高中数学公式口诀

合集下载

高中数学公式定理记忆口诀大全-精选教育文档

高中数学公式定理记忆口诀大全-精选教育文档

高中数学公式定理记忆口诀大全高中数学公式定理记忆口诀大全:《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

《三角函数》三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;《不等式》解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

高中数学口诀(知识记忆顺口溜)

高中数学口诀(知识记忆顺口溜)
四条性质离不得,相等和模与共轭,
两个不会为实数,比较大小要不得。
复数实数很密切,须注意本质区别。
排列、组合、二次项定律
加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
排列组合在一起,先选后排是常理。
特殊元素和位置,首先注意多考虑。
先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,
简单三角的方程,化为最简求解集。
不等式
解不等式的途径,利用函数的性质。
对指无理不等式,化为有理不等式。
高次向着低次代,步步转化要等价。
数形之间互转化,帮助解答作用大。
证不等式的方法,实数性质威力大。
求差与0比大小,作商和1争高下。
直接困难分析好,思路清晰综合法。
还有数学归纳法,证明步骤程序化:
首先验证再假定,从 K向着K加1,
推论过程须详尽,归纳原理来肯定。
复数
虚数单位i一出,数集扩大到复数。
一个复数一对数,横纵坐标实虚部。
对应复平面上点,原点与它连成箭。
箭杆与X轴正向,所成便是辐角度。
箭杆的长即是模,常将数形来结合。
代数几何三角式,相互转化试一试。
代数运算的实质,有i多项式运算。
其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;
图象互为轴对称,Y=X是对称轴;
求解非常有规律,反解换元定义域;
反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;
函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;
图象第一象限内,函数增减看正负。

高中数学秒杀口诀50条纯干货

高中数学秒杀口诀50条纯干货

高中数学秒杀口诀50条纯干货一:几何初等函数1.古典三角形:角平分线平行,等腰直角比定理。

2.矩形内角和:四个等边,和为全是360°。

3.三角形内角和:三个直角全等,和为180°。

4.外心内接圆:三角的内接圆两条邻边夹,外心即两角平分线夹。

5.等腰三角形:最大角等于中角,最小边等于两边之和。

6.锐角三角形:最大角大于中角,最小圆大于四分之一。

7.平行四边形:两个对角等于边之和,外心则是两角平分线之和。

8.直角三角形:两条直角等腰,直角大于两角小于90°。

9.梯形内角和:三角形的两个角和一个平角,和为180°。

10.直线的垂直交点:两条直线垂直相交,交点即两角平分线夹。

二:代数初等函数11.二次根式:二次根式的解法,一正一负要多除。

12.简化指数:指数运算把它拆,系数即是乘积啊。

13.分类联立:解三元一次方程,联立好可分析情况。

14.一次函数:一次函数的特征,斜率及截距说明。

15.一元二次:一元二次公式的解法,定理及变量要多算。

16.分式简化:分式的约分乘除,最大公因数要多求。

17.分数分母:分数乘除连除化,分母在最后要求。

18.交互消去:线性联立统一求,直接把变量交换消去。

19.完全平方:平方差和完全平方,两者的系数个数差别大。

20.二次方程:二次方程解决比较复,分类讨论得一套。

三:几何欧氏空间21.向量加减:向量加减法则规律,角平分头尾夹定理。

22.点线距离:点线距离公式的用,要知道夹角及长度。

23. 内积外积:内积叉积的多角度,余弦定理及正弦值。

24.向量积:向量积的乘积和,方向及大小要推算。

25.向量坐标:向量坐标的变换,从任意坐标转换。

26.向量的点积:向量的点积公式求,余弦定理和已知参数。

27.平面向量:平面向量的方向角,余弦及正弦定理求。

28.点在直线上:点在直线上确定位置,向量的夹角来判断。

29.直线平行:两直线平行向量点积,结果余弦定理明确。

2020年高中数学知识点口诀

2020年高中数学知识点口诀

高考数学必考知识点口诀一、《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任庖缓扔诤竺媪礁S盏脊骄褪呛茫夯蟠蠡。

?nbsp;变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用; 1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围; 利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

高中数学口诀

高中数学口诀

高中数学口诀高中数学口诀一、代数基础口诀:1. 二次方程求根公式:delta = b^2 - 4ac, x = (-b ± √delta) / 2a。

2. 一元二次方程的解:两根相等,delta = 0,两根相反,delta > 0,无解,delta < 0。

3. 四则运算优先顺序:括号,乘除,加减。

4. 和差化积:(a ± b)² = a² ± 2ab + b²。

5. 因式分解基本公式:a² - b² = (a + b)(a - b)。

二、函数与图像口诀:1. 一次函数的图像:y = kx + b,直线斜率为k,截距为b。

2. 幂函数“开口”:幂指数为正的开口向上,为负的开口向下。

3. 对称轴分析:二次函数的对称轴公式,x = -b /(2a)。

4. 函数图像平移:y = f(x ± a),横向右移a单位,纵向上移a单位。

5. 一次函数与一次函数相交,解得交点;一次函数与二次函数相交,解二次方程。

三、解三角函数口诀:1. 正弦函数正比例,余弦函数余比例,正割函数倒正弦,余割函数倒余弦,负弦余切亦是然。

2. 正弦余弦周期为2π,正切余切周期为π。

3. 锐角三角函数值,必然均在0到1之间;钝角正切值,以后再求再思量。

4. 归一化:将角度转为弧度,范围在[-π, π]之间。

5. 三角函数关系:tan = sin / cos,cot = cos / sin。

四、几何基础口诀:1. 三角形的外角和等于360°,内角和等于180°。

2. 同位角、内错角、同旁内角,两对角相等。

3. 正弦定理:a / sinA = b / sinB = c / sinC。

4. 余弦定理:c² = a² + b² - 2ab*cosC。

5. 平行线相交定理:同位角相等、内错角相等、同旁内角互补。

高中数学常用口诀

高中数学常用口诀

高中数学常用口诀
在学习高中数学的过程中,口诀是帮助我们记忆公式和定理的有效
方法。

下面列举了一些高中数学常用口诀,希望对大家的学习有所帮助:
一、三角函数口诀:
1.正弦余弦皆与角,正比负比循规矩。

2.正负所在那一限,正弦正切是正的。

3.根号三只友正弦,二的根号二友余弦。

二、圆的口诀:
1.圆周率尺规法,一圆项。

千千根号重:π=3.14159,记忆个不轻。

2.弧长弧度两相邻,三点为圆中间驻,角度琴键弦用好,角度度数
对应着。

3.圆周角邻直角,同弦近圆交。

外切内稳势精顾,辅角对顶三逢亲。

三、平面几何口诀:
1.同类三角相似法,列比率哥达刮拉。

相似方幅求来比,等比等品
君得跟。

2.圆的曲面独一元,求面积头一招君。

高下残积主罕省,内长径尔
再添。

四、导数与微分口诀:
1.函数雏形列惯例,导则吾友以求之。

增长差变须记证,指事牵牛开辟门。

2.多项减副主法兰,微分为证铺金殿。

商显骤忽元幡摇,商商商手绕十课。

以上是一些高中数学常用口诀,希望同学们在学习数学的过程中能够加以运用,提升记忆效率,轻松掌握知识。

记忆方法高中数学定理公式口诀记忆法

记忆方法高中数学定理公式口诀记忆法

记忆方法高中数学定理公式口诀记忆法高中数学的定理和公式非常多,有时候记起来很困难。

但如果运用一些有效的记忆方法,就能够事半功倍地记住这些定理和公式。

下面我介绍几种常用的记忆方法。

1.划重点法:在课本或教材上,将重要的公式或定理用不同颜色的笔划出来,或者在旁边做个星号或箭头,以便在复习时能够辨识出重点并记忆。

2.关联记忆法:将数学公式和定理与生活中的事物进行关联,这样能够帮助你更容易记住。

比如,正弦函数的定义是“对边比斜边”,你可以想象一个人站在一棵大树下,对着大树的高度与他到树下的距离之比就是正弦函数。

3.分组记忆法:将相似的定理和公式进行分类,然后进行分组记忆。

比如,可以将几何定理、代数定理、三角函数定理等分成不同的类别。

4.反复书写法:通过反复书写公式和定理来帮助记忆。

将公式和定理多次书写,可以加深对其结构和内容的记忆。

5.应用实践法:将数学公式和定理应用到实际问题中,通过解决实际问题加深对公式和定理的理解和记忆。

6.编制口诀法:将公式和定理编制成口诀,通过押韵或者用特殊的歌曲节奏来帮助记忆。

比如,三角函数的正弦、余弦、正切定义可以编制成口诀“念氏辩”,然后与旋律配合,这样可以轻松地记住它们的定义和特点。

7.制作记忆卡片法:将公式和定理写在卡片上,每次背诵时逐一翻阅卡片,利用视觉记忆和反复记忆来巩固记忆。

8.制定复习计划:将学习的数学定理和公式分成不同的模块,按照一定的顺序进行复习,每天或每周固定时间进行回顾,逐渐加深记忆。

9.与他人讨论和解释:将学习到的数学定理和公式与同学或老师进行讨论和解释,这样能够加深对其理解和记忆,并且可以从他们的角度得到不同的观点和解释。

10.进行自测和练习:通过自测和练习来巩固对数学定理和公式的记忆。

可以尝试做一些习题或者解决一些实际问题,来检验自己对定理和公式的掌握程度。

高中(必修一)数学口诀

高中(必修一)数学口诀

高中数学口诀人教A 版必修一第一章 集合篇1、集合三个特性:确定性、互异性、无序性(互异性:求出答案记得带回去检验看是否出现重复)2、常见数集表示方法:(1)、N ——自然数数集(自然的英语nature) (2)、Z ——整数集(拼音zheng )(3)、Q ——有理数集 (4)、R ——实数集3、一个集合有n 个元素,则其子集的个数为n 2,真子集个数为12-n ,非空子集个数为12-n ,非空真子集个数为22-n .4、元素与集合之间用∉∈或,集合于集合之间用⊆。

5、空集是任何集合的子集,是任何非空集合的真子集。

6、口诀:看到子集,首先考虑空集,然后才是画数轴列不等式。

7、两个重要公式:∁U (A ∪B )=(∁U A )∩(∁U B );∁U (A ∩B )=(∁U A )∪(∁U B ).(口诀:拆开变号)人教A 版必修一第一章 函数篇1、区间是一种特殊的数集表达形式,只能用于表示数集,而且不管开闭,必须左小右大。

2、形成函数的三个要求:每一性、唯一性、允许多对一不能一对多。

3、函数三要素:定义域、值域和对应关系(函数问题,不管啥题定义域优先)4、函数的表示方法:解析法、图像法、列表法5、判断两个函数是否相等只需要判断定义域和对应关系是否相等即可。

6、求定义域口诀(1)、先求定义域再化简; (2)、分式要求分母不为0.(3)、偶次根式要求被开方数≥0; (4)、0次方和负数次方要求底数不为0;(5)、指数要求底数>0且≠1; (6)、对数(log )要求真数>0,底数>0且≠1;(7)、复合函数定义域的求法:(口诀:简单算复杂“放”,复杂算简单“代”。

) 若()x f 定义域为[]b a , ,则复合函数()[]x g f 定义域由()b x g a ≤≤解出; 若()[]x g f 定义域为[]b a , ,则()x f 定义域相当于[]b a x ,∈时()x g 的值域.7、函数值域的求法(求值域也要先求定义域)(1)、图像法:能画图的坚决画图(2)、单调性法:有增减就可以代两端求最值得到值域;(3)、换元法:(口诀:次方出现两倍关系就可以使用换元法,设低次为t )操作步骤:第一步:求定义域并设t ; 第二步:马上求出t 的范围;第三步:用t 表示出x ; 第四步:求出新函数值域即为原函数的值域。

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全

高中数学知识点总结及公式大全1、常用数学公式表(1)乘法与因式分解a2-b2=(a+b)(a-b);a3+b3=(a+b)(a2-ab+b2);a3-b3=(a-b)(a2+ab+b2)。

(2)三角不等式|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b-b≤a≤b;|a-b|≥|a|-|b|-|a|≤a≤|a|。

(3)一元二次方程的解:-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a。

(4)根与系数的关系:X1+X2=-b/aX1*X2=c/a,注:韦达定理。

(5)判别式1)b2-4a=0,注:方程有相等的两实根。

2)b2-4ac\u003e0,注:方程有一个实根。

3)b2-4ac\u003c0,注:方程有共轭复数根。

2、三角函数公式(1)两角和公式sin(A+B)=sinAcosB+cosAsinB;sin(A-B)=sinAcosB-sinBcosA;cos(A+B)=cosAcosB-sinAsinB;cos(A-B)=cosAcosB+sinAsinB;tan(A+B)=(tanA+tanB)/(1-tanAtanB);tan(A-B)=(tanA-tanB)/(1+tanAtanB);ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA);ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)。

(2)倍角公式tan2A=2tanA/(1-tan2A);ctg2A=(ctg2A-1)/2ctga;cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。

(3)半角公式sin(A/2)=√((1-cosA)/2);sin(A/2)=-√((1-cosA)/2);cos(A/2)=√((1+cosA)/2);cos(A/2)=-√((1+cosA)/2);tan(A/2)=√((1-cosA)/((1+cosA));tan(A/2)=-√((1-cosA)/((1+cosA));ctg(A/2)=√((1+cosA)/((1-cosA));ctg(A/2)=-√((1+cosA)/((1-cosA))。

高中数学知识点顺口溜速记口诀

高中数学知识点顺口溜速记口诀

高中数学知识点顺口溜速记口诀高中数学知识点顺口溜速记口诀高中数学是大家感到比较难的,因为它需要掌握的内容非常多,而且内容也比较深奥。

然而,在面对这些知识点时,我们可以使用一些口诀来帮助我们掌握这些知识点,从而更好地应对数学考试。

接下来,我将为大家分享一些高中数学知识点顺口溜,让大家轻松记忆。

一、函数篇1、差商公式:差商的结果求值,上下都是相邻f(x)减f(x-1),下标依次减f(x-1)减f(x-2),再取一遍差2、函数图像形状:一次线性就是直线走,二次平方就是开口形,幂函数基数大于1,往上凸,幂函数基数小于1,往下略。

三角函数多角形,都是周期图像形,正弦函数在零度,最低处,余弦函数在零度,最高出。

二、三角篇1、正弦、余弦变换:正弦相量纵轴界,余弦相量横轴解。

2、三角函数图像:正弦函数开口向上,余弦函数开口向下,正交坐标轴描点,周期二洞三抬半。

3、最值判断:正弦最大为1,余弦最小为-1,正切不存在,余切不存在。

三、导数篇1、求导方法:幂函数,古不变,指数函数,右上挂负号,对数函数,左下挂倒数,三角函数,横纵貌相同,反三角,倒数相应关。

2、高中数学一些特别记:自然对数微分,下来还是他自己,绝对值微分,根据正负分两步。

四、行列式篇1、二阶行列式求值:对角线相乘,反对角线相减。

2、三阶行列式求值:按行或按列,每行或每列视为二阶式。

三阶行列式一个箭头去,四阶行列式两箭头正,五阶行列式三箭头,六阶行列式四足占。

五、概率篇1、全概率公式:设A1,A2…,An构成一个样本空间S的一个划分,则对S中任一事件B,有公式:2、贝叶斯定理:样本空间S和一组事件B1,…,Bn,设p(Bi)≠0,对i=1,...,n,且B1,…,Bn构成S的一个划分, 若A是任意一个事件,且p(A)≠0,则有公式:P(Bi|A) = P(A|Bi) P(Bi) / [Σj P(A|Bj)P(Bj)]6、期望的性质(1)恒等性质:E(c)=c;(2)线性性质:E(cX+dY)=cE(X)+dE(Y) ;(3)可加性质(离散):若X和Y是离散型随机变量,则E(X+Y)=E(X)+E(Y) ;以上只是其中的几个口诀,高中数学涉及的知识面非常广泛,如果想要掌握更多的知识点,就要不断地复习和总结。

高中数学口诀顺口溜的含义

高中数学口诀顺口溜的含义

高中数学口诀顺口溜的含义
中学数学一线牵,代数几何两珠连;
三个基本记心间,四种能力非等闲。

常规五法天天练,策略六项时时变,
精研数学七思想,诱思导学乐无边。

一线:函数一条主线(贯穿教材始终)
二珠:代数、几何珠联璧合(注重知识交汇)
三基:方法(熟)知识(牢)技能(巧)
四能力:概念运算(准确)、逻辑推理(严谨)、空间想象(丰富)、分解问题(灵活)
五法:换元法、配方法、待定系数法、分析法、归纳法。

六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动。

七思想:函数方程最重要,分类整合常用到,
数形结合千般好,化归转化离不了;
有限自将无限描,或然终被必然表,
特殊一般多辨证,知识交汇步步高。

高中数学公式怎么记巧记数学公式口诀

高中数学公式怎么记巧记数学公式口诀

高中数学公式怎么记巧记数学公式口诀
高中数学公式很多,很容易记混,小编整理了巧记高中数学公式的口诀,帮助大家有快速记忆数学公式。

高三怎幺提高学习成绩?看《高考蝶变》掌握最高效的学习方法。

淘宝搜索《高考蝶变》购买。

1高中数学常用公式记忆口诀《集合与函数》
内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,y=x是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,
奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

《三角函数》
三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,
顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,。

高中数学公式口诀大全

高中数学公式口诀大全

高中数学公式口诀大全4、两数列,通项公式n项和。

两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。

数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。

归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。

还有数学归纳法,证明步骤程序化:首先验证再假定,从k向着k加1,推论过程须详尽,归纳原理来肯定。

五、复数虚数单位i一出,数集扩大到复数。

一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。

箭杆与x轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。

代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。

i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧5、用得结果。

虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。

几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。

利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。

四条性质离不得,相等和模与共轭,两个不会为实数,比较大小要不得。

复数实数很密切,须注意本质区别。

六、排列、组合、二项式定理加法乘法两原理,贯穿始终的法则。

与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。

归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。

特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑6、插空是技巧。

排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。

两条性质两公式,函数赋值变换式。

七、立体几何点线面三位一体,柱锥台球为代表。

距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。

线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。

计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。

射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。

高中数学口诀

高中数学口诀

高中数学口诀高中数学口诀(上)第一章代数基础1. 加减法凑整法:凑整使用,方程等式,快速简化。

2. 高次项凑齐法:幂指数齐,多项式一步搞。

3. 连加连乘法:累次求和,乘积相连,一招攻克全方程。

4. 因式分解法:拆括号秘,公式结构可敲打。

5. 质因数质因式:分解因数速直接,查找素数很实际。

6. 对称轴确定:横纵轴齐,确定坐标真。

7. 根轨迹观察:质数亮点,轨迹变换。

8. 根与系数关系:和、积、乘方,一目了然。

第二章函数与图像1. 函数定性分析:定义域找,单调取,奇偶观,周期求。

2. 函数拓展收缩:加减、倒置,平移缩放队非常。

3. 函数分段讨论:区间函数,条件束缚,得待灵活处理。

4. 典型函数曲线:线性单调直,二次轨迹齐,指数凸上,对数沉下,三角周期短。

第三章概率与统计1. 归纳法法则:观察问题,找规律,归纳推导法。

2. 理论频率法:总频率,个频数,逐个比,并列对比。

3. 期望逼近定律:均值核心,变量重合,独立性和。

4. 抽样指标估计:条件满足,总体估计,抽样调查方法。

第四章解析几何1. 图形基本特征:位移、旋转、对称变换。

2. 直线斜率关系:平行、垂直、相交。

3. 曲线变换规律:平移、伸缩和翻转。

4. 曲线切线性质:一阶导数,求斜率。

5. 图形方程关联:标准、一般、参数。

6. 空间图形投影:轴二等分,点到线垂。

7. 点线关系判定:距离、共面、方位。

高中数学口诀(下)第五章三角函数1. 一二三函数记:弦正双切线。

2. 度和弧的关系:180度等于派。

3. 余弦定理应:角边角乘积调。

4. 三角函数相等:负同,余同,背同,正倒。

5. 标准值计算:三角函数,特殊值。

6. 三角函数变换:加减,倍角,半角。

7. 三角函数扩展:单位圆,科学计算。

第六章高等代数1. 矩阵相乘法:行乘列运算真。

2. 方程组方法:高斯、克莱姆两常规。

3. 行列式性质:交换、抽公因,展开一步求。

4. 向量叉积法:模运算,方向垂直。

第七章导数与微分1. 定义紧记法:限往点,差商极限。

高中数学知识点口诀精编

高中数学知识点口诀精编

高中数学知识点口诀精编根据多年的实践,总结规律繁化简;概括知识难变易,高中数学巧记忆。

言简意赅易上口,结合课本胜一筹。

始生之物形必丑,抛砖引得白玉出。

一、《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集;三、《不等式》解不等式的途径,利用函数的性质。

高中数学必背公式大全高中数学公式定理记忆口诀

高中数学必背公式大全高中数学公式定理记忆口诀

高中数学必背公式大全高中数学公式定理记忆口诀高中数学必背公式大全高中数学公式定理记忆口诀。

数学记忆不清的同学、喜欢诗词的同学有福气啦,对仗整齐的数学公式记忆口诀,保证让你背的顺口、考的顺利。

一、高中数学公式定理记忆口诀不等式解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。

非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。

图形函数来帮助,画图建模构造法。

二、高中数学公式定理记忆口诀数列等差等比两数列,通项公式N项和。

两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。

数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。

归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。

还有数学归纳法,证明步骤程序化:首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

三、高中数学公式定理记忆口诀立体几何点线面三位一体,柱锥台球为代表。

距离都从点出发,角度皆为线线成。

垂直平行是重点,证明须弄清概念。

线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。

计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。

射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。

公理性质三垂线,解决问题一大片。

四、高中数学公式定理记忆口诀平面解析几何有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者-一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。

高中数学公式快速记忆口诀:排列组合

高中数学公式快速记忆口诀:排列组合
排列组合在一起,先选后排是常理。特殊元素和位置,首先注意多考虑。
不重不漏多思考,捆绑插空是技巧。排列组合恒等式,定义证明建模试。
关于二项式定理,中国杨辉三角形。两条现方式做保护处理对用户上传分享的文档内容本身不做任何修改或编辑并不能对任何下载内容负责
高中数学公式快速记忆口诀:排列组合
窗体顶端
窗体底端
《排列、组合、二项式定理》
加法乘法两原理,贯穿始终的法则。与序无关是组合,要求有序是排列。
两个公式两性质,两种

高中数学知识点记忆口诀

高中数学知识点记忆口诀

学习本身也是一门学问,有科学的方法,有需要遵循的规律。

按照正确的方法学习,学习效率就高,学得轻松,思维也变得灵活流畅,能够很好地驾御知识,真正成为知识的主人。

以下总结了高中数学记忆口诀,以求能让同学们轻轻松松学好高中数学。

高中数学知识点记忆口诀如下:一、数学思想方法总论中学数学一线牵,代数几何两珠连;三个基本记心间,四种能力非等闲。

常规五法天天练,策略六项时时变,精研数学七思想,诱思导学乐无边。

一线:函数一条主线(贯穿教材始终)二珠:代数、几何珠联璧合(注重知识交汇)三基:方法(熟)知识(牢)技能(巧)四能力:概念运算(准确)、逻辑推理(严谨)、空间想象(丰富)、分解问题(灵活)五法:换元法、配方法、待定系数法、分析法、归纳法。

六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动。

七思想:函数方程最重要,分类整合常用到,数形结合千般好,化归转化离不了;有限自将无限描,或然终被必然表,特殊一般多辨证,知识交汇步步高。

二、数学知识方法分论集合与逻辑集合逻辑互表里,子交并补归全集。

对错难知开语句,是非分明即命题;纵横交错原否逆,充分必要四关系。

真非假时假非真,或真且假运算奇。

函数与数列数列函数子母胎,等差等比自成排。

数列求和几多法?通项递推思路开; 变量分离无好坏,函数复合有内外。

同增异减定单调,区间挖隐最值来。

三角函数三角定义比值生,弧度互化实数融; 同角三类善诱导,和差倍半巧变通。

解前若能三平衡,解后便有一脉承; 角值计算大化小,弦切相逢异化同。

方程与不等式函数方程不等根,常使参数范围生; 一正二定三相等,均值定理最值成。

参数不定比大小,两式不同三法证; 等与不等无绝对,变量分离方有恒。

解析几何联立方程解交点,设而不求巧判别; 韦达定理表弦长,斜率转化过中点。

选参建模求轨迹,曲线对称找距离; 动点相关归定义,动中求静助解析。

立体几何多点共线两面交,多线共面一法巧;空间三垂优弦大,球面两点劣弧小。

高中数学知识点口诀

高中数学知识点口诀

高中数学知识点口诀(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、合同协议、策划方案、规章制度、演讲致辞、应急预案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as workplace documents, contract agreements, planning plans, rules and regulations, speeches, emergency plans, experiences, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!高中数学知识点口诀高中数学知识点口诀有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学公式口诀一、《集合与函数》内容子交并补集,还有幂指对函数。

性质奇偶与增减,观察图象最明显。

复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。

指数与对数函数,两者互为反函数。

底数非1的正数,1两边增减变故。

函数定义域好求。

分母不能等于0,偶次方根须非负,零和负数无对数正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。

两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。

幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。

二、《三角函数》三角函数是函数,象限符号坐标注。

函数图象单位圆,周期奇偶增减现。

同角关系很重要,化简证明都需要。

正六边形顶点处,从上到下弦切割中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。

诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。

二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。

两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。

和差化积须同名,互余角度变名称。

计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。

逆反原则作指导,升幂降次和差积。

条件等式的证明,方程思想指路明。

万能公式不一般,化为有理式居先。

公式顺用和逆用,变形运用加巧用1加余弦想余弦,1 减余弦想正弦,幂升一次角减半,升幂降次它为范三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集三、《不等式》解不等式的途径,利用函数的性质。

对指无理不等式,化为有理不等式。

高次向着低次代,步步转化要等价。

数形之间互转化,帮助解答作用大。

证不等式的方法,实数性质威力大。

求差与0比大小,作商和1争高下。

直接困难分析好,思路清晰综合法。

非负常用基本式,正面难则反证法。

还有重要不等式,以及数学归纳法。

图形函数来帮助,画图建模构造法。

四、《数列》等差等比两数列,通项公式N项和。

两个有限求极限,四则运算顺序换。

数列问题多变幻,方程化归整体算。

数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。

归纳思想非常好,编个程序好思考:一算二看三联想,猜测证明不可少。

还有数学归纳法,证明步骤程序化:首先验证再假定,从K向着K加1,推论过程须详尽,归纳原理来肯定。

五、《复数》虚数单位i一出,数集扩大到复数。

一个复数一对数,横纵坐标实虚部。

对应复平面上点,原点与它连成箭。

箭杆与X轴正向,所成便是辐角度。

箭杆的长即是模,常将数形来结合。

代数几何三角式,相互转化试一试。

代数运算的实质,有i多项式运算。

i的正整数次慕,四个数值周期现。

一些重要的结论,熟记巧用得结果。

虚实互化本领大,复数相等来转化。

利用方程思想解,注意整体代换术。

几何运算图上看,加法平行四边形,减法三角法则判;乘法除法的运算,逆向顺向做旋转,伸缩全年模长短。

三角形式的运算,须将辐角和模辨。

利用棣莫弗公式,乘方开方极方便。

辐角运算很奇特,和差是由积商得。

四条性质离不得,相等和模与共轭,两个不会为实数,比较大小要不得。

复数实数很密切,须注意本质区别。

六、《排列、组合、二项式定理》加法乘法两原理,贯穿始终的法则。

与序无关是组合,要求有序是排列。

两个公式两性质,两种思想和方法。

归纳出排列组合,应用问题须转化。

排列组合在一起,先选后排是常理。

特殊元素和位置,首先注意多考虑。

不重不漏多思考,捆绑插空是技巧。

排列组合恒等式,定义证明建模试。

关于二项式定理,中国杨辉三角形。

两条性质两公式,函数赋值变换式。

七、《立体几何》点线面三位一体,柱锥台球为代表。

距离都从点出发,角度皆为线线成。

高中《立体几何》垂直平行是重点,证明须弄清概念。

线线线面和面面、三对之间循环现。

方程思想整体求,化归意识动割补。

计算之前须证明,画好移出的图形。

立体几何辅助线,常用垂线和平面。

射影概念很重要,对于解题最关键。

异面直线二面角,体积射影公式活。

公理性质三垂线,解决问题一大片。

八、《平面解析几何》有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。

图形直观数入微,数学本是数形学。

编辑本段数学必修11. 集合(约4课时)(1)集合的含义与表示高中数学(15张)①通过实例,了解集合的含义,体会元素与集合的“属于”关系。

②能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。

(2)集合间的基本关系①理解集合之间包含与相等的含义,能识别给定集合的子集。

②在具体情境中,了解全集与空集的含义。

(3)集合的基本运算①理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

②理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

③能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

2. 函数概念与基本初等函数(约32课时)(1)函数①进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。

②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。

③了解简单的分段函数,并能简单应用。

④通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;结合具体函数,了解奇偶性的含义。

⑤学会运用函数图象理解和研究函数的性质(参见例1)。

(2)指数函数①(细胞的分裂,考古中所用的C的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景。

②理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。

③理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点。

④在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型(参见例2)。

(3)对数函数①理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的产生历史以及对简化运算的作用。

②通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点。

③知道指数函数与对数函数互为反函数(a>0,a≠1)。

(4)幂函数通过实例,了解幂函数的概念;结合函数的图象,了解它们的变化情况。

(5)函数与方程①结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系。

②根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解这种方法是求方程近似解的常用方法。

(6)函数模型及其应用①利用计算工具,比较指数函数、对数函数以及幂函数增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

②收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等)的实例,了解函数模型的广泛应用。

(7)实习作业根据某个主题,收集17世纪前后发生的一些对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡儿、牛顿、莱布尼茨、欧拉等)的有关资料或现实生活中的函数实例,采取小组合作的方式写一篇有关函数概念的形成、发展或应用的文章,在班级中进行交流。

具体要求参见数学文化的要求。

编辑本段数学必修21. 立体几何初步(约18课时)(1)空间几何体①利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。

②能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧法画出它们的直观图。

③通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。

④完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求)。

⑤了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。

(2)点、线、面之间的位置关系①借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理。

◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。

◆公理2:过不在一条直线上的三点,有且只有一个平面。

◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。

◆公理4:平行于同一条直线的两条直线平行。

◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。

②以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。

操作确认,归纳出以下判定定理。

◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。

◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。

◆一个平面过另一个平面的垂线,则两个平面垂直。

操作确认,归纳出以下性质定理,并加以证明。

◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行。

◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。

◆垂直于同一个平面的两条直线平行。

◆两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

③能运用已获得的结论证明一些空间位置关系的简单命题。

2. 平面解析几何初步(约18课时)(1)直线与方程①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。

②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式。

③能根据斜率判定两条直线平行或垂直。

④根据确定直线位置的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系。

⑤能用解方程组的方法求两直线的交点坐标。

相关文档
最新文档