题目士兵考军校数学模拟试题

合集下载

题目士兵考军校数学模拟试题

题目士兵考军校数学模拟试题

数学一 选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,把该选项的代号写在题后的括号内。

)1设集合{}(){}R x x y y x N R x x y y M ∈+==∈+==,1,,,12,则N M ( ) A ∅ B {}0 C {}1,0 D {}12已知不等式()()012422<-+--x a x a 对R x ∈恒成立,则a 的取值范围是 ( ) A a ≤2- B 2-≤a 56< C 2-56<<a D 2-≤a 2< 3若则,8.0log ,6log ,log 273===c b a π ( )A. c b a >>B. c a b >>C. b a c >>D. a c b >>4设0>ω,函数2)3sin(++=πωx y 的图像向右平移34π个单位后与原图像重合,则ω的最小值是 ( ) A 32 B 34 C 23 D 3 5设)(x f 为定义在R 上的奇偶数,当x ≥0时,b x x f x ++=22)((b 为常数),则()=-1f( )A 3B 2C -1D -36 ()()3411x x --的展开式2x 的系数是 ( )A -6B -3C 0D 37 设向量a ,b 满足:,4,3==b a a ·b = 0 ,以a ,b ,b a - 的模为边长构成三角形,则它的边长与半径为1的圆的公共点的个数最多为 ( )A 3B 4C 5D 68 设n m ,是平面α内的两条不同直线,21,l l 是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是 ( )A m ∥β且1l ∥αB m ∥1l 且n ∥2lC m ∥β且n ∥βD m ∥β且n ∥2l二 填空题(本大题共7小题,每小题5分,共35分,把答案填在题中横线上。

武警士兵考军校军考模拟题:数学部分(四)

武警士兵考军校军考模拟题:数学部分(四)

武警士兵考军校军考模拟题:数学部分(四)关键词:武警考军校 军考模拟题 京忠教育 军考数学 武警考试资料1(2010-11)已知向量(3,2),(1,0)a b =-=- ,向量ka b + 与2a b - 垂直,则k=2(2012-16)(10分)在平面直角坐标系xOy 中,已知点(1,2),(2,3),(2,1)A B C ----.(1)求已线段AB ,AC 为邻边的平行四边形的两条对角线的长;(2)设实数t 满足()0AB tOC OC -⋅= ,求t 的值.3(2013-17)(7分)已知12,e e 是夹角为23π的两个单位向量,122a e e =-,12b ke e =+,若a b ⊥,求实数k 的值.4(2014-19)(10分)已知a 、b 、c 是同一平面内的三个向量,其中a=(1,2).(1)若c =c//a ,求向量c 的坐标;(2)若2b =,且a+2b 与2a-b 垂直,求向量a 与b 的夹角. 5.(2007-13)若复数Z 满足(1)Z i +=2,则Z 的实部是6.(2009-9)若复数1a i z i-=+是纯虚数,则a= 7.(2010-10)复数3(1)(2)i i i --+的共轭复数是 8.(2012-1)若复数2(1)a i -是纯虚数,则实数a 的值 ( ) A.1± B.-1 C.0 D.19.(2014-2)在复平面内,复数52i i-的对应点位于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限10.(2008-9)已知复数1121,1z i z z i =-=+ ,则复数2z =11.(2010-2)复数z 满足1(1)z z i -=+,则z 的值是 ( )A.1i +B.1i -C.iD.i -12(2011-2)设复数122z =-+,则2z z +的值为 ( )A.iB.i -C.1D.-113(2013-4)复数23201...i i i i +++++的值等于 ( )A.1B.-1C.iD.-i14(2014-8)两个圆锥有等长的母线,而他们的侧面展开图恰好拼成一个圆,若它们的侧面积之比为1:2,则它们的高之比为 ( )A .2:1B C.1:215(2007-15)球O 的截面把垂直于截面的直径分为1:3球O 的表面积为16.(2009-13)在北纬60︒圈上有A 、B 两地,它们在此纬度圈上的弧长为2R π(R 是地球的半径),则AB 两地的球面距离是17(2010-15)用平面α截半径R 的球,如果球心到平面α的距离是2R ,那么截得的小圆的面积与球的表面积的比值是18(2011-9)已知球与正方体的表面积相等,则球与正方体的体积之比为 ( )π D.π19.(2013-12)如果球的直径,圆锥的底面直径和圆锥的高三者相等,那么球与圆锥的体积之比是=20(2009-6)设,,m n l 是三条不同的直线,,,αβγ是三阿哥不同平面,则下列命题是真命题的是( )A.若m,n 与l 所成的角相等,则m//nB.若γ与,αβ所成的角相等,则//αβC.若//αβ,m α⊂,则//m βD.若m,n 与α所成的角相等,则m//n21.(2010-7)设,,l m n 是互不相同的空间直线,,αβ是不重合的平面,则下列命题中真命题是( )A.若//,,l n αβαβ⊂⊂,则//l nB.若,,l αβα⊥⊂则l β⊥C.若,l n m n ⊥⊥,则//l mD.若//,l l βα⊥,则αβ⊥22(2011-8)设有不同的直线a ,b 和不同的平面,,αβγ,给出下列三个命题: ( ) ①若//,,l n αβαβ⊂⊂,则//l n②若,,l αβα⊥⊂则l β⊥③若,l n m n ⊥⊥,则//l m④若//,l l βα⊥,则αβ⊥A.0个B.1个C.2个D.3个23.(2012-15)已知,l m 是两条不同的直线,,αβ是两个不同的平面,下列命题: ①若,,//,l m l ααβ⊂⊂则//αβ②若,//,l l m αβαβ⊂⋂=,则//l m③若,//,l l m αβαβ⊂⋂=,则//l m④若,//,//l m l ααβ⊥,则m β⊥其中真命题是24.(2013-5)设有不同的直线a 、b 和不同的平面,,αβγ,给出下列三个命题: ①若//a α,//b α,则//a b ②若//a α,//a β,则//αβ③若若a γ⊥,βγ⊥,则//αβ其中正确的个数是 () A.0 B.1 C.2 D.325.(2014-9)平面α//β的一个充分条件是( )A.存在一条直线a ,a//α,a//βB.存在一条直线a,a α⊂,//a βC.存在两条平行直线a,b ,,,//,//a b a b αββα⊂⊂D.存在两条异面直线a,b ,,.//,//a b a b αββα⊂⊂26.(2007-19)(14分)在正方体中,M ,N 分别是正方体1111ABCD A B C D -的面对角线1CD 与AB 的中点.(1)求证:MN//平面11ADD A ;(2)求异面直线MN 和AC 所成角的余弦值.27.(2009-22)(13分)如图,在三棱锥P-ABC 中,,,30PA PB PA PB AB BC BAC ==⊥⊥∠=︒,平面PAB ABC ⊥.(1)求证:PA ⊥平面PBC ;(2)求二面角P-AC-B 的平面角的正切值.28(2010-21)(12分)如图,PA ⊥平面ABC ,底面ABC 是以AB 为斜边的直角三角形.(1)求证:平面PBC ⊥平面PAC ;(2)若22PA PB BC ===,求A 点到平面PBC 的距离.29(2011-20)(14分)三棱锥P ABC -中,ABC ∆是正三角形,90PCA ∠=︒,D 为PA的中点,二面角P-AC-B 为120︒,PC=2,AB =(1)求证:AC BD ⊥;(2)求BD 与底面ABC 所成角的正弦值. 30(2012-21)(13分)如图,在三棱锥A-BCD 中,AB ⊥平面BCD ,BC=DC=1,90BCD ∠=︒,E ,F 分别为AC ,AD 上的动点,且EF//平面BCD ,二面角B-CD-A 为60︒.(1)求证:EF ⊥平面ABC ;(2)若BE ⊥AC ,求直线BF 和平面ACD 所成角的余弦值.31(2013-21)(12分)如图,在三棱柱111ABC A B C -中,AC=3,BC=4,AB=5, 点D 是AB 的中点.求证:(1)1AC BC ⊥;(2)1AC ⊥平面1CDB .32.(2014-21)(12分)如图,在三棱锥S-ABC 中,平面SAB SBC ⊥,,AB BC AS AB ⊥=,过A 作AF SB ⊥,垂足为F ,点E 、G 分别为棱SA 、SC 的中点.求证:(1)平面EFG ABC ⊥;(2)BC SA ⊥.。

士兵军校考试之军考数学练习题1

士兵军校考试之军考数学练习题1

士兵军校考试之军考数学练习题1关键词:士兵军考 军校考试 张为臻 军考数学 练习题1.函数)(sin R x x y ∈=π的部分图像如图所示,设O 为坐标原点,P 是图像的最高点,B 是图像与x 轴的交点,则OPB ∠tan 的值为( )A.10B.8C.8/7D.4/72.已知函数1)(cos )(2+-=m x x f 在1cos -=x 时取得最大值,在m x =cos 时取得最小值,则实数m 的取值范围是( )A.1-≤mB.1≥mC.10≤≤mD.01≤≤-m3.若集合{}1|-==x y x A ,{}2|2+==x y y B ,则=⋂B A ( )A.[1,+∞)B.(1,+∞)C.[2,+∞)D.(2,+∞)4.函数x y 2sin =是( ) A.周期为π的奇函数 B.周期为π的偶函数 C.周期为2π的奇函数D.周期为2π的偶函5.已知幂函数αx x f =)(的图像过点(4,2),若f(m)=3,则实数m 的值为( ) A.3B.±3 C.±9D.96.若31)cos(-=+απ,则αcos 的值为( ) A.31 B.-31C.322D.-322参考答案与解析1.B 。

【准维解析】过P 作OB 的垂线,垂足为D ,∵22||===ππOB T ,1||=DP ,2141||==T OD ,2343||==T BD ,OPB ∠tan =21,23tan =∠BPD ,∴OPB ∠tan =8232112321)tan(=⨯-+=∠+∠BPD OPD ,故选B. 本题考查两角和与差的三角函数。

2.C 。

【准维解析】设x t cos =,则[]1,1-∈t ,依题意知1)()()(2+-==m t x f t g 在t=-1时取得最大值,而在t=m 时取得最小值,结合二次函数的图像可知⎩⎨⎧≤≤-≥-11)1()1(m g g 即⎩⎨⎧≤≤-+-≥+--111)1(1)1(22m m m ,也就是⎩⎨⎧≤≤-≥110m m ,所以10≤≤m ,故选C. 本题考查余弦函数的值域、二次函数的图像与性质。

消防士兵考军校真题试卷:数学部分(四)

消防士兵考军校真题试卷:数学部分(四)

消防士兵考军校真题试卷:数学部分(四)关键词:消防考军校 真题试卷 京忠教育 军考数学 消防考试资料 一.单项选择题(每小题5分)1.设全集{}1,0,1,2,3I =-,集合{}1,3M =,则CIM=(A ){}1,0,1,2,3- (B )∅ (C ){}1,3(D ){}1,0,2-2.已知向量(1,1)=- a ,(2,5)= b ,则2=-a b(A )(4,3)(B )(0,7)-(C )(0,6)-(D )(0,3)3.在等比数列{}n a 中,若2=2a ,51=4a ,则公比=q(A )12-(B )2- (C )2(D )124.函数10)y x =-<≤的反函数为(A )1)y x =<≤ (B )1)y x <≤(C )10)y x =-<≤(D )10)y x =-<≤5.已知平面向量a ,b ,a 4=,b 5=,10⋅=a b ,则向量a 与b 的夹角θ=(A )90︒(B )60︒(C )45︒(D )30︒6.若0.33a =,b=3,0.23c =-,则a ,b ,c 之间的大小关系是(A )a b c << (B )b a c << (C )b c a << (D )c b a << 7.若直线40x y +-=与圆22240x y x y a ++--=相切,则实数a 的值为(A )12- (B )2-(C )152(D 8.函数11y x x =+-(1)x >的最小值为 (A )4(B )3 (C )2 (D )19.若双曲线22214x y b-=(0b >)的一条准线方程为x =,则b 的值为(A(B(C )1 (D )2 10.已知直线l α⊥平面,直线m β⊂平面,则下列四个命题中,正确的命题是(A )若αβ⊥,则//l m (B )若αβ⊥,则l m ⊥ (C )若l m ⊥,则//αβ(D )若//l m ,则αβ⊥11.已知函数sin()y A x ωϕ=+()x ∈R ,其中0A >,0ω>,π||2ϕ<,它在长度为一个周期的闭区间6π⎡-⎢⎣,5π⎤⎥6⎦上的图象如图所示,则该函数的解析式是 (A )π3sin 26y x ⎛⎫=+ ⎪⎝⎭()x ∈R(B )π3sin 23y x ⎛⎫=+ ⎪⎝⎭()x ∈R (C )1π3sin 212y x ⎛⎫=+ ⎪⎝⎭()x ∈R (D )17π3sin 212y x ⎛⎫=+⎪⎝⎭()x ∈R 12.有6名即将退伍的战士与排长合影留念,7人站成一排,排长站在正中间,并且甲、乙两名战士相邻,则不同的站法有(A )48种 (B )96种 (C )192种(D )240种二.填空题(本大题共6小题,每小题5分,共30分) 13.sin 330︒= .14.二项式41x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为 (用数字作答).15.已知数列{}n a 中,14a =,132n n a a +=-()n *∈N ,则4a = . 16.设集合{},A x x m x =<∈R ,{}|2|3,B x x x =-<∈R .若A B B =I ,则实数m 的取值范围是 .O 3-6π- 56π xy17.在正方形ABCD 中,E ,F 分别是AD ,BC 的中点,现沿EF 将正方形折成直二面角(如图),M 为CF 的中点,则异面直线CE 与BM 所成角的余弦值为 .18.已知定义在区间[]22,- 上的奇函数()f x 单调递减.若2(2)(21)0f m f m -+->,则实数m 的取值范围是 .三.解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)19.(10分)已知cos θ=,π0,2θ⎛⎫∈ ⎪⎝⎭. (1)求πsin 3θ⎛⎫+ ⎪⎝⎭的值;(2)求tan 2θ的值.20.(12分)已知二次函数2()1f x ax bx =++ 是偶函数,且(1)0f =.(1)求a ,b 的值;(2)设()(2)g x f x =+若()g x 在区间[2,]m - 上的最小值为3-,求实数m 的值.21.(12分)在等比数列{}n a 中,已知公比2q =,n S 是{}n a 的前n 项和,N n *∈,且328S =.(1)求数列{}n a 的通项公式; (2)设23log n n b a =,N n *∈.① 求证{}n b 是等差数列; ② 求{}n b 的前10项和10T .22.(12分)已知椭圆22221x y a b+=(0)a b >>过点(2,0),离心率12e =.(1)求椭圆的方程;(2)过椭圆右焦点的直线与椭圆交于A ,B 两点,若线段AB 中点的横坐标为12,求AB 的值.23.(14分)如图,正三棱柱111ABC A B C -中,12AA AB ==,点E 是棱AC 的中点.(1)求证BE ⊥平面11ACC A ; (2)求二面角1C BC E --的大小; (3)求点1A 到平面1BC E 的距离.ABC1A1B1CE。

部队士兵考军校数学综合练习测试卷及答案

部队士兵考军校数学综合练习测试卷及答案

每题仅 1 人作答,则不同的题目分配方案种数为( )
A.24
B.30
C.36
D.42
第 1页(共 5页)
8.记 Sn 为等差数列{an} 的前 n 项和,已知 a2 0 , a6 8 ,则 S10 (
)
A.66
B.68
C.70
D.80
9.设奇函数
f
(x) 对任意的 x1 ,x2
( ,0)(x1
第 3页(共 5页)
所以 a2 b2 的最小值为 5. 故选: C . 7.【解答】解:根据题意,分 2 步进行分析:
①将 4 道题分为 3 组,有 C42=6 种分组方法,
②将三组题目安排给 3 人作答,有 A33=6 种情况,
则有 6×6=36 种分配方案, 故选:C.
8.【解答】解:等差数列{an} 中, a2 0 , a6 8 ,
)
A.充要条件
B.充分不必要条件
C.必要不充分条件
D.既不充分也不必要条件
4.已知 a=20.3,b=0.60.3,c=log0.60.3,则( )
A.a>b函数 y x2 x 6 1 的定义域为 (
)
x 1
A.[2 , 3]
B.[2 ,1) (1 , 3]
f (x) f (x) 0 2 f (x) 0 x f (x) 0 ,
x
x
则有 x (2021 , 0) (0 , 2021) ,
故选: D . 10.【解答】解:将函数 f (x) cos x 图象上所有点的横坐标都缩短到原来的 1 ,可
2
得 y cos 2x 的图象,
再向左平移
x2 ) ,有
f (x2 ) f (x1) x2 x1

军考真题数学【完整版】

军考真题数学【完整版】

2017年军考真题士兵高中数学试题关键词:军考真题,德方军考,大学生士兵考军校,军考数学,军考资料 一、单项选择(每小题4分,共36分).1. 设集合A={y|y=2x ,x ∈R},B={x|x 2﹣1<0},则A ∪B=( )A .(﹣1,1)B .(0,1)C .(﹣1,+∞)D .(0,+∞)2. 已知函数f (x )=a x +log a x (a >0且a ≠1)在[1,2]上的最大值与最小值之和为(log a 2)+6,则a 的值为( )A .B .C .2D .43. 设a b 、是向量,则||=||a b 是|+|=|-|a b a b 的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 4.已知421353=2,4,25a b c ==,则( )A .b<a<cB .a<b<cC .b<c<aD . c<a<b 5. 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A .B .C .D .6. 设数列{a n }是首项为a 1、公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1=( )A .2B .C .﹣2D .﹣7. 袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A .B .C .D .18. 已知A ,B ,C 点在球O 的球面上,∠BAC=90°,AB=AC=2.球心O 到平面ABC 的距离为1,则球O 的表面积为( )A .12πB .16πC .36πD .20π9. 已知2017ln f x x x =+()(),0'2018f x =(),则0x =( ) A. 2e B.1 C. ln 2 D. e二、填空题(每小题4分,共32分)10. 设向量,,且,则m=.12. 已知A、B为双曲线E的左右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为.13. 已知函数f(x)=,则f(f())= .14. 在的展开式中x7的项的系数是.15. 我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架“歼﹣15”飞机准备着舰,如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法数是_______。

消防士兵考军校真题试卷:数学部分(二)

消防士兵考军校真题试卷:数学部分(二)

消防士兵考军校真题试卷:数学部分(二)关键词:消防考军校 真题试卷 京忠教育 军考数学 消防考试资料参考公式(三角函数的积化和差公式)()()1sin cos sin sin 2αβαβαβ=⎡++-⎤⎣⎦()()1cos sin sin sin 2αβαβαβ=⎡+--⎤⎣⎦ ()()1cos cos cos cos 2αβαβαβ=⎡++-⎤⎣⎦()()1sin sin cos cos 2αβαβαβ=-⎡+--⎤⎣⎦ 一、单项选择题(共60分,每小题5分)1.设{(,)|4}P x y x y =+=,{(,)|2}Q x y x y =-=,则P Q = ( ). A .{3,1} B .(3,1) C .{(3,1)}D .{3,1}x y ==2.函数242y x x =-+-在区间[3,4]上的最大值是( ). A .2 B .2- C .1-D .13.在等比数列{}n a 中,12100a a +=,3420a a +=,那么56a a +=( ). A .2 B .4 C .10D .54.如果关于x 的不等式250x a -…的正整数解是1,2,3,4,5,那么实数a 的取值范围是( ). A .125180a <… B .125a … C .125a >D .180a <5.已知两点(4,1)A ,(7,3)B -,则与向量AB反方向的单位向量是( ).A .34(,)55-B .34(,)55-C .43(,)55-D .43(,)55-6.五人站成一排,其中甲,乙,丙必须相邻,且甲必须站在乙、丙的中间,则不同的排法有( )种. A .6 B .12 C .18D .247.若直线340ax y +-=与圆22410x y x ++-=相切,则a 的值为( ).A .6±B .2±C .8±D .1±8.若角α,β满足αβ-π<<<π,则αβ-的取值范围是( ). A .(2,0)-π B .(2,2)-ππ C .(0,)πD .3(,)22ππ-- 9.下列命题中的真命题是( ). A .垂直于同一条直线的两条直线平行 B .平行于同一条直线的两个平面平行 C .垂直于同一条直线的两个平面平行 D .垂直于同一平面的两个平面平行10.若函数122log (2log )y x =-的值域是(0,)+∞,那么它的定义域是( ).A .(0,2)B .(2,4)C .(0,4)D .(0,1)11.函数2sin()34y x π=+,x R ∈的单调递增区间是( ).A .3[2,2],44k k k πππ+π+∈ZB .[(21),2],k k k -ππ∈ZC .[2,2],2k k k ππ+π+π∈ZD .3[2,2],44k k k πππ-π+∈Z 12.双曲线与椭圆221259x y +=有公共的焦点,若它们的离心率的和为145,则双曲线的方程为( ).A .221124x y -=B .221412y x -=C .221412x y -=D .221124y x -=二、填空题(本大题共6个小题,每小题5分,共30分)13.若集合2{|300}P x x x =+-=,集合{|30}T x mx =+=,且T P ⊆,则由实数m 的可取值组成的集合为14.2835()3x x-展开式中,整式的项是前项.15.在等差数列{}n a 中,若123989910050a a a a a a ++++++= ,则299a a +=.16.求值:1sin10= .17.若奇函数()y f x =在R 上单调递减,且2()()f m f m >-,则实数m 的取值范围是. 18.如图,在正三棱柱111ABC A B C -中,底面边长为2,侧棱长为3,则1BB 与平面11AB C 所成的角是.三、解答题(本大题共5小题,满分60分. 其中19小题10分,20~22小题每小题12分,23小题14分. 解答应写出文字说明、证明过程或演算步骤) 19.(10分)已知3tan 4α=,1tan()3αβ-=-,求tan()αβ+的值.20.(12分)已知函数3()log (01,0)3ax bf x a a b x b+=>≠>-且. (1)求()f x 的定义域;(7分)(2)讨论()f x 在(,)3b+∞上的单调性.(5分)21.(12分)设二次方程2*110()n n a x a x n N +-+=∈有两个实根αβ和,且满足43ααββ-+=,17a =. (1)试用n a 表示1n a +;(6分)(2)求证:{2}n a +是等比数列;(3分) (3)求数列{}n a 的通项公式.(3分)22.(12分)已知双曲线2212y x -=与点(2,1)P ,过P 作直线l 与双曲线交于A 、B 两点,若点P 为AB 的中点,求直线AB 的方程.23.(14分)如图所示,已知四棱锥P ABCD -的底面是边长为a 的菱形. 120ABC ∠= ,PC ABCD ⊥平面,PC a =,E 为PA 的中点.(1)求证:平面EBD ABCD ⊥平面;(8分)(2)求二面角A BE D --的大小.(6分)。

武警士兵考军校军考模拟题:数学部分(二)

武警士兵考军校军考模拟题:数学部分(二)

武警士兵考军校军考模拟题:数学部分(二)关键词:武警考军校 军考模拟题 京忠教育 军考数学 武警考试资料1.(2009-10)cos 600︒=2.(2011-4)在三角形ABC 中,若cos cos 0A B ⋅=,则ABC ∆的形状一定是 ( ) A.等边三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形3.(2010-9)44cossin 88ππ-=4.(2011-12)已知sin cos )2πααα-=<<,则sin cos αα+= 5.(2007-5)已知(,)42x ππ∈,下列式子中成立的是 ( ).sin cos tan A x x x >>.cos tan sin B x x x >> .cos sin tan C x x x >>.tan sin cos D x x x >>6.(2008-16)(10分)已知函数21()cos ()32f x x π=+-,12()sin(2)23g x x π=+,求()()()h x f x g x =-的极大值及取得极大值时x 的值.7.(2009-16)(10分)已知函数()cos cos )1()f x x x x x R =-+∈. (1)求5()12f π的值; (2)求函数()f x 在区间[,]62ππ上的最大值和最小值.8.(2009-16)(10分)已知函数()cos cos )1()f x x x x x R =-+∈.、 (1)求5()12f π的值; (2)求函数()f x 在区间[,]62ππ上的最大值和最小值. 9.(2010-18)(10分)设向量(cos23,cos67),(cos68,cos22),()a b u a tb t R =︒︒=︒︒=+∈.(1)求a b ⋅的值; (2)求u的模的最小值.10.(2007-10)函数22cos 21y x x =+的最小正周期11.(2010-9)44cossin 88ππ-=12.(2012-18)(10分)求证:(cossin)(cossin)(1tan tan)122222αααααα+-+⋅=.13.(2013-11)已知40,sin ,25παα<<=求22sin sin 2cos cos 2αααα++= 14.(2007-16)(8分)求证:32sin tan tan 22cos cos 2x x xx x-=+. 15.(2008-16)(10分)已知函数21()cos ()32f x x π=+-,12()sin(2)23g x x π=+,求的极大值及取得极大值时x 的值.16.(2011-17)(12分)已知向量(sin ,cos ),,cos )a x x b x x ==,且0b ≠ ,函数()21f x a b =⋅-.(1)求函数()f x 的最小正周期及单调递增区间;(2)若//a b ,分别求tan x 及cos 2()1xf x +.17.(2014-6)在锐角ABC 中,角A 、B 所对的边长分别为a 、b ,若2sin a B =,则角A 等于( ).6A π.4B π.3C π.12D π18.(2010-16)(10分)设ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知222b c a +=, (1)求A 的值;(2)2sin sin sin()B C B C --. 19.(2012-2)在ABC ∆中,若2cos22A a cc+=,则ABC ∆一定是 ( ) A.等边三角形 B.直角三角形 C.等腰直角三角形 D.无法确定20.(2013-18)(10分)在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,点(a,b )在直线(sin sin )sin sin x A B y B c C -+=上. (1)求角C 的度数;(2)若3a b ==,求三角形面积.21.(2014-18)(10分)在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,且s i n b A B=.(1)求角B 的度数;(2)若b =ac 的最大值.22.(2008-10)在ABC ∆中,120A ∠=︒,AB=5,BC=7,则ABC ∆的面积S=23.(2013-18)(10分)在ABC ∆中,内角A 、B 、C 的对边分别为a 、b 、c ,点(a,b )在直线(sin sin )sin sin x A B y B c C -+=上. (1)求角C 的度数;(2)若3a b ==,求三角形面积.24.(2007-12)设等差数列{}n a 的前n 项和为n S ,若28515a a a +=-,则9S =25.(2008-4)设等差数列{}n a 的前n 项和为n S ,若39S =,636S =则789a a a ++= ( ) A.63 B.45 C.36 D.2725.(2009-5)已知,,a b c 成等差数列,则二次函数22y ax bx c =++的图像与x 轴的交点个数为 ( ) A.0 B.1 C.2 D.1或226.(2012-4)在等差数列{}n a 中,14736939,27a a a a a a ++=++=,则{}n a 的前9项之和为 ( ) A.66 B.99 C.144 D.29727.(2013-2){}n a 为等差数列,若34567450a a a a a ++++=,则28a a +的值为 ( )B.45 B.90C.180D.36028.(2009-18)(10分)在数列{}n a 中,13a =-,*1223(2,)n n n a a n n N -=++≥∈. (1)求23,a a 的值; (2)设*3()2n n na b n N +=∈,证明:{}n b 是等差数列. 29(2010-20)(10分)甲乙两人各射击一次,击中目标的概率分别是23和34,假设两人射击是否击中目标之间相互独立,每人各次射击是否击中相互独立. (1)求甲射击4次,至少有1次击中目标的概率;(2)求两人射击4次,甲恰好击中目标2次,且乙恰好击中目标3次的概率.30(2012-20)(14分)已知在3支不同编号的枪中有2支已经试射校正过,1支未经试射校正,某射手若使用其中校正过的枪,每次射击击中目标的概率为45,若使用没有校正的枪,每次射击击中目标的概率为15,假设没几是否击中之间相互没有影响. (1)若该射手用这2支已经校正过的枪各射击一次,求目标被击中的概率;(2)若该射手用这3支枪各射击一次,求目标至多被射中一次的概率. 31(2009-11)21lim(12...)n n n →∞+++=32(2012-10)223323232323(...)6666lim n nn →∞++++++++=。

士兵军考试题:军队院校招生文化科目统一考试——士兵高中数学模拟试题

士兵军考试题:军队院校招生文化科目统一考试——士兵高中数学模拟试题

阶段性检测试题一、选择题(共9小题,每题4分)1、已知全集U =R ,集合A ={x |lg x ≤0},B ={x |2x ≤32},则A ∪B =( D )A .∅B .(0,13]C .[13,1] D .(-∞,1](1)由题意知,A =(0,1],B =(-∞,13],∴A ∪B =(-∞,1].故选D.2.已知等比数列{an}的公比为正数,且a 3a 9=2a 52,a 2=2,则a 1=( C )D .2解析:选C.由等比数列的性质得 , ∵q>0,∴a6=2a5,q =a6a5=2,a1=a2q=2,故选C.3.已知f(x)=3sin x -πx ,命题p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f(x)<0,则( D )A .p 是假命题,⌝p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f (x)≥0B .p 是假命题,⌝p :∃x0∈⎝ ⎛⎭⎪⎫0,π2,f(x0)≥0C .p 是真命题,⌝p :∀x ∈⎝ ⎛⎭⎪⎫0,π2,f(x)>0D .p 是真命题,⌝p :∃x0∈⎝⎛⎭⎪⎫0,π2,f(x0)≥0解析:选D.因为f′(x)=3cos x -π,所以当x∈⎝ ⎛⎭⎪⎫0,π2时,f ′(x)<0,函数f(x)单调递减,所以∀x ∈⎝⎛⎭⎪⎫0,π2,f(x)<f(0)=0,所以p 是真命题,又全称命题的否定是特称命题,所以答案选D.4.已知向量a ,b 满足|a|=3,|b|=23,且a⊥(a+b),则a 与b 的夹角为(D )解析:选⊥(a+b)⇒a·(a+b)=a2+a·b=|a|2+|a||b|cos 〈a ,b 〉=0,故cos 〈a ,b 〉=-32,故所求夹角为5π6.5.下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( A ) A .f(x)=21xB .f(x)=x 2+1 C .f(x)=x 3 D .f(x)=2-x解析:选中f(x)=1x2是偶函数,且在(-∞,0)上是增函数,故A 满足题意.B 中f(x)=x2+1是偶函数,但在(-∞,0)上是减函数.C 中f(x)=x3是奇函数.D 中f(x)=2-x 是非奇非偶函数.故B ,C ,D 都不满足题意.6.已知lg a +lg b =0,则函数f(x)=a x 与函数g(x)=-log b x 的图象可能是( B)解析:选B.∵lg a +lg b =0,∴ab =1,∵g(x)=-logbx 的定义域是(0,+∞),故排除A. 若a >1,则0<b <1, 此时f(x)=ax 是增函数, g(x)=-logbx 是增函数, 结合图象知选B.7、已知数列{an}的前n 项和为Sn ,a 1=1,S n =2a n +1,则S n =( B ) A .2n -1 n -1n -1[解析] (1)由已知Sn =2an +1,得Sn =2(Sn +1-Sn),即2Sn +1=3Sn ,Sn +1Sn =32,而S1=a1=1,所以Sn =⎝ ⎛⎭⎪⎫32n -1.[答案] B8.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0.则当xy z 取得最大值时,2x +1y -2z的最大值为( B )A .0B .1 D .3 解析:选=x 2-3xy +4y 2(x >0,y >0,z >0),∴xy z =xy x 2-3xy +4y 2=1x y +4y x-3≤14-3=1. 当且仅当x y =4yx,即x =2y 时等号成立,此时z =x 2-3xy +4y 2=4y 2-6y 2+4y 2=2y 2,∴2x +1y -2z =22y +1y -22y 2=-1y 2+2y =-⎝ ⎛⎭⎪⎫1y -12+1,∴当y =1时,2x +1y -2z 的最大值为1.9.已知{a n }为等差数列,a 10=33,a 2=1,S n 为数列{a n }的前n 项和,则S 20-2S 10等于( C )A .40B .200C .400D .20解析:选-2S10=20(a 1+a 20)2-2×10(a 1+a 10)2=10(a 20-a 10)=100d . 又a 10=a 2+8d , ∴33=1+8d , ∴d =4.∴S 20-2S 10=400.二、填空题(共8小题,每题4分)1、函数f (x )=10+9x -x 2lg (x -1)的定义域为( )解析:要使函数有意义,则x 需满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg (x -1)≠0,即⎩⎪⎨⎪⎧(x +1)(x -10)≤0,①x >1,x ≠2,解①得-1≤x ≤10.所以不等式组的解集为(1,2)∪(2,10]. 2、函数y =)24cos(x -π的单调减区间为________.(3)由y =cos ⎝ ⎛⎭⎪⎫π4-2x =cos ⎝⎛⎭⎪⎫2x -π4,得2k π≤2x -π4≤2k π+π(k∈Z),故k π+π8≤x ≤k π+5π8(k∈Z).所以函数的单调减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k∈Z).3、函数f(x)=43323--+x x x 在[0,2]上的最小值是( ) A .-173B .-103C .-4D .-643解析:选′(x)=x2+2x -3,令f′(x)=0,得x =1(x =-3舍去), 又f(0)=-4,f(1)=-173,f(2)=-103,故f(x)在[0,2]上的最小值是f(1)=-173.4、某三棱锥的三视图如图所示,则该三棱锥最长棱的棱长为________.解析:根据三视图还原几何体,得如图所示的三棱锥P­ABC.由三视图的形状特征及数据,可推知PA⊥平面ABC ,且PA =2.底面为等腰三角形,AB =BC ,设D 为AC 中点,AC =2,则AD =DC =1,且BD =1,易得AB =BC =2,所以最长的棱为PC ,PC =PA2+AC2=2 2. 答案:225、若数列{a n }满足a 1=15,且3a n +1=3a n -4,则a n =________.解析:由3a n +1=3a n -4,得a n +1-a n =-43,所以{a n }是等差数列,首项a 1=15,公差d =-43,所以a n =15-43(n -1)=49-4n3.答案:49-4n36、若命题“∃x 0∈R ,2x 20-3ax 0+9<0”为假命题,则实数a 的取值范围是________.因为“∃x 0∈R ,2x 20-3ax 0+9<0”为假命题,则“∀x ∈R ,2x 2-3ax +9≥0”为真命题.因此Δ=9a 2-4×2×9≤0,故-22≤a ≤2 2.7、若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则 f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=________. ∵f (x )是以4为周期的奇函数,∴f ⎝ ⎛⎭⎪⎫294=f ⎝ ⎛⎭⎪⎫8-34=f ⎝ ⎛⎭⎪⎫-34,f ⎝ ⎛⎭⎪⎫416=f ⎝ ⎛⎭⎪⎫8-76=f ⎝ ⎛⎭⎪⎫-76.∵当0≤x ≤1时,f (x )=x (1-x ),∴f ⎝ ⎛⎭⎪⎫34=34×⎝⎛⎭⎪⎫1-34=316.∵当1<x ≤2时,f (x )=sin πx ,∴f ⎝ ⎛⎭⎪⎫76=sin 7π6=-12.又∵f (x )是奇函数,∴f ⎝ ⎛⎭⎪⎫-34=-f ⎝ ⎛⎭⎪⎫34=-316,f ⎝ ⎛⎭⎪⎫-76=-f ⎝ ⎛⎭⎪⎫76=12.∴f ⎝ ⎛⎭⎪⎫294+f ⎝ ⎛⎭⎪⎫416=12-316=516.8.设函数f(x)=ax 3-3x +1(x∈R),若对于任意x∈[-1,1],都有f(x)≥0成立,则实数a 的值为________.解析:(构造法)若x =0,则不论a 取何值,f (x)≥0显然成立; 当x>0时,即x∈(0,1]时,f(x)=ax3-3x +1≥0可化为a≥3x2-1x3.设g(x)=3x2-1x3,则g′(x)=3(1-2x )x4,所以g(x)在区间⎝ ⎛⎦⎥⎤0,12上单调递增,在区间⎣⎢⎡⎦⎥⎤12,1上单调递减,因此g(x)max =g ⎝ ⎛⎭⎪⎫12=4,从而a≥4.当x<0时,即x∈[-1,0)时,同理a≤3x2-1x3.g(x)在区间[-1,0)上单调递增, ∴g(x)min =g(-1)=4, 从而a≤4,综上可知a =4. 答案:4三.计算下列各题:(18分)(1)12lg 3249-43lg 8+lg 245; 解:(1)12lg 3249-43lg 8+lg 245=12×(5lg 2-2lg 7)-43×32lg 2+12(lg 5+2lg 7) =52lg 2-lg 7-2lg 2+12lg 5+lg 7 =12lg 2+12lg 5=12lg (2×5)=12.(2)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asin A =(2b +c)sin B +(2c +b)sin C.求角A 的大小; [解] (1)由题意知,根据正弦定理得2a2=(2b +c)b +(2c +b)c , 即a2=b2+c2+bc.①由余弦定理得a2=b2+c2-2bccos A , 故cos A =-12,A =120°.四、(12分)已知2311:≤--x p ,)0(012:22>≤-+-m m x x q ,若q p ⌝⌝是的必要不充分条件,求实数m 的取值范围。

2020士兵考军校数学考试模拟试卷 军考资料

2020士兵考军校数学考试模拟试卷  军考资料

部队高中士兵考军校数学模拟试卷关键词:冠明军考 部队考军校试卷 军考教材 军考试卷 考军校复习资料 军考资料 军考模拟试卷解答题(18、19题,每题11分;20-24题,每题12分;共82分)18.解方程:lg(x +1)+lg(x -2)=lg4.19.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos 2cos cos A C B -=2c a b-. (1)求sin sin C A的值; (2)若cos B =14,b =2,求△ABC 的面积S .20.设{a n }是公比为正数的等比数列,a 1=2,a 3=a 2+4.(1)求{a n }的通项公式;(2)设{b n }是首项为1,公差为2的等差数列,求数列{a n +b n }的前n 项和S n .21.小李到某地在路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2秒. (1)求小李在路上到第三个路口时首次遇到红灯的概率;(2)小李在路上因遇到红灯停留的总时间至多是4秒的概率.22.已知函数32()10f x x ax =-+,(1)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得()0f x <成立,求实数a 的取值范围.23.如下图所示,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,点C 在AB 上,且∠CAB =30,D 为AC 的中点.(1)证明:AC ⊥平面POD ;(2)求直线OC 和平面P AC 所成角的正弦值.24. P (x 0,y 0)(x 0≠±a )是双曲线E :x 2a 2-y 2b2=1(a >0,b >0)上一点,M ,N 分别是双曲线E 的左、右顶点,直线PM ,PN 的斜率之积为15. (1)求双曲线的离心率;(2)过双曲线E的右焦点且斜率为l的直线交双曲线于A,B两点,O为坐标原点,C 为双曲线上一点,满足OC=λOA+OB,求λ的值.。

高中士兵学历军考数学模拟试卷及答案

高中士兵学历军考数学模拟试卷及答案

高中士兵学历军考数学模拟试卷及答案关键词:冠明军考 军考模拟试卷 军考教材 士兵考军校教材 士兵考军校试卷一、选择题(每小题4分,共36分)1.设集合A ={x ||x -1|<2},B ={y |y =2x ,x ∈[0,2]},则A ∩B =( ) A.[0,2] B.(1,3) C.[1,3) D.(1,4)2.已知直线a ,b ,平面α,则以下三个命题: ①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥b ,a ∥α,则b ∥α; ③若a ∥α,b ∥α,则a ∥b . 其中真命题的个数是( ) A .0 B .1 C .2 D .33.i 是虚数单位,复数7i34i ( )A.1iB.1+i -C.1731+i 2525 D.1725+i 77-4.设U 为全集.A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =φ”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件5.若log 4(3a +4b )=log 2ab ,则a +b 的最小值是( ) A.6+2 3 B.7+2 3 C.6+4 3 D.7+4 36.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC的形状为( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形7.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ) A.22+45361x y = B.22+36271x y = C.22+27181xy=D.22+1891xy=8.已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( ) A.36π B.64π C.144π D.256π9.用数学归纳法证明2n>2n +1,n 的第一个取值应是( ) A.1 B.2 C.3 D.4二、填空题(每小题4分,共32分)10.数列}{n a 满足11=a ,且11+=-+n a a n n (n *∈N ),则数列}1{na 的前10项和为 .11.i 是虚数单位,复数.12.在极坐标系中,直线4cos()106ρθπ-+=与圆=2sin ρθ的公共点的个数为 .13.在△ABC 中,A =60°,AC =4,BC =23,则△ABC 的面积等于 .14.有红、蓝、黄、绿四种颜色的球各6个,每种颜色的6个球分别标有数字1,2,3,4,5,6,从中任取3个标号不同的球,这3个球颜色互不相同且所标数字互不相邻的取法种数为 .15.设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为 .16.设F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a 且△PF 1F 2的最小内角为30°,则双曲线C 的离心率为 . 17.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b = . 三、解答题(18、19题,每题11分;20-24题,每题12分;共82分) 18.已知不等式ax 2-3x +6>4的解集为{x |x <1或x >b }. (1)求a ,b 的值;(2)解不等式ax 2-(ac +b )x +bc <0.19.设等差数列{}n a 的公差为d ,点(,)n n a b 在函数()2x f x =的图像上(*n ∈N ). (1)若12a =-,点87(,4)a b 在函数()f x 的图像上,求数列{}n a 的前n 项和n S ; (2)若11a =,函数()f x 的图像在点22()a b ,处的切线在x 轴上的截距为12ln 2-,求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.在平面直角坐标系xOy 中,已知向量222m ⎛= ⎝⎭,()=sin ,cos n x x ,π0,2x ⎛⎫∈ ⎪⎝⎭. (1)若m n ⊥,求tan x 的值;(2)若m 与n 的夹角为π3,求x 的值.21.为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛. (1)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列及均值E (X ).22.已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围.23.已知点A (0, 2),椭圆E :2222+x y a b +=1(a>b>0)2,F 是椭圆E 的右焦点,直线AF 的斜率为3,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.24.如下图所示,菱形ABCD 的对角线AC 与BD 交于点O ,点E ,F 分别在AD ,CD 上,AE= CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D 'EF 的位置.(1)证明:AC ⊥HD ′;(2)若AB =5,AC =6,AE =54,OD ′=22,求五棱锥D ′ ABCFE 的体积.。

高中毕业生士兵考军校数学科目专项测试卷及答案

高中毕业生士兵考军校数学科目专项测试卷及答案

2021年军考-高中学历士兵考军校-数学专项测试卷高中数学集合与函数1.设集合2{|20}A x R x x =∈-,{|1327}x B x N =∈< ,则()(R A B = ð)A .(0,1)B .[1,2]C .(2,3]D .{3}2.已知集合2{|(23)}A x y ln x x ==--,{|230}B x x =->,全集为U R =,则()(U A B = ð)A .(-∞,31)(2-⋃,)+∞B .3(2,3]C .[1-,3]D .3(2,)+∞3.已知全集U R =,集合2{|}A x x x =,集合{|21x B x = ,则()(U A B = ð)A .(0,)+∞B .[1,)+∞C .(,1)-∞D .(0,1)4.若a 为实数,则“1a <”是“11a>”的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分也非必要条件5.“|1|2x -<成立”是“(3)0x x -<成立”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是()A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-7.函数3()1f x x =+()A .(,1)-∞-B .(1-,3]C .(-∞,1)(1--⋃,3]D .(-∞,1)(1--⋃,3)8.函数|34|,2()2,21x x f x x x -⎧⎪=-⎨>⎪-⎩则不等式()1f x 的解集是()A .5(,1)[,)3-∞+∞ B .5(,1][,3]3-∞ C .5[1,3D .5[,3]39.函数21()2f x x x=-的单调递增区间是()A .(-∞,1]B .(,0)-∞,(0,1)C .(-∞,0)(0⋃,1)D .(1,)+∞10.下列函数中,既是(0,)+∞上的增函数,又是偶函数的是()A .1y x=B .2x y =C .1||y x =-D .||y lg x =11.已知函数212()log (45)f x x x =--,则函数()f x 的减区间是()A .(,2)-∞B .(2,)+∞C .(5,)+∞D .(,1)-∞-12.函数y =的单调增区间是()A .(-∞,2]B .[1,2]C .[1,3]D .[2,3]13.下列函数中,在(0,)+∞内单调递增,并且是偶函数的是()A .2(1)y x =--B .cos 1y x =+C .||2y lg x =+D .2xy =14.下列函数在R 上是增函数的是()A .1y x =-+B .2y x =C .3x y =D .1y x=-参考答案1.【解答】解:[0A = ,2],{|03}{1B x N x =∈<= ,2,3},(R A ∴=-∞ð,0)(2⋃,)+∞,(){3}R A B ∴= ð.故选:D .2.【解答】解:2{|230}{|1A x x x x x =-->=<- 或3}x >,3{|}2B x x =>,U R =,{|13}U A x x ∴=- ð,3()(,3]2U A B = ð.故选:B .3.【解答】解: 全集U R =,集合2{|}{|0A x x x x x == 或1}x ,集合{|21}{|0}x B x x x ==,{|0}A B x x ∴= ,则(){|0}(0U A B x x =>= ð,)+∞.故选:A .4.【解答】解:由11a>得01a <<,则“1a <”是“11a>”的必要不充分条件,故选:B .5.【解答】解:由|1|2x -<解得:2121x -+<<+,即13x -<<.由(3)0x x -<,解得03x <<.“|1|2x -<成立”是“(3)0x x -<成立”必要不充分条件.故选:B .6.【解答】解:302x << ,023x ∴<<,0133x ∴<-<,解得:2133x -<<,故选:A .7.【解答】解:要使原函数有意义,则1030x x +≠⎧⎨-⎩ ,解得3x 且1x ≠-.∴函数3()1f x x =+(-∞,1)(1--⋃,3].故选:C .8.【解答】解:当2x 时()1f x ,即为|34|1x - 解得1x或53x 1x ∴ 或523x 当2x >时()1f x ,即为211x-- 解得13x < 23x ∴< 综上,5(,1][,3]3x ∈-∞ 故不等式()1f x 的解集是5(,1][,3]3-∞ 故选:B .9.【解答】解:由220t x x =-≠,可知函数开口向上,对称轴1x =,0x ≠且2x ≠.∴可得(,0)-∞,(0,1)单调递减,原函数()f x 的单调递增区间(,0)-∞,(0,1).故选:B .10.【解答】解:函数1y x=在(0,)+∞上是减函数,且是奇函数,即A 不符合题意;函数2x y =是非奇非偶函数,即B 不符合题意;函数1||y x =-在(0,)+∞上是减函数,即C 不符合题意;对于函数||y lg x =,当0x >时,有y lgx =,单调递增;而()||||()f x lg x lg x f x -=-==,所以()f x 是偶函数,即D 正确.故选:D .11.【解答】解:设245t x x =--,由0t >可得5x >或1x <-,则12log y t =在(0,)+∞递减,由245t x x =--在(5,)+∞递增,可得函数()f x 的减区间为(5,)+∞.故选:C .12.【解答】解:由2430x x -+- 得2430x x -+ ,得13x,设243t x x =-+-,则对称轴为2x =,则y =为增函数,要求函数y =的单调增区间,根据复合函数单调性之间的关系知,只需要求243t x x =-+-的递增区间,243t x x =-+- 的递增区间为[1,2],∴函数y =的单调增区间是[1,2],故选:B .13.【解答】解:A .2(1)y x =--的对称轴为1x =,为非奇非偶函数,不满足条件.B .cos 1y x =+是偶函数,但在(0,)+∞内不是单调函数,不满足条件.C .||2y lg x =+为偶函数,在(0,)+∞内单调递增,满足条件,D .2x y =,(0,)+∞内单调递增,为非奇非偶函数,不满足条件.故选:C .14.【解答】解:对于A :函数在R 递减,对于B :函数在(,0)-∞递减,在(0,)+∞递增,对于C :函数在R 递增,对于D :函数在(,0)-∞递增,在(0,)+∞递增,故选:C .。

军校考试数学模拟题三及答案

军校考试数学模拟题三及答案

军校考试数学模拟题三及答案1. 题目描述:在一个矩形花坛里,种植了两种不同的花卉。

已知每一种花的数量都是偶数,且第一种花每两个一组排列,第二种花每三个一组排列。

现在要在花坛四周围上篱笆,使得两种花各自都被一条直线划分成两个小区域,且四周的篱笆数量最少。

求最少需要多少根篱笆。

2. 解题思路:首先,我们可以设第一种花的数量为2a,第二种花的数量为2b,其中a、b分别为正整数。

接着,我们可以思考如何画直线将两种花区分开。

考虑到第一种花每两朵一组,第二种花每三朵一组,所以当两种花的数量一样时,可以通过画一条直线将它们完全分开。

根据条件,我们可以得知:2a = 2b。

这样,两种花的数量相等时,最少需要一条直线将它们分开。

当两种花的数量不同时,我们可以找到一种方法,只需多加一根直线即可。

为了找到最优解,我们需要将第一种情况(两种花的数量相等)和第二种情况(两种花的数量不相等)综合考虑。

3. 求解过程:设第一种花的数量为2a,第二种花的数量为2b。

情况1:两种花的数量相等根据2a = 2b,可以得到a = b。

此时,两种花区域都可以通过一条直线完全划分开来。

所以,最少需要1根直线。

情况2:两种花的数量不相等假设第一种花的数量是第二种花的数量的两倍,即2a = 2b,且a = 2b。

考虑到第一种花每两朵一组,第二种花每三朵一组,我们可以通过一条直线划分出一个包含3个小区域的部分(第一种花2个小区域,第二种花1个小区域),还剩下一个小区域未被划分。

为了将剩下的一个小区域划分开,我们需要再加一根直线。

所以,在这种情况下,最少需要2根直线。

综上所述,最少需要的篱笆数量为1根或者2根,具体的数量取决于两种花的数量关系。

4. 答案总结:根据题目所给的条件,我们分析了两种情况。

当两种花的数量相等时,最少需要1根篱笆;当两种花的数量不相等时,最少需要2根篱笆。

因此,最终的答案为1根或2根篱笆,具体的数量取决于两种花的数量关系。

消防士兵考军校真题试卷:数学部分(一)

消防士兵考军校真题试卷:数学部分(一)

k
.
18.正三棱锥 P ABC 的底面边长为 2 ,侧面和底面所成的二面角为 60 ,则正三棱锥高 PE
的长度是
.
三、解答题(本大题共 5 小题,满分 60 分. 其中 19~20 小题每小题 10 分,21 小题 12 分,
22~23 小题每小题 14 分. 解答应写出文字说明、证明过程或演算步骤)
30 a
B
D. 6
y 5sin 4 x 4cos 3 x
12.函数
3
2 的最小正周期是( ).
4π A. 3
3π B. 2
17 π C. 6
D . 12π
二、填空题(本大题共 6 个小题,每小题 5 分,共 30 分. 将答案直接填在横线上)
13.已知
f
(x)
3x 6
x
5
(x 0) (x 0) ,则 f [ f (1)]
22.(14 分)某水厂要建造一个容积为 8000m3 ,深 5m 的长方体蓄水池,池壁每平方米的 造价为 a 元,池底每平方米的造价为 2a 元. 如何设计蓄水池的长和宽,使其造价最省,并 求出最省造价.
23.(14 分)如图, ABCD 是边长为 4 的正方形, E 、 F 分别为 AB 和 AD 的中点, GC 面ABCD ,且 GC 2 ,求:
f (x 1) 2 的定义域是(
).
A.[0, 2]
[ 1 , 3] B. 2 2
[1, 5] C. 2 2
[1, 3] D. 2 2
4.若 Cn0 Cn2 Cn4 Cnn 32 ,则 n 等于(
).
A.5
B.6
C.4
D.10
5.圆 x2 y2 4 上的点到直线 4x 3y 25 0 的距离的取值范围是( ).

军校考试数学模拟题三及答案

军校考试数学模拟题三及答案

军校考试模拟题(一)一、(36分)本题共有9小题,每个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个结论是正确的。

把正确结论代号写在题后的括号内,选对得4分,不选、错选或选出的代号超过一个(不论是否都写在括号内),一律得0分。

1.设全集=U {1,2,3,4,5,7},集合=A {1,3,5,7},集合=B {3,5},则( )A .U AB =⋃ B .B CuA U ⋃=)(C .)()(CuB CuA U ⋃=D .)(CuB A U ⋃=2.函数x y 2cos 1+=的图象( )A .关于x 轴对称B .对称关于原点对称C .关于直线2π=x 对称 D .关于直线4π=x3.若a 、b 为空间两条不同的直线,α、β为空间两个不同的平面,则a α⊥的一个充分条件是( )A .//a β且αβ⊥B .a β⊂且αβ⊥C .a b ⊥且//b αD .a β⊥且//αβ4.已知命题p :“若|sin |1α=,则2k παπ=+,k Z ∈”;命题q :“若||||1a b +>,则||1a b +>” .则( )A .p 真q 假 B .p 假q 真 C .“p 或q ”假 D .“p 且q ”真 5.有3张奖券,其中2张可中奖,现3个人按顺序依次从中抽一张,小明最后抽,则他抽到中奖券的概率是( )A.13B.16C.23D.126.设11, 2OM⎛⎫= ⎪⎝⎭,()0, 1ON =,则满足条件01OP OM ≤⋅≤,01OP ON ≤⋅≤的动点P 的变化范围(图中阴影部分含边界)是( )7.实数满足,sin 1log 3θ+=x 则91-+-x x 的值为( )A .8B .-8C .8或-8D .与θ无关8.在数列{}i a 中,{}20,3,2,1,1,0,1 =-∈i a i ,且820321=++++a a a a ,46)1()1()1(2202221=++++++a a a ,则)20,,2,1( =i a i 中1的个数是( )A .7B .9C .11D .12 9.已知0<a <1,m <n a log <0,则( )A. B.C.D.二、(32分)本题共有8个小题,每个小题4分。

2022年军考数学模拟测试卷及答案

2022年军考数学模拟测试卷及答案

2022年军考数学专项复习测试卷1.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且5a =,7b =,8c =.(Ⅰ)求cos B 的值;(Ⅱ)求ABC ∆的面积.2.已知函数1()()21x f x a a R =-∈+.(1)若函数()f x 为奇函数,求实数a 的值;(2)判断()f x 的单调性,并说明理由.3.如图,四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,AB AD ⊥,PA ⊥平面ABCD ,5AD =,24BC AB ==,M 为PC 的中点.(1)求证:平面PAC ⊥平面PCD ;(2)若AM PC ⊥,求二面角B AM C --的余弦值.4.已知n S 是正项等差数列{}n a 前n 项和,242n nn S a a =+.(1)求数列{}n a 的通项公式;(2)设2n a n b n =⋅,求数列{}n b 的前n 项和n T .5.已知A ,B 分别是椭圆2222:1(0)x y C a b a b+=>>的左、右顶点,O 为坐标原点,||6AB =,点5(2,)3在椭圆C 上,过点(0,3)P -的直线l 交椭圆C 于M ,N 两个不同的点.(1)求椭圆C 的标准方程;(2)若点B 落在以线段MN 为直径为圆的外部,求直线l 的倾斜角θ的取值范围;(3)当直线l 的倾斜角θ为锐角时,设直线AM ,AN 分别交y 轴于点S ,T ,记PS PO λ= ,PT PO μ= ,求λμ+的取值范围.参考答案与详解1.【解答】解:(Ⅰ)5a = ,7b =,8c =,∴2222225871cos 22582a cb B ac +-+-===⨯⨯.(Ⅱ) 1cos 2B =,又(0,)B π∈,∴3B π=,∴113sin 58222ABC S ac B ∆==⨯⨯⨯=.2.【解答】解:(1)根据题意,函数()f x 为奇函数,则()()0f x f x +-=,即1112(()2(21021212121xx x x x a a a a --+-=-+=-=++++,则12a =;(2)由(1)的结论,11()221x f x =-+,()f x 在R 上为增函数,证明:设12x x <,则121221121211111122()()2221212121(21)(21)x x x x x x x x f x f x --=--+=-=++++++,又由12x x <,则1210x +>,2210x +>,12220x x -<,则12()()0f x f x -<,则()f x 在R 上为增函数.3.【解答】解:(1)证明://AD BC ,AB AD ⊥,5AD =,24BC AB ==,AC ∴=,CD =,22220525AD CD AD ∴+=+==,CD AC ∴⊥,PA ⊥ 平面ABCD ,PA CD ∴⊥,AC PA A = ,CD ∴⊥平面PAC ,CD ⊂ 平面PCD ,∴平面PAC ⊥平面PCD .(2)M 为PC 的中点,AM PC ⊥,PA AC ∴==如图,以A 为原点,AB 为x 轴,AD 为y 轴,AP 为z 轴,建立空间直角坐标系,则(2B ,0,0),(2C ,4,0),(0P ,0,,(1M ,2,(0D ,5,0),(1AM = ,2,(2AB = ,0,0),设平面AMB 的法向量(n x = ,y ,)z ,则0220n AM x n AB x y z ⎧⋅==⎪⎨⋅=-++=⎪⎩ ,取2z =,得(0n =,,2),CD ⊥ 平面PAC ,(2DC = ,1-,0),1cos ,3||||n DC n DC n DC ⋅<>==⋅ ,∴二面角B AM C --的余弦值为13.4.【解答】解:(1)由于:242n nn S a a =+,①,当1n =时,解得12a =,当2n时,211142n n n S a a ---=-②,①-②221114422n n n n n n S S a a a a ----=-++,整理得12n n a a --=(常数),故2n a n =.(2)由(1)得:24n a n n b n n =⋅=⋅.所以121424...4n n T n =⨯+⨯++⋅,①23141424...4n n T n +=⨯+⨯++⋅②,①-②得:113()322n n S n +=-⋅+.5.【解答】解:(1)由题知||2AB a =,因为||6AB =,所以26a =,解得3a =,又5(2,)3在椭圆上,所以2425199b +=,所以25b =,则椭圆C 的标准方程为22195x y +=.(2)由(1)知(3,0)B ,①当直线l的斜率不存在时,||2MN b ==以MN 为直径的圆交x轴于(0),此时,点B 在以MN 为直径的圆的外部,所以2πθ=,②当直线l 的斜率存在时,设其方程为3y kx =-,1(M x ,1)y ,2(N x ,2)y ,由223195y kx x y =-⎧⎪⎨+=⎪⎩,得22(59)54360k x kx +-+=,所以△22(54)436(59)0k k =-⨯+>,解得23k >或23k <-,所以12212254593659k x x k x x k ⎧+=⎪⎪+⎨⎪=⎪+⎩,因为点B 在以MN 为直径的圆的外部,所以BM < ,1(3BN x >=- ,123)(3kx x --,23)kx -,21212(1)3(1)()18k x x k x x =+-+++2223636354(1)18(59)59k k k k k +-⨯+++=+218(27)(1)059k k k --=>+,解得72k >或1k <,又因为23k >或23k <-,所以23k <-或213k <<或72k >,所以直线l 的倾斜角的范围是2(arctan3,7)(arctan 42π⋃,2arctan )3π-.(3)设直线k 的方程为3y kx =-,又因为直线k 的倾斜角为锐角,由(2)知,23k >,设1(M x ,1)y ,2(N x ,2)y ,所以直线AM 的方程为11(3)3y y x x =++,直线AN 的方程为22(3)3y y x x =++,把0x =代入11(3)3y y x x =++,得1133y y x =+,即113(0,)3y S x +,同理可得223(0,)3y T x +,所以113(0,3)3y PS x =++ ,223(0,3)3y PT x =++ ,(0,3)PO = ,由PS PO λ= ,PT PO μ= ,可得1113y x λ=++,2213y x μ=++,由(2)知,1225459k x x k +=+,1223659x x k=+,所以12121212121223(1)()1822333()9y y kx x k x x x x x x x x λμ+-+-+=++=++++++2222365423(1)()1895953616299595k k k k k k k ⋅+-⋅-++=++++2101101422(921913k k k k +=-⋅+=-⋅+∈+++,2),所以λμ+的取值范围为4(3,2).。

2022部队士兵考军校最新模拟试题数学选拔B卷

2022部队士兵考军校最新模拟试题数学选拔B卷

2022军队院校招生文化科目统一考试士兵高中数学考前选拔B 卷一、单选题1.已知集合A ={1,2,3,4},B ={2,4,6,8},则A B 中元素的个数为A .1B .2C .3D .42.南北朝时期的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.如图,夹在两个平行平面之间的两个几何体的体积分别为V 1、V 2,被平行于这两个平面的任意平面截得的两个截面面积分别为S 1、S 2,则命题p :“V 1、V 2相等”是命题q :“S 1、S 2总相等”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知每项均大于零的数列a n }{中,首项=a 11且前n 项和S n满足=-S S n (∈n N *且≥n 2),则=a 81 ( )A .641B .640C .639D .6384.设函数=---f x x a x b x c )()()()((a ,b ,c 是互不相等的常数),则'''++f a f b f c a b c )()()(等于( )A .0B .1C .3D .++a b c5.已知点P m (1,)在椭圆+=y x 4122的外部,则直线=+y mx 2+=x y 122的位置关系为( ) A .相离 B .相交 C .相切 D .相交或相切6.已知α为第三象限角,且+=ααm sin cos 2,=αm sin 22,则m 的值为( )A .-31 B.-2 C. D.-37.已知a 是实数,-i 是纯虚数,则a +a i 1 等于( ) A. B .-1 CD .18.一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为A .3×3!B .3×(3!)3C .(3!)4D .9!9.已知定义在R 上的奇函数f x )(满足+=-f x f x 2e )()((其中=e 2.7182…),且在区间0,e ][上是增函数,令=a eln 3,=b eln 4,=c eln5,则f a )(,f b ,f c )(的大小关系为( ) A .>>f b f a f c )()()(B .>>f b f c f a )()()(C .>>f a f b f c )()()(D .>>f a f c f b )()()(二、填空题10.数列{x n }满足=+∈+*x x x N n n lg 1lg ()1,且x 1+x 2+……+x 100=100,则lg (x 101+x 102+……+x 200)=____.11.设e 1与e 2是两个不共线向量,=+AB e e 3212,=+CB ke e 12,=-CD e ke 3212,若A ,B ,D 三点共线,则=k ________.12.--x x x ()(1)14的展开式中x 3的系数为_______.13.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b =5c ,C =2B ,则cosC =___. 14.已知一组数据的方差为______.15.已知双曲线为______.16.若无穷数列x 1,x 2,x 3,x 4,x 5的方差为2,则数据+x 231,+x 232,+x 233,+x 234,+x 235 -=>>a bC a b x y :10,02222)(的一条渐近线与曲线=+y x 1ln 相切,则该双曲线的离心率{a n }的所有项都是正数,且满足N =∈+*n n n 32)(,则⎝⎭+ ⎪++⋅⋅⋅+=⎛⎫→∞n n a a a n n 231lim 1212______. 17.若方程-+=-xe a x 10有两个不相等的实数根,则a 的取值范围是______ .三、解答题18.设ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知=+b B a C c A 2cos cos cos .(1)求B ;(2)若=b +a c 的取值范围.19.已知函数=-+-f x x a x 1)(.(1)当=a 0时,求不等式≤f x 1)(的解集A .(2)设≤-f x x 23)(的解集为B ,若⊆A B ,求这数a 的值.20.已知数列{a n}满足=--a n n 2211,++++=+a a a a n n n 212462)(,N ∈n *. (1)求a 2n ;(2)求数列⋅a n n }{的前n 2项和.21.某商场为吸引顾客消费推出一项优惠活动,活动规则如下:消费额每满100元可转动如图所示的转盘一次,并获得相应金额的返券,假定指针等可能地停在任一位置. 若指针停在A 区域返券60元;停在B 区域返券30元;停在C 区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.(1)若某位顾客消费128元,求返券金额不低于30元的概率;(2)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为X(元),求随机变量X 的分布列和数学期望.22.已知函数=-+-f x x x a ()ln 1,=+-g x ax x x x 2ln 2)(,其中>a 0. (1)求f x ()的单调区间;(2)当≥x 1时,g x )(的最小值大于-a 2ln 3,求a 的取值范围.23.已知椭圆C 1:>>+=ab a b x y 1(0)2222的左、右顶点分别是双曲线C 2:-=m y x 1222的左、右焦点,且C 1与C 2相交于点(33). (1)求椭圆C 1的标准方程;(2)设直线l :=-y kx 31与椭圆C 1交于A ,B 两点,以线段AB 为直径的圆是否恒过定点?若恒过定点,求出该定点;若不恒过定点,请说明理由.24.如图,四棱锥P —ABCD 的底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点. (Ⅰ)证明P A //平面BDE ;(Ⅱ)求二面角B —DE —C 的平面角的余弦值;(Ⅲ)在棱PB 上是否存在点F ,使PB ⊥平面DEF ?证明你的结论.。

武警士兵考军校军考模拟题:数学部分(六)

武警士兵考军校军考模拟题:数学部分(六)

武警士兵考军校军考模拟题:数学部分(六)武警士兵考军校军考模拟题:数学部分(六)关键词:武警考军校军考模拟题京忠教育军考数学武警考试资料x2y231(2021-21)(12分)已知椭圆C:2?2?1(a?b?0)的离心率是,直线l:y?x?2ab3与原点为圆心,以椭圆C的短半轴长为半径的圆相切. (1)求椭圆C的方程;(2)设椭圆C的左焦点为F1,右焦点F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹方程.x2y2??1一个焦点的最短弦长为 2(2021-14)过椭圆43x2y2??1,3(2021-7)已知椭圆E的方程为左焦点为F1,如果椭圆E上的一点P到F1的259距离为2,M是线段PF1的中点,O为坐标原点,则OM= () A.4 B.2 C.223 D.8 24(2021-12)以双曲线x?4y?4的中心为顶点,右焦点为焦点的抛物线方程是 5(2021-14)抛物线的顶点坐标在坐标原点,焦点是椭圆x?2y?8的一个焦点,则此抛物线的焦点到准线的距离为6(2021-13)顶点在原点,准线方程是x=2的抛物线的方程是7(2021-20)(11分)已知双曲线16x?9y?144,F1,F2是两个焦点,点P在双曲线上,且满足PF1PF2的值. 1?PF2?32,求?F2222x2y2?1过点(?32,2),则该双曲线的焦点为 8(2021-15)若双曲线2?a49(2021-22)(13分)双曲线C的中心在坐标原点,顶点为A(0,2),A点关于一条渐近线的对称点为B(2,0),斜率为2且过点B的直线L交双曲线C与M,N两点. (1)求双曲线C的方程;(2)计算MN的值.10(2021-10)已知以原点为中心的双曲线的一条准线方程为x?5,离心率e?5,则5该曲线的标准方程为()x2?y2?1 A.4x?y?1 B.422y2?1 C.x?4y?1D.x?4222x2y2x2y2611(2021-8)已知双曲线2?2?1(a?b?0)的离心率是,则椭圆2?2?1的离abab2心率是() A.1223 B. C. D. 23222x2y212(2021-15)已知抛物线y?8x的准线过双曲线2?2?1(a?0,b?0)的一个焦点,ab且双曲线的离心率为2,则该双曲线的方程为213(2021-22)(12分)抛物线与直线y?4x与直线y?2x?k相交,截得的弦长为35,求k的值.x2y2314(2021-21)(12分)已知椭圆C:2?2?1(a?b?0)的离心率是,直线l:y?x?2ab3与原点为圆心,以椭圆C的短半轴长为半径的圆相切. (1)求椭圆C的方程;(2)设椭圆C的左焦点为F1,右焦点F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹方程.15(2021-22)(13分)双曲线C的中心在坐标原点,顶点为A(0,2),A点关于一条渐近线的对称点为B(2,0),斜率为2且过点B的直线L交双曲线C与M,N两点. (1)求双曲线C的方程;(2)计算MN的值.16(2021-21)14分)已知椭圆C经过点A(1,),两焦点坐标分别为(?1,0),(1,0). (1)求椭圆C的方程;(2)E,F是椭圆上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值.32x2y25217(2021-22)(13分)已知椭圆2?2?1(a?b?0)点P(a,a)在椭圆上.ab52(1)求椭圆的离心率;(2)设点A为椭圆的左顶点,O为坐标原点,若点Q在椭圆上且满足AQ?AO,求直线OQ的斜率.18(2021-5)百米决赛有6 名运动员A、B、C、D、E、F参赛,每个运动员的速度都不同,则远动员A比运动员F先到终点的比赛结果共() A.360种 B.240种 C.120种 D.48种19(2021-4)用数字1,2,3,4,5组成没有重复数字的数,则可以组成的六位数的个数为() A.720 B.240 C.120 D.60020(2021-6)甲、乙、丙三位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则这三位同学不同的选修方案共有() A.48种 B.36种 C.96种 D.192种21(2021-8)名士兵拍成一排,其中甲乙两个必须排在一起的不同排法有() A.720种 B.360种 C.240种 D.120种22(2021-6)如果把4名干部分配到3个中队,每个中队至少要分配一名干部,那么不同的分配方法有() A.45种 B.36种 C.27种 D.9种23(2021-6)从4名男生和3名女生中选出3人,分别从事三项不同的工作,若这3人中至少有1名女生的选派方法有() A.108种 B.186种 C.216种 D.270种24(2021-7)在50件产品中有4件次品,从中任意抽取5件,至少有3件事次品的抽法共有()A.5种B.4140种C.96种D.4186种25(2021-7)我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架舰载机准备看舰,如果甲,乙二机必须相邻,丙,丁不能相邻,那么不同的着舰方法有() A.24种 B.18种 C.12种 D.48种 26(2021-11)过(a?b)20的展开式中第4r项与第r+2项的系数相等,则r= 27(2021-12)在(x?18)的展开式中,x5的系数为 2x28(2021-12)在(2x?18)的展开式中,常数项为3xn29(2021-13)已知(1?2n)的展开式中,二项式系数和为64,则它的二项展开式的中间项是30(2021-13)(2x?31(2021-13)(x?3110)的展开式中,常数项是 22x13x)18的展开式中含x15的项的系数为 12x32(2021-14)在(x?)8的展开式中常数项为33(2021-14)(x?110)的展开式中,x4的系数为 2x34(2021-21)(10分)已知8支球队中有3支弱队,以抽签的方式将8支球队分为A,B两组,每组4支,求:(1)3支弱队分在同一组的概率; (2)A组中至少有两支弱队的概率.35(2021-22)(13分)甲、乙、丙三位毕业生,同时应聘一个用人单位,其中甲被选中的概率是231,乙被选中的概率是,丙被选中的概率是,各自是否被选中相互独立. 543(1)求三人都被选中的概率;(2)求只有两人被选中的概率.36(2021-17)(10分)已知一个口袋中有大小、质地相同的8个球,其中有4个红球和4个黑球,现在从中任取4个球. (1)求取出的球的颜色相同的概率;(2)若取出的红球数不少于黑球数,则可获得奖品,求获得奖品的概率.37(2021-20)(10分)甲乙两人各射击一次,击中目标的概率分别是击是否击中目标之间相互独立,每人各次射击是否击中相互独立. (1)求甲射击4次,至少有1次击中目标的概率;23和,假设两人射34(2)求两人射击4次,甲恰好击中目标2次,且乙恰好击中目标3次的概率.38(2021-18)(12分)某项选拔共有四轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰,已知选手甲能正确回答第一、二、三、四轮问题的概率分别为4321,,,,且各轮问题能否正确回答互不影响. 5555(1)求选手甲进入第四轮才被淘汰的概率;(2)求选手甲至多进入第三轮考核的概率.39(2021-20)(14分)已知在3支不同编号的枪中有2支已经试射校正过,1支未经试射校正,某射手若使用其中校正过的枪,每次射击击中目标的概率为每次射击击中目标的概率为4,若使用没有校正的枪,51,假设没几是否击中之间相互没有影响. 5(1)若该射手用这2支已经校正过的枪各射击一次,求目标被击中的概率;(2)若该射手用这3支枪各射击一次,求目标至多被射中一次的概率.40(2021-16)(10分)战士小张考政治、语文、数学、外语4门课程,各课程考试成绩之间相互独立,其各门课程合格的概率分别为(1)求小张一门都不合格的概率;(2)求小张恰好有三门课程合格的概率.41(2021-20)(10分)袋中有大小相同的6个球,其中有4个红球,2个白球. (1)若任取3个球,求至少有一个白球的概率;(2)若有放回的取球3次,求恰好有1个白球的概率.4231,,,. 5342感谢您的阅读,祝您生活愉快。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学
一 选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的,把该选项的代号写在题后的括号内。


1设集合{}
(){}R x x y y x N R x x y y M ∈+==∈+==,1,,,12,则N M ( ) A ∅ B {}0 C {}1,0 D {}1
2已知不等式()
()012422<-+--x a x a 对R x ∈恒成立,则a 的取值范围是 ( ) A a ≤2- B 2-≤a 56< C 2-5
6<<a D 2-≤a 2< 3若则,8.0log ,6log ,log 273===c b a π ( )
A. c b a >>
B. c a b >>
C. b a c >>
D. a c b >>
4设0>ω,函数2)3sin(++=π
ωx y 的图像向右平移3
4π个单位后与原图像重合,则ω的最小值是 ( ) A 32 B 34 C 2
3 D 3 5设)(x f 为定义在R 上的奇偶数,当x ≥0时,b x x f x ++=22)((b 为常数),则()=-1f
( )
A 3
B 2
C -1
D -3
6 ()()3411x x --的展开式2x 的系数是 ( )
A -6
B -3
C 0
D 3
7 设向量a ,b 满足:,4,3==b a a ·b = 0 ,以a ,b ,b a - 的模为边长构成三角形,则它的边长与
半径为1的圆的公共点的个数最多为 ( )
A 3
B 4
C 5
D 6
8 设n m ,是平面α内的两条不同直线,21,l l 是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是 ( )
A m ∥β且1l ∥α
B m ∥1l 且n ∥2l
C m ∥β且n ∥β
D m ∥β且n ∥2l
二 填空题(本大题共7小题,每小题5分,共35分,把答案填在题中横线上。


9 函数x x y sin 162+-=的定义域 。

10 设n S 为等差数列{}n a 的前n 项和,若,24,363==S S 则9a = 。

11 =++++∞→)3
131311(lim 2n x 。

12 在120°的两面角内放置一个半径为5的小球,它与二面角的两个面相切于A 、B 两点,则这两个点在球面上的距离为 。

13 的值域为2cos 4sin 2+-=x x y 。

14 设=⎪⎭
⎫ ⎝⎛'=21
cos )(πf x x f ,则 。

15 已知抛物线x y 42
=,过点()0,4P 的直线与抛物线相交于()()2211,,,y x B y x A 两点,则2221y y +的最小值是 。

三 解答题(本大题共7小题,共75分。

解答应写出文子说明、证明过程或演算步骤)
16 (本小题共10分)
求函数x x x x y 42cos 4cos 4cos sin 47-+-=的最大值与最小值。

17 (本小题共10分)
求解方程:()2313
log 13log 133=⎪⎭⎫ ⎝⎛---x x 18 (本小题共10分)
设数列{}n a 的前n 项和为n S ,已知24,111+==+n n a S a 。

(1) 设n n n
a a
b 21-=+,证明数列{}n b 是等比数列; (2) 求数列{}n a 的通项公式。

19 (本小题共10分)
设向量()()()ββββααsin 4,cos ,cos 4,sin ,sin ,cos 4-===c b a 。

(1) 若a 与c b 2-,求()βα+tan 得值;
(2) 求c b +得最大值。

20 (本小题共10分)
已知a 是实数,函数()a x x x f -=)(。

(1) 求函数)(x f 的单调区间,说明)(x f 在定义域上有最小值
(2) 设()a m 为)(x f 的定义域上的最小值,写出()a m 的表达式;
(3) 当a = 10 时,求出
()10)(-=x x x f 在区间[]3,0上的最小值。

21 (本小题共10分)
如图所示,已知ABC C B A -111是正棱柱,AC D 是的中点,11BC AB ⊥。

求二面角C BC D --1的度
数。

22 (本小题共15分) 已知椭圆12
22
=+y x 的左焦点为F ,坐标原点为O 。

(1) 求过点F O 、,并且与椭圆的左准线l 相切的圆的方程;
(2) 设过点F 的直线交椭圆于B A 、两点,并且线段AB 的中点在直线0=+y x 上,求直线AB 的方
程。

相关文档
最新文档