人教版八年级数学上册 三角形综合练习题(无答案)
人教版八年级上册数学第11章三角形 11.1.1三角形的边 综合练习
![人教版八年级上册数学第11章三角形 11.1.1三角形的边 综合练习](https://img.taocdn.com/s3/m/a05f3190ccbff121dc3683ab.png)
人教版八年级上册数学第11章三角形 11.1.1三角形的边综合练习1.三角形的两边长分别为8和6,第三边长是一元一次不等式2x-1<9的正整数解,则三角形的第三边长是 .2. 已知三角形三边长分别为3,1-2a,8,则a的取值范围是( )A. 4<a<10B. 5<a<11C.-5<a<-2D.-2<a<-53. 已知a,b,c为△ABC的边长,b,c满足(b-2)2+c-3=0,且a为方程|a-4|=2的解,求△ABC的周长,并判断△ABC的形状.4. 已知a,b,c是△ABC的三边,a=4,b=6,且三角形的周长是大于14的偶数.(1)求c的值;(2)判断△ABC的形状.5.在△ABC中,AD,CE分别是△ABC的高,且AD=2,CE=4,则AB∶BC=( )A.3∶4B. 2∶1C.1∶2D. 4∶36.如图,在△ABC中,PA,PB,PC是△ABC三个内角的平分线,则∠PBC+∠PCA+∠PAB=度.7.如图,AD是△ABC的中线,DE是△ADC的高,AB=3,AC=5,DE=2,则点D到AB的距离是 .8. 一副三角板按如图所示的方式叠放在一起,则图中∠ABC= .9.如图,在△ABC中,BD是∠ABC的平分线,ED∥BC,且∠C=76°,∠A=60°,则∠BDE的度数为( )A.20°B.22°C.44°D.82°第9题图10. 一个三角形三个内角的度数比为3∶4∶5,则这个三角形一定是( )A.锐角三角形B. 钝角三角形C. 直角三角形D.等腰三角形11.在△ABC中,∠A=60°+∠B+∠C,则∠A等于( )A. 60°B. 30°C.120°D.140°12. 当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“标准三角形”,其中α为“标准角”.如果一个“标准三角形”的“标准角”为100°,那么这个“标准三角形”的最小内角度数为( )A.30°B.45°C.50°D.60°13.如图,BE,CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,BE,CF相交于D,则∠CDE的度数是( )A.60°B.70°C.80°D.50°14.如图,在△ABC中,D是AB边上一点,E是AC边上一点,BE,CD相交于F,∠A=70°,∠ACD=20°,∠ABE=28°,则∠CFE的度数为( )A.62°B. 90°C.78°D. 68°15. 已知:如图,在△ABC中,∠A=55°,F是高BE,CD的交点,求∠BFC的度数.16. 如图,在△ABC中,AD是∠BAC的平分线,AE是BC边上的高,已知∠BAC=2∠B,∠B=2∠DAE,那么∠ACB= .17. 如图,∠AOB=40°,OC平分∠AOB,直尺与OC垂直,则∠1等于 .18.如图,∠AOB=90°,点C,D分别在射线OA,OB上,CE是∠ACD的平分线,CE的反向延长线与∠CDO 的平分线交于点F.(1)若∠OCD=50°(如图1),试求∠F的度数;(2)当C,D在射线OA,OB上任意移动时(不与点O重合)(如图2),∠F的大小是否变化?若变化,请说明理由;若不变化,求出∠F的度数.19.(1)如图①,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,∠ACD与∠B有什么关系?为什么?(2)如图②,在Rt△ABC中,∠C=90°,D,E分别在AC,AB上,且∠ADE=∠B,判断△ADE的形状,为什么?(3)如图③,在Rt△ABC和Rt△DBE中,∠C=90°,∠E=90°,AB⊥BD,点C,B,E在同一直线上,∠A 与∠D有什么关系?为什么?【答案】1.3或42. C3.解:解:∵(b-2)2+c-3=0,∴b-2=0,c-3=0,∴b=2,c=3.∵|a-4|=2,∴a=6或2.当a=6,b=2,c=3时,不能构成三角形;当a=2,b=2,c=3时,周长为7,是等腰三角形.4, (1)∵6-4<c<6+4,∴2<c<10.又∵三角形的周长是大于14的偶数,∴c>4,且c为偶数,∴c=6或8.(2)当c=6时,b=c=6,a=4,此时△ABC为等腰三角形;当c=8时,b=6,a=4,此时△ABC为不等边三角形.5. C6.907. 103 8.75°9. B 10. A 11. C 12. A 13. B 14. A解析:∵∠A=70°,∠ACD=20°,∴∠ADC=90°,∴∠BDF=180°-∠ADC=90°.在△BDF中,∠BFD=180°-∠BDF-∠DBF=180°-90°-28°=62°,∴∠CFE=∠BFD=62°.15. 解:∵∠A=55°,BE⊥AC,CD⊥AB,∴∠ABE=∠ACD=180°-∠A-90°=35°,∴∠BCF+∠CBF=180°-∠A-∠ABE-∠ACD=180°-55°-35°-35°=55°,∵∠BFC+∠BCF+∠CBF=180°,∴∠BFC=125°.16. 72°17.解:70°18.. (1)∵∠AOB=90°,∠OCD=50°,∴∠CDO=40°,∠ACD=130°.∵CE是∠ACD的平分线,DF是∠CDO的平分线,∴∠ECD=65°,∠CDF=20°.∵∠DCE=180°-∠DCF,∠F+∠CDF=180°-∠DCF,∴∠ECD =∠F +∠CDF , ∴∠F =45°. (2)不变化,∠F =45°.∵∠AOB =90°, ∴∠CDO =90°-∠OCD ,易知∠ACD =180°-∠OCD . ∵CE 是∠ACD 的平分线,DF 是∠CDO 的平分线, ∴∠ECD =90°-12∠OCD ,∠CDF =45°-12∠OCD .∵∠DCE =180°-∠DCF ,∠F +∠CDF =180°-∠DCF , ∴∠ECD =∠F +∠CDF , ∴∠F =45°. 19. 解:(1)∠ACD =∠B .理由如下: ∵在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,∴∠ACD +∠DCB =90°,∠B +∠DCB =90°, ∴∠ACD =∠B . (2)△ADE 是直角三角形.∵在Rt △ABC 中,∠C =90°,D ,E 分别在AC ,AB 上,且∠ADE =∠B ,∠A 为公共角,∴∠AED =∠ACB =90°,∴△ADE 是直角三角形.(3)∠A +∠D =90°.∵在Rt △ABC 和Rt △DBE 中,∠C =90°,∠E =90°,AB ⊥BD , ∴∠ABC +∠A =∠ABC +∠DBE =∠DBE +∠D =90°,∴∠A +∠D =90°.。
人教版八年级数学上册第十一章三角形综合练习2
![人教版八年级数学上册第十一章三角形综合练习2](https://img.taocdn.com/s3/m/82cf25aea1116c175f0e7cd184254b35eefd1a69.png)
第十一章 三角形 综合练习(2)一、单选题1.下列说法中错误的是( )A .三角形的中线、角平分线高线都是线段B .任意三角形的外角和都是360︒C .三角形按边分可分为不等边三角形和等腰三角形D .三角形的一个外角大于任何一个内角2.十二边形的每个内角都相等,它的一个外角的度数是( ).A .30B .35︒C .40︒D .45︒ 3.设α,β,γ是某三角形的三个内角,则α+β,β+γ,α+γ 中 ( )A .有两个锐角、一个钝角B .有两个钝角、一个锐角C .至少有两个钝角D .三个都可能是锐角4.如果一个多边形内角和是外角和的4倍,那么这个多边形有( )条对角线. A .20 B .27 C .35 D .44 5.一个八十二边形中,它的内角中的锐角最多可以有的个数是( ). A .1 B .3 C .41 D .82 6.如果一个三角形三边垂直平分线的交点在三角形外部,那么这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .不能确定 7.如图,ABC 中,BD 是ABC ∠的平分线,//DE BC ,交AB 于点E ,60A ∠=︒,95BDC ∠=︒,则BDE ∠=( ).A .30B .35︒C .45︒D .50︒8.如图,ABC 中,ABD DBE EBC ∠=∠=∠,ACD DCE ECB ∠=∠=∠,若130BEC ∠=︒,则A ∠等于( ).A .30B .35︒C .80︒D .85︒9.一个多边形截去一个角后,得到的多边形的内角和为1980,那么原来的多边形的边数为( ).A .12或13取14B .13或14C .12或13D .13或14或15 10.如图,ABC 中,80BAC ∠=︒,D 是ABC 外一点,ADC ACD ∠=∠,ADB ABD ∠=∠,则BDC ∠=( ). A .70︒ B .60︒ C .45︒ D .40︒二、填空题11.一等腰三角形的底边长为15cm ,一腰上的中线把三角形的周长分为两部分,其中一部分比另一部分长5cm ,那么这个三角形的周长为__________.12.如果三角形两条边分别为3和5,则周长L 的取值范围是__________13.如图,AD 平分∠CAE ,∠B =30°,∠ACD =80°,则∠EAD =___________.14.如图,如图,∠A +∠B +∠C +∠D +∠E +∠F +∠G =________.15.已知过m 边形的一个顶点有3条对角线,n 边形没有对角线,k 边形共有k 条对角线,则()m k n -=________.16.如图,:1:3AD AC =,:BCD ABD S S =________.17.等腰三角形的一个角是70°,则它的一腰上的高与底边的夹角是 ________. 18.∠ABC 中,∠A =55°,∠B =75°,将纸片的一角折叠,点C 落在∠ABC 内,如图,若∠CDA =20°,则∠CEB =________.19.一个多边形的内角和与某一个外角的度数总和为1350︒,则这个多边形的边数是_________.20.如图,在∠ABC 中,∠CAD =∠CDA ,∠CAB −∠ABC =30°,则∠BAD =________︒. 21.已知非直角三角形ABC 中,∠A =45°,高BD 与高CE 所在直线交于点H ,则∠BHC 的度数是_______.三、解答题22.∠ABC 中,内角∠A 和外角∠CBE 和∠BCF 的角平分线交于点P ,AP 交BC 于D .过B 作BG ∠AP 于G .若∠GBP = 55°,求∠ACB 的度数.23.在如图所示的星形中,14B ∠=︒,15C ∠=︒,16F ∠=︒,45A D E G k ∠+∠+∠+∠=⋅︒,求k 的值.24.如下几个图形是五角星和它的变形.(1)图∠中是一个五角星,求A B C D E ∠+∠+∠+∠+∠的和.(2)如果把图∠中的点A 向下移到BE 上,形成如图∠中五个星的和(即CAD B C ∠+∠+∠+D E ∠+∠)有无变化?说明你的结论的正确性.(3)如果把图∠中点C 向上移动到BD 上,形成如图∠的图形,则此时五个角的和(即CAD B ∠+∠+ACE D E ∠+∠+∠)有无变化?说明你的理由.25.若三边均不相等的三角形三边a、b、c满足a b b c->-(a为最长边,c为最短边),则称它为“不均衡三角形”.例如,一个三角形三边分别为7,5,4,因为->-,所以这个三角形为“不均衡三角形”.7554(1)以下4组长度的小木棍能组成“不均衡三角形”的为________(填序号)∠4cm,2cm,1cm∠13cm,18cm,9cm∠19cm,20cm,19cm∠9cm,8cm,6cmx-(x为整数)求x的值.(2)已知“不均衡三角形”三边分别为22x+,16,2626.已知;D是∠ABC中BC边的中点,(1)图∠中面积相等的三角形是_________.(2)图∠中,若MN // AB,则图∠中面积相等的三角形是__________________.(3)画图:图∠中过A点画一条直线把四边形ABCD的面积平分,并说明原因.参考答案:1.D【分析】要熟悉三角形中的概念及其分类方法和三角形的内角和定理及其推论.【详解】解:A、三角形的中线、角平分线、高线都是线段,故A正确;B、任意三角形的外角和都是360°,故B正确;C、三角形按边分类可分为不等边三角形和等腰三角形,故C正确;D、三角形的一个外角大于任何一个和它不相邻的内角,故D错误.故选:D.【点睛】本题主要考查了三角形的高、中线、角平分线的概念,三角形的内角和定理及其推论,三角形的分类方法,难度适中.2.A【分析】由十二边形的每个内角都相等,可得这个十二边形的每个外角也都相等,再利用多边形的外角和可得答案.【详解】解:十二边形的每个内角都相等,∴这个十二边形的每个外角也都相等,∴它的一个外角的度数是36030, 12︒=︒故选:.A【点睛】本题考查的是多边形的外角和为360︒,多边形的任何一个内角与其相邻的外角互补,掌握以上知识是解题的关键.3.C【分析】根据三角形的一个外角等于和它不相邻的两个内角之和,可以把α+β,β+γ,α+γ相当于这个三角形的三个外角;根据三角形的外角与内角是邻补角,结合三个内角的情况,可以得到α+β,β+γ,α+γ这三个角的情况,从而确定选项.【详解】∠α,β,γ是三角形的三个内角,∠α+β,β+γ,α+γ相当于这个三角形的三个外角,∠α+β,β+γ,α+γ分别是γ,α,β的邻补角.∠α,β,γ是三角形的三个内角,∠α,β,γ中,至少有两个锐角,∠α+β,β+γ,α+γ至少有两个钝角.故选:C.【点睛】本题主要考查三角形的外角定理和三角形的内角和定理,可以根据三角形的一个外角等于和它不相邻的两个内角之和进行考虑;4.C【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解,多边形对角线的条数可以表示成()32n n-.【详解】解:设这个多边形是n边形,根据题意得,(n-2)•180°=4×360°,解得n=10.10×(10-3)÷2=35(条).故选:C.【点睛】本题考查了多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,及多边形对角线的条数公式.5.B【分析】利用多边形的外角和是360度即可求出答案.【详解】解:因为八十二边形的外角和是360度,在外角中最多有三个钝角,如果超过三个则和一定大于360度,八十二边形的内角与其相邻外角互为邻补角,则外角中最多有三个钝角,内角中就最多有3个锐角.故答案为:B.【点睛】本题考查了多边形的内角与外角,由于内角不是定值,不容易考虑,而外角和是360度不变,因而内角的问题可以转化为外角的问题进行考虑.6.C【分析】根据线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.此点称为外心,也是这个三角形外接圆的圆心.)依题意画出直角三角形,锐角三角形以及钝角三角形的垂直平分线的交点即可求解.【详解】一个三角形三边垂直平分线的交点是这个三角形外接圆的圆心,如果在外部,则这个三角形是钝角三角形.故选C.【点睛】本题考查的知识点是线段垂直平分线的性质(三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等,解题关键是画出图形即可求解.7.B【分析】根据角平分线的性质,可得∠ABD 与∠CBD 的关系,根据平行线的性质,可得∠CBD 与∠BDE 的关系,根据三角形外角的性质,可得∠EBD 的大小,进而得出结论.【详解】解:∠BD 是∠ABC 的平分线,∠∠ABD =∠CBD .∠DE //BC ,∠∠CBD =∠BDE ,∠∠EBD =∠BDE .∠∠BDC 是∠ABD 的外角,∠∠A +∠ABD =∠BDC ,∠∠EBD =∠BDC −∠A =95°−60°=35°,∠∠BDE =∠DBE =35°.故答案为:B .【点睛】本题主要考查平行线的性质、三角形的外角性质、三角形内角和定理.解答的关键是要熟练掌握:三角形的外角等于和它不相邻的两个内角的和;三角形的内角和为180°.8.A【分析】根据三角形的内角和等于180°求出∠EBC +∠ECB 的度数,然后得到∠ABC +∠ACB 的度数,再利用三角形的内角和等于180°列式求解即可.【详解】解:在∠BCE 中,∠∠BEC =130°,∠∠EBC +∠ECB =180°−130°=50°,∠ABD DBE EBC ∠=∠=∠,ACD DCE ECB ∠=∠=∠,∠∠ABC +∠ACB =3(∠EBC +∠ECB )=3×50°=150°,在∠ABC 中,∠A =180°−(∠ABC +∠ACB )=180°−150°=30°.故选:A .【点睛】本题考查了三角形的内角和定理,把两个角的和看作一个整体进行求解,整体思想的利用是解题的关键.9.A【分析】首先设新的多边形的边数为n ,由多边形内角和公式,可得方程180(n −2)=1980,即可求得新的多边形的边数,继而求得答案.【详解】解:设新的多边形的边数为n ,∠新的多边形的内角和是1980°,∠180(n −2)=1980,解得:n =13,∠一个多边形从某一个顶点出发截去一个角后所形成的新的多边形是十三边形, ∠原多边形的边数可能是:12或13或14.故选:A .【点睛】本题考查了多边形的内角和公式,注意掌握方程思想的应用.10.D【分析】设2CAD x ∠=︒,则ACD ∠()90x =-︒,BAD ∠802x =︒+︒,ABD ∠()50x =-︒,由BDC ∠=ADC ADB ∠-∠,即可求出BDC ∠.【详解】设2CAD x ∠=︒,则()()11802902ACD ADC x x ∠=∠=︒-︒=-︒, 802BAD BAC CAD x ∠=∠+∠=︒+︒,()()1180802502ABD ADB x x ∠=∠=︒-︒-︒=-︒, 40BDC ADC ADB ∴∠=∠-∠=︒,故选:D .【点睛】本题考查了三角形内角和定理的应用,解题关键是灵活运用相关知识进行求解. 11.55cm 或35cm【分析】先画出图形,根据图形结合已知写出条件,再分两种情况讨论:根据一腰上的中线把三角形的周长分为两部分,其中一部分比另一部分长5cm ,构建方程,再解方程可得答案.【详解】解:如图,ABC 为等腰三角形,,,15,AB AC AH CH BC ===设,AH CH x == 则2,AB AC x ==当()5AB AH BC CH +-+=时,()2155,x x x ∴+-+=解得:10,x =20,AB AC ∴==20201555,ABC C ∴=++=当()5BC CH AB AH +-+=时,()1525,x x x ∴+-+=解得:5,x =10,AB AC ∴==10101535,ABC C ∴=++=故答案为:55cm 或35.cm【点睛】本题考查的是等腰三角形的定义,三角形的中线的性质,清晰的分类讨论是解题的关键.12.10<L<16【分析】根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.【详解】设第三边长为x ,∠有两条边分别为3和5,∠5-3<x<5+3,解得2<x<8,∠2+3+5<x+3+5<8+3+5,∠周长L=x+3+5,∠10<L<16,故答案为: 10<L<16.【点睛】此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键.13.65︒【分析】先根据三角形的外角性质求得∠BAC 的度数,再根据平角的性质以及角平分线的定义求得∠EAD的度数.【详解】解:∠∠ACD是∠ABC的外角,∠∠BAC=∠ACD-∠B=80°-30°=50°,∠∠CAE =180°-50°=130°,∠AD平分∠CAE,∠∠EAD=12CAE∠=65°.故答案为:65°.【点睛】本题主要考查了角平分线的定义、三角形的外角性质,解决问题的关键是掌握:三角形的一个外角等于和它不相邻的两个内角的和.14.540︒【分析】连接BC、AD.根据四边形的内角和定理以及三角形的内角和是180°进行分析求解.【详解】解:如图,连接BC、AD.在四边形BCEG中,得∠E+∠G+∠ECB+∠GBC=360°,又因为∠1+∠2=∠3+∠4,∠5+∠6+∠F=180°,∠4+∠5+∠3+∠6=∠CAF+∠BDF,即∠1+∠2+∠5+∠6=∠CAF+∠BDF,所以∠CAF+∠B+∠C+∠BDF+∠E+∠F+∠G=540°,即∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.故答案为:540°.【点睛】本题考查了四边形内角和定理以及三角形内角和定理,解题的关键是能够巧妙构造四边形,根据四边形的内角和定理以及三角形的内角和定理进行求解.15.64【分析】根据m 边形从一个顶点出发可引出(m -3)条对角线.从k 个顶点出发引出(k -3)条,而每条重复一次,所以k 边形对角线的总条数为:()32k k -(k ≥3,且k 为整数)可得到m 、k 、n 的值,进而可得答案.【详解】解:据题意得,m -3=3,n =3,解得:m =6, 1 2k (k -3)=k , 解得:k =5,所以(k -n )m =(5-3)6=64.故答案为:64.【点睛】本题主要考查了多边形的对角线,关键是掌握对角线条数的计算公式. 16.2:1【分析】过点B 作BE AC ⊥于E ,设AD 为x ,则AC 为3x ,用面积公式表示出BCD S △和ABD S ,根据:1:3AD AC =,即可求解.【详解】过点B 作BE AC ⊥于E ,:1:3AD AC =,设AD 为x ,则AC 为3x ,12BCD S CD BE ∆=⨯⨯, 12ABD S AD BE ∆=⨯⨯, :BCD ABD S S ∆∆∴,11:22CD BE AD BE =⨯⨯⨯⨯, :CD AD =,():AC AD AD =-,()3:x x x =-,2:x x =,2:1=故答案为:2:1.【点睛】本题考查了三角形的面积公式的应用,熟练掌握面积公式是解题关键. 17.35°或20°【分析】题中没有指明已知角是底角还是顶角,故应该分情况进行分析从而求解.【详解】解:如图,在∠ABC 中,AB =AC ,BD 是AC 边上的高.∠当∠A =70°时,则∠ABC =∠C =55°,∠BD ∠AC ,∠∠DBC =90°-55°=35°;∠当∠C =70°时,∠BD ∠AC ,∠∠DBC =90°-70°=20°;故答案为:35°或20°.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.18.80°【分析】如图延长AD、BE交于点F,连接CF.首先证明∠1+∠2=2∠AFB,求出∠AFB即可解决问题.【详解】解:如图延长AD、BE交于点F,连接CF.在∠ABF中,∠AFB=180°-55°-75°=50°,∠∠ECD=∠AFB=50°,∠1=∠ECF+∠EFC,∠2=∠DCF+∠DFC,∠∠1+∠2=∠ECF+∠EFC +∠DCF+∠DFC =2∠AFB=100°,∠∠1=∠CDA=20°,∠∠2=∠CEB=80°,故答案为:80°.【点睛】本题考查了翻折变换、三角形的内角和定理、三角形的外角等知识,解题的关键是灵活运用所学知识解决问题.19.9n-•°,用1350除以180,商就是n-2,余数就是【分析】根据多边形的内角和公式()2180加上那个外角的度数.【详解】1350÷180=790,∴-=27n解得n=9故答案为9.【点睛】本题考查多边形内角和,熟练掌握多边形的内角和公式及计算法则是解题关键. 20.15【分析】根据三角形的外角性质得到∠CDA=∠BAD+∠ABC,由已知通过计算即可求解.【详解】解:由三角形的外角性质得∠CDA=∠BAD+∠ABC,∠∠CAD=∠CDA,∠CAB−∠ABC=30°,∠∠CAD+∠BAD−∠ABC=30°,即∠BAD+∠ABC+∠BAD−∠ABC=30°,∠∠BAD=15°,故答案为:15.【点睛】本题考查了三角形的外角性质,熟知三角形的一个外角等于和它不相邻的两个内角的和是解答此题的关键.21.45°或135°【分析】∠∠ABC是锐角三角形时,先根据高线的定义求出∠ADB=90°,∠BEC=90°,然后根据直角三角形两锐角互余求出∠ABD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;∠∠ABC是钝角三角形时,根据直角三角形两锐角互余求出∠BHC=∠A,从而得解.【详解】如图1,∠ABC是锐角三角形时,∠BD、CE是∠ABC的高线,∠∠ADB=90°,∠BEC=90°.在∠ABD中,∠∠A=45°,∠∠ABD=90°-45°=45°,∠∠BHC=∠ABD+∠BEC=45°+90°=135°;∠如图2,∠ABC是钝角三角形时,∠BD、CE是∠ABC的高线,∠∠A+∠ACE=90°,∠BHC+∠HCD=90°,∠∠ACE=∠HCD(对顶角相等),∠∠BHC=∠A=45°.综上所述,∠BHC的度数是135°或45°.故答案为45°或135°.【点睛】本题主要考查了直角三角形的性质,三角形的内角和定理,三角形的高线,难点在于要分∠ABC是锐角三角形与钝角三角形两种情况讨论,作出图形更形象直观.22.70【分析】由∠GBP=55°,∠BGP=90°,得到∠BPG=35°,根据角平分线的定义得到∠EBP=∠CBP,根据三角形外角的性质得到∠EBP=∠BAP+∠APB=∠BAP+35°,由∠ACB=∠EBC-∠BAC=2∠EBP-2∠BAP,于是得到结论.【详解】解:∠∠GBP=55°,∠BGP=90°,∠∠BPG=35°,∠BP平分∠CBE,∠∠EBP=∠CBP,∠∠EBP=∠BAP+∠APB=∠BAP+35°,∠AP平分∠BAC,∠∠ACB=∠EBC-∠BAC=2∠EBP-2∠BAP=2(∠BAP+35°-∠BAP)=70°.【点睛】本题主要考查了角平分线的定义、三角形的外角性质,解决问题的关键是掌握:三角形的一个外角等于和它不相邻的两个内角的和.k=23.3【分析】根据三角形的一个外角等于与它不相邻的两个内角的和解答即可.【详解】解:如图:由三角形的外角性质得,∠1=∠B+∠E,∠3=∠A+∠D,∠2=∠F+∠GOF=∠F+∠C+∠G,由三角形的内角和定理得,∠1+∠2+∠3=180°,∠∠A+∠B+∠C+∠D+∠E+∠F+∠G=180°.∠∠B+∠C+∠F=14°+15°+16°=45°,∠∠A+∠D+∠E+∠G=180°-45°=135°=k⋅45°,∠k=3.【点睛】本题考查了三角形的外角性质,熟知三角形的一个外角等于和它不相邻的两个内角的和是解答此题的关键.24.(1)180︒;(2)无变化,见解析;(3)无变化,见解析.【分析】(1)如图,连接CD,把五个角和转化为同一个三角形内角和.根据三角形内角和定理可得.(2)如图,连接CD,把五个角和转化为同一个三角形内角和.根据三角形内角和定理可得.(3)利用三角形内角和定理及三角形的外角性质求解.【详解】(1)连接CD,并设BD和CE交于点O,如下图:∠∠COD=∠BOE(对顶角相等),∠∠B+∠E=∠ECD+∠BDC(等量代换),∠∠A+∠B+∠ACE+∠ADB+∠E=∠A+∠ACE+∠ADB+∠ECD+∠BDC=∠A+∠ACD+∠ADC=180°.(2)无变化连接CD,并设BD和CE交于点O,如下图:∠∠COD=∠BOE(对顶角相等),∠∠B+∠E=∠ECD+∠BDC(等量代换),∠∠CAD+∠B+∠ACE+∠ADB+∠E=∠CAD+∠ACE+∠ADB+∠ECD+∠BDC=∠CAD+∠ACD+∠ADC=180°.故∠CAD+∠B+∠C+∠D+∠E等于180°没有变化.(3)无变化如下图:∠∠ECD 是∠BCE 的一个外角,∠∠ECD =∠B +∠E (三角形的一个外角等于它不相邻的两个内角的和),∠∠CAD +∠B +∠ACE +∠D +∠E =∠CAD +∠ACE +∠D +∠ECD =∠CAD +∠ACD +∠D =180°,故∠CAD +∠B +∠ACE +∠D +∠E 等于180°,没有变化.【点睛】本题主要考查三角形内角和定理及三角形的外角性质,属于一个综合题,要想正确解答这类问题,就要熟练掌握相关的定理和性质.25.(1)∠;(2)10、12、13或14.【分析】(1)根据“不均衡三角形”的定义及三角形三边关系逐一判断即可得答案; (2)分别讨论22x +>16>26x -,16>22x +>26x -,22x +>26x ->16三种情况;利用“不均衡三角形”的定义列不等式可求出x 的取值范围,结合x 为整数即可得答案.【详解】(1)∠∠1+2<4,∠不能组成三角形,不符合题意,∠∠18-13>13-9,∠能组成“不均衡三角形”,符合题意,∠∠有两条相等的边,∠不能组成“不均衡三角形”,不符合题意,∠∠9-8<8-6,∠不能组成“不均衡三角形”,不符合题意,故答案为:∠(2)当22x +>16>26x -,即7<x <11时,∠“不均衡三角形”三边分别为22x +,16,26x -,∠221616(26)261622x x x x +->--⎧⎨-+>+⎩, 解得:x >9,∠9<x <11,∠x 为整数,∠x =10,当16>22x +>26x -,即x<7时,∠“不均衡三角形”三边分别为22x +,16,26x -,∠16(22)22(26)222616x x x x x -+>+--⎧⎨++->⎩,即35x x <⎧⎨>⎩, ∠此不等式组无解,∠此种情况不存在,当22x +>26x ->16,即x>11时,22(26)2616261622x x x x x +-->--⎧⎨-+>+⎩, 解得:x <15,∠11<x <15,∠x 为整数,∠x 的值为12或13或14,综上所述:x 的值为10、12、13或14.【点睛】本题考查三角形的三边关系及解一元一次不等式组,三角形任意两边之和大于第三边,任意两边之差小于第三边;根据“不均衡三角形”的定义及三角形三边关系列出不等式组并灵活运用分类讨论的思想是解题关键.26.(1)ABD ACD S S ∆=,(2)ABC ABD S S =△△,ACD CBD S S =,AOC BOD S S =△△,(3)见解析【分析】(1)利用等底等高的两个三角形面积相等即可得解;(2)利用等底等高的两个三角形面积相等即可得解;(2)连接AC 、BD ,取BD 中点E ,过点E 作EF //AC ,连接AF 即可.【详解】解(1)∠D 是∠ABC 中BC 边的中点,∠ABD ACD S S ∆=;故答案为:ABD ACD S S ∆=;(2)∠MN //AB ,∠ABC ABD S S =△△,ACD CBD S S =,∠ABC AOB ABD AOB S S S S -=-△△△△,∠AOC BOD S S =△△,故答案为:ABC ABD S S =△△,ACD CBD S S =,AOC BOD S S =△△;(3)如图所示:AF 即为所求.连接AC 、BD ,取BD 中点E ,过点E 作EF //AC ,连接AF 即为所求.∠点E 是BD 的中点,∠ABE AED S S =△△,ECD CBE SS =,即12ABE CBE ABCD S S S =+四边形, ∠EF //AC ,∠AEF CEF S S =△△,∠12ABE CBE ABE BEF AEF ABF ABCD S S S S S S S =+++==四边形. 【点睛】本题主要考查了三角形的面积,并熟练掌握三角形的中线将三角形的面积分成相等的两部分以及等底等高的两个三角形面积相等.。
人教版 八年级数学上册 第11章 三角形 综合复习(含答案)
![人教版 八年级数学上册 第11章 三角形 综合复习(含答案)](https://img.taocdn.com/s3/m/2b3fa9f92af90242a995e503.png)
人教版八年级数学上册第11章三角形综合复习一、选择题(本大题共10道小题)1. 下列各组数中,不可能成为一个三角形三边长的是()A. 2,3,4B. 5,7,7C. 5,6,12D. 6,8,102. 已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形3. 在△ABC中,∠A,∠C与∠B处的外角的度数如图所示,则x的值是()A.80 B.70 C.65 D.604. 如图,在△ABC中,∠C=90°,∠A=30°,BD平分∠ABC,则∠BDC的度数为()A.30°B.40°C.50°D.60°5. 如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为()A.65°B.70°C.75°D.85°6. 已知三角形的两边长分别为1和4,第三边长为整数,则该三角形的周长为()A.7 B.8 C.9 D.107. 在△ABC中,若∠B=3∠A,∠C=2∠B,则∠B的度数为()A.18°B.36°C.54°D.90°8. 若多边形的一个顶点处的所有对角线把多边形分成了11个三角形,则经过这一点的对角线的条数是()A.8 B.9 C.10 D.119. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种10. 如图,在△ABC中,BC边不动,点A竖直向上运动,∠A越来越小,∠B,∠C越来越大.若∠A减小x°,∠B增加y°,∠C增加z°,则x,y,z之间的关系是()A.x=y+zB.x=y-zC.x=z-yD.x+y+z=180二、填空题(本大题共5道小题)11. 把一副三角尺如图所示拼在一起,那么图中∠ABF=________°.12. 如图,∠AOB=50°,P是OB上的一个动点(不与点O重合),当∠A的度数为________时,△AOP为直角三角形.13. 如图,AD是△ABC的中线,已知△ABD的周长为25 cm,AB比AC长6 cm,则△ACD的周长为cm.14. 模拟某人为机器人编制了一段程序(如图),如果机器人以2 cm/s的速度在平地上按照程序中的步骤行走,那么该机器人从开始到停止所需的时间为________s.15. 如图,在四边形ABCD中,AB∥CD,将四边形ABCD沿对角线AC折叠,使点B落在点B′处.若∠1=∠2=44°,则∠B=________°.三、解答题(本大题共4道小题)16. 如图,四边形ABCD是由四根木条钉成的,为了使它不变形,小明加了根木条AE,小明的做法正确吗?说说你的理由.17. 如图,在△ABC中,BD是角平分线,CE是AB边上的高,且∠ACB=60°,∠ADB=97°,求∠A和∠ACE的度数.18. 已知△ABC的周长是20,三边分别为a,b,c.(1)若b是最大边,求b的取值范围;(2)若△ABC是三边均不相等的三角形,b是最大边,c是最小边,且b=3c,a,b,c均为整数,求△ABC的三边长.19. 如图,AE,BO,CO分别平分∠BAC,∠ABC,∠ACB,OD⊥BC于点D. 求证:∠1=∠2.人教版八年级上册第11章三角形综合复习-答案一、选择题(本大题共10道小题)1. 【答案】C【解析】若三条线段的长满足三角形的三边,则这三条线段长满足最小的两边之和大于地三边,由题意,A,B,D都能构成三角形,C中5+6=11<12,不能构成三角形.2. 【答案】D3. 【答案】B4. 【答案】D5. 【答案】B[解析] ∵DE⊥AB,∠A=35°,∴∠CFD=∠AFE=55°.∴∠ACB=∠D+∠CFD=15°+55°=70°.6. 【答案】C[解析] 设第三边的长为x,由三角形三边关系可得,4-1<x<4+1,即3<x<5.由于第三边长为整数,因此x=4,所以该三角形的周长为9.7. 【答案】C[解析] ∵在△ABC中,∠B=3∠A,∠C=2∠B,∴∠C=6∠A. 设∠A=x,则∠B=3x,∠C=6x.由三角形内角和定理可得x+3x+6x=180°,解得x=18°,∴∠B=3x=54°.8. 【答案】C[解析] 设多边形有n条边,则n-2=11,解得n=13.故这个多边形是十三边形.故经过这一点的对角线的条数是13-3=10.9. 【答案】C10. 【答案】A[解析] 根据题意,得∠A+∠ABC+∠ACB=180°①,变化后的三角形的三个角的度数分别是∠A-x°,∠ABC+y°,∠ACB+z°,∴∠A-x°+∠ABC+y°+∠ACB+z°=180°②,①②联立整理可得x=y+z.二、填空题(本大题共5道小题)11. 【答案】15[解析] 由题意,得∠F=30°,∠EAD=45°.因为∠EAD=∠F+∠ABF,所以∠ABF=∠EAD-∠F=15°.12. 【答案】90°或40°[解析] 若△AOP为直角三角形,则分两种情况:①当∠A=90°时,△AOP为直角三角形;②当∠APO=90°时,△AOP为直角三角形,此时∠A=40°.13. 【答案】19[解析] ∵AD 是BC 边上的中线,∴BD=CD.∴△ABD 的周长-△ACD 的周长=(AB+BD+AD )-(AC+CD+AD )=AB-AC. ∵△ABD 的周长为25 cm ,AB 比AC 长6 cm , ∴△ACD 的周长为25-6=19(cm).14. 【答案】16[解析] 由题意得,该机器人所经过的路径是一个正多边形,多边形的边数为36045=8, 则所走的路程是4×8=32(cm), 故所用的时间是32÷2=16(s).15. 【答案】114[解析] 因为AB ∥CD ,所以∠BAB′=∠1=44°.由折叠的性质知∠BAC =12∠BAB′=22°.在△ABC 中,∠B =180°-(∠BAC +∠2)=114°.三、解答题(本大题共4道小题)16. 【答案】解:小明的做法正确.理由:连接AC.由三角形的稳定性可知,△ADE 被固定,不会变形,所以木条CD ,DA 也被固定,即AC 的长度被固定,因此△ABC 被固定,所以四边形ABCD 不会变形.17. 【答案】解:∵∠ADB=∠DBC+∠ACB ,∴∠DBC=∠ADB-∠ACB=97°-60°=37°. ∵BD 是△ABC 的角平分线, ∴∠ABC=74°.∴∠A=180°-∠ABC-∠ACB=46°. ∵CE 是AB 边上的高, ∴∠AEC=90°.∴∠ACE=90°-∠A=44°.18. 【答案】解:(1)依题意有b≥a,b≥c.又∵a+c>b,∴a+b+c≤3b且a+b+c>2b,则2b<20≤3b,解得≤b<10.(2)∵≤b<10,b为整数,∴b=7,8,9.∵b=3c,且c为整数,∴b=9,c=3.∴a=20-b-c=8.故△ABC的三边长分别为8,9,3.19. 【答案】证明:∵AE,BO,CO分别平分∠BAC,∠ABC,∠ACB,∴∠ABO=12∠ABC,∠BAE=12∠BAC,∠OCD=12∠ACB.∵∠1=∠ABO+∠BAE,∴∠1=12∠ABC+12∠BAC=12(180°-∠ACB)=90°-12∠ACB.又∵∠2=90°-∠OCD=90°-12∠ACB,∴∠1=∠2.。
人教版八年级数学上册 第十一章 三角形 11.3.2 多边形的内角和 同步课时练习题 无答案
![人教版八年级数学上册 第十一章 三角形 11.3.2 多边形的内角和 同步课时练习题 无答案](https://img.taocdn.com/s3/m/a7a833c21ed9ad51f11df246.png)
第十一章三角形 11.3.2 多边形的内角和1. 下列度数中,不可能是某个多边形的内角和的是( )A.180B.270C.2700D.720°2. 一个多边形的内角和不可能是()A.1800°B.540 °C.720 °D.810 °3.一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()A.360°B.540 °C.720 °D.900 °4. 若一个多边形的内角和等于720,则这个多边形的边数是________.5.五边形的内角和为 ,十边形的内角和为 .6. 1.若一个正多边形的内角是120 °,那么这是正____边形.7. 已知多边形的每个外角都是45°,则这个多边形是______边形.8. 一个正多边形的内角和为720°,则这个正多边形的每一个内角等于______.9. 如图所示,小华从点A出发,沿直线前进10米后左转24°,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地点A时,走的路程一共是_____米.10. 判断正误.(1)当多边形边数增加时,它的内角和也随着增加.( )(2)当多边形边数增加时,它的外角和也随着增加.( )(3)三角形的外角和与八边形的外角和相等. ( )11. 三角形的内角和是多少?正方形,长方形的内角和是多少?12. 从五边形的一个顶点出发可以引______条对角线,它们将五边形分成_______个三角形,那么五边形的内角和等于多少度?13. 从n边形的一个顶点出发可以引几条对角线?它们将n边形分成几个三角形?那么n边形的内角和等于多少度?多边形的边数图形分割出的三角形个数多边形的内角和456……………………n14. 如果一个四边形的一组对角互补,那么另一组对角有什么关系?试说明理由.15. 如图,在四边形ABCD中,∠A与∠C互补,BE平分∠ABC,DF平分∠ADC,若BE∥DF,求证:△DCF为直角三角形.16. 一个多边形的内角和比四边形的内角和多720°,并且这个多边形的各内角都相等,这个多边形的每个内角是多少度?17. 如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和.(1) 任意一个外角和它相邻的内角有什么关系?(2) 五个外角加上它们分别相邻的五个内角和是多少?18. 在n边形的每个顶点处各取一个外角,这些外角的和叫做n边形的外角和.n边形的外角和又是多少呢?19. 已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数.20. 如图,在正五边形ABCDE中,连接BE,求∠BED的度数.21. 一个多边形的内角和为1800°,截去一个角后,求得到的多边形的内角和.22. 如图,求∠1+∠2+∠3+∠4+∠5+∠6+∠7的度数.。
人教版数学八年级上册第十一章三角形练习题(无答案)
![人教版数学八年级上册第十一章三角形练习题(无答案)](https://img.taocdn.com/s3/m/c258a9b45022aaea988f0f55.png)
第十一章三角形练习题一、单选题1.已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.12.在下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()A. B. C. D.3.下列不是利用三角形的稳定性的是()A.伸缩晾衣架B.三角形房架C.自行车的三角形车架D.矩形门框的斜拉条4.如图,已知CD是△ABC的中线,E为CD的中点,若△ABC的面积为1,则△ACE的面积为()A.12B.13C.14D.155.如图,AD是△ABC的角平分线,已知∠C=80°,∠B=40°,则∠ADC的度数为()A.50°B.60°C.70°D.80°6.如图,CE 是△ACB 的外角∠ACD 的平分线,且CE 交AB 的延长线于点E,∠B=30°,∠E=25°,则∠BAC 的度数为( )A.30°B.55°C.100°D.80°7.如图,△ABC 中,∠C =30°,将△ABC 绕点A 顺时针旋转60°得△ADE ,AE 与BC 交于F ,则∠AFB 为多少度?( )A.70°B.90°C.60°D.55°8.三角形的一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .钝角三角形C .锐角三角形D .不确定9.如图所示,四边形ABCD 是凸四边形,AB=2,BC=4,CD=7,则线段AD 的取值范围为( )A .0<AD <7B .2<AD <7C .0<AD <13 D .1<AD <1310.把n 边形变为n x ()边形,内角和增加了720°,则x 的值为( )A.6B.5C.4D.3二、填空题 11.三角形的三边长分别为3,12x +,8,则x 的取值范围是______.12.如图,Rt △ABC 中,∠ACB =90°,△ABC 的三条内角平分线交于点O ,OM ⊥AB 于M ,若OM =4,S △ABC =180,则△ABC 的周长是_____.13.如图,在△ABC 中,CD 是AB 边上的中线,E 是AC 的中点,已知△DEC 的面积是4cm 2,则△ABC 的面积是______.14.已知点G 是ABC △的重心,那么ABG ABCS S ∆=________ 15.在△ABC 中,已知∠B=80°,∠A:∠C=1:4, 则∠C=______16.如图,∠ACD =121°,∠B =20°,则∠A =___________度.17.从多边形的一个顶点出发能画5条对角线,则这个多边形的边数是_______.18.已知从六边形的一个顶点出发,可以引m 条对角线,这些对角线可以把这个六边形分成n 个三角形,则m n -=______.19.一个n 边形的内角和是720°,则n =_____.20.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就∠=____度.可以得到如图2所示的正五边形ABCDE.图中,BAC三、解答题21.一个等腰三角形的周长为25cm.(1)已知腰长是底边长的2倍,求各边的长;(2)已知其中一边的长为6cm.求其它两边的长.22.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)若△ABC的面积为40,BD=5,则E到BC边的距离为多少.23.如图,在△ABC 中:(1)画出BC 边上的高AD 和中线AE .(2)若∠B=30°,∠ACB=130°,求∠BAD 和∠CAD 的度数.24.在四边形ABCD 中,A 140∠=,D 80∠=()1如图1,若B C∠∠∠的度数;=,求C()2如图2,若ABC∠的平分线BE交DC于点E,且BE//AD,求C∠的度数.。
人教版 八年级数学 上册第11章 三角形 综合巩固训练(含答案)
![人教版 八年级数学 上册第11章 三角形 综合巩固训练(含答案)](https://img.taocdn.com/s3/m/845bcc8b312b3169a551a467.png)
人教版八年级数学第11章三角形综合巩固训练一、选择题(本大题共10道小题)1. 如图,在△ABC中,AC边上的高是()图A.线段DA B.线段BAC.线段BC D.线段BD2. 在△ABC中,∠A=95°,∠B=40°,则∠C的度数是()A. 35°B. 40°C. 45°D. 50°3. 如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为()A. 40°B. 50°C. 60°D. 70°4. 下列各组数中,不可能成为一个三角形三边长的是()A. 2,3,4B. 5,7,7C. 5,6,12D. 6,8,105. 在△ABC中,∠A,∠C与∠B处的外角的度数如图所示,则x的值是()A.80 B.70 C.65 D.606. 若一个正多边形的每一个外角都等于40°,则它是()A.正九边形B.正十边形C.正十一边形D.正十二边形7. 把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A.六边形B.五边形C.四边形D.三角形8. 若在n边形内部任意取一点P,将点P与各顶点连接起来,可以把n边形分成n个三角形,利用这个事实,可以探索到n边形的内角和为()A.180°×n B.180°×n-180°C.180°×n+180°D.180°×n-360°9. (2019•大庆)如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM 的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是A.15°B.30°C.45°D.60°10. 如图,在△ABC中,∠ACB=70°,∠1=∠2,则∠BPC的度数为()A.70°B.108°C.110°D.125°二、填空题(本大题共8道小题)11. 如图,已知AB,CD相交于点O,且∠A=38°,∠B=58°,∠C=44°,则∠D =________°.12. 如图所示,x的值为________.13. 如图,若A表示四边形,B表示正多边形,则阴影部分表示________.14. 若一个等腰三角形两边的长分别为2 cm,5 cm,则它的周长为________cm.15. 如图,折叠一张三角形纸片,把三角形的三个角拼在一起,就可以说明一个几何定理.请你写出这个定理的内容:______________________.16. 如图,在△ABC中,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别是D,E,F.若AC=4,AD=3,BE=2,则BC=________.17. 如图,在四边形ABCD中,AB∥CD,将四边形ABCD沿对角线AC折叠,使点B落在点B′处.若∠1=∠2=44°,则∠B=________°.18. 如图,在△ABC中,点D在BC的延长线上,∠A=m°,∠ABC和∠ACD 的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…;∠A2019BC和∠A2019CD的平分线交于点A2020,则∠A2020=________°.三、解答题(本大题共4道小题)19. 某单位修建正多边形花台,已知正多边形花台的一个外角的度数比一个内角度数的多12°.(1)求出这个正多边形的一个内角的度数;(2)求这个正多边形的边数.20. 如图,AE,BO,CO分别平分∠BAC,∠ABC,∠ACB,OD⊥BC于点D. 求证:∠1=∠2.21. 探究与证明如图①,在△ABC中,AD⊥BC于点D,CE⊥AB于点E.(1)猜测∠1与∠2的关系,并说明理由;(2)如果∠ABC是钝角,如图②,(1)中的结论是否还成立?22. 已知:多边形的外角∠CBE和∠CDF的平分线分别为BM,DN.(1)若多边形为四边形ABCD.①如图 (a ),∠A =50°,∠C =100°,BM 与DN 交于点P ,求∠BPD 的度数; ②如图(b ),猜测当∠A 和∠C 满足什么数量关系时,BM ∥DN ,并证明你的猜想. (2)如图(c ),若多边形是五边形ABCDG ,已知∠A =140°,∠G =100°,∠BCD =120°,BM 与DN 交于点P ,求∠BPD 的度数.人教版 八年级数学 第11章 三角形 综合巩固训练-答案一、选择题(本大题共10道小题)1. 【答案】D2. 【答案】C【解析】根据三角形内角和为180°,∠C =180°-∠A -∠B =45°.3. 【答案】B【解析】∵AB ∥CD ,∴∠A =∠ACD =40°,∵∠ACB =90°,∴∠B =90°-∠A =90°-40°=50°.4. 【答案】C 【解析】若三条线段的长满足三角形的三边,则这三条线段长满足最小的两边之和大于地三边,由题意,A ,B ,D 都能构成三角形,C 中5+6=11<12,不能构成三角形.5. 【答案】B6. 【答案】A[解析] 由于正多边形的外角和为360°,且每一个外角都相等,因此边数=360°40°=9.7. 【答案】A[解析] 剪去一个角的方法有三种:经过两个顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.所以一个n 边形剪去一个角后,剩下的形状可能是n 边形或(n +1)边形或(n -1)边形.8. 【答案】D9. 【答案】B【解析】∵BE是∠ABC的平分线,∴∠EBM=12∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=12∠ACM,则∠BEC=∠ECM–∠EBM=12×(∠ACM–∠ABC)=12∠A=30°,故选B.10. 【答案】C[解析] ∵在△ABC中,∠ACB=70°,∠1=∠2,∴∠2+∠BCP=∠1+∠BCP=∠ACB=70°.∴∠BPC=180°-∠2-∠BCP=180°-70°=110°.二、填空题(本大题共8道小题)11. 【答案】64[解析] 由三角形内角和定理可知∠A+∠D+∠AOD=180°,∠B +∠C+∠BOC=180°.∵∠AOD=∠BOC,∴∠A+∠D=∠B+∠C.∴∠D=64°.12. 【答案】55°[解析] 由多边形的外角和等于360°,得360°-105°-60°+x+2x=360°,解得x=55°.13. 【答案】正方形14. 【答案】12[解析] 分两种情况讨论:①当腰长为5 cm时,三边长分别为5 cm,5 cm,2 cm,满足三角形三边关系,周长=5+5+2=12(cm).②当腰长为2 cm时,三边长分别为5 cm,2 cm,2 cm.∵2+2=4<5,∴5 cm,2 cm,2 cm不满足三角形的三边关系.综上,它的周长为12 cm.15. 【答案】三角形三个内角的和等于180°16. 【答案】83 [解析] ∵S △ABC =12AC·BE =12BC·AD ,∴BC =AC·BE AD =4×23=83.17. 【答案】114[解析] 因为AB ∥CD ,所以∠BAB′=∠1=44°.由折叠的性质知∠BAC =12∠BAB′=22°.在△ABC 中,∠B =180°-(∠BAC +∠2)=114°.18. 【答案】(m22020)三、解答题(本大题共4道小题)19. 【答案】解:(1)设这个多边形的一个内角的度数是x °,则与其相邻的外角度数是x °+12°. 由题意,得x+x+12=180,解得x=140. 即这个正多边形的一个内角的度数是140°.(2)这个正多边形的每一个外角的度数为180°-140°=40°,所以这个正多边形的边数是=9.20. 【答案】证明:∵AE ,BO ,CO 分别平分∠BAC ,∠ABC ,∠ACB , ∴∠ABO =12∠ABC ,∠BAE =12∠BAC ,∠OCD =12∠ACB. ∵∠1=∠ABO +∠BAE ,∴∠1=12∠ABC +12∠BAC =12(180°-∠ACB)=90°-12∠ACB. 又∵∠2=90°-∠OCD =90°-12∠ACB ,∴∠1=∠2.21. 【答案】解:(1)∠1=∠2.理由如下: ∵AD ⊥BC ,CE ⊥AB ,∴△ABD 和△BCE 都是直角三角形.∴∠1+∠B =90°,∠2+∠B =90°. ∴∠1=∠2.(2)(1)中的结论仍然成立.理由如下: ∵AD ⊥BC ,CE ⊥AB , ∴∠D =∠E =90°.∴∠2+∠ABD =90°,∠1+∠CBE =90°. 又∵∠ABD =∠CBE , ∴∠1=∠2.22. 【答案】解:(1)①∵∠A =50°,∠C =100°, ∴在四边形ABCD 中,∠ABC +∠ADC =360°-∠A -∠C =210°. ∴∠CBE +∠CDF =150°.∵外角∠CBE 和∠CDF 的平分线分别为BM ,DN , ∴∠PBC +∠PDC =12∠CBE +12∠CDF =75°. ∴∠BPD =360°-50°-210°-75°=25°. ②当∠A =∠C 时,BM ∥DN. 证明:如图(a),连接BD.∵BM ∥DN ,∴∠BDN +∠DBM =180°.∴∠FDN +∠ADB +∠ABD +∠MBE =360°-180°=180°, 即12(∠FDC +∠CBE)+(∠ADB +∠ABD)=180°. ∴12(360°-∠ADC -∠CBA)+(180°-∠A)=180°. ∴12(360°-360°+∠A +∠C)+(180°-∠A)=180°. ∴∠A =∠C.(2)∵∠A =140°,∠G =100°,∠BCD =120°,∠A+∠ABC+∠BCD+∠CDG+∠G=540°,∴∠ABC+∠CDG=180°.∴∠CBE+∠CDF=180°.∵BP平分∠CBE,DP平分∠CDF,∴∠CBP+∠CDP=12(∠CBE+∠CDF)=90°.如图(b),延长DC交BP于点Q.∵∠BCD=∠CBP+∠CQB,∠CQB=∠QDP+∠BPD,∴∠BCD=∠CBP+∠QDP+∠BPD.∴∠BPD=120°-90°=30°.。
(完整)人教版八年级上册数学三角形练习题
![(完整)人教版八年级上册数学三角形练习题](https://img.taocdn.com/s3/m/17db8f5476a20029bd642de5.png)
人教版八年级上册数学三角形练习题一.选择题1.以下列各组线段为边,能组成三角形的是 A.3cm,4cm,5cm B.4cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm2.等腰三角形的一边长等于4,一边长等于9,则它的周长是 A.1 B.1C.17或2 D.22图6、一个三角形的两边分别为3和8,第三边长是一个偶数,则第三边的长不能为456789123、如图3,∠1,∠2,∠3是△ABC的三个外角,则∠1+∠2+∠34.要使五边形木架不变形,至少要再钉根木条。
、一个多边形的内角和的度数是外角和的2倍,这个多边形是。
16、如图6,△ABC中,∠A=36°,BE平分∠ABC, CE 平分∠ACD,∠E=________.、在△ABC 中,∠A=100°,∠B=3∠C,则∠B=________.、如图8,△ABC 中,∠A=35°,∠C=60°,BD平分∠ABC,DE∥BC交AB 于E,则∠BDE=______.9、一个多边形截去一个角后,所形成的一个新多边形的内角和为2520°,则原多边形边数是图8CADCFA2005.如图,在△ABC中,AD⊥BC于D,AE平分∠DAC,∠BAC=80,∠B=60;求∠AEC的度数.D E6BE和CF7、101112.A.3B.C.5D..下面四个图形中,线段BE是⊿ABC 的高的图是3.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是 A.13cmB.6cmC.5cmD.4cm4.三角形一个外角小于与它相邻的内角,这个三角形是 A.直角三角形 B.锐角三角形 C.钝角三角形 D.属于哪一类不能确定.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C 相等的角的个数是A、3个 B、4个 C、5个 D、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=A、90B、120C、160D、180第5题图第6题图7.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是1个2个3个4个8.给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线⑥三角形的三条角平分线交于一点,且这点在三角形内。
人教版八年级上册数学第十一章 三角形经典练习题附详细解析学生版
![人教版八年级上册数学第十一章 三角形经典练习题附详细解析学生版](https://img.taocdn.com/s3/m/05bbdb00b6360b4c2e3f5727a5e9856a5612263c.png)
人教版八年级上册数学第十一章三角形经典练习题附详细解析一、单选题1.若有两条线段长分别为3cm和4cm,则下列长度的线段能与其组成三角形的是()A.1cm B.5cm C.7cm D.9cm2.若三角形的三边分别为3、4、a,则a的取值范围是()A.a>7B.a<7C.1<a<7D.3<a<63.下列长度的三条线段能组成三角形的是()A.1,2,3B.3,4,5C.3,1,1D.3,4,74.已知等腰三角形的一边长为2,一边长为4,则它的周长等于()A.8B.10C.8或10D.10或125.如图所示,在△ABC中,AB=8,AC=6,AD是△ABC的中线,则△ABD与△ADC的周长之差为()A.14B.1C.2D.76.如图,在△ABC中,已知点E、F分别是AD、CE边上的中点,且S△BEF=4cm2,则S△ABC的值为()A.1cm2B.2cm2C.8cm2D.16cm27.如图四个图形中,线段BE 是△ABC 的高线的是( )A.B.C.D.8.在三角形中,一定能将其面积分成相等两部分的是()A.中线B.高线C.角平分线D.某一边的垂直平分线9.如图,在△ABC中,点D为BC边上一点,连接AD,取AD的中点P,连接BP,CP.若△ABC 的面积为4cm2,则△BPC的面积为()A.4cm2B.3cm2C.2cm2D.1cm210.如图,AE△BC于E,BF△AC于F,CD△AB于D,△ABC中AC边上的高是线段()A.BF B.CD C.AE D.AF11.如图△ABC中,△A=96°,延长BC到D,△ABC与△ACD的平分线相交于点A1△A1BC与△A1CD的平分线相交于点A2,依此类推,△A4BC与△A4CD的平分线相交于点A5,则△A5的度数为()A.19.2°B.8°C.6°D.3°12.如图,△A +△B +△C +△D +△E +△F等于()A.180°B.360°C.540°D.720°13.如图,则△A+△B+△C+△D+△E=()度A.90B.180C.200D.36014.已知一个多边形的内角和为540°,则这个多边形为()A.三角形B.四边形C.五边形D.六边形15.一个正多边形的每个外角都是36°,这个正多边形是()A.正六边形B.正八边形C.正十边形D.正十二边形16.如果一个多边形的每个内角都为150°,那么这个多边形的边数是()A.6B.11C.12D.1817.如图,已知BD是△ABC的中线,AB=5,BC=3,且△ABD的周长为11,则△BCD的周长是()A.9B.14C.16D.不能确定二、填空题18.三角形三边长为7cm、12cm、acm,则a的取值范围是.19.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是.20.如图,自行车的三角形支架,这是利用三角形具有性.21.在△ABC中,△B,△C的平分线交于点O,若△BOC=132°,则△A=度.22.如图,△1+△2+△3+△4=°。
人教版初中数学八年级上册《全等三角形》专题综合练习(提高训练题)
![人教版初中数学八年级上册《全等三角形》专题综合练习(提高训练题)](https://img.taocdn.com/s3/m/9a241e8f168884868662d631.png)
一、选择题
班级:
姓名:
号数:
1.如图,若△ABC≌△ADE,则下列结论中一定成立的是( )
A. AC=DE
B. ∠BAD=∠CAE
C. AB=AE
D. ∠ABC=∠AED
2.如图,∠ABD=∠EBC,BC=BD,再添加一个条件,使得△ABC≌△EBD,所添加的条件不正确的是( )
图①
图②
图③
19.在△ABC 和△DCE 中,CA=CB,CD=CE,∠CAB=∠CED=α, (1)如图 1,将 AD、EB 延长,延长线相交于点 O; ①求证:BE=AD; ②用含α的式子表示∠AOB 的度数(直接写出结果); (2)如图 2,当α=45o 时,连接 BD、AE,作 CM⊥AE 于 M 点,延长 MC 与 BD 交于点 N,求证:N 是 BD 的中点。
D。若 OM=5cm,CD=3.4cm,则四边形 CDNM 的周长为
。
三、解答题 16.如图,四边形 ABCD 中,对角线 AC、BD 相交于点 O,AB=AC,点 E 是 BD 上一点,且 AE=AD,∠EAD= ∠BAC (1)求证:∠ABD=∠ACD (2)若∠ACB=65o,求∠BDC 的度数。
则∠AFE 的度数是
;
14.已知△ABC 三边长分别为 3,5,7,△DEF 三边长分别为 3, 3x 2 , 2x 1,
若这两个三角形全等,则 x 为
;
15.如图,∠AOB=60o,点 P 在∠AOB 的平分线上,过点 P 作 OA、OB 的垂线,垂
足分别为点 M,N。以点 P 为顶点作∠CPD=60o,两边与 OA、OB 相交于点 C、
的面积是 34,则△ABC 的周长为( )
人教版八年级上册第十一章三角形典型题目练习题(无答案)
![人教版八年级上册第十一章三角形典型题目练习题(无答案)](https://img.taocdn.com/s3/m/91bd8bd9767f5acfa0c7cd46.png)
1.已知一个三角形的两边长分别为3和5,则第三边长x的取值范围是.2.已知一个三角形的三边长为a,b,c,若满足(a-b)2+|b-c|=0,则该三角形一定是三角形;若满足(a-b)(b-c)=0,则该三角形一定是三角形.3.(官渡区期末)如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=24°,则∠BDC= .4.如图,∠1=20°,∠2=25°,∠A=35°,则∠BDC的度数为.5.(临沧月考)若一个多边形的每个内角都为144°,则这个多边形的对角线共有条.6.(玉溪期中)如图,小亮从A点出发前进10 m,向右转15°,再前进10 m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了__ m.7.(罗平县期末)如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于 .8.三条公路两两相交于A,B,C三点,现计划修建一个商品超市,要求这个超市到三条公路的距离相等,则可供选择的地方有处.9.(毕节中考)如图,在△ABC中,AC=10,BC=6,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则△BCE的周长是.10.如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AEDC的周长之差为12,则线段DE的长为.11.(华南师大附中)如图所示,已知BO平分∠CBA,CO平分∠ACB,过O点的直线MN∥BC.若AB=12,AC=14,则△AMN的周长为.12.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处.他先沿正东方向走了200 m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图),那么B,C两地相距 m.13.(石林县月考)等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为( )A.45° B.135°C.45°或67.5° D.45°或135°14.(本课时T1变式)(大理期中)等腰三角形中,一个角为40°,则这个等腰三角形的底角的度数为( )A.100° B.40°C.40°或70° D.70°15.如图,∠1+∠2+∠3+∠4=( )A.360°B.180°C.280°D.320°16.(教材P65习题T6变式)如图,在△ABC中,AC的垂直平分线分别交AC,BC 于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为.17.(贵阳中考)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是( )A.∠A=∠C B.∠D=∠BC.AD∥BC D.DF∥BE18.(大庆中考)如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC =110°,则∠MAB=( )A.30°B.35°C.45°D.60°19.(遂宁中考)将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是( )A.(-3,2) B.(-1,2) C.(1,2) D.(1,-2)20.若点M(a-1,b-1)在第三象限,则它关于x轴对称的点在( )A.第一象限B.第二象限C.第三象限D.第四象限21.如图,在平面直角坐标系中,△ABC与△DEF关于直线m=1对称,点M,N 分别是这两个三角形中的对应点.如果点M的横坐标是a,那么点N的横坐标是( )A.-a B.-a+1 C.a+2 D.-a+2 22.(曲靖月考)a,b,c分别为△ABC的三边长,且满足a+b=3c-2,a-b=2c-6.(1)求c的取值范围;(2)若△ABC的周长为18,求c的值.23.如图,已知AD为△ABC的中线,AB=5 cm,且△ACD的周长比△ABD的周长少2 cm,求AC的长度.24.(教材P12例2变式)如图,轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,求∠A的度数.25.如图,△ABC中,∠ACB=∠ABC,∠A=40°,P是△ABC内一点,且∠1=∠2,求∠BPC的度数.26.(临沧月考)如图,在△ABC中,∠C=90°,外角∠EAB,∠ABF的平分线AD,BD相交于点D,求∠D的度数.27.(10分)如图,在△ABC中,∠A=12∠C=12∠ABC,BD是∠ABC的平分线,求∠A及∠BDC的度数.28.(10分)已知等腰三角形的周长是24 cm,一腰上的中线把三角形分成两个三角形,两个三角形的周长的差是3 cm.求等腰三角形各边的长.29.(14分)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE =BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.30.如图,AD是△ABC的高,E为AD上的一点,且BE=CE.求证:直线AE是BC 的垂直平分线.31.已知点A(a+2b,1),B(-2,2a-b).(1)若点A,B关于x轴对称,求a,b的值;(2)若点A,B关于y轴对称,求a+b的值.32.(12分)如图,AD是∠BAC的平分线,DE⊥AB,DF⊥AC,垂足分别为E,F,连接EF,EF交AD于点G.求证:AD垂直平分EF.33.如图,已知△ABC是边长为6 cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC匀速运动,其中点P运动的速度是1 cm/s,点Q运动的速度是2 cm/s,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t(s),当t=2时,判断△BPQ的形状,并说明理由.34.(昭通期末)一个等腰三角形的周长为25 cm.(1)已知腰长是底边长的2倍,求各边的长;(2)已知其中一边的长为6 cm.求其他两边的长.35.若等腰三角形一腰上的中线将三角形分周长为9 cm和12 cm两部分,求这个等腰三角形的底和腰的长.36.等腰三角形一腰上的高与另一腰的夹角为36°,求等腰三角形的底角的度数.。
人教版八年级数学上册 第12章 全等三角形 单元综合测试(配套练习附答案)
![人教版八年级数学上册 第12章 全等三角形 单元综合测试(配套练习附答案)](https://img.taocdn.com/s3/m/c8996a0b700abb68a882fb96.png)
故答案为:70°.
【点睛】本题主要考查全等三角形的性质和三角形内角和和外角性质,解决本题的关键是要熟练掌握全等三角形的性质和三角形的内角和和外角性质.
12.如图,在△ABC中,∠C=90°,∠B=20°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于P,连接AP并延长交BC于点D,则∠ADB=________.
【答案】7
【解析】
分析】
先过点P作PF⊥AB于G,由于∠ABC和∠ACB的外角平分线BP,CP交于P,根据角平分线的性质可得PF=PG=PE=2,根据 ,可得 ,解得BC=2,再根据△ABC的周长为11,可得AC+AB=11-2=9,继而可得 = =7.
【详解】如图,
过点P作PF⊥AB于G,
因为∠ABC和∠ACB的外角平分线BP,CP交于P,
【点睛】本题主要考查全等图形的定义,解决本题的关键是要熟练掌握全等图形的定义.
2.如图,在直角坐标系中,AD是Rt△OAB的角平分线,点D的坐标是(0,-3),那么点D到AB的距离是( )
A. 3B. -3C. 2D. -2
【答案】A
【解析】
【分析】
过点D作DE⊥AB于E,由于AD是∠OAB的平分线,根据角平分线上的点到角两边的距离相等可得:DE=OD=3,即点D到AB的距离是3.
【答案】16
【解析】
四边形FBCD周长=BC+AC+DF;当 时,四边形FBCD周长最小为5+6+5=16
三、解答题(共52分)
17.如图,已知 ,用尺规过点 作直线 ,使得 .(保留作图痕迹,不写做法)
【答案】见解析
人教版数学八年级上册《三角形》单元综合测试卷(附答案)
![人教版数学八年级上册《三角形》单元综合测试卷(附答案)](https://img.taocdn.com/s3/m/471bd52633d4b14e84246882.png)
人教版数学八年级上学期《三角形》单元测试时间:90分钟总分: 100一、选择题1. 能将三角形面积平分的是三角形的()A. 角平分线B. 高C. 中线D. 外角平分线2. 已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()A. 13cmB. 6cmC. 5cmD. 4cm3. 三角形一个外角小于与它相邻的内角,这个三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 属于哪一类不能确定4. 若一个多边形每一个内角都是135º,则这个多边形的边数是()A. 6B. 8C. 10D. 125. 某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有()A. 4种B. 3种C. 2种D. 1种6. 一个多边形的外角和是内角和的一半,则它是()边形A. 7B. 6C. 5D. 47. 如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S△DGF的值为()学*科*网...学*科*网...A. 4cm2B. 6cm2C. 8cm2D. 9cm28. 已知△ABC中,∠A=20°,∠B=∠C,那么三角形△ABC是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 正三角形9. 试通过画图来判定,下列说法正确的是()A. 一个直角三角形一定不是等腰三角形B. 一个等腰三角形一定不是锐角三角形C. 一个钝角三角形一定不是等腰三角形D. 一个等边三角形一定不是钝角三角形10. 如图,BD平分∠ABC,CD⊥BD,D为垂足,∠C=55°,则∠ABC的度数是()A. 35°B. 55°C. 60°D. 70°二、填空题11. 如果点G是△ABC的重心, AG的延长线交BC于点D, GD=12, 那么AG=________.12. 如图,将三角尺的直角顶点放在直尺的一边上,∠1=,∠2=,则∠3=_____________°.13. 若一个多边形的内角和比外角和大360°,则这个多边形的边数为_______________.14. 如图,△ABC中,∠ACB>90°,AD⊥BC,BE⊥AC,CF⊥AB,垂足分别为D、E、F,则线段___是△ABC中AC边上的高.15. 一个多边形的内角和是外角和的2倍,则这个多边形的边数为___.16. 十边形的外角和是_____°.17. 若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.18. 如图,⊿ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =_________度。
人教版数学八年级上学期《三角形》单元综合检测题(含答案)
![人教版数学八年级上学期《三角形》单元综合检测题(含答案)](https://img.taocdn.com/s3/m/edf1000aaef8941ea66e05ef.png)
C.∵3+4=7<8,∴三条线段不能构成三角形,故本选项错误;
D.∵4A+4A=8A,∴三条线段不能构成三角形,故本选项错误.
故选B.
[点睛]本题考查了三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.
A. 8Cm和10CmB. 6Cm和10CmC. 6Cm和8CmD. 10Cm和12Cm
[答案]D
[解析]
根据平行四边形的对角线互相平分,所选择作为对角线长度的一半与已知边长需要构成三角形的边长,必须满足三角形的两边之和大于第三边,由此逐一排除;
A、取对角线的一半与已知边长,得4,5,10,不能构成三角形,舍去;
人教版八年级上册《三角形》单元测试卷
(时间:120分钟 满分:150分)
一、单选题(共10题;共30分)
1.下列长度的三条线段能组成三角形的是()
A.5,6,11B.5,6,10C.3,4,8D.4A,4A,8A(A>0)
2.一位同学用三根木棒两两相交拼成如下图形,则其中符合三角形概念的是()
A B. C. D.
5.下列长度的四根木棒中,能与 长的两根木棒首尾相接成一个三角形的是()
A. B. C. D.
6.直角三角形两锐角 平分线相交所夹的钝角为()
A. 125°B. 135°C. 145°D. 150°
7.平行四边形中一边长为10Cm,那么它的两条对角线长度可以是
A. 8Cm和10CmB. 6Cm和10CmC. 6Cm和8CmD. 10Cm和12Cm
∵正方形的内角=360°÷4=90°,360°÷90°=4,即4个正方形可以铺满地面一个点,∴正方形可以铺满地面;
2023学年八年级数学上册高分突破必练专题(人教版) 三角形综合能力提升训练(原卷版)
![2023学年八年级数学上册高分突破必练专题(人教版) 三角形综合能力提升训练(原卷版)](https://img.taocdn.com/s3/m/056d7865814d2b160b4e767f5acfa1c7aa0082d1.png)
三角形综合能力提升训练一.选择题(共17小题)1.某零件的形状如图所示,按照要求∠B=20°,∠BCD=110°,∠D=30°,那么∠A 的度数是()A.50°B.60°C.70°D.80°2.如图,在△ABC中,∠ACB=80°,点D在AB上,将△ABC沿CD折叠,点B落在边AC的点E处.若∠ADE=24°,则∠A的度数为()A.24°B.32°C.38°D.48°3.如图,BP平分∠ABC交CD于点F,DP平分∠ADC交AB于点E,若∠A=45°,∠P =40°,则∠C的度数为()A.30°B.35°C.40°D.45°4.如图,已知AB∥DC,Rt△FEG直角顶点在CD上,已知∠FEC=35°,则∠GHB=()A.35°B.45°C.55°D.65°5.如图,△ABC中,CD平分∠ACB,点M在线段CD上,且MN⊥CD交BA的延长线于点N.若∠B=30°,∠CAN=96°,则∠N的度数为()A.22°B.27°C.30°D.37°6.如图①、②中,∠A=42°,∠1=∠2,∠3=∠4,则∠O1+∠O2的度数为()A.111B.174C.153D.1327.如图,∠AOB=60°,点M、N分别在OA、OB上运动(不与点O重合),ME平分∠AMN,ME的反向延长线与∠MNO的平分线交于点F,在M、N的运动过程中,∠F的度数()A.变大B.变小C.等于45°D.等于30°8.如图,BE、CF都是△ABC的角平分线,且∠BDC=115°,则∠A=()A.50°B.45°C.65°D.70°9.如图,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC的平分线.∠BAC=50°,∠ABC=60°.则∠DAE+∠ACD等于()A.75°B.80°C.85°D.90°10.如图,在△ABC中,设∠A=x°,∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC 与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2021BC与∠A2021CD的平分线相交于点A2022,得∠A2022,则∠A2022是()度.A.x B.x C.x D.x11.如图,在△ABC中,∠C=90°,∠B=70°,点D、E分别在AB、AC上,将△ADE 沿DE折叠,使点A落在点F处.则∠BDF﹣∠CEF=()A.20°B.30°C.40°D.50°12.如图,在△ABC中,∠A=60°,∠B=70°,CD是∠ACB的平分线,CH⊥AB于点H,则∠DCH的度数是()A.5°B.10°C.15°D.20°13.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AC上一点,将△ABD沿线段BD翻折,使得点A落在A'处,若∠A'BC=30°,则∠CBD=()A.5°B.10°C.15°D.20°14.如图,图①是四边形纸条ABCD,其中AB∥CD,E,F分别为AB、CD上的两个点,将纸条ABCD沿EF折叠得到图②,再将图②沿DF折叠得到图③,若在图③中,∠FEM =24°,则∠EFC为()A.48°B.72°C.108°D.132°15.如图,在△ABC中,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,∠D=15°,则∠A的度数为()A.30°B.45°C.20°D.22.5°16.如图,点D在△ABC内,且∠BDC=120°,∠1+∠2=55°,则∠A的度数为()A.50°B.60°C.65°D.75°17.如图,∠ABD,∠ACD的角平分线交于点P,若∠A=50°,∠D=10°,则∠P的度数为()A.15°B.20°C.25°D.30°二.填空题(共5小题)18.如图,将△ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=120°,则∠1+∠2的度数为.19.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=°.20.在△ABC中,∠ABC,∠ACB的平分线交于点O,∠ACB的外角平分线所在直线与∠ABC的平分线相交于点D,与∠ABC的外角平分线相交于点E,则下列结论一定正确的是.(填写所有正确结论的序号)①;②;③∠E=∠A;④∠E+∠DCF=90°+∠ABD.21.用一条宽度相等的足够长的纸条打一个结(如图1所示),然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE.图中,∠BAC=度.22.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n个图形需要黑色棋子的个数是.三.解答题(共8小题)23.如图所示,D是△ABC边BC的中点,E是AD上一点,满足AE=BD=DC,F A=FE.求∠ADC的度数.24.在△ABC中,AE平分∠BAC,∠C>∠B.(1)课本原题再现:如图1,若AD⊥BC于点D,∠ABC=40°,∠ACB=60°,求∠EAD的度数.(写出解答过程)(2)如图1,根据(1)的解答过程,猜想并写出∠B、∠C、∠EAD之间的数量关系.(3)小明继续探究,如图2在线段AE上任取一点P,过点P作PD⊥BC于点D,请尝试写出∠B、∠C、∠EPD之间的数量关系,并说明理由.25.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)求∠AFC的度数;(2)求∠EDF的度数.26.如图,将长方形纸片ABCD(四个内角均为直角,两组对边分别平行)沿EF折叠后,点C、D分别落在点M、N的位置,EN的延长线交BC于点G.(1)若∠EFG=68°,求∠AEN、∠BGN的度数;(2)若点P是射线BA上一点(点P不与点A重合),过点P作PH⊥EG于H,PQ平分∠APH,PQ与EF有怎样的位置关系?为什么?27.(1)阅读并填空:如图①,BD、CD分别是△ABC的内角∠ABC、∠ACB的平分线.试说明∠D=90°+∠A的理由.解:因为BD平分∠ABC(已知),所以∠1=(角平分线定义).同理:∠2=.因为∠A+∠ABC+∠ACB=180°,∠1+∠2+∠D=180°,(),所以∠D=(等式性质).即:∠D=90°+∠A.(2)探究,请直接写出结果,并任选一种情况说明理由:(i)如图②,BD、CD分别是△ABC的两个外角∠EBC、∠FCB的平分线.试探究∠D 与∠A之间的等量关系.答:∠D与∠A之间的等量关系是.(ii)如图③,BD、CD分别是△ABC的一个内角∠ABC和一个外角∠ACE的平分线.试探究∠D与∠A之间的等量关系.答:∠D与∠A之间的等量关系是.28.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.(1)若∠ABC=75°,∠ACB=45°,求∠D的度数;(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.29.a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为18,求c的值.30.问题情景如图1,△ABC中,有一块直角三角板PMN放置在△ABC上(P点在△ABC 内),使三角板PMN的两条直角边PM、PN恰好分别经过点B和点C.试问∠ABP与∠ACP是否存在某种确定的数量关系?(1)特殊探究:若∠A=50°,则∠ABC+∠ACB=度,∠PBC+∠PCB=度,∠ABP+∠ACP=度;(2)类比探索:请探究∠ABP+∠ACP与∠A的关系.(3)类比延伸:如图2,改变直角三角板PMN的位置;使P点在△ABC外,三角板PMN 的两条直角边PM、PN仍然分别经过点B和点C,(2)中的结论是否仍然成立?若不成立,请直接写出你的结论.。
人教版八年级数学上册同步练习题 第十一章三角形 11.1与三角形有关的线段
![人教版八年级数学上册同步练习题 第十一章三角形 11.1与三角形有关的线段](https://img.taocdn.com/s3/m/4c46b9c45f0e7cd18525362e.png)
人教版八年级数学上册同步练习题 第十一章三角形 11.1与三角形有关的线段一、选择题1.三角形一边上的中线把原三角形一定分成两个 ( )A .形状相同的三角形B .面积相等的三角形C .周长相等的三角形D .直角三角形2.有四根长度分别为3,4,5,x (x 为正整数)的木棒,从中任取三根,首尾顺次相接都能组成一个三角形则组成的三角形的周长( )A .最小值是11B .最小值是12C .最大值是14D .最大值是153.已知三角形的两边分别为1和4,第三边长为整数 ,则该三角形的周长为( )A .7B .8C .9D .104.已知AD 是△ABC 的边BC 上的中线,AB=12,AC=8,则边BC 及中线AD 的取值范围是()A .420210BC AD <<,<<B .420420BC AD <<,<<C .210210BC AD <<,<< D .210420BC AD <<,<<5.下列关于三角形的高线的说法正确的是( )A .直角三角形只有一条高线B .钝角三角形的高线都在三角形的外部C .只有一条高线在三角形内部的三角形一定是钝角三角形D .钝角三角形的三条高线所在的直线的交点一定在三角形的外部6.已知等腰三角形的两条边长为1( (A .B .C .D .7.在△ABC 中,AB=6,AC=8,则BC 边上中线AD 的取值范围为( )A .2<AD <14B .1<AD <7C .6<AD <8 D .12<AD <168.已知一个三角形的两边长分别为3和4(则第三边的长不可能...的是( (A .2B .3C .4D .19.不是利用三角形稳定性的是A .自行车的三角形车架B .三角形房架C .照相机的三角架D .矩形门框的斜拉条10.已知一个三角形的三条边长均为正整数.若其中仅有一条边长为5,它又不是最短边,则满足条件的三角形有( ) A .4B .6C .8D .10二、填空题11.若三角形的两边长分别为6和7(则第三边a 的取值范围是_____(12.AD 是△ABC 的边BC 上的中线,AB=6,AC=4,则边BC 的取值范围是________,中线AD 的取值范围是________. 13.一个三角形3条边长分别为xcm 、(x+1)cm 、(x+2)cm ,它的周长不超过39cm ,则x 的取值范围是_____. 14.三角形的两边长分别是2和3,若第三边的长是奇数,则第三边的长为_____;若第三边的长是偶数,则三角形的周长为______,15.三角形纸片上有100个点,连同三角形的顶点共103个点,其中任意三点都不共线,现以这些点为顶点作三角形,并把纸片剪成小三角形,则这样的三角形共有_______个,三、解答题16.不等边ABC ∆两条高的长度分别为4和12,若第三条高的长度也是整数,求第三条高的长.17.把一条长为18米的细绳围成一个三角形,其中两边长分别为x 米和4米.(1)求x 的取值范围;(2)若围成的三角形是等腰三角形,求x 的值.18.如图,在(ABC 中(AB >BC),AC =2BC ,BC 边上的中线AD 把(ABC 的周长分成60和40两部分,求AC 和AB 的长.19.已知a ,b ,c 分别为△ABC 的三条边,且满足23a b c +=-,26a b c -=-,a b >.(1)求c 的取值范围.(2)若ABC ∆的周长为12,求c 的值.20.已知AD 是△ABC 的高,(BAD=72°,(CAD=21°,求∠BAC 的度数.21.已知三角形三条边分别为a+4(a+5(a+6,求a 的取值范围.22.在△ABC 中,AB=AC ,AC 上的中线BD 把△ABC 的周长分别24和18两部分,求三角形三边的长.23.若△ABC 中两边长之比为2:3,三边都是整数且周长为18cm ,求各边的长【参考答案】1.B 2.D 3.C 4.A 5.D 6.B 7.B8.D 9.C 10.D11.1<a<1312.2<BC <10; 1<AD <513.1<x≤1214. 3 7或915.20116.第三条高的长为5.17.(1)5<x<9(2)x=7.18.AC=48;AB=28.19.(1)36c <<;(2)5c =.20.93°; 51°21.a((322.16,16,10和12,12,18.23.各边的长分别为4cm ,6cm ,8cm .。
人教版八年级数学上册《全等三角形》练习题
![人教版八年级数学上册《全等三角形》练习题](https://img.taocdn.com/s3/m/9b857fb884868762cbaed528.png)
第十一章全等三角形测试1全等三角形的概念和性质学习要求课堂学习检测一、填空题1._____的两个图形叫做全等形.2.把两个全等的三角形重合到一起,_____叫做对应顶点;叫做对应边;_____叫做对应角.记两个三角形全等时,通常把表示_____的字母写在_____上.3.全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质.4.如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.图1-15.如图1-1所示,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠ABC=_____(2)如果AC=DB,请指出其他的对应边_____;(3)如果ΔAOB≌ΔDOC,请指出所有的对应边_____,对应角_____.图1-2图1-36.如图1-2,已知△ABE≌△DCE,AE=2 cm,BE=1.5 cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.7.一个图形经过平移、翻折、旋转后,_____变化了,但__________都没有改变,即平移、翻折、旋转前后的图形二、选择题8.已知:如图1-3,ΔABD≌CDB,若AB∥CD,则AB的对应边是()A.DB B.BC C.CD D.AD9.下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4B.3C.2D.110.如图1-4,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD=6,AD =4,那么BC等于()A.6 B.5C.4D.无法确定图1-4 图1-5 图1-611.如图1-5,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC12.如图1-6,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°三、解答题13.已知:如图1-7所示,以B为中心,将Rt△EBC绕B点逆时针旋转90°得到△ABD,若∠E=35°,求∠ADB的度数.图1-7图1-8图1-9综合、运用、诊断一、填空题14.如图1-8,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______.15.已知:如图1-9,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.拓展、探究、思考16.如图1-10,AB⊥BC,ΔABE≌ΔECD.判断AE与DE的关系,并证明你的结论.图1-10测试2 三角形全等的条件(一)学习要求1.理解和掌握全等三角形判定方法1——“边边边”,2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.课堂学习检测一、填空题1.判断_____的_____ 叫做证明三角形全等.2.全等三角形判定方法1——“边边边”(即______)指的是________________________________________________________________________________.3.由全等三角形判定方法1——“边边边”可以得出:当三角形的三边长度一定时,这个三角形的_____也就确定了.图2-1图2-2图2-34.已知:如图2-1,△RPQ 中,RP =RQ ,M 为PQ 的中点. 求证:RM 平分∠PRQ .分析:要证RM 平分∠PRQ ,即∠PRM =______, 只要证______≌______证明:∵ M 为PQ 的中点(已知), ∴______=______在△______和△______中,⎪⎩⎪⎨⎧===),______(____________,),(PM RQ RP 已知∴______≌______( ). ∴ ∠PRM =______(______). 即RM .5.已知:如图2-2,AB =DE ,AC =DF ,BE =CF . 求证:∠A =∠D .分析:要证∠A =∠D ,只要证______≌______. 证明:∵BE =CF ( ), ∴BC =______.在△ABC 和△DEF 中,⎪⎩⎪⎨⎧===______,______,______,AC BC AB ∴______≌______( ). ∴ ∠A =∠D (______).6.如图2-3,CE =DE ,EA =EB ,CA =DB , 求证:△ABC ≌△BAD .证明:∵CE =DE ,EA =EB ,∴______+______=______+______, 即______=______. 在△ABC 和△BAD 中, =______(已知),⎪⎩⎪⎨⎧===),______(______),______(______),______(______已证已知 ∴△ABC ≌△BAD ( ).综合、运用、诊断一、解答题7.已知:如图2-4,AD=BC.AC=BD.试证明:∠CAD=∠DBC.图2-48.画一画.已知:如图2-5,线段a、b、c.求作:ΔABC,使得BC=a,AC=b,AB=c.图2-59.“三月三,放风筝”.图2-6是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学的知识证明.图2-6拓展、探究、思考10.画一画,想一想:利用圆规和直尺可以作一个角等于已知角,你能说明其作法的理论依据吗?测试3 三角形全等的条件 (二)学习要求1.理解和掌握全等三角形判定方法2——“边角边”.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等图3-1图3-2课堂学习检测一、填空题1.全等三角形判定方法2——“边角边” (即______)指的是_________________________________________________________________________________. 2.已知:如图3-1,AB 、CD 相交于O 点,AO =CO ,OD =OB . 求证:∠D =∠B .分析:要证∠D =∠B ,只要证______≌______ 证明:在△AOD 与△COB 中,⎪⎩⎪⎨⎧=∠=∠=),______(),______(______),(OD CO AO∴ △AOD ≌△______ ( ). ∴ ∠D =∠B (______).3.已知:如图3-2,AB ∥CD ,AB =CD .求证:AD ∥BC . 分析:要证AD ∥BC ,只要证∠______=∠______, 又需证______≌______. 证明:∵ AB ∥CD ( ), ∴ ∠______=∠______ ( ), 在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ). ∴ ∠______=∠______ ( ). ∴ ______∥______( ).综合、运用、诊断一、解答题4.已知:如图3-3,AB=AC,∠BAD=∠CAD.求证:∠B=∠C.图3-35.已知:如图3-4,AB=AC,BE=CD.求证:∠B=∠C.图3-46.已知:如图3-5,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.图3-5拓展、探究、思考7.如图3-6,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.图3-6测试4 三角形全等的条件 (三)学习要求1.理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.课堂学习检测一、填空题 1.(1)全等三角形判定方法3——“角边角”(即______)指的是_________________________________________________________________________________; (2)全等三角形判定方法4——“角角边” (即______)指的是_________________________________________________________________________________.图4-12.已知:如图4-1,PM =PN ,∠M =∠N .求证:AM =BN . 分析:∵PM =PN ,∴ 要证AM =BN ,只要证P A =______, 只要证______≌______.证明:在△______与△______中,⎪⎩⎪⎨⎧∠=∠=∠=∠),______(______),______(______),______(______∴ △______≌△______ ( ). ∴P A =______ ( ). ∵PM =PN ( ),∴PM -______=PN -______,即AM =______.3.已知:如图4-2,AC BD .求证:OA =OB ,OC =OD . 分析:要证OA =OB ,OC =OD ,只要证______≌______. 证明:∵ AC ∥BD ,∴ ∠C =______. 在△______与△______中,⎪⎩⎪⎨⎧==∠∠=∠),______(______),______(),______(C AOC∴______≌______ ( ). ∴ OA =OB ,OC =OD ( ).图4-2二、选择题4.能确定△ABC ≌△DEF 的条件是 ( ) A .AB =DE ,BC =EF ,∠A =∠E B .AB =DE ,BC =EF ,∠C =∠E C .∠A =∠E ,AB =EF ,∠B =∠D D .∠A =∠D ,AB =DE ,∠B =∠E5.如图4-3,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC 全等的图形是 ( )图4-3A .甲和乙B .乙和丙C .只有乙D .只有丙6.AD 是△ABC 的角平分线,作DE ⊥AB 于E ,DF ⊥AC 于F ,下列结论错误的是( ) A .DE =DF B .AE =AF C .BD =CD D .∠ADE =∠ADF 三、解答题7.阅读下题及一位同学的解答过程:如图4-4,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,图4-4⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COB AOD OB OA C A∴ △AOD ≌△COB (ASA ).问:这位同学的回答及证明过程正确吗?为什么?综合、应用、诊断8.已知:如图4-5,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB . 求证:AD =AC .图4-59.已知:如图4-6,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ . 求证:HN =PM.图4-610.已知:AM 是ΔABC 的一条中线,BE ⊥AM 的延长线于E ,CF ⊥AM 于F ,BC =10,BE=4.求BM 、CF 的长.拓展、探究、思考11.填空题(1)已知:如图4-7,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E .欲证明BD =CE ,需证明Δ______≌△______,理由为______. (2)已知:如图4-8,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件______,证明全等的理由是______;或添加条件______,证明全等的理由是______;也可以添加条件______,证明全等的理由是______.图4-7 图4-812.如图4-9,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?图4-913.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.图4-10(2)如图4-11,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.图4-11测试5 直角三角形全等的条件学习要求掌握判定直角三角形全等的一种特殊方法一“斜边、直角边”(即“HL”),能熟练地用判定一般三角形全等的方法及判定直角三角形全等的特殊方法判定两个直角三角形全等.课堂学习检测一、填空题1.判定两直角三角形全等的“HL”这种特殊方法指的是_____.2.直角三角形全等的判定方法有_____ (用简写).3.如图5-1,E、B、F、C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则ΔABC≌_____,全等的根据是_____.图5-14.判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和这个角的邻边对应相等;()(3)一个锐角和斜边对应相等;()(4)两直角边对应相等;()(5)一条直角边和斜边对应相等.()二、选择题5.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等6.如图5-2,AB=AC,AD⊥BC于D,E、F为AD上的点,则图中共有()对全等三角形.A.3B.4C.5D.6图5-2三、解答题7.已知:如图5-3,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC:(2)AD∥BC.图5-38.已知:如图5-4,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC;图5-4综合、运用、诊断9.已知:如图5-5,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.图5-510.已知:如图5-6,DE⊥AC,BF⊥AC,AD=BC,DE=BF.求证:AB∥DC.图5-611.用三角板可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON(如图5-7),再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB,请你说出其中的道理.图5-7拓展、探究、思考12.下列说法中,正确的画“√”;错误的画“×”,并作图举出反例.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()13.(1)已知:如图5-8,线段AC、BD交于O,∠AOB为钝角,AB=CD,BF⊥AC于F,DE⊥AC于E,AE=CF.求证:BO=DO.图5-8(2)若∠AOB为锐角,其他条件不变,请画出图形并判断(1)中的结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由.测试6 三角形全等的条件(四)学习要求能熟练运用三角形全等的判定方法进行推理并解决某些问题.课堂学习检测一、填空题1.两个三角形全等的判定依据除定义外,还有①_____;②_____;③_____;④_____;⑤_____.2.如图6-1,要判定ΔABC≌ΔADE,除去公共角∠A外,在下列横线上写出还需要的两个条件,并在括号内写出由这些条件直接判定两个三角形全等的依据.(1)∠B=∠D,AB=AD();(2)_____,_____();(3)_____,_____();(4)_____,_____();(5)_____,_____();(6)_____,_____();(7)_____,_____().图6-13.如图6-2,已知AB⊥CF,DE⊥CF,垂足分别为B,E,AB=DE.请添加一个适当条件,使ΔABC≌ΔDEF,并说明理由添加条件:_________________________________________________________________,理由是:___________________________________________________________________.图6-24.在ΔABC和ΔDEF中,若∠B=∠E=90°,∠A=34°,∠D=56°,AC=DF,贝ΔABC和ΔDEF是否全等?答:______,理由是______.二、选择题5.下列命题中正确的有()个①三个内角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和一边分别相等的两个三角形全等;④等底等高的两个三角形全等.A.1B.2C.3D.46.如图6-3,AB=CD,AD=CB,AC、BD交于O,图中有()对全等三角形.A.2B.3C.4D.5图6-37.如图6-4,若AB =CD ,DE =AF ,CF =BE ,∠AFB =80°,∠D =60°,则∠B 的度数是 ( ) A .80° B .60° C .40° D .20°8.如图6-5,△ABC 中,若∠B =∠C ,BD =CE ,CD =BF ,则∠EDF = ( ) A .90°-∠A B .A ∠-2190oC .180°-2∠AD .A ∠-2145o图6-4 图6-5 图6-69.下列各组条件中,可保证△ABC 与△A 'B 'C '全等的是 ( ) A .∠A =∠A ',∠B =∠B ',∠C =∠C ' B .AB =A 'B ',AC =A 'C ',∠B =∠B ' C .AB =C 'B ',∠A =∠B ',∠C =∠C ' D .CB =A 'B ',AC =A 'C ',BA =B 'C '10.如图6-6,已知MB =ND ,∠MBA =∠NDC ,下列条件不能判定△ABM ≌△CDN 的是( )A .∠M =∠NB .AB =CDC .AM =CND .AM ∥CN综合、运用、诊断一、解答题11.已知:如图6-7,AD =AE ,AB =AC ,∠DAE =∠BAC .求证:BD =CE .图6-712.已知:如图6-8,AC 与BD 交于O 点,AB ∥DC ,AB =DC .(1)求证:AC 与BD 互相平分;图6-8(2)若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.13.如图6-9,E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?图6-9拓展、探究、思考14.如图6-10,△ABC的三个顶点分别在2×3方格的3个格点上,请你试着再在格点上找出三个点D、E、F,使得△DEF≌△ABC,这样的三角形你能找到几个?请一一画出来.图6-1015.请分别按给出的条件画△ABC(标上小题号,不写作法),并说明所作的三角形是否唯一;如果有不唯一的,想一想,为什么?①∠B=120°,AB=2cm,AC=4cm;②∠B=90°,AB=2cm,AC=3cm;③∠B=30°,AB=2cm,AC=3cm;④∠B=30°,AB=2cm,AC=2cm;⑤∠B=30°,AB=2cm,AC=1cm;⑥∠B=30°,AB=2cm,AC=1.5cm.测试7三角形全等的条件(五)学习要求能熟练运用三角形全等的知识综合解决问题.课堂学习检测解答题1.如图7-1,小明与小敏玩跷跷板游戏.如果跷跷板的支点O(即跷跷板的中点)到地面的距离是50 cm,当小敏从水平位置CD下降40 cm时,小明这时离地面的高度是多少?请用所学的全等三角形的知识说明其中的道理.图7-12.如图7-2,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打开,墙壁厚是35 cm,B点与O点的铅直距离AB长是20 cm,工人师傅在旁边墙上与AO水平的线上截取OC=35 cm,画CD⊥OC,使CD=20 cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.图7-23.如图7-3,公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB、BC、CD三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试判断三只石凳E,M,F恰好在一直线上吗?为什么?图7-34.在一池塘边有A、B两棵树,如图7-4.试设计两种方案,测量A、B两棵树之间的距离.方案一:方案二:图7-4测试8 角的平分线的性质(一)学习要求1.掌握角平分线的性质,理解三角形的三条角平分线的性质.2.掌握角平分线的判定及角平分线的画法.课堂学习检测一、填空题1._____叫做角的平分线.2.角的平分线的性质是___________________________.它的题设是_________,结论是_____.3.到角的两边距离相等的点,在_____.所以,如果点P到∠AOB两边的距离相等,那么射线OP是_____.4.完成下列各命题,注意它们之间的区别与联系.(1)如果一个点在角的平分线上,那么_____;(2)如果一个点到角的两边的距离相等,那么_____;(3)综上所述,角的平分线是_____的集合.5.(1)三角形的三条角平分线_____它到___________________________.(2)三角形内....,到三边距离相等的点是_____.6.如图8-1,已知∠C=90°,AD平分∠BAC,BD=2CD,若点D到AB的距离等于5cm,则BC的长为_____cm.图8-1二、作图题7.已知:如图8-2,∠AOB.求作:∠AOB的平分线OC.作法:图8-28.已知:如图8-3,直线AB及其上一点P.求作:直线MN,使得MN⊥AB于P.作法:图8-39.已知:如图8-4,△AB C.求作:点P,使得点P在△ABC内,且到三边AB、BC、CA的距离相等.作法:图8-4综合、运用、诊断一、解答题10.已知:如图8-5,△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.图8-511.已知:如图8-6,CD⊥AB于D,BE⊥AC于E,CD、BE交于O,∠1=∠2.求证:OB=OC.图8-612.已知:如图8-7,△ABC中,∠C=90°,试在AC上找一点P,使P到斜边的距离等于PC.(画出图形,并写出画法)图8-7拓展、探究、思考13.已知:如图8-8,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?图8-814.已知:如图8-9,四条直线两两相交,相交部分的线段构成正方形ABCD.试问:是否存在到至少三边所在的直线的距离都相等的点?若存在,请找出此点,这样的点有几个?若不存在,请说明理由.图8-9测试9 角的平分线的性质 (二)学习要求熟练运用角的平分线的性质解决问题.课堂学习检测一、选择题1.如图9-1,若OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论中错误的是 ( ) A .PC =PD B .OC =OD C .∠CPO =∠DPO D .OC =PC图9-12.如图9-2,在Rt ΔABC 中,∠C =90°,BD 是∠ABC 的平分线,交AC 于D ,若CD =n ,AB =m ,则ΔABD 的面积是( )A .mn 31B .mn 21C .mnD .2mn图9-2二、填空题3.已知:如图9-3,在Rt ΔABC 中,∠C =90°,沿着过点B 的一条直线BE 折叠ΔABC ,使C 点恰好落在AB 边的中点D 处,则∠A 的度数等于_____.图9-34.已知:如图9-4,在ΔABC中,BD、CE分别平分∠ABC、∠ACB,且BD、CE交于点O,过O作OP⊥BC于P,OM⊥AB于M,ON⊥AC于N,则OP、OM、ON的大小关系为_____.图9-4三、解答题5.已知:如图9-5,OD平分∠POQ,在OP、OQ边上取OA=OB,点C在OD上,CM ⊥AD于M,CN⊥BD于N.求证:CM=CN.图9-56.已知:如图9-6,ΔABC的外角∠CBD和∠BCE的平分线BF、CF交于点F.求证:一点F必在∠DAE的平分线上.图9-67.已知:如图9-7,A、B、C、D四点在∠MON的边上,AB=CD,P为∠MON内一点,并且△P AB的面积与△PCD的面积相等.求证:射线OP是∠MON的平分线.图9-78.如图9-8,在ΔABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,若△BCD与△BCA的面积比为3∶8,求△ADE与△BCA的面积之比.图9-89.已知:如图9-9,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠DAB;(2)猜想AM与DM的位置关系如何?并证明你的结论.图9-9拓展、探究、思考10.已知:如图9-10,在ΔABC中,AD是△ABC的角平分线,E、F分别是AB、AC上一点,并且有∠EDF+∠EAF=180°.试判断DE和DF的大小关系并说明理由.图9-10。
人教版八年级数学上册 第11章 三角形几何证明专题练习题(无答案)
![人教版八年级数学上册 第11章 三角形几何证明专题练习题(无答案)](https://img.taocdn.com/s3/m/17fe1dfc195f312b3069a508.png)
C A B C DE P 图 ⑴八年级数学(上)几何证明专题练习题1、 已知:在⊿ABC 中,∠A=900,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。
2、 已知:在⊿ABC 中,∠A=900,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。
3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。
4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .5、在Rt △ABC 中,AB =AC ,∠BAC =90°,O 为BC 的中点。
(1)写出点O 到△ABC 的三个顶点A 、B 、C 的距离的大小关系(不要求证明);(2)如果点M 、N 分别在线段AB 、AC 上移动,在移动中保持AN =BM ,请判断△OMN 的形状,并证明你的结论。
6、如图,△ABC 为等边三角形,延长BC 到D ,延长BA 到E ,AE=BD , 连结EC 、ED ,求证:CE=DE7、如图,等腰三角形ABC 中,AB =AC ,∠A =90°,BD 平分∠ABC ,DE ⊥BC 且BC =10,求△DCE 的周长。
8.如图所示,已知AD 是∠BAC 的平分线,EF 垂直平分AD 交BC 的延长线于点F ,交AD 于点E ,连接AF ,求证:∠B=∠CAF 。
A B COM N9.如图所示,AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,连接EF ,EF 与AD 交于点G ,求证:AD 垂直平分EF 。
C10.如图所示,已知点D 是等边三角形ABC 的边BC 延长线上的一点,∠EBC=∠DAC ,CE ∥AB 。
人教版八年级上册数学 第十一单元 三角形 应用题练习题(无答案)
![人教版八年级上册数学 第十一单元 三角形 应用题练习题(无答案)](https://img.taocdn.com/s3/m/ea48ec61647d27284a73510f.png)
三角形应用题练习基础部分1、小颖要制作一个三角形木架,现有两根长度为8m 和5m 的木棒。
如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?2、如图,AD 是ABC ∆的中线,DE=2AE.若ABE ABC S cm S △△求,242=3、如图,已知ABC ∆中,ACB ABC ∠∠和 的角平分线BD,CE 相交于点 O,且A EBDCAο60=∠A 求的度数BOC ∠。
4、如图,在△ABC 中,AD ⊥BC,AE 是∠BAC 的平分线,已知∠C=420, ∠B=740,求∠AED 和∠DAE 的度数.5、一个零件的形状如图7-2-1所示,按规定,∠BAC=900, ∠B=210,∠C=200,检验工人量得∠BDC=1300,就断定这个零件不合格,运用所学知识说明不合格的理由.ABD EC4 AB EDCF1 2 3 ABD CE 126.如图7-2-1-4是一个大型模板,设计要求BA 与CD 相交成30°角,DA 与CB 相交成20°角,怎样通过测量∠A ,∠B ,∠C ,∠D 的度数,来检验模板是否合格?提高部分7、如图所示,△ABC 中,BD 是∠ABC 的平分线,DE//BC ,交AB 于点E ,∠A=60°,∠C=50°,求△BDE 各内角的度数.8、在△ABC 中,已知∠ABC =66°,∠ACB =54°,BE 是AC 上的高,CF 是AB 上的高,H 是BE 和CF 的交点,求∠ABE 、∠ACF 和∠BHC 的度数.E DCBA9、如图,在△ABC中,已知,∠B=∠C, ∠1=∠2, ∠3=∠4, ∠A=800,求∠EDF的度数10、如图,△ABC中,AD是BC上的高,AE平分∠BAC,∠B=75°,•∠C=45°,求∠DAE与∠AEC的度数.11、如图,已知,在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D.(1)若∠BAC=30°,求证:AD=BD;(2)若AP平分∠BAC且交BD于P,求∠BPA 的度数.12.在△ABC中,已知∠A=∠B=∠C,求∠A、∠B、∠C的度数.13.(探究题)(1)如图,在△ABC中,∠A=42°,∠ABC和∠ACB•的平分线相交于点D,求∠BDC的度数.(2)在(1)中去掉∠A=42°这个条件,请探究∠BDC和∠A之间的数量关系.1315。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形综合练习题
一、选择题
1.下列条件中,不能判定△ABC ≌△DEF 的是( )
A .∠A =∠D ,∠C =∠F ,AC =DF
B.∠A =∠D ,AB =DE ,BC =EF
C.AB =DE ,∠A =∠D = 80°,∠B =60°,∠F =40° D.∠C =∠F = 90°,AB =DE ,BC =EF
2.AD 是△ABC 的角平分线,从D 向AB 、AC 两边作垂线,垂足分别为E 、F ,那么下列结论中错误的是( ) A .DE =DF B .AE =AF C .BD =CD D .∠ADE =∠ADF
3.如图2,AB ⊥BC 于B ,CD ⊥BC 于C , AB =BC ,E 为BC 的中点,且AE ⊥BD 于F ,若CD =4cm ,则AB 的长度为( )
A .4cm
B .8cm
C .9cm
D .10cm
4..如图3,已知点E 在△ABC 的外部,点D 在BC 边上,DE 交AC 于F ,若∠1=∠2=∠3,AC =AE ,则有( )
A .△ABD ≌△AFD
B .△AFE ≌△AD
C C .△AEF ≌△DFC
D .△ABC ≌△AD
E 二、填空题.
.5如图4,在△ABC 和△DEF 中,AB =DE ,∠B =∠E ,要使△ABC ≌△DEF ,•需要补充的一个条件是____________.
图2
图4
F
E D
C B A
图3
32
1
B A C
F
E
D
6.如图5,沿AM 折叠,使点D 落在BC 边上,如果AD =7cm ,DM =2cm ,∠DAM =20°,则AN 的长为 cm ,MN 长为 cm , ∠NAM 的度数是 °.
7. 如图6,四边形ABCD 中,CB =CD ,∠ABC =∠ADC =90°,∠BAC =35°,则∠BCD 等于__. 8.已知,在△ABC 中,AB =4,AC =2,AD 是BC 边上的中线,则AD 的取值范围是 . 三、解答题
9.已知:如图7,D 是△ABC 边AC 上的一点,DF 交AB 于E ,且DE =EF ,FB ∥AC , 求证:AE =BE .
10.已知:如图11-8,AB 、CD 相交于O ,AC ∥DB ,OC =OD ,AE =BF , 求证:CE =DF
A
B
C
N
M
D 图5
D
C
B A
图6
图7
A
B
C
F
E
D 图11-8
A
B
C
F
E
O D
11.已知:如图,在△ABC 中,BE ⊥AD ,CF ⊥AD ,且BE = CF ,请你判断AD 是△ABC 的中线还是角平分线?并说明理由.
12.已知:如图,∠A =∠D =90°,AC ,BD 交于O ,AC=BD ,求证:OB=OC .
13已知,如图,在ΔABC 中,∠ACB =90º,AC =BC ,AD ⊥DE 于D ,BE ⊥DE 于E ,若AD =2厘米,BE =3厘米,求DE 的长。
B
A
C F E
D
14如图,Rt △BDA 中,∠BDA =90°,BD =AD ,Rt △HDC ,∠HDC =90°,HD =CD ,请你猜想线段BH 与AC 的数量关系,并写出证明过程。
15. 如图给出下列论断:①DE =CE ,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明. 已知: , 求证: . 证明:
16.如图,在△ABC 中,∠ACB=90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .
(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD -BE ; (3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、 具有怎样的等量关系?请写出这个等量关系,并加以证明.
C
B
E
D
图1
N
M
A B
C
D
E M
N
图2 A
C
B
E
D N M
图3。