2020年中考数学常用公式及性质汇总
(完整word版)中考数学公式大全
初中数学常用公式定理〔务必全部理解并记住〕1、整数(包括:正整数、0、整数 ) 和分数 ( 包括:有限小数和无量循小数)都是有理数.如:- 3,,,⋯,,.无量不循小数叫做无理数.如:π,-,⋯(两个1之依次多10个 ) .有理数和无理数称数.2、:a≥0丨 a丨= a; a≤ 0 丨 a丨=- a.如:丨-丨=;丨-π丨=π -.3、一个近似数,从左笫一个不是0的数字起,到最末一个数字止,全部的数字,都叫做个近似数的有效数字.如:精确到得,果有两个有效数字6, 0.4、把一个数写成±a× 10n的形式 ( 其中 1≤a< 10, n是整数 ) ,种数法叫做科学数法.如:- 40700=-× 105,= 4.3 ×10-5.5、乘法公式(反来就是因式分解的公式) :① ( a+ b)( a-b) = a2- b2.② ( a± b) 2=a2±2ab +b2.③a2+ b2= ( a+ b) 2- 2ab, ( a- b) 2=( a+ b) 2- 4ab.6、的运算性:①a m×a n=a m+n.②a m÷a n=a m-n.③( a m)n=a mn.④( ab)n=a n b n.⑤( -) n= n.a-n1- n n a01a0a3a2a5a6a2a4a32⑥=a n,特: ()= ().⑦=(≠) .如:×=,÷=, ()=a6,(3a3 327a93)- 1=-,5- 2- 22=,(-o 1-) =,( -==,()= ())=,() 0=1.72 a a 0=丨a丨,③=×,④=a 0、二次根式:① ( )=(≥),②( >,b≥ 0) .如:① (32456.③a 0=-a.④的平方根=4 ) =.②=<,的平方根=±2.8、一元二次方程:于方程:ax2+ bx+ c= 0:①求根公式是 x=bb24ac,其中△= b2- 4ac叫做根的判式.2a当△> 0,方程有两个不相等的数根;当△= 0,方程有两个相等的数根;当△< 0,方程没有数根.注意:当△≥0,方程有数根.②假设方程有两个数根x 和 x ,并且二次三式ax2+ bx+ c可分解 a( x- x )( x- x ) .1212③以 a 和b 根的一元二次方程是x 2- ( a +b) x + ab =0.9、一次函数 y = kx +b( k ≠ 0) 的 象是一条直 ( b 是直 与 y 的交点的 坐 即一次函数在y 上的截距 ) 当 k >0 , y 随 x 的增大而增大 ( 直 从左向右上升 ) ;当 k < 0 , y 随 x 的增大而减小 ( 直 从左向右下降) .特 :当 b = 0 , y = kx( k ≠0) 又叫做正比率函数( y 与 x 成正比率 ) , 象必 原点.10、反比率函数 y = ( k ≠ 0) 的 象叫做双曲 .当 k > 0 ,双曲 在一、三象限 ( 在每一象限内,从左向右降 ) ;当 k < 0 ,双曲 在二、四象限 ( 在每一象限内,从左向右上升 ) .因此,它的增减性与一次函数相反.11、 初步 :〔 1〕看法 :①所要察看的 象的全体叫做体,其中每一个察看 象叫做个体.从 体中抽取的一部份个体叫做 体的一个 本 , 本中个体的数目叫做本容量.②在一 数据中,出 次数最多的数( 有 不仅一个 ) ,叫做 数据的 众数 .③将一 数据按大小 序排列,把 在最中 的一个数 ( 或两个数的平均数 ) 叫做 数据的中位数.〔 2〕公式: 有 n 个数 x 1 , x 2,⋯, x n ,那么:平均数 : x =x 1 + x 2 + ......+ x n ;n12、 率与概率:〔 1〕 率 =频数,各小 的 数之和等于 数,各小 的 率之和等于1, 率分布直方总数中各个小 方形的面 各 率。
2020年中考数学常用公式及性质汇总
2020年中考数学常用公式及性质汇总1.乘法与因式分解①(a +b )(a -b )=a 2-b 2;②(a ±b )2=a 2±2ab +b 2;③(a +b )(a 2-ab +b 2)=a 3+b 3; ④(a -b )(a 2+ab +b 2)=a 3-b 3;a 2+b 2=(a +b )2-2ab ;(a -b )2=(a +b )2-4ab 。
2.幂的运算性质①a m×a n=a m +n;②a m ÷a n =a m -n ;③(a m )n =a mn ;④(ab )n =a n b n;⑤(a b )n =nna b;⑥a -n =1n a,特别:()-n =()n ;⑦a 0=1(a ≠0)。
3.二次根式①()2=a (a ≥0);②=丨a 丨;③=×;④=(a >0,b ≥0)。
4.三角不等式|a|-|b|≤|a±b|≤|a|+|b|(定理);加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a ,b 分别为向量a 和向量b )|a+b|≤|a|+|b|;|a -b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ; |a -b|≥|a|-|b|; -|a|≤a≤|a|; 5.某些数列前n 项之和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n -1)=n 2 ; 2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n 2=n(n+1)(2n+1)/6; 13+23+33+43+53+63+…n 3=n 2(n+1)2/4;1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3; 6.一元二次方程对于方程:ax 2+bx +c =0:①求根公式是x =242b b aca-±-,其中△=b 2-4ac 叫做根的判别式。
初中数学必背公式及定理
初中数学必背公式及定理数学是一门重要的学科,也是一门需要掌握公式和定理的学科。
初中数学中的公式和定理是学习数学的基础,掌握了这些公式和定理,能够更好地解题和理解数学知识。
下面是初中数学必背的公式和定理。
一、代数中的公式1. 二次方程的求根公式:对于一元二次方程ax²+bx+c=0,其根可以通过以下公式求得:x = (-b ± √(b²-4ac))/(2a)2. 平方差公式:(a±b)² = a²±2ab+b²3. 二次完全平方公式:a²+2ab+b²=(a+b)²4. 立方差公式:(a±b)³=a³±3a²b+3ab²±b³5.平方根的乘法公式:√a*√b=√(a*b)二、几何中的公式1.矩形的周长和面积:对于矩形,其周长C=2(l+w),面积S=l*w,其中l表示矩形的长度,w表示矩形的宽度。
2.三角形的周长和面积:对于三角形,其周长C=a+b+c,面积S=1/2*b*h,其中a、b、c表示三角形的三边长,h表示三角形的高。
3.圆的周长和面积:对于圆,其周长C=2πr,面积S=πr²,其中π取近似值3.14,r表示圆的半径。
4.直角三角形的勾股定理:对于直角三角形,设c为斜边,a、b为两直角边,则满足a²+b²=c²。
5.同心圆弦的等分定理:如果两条弦(或弦和直径)在同一个圆的同一边相交,那么它们所夹的弧(或弧和弦所夹的角)相等。
三、概率与统计中的公式1.事件的概率:设S为一个随机试验的样本空间,E为S的子集(即事件),则事件E的概率P(E)定义为E中的样本点数除以S中的样本点数。
2.互斥事件的概率:设A、B为两个事件,如果A和B不可能同时发生,称A和B为互斥事件,概率计算公式为P(A∪B)=P(A)+P(B)。
中考数学必考公式及性质汇总
中考数学必考公式及性质汇总1.整式乘法与因式分解①()()22b a b a b a -=-+;②()222b ab 2a b a +±=±;③()ab 2b a b a 222-+=+;()()ab 4b a b a 22-+=-.2.幂的运算性质 ①nm n maa a+=⨯;②n-m n maa a=÷;③mnnm a)a(=;④()nn nb a ab =;⑤nn nb a b a =⎪⎭⎫⎝⎛;⑥nn a1a =-;⑦)0a (1a 0≠=3.二次根式 ①()()0a a a2≥=;②a a 2=;③b a ab ⨯=(a ≥0,b ≥0);④ab ab =(a>0,b ≥0)。
4.一元二次方程 对于方程:0c bx ax 2=++①求根公式是a2ac 4b b x 2-±-=,其中ac 4b 2-叫做根的判别式。
当0ac 4b 2>-时,方程有两个不相等的实数根; 当0ac 4b 2=-时,方程有两个相等的实数根; 当0ac 4b 2<-时,方程没有实数根。
②以a 和b 为根的一元二次方程是0ab x )b a (x 2=++-。
5.一次函数一次函数y=kx+b (k ≠0)的图象是一条直线(b 是直线与y 轴的交点的纵坐标,称为截距)①当k >0时,y 随x 的增大而增大(直线从左向右上升); ②当k <0时,y 随x 的增大而减小(直线从左向右下降); ③特别地:当b=0时,y=kx (k ≠0)又叫做正比例函数(y 与x 成正比例),图象必过原点。
6.反比例函数反比例函数)0k (xk y ≠=的图象叫做双曲线。
①当k >0时,双曲线在一、三象限,在每一象限内,y 随x 增大而减小;②当k <0时,双曲线在二、四象限,在每一象限内,y 随x 增大而增大。
7.二次函数(1)定义:一般地,如果c bx ax y 2++=(a 、b 、c 是常数,a ≠0),那么y 叫做x 的二次函数。
中考数学知识点归纳重点公式
中考数学知识点归纳重点公式一、基本运算1.加减乘除运算法则:加法交换律、结合律;乘法交换律、结合律、分配律。
2.整数运算法则:相反数、加法逆元、乘法逆元。
3.分数运算法则:分数的加减乘除。
4.小数运算法则:小数的加减乘除。
5.百分数运算法则:百分数的加减乘除。
6.数字的约数和倍数。
二、整式与分式1.数的分类:自然数、整数、有理数、实数。
2.代数式:数与字母的组合。
3.整式的加减乘除:合并同类项、提取公因式、配方法。
4.一元一次方程与一元一次不等式的应用。
三、比例与计算1.比例与比例的性质:比例的四种关系、比例的倒数、比例的反比例、比例的倍数。
2.倍数与百分数:百分数的意义、转化、综合运用。
3.商与比:建立比例方程、比例运算。
4.类型数问题的解法:速度(时速)问题、工人(工作)问题、加工问题。
5.分配比例问题:平均分配、按比分配。
四、平面图形1.角的概念与性质:角的度量、角的种类、角的运算、围成的角的性质。
2.三角形:角的和为180°、相似三角形、全等三角形。
3.四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形、平行四边形的性质。
4.圆:圆的性质、面积与周长计算。
五、空间与立体图形1.立体图形的展开与面数:立体图形的展开图、三视图、正二十面体。
2.立体图形的体积与表面积:正立方体、直方体、四棱锥、四棱柱、正四面体、正六面体、圆锥、圆柱。
六、平面坐标系与函数1.平面直角坐标系:横坐标、纵坐标、坐标轴、坐标。
2.距离公式与思想:点到点的距离、点到直线的距离。
3.函数的概念与函数的图象:函数的定义域、值域、图象的性质。
4.函数的四则运算:函数加减乘除、反函数。
5.一次函数:函数的图象、函数与方程的关系、函数的怎样变化。
6.等差数列与等比数列。
七、统计与概率1.数据的收集与整理:调查、实验、总结数据的方法。
2.数据的表示:表格、统计图表。
3.数据的分析与应用:平均数、中位数、众数、范围。
4.概率:分子、分母、相等的情况、互斥事件、独立事件。
初中数学基本公式和基本定理性质大汇总
初中数学基本公式和基本定理性质大汇总 一、基本公式1、三角形面积公式:S △=12ah<a 为三角形的底,h 为高>.2、梯形的面积公式:S 梯=12〔a+b 〕h<a 、b 分别为梯形的上、下底,h 为高>.3、正方形的面积公式:S 正=a 2〔a 为正方形的边长〕;长方形的面积公式:S 长=ab 〔a 、b 分别为长方形的长、宽〕.4、正方体的体积公式:V 正=a 3;表面积公式:S 正=6a 2〔a 为正方体的边长〕.5、长方体的体积公式:V 长=abh ;表面积公式:S 长=2ab+2ah+2bh 〔a 、b 、h 分别为长方体的长、宽、高〕.6、弧长公式:l=n 兀R /180〔n 为圆心角的度数,R 为弧的半径〕;7、扇形面积公式:S 扇形=n 兀R 2/360=lR /2;〔n 为圆心角的度数,R 为扇形半径,l 为弧长〕. 8、圆的面积公式:S =兀R 2;周长公式:C=兀d=2兀R 〔d 为直径,R 为半径〕. 9、圆柱的体积公式:V 圆柱=S 底h=兀R 2ℎ;表面积公式:S 表=S 侧+S 底=2兀Rh+2兀R 2〔R 为底面圆的半径,h 为高〕.10、圆锥的体积公式:V 圆锥=13S 底h=13兀R 2ℎ;表面积公式:S 表=S 侧+S 底=兀Rl+兀R 2〔l 为圆锥的母线长,R 为底面圆的半径〕.11、球的体积公式:V 球==43兀R 3〔R 为球半径〕.12、三角函数公式:正弦sinA=∠A 的对边斜边;余弦cosA=∠A 的邻边斜边;正切tanA=∠A 的对边∠A 的邻边.13、平方差公式:22()()a b a b a b +-=-.14、完全平方公式:222()2a b a b ab +=++;222()2a b a b ab -=+-.15、一元二次方程的求根公式:若x 是一元二次方程〔a ≠0〕20ax bx c ++=的根,则2b x a-±=〔240b ac -≥〕;根的判别式:240b ac -><=>方程有两个不等的实数根;240b ac -=<=>方程有两个相等的实数根;240b ac -<<=>方程没有实数根;根与系数的关系:1x +2x =b a -;1x 2x =c a16、算术平均数:如果n 个数据1x ,2x ,3x ,…,n x ,那么123nx x x x x n++++=;加权平均数:如果n 个数据,1x 出现1f 次,2x 出现2f 次,…,n x 出现n f 次〔123+=n f f f f n ++〕,那么这n 个数据的平均数为112233n nx f x f x f x f x n++++=.17、方差:22222123()()()()n x x x x x x x x s n-+-+-++-=;标准差:(n x x s ++-=二、基本定理〔一〕直线与角1、两点之间,线段最短.2、经过两点有一条直线,并且只有一条直线.3、同角或等角的补角相等,同角或等角的余角相等.4、对顶角相等. 〔二〕平行与垂直5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直.6、经过已知直线外一点,有且只有一条直线与已知直线平行.7、连接直线外一点与直线上各点的所有线段中,垂线段最短.8、夹在两平行线间的平行线段相等.9、平行线的判定:〔1〕同位角相等,两直线平行. 〔2〕内错角相等,两直线平行. 〔3〕同旁内角互补,两直线平行.〔4〕垂直于同一条直线的两条的直线互相平行.〔5〕如果两条直线都和第三条直线平行,那么这两条直线也平行. 10、平行线的性质:〔1〕两直线平行,同位角相等. 〔2〕两直线平行,内错角相等. 〔3〕两直线平行,同旁内角互补.〔三〕角平分线、垂直平分线、图形的变化〔轴对称、平称、旋转〕 11、角平分线的性质:角平分线上的点到这个角的两边的距离相等.12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上.13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等. 14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.15、轴对称的性质:〔1〕如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分. 〔2〕对应线段相等、对应角相等.16、平移:经过平移,图形上的每个点都沿着相同方向移动了相同的距离,平移后,新图形和原图形的形状和大小都没有发现改变,即它们是全等图形.即对应线段平行且相等,对应角相等,对应点所连的线段平行且相等.17、旋转对称:〔1〕图形中每一点都绕着旋转中心旋转了同样大小的角度;〔2〕对应点到旋转中心的距离相等;〔3〕对应线段相等、对应角相等.18、中心对称:〔1〕具有旋转对称的所有性质;〔2〕中心对称图形上的每一对对应点所连成的线段都被对称中心平分.〔四〕三角形:一般性质:19、三角形内角和定理:三角形的内角和等于180.20、三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;②三角形的一个外角大于任何一个与它不相邻的内角;③三角形的外角和等于360°.21、三边关系:〔1〕两边之和大于第三边;〔2〕两边之差小于第三边.22、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.23、三角形的三边的垂直平分线交于一点〔外心〕,这点到三个顶点的距离〔外接圆半径〕相等.24、三角形的三条角平分线交于一点〔内心〕,这点到三边的距离〔内切圆半径〕相等.特殊性质:25、等腰三角形、等边三角形〔1〕等腰三角形的两个底角相等.〔简写成"等边对等角"〕.〔2〕如果一个三角形有两个角相等,那么这两个角所对的边也相等.〔简写成"等角对等边"〕. 〔3〕"三线合一"定理:等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合. 〔4〕等边三角形的三个内角都相等,并且每一个内角都等于60°.〔5〕三个角都相等的三角形是等边三角形.〔6〕有一个角是60°的等腰三角形是等边三角形.26、直角三角形:〔1〕直角三角形的两个锐角互余.〔2〕勾股定理:直角三角形两直角边的平方和等于斜边的平方.〔3〕勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.〔4〕直角三角形斜边上的中线等于斜边的一半.〔5〕在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.〔6〕三角形一边的中线等于这边的一半,这个三角形是直角三角形.〔五〕四边形27、多边形中的有关公理、定理:〔1〕四边形的内角和为360°.〔2〕n边形的内角和:〔n-2〕×180°.〔3〕任意多边形的外角和都为360°.28、平行四边形的性质:〔1〕平行四边形的对边平行且相等;〔2〕平行四边形的对角相等;〔3〕平行四边形的对角线互相平分.29、平行四边形的判定:〔1〕两组对边分别平行的四边形是平行四边形;〔2〕一组对边平行且相等的四边形是平行四边形;〔3〕两组对边分别相等的四边形是平行四边形;〔4〕两组对角分别相等的四边形是平行四边形;〔5〕对角线互相平分的四边形是平行四边形.30、矩形的性质:〔1〕具有平行四边形的所有性质;〔2〕矩形的四个角都是直角;〔3〕矩形的对角线相等且互相平分.31、矩形的判定:〔1〕有一个角是直角的平行四边形是矩形.〔2〕有三个角是直角的四边形是矩形.〔3〕对角线相等的平行四边形是矩形.32、菱形的性质:〔1〕具有平行四边形的所有性质;〔2〕菱形的四条边都相等;〔3〕菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.33、菱形的判定:〔1〕四条边相等的四边形是菱形.〔2〕一组邻边相等的平行四边形是菱形.〔3〕对角线互相垂直的平行四边形是菱形.34、正方形的性质:〔1〕具有矩形、菱形的所有性质;〔2〕正方形的四个角都是直角;〔3〕正方形的四条边都相等;〔4〕正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角.35、正方形的判定:〔证明既是矩形又是菱形〕〔1〕有一个角是直角的菱形是正方形.〔2〕有一组邻边相等的矩形是正方形.〔3〕对角线相等的菱形是正方形.〔4〕对角线互相垂直的矩形是正方形.36、等腰梯形的判定:〔1〕同一条底边上的两个内角相等的梯形是等腰梯形;〔2〕两条对角线相等的梯形是等腰梯形.37、等腰梯形的性质:〔1〕等腰梯形的同一条底边上的两个内角相等;〔2〕等腰梯形的两条对角线相等..38、梯形的中位线平行于梯形的两底边,并且等于两底和的一半.〔六〕相似形与全等形39、全等多边形的对应边、对应角分别相等.40、全等三角形的判定:〔1〕如果两个三角形的三条边分别对应相等,那么这两个三角形全等〔SSS.〕..〔2〕如果两个三角形有两边与其夹角分别对应相等,那么这两个三角形全等〔SAS〕.〔3〕如果两个三角形的两个角与其夹边分别对应相等,那么这两个三角形全等<ASA>. 〔4〕有两个角与其中一个角的对边分别对应相等的两个三角形全等〔AAS〕.〔5〕如果两个直角三角形的斜边与一条直角边分别对应相等,那么这两个直角三角形全等〔HL〕.41、相似三角形的性质:对应边、周长、对应线段的比均等于相似比,面积比等于相似比的平方.42、比例的性质:<1>比例的基本性质:如果a:b=c:d,那么ad=bc;如果ad=bc,那么a:b=c:d .<2>合比性质:如果a/b=c/d,那么<a±b>/b=<c±d>/d.<3>等比性质:如果a/b=c/d=…=m/n=k<b+d+…+n≠0>,那么<a+c+…+m>/<b+d+…+n>=k.43、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.44、推论:平行于三角形一边的直线截其他两边〔或两边的延长线〕,所得的对应线段成比例.45、相似三角形的判定:〔类似于全等判定〕〔1〕平行于三角形的一边的直线和其他两边相交所构成的三角形与原三角形相似.〔2〕如果一个三角形的两角分别与另一个三角形的两角对应相等,那么这两个三角形相似. 〔3〕如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.〔4〕如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似.46、相似多边形的性质:同相似三角形.47、相似多边形的判定:对应边成比例且对应角相等.〔七〕圆48、〔1〕圆是轴对称图形,任何一条直径所在直线都是它的对称轴.〔2〕圆是中心对称图形,对称中心是圆心.49、垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.50、垂径定理推论:如果一条直线具有过圆心〔直径〕、垂直弦、平分弦、平分弦所对的劣弧〔优弧〕中知二得二.51、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.52、同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.50、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.〔1〕半圆或直径所对的圆周角都相等,都等于90°〔直角〕.〔2〕90°的圆周角所对的弦是圆的直径.〔3〕在同圆或等圆中,同弧或等弧所对的圆周角相等,圆周角相等则所对的弧相等;53、不在同一条直线上的三个点确定一个圆.54、点和圆的位置关系:1〕点在圆内<=>d<r ;〔2〕点在圆上<=>d=r;〔3〕点在圆外<=>d >r.55、直线和圆的位置关系:〔1〕直线L和⊙O相交<=>d<r ;〔2〕直线L和⊙O相切<=>d=r;〔3〕直线L和⊙O相离<=>d>r.56、圆和圆的位置关系:〔1〕两圆外离<=>d>R+r;〔2〕两圆外切<=>d=R+r;〔3〕两圆相交<=>R-r<d<R+r<R>r>;〔4〕两圆内切<=>d=R-r<R>r>;〔5〕两圆内含<=>d<R-r<R>r>.57、切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.58、切线的性质:圆的切线垂直于过切点的直径.。
2020初一二三中考数学定理公式全
2020初一二三中考数学定理公式全1、点、线、角点的定理:过两点有且只有一条直线点的定理:两点之间线段最短角的定理:同角或等角的补角相等角的定理:同角或等角的余角相等直线定理:过一点有且只有一条直线和已知直线垂直直线定理:直线外一点与直线上各点连接的所有线段中,垂线段最短2、几何平行平行定理:经过直线外一点,有且只有一条直线与这条直线平行推论:如果两条直线都和第三条直线平行,这两条直线也互相平行证明两直线平行定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行两直线平行推论:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补3、三角形内角定理定理:三角形两边的和大于第三边推论:三角形两边的差小于第三边三角形内角和定理:三角形三个内角的和等于180°4、全等三角形判定定理:全等三角形的对应边、对应角相等边角边定理(SAS):有两边和它们的夹角对应相等的两个三角形全等角边角定理(ASA):有两角和它们的夹边对应相等的两个三角形全等推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等边边边定理(SSS):有三边对应相等的两个三角形全等斜边、直角边定理(HL):有斜边和一条直角边对应相等的两个直角三角形全等5、角的平分线定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角)推论1:等腰三角形顶角的平分线平分底边并且垂直于底边等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)7、对称定理定理:线段垂直平分线上的点和这条线段两个端点的距离相等逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上线段的垂直平分线可看作和线段两端点距离相等的所有点的集合定理1:关于某条直线对称的两个图形是全等形定理2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称定理:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半判定定理:直角三角形斜边上的中线等于斜边上的一半勾股定理:直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2勾股定理的逆定理:如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形9、多边形内角和定理定理:四边形的内角和等于360°;四边形的外角和等于360°多边形内角和定理:n边形的内角和等于(n-2)×180°推论:任意多边的外角和等于360°10、平行四边形定理平行四边形性质定理:1.平行四边形的对角相等2.平行四边形的对边相等3.平行四边形的对角线互相平分推论:夹在两条平行线间的平行线段相等平行四边形判定定理:1.两组对角分别相等的四边形是平行四边形2.两组对边分别相等的四边形是平行四边形3.对角线互相平分的四边形是平行四边形4.一组对边平行相等的四边形是平行四边形11、矩形定理矩形性质定理1:矩形的四个角都是直角矩形性质定理2:矩形的对角线相等矩形判定定理1:有三个角是直角的四边形是矩形矩形判定定理2:对角线相等的平行四边形是矩形12、菱形定理菱形性质定理1:菱形的四条边都相等菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,即S=(a×b)÷2菱形判定定理1:四边都相等的四边形是菱形菱形判定定理2:对角线互相垂直的平行四边形是菱形13、正方形定理正方形性质定理1:正方形的四个角都是直角,四条边都相等正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角14、中心对称定理定理1:关于中心对称的两个图形是全等的定理2:关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分逆定理:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称15、等腰梯形性质定理等腰梯形性质定理:1.等腰梯形在同一底上的两个角相等2.等腰梯形的两条对角线相等等腰梯形判定定理:1.在同一底上的两个角相等的梯形是等腰梯形2.对角线相等的梯形是等腰梯形平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边16、中位线定理三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半:L=(a+b)÷2S=L×h17、相似三角形定理相似三角形定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似相似三角形判定定理:1.两角对应相等,两三角形相似(ASA)2.两边对应成比例且夹角相等,两三角形相似(SAS)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理3:三边对应成比例,两三角形相似(SSS)相似直角三角形定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理:1.相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比2.相似三角形周长的比等于相似比3.相似三角形面积的比等于相似比的平方18、三角函数定理任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值19、圆的定理定理:过不共线的三个点,可以作且只可以作一个圆定理:垂直于弦的直径平分这条弦,并且评分弦所对的两条弧推论1:平分弦(不是直径)的直径垂直于弦并且平分弦所对的两条弧推论2:弦的垂直平分弦经过圆心,并且平分弦所对的两条弧推论3:平分弦所对的一条弧的直径,垂直评分弦,并且平分弦所对的另一条弧定理:1.在同圆或等圆中,相等的弧所对的弦相等,所对的弦的弦心距相等2.经过圆的半径外端点,并且垂直于这条半径的直线是这个圆的切线3.圆的切线垂直经过切点的半径4.三角形的三个内角平分线交于一点,这点是三角形的内心5.从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角6.圆的外切四边形的两组对边的和相等7.如果四边形两组对边的和相等,那么它必有内切圆8.两圆的两条外公切线的长相等;两圆的两条内公切线的长也相等20、比例性质定理比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d 合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b。
中考数学公式大全总结
中考数学公式大全总结初中数学知识点总结及公式大全1.一元一次方程的根根据一元二次方程的求根公式,当判别式△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相同的实数根;当△<0时,方程没有实数根。
2.平行四边形的性质平行四边形是指两组对边分别平行的四边形。
它的对角线是连接不相邻顶点的线段,对边和对角线相等,对角线互相平分。
3.菱形的性质菱形是指一组邻边相等的平行四边形。
它的四条边相等,对角线互相垂直平分,每组对角线平分一组对角。
菱形可以通过定义、对角线互相垂直的平行四边形、四条边都相等的四边形判定。
4.矩形和正方形的性质矩形是指有一个内角是直角的平行四边形。
矩形的对角线相等,四个角都是直角。
正方形具有平行四边形、矩形、菱形的所有性质,一组邻边相等的矩形是正方形。
5.多边形的性质N边形的内角和等于(N-2)×180度。
多边形的外角是指一边与另一边的反向延长线所组成的角,每个顶点处取一个外角,它们的和等于360度。
6.平均数和加权平均数N个数X1、X2、…、XN的算术平均数是(X1+X2+…+XN)/N,记为X。
加权平均数是在计算平均数时给每个数据加上一个权,以考虑各个数据的重要程度。
二、基本定理1.两点确定一条直线2.两点之间的线段最短3.同角或等角的补角相等4.同角或等角的余角相等5.经过一点有且只有一条与已知直线垂直的直线6.直线外一点与直线上各点连接的所有线段中,垂线段最短7.平行公理:经过直线外一点,有且只有一条直线与已知直线平行8.如果两条直线都与第三条直线平行,这两条直线也互相平行9.同位角相等,两直线平行10.内错角相等,两直线平行11.同旁内角互补,两直线平行12.两直线平行,同位角相等13.两直线平行,内错角相等14.两直线平行,同旁内角互补15.三角形两边之和大于第三边16.三角形两边之差小于第三边17.三角形内角和定理:三角形三个内角的和等于180度18.直角三角形的两个锐角互余如果a:b=c:d,则ad=bc2)相似三角形的性质:对应角相等,对应边成比例3)全等三角形的性质:三边对应相等,对应角相等4)勾股定理:直角三角形斜边的平方等于两直角边平方和5)正弦定理:a/sinA=b/sinB=c/sinC=2R(R为外接圆半径)6)余弦定理:a²=b²+c²-2bc*cosA7)正切定理:tanA=a/b8)解三角形的方法:余弦定理、正弦定理、正切定理、勾股定理等110.根据垂径定理,若一条直径垂直于一条弦,则它平分这条弦,并且平分弦所对的两条弧。
中考数学公式大全总结
中考数学公式大全总结一.基本运算公式:1.加法和减法公式:a+b=b+aa+(b+c)=(a+b)+ca-b=a+(-b)2.乘法和除法公式:a×b=b×aa×(b×c)=(a×b)×ca÷b=a×(1/b)3.乘法分配律:a×(b+c)=a×b+a×c(a+b)×c=a×c+b×c二.整数运算公式:1.整数乘法公式:a×(b+c)=a×b+a×c(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c2.整数除法公式:a÷b=a×(1/b)3.整数的幂:a^m×a^n=a^(m+n)(a^m)^n=a^(m×n)a^m÷a^n=a^(m-n)a^0=1三.分数运算公式:1.分数乘法公式:a/b×c/d=(a×c)/(b×d)2.分数除法公式:(a/b)÷(c/d)=(a×d)/(b×c) 3.分数的加减法公式:a/b+c/d=(a×d+b×c)/(b×d)a/b-c/d=(a×d-b×c)/(b×d)四.代数式公式:1.公式展开:(a + b)^2 = a^2 + 2ab + b^2(a - b)^2 = a^2 - 2ab + b^22.公式因式分解:a^2-b^2=(a+b)(a-b)a^3 - b^3 = (a - b)(a^2 + ab + b^2)a^3 + b^3 = (a + b)(a^2 - ab + b^2)五.平方根公式:1.平方根的乘除法:√(a×b)=√a×√b√(a÷b)=√a÷√b2.平方根的加减法:√(a+b)≠√a+√b√(a-b)≠√a-√b六.平方根的化简公式:1.合并根式:√a×√b=√(a×b)√a÷√b=√(a÷b)√(√a)=√a2.倍数根:n√(a^m)=a^(m/n)七.图形的周长和面积公式:1.长方形:周长:P=2×(长+宽)面积:S=长×宽2.正方形:周长:P=4×边长面积:S=边长×边长3.三角形:周长:P=边1+边2+边3面积:S=(底×高)/24.圆形:周长:C=2×π×半径面积:S=π×半径^2八.百分数和比例公式:1.百分数与小数和分数的关系:百分数×0.01=小数百分数×1/100=分数2.百分数的增减法:原数±原数×百分数3.比例的计算:已知比例a:b,可以得出:a:b=a/x:b/x=a/(a+b):b/(a+b)九.坐标系中的公式:1.坐标之间的距离:AB=√((x2-x1)^2+(y2-y1)^2) 2.点斜式方程:y-y1=k(x-x1),其中k为斜率。
初中数学常用公式和定理大全(修改版)
②余角公式:sin(90º-A)=cosA,cos(90º-A)=sinA.
③特殊角的三角函数值:sin30º=cos60º=,sin45º=cos45º=,sin60º=cos30º=, tan30º=,tan45º=,tan60º=.
15、二次函数的有关知识:
1.定义:一般地,如果 是常数, ,那么 叫做 的二次函数.
2.抛物线的三要素:、、
① 的符号决定抛物线的开口方向:当时,开口向上;当 时,开口向;
相等,抛物线的开口大小、形状相同.
②平行于 轴(或重合)的直线记作 .特别地, 轴记作直线 .
几种特殊的二次函数的图像特征如下:
④斜坡的坡度:i= =.设坡角为α,则i=tanα= .
14、平面直角坐标系中的有关知识:
(1)对称性:若直角坐标系一点P(a,b),则P关于x轴对称的点为,P关于y轴对称的点为,关于原点对称的点为.
(2)坐标平移:若直角坐标系一点P(a,b)向左平移h个单位,坐标变为,向右平移h个单位,坐标变为;向上平移h个单位,坐标变为,向下平移h个单位,坐标变为.如:点A(2,-1)向上平移2个单位,再向右平移5个单位,则坐标变为.
8、一元二次方程:对于方程:ax2+bx+c=0:
①求根公式是x=,其中△=b2-4ac叫做根的判别式.
当△>0时,方程有的实数根;
当△=0时,方程有的实数根;
当△<0时,方程实数根.注意:当时,方程有实数根.
②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为.
③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.
中考数学主要知识点常用公式及性质
中考数学主要知识点常用公式及性质数学是中考的一门重要科目,它对学生的逻辑思维、分析问题的能力以及数学实践能力有很大的考察。
在备考过程中,掌握数学知识点、常用公式及性质是很重要的。
下面我将介绍中考数学的主要知识点、常用公式及性质。
一、代数1.整数整数的加减法、乘除法整数的绝对值和相反数倍数和公倍数因数和公因数最大公因数和最小公倍数2.分数分数的加减法、乘除法分数的化简和比较大小真分数和假分数分数与整数的混合运算3.整式与分式整式的加减法、乘法和乘方分式的加减法、乘法和除法整式的因式分解和多项式的乘法公式分式方程的解法4.平方根与立方根平方根的概念和性质立方根的概念和性质对数的概念和运算5.一次函数一次函数的性质和图象一次函数的解法和应用线性方程组的解法二、几何1.平面图形平面图形的种类和性质(如:三角形、四边形、多边形等)平面图形的周长和面积的计算平行线、垂直线、相交线和点的位置关系2.空间几何点、线、面的概念和性质几何体的种类和性质(如:立方体、球体、棱柱等)几何体的表面积和体积的计算3.相似与全等相似三角形的性质和判定全等三角形的性质和判定相似三角形和全等三角形的周长、面积比例4.空间坐标与向量空间直角坐标系的建立和使用向量的概念和表示法向量的运算和性质三、统计与概率1.统计频数、频率和累计频率统计图表的制作和解读(如:条形图、折线图、饼状图等)平均数、中位数和众数的计算极差、四分位数和标准差的计算2.概率实验、样本空间和事件概率的定义和性质逆概率和互斥事件事件的独立性和条件概率四、常用公式1.三角函数公式正弦公式:$\frac{a}{sinA} = \frac{b}{sinB} = \frac{c}{sinC} = 2R$余弦公式:$c^2=a^2+b^2-2abcosC$正切公式:$tanA=\frac{sinA}{cosA}=\frac{a}{b}$2.平面几何公式三角形的面积公式:$S=\frac{1}{2}ah$四边形的面积公式:$S= \frac{1}{2}d_1 \cdot d_2$3.立体几何公式长方体的体积公式:$V=lwh$球体的体积公式:$V=\frac{4}{3}\pi r^3$棱柱的体积公式:$V=Ah$(A为底面积,h为高)五、性质1.三角形性质三角形内角和定理:三角形的三个内角和为180°三角形三边关系:任意两边之和大于第三边等腰三角形的性质:两边相等的三角形,两底角相等2.圆的性质圆的周长公式:$C=2\pi r$圆的面积公式:$S=\pi r^2$以上是中考数学的主要知识点、常用公式及性质。
2020中考数学重要考点、公式以及速记法则汇总
2020中考数学重要考点、公式以及速记法则汇总1、一元一次方程根的情况△=b2-4ac当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…XN,我们把(X1+X2+…+XN)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
3、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
初中数学常用公式及性质
初中数学常用公式及性质一、整数性质:1.整数加减法的性质:整数加法满足交换律和结合律,即a+b=b+a,(a+b)+c=a+(b+c);整数减法满足a-b=a+(-b);加减法的运算可以通过数轴或逐位计算的方法进行。
2.整数乘除法的性质:整数乘法满足交换律和结合律,即a×b=b×a,(a×b)×c=a×(b×c);整数乘法有零乘法:a×0=0,和单位元乘法:a×1=a;整数除法根据除法的定义,若a能整除b,则称a是b的约数,b是a的倍数;对于不等于0的整数a和正整数b,有且只有一个整数q,使得a=bq,称为a被b整除,b整除a,记作b,a。
二、分数性质:1.分数的加减法性质:同分母分数相加减,保持分母不变,分子相加减;异分母分数相加减,通常需要通分为同分母再进行运算;分数加法、减法的结果仍然是分数。
2.分数的乘除法性质:分数乘法,分子乘分子,分母乘分母;分数除法,将除数的分子分母互换,再进行乘法运算;分数乘法、除法的结果仍然是分数。
三、代数式性质:1.同类项的加减法性质:同类项是指含有相同字母且指数相同的项;同类项相加减,保持字母和指数不变,系数相加减;代数式加减法的结果仍然是代数式。
2.代数式的乘法性质:代数式乘法,将同类项的系数相乘,字母和指数不变;代数式乘法的结果仍然是代数式。
四、平方和立方性质:1.平方性质:平方是指一个数自乘,如a²=a×a;平方的运算有平方的唯一性,即正数的平方是正数,负数的平方是正数,0的平方是0。
2.立方性质:立方是指一个数自乘两次,如a³=a×a×a;立方的运算有立方的唯一性,即正数的立方是正数,负数的立方是负数,0的立方是0。
五、平均数性质:1.算术平均数性质:算术平均数是一组数的和除以个数,用于表示一组数的集中趋势;若一组数中的最大值、最小值都增加同一个常数,那么这组数的算术平均数也增加这个常数;若一组数中的每个数都增加或减少同一个常数,那么这组数的算术平均数也增加或减少这个常数。
九年级数学定理、公式汇总(背记版)
重点公式汇总(背记版):一元二次方程一般形式:ax ²+bx+c =0 (a ≠0) 求根公式:a ac b b x 242-±-=(Δ=b 2-4a c ≥0) 判别法则:当Δ>0时,方程总有两个不相等的实数根当Δ= 0时,方程总有两个相等的实数根当Δ<0时,方程没有实数根韦达定理:若方程有两个实数根x 1和x 2,则x 1+x 2=a b -, x 1x 2=ac (需Δ≥0)增长(降低)率公式b x 1a n =±)(二次函数:一般形式y=ax 2+bx+c (a ≠0) 对称轴:a b x 2-=顶点坐标是)4-4,2-2a b ac a b ( 顶点式y=a(x -h)2+k(a ≠0) 对称轴:x=h ,顶点坐标(h,k )交点式y=a(x -x 1)(x -x 2)(a ≠0) 对称轴:221x x x += 函数平移规律:左加右减对称轴变,上加下减最值变。
抛物线与x 轴的位置关系:对于抛物线y=ax 2+bx+cΔ<0时,它与x 没有交点.Δ=0时,它与x 轴只有一个交点(与x 轴相切).Δ>0时,它与x 轴有两个交点(x 1,0)和(x 2,0),其中x 1和x 2是方程ax 2+bx+c=0的两个根.两点之间的距离公式:22-12222)()-(),,(),,(111y y x x AB y x B y x A +=则有: 中点坐标公式:(221x x +,2y y 21+)圆①垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
(“知二推三”) 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
②在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
③圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
中考数学公式大全
初中数学常用公式定理(务必全部理解并记住)1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab +b2.③a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤(-)n=n.⑥a-n=1na,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如:①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.8、一元二次方程:对于方程:ax2+bx+c=0:①求根公式是x=242b b aca-±-,其中△=b2-4ac叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2).③以a 和b 为根的一元二次方程是x 2-(a +b )x +ab =0.9、一次函数y =kx +b (k ≠0)的图象是一条直线(b 是直线与y 轴的交点的纵坐标即一次函数在y 轴上的截距)当k >0时,y 随x 的增大而增大(直线从左向右上升);当k <0时,y 随x 的增大而减小(直线从左向右下降).特别:当b =0时,y =kx (k ≠0)又叫做正比例函数(y 与x 成正比例),图象必过原点. 10、反比例函数y =(k ≠0)的图象叫做双曲线.当k >0时,双曲线在一、三象限(在每一象限内,从左向右降);当k <0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n 个数x 1,x 2,…,x n ,那么:平均数为:12......n x x x x n+++=; 12、频率与概率:(1)频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。
2024年中考数学公式大全考点解析备考指导
一、直线与平面几何1.两点间距离公式:设点A(x1,y1),点B(x2,y2),则两点间的距离公式为:AB=√[(x2-x1)²+(y2-y1)²]2.点斜式方程:已知直线通过一点A(x1,y1),斜率为k,则直线的方程为:y-y1=k(x-x1)3.两直线夹角公式:设两直线分别为L1:a1x+b1y+c1=0,L2:a2x+b2y+c2=0,且a1²+b1²≠0,a2²+b2²≠0,则两直线的夹角公式为:cosθ = (a1a2 + b1b2)/ √[(a1² + b1²)(a2² + b2²)]4.平面直角坐标系上两直线的关系:(1)平行关系:两直线斜率相等,截距不等;(2)垂直关系:两直线斜率乘积为-15.平面图形的面积公式:(1)三角形面积公式:设三角形的三边分别为a,b,c,则三角形的面积公式为:S=√[s(s-a)(s-b)(s-c)],其中s=(a+b+c)/2(2)矩形面积公式:设矩形的长为a,宽为b,则矩形的面积公式为:S=a×b(3)平行四边形面积公式:设平行四边形的底边为a,高为h,则平行四边形的面积公式为:S=a×h(4)梯形面积公式:设梯形的上底为a,下底为b,高为h,则梯形的面积公式为:S=(a+b)×h/2(5)圆的面积公式:设圆的半径为r,则圆的面积公式为:S=π×r²二、函数与方程1.直线与函数:(1)斜率公式:设直线斜率为k,直线过点(x1,y1),则直线的方程为:y-y1=k(x-x1)(2)两点间的斜率公式:设点A(x1,y1),点B(x2,y2),则直线的斜率公式为:k=(y2-y1)/(x2-x1)2. 一次函数:设一次函数为 y = kx + b ,其中 k 为斜率,b 为截距。
(1)一次函数图形性质:直线斜率为k,与x轴交点为(0,b),与y轴交点为(x,0)。
中考数学必背公式大全
中考数学必背公式大全(1)1 同角或等角的补角相等2 同角或等角的余角相等3 过两点有且只有一条直线4 两点之间线段最短5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS)有三边对应相等的两个三角形全等26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 定理线段垂直平分线上的点和这条线段两个端点的距离相等38 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上39 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半40 直角三角形斜边上的中线等于斜边上的一半41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°50 多边形内角和定理n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形判定定理3 对角线互相平分的四边形是平行四边形59 平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60 矩形性质定理1 矩形的四个角都是直角61 矩形性质定理2 矩形的对角线相等62 矩形判定定理1 有三个角是直角的四边形是矩形63 矩形判定定理2 对角线相等的平行四边形是矩形64 菱形性质定理1 菱形的四条边都相等65 菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66 菱形面积=对角线乘积的一半,即S=(a×b)÷267 菱形判定定理1 四边都相等的四边形是菱形68 菱形判定定理2 对角线互相垂直的平行四边形是菱形69 正方形性质定理1 正方形的四个角都是直角,四条边都相等70 正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71 定理1 关于中心对称的两个图形是全等的72 定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73 逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74 对角线相等的梯形是等腰梯形75 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等76 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰77 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边78 等腰梯形性质定理等腰梯形在同一底上的两个角相等79 等腰梯形的两条对角线相等80 等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形81 (1)比例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d82 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d83 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b84 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半85 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100 任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101 圆是定点的距离等于定长的点的集合102 圆的内部可以看作是圆心的距离小于半径的点的集合103 圆的外部可以看作是圆心的距离大于半径的点的集合104 同圆或等圆的半径相等105 到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106 和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107 到已知角的两边距离相等的点的轨迹,是这个角的平分线108 到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109 定理不在同一直线上的三点确定一个圆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年中考数学常用公式及性质汇总1.乘法与因式分解①(a+b)(a-b)=a2-b2;②(a±b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3;④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。
2.幂的运算性质①a m×a n=a m+n;②a m÷a n=a m-n;③(a m)n=a mn;④(ab)n=a n b n;⑤(ab )n=nnab;⑥a-n=1na,特别:()-n=()n;⑦a0=1(a≠0)。
3.二次根式①()2=a(a≥0);②=丨a丨;③=×;④=(a>0,b≥0)。
4.三角不等式|a|-|b|≤|a±b|≤|a|+|b|(定理);加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a,b分别为向量a和向量b)|a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ;|a-b|≥|a|-|b|;-|a|≤a≤|a|;5.某些数列前n项之和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2;2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6;13+23+33+43+53+63+…n3=n2(n+1)2/4;1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3;6.一元二次方程对于方程:ax2+bx+c=0:①求根公式是x,其中△=b2-4ac叫做根的判别式。
当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。
②若方程有两个实数根x 1和x 2,则二次三项式ax 2+bx +c 可分解为a (x -x 1)(x -x 2)。
③以a 和b 为根的一元二次方程是x 2-(a +b )x +ab =0。
7.一次函数一次函数y =kx +b (k ≠0)的图象是一条直线(b 是直线与y 轴的交点的纵坐标,称为截距)。
①当k >0时,y 随x 的增大而增大(直线从左向右上升); ②当k <0时,y 随x 的增大而减小(直线从左向右下降);③特别地:当b =0时,y =kx (k ≠0)又叫做正比例函数(y 与x 成正比例),图象必过原点。
8.反比例函数反比例函数y =(k ≠0)的图象叫做双曲线。
①当k >0时,双曲线在一、三象限(在每一象限内,从左向右降); ②当k <0时,双曲线在二、四象限(在每一象限内,从左向右上升)。
9. 二次函数(1).定义:一般地,如果c b a c bx ax y ,,(2++=是常数,)0≠a ,那么y 叫做x 的二次函数。
(2).抛物线的三要素:开口方向、对称轴、顶点。
①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同。
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x 。
(3).几种特殊的二次函数的图像特征如下:(4).求抛物线的顶点、对称轴的方法①公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=。
②配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =。
③运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。
若已知抛物线上两点12(,)(,)、x y x y (及y 值相同),则对称轴方程可以表示为:122x x x +=(5).抛物线c bx ax y ++=2中,c b a ,,的作用 ①a 决定开口方向及开口大小,这与2ax y =中的a 完全一样。
②b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线。
abx 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0<a b(即a 、b 异号)时,对称轴在y 轴右侧。
③c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置。
当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则0<ab。
(6).用待定系数法求二次函数的解析式①一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. ②顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式。
③交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=。
(7).直线与抛物线的交点①y 轴与抛物线c bx ax y ++=2得交点为(0, c )。
②抛物线与x 轴的交点。
二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:a 有两个交点⇔(0>∆)⇔抛物线与x 轴相交;b 有一个交点(顶点在x 轴上)⇔(0=∆)⇔抛物线与x 轴相切;c 没有交点⇔(0<∆)⇔抛物线与x 轴相离。
③平行于x 轴的直线与抛物线的交点同②一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根。
④一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组cbx ax y n kx y ++=+=2的解的数目来确定:a 方程组有两组不同的解时⇔l 与G 有两个交点;b 方程组只有一组解时⇔l 与G 只有一个交点;c 方程组无解时⇔l 与G 没有交点。
⑤抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,则12AB x x =-10. 统计初步(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n 个数x 1,x 2,…,x n ,那么: ①平均数为:12......nx x x x n+++=;②极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值;③方差:数据1x 、2x ……, n x 的方差为2s ,则2s =()()()222121.....n x x x x x x n 轾-+-++-犏臌④标准差:方差的算术平方根。
数据1x 、2x ……, n x 的标准差s ,则s =一组数据的方差越大,这组数据的波动越大,越不稳定。
11. 频率与概率 (1)频率频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。
(2)概率①如果用P表示一个事件A发生的概率,则0≤P(A)≤1;P(必然事件)=1;P(不可能事件)=0;②在具体情境中了解概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率。
③大量的重复实验时频率可视为事件发生概率的估计值;12.锐角三角形①设∠A是△ABC的任一锐角,则∠A的正弦:sin A=,∠A的余弦:cos A =,∠A的正切:tan A=.并且sin2A+cos2A=1。
0<sin A<1,0<cos A<1,tan A>0.∠A越大,∠A的正弦和正切值越大,余弦值反而越小。
②余角公式:sin(90º-A)=cos A,cos(90º-A)=sin A。
③特殊角的三角函数值:sin30º=cos60º=,sin45º=cos45º=,sin60º=cos30º=,tan30º=,tan45º=1,tan60º=。
④斜坡的坡度:i =铅垂高度水平宽度=.设坡角为α,则i=tanα=13.正(余)弦定理(1)正弦定理a/sinA=b/sinB=c/sinC=2R;注:其中R 表示三角形的外接圆半径。
正弦定理的变形公式:(1) a=2RsinA, b=2RsinB, c=2RsinC;(2) sinA : sinB : sinC = a : b : c(2)余弦定理b2=a2+c2-2accosB;a2=b2+c2-2bccosA;c2=a2+b2-2abcosC;注:∠C所对的边为c,∠B所对的边为b,∠A所对的边为a14.三角函数公式(1)两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAlcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)(2)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a(3)半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))(4)和差化积sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB(5)积化和差2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)15.平面直角坐标系中的有关知识(1)对称性:若直角坐标系内一点P(a,b),则P关于x轴对称的点为P1(a,-b),P关于y轴对称的点为P2(-a,b),关于原点对称的点为P3(-a,-b)。