进行振动参数的实时测量和数据记录;5. 对测量数据进行分析,编制振动监测报告;6. 根据报告评估结果,进行振动控制与调整;7. 根据实际情况,适时进行方案的修订和优化。

某石灰岩地下矿山中深孔爆破震动测试与分析

某石灰岩地下矿山中深孔爆破震动测试与分析

采用连续装药结构 , 每孔装药量 3 ~ 9k. 6 3 g 为了减
少爆 破 震 动 对 矿柱 的破 坏 , 矿 房 两侧 各 布 置 了 3 在 个 预裂 孔 , 排 距 101. 裂 孔 采 用 导爆 索连 接 , 孔 . 1预 3 将 D 0m 7 m药 卷从 中间对半 剖开 均匀 间隔 捆绑 在 导 爆 索上 , 每个 预裂 孔装药 量 9一l 2 J . 中深孔 爆破 采用 多排微 差爆 破技 术和 预裂爆 破 技术 , 相邻 两段 时 间间隔 2 s预裂 孔 超 前 主炮 孑 5m . L 5 起 爆 . 0ms 最大段 由两 个 主炮孑 并联 , 爆药 量 7 L 起 8 k. g采用 非 电起爆 网络 , 每个炮 孔装 两 发导爆 管雷 管
HUAN T e p n G i - i g ,W ANG C u - u 2 P N epn h nh a E G L.ig,Q UZ ogy I h n—e

( . u ndn t lr a adA ci c rl ei ntue G aghu50 8 ,u ndn , 1 G ag ogMe u el n r t t a D s nIstt, un zo 10 0 G ago g l a heu g i
起爆药包 , 起爆方式为孔底起爆. 炮孔布置和起爆网
络如图 1 .
+1 0m水平 运 输 巷 道 、 斜 坡 道 , 别 距 离 爆 破 中 主 分
作. N B X一 06振 动监测 仪 由三维 速度 传感 器 、 U O 61 专 用 电缆 、 据Байду номын сангаас采 集 分 析 系 统 组 成 j三 维 速 度 传 数 .
感 器可 以同时测量 X、 z三个 方 向的速 度 , 放 固 Y、 安

露采中深孔爆破震动监测及控制技术研究

露采中深孔爆破震动监测及控制技术研究

露采中深孔爆破震动监测及控制技术研究摘要:目前随着我国不断增加的资源需求量,很多矿山在新建时都选择将矿址建在城市周边,或是偏远山区。

矿山生存和发展往往因为与周边居民生活产生的矛盾,而成为阻碍其持续壮大的因素,矿山附近的居民因为矿山的爆破造成的震动,而给他们带来极大的生活影响,因此要解决居民与矿山争端的关键,重在对瀑破测振问题的解决。

本文就露采中深孔爆破震动监测及控制技术展开分析研究。

关键词:露采;深孔爆破震动监测;控制技术现阶段我国爆破工程中的爆破器材和爆破技术,在中风压钻机、高风压钻机等设备的不断研发和优化下,对装运设备作出了极在的改进,爆破工程也获得了质的飞跃,也促进了我国经济效益的大幅度提升,新型爆破技术也获得了人们普遍的认可与重视。

一、概述爆破持术原理通常人们在修建道路、山体开打挖防隧道、或是野外采矿时,会用到爆破技术。

它通过炸药有效的利用,在爆炸过程中形成的巨大能量起到对物质原结构的破坏作用。

如在开挖石方时,矿山开挖时,爆破技术成为必不可少的一门施工程序。

硝铰内炸药水胶、硝化甘油等炸药,是我国常用的爆破炸药类型。

用常见炸药即为硝铰类炸药。

起爆器材的主要构成部分包括有导爆管、导爆索,还有电雷管。

在相应的外力作用下,炸药通过爆炸反应后将大量热量释放而出,形成高强气压体,通过这种强大冲击力击碎矿石,是为爆破采矿的技术原理。

二、深孔爆破在露采中震动监测及控制技术2.1优化矿山爆破方案为在露采矿山时有效控制其爆破时产生的震动,以对爆破矿山时造成波及范围的减少,对爆破方案的有效优化是较直接的策略。

离得较近的相邻区域,两者会因为爆破主震过程中的相互干扰,和各自的爆破震动效果,而形成新的振动叠加效应,这是爆破过程中必须要力求规壁的。

炮孔内如果由下部药包首先起爆,其相比先起爆孔内上部药包会获得更在的夹制性效果,所以也易形成更大危力的爆破作用,其危害性也会越大。

通过对上述爆破原则的分析,可对爆破方案适当作出调整,即对孔内引爆顺序改为从上往下地引爆孔不同部位的药包,通过对下部药包自由面的改善,而降低起爆时的夹制性。

地下矿深孔爆破振动传播规律分析

地下矿深孔爆破振动传播规律分析

地下矿深孔爆破振动传播规律分析摘要:近年来,我国对矿产资源的需求不断增加,地下矿深孔爆破技术有了很大进展。

为研究地下矿开采的深孔爆破过程中的振动效应对空区稳定和传播规律的影响,以某矿山地下采场深孔爆破为背景,根据现场爆破地震监测数据分析地震波的振速衰减和频域能量变化规律,并拟合得到质点振速的经验公式,依此对地下采场爆破地震波传播规律进行论述。

关键词:深孔爆破;爆破地震波;规律分析引言随着我国社会体系的不断发展,十分重视金属矿产开采的安全性。

矿企生产需要进行爆破作业,地下采场中频繁的深孔爆破产生的强振动不仅直接威胁着地下作业人员的生命安全,还影响着空区及充填体稳定性。

以某矿山地下采场深孔爆破为研究背景进行振动监测,拟合得到爆破振动速度预测经验公式,对深孔爆破在地下空间传播规律进行描述,以指导深孔爆破参数的设计和后续施工,确保空区和充填体的稳定。

金属矿山1深孔爆破技术优势分析深孔爆破技术,是指通过爆破地点的针对性计算,实行地表坚固性岩层的爆炸性活动,以达到缩减地质挖掘过程的做功复杂性,也避免大规模演示处理造成的施工事故,是一种较为安全的资源开采施工技术。

当前我们应用深孔爆破技术,在传统爆破处理基础上,实行集中性定点爆破处理,保障岩石爆破后,岩层结构能够在最小抵抗线区域内碎裂,避免了炸药爆破过程中存在的各种不利因素。

2深孔爆破振动传播规律分析在调查现场的岩石爆破工程地质条件的基础上,制定爆破地震波数据采集方案。

根据某矿山铁矿地质资料确定对该矿Ⅰ#矿体的-156m水平深孔爆破作业产生的爆破地震进行研究,地下矿采用无底柱分段崩落法进行开采,阶段高度为60m,分段高度12m,分别在3个开采水平(-132m、-144m、-156m)进行振动数据采集,测点分水平和铅垂方向布置,并使测点安装于同一铅垂方向。

根据矿山爆破施工技术资料,一次总装药量控制在400±20kg,对现场不同工况监测数据采集结果进行整理,并对现场实测振动数据汇总。

爆破工程爆破振动监测方案

爆破工程爆破振动监测方案

爆破工程爆破振动监测方案一、前言爆破工程是一种在建筑、采矿、隧道等工程中常见的施工方法,它能够在短时间内实现大量的岩石和土壤的破碎和开采,提高工程效率。

然而,爆破工程也会产生大量的振动和冲击波,对周围环境和建筑结构造成影响,因此需要进行爆破振动监测,保证施工安全和环保合规。

二、爆破振动监测的重要性1. 爆破振动监测是确保爆破工程施工安全的重要手段。

由于爆破工程的特殊性,振动和冲击波对周围环境和建筑结构有一定的影响,如果监测不到位,就有可能导致工程安全事故的发生。

2. 爆破振动监测是环境保护和社会责任的需要。

爆破工程产生的振动和冲击波会对周围地质环境、植被和水质造成一定的影响,如果没有有效监测和控制,可能会引发环境污染和生态破坏。

3. 爆破振动监测是保障建筑结构安全的重要手段。

爆破振动对周围建筑结构有一定的影响,需要通过监测和评估来保证建筑结构的安全性,避免振动损害。

三、爆破振动监测的技术原理爆破振动监测主要基于地震学原理和振动测量技术,通过测量地面振动速度和加速度等参数,来评估爆破振动对周围环境、建筑结构和地质构造的影响。

1. 地震学原理:爆破工程产生的振动和冲击波类似于地震波,因此可以采用地震学的相关原理和方法来进行监测和评估。

2. 振动测量技术:爆破振动监测主要通过地面振动传感器和数据采集系统来实现,其中地面振动传感器用于测量地面振动速度和加速度等参数,数据采集系统用于实时采集和记录振动数据。

四、爆破振动监测方案的制定1. 爆破振动监测方案的制定应充分考虑爆破工程的特点和环境背景,采取合理的监测点布设、监测参数选取和监测方法确定等措施,保证监测方案的科学性和有效性。

2. 爆破振动监测方案的制定应与爆破设计和工程施工相衔接,充分考虑爆破设计参数、工程施工方案和现场环境等因素,确保监测方案的针对性和实用性。

3. 爆破振动监测方案的制定应遵循国家和地方相关法规和标准,确定监测指标和限值,保证监测数据的可比性和评估依据的权威性。

露天矿山爆破振动监测及分析方法研究

露天矿山爆破振动监测及分析方法研究

露天矿山爆破振动监测及分析方法研究摘要:某露天铜矿山工程地质、水文地质条件复杂,边坡岩性基本为泥质边坡及风化岩边坡,采区爆破采用的是中深孔爆破,爆破振动对采区固定边坡稳定性影响较大,目前采区各个方向边坡均有不同程度垮塌现象。

本文主要探索采区爆破振动监测方法及监测数据分析方法,以在保证爆破效果的前提下,控制爆破振动,确保采区固定边坡稳固。

关键词:露天铜矿;爆破振动;边坡稳定性;振动控制1现场实地监测,收集采区爆破振动数据在完成仪器使用学习及仪器检定后,项目小组技术人员开始针对采区爆破震动进行监测,依据已经制定的《该矿采矿场爆破振动监测方案》,选取对采区生产影响最大的南部边坡进行针对性监测,并在采区南部边坡不稳定区域圈定了8个爆破震动数据监测点。

通过为期约1个月的不定期爆破数据监测工作,共收集了10组数据,其中有效数据8组。

2监测数据分析研究根据《爆破安全规程》(GB6722-2003)推荐的爆破振动衰减公式为:其中,V—爆破振动速度,cm/s;Q—最大段炸药量,kg;R—爆心距,m,爆心距为爆破中心至测点之间的距离;K—场地系数;α—振动衰减系数。

通过对测得的10组有效数据进行回归分析,得出爆破衰减公式中的K值及α值。

根据现场测试的数据,分测振线分别对每条测线进行分析,采用世界上权威的萨道夫斯基公式回归计算分析,得出以ln(Q 1/3/R)为横坐标,lnv为纵坐标的回归直线;并得出反映爆破振动衰减规律的萨道夫斯基公式。

根据回归分析处理,露天矿山生产爆破振动在采区南部边坡方向爆破振动传播规律见下图:图1露天矿山生产爆破振动在采区南部边坡方向爆破振动传播规律采区南部边坡爆破振动回归直线,回归分析结果如下:K=245.53α=1.79因此露天开采生产爆破振动在北部边坡方向爆破振动传播的萨道夫斯基公式即为:其中,V—爆破振动合速度,cm/s;Q—最大段炸药量,kg;R—爆心距,m。

根据分析回归得出的爆破振动在采区南部边坡爆破振动传播规律,可得出在该方向不同最大段药量和不同爆心距相应的爆破振动速度,具体见表2。

爆破振动监测报告

爆破振动监测报告

爆破振动监测报告1. 引言本报告旨在对爆破振动监测进行分析和总结,以评估其对周围建筑物和环境的影响。

爆破振动监测是一种重要的工程技术手段,可以确保爆破活动不会对周围的建筑物和地质环境造成损害。

2. 监测方法采用的爆破振动监测方法主要包括:•安放振动监测仪器:在爆破区周围安放多个振动监测仪器,以记录振动数据。

•数据采集与分析:对振动监测仪器采集到的数据进行实时传输和分析,以获取爆破振动数据。

3. 监测参数爆破振动监测中常用的参数包括:•振动速度(Vibration Velocity):反映振动波的强度。

•振动加速度(Vibration Acceleration):反映振动波的变化速率。

•振动位移(Vibration Displacement):反映振动波的位移幅度。

4. 数据分析通过对监测仪器采集到的数据进行分析,我们能够了解爆破振动对周围环境的影响程度。

4.1 爆破振动数据分布通过对振动数据的统计分析,我们可以得到爆破振动数据的分布情况。

以下是一个示例的振动数据分布图表:距离(m)振动速度(mm/s)振动加速度(mm/s²)5 10 5010 5 2515 3 1520 2 1025 1 5从表中可以看出,随着距离的增加,振动速度和振动加速度逐渐降低。

4.2 爆破振动评估根据国家标准和相关规定,我们对爆破振动进行评估。

以下是对爆破振动的评估结果:•振动速度评级:A级。

•振动加速度评级:B级。

根据评估结果可以得出,该爆破活动对周围环境影响较小,不会对建筑物和地质环境造成明显损害。

5. 结论经过对爆破振动的监测和分析,我们得出以下结论:1.经过评估,该爆破活动对周围环境影响较小,不会对建筑物和地质环境造成明显损害。

2.爆破振动的速度和加速度随距离增加而逐渐降低。

6. 建议鉴于本次爆破活动对周围环境和建筑物影响较小,建议继续遵循国家标准和相关规定开展工程爆破活动,注意合理安排爆破参数和振动监测措施。

爆破振动测试

爆破振动测试

爆破振动测试一、简介爆破振动测试是一种用于评估建筑物或结构在爆破冲击下的振动响应的方法。

通常,该测试方法用于评估建筑物或结构对爆破活动的抗性,包括对爆破冲击波的抵御能力以及对由爆破而引发的振动波的响应能力。

本文将从爆破振动测试的原理、测试设备和操作流程、数据分析等方面进行详细介绍。

二、原理爆破振动测试是利用传感器监测建筑物或结构在爆破冲击下的振动情况,并将数据记录下来进行分析。

其中,传感器通常是加速度计或速度计。

在进行爆破振动测试时,首先需要选定测试点,这些测试点应该代表建筑物或结构的不同部位。

然后,在进行爆破试验之前,需要在每个测试点中安装传感器,并确保其位置固定稳定。

当进行爆破试验时,传感器将记录下建筑物或结构在爆破冲击下的振动情况。

最后,通过对传感器记录的数据进行分析,可以评估建筑物或结构的振动响应能力。

三、测试设备和操作流程1. 加速度计或速度计:用于测量建筑物或结构的振动情况。

选用合适的传感器非常重要,而且要确保其具有足够的测量范围和灵敏度。

2. 数据记录仪:用于将传感器记录的数据保存下来,并便于后续的数据分析。

数据记录仪应该具备足够的存储容量,并能够进行高精度的数据记录。

3. 爆炸装置:用于模拟爆破冲击波。

爆炸装置的选用要根据具体测试需求进行选择,并确保其能够产生符合实际爆破活动的冲击波。

4. 试验控制系统:用于控制爆炸装置的触发,以及控制数据记录仪的开始和停止记录。

试验控制系统需要进行精确的校准,以确保测试的准确性和可靠性。

5. 安全措施:爆炸活动涉及到安全风险,所以必须采取适当的安全措施,如远离测试区域、佩戴适当的个人防护装备等。

操作流程:1. 确定测试目标和要求,包括选择合适的测试点和传感器位置。

2. 安装传感器并确保其位置固定稳定。

3. 设置试验控制系统,包括设置爆炸装置的触发时机和数据记录仪的开始和停止记录时机。

4. 进行爆破试验,并记录振动数据。

5. 结束试验并将数据保存到数据记录仪中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档