苏科版七年级数学上册第二章 有理数 单元测试卷5套卷

合集下载

【最新】苏科版七年级数学上册第二章有理数 测试卷(五)

【最新】苏科版七年级数学上册第二章有理数 测试卷(五)

新苏科版七年级数学上册第二章有理数 测试卷(五)一.选择题(2分×12=24分)1.|-2|的相反数是( ) A .-21B .21 C .2 D .-22.下列说法中,正确的是 ( )A .没有最大的正数,但有最大的负数B .最大的负整数是-1C .有理数包括正有理数和负有理数D .一个有理数的平方总是正数3.有理数的绝对值等于其本身的数有 ( ) A .1个B .2个C .0个D .无数个4.在数轴上与-3的距离等于4的点表示的数是( ) A .1B .-7C .1或-7D .无数个5.如果a ,b 均为有理数,且b<0,则a ,a-b ,a+b 的大小关系是 ( )A .a<a+b<a-bB .a<a-b<a+bC .a+b<a<a-bD .a-b<a<a+b6.a 、b 为两个有理数,若a+b<0,且ab>0,则有 ( ) A .a>0 b>0 B .a<0 b<0C .a ,b 异号D .a 、b 异号,且负数的绝对值较大7.设a 为最小的正整数,b 是最大的负整数,c 是绝对值最小的数,d 是倒数等于自身的有理数,则a-b+c-d 的值为 ( ) A .1B .3C .1或3D .2或-18.一个有理数与它的相反数积( ) A .一定为正数B .一定为负数C .一定不大于0D .一定不小于09.下列各数中:①-52与(-5)2;②(-3)3与-33;③-(-0.3)5与0.35;④0100与0200;⑤(-1)3与-(-1)2相等的共有几对?( ) A .1B .2C .4D .510.如图,则周长为 ( ) A .16B .18C .20D .2211.若a ,b 为有理数,有下列结论:(1)如果a≠b ,那么|a|≠|b|;(2)如果a>b ,那么|a|>|b|;(3)如果|a|>|b|,那么a>b ;(4)如果|a|≠|b|,那么a≠b 。

苏科版七年级上《第二章有理数》单元测试含答案.docx

苏科版七年级上《第二章有理数》单元测试含答案.docx

第二章有理数单元测试一. 单选题(共10题;共30分)1•下列各组数中:①・扌和(-5) 2;②(-3)彳和.宁;③.(-0.3) 5和0.35;④和0"°; ⑤(-1)彳和一 (-1) 2 .相等的共有( )4组 D 、5组2•计算-4x2的结果是(3.2015的倒数是() 6.下列说法屮,正确的是( )7. - 5的相反数是()A.5B.15C. - 15 8•已知 a>b 且 a+b=0,贝ij ()9•下列各数中,比・2小的数是(A. - 3B. - 1C.OD.210.如果向北走3m,记作+3m,那么・10m 表示()A 、向东走10mB 、向南走10mC 、向西走10mD 、向北走10m二、填空题(共8题;共39分)|a|=1, |b|=2, |c|=3,月.a>b>c,那么 a+b - c= _____________12. 在数・5, 1,・3, 5,・2中任选两个数相乘,其中最大的积是A.aVOB.b>0C.b<0D.a>0 A 、-6 B 、-2C 、D 、-8 A. -20152015 c 2015 D. 20154.计•算(1 - -孑-^)• ・§) • B 、5•计算( -25)三手的结果等于( B 、-5 C 、-15D 、A •所冇的冇理数都能用数轴上的点表示B •冇理数分为正数和负数C •符号不同的两个数互为相反数 D.两数相加和一定大于任何一个加数13. 若 a<0, b<0, |a|<|b|,则 a ・b ____________ 0.14. ・2倒数是 ______ ,・2绝对值是 _________15. 计算:1 ■ ( ■ 3) = _______16. 如果水库的水位高于正常水位Im 时,记作+lm,那么低于正常水位2m 时,应记作 ____________ . 17. 若 |a - 1|=4,则 a= ________ .18. 计算:-(+ j , - ( - 5.6) = ___________ ,・ | ・ 2|= ______ , 0+ (・ 7) = _________ ・ (・ 1)- I -3|= __________ •三、解答题(共6题;共31分)29.把下列各数分别填入相应的大括号里:・ 227 , 0,・(+0.18) , 34 }:};};}.20. 若|a|=5, |b|=3,① 求a+b 的值;② 若a+b<0,求a-b 的值.21. 若|a| =4, |b|=2,且 aVb,求 a - b 的值.-5.13, 5,・ | ・ 2|, +41, 正数集合{ 负数集合{ 整数集合{ 分数集合{22.小明在初三复习归纳吋发现初中阶段学习了三个非负数,分别是:①X;②a;③|a| (a是任意实数).于是他结合所学习的三个非负数的知识,自己编了一道题:已知(x+2) 2+|x+y・1|二0,求/的值•请你利用三个非负数的知识解答这个问题23•为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15, -4, +13, - 10, - 12, +3,- 13, - 17.(1)出车地记为0,最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.1升/千米,这天上午汽车共耗油多少升?24.如图是一个三阶幻方,由9个数构成并且横行,竖行和对角线上的和都相等,试填出空格屮的数.-3795答案解析一、单选题I、【答案】C【考点】有理数的乘方【解析】f分莎丿首先计算出各组数的值,然后作出判断.【解答】@-52=-25, (-5)2=25;②(-3)3=-27 ^-33=-27;③.(-0.3)乙0.00729 , 0.35=0.00729;④O ioo=o2oo=o;⑤(-1)3=-1,・(-1)2=-1.故②③④⑤组相等.故选C.(点讦口本题主要考查有理数乘方的运算.正数的任何次幕都是正数;负数的奇次帚是负数,负数的偶次幕是正数.2、【答案】D【考点】有理数的乘法【解析】【解答】解:原式二・(4x2)=-8,故选:D.【分析】根据两数相乘同号得正异号得负,再把绝对值相乘,可得答案.3、【答案】C【考点】倒数【解析】【解答】解:2015的倒数是诰故选:C.【分析】根据倒数的定义可得2015的倒数是祐 .4、【答案】C【解析】【解答】解:设44+4=a,原式二(.1 - a) (a+£ ) - (1 _ a - ) a=a+-^ - a2 - a _ a+a2+-^ a=-^ ,■ ■■故选c【分析】设4+j+^=a,原式变形后计算即可得到结果.5、【答案】C【考点】有理数的除法【解析】【解答】解:V (- 25) 号 (-25) x|=- 15, ・•・(・25)十扌的结果等于・15.故选:C.【分析】根据有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数,求出算式(-25) 的结果等于多少即可.6、【答案】A【考点】有理数的加法【解析】【解答】解:所有的有理数都能用数轴上的点表示,A正确;有理数分为正数、0和负数,B错误;・3和+2不是相反数,C错误;正数与负数相加,和小于正数,D错误;故选A.【分析】利用排除法求解.7、【答案】A【考点】相反数【解析】【解答】解:-5的相反数是5.故选A.【分析】根据相反数的定义直接求得结果.8、【答案】D【考点】有理数的加法【解析】【解答】解:Va>b a+b=O, Aa>0, b<0,故选:D.【分析】根据互为相反数两数之和为0,得到a与b互为相反数,即可做出判断.9、【答案】A【考点】有理数大小比较【解析】【解答】解:根据两个负数,绝对值大的反而小可知- 3<-2. 故选:A.【分析】先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比・2小的数是・3・10、【答案】B【考点】正数和负数【解析】【解答】解:如果向北走3m,记作+3m,南、北是两种相反意义的方向,那么-10m表示向南走10m;故选B.【分析】正数和负数是两种相反意义的量,如果向北走3m,记作+3m,即可得出-10m的意义.二、填空题11>【答案】2或0【考点】有理数的混合运算【解析】【解答】解:V|a|=l, |b|=2, |c|=3,・:a=±l, b=±2, c=±3,Va>b>c,a= - 1, b= - 2, c= - 3 xiK a=l, b= - 2, c= - 3,则a+b - c=2 或0.故答案为:2或0【分析】先利用绝对值的代数意义求出a, b及c的值,再根据a>b>c,判断得到各自的值,代入所求式子中计算即可得到结果.12、【答案】15【考点】有理数的乘法【解析】【解答】解:根据题意得:(・5) x (・3) "5,故答案为:15【分析】根据题意确定出积最大的即可.13、【答案】>【解析】【解答】解:Va<0, b<0, |a|<|b|A a ・ b>0.【分析】根据有理数的减法运算法则进行计算,结合绝对值的性质确定运算符号,再比较大小.14、【答案】2【考点】绝对值,倒数【解析】【解答】解:- 2的倒数为-*, - 2的绝对值为2. 故答案为■ * ; 2.【分析】分别根据倒数的定义以及绝刈值的意义即可得到答案.15、【答案】4【考点】有理数的减法【解析】【解答】解:(・3)=1+3=4.故答案为:4.【分析】根据有理数的减法法则,求出(・3)的值是多少即可.16、【答案】-2m【考点】正数和负数【解析】【解答】解:高于正常水位记作正,那么低于正常水位记作负.低于正常水位2米记作:-2m. 故答案为:-2m【分析】弄清楚规定,根据规定记数低于正常水位2m.17、【答案】5或・3【考点】绝对值【解析】【解答】解:・・・|a-l|=4, .\a - 1=4或解得:a=5或3.故答案为:5或・3.【分析】依据绝对值的定义得到a・1=±4,故此可求得a的值.18、【答案】-5.6; -2; - 7; -4【考点】相反数,绝对值,有理数的加减混合运算【解析】【解答】解:原式=・扌;原式=5.6:原式=-2;原式二・7;原式=-1 - 3= - 4, 故答案为:・亍;5.6; - 2; - 7; - 4【分析】原式利用减法法则,绝对值的代数意义计算即可得到结果.三、解答题19、【答案】【解答】解:正数集合{5, +41, 34}; 负数集合{-5.13, -|-2|,・ 227,・(+0.18) }; 整数集合{5, -|-2|, +41, 0};分数集合{- 5.13, - 227, - (+0.18) , 34}【考点】有理数【解析】【分析】按照有理数的分类填写:'正整数整数0负整数 V ■20、 【答案】解:(1) V|a|=5, |b|=3,a=±5, b=±3,.\a+b=8或2或・2或-8;(2) Va=±5, b 二±3,且 a+b<0,a= - 5, b=±3,A a - b= - 8 nJc - 2.【考点】有理数的加法【解析】【分析】(1)由于|a|=5, |b|=3,那么a=±5, b=±3,再分4种情况分别计算即可;(2)由于a=±5, b=±3,且a+b<0,易求a= - 5, b=±3,进而分2种情况计算即可.21、 【答案】解:V|a|=4, |b|=2,a=±4, b=±2,Va<b,•Ia= - 4, b=±2,a - b= - 4 - 2= - 6,或 a-b=-4- ( - 2 ) = - 4+2= - 2,所以,a - b 的值为-2或-6.【解析】【分析】根据绝对值的性质求出a 、b,再判断出a 、b 的对应情况,然后根据有理数的减法运算 法则有理数' 分数{ 正分数负分数进行计算即可得解.22、【答案】解:I (x+2) »x+y - 1冋,/• x+2=0x+y-l=0,解得x=-2y=3,x y= ( - 2)3= - 8,即x,的值是■&【考点】有理数的乘方【解析】【分析】根据题意,可得(x+2)2+|x+y-l|=O,然后根据偶次方的非负性,以及绝对值的非负性, 可得x+2=0, x+y・20,据此求出x、y的值各是多少,再把它们代入/ ,求出的值是多少即可.23、【答案】解:(1) 0+15 - 4+13 - 10 ・ 12+3 - 13 - 17= - 25.答:最后一名老师送到目的地时,小王在出车地点的西面25千米处.(2) |+151 + | - 4| + |+131 + | - 10| + | - 121 + |+31 + | - 13| + | - 171 =87 (千米),87x0.1=8.7 (升).答:这天上午汽车共耗油8.7升【考点】正数和负数【解析】【分析】(1)由已知,岀车地位0,向东为正,向西为负,则把表示的行程距离相加所得的值, 如果是正数,那么是距出车地东面多远,如果是负数,那么是距出车地东面多远.(2)不论是向西(负数)还是向东(正数)都是出租车的行程.因此把它们行程的绝对值相加就是出租车的全部行程.既而求得耗油量.24、【答案】解:J・3+7+5=・3+12=9,・・・三个数的和为9,第三行中间的数是9 -(9+5) =-5,最中间的数是9 -(- 3+9) =3,第二列最上边的数是9- ( - 5+3) =9+2=11,第一行的第一个数是9・(・3+21) =9・8二1,第一列的第二个数是9・(1+9)=・3111■379-5【考点】冇理数的加法【解析】【分析】先根据最后一列求出三个数的和,然后求出第三行中间的数,根据对角线的数求出最中间的数再求出第二列最上边的数,再根据第一行的三个数的和求出左上角的数,然后求出第一列的第二个数,从而得解.。

苏科版七年级上《第二章有理数》单元检测试题含答案

苏科版七年级上《第二章有理数》单元检测试题含答案

②若每千米耗油 0.0 升,则今天共耗油多少升?
䁮 .如图是一个“有理数转换器”(箭头是指有理数进入转换器后的路径,方框是 对进入的数进行转换的转换器)
1 当小明输入 3;9;0. 这三个数时,这三次输入的结果分别是多少? 䁮 你认为当输入什么数时,其输出的结果是 0? 3 你认为这的“有理数转换器”不可能输出什么数?
3.中国是严重缺水的国家之一,人均淡水资源为世界人均量的四分之一,所以
我们为中国节水,为世界节水.若每人每天浪费水 0.3䁮r,那么 100 万人每天
浪费的水,用科学记数法表示为( )
A.3.䁮 10 r C.3.䁮 10 r
B.3.䁮 10 r D.3.䁮 10 r
.下列关于零的说法中,正确的个数是( )①零是正数;②零是负数;③零
所以输出的数应为非负数.
∴ 晦 0, 1,


时,原式
01 0
31
1
䁮 10;

时,原式
01 0
31
1
䁮 0;
所以


3
的值为 10 或 0.
䁮3.解: 1 根据题意:规定向东为正,向西为负:则 1
13
10
1䁮
3
13
1
䁮 千米,
故小王在出车地点的西方,距离是 䁮 千米; 䁮 这天下午汽车走的路程为
1
13
10
1䁮
3
13
汽车耗油量为 0. 升/千米,则 t 0. 3 .t 升,
① 晦 0;② 晦 0;③ 晦 ;④ 晦 t 0.
1 .若 䁮 䁮 䁮‫ ݕ‬1 0,则 ‫________ ݕ‬.
1t.有一颗高出地面 10 米的树,一只蜗牛想从树底下爬上去晒晒太阳,他爬行 的路径是每向上爬行 米又向下滑行 1 米,它想爬到树顶至少爬行________米.

苏科版七年级数学上册 第二章 有理数 单元检测试题(有答案)

苏科版七年级数学上册 第二章 有理数 单元检测试题(有答案)

第二章 有理数 单元检测试题(满分120分;时间:120分钟)一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 , )1. 在227,π3,1.62,0四个数中,有理数的个数为( )A.4B.3C.2D.12. 2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆.数36000用科学记数法表示为( )A.360×102B.36×103C.3.6×104D.0.36×1053. 有下列四个算式:①(−5)+(+3)=−8;②−(−2)3=6;③(+56)+(−16)=23;④−3÷(−13)=9. 其中,错误的有( )A.0个B.1个C.2个D.3个4. 不小于−4的非正整数有( )A.5个B.4个C.3个D.2个5. 小明玩“24点”游戏时抽到了以下四个4,要求用数学运算符号运算,结果为24,请判断下列算式正确的是( )A.(4+4)(4−√4)=24B.4+4×(4+4)=24C.(4+4)(4−4−1)=24D.(4+4)(4−40)=24 6. 下列算式中,运算结果为负数的是( )A.−|−1|B.−(−2)3C.−(−52)D.(−3)27. 下列实数中,不是无理数的是()3 D.−2A.√2B.πC.√38. 下列说法中①相反数等于本身的数是0,②绝对值等于本身的是正数,③倒数等于本身的数是±1,正确的个数为()A.3个B.2个C.1个D.0个二、填空题(本题共计12 小题,每题3 分,共计36分,)的整数的积等于________.9. 绝对值不大于51310. 如图,这两个圈分别表示正数集合和整数集合,则它们的重叠部分表示的是________集合.11. 如图,把半径为1的圆形纸片放在数轴上,圆形纸片上的A点对应2,将圆形纸片沿着数轴无滑动的逆时针滚动一周,点A到达点A′的位置,则点A′表示的数是________.12. 比−3小5的数是________,比−3∘C高5∘C的温度是________.13. 数轴上A、B两点之间的距离为3,若点A表示数2,则B点表示的数为________.14. 平方和绝对值都是它本身的相反数的数是________.15. 绝对值小于4的所有整数的积是________ .绝对值不大于2的所有非正整数的和是________;16. 对于算式15−144÷(7+5)应先算________,再算________,最后算________.17. −(−13)是________的相反数.18. 已知|a|=3,|b|=4,且a >b ,则a ×b =________.19. +6+9−15+3=________+________+________-________.20. 已知a ,b ,c ,d 为有理数,且|2a +b +c +2d +1|=2a +b −c −2d −2,则(2a +b −12)(2c +4d +3)=________. 三、 解答题 (本题共计 8 小题 ,共计60分 , )21. −8×(+12)×(−7)×0.22. (−212)÷(−5)×(−313).23. (79−56+34+718)÷(−136).24. 已知|4−y|+|x +7|=0,求x−y xy 的值.25. 若|a+1|+|b−2|+(c+3)2=0,求(a−1)(b+2)(c−3)的值.26. 若a、b互为相反数,c、d互为倒数,m的绝对值为2,求:a+ba+b+c−cd+2m的值.27. 我们把从1开始的几个连续自然数的立方和记为S n,那么有:S1=13=12=[1×(1+1)2]2S2=13+23=(1+2)2=[2×(1+2)2]2S3=13+23+33=(1+2+3)2=[3×(1+3)2]2S4=13+23+33+43=(1+2+3+4)2=[4×(1+4)2]2…观察上面的规律,完成下面各题:(1)写出S5,S6的表达式;(2)探索写出S n的表达式;(3)求113+123+...+203的值.28. 已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b−3)2=0.(1)则a=________,b=________;并将这两个数在数轴上所对应的点A,B表示出来;(2)数轴上在B点右边有一点C到A,B两点的距离和为11,若点C在数轴上所对应的数为x,求x的值;(3)若点A,点B同时沿数轴向正方向运动,点A运动的速度为2单位/秒,点B运动的速度为1单位/秒,若|AB|=4,求运动时间t的值.(温馨提示:M,N之间距离记作|MN|,点M,N在数轴上对应的数分别为m,n,则|MN|=|m−n|.)参考答案一、 选择题 (本题共计 8 小题 ,每题 3 分 ,共计24分 )1.【答案】B【解答】解:在227,π3,1.62,0四个数中,有理数为227,1.62,0,共3个. 故选B .2.【答案】C【解答】36000=3.6×104,3.【答案】C【解答】解:①(−5)+(+3)=−2,原来的计算错误;②−(−2)3=8,原来的计算错误;③(+56)+(−16)=23,原来的计算正确; ④−3÷(−13)=9,原来的计算正确.错误的有2个.故选C .4.【答案】A【解答】解:不小于−4的非正整数有:0,−1,−2,−3,−4.共有5个.故选A .5.【答案】D【解答】解:A ,原式=8(4−√4)=32−8×2=16,此选项错误;B ,原式=4+4×8=36,此选项错误;C ,原式=8×(4−14)=30,此选项错误;D ,原式=8×(4−1)=24,此选项正确.故选D .6.【答案】A【解答】解:∵ −|−1|=−1,故选项A 符合题意,∵ −(−2)3=−(−8)=8,故选项B 不符合题意,∵ −(−52)=52,故选项C 不符合题意, ∵ (−3)2=9,故选项D 不符合题意,故选A .7.【答案】D【解答】解:无理数就是无限不循环小数,分析选项可得,A 、B 、C 都是无理数,故选项错误; D 是有理数,故选项正确.故选D .8.【答案】B【解答】①相反数等于本身的数是0,故①符合题意,②绝对值等于本身的是非负数,故②不符合题意,③倒数等于本身的数是±1,故③符合题意,二、 填空题 (本题共计 12 小题 ,每题 3 分 ,共计36分 )9.【答案】【解答】绝对值不大于51的整数有:±5,±4;±3;±2;±1;0,3的所有整数的积为0.所以绝对值不大于51310.【答案】正整数【解答】解:正数集合和整数集合,则它们的重叠部分表示的是正整数,故答案为:正整数.11.【答案】2−2π【解答】∵ 半径为1个单位长度的圆形纸片从2沿数轴向左滚动一周,∵ OA′之间的距离为圆的周长=2π,A′点在2的左边,∵ A′点对应的数是2−2π.12.【答案】−8,2∘C【解答】解:−3−5=−8;−3∘C+5∘C=2∘C.故答案为:−8;2∘C.13.【答案】−1或5【解答】当点B在点A的左边的时候,点B表示的数为2−3=−1;当点B在点A的右边的时候,点B表示的数为2+3=5;所以点B表示的数为−1或5,14.【答案】0和−1【解答】平方与绝对值都是它本身的相反数的数是:0和−1.15.【答案】0,−3【解答】解:绝对值小于4的所有整数为:−3,−2,−1,0,1,2,3,它们的积为:(−3)×(−2)×(−1)×0×1×2×3=0;绝对值不大于2的所有非正整数为:−2,−1,0,它们的和为:(−2)+(−1)+0=−3.故答案为:0;−3.16.【答案】括号,除法,加法【解答】解:先算括号,再算除法,最后算减法.故答案为:括号;除法;减法.17.【答案】−13【解答】解:−(−13)的相反数是−13,故答案为:−13.18.【答案】−12或12【解答】解:∵ |a|=3,|b|=4,∵ a=±3,b=±4,∵ a>b,∵ a=±3,b=−4,∵ a×b=3×(−4)=−12,或a×b=−3×(−4)=12.故答案为:−12或12.19.【答案】6,9,3,15【解答】解:原式=6+9+3−15.故答案为:6;9;3;15.20.【答案】【解答】∵ |2a +b +c +2d +1|=2a +b −c −2d −2,∵ 2a +b +c +2d +1=2a +b −c −2d −2或−2a −b −c −2d −1=2a +b −c −2d −2,∵ 2c +4d =−3或2a +b =12,∵ (2a +b −12)(2c +4d +3)=0, 三、 解答题 (本题共计 8 小题 ,每题 10 分 ,共计80分 )21.【答案】解:−8×(+12)×(−7)×0=0.【解答】解:−8×(+12)×(−7)×0=0.22.【答案】解:(−212)÷(−5)×(−313), =−52×15×103, =−53.【解答】解:(−212)÷(−5)×(−313),=−52×15×103, =−53.23.【答案】解:原式=(79−56+34+718)×(−36)=−36×79+36×56−36×34−36×718=−28+30−27−14=−39.【解答】解:原式=(79−56+34+718)×(−36)=−36×79+36×56−36×34−36×718=−28+30−27−14=−39.24.【答案】解:由题意得,x+7=0,4−y=0,解得,x=−7,y=4,则x−yxy =−7−4−7×4=1128.【解答】解:由题意得,x+7=0,4−y=0,解得,x=−7,y=4,则x−yxy =−7−4−7×4=1128.25.【答案】解:由题意得:a+1=0, b−2=0, c+3=0,即a=−1, b=2, c=−3.∵ (a−1)(b+2)(c−3)=−2×4×(−6)=48.【解答】解:由题意得:a+1=0, b−2=0, c+3=0,即a=−1, b=2, c=−3.∵ (a−1)(b+2)(c−3)=−2×4×(−6)=48.26.【答案】解:∵ a、b互为相反数,c、d互为倒数,∵ a+b=0,cd=1,∵ m的绝对值为2,∵ m=±2,∵ 当m=2时,原式=−1+4=3;当m=−2时,原式=−1−4=−5.∵ 原代数式的值为3或−5.【解答】解:∵ a 、b 互为相反数,c 、d 互为倒数, ∵ a +b =0,cd =1, ∵ m 的绝对值为2, ∵ m =±2,∵ 当m =2时,原式=−1+4=3; 当m =−2时,原式=−1−4=−5. ∵ 原代数式的值为3或−5. 27. 【答案】解:(1)S 5=13+23+33+43+53=(1+2+3+4+5)2=【5×(1+5)2】2, S6=13+23+33+43+53+63=(1+2+3+4+5+6)2=【6×(1+6)2】2;(2)S n =[n(1+n)2]2(3)原式=S 20−S 10=【20×(1+20)2】2−【10×(1+10)2】2=41075.【解答】解:(1)S 5=13+23+33+43+53=(1+2+3+4+5)2=【5×(1+5)2】2, S6=13+23+33+43+53+63=(1+2+3+4+5+6)2=【6×(1+6)2】2;(2)S n =[n(1+n)2]2 (3)原式=S 20−S 10=【20×(1+20)2】2−【10×(1+10)2】2=41075.28.【答案】 −4,3(2)点C 在数轴上所对应的数为x , ∵ C 在B 点右边, ∵ x >3. 根据题意得x −3+x −(−4)=11, 解得x =5.即点C 在数轴上所对应的数为5;(3)当A在点B的左边时,2t−t=3−(−4)−4,解得t=3;当A在点B的右边时,2t−t=3−(−4)+4,解得t=11.故运动时间t的值为3秒或11秒.【解答】解:(1)∵ |a+4|+(b−3)2=0,∵ a+4=0,b−3=0,解得a=−4,b=3.点A,B表示在数轴上为:故答案为:−4;3.(2)点C在数轴上所对应的数为x,∵ C在B点右边,∵ x>3.根据题意得x−3+x−(−4)=11,解得x=5.即点C在数轴上所对应的数为5;(3)当A在点B的左边时,2t−t=3−(−4)−4,解得t=3;当A在点B的右边时,2t−t=3−(−4)+4,解得t=11.故运动时间t的值为3秒或11秒.。

苏科版初中数学七年级上册《第2章 有理数》单元测试卷

苏科版初中数学七年级上册《第2章 有理数》单元测试卷

苏科新版七年级上学期《第2章有理数》单元测试卷一.选择题(共16小题)1.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是()A.+0.8B.﹣3.5C.﹣0.7D.+2.12.下列说法中,正确的是()A.0是最小的整数B.最大的负整数是﹣1C.有理数包括正有理数和负有理数D.一个有理数的平方总是正数3.下列各数:3.14,﹣2,0.131131113,0,﹣π,,0.,其中无理数有()A.1个B.2个C.3个D.4个4.如图,在数轴上点M表示的数可能是()A.1.5B.﹣1.5C.﹣2.4D.2.45.﹣3的相反数是()A.3B.﹣3C.D.﹣6.﹣3的绝对值是()A.3B.﹣3C.D.7.若|x+3|+|y﹣2|=0,则x+y的值为()A.5B.﹣5C.﹣1D.18.计算﹣2+1的值是()A.﹣3B.﹣1C.1D.39.把(﹣8)﹣(+4)+(﹣5)﹣(﹣2)写成省略加号的形式是()A.﹣8+4﹣5+2B.﹣8﹣4﹣5+2C.﹣8﹣4+5+2D.8﹣4﹣5+210.﹣3的倒数是()A.3B.C.﹣D.﹣311.的结果是()A.B.2C.D.﹣212.(﹣21)÷7的结果是()A.3B.﹣3C.D.13.下列各组数中,结果相等的是()A.﹣12与(﹣1)2B.与()3C.﹣|﹣2|与﹣(﹣2)D.(﹣3)3与﹣3314.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106 15.用操作计算器的方法计算(3.1×105)×(7.6×108),按的第5个键是()A.B.C.D.16.用操作计算器的方法计算(205)2,第5个按键是()A.B.C.D.二.填空题(共3小题)17.如果某天中午的气温是2℃,到傍晚下降了3℃,那么傍晚的气温是℃.18.|x﹣3|+(y+2)2=0,则y x为.19.如图,是一个简单的数值计算程序,当输入的x的值为5,则输出的结果为.苏科新版七年级上学期《第2章有理数》单元测试卷参考答案与试题解析一.选择题(共16小题)1.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是()A.+0.8B.﹣3.5C.﹣0.7D.+2.1【分析】求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【解答】解:∵|+0.8|=0.8,|﹣3.5|=3.5,|﹣0.7|=0.7,|+2.1|=2.1,0.7<0.8<2.1<3.5,∴从轻重的角度看,最接近标准的是﹣0.7.故选:C.【点评】本题考查了绝对值和正数和负数的应用,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.2.下列说法中,正确的是()A.0是最小的整数B.最大的负整数是﹣1C.有理数包括正有理数和负有理数D.一个有理数的平方总是正数【分析】根据负数、正数、整数和有理数的定义选出正确答案.特别注意:没有最大的正数,也没有最大的负数,最大的负整数是﹣1.正确理解有理数的定义.【解答】解:A、没有最小的整数,错误;B、最大的负整数是﹣1,正确;C、有理数包括0、正有理数和负有理数,错误;D、一个有理数的平方是非负数,错误;故选:B.【点评】本题考查了有理数的分类和定义.有理数:有理数是整数和分数的统称,一切有理数都可以化成分数的形式.整数:像﹣2,﹣1,0,1,2这样的数称为整数.3.下列各数:3.14,﹣2,0.131131113,0,﹣π,,0.,其中无理数有()A.1个B.2个C.3个D.4个【分析】根据无理数的意义求解即可.【解答】解:3.14,﹣2,0.131131113,0,,0.是有理数,﹣π是无理数,故选:A.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.4.如图,在数轴上点M表示的数可能是()A.1.5B.﹣1.5C.﹣2.4D.2.4【分析】根据数轴上点M的位置,可得点M表示的数.【解答】解;点M表示的数大于﹣3且小于﹣2,A、1.5>﹣2,故A错误;B、﹣1.5>﹣2,故B错误;C、﹣3<﹣2.4<﹣2,故C正确;D、2.4>﹣2,故D错误.故选:C.【点评】本题考查了数轴,数轴上点的位置关系是解题关键.5.﹣3的相反数是()A.3B.﹣3C.D.﹣【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.6.﹣3的绝对值是()A.3B.﹣3C.D.【分析】根据一个负数的绝对值等于它的相反数得出.【解答】解:|﹣3|=﹣(﹣3)=3.故选:A.【点评】考查绝对值的概念和求法.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.7.若|x+3|+|y﹣2|=0,则x+y的值为()A.5B.﹣5C.﹣1D.1【分析】直接利用绝对值的性质得出x,y的值,进而得出答案.【解答】解:∵|x+3|+|y﹣2|=0,∴x=﹣3,y=2,则x+y=﹣3+2=﹣1.故选:C.【点评】此题主要考查了绝对值的性质,正确得出x,y的值是解题关键.8.计算﹣2+1的值是()A.﹣3B.﹣1C.1D.3【分析】根据有理数的加法法则,直接得出答案即可.【解答】解:﹣2+1=﹣1;故选:B.【点评】此题考查了有理数的加法,在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用哪一条法则.在应用过程中,要牢记“先符号,后绝对值”.9.把(﹣8)﹣(+4)+(﹣5)﹣(﹣2)写成省略加号的形式是()A.﹣8+4﹣5+2B.﹣8﹣4﹣5+2C.﹣8﹣4+5+2D.8﹣4﹣5+2【分析】根据有理数的加减混合运算的符号省略法则化简,即可得到结果.【解答】解:根据有理数的加减混合运算的符号省略法则化简,得,(﹣8)﹣(+4)+(﹣5)﹣(﹣2)=﹣8﹣4﹣5+2.故选:B.【点评】本题主要考查有理数的加减混合运算,根据其法则即可.10.﹣3的倒数是()A.3B.C.﹣D.﹣3【分析】利用倒数的定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.11.的结果是()A.B.2C.D.﹣2【分析】根据有理数的乘法法则计算可得.【解答】解:=+(3×)=,故选:A.【点评】本题主要考查有理数的乘法,解题的关键是掌握有理数的乘法法则.12.(﹣21)÷7的结果是()A.3B.﹣3C.D.【分析】根据有理数的除法法则计算即可.【解答】解:原式=﹣3,故选:B.【点评】本题考查有理数的除法法则,属于基础题.13.下列各组数中,结果相等的是()A.﹣12与(﹣1)2B.与()3C.﹣|﹣2|与﹣(﹣2)D.(﹣3)3与﹣33【分析】利用有理数乘方法则判定即可.【解答】解:A、﹣12=﹣1,(﹣1)2=1,所以选项结果不相等,B、=,()3=,所以选项结果不相等,C、﹣|﹣2|=﹣2,﹣(﹣2)=2,所以选项结果不相等,D、(﹣3)3=﹣27,﹣33=﹣27,所以选项结果相等,故选:D.【点评】本题主要考查了有理数乘方,解题的关键是注意符号.14.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为()A.3.84×103B.3.84×104C.3.84×105D.3.84×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384 000有6位,所以可以确定n=6﹣1=5.【解答】解:384 000=3.84×105.故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.用操作计算器的方法计算(3.1×105)×(7.6×108),按的第5个键是()A.B.C.D.【分析】根据计算器的运算程序的特点与计算器的解题方法,即可求得答案.【解答】解:按照计算器的基本应用,打开计算器先按键2ndF,STAT,使计算器进入统计计算状态,用计算机求(3.1×105)×(7.6×108),按键顺序是2ndF,STAT,3,•,1,×,10,x y、…∴按的第5个键是:1,故选:D.【点评】此题主要考查了计算器的应用,要求同学们能熟练应用计算器,熟悉计算器的各个按键的功能.16.用操作计算器的方法计算(205)2,第5个按键是()A.B.C.D.【分析】根据计算器操作方法,结合题意操作可得答案.【解答】解:操作计算器的方法计算(205)2,前3次要依次按:(,2,0,第4个需要键入5次方,则要先按上置键,即,再输入5,故第5个按键是5.故选:B.【点评】本题考查计算器的用法,要求学生熟悉计算器的各项功能与正确的操作.二.填空题(共3小题)17.如果某天中午的气温是2℃,到傍晚下降了3℃,那么傍晚的气温是﹣1℃.【分析】直接利用有理数的加减运算法则计算得出答案.【解答】解:由题意可得:傍晚的气温为:2﹣3=﹣1(℃).故答案为:﹣1.【点评】此题主要考查了有理数的加减法,正确掌握运算法则是解题关键.18.|x﹣3|+(y+2)2=0,则y x为﹣8.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,所以y x=(﹣2)3=﹣8.故答案为:﹣8.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.如图,是一个简单的数值计算程序,当输入的x的值为5,则输出的结果为.【分析】把x=5代入数值计算程序中计算,以此类推,判断结果为正数,输出即可.【解答】解:把x=5代入得:[5﹣(﹣1)2]÷(﹣2)=(5﹣1)÷(﹣2)=﹣2<0,把x=﹣2代入得:[﹣2﹣(﹣1)2]÷(﹣2)=(﹣2﹣1)÷(﹣2)=>0,则输出的结果为.故答案为:.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.。

七年级上册数学单元测试卷-第2章 有理数-苏科版(含答案)

七年级上册数学单元测试卷-第2章 有理数-苏科版(含答案)

七年级上册数学单元测试卷-第2章有理数-苏科版(含答案)一、单选题(共15题,共计45分)1、下列各式中,正确的是()A.2 3=8B. =2C. =﹣4D.2、下列说法中,正确的是()A.正数和负数统称有理数B.零是最小的有理数C.倒数等于它本身的有理数只有1D.互为相反数的两数之和为零3、若|a|=-a,则能使等式成立的条件是()A.a是正数B.a是负数C.a是0和正数D.a是0和负数4、下列各组数中:①﹣32与32;②(﹣3)2与32;③﹣(﹣2)与﹣(+2);④(﹣3)3与﹣33;⑤﹣23与32,其中互为相反数的共有()A.4对B.3对C.2对D.1对5、数轴上的点A到原点的距离是4,则点A表示的数为()A.4B.﹣4C.4或﹣4D.2或﹣26、计算(﹣1)×(﹣5)×(﹣)的结果是()A.-1B.1C.-D.-257、﹣5的绝对值是()A.﹣B.5C.﹣5D.±58、有理数a、b在数轴上对应位置如图所示,则a+b的值()A.大于 0B.小于0C.等于0D.大于a9、有理数a、b在数轴上的位置如图所示,则a+b的值()A.大于B.小于C.小于D.大于10、下列说法中,正确的是()A.正数和负数互为相反数B.一个数的相反数一定比它本身小C.任何有理数都有相反数D.没有相反数等于它本身的数11、下列各数是有理数的是()A.﹣B.C.D.π12、如果a与3互为相反数,则是()A.3B.﹣3C.D.﹣13、下列运算中,正确的个数是()①(-4)+(-4)=0 ②(-8)+(-8)=-16③0-(-5)=-5 ④(+ )-(-0.25)=1⑤-(-)+(-5 )-(-5)=-10A.0个B.1个C.2个D.3个14、实数a在数轴上的位置如图所示,则|a-2.5|=()A.a-2.5B.2.5-aC.a+2.5D.-a-2.515、下列语句:(1)所有整数都是正数;(2)分数是有理数;(3)所有的正数都是整数;(4)在有理数中,除了负数就是正数,其中正确的语句个数有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、已知a2-6a+9与|b-1|互为相反数,则式子÷(a+b)的值为________.17、计算:﹣3+2=________.18、的底数是________.19、写出一个比3大且比4小的无理数:________.20、若△ABC的三边长分别为a,b,c,则|a﹣b﹣c|﹣|b﹣a﹣c|=________.21、比较大小: ________2;________ ;________ (填“>”或“<”)22、某学习小组为了探究函数y=x2﹣|x|的图象和性质,根据以往学习函数的经验,列表确定了该函数图象上一些点的坐标,表格中的m=________.x …﹣2 ﹣1.5 ﹣1 ﹣0.5 0 0.5 1 1.5 2 …y … 2 0.75 0 ﹣0.25 0 ﹣0.25 0 m 2 …23、计算:=________.24、的倒数是________,的绝对值是________.25、12月30日,我市召开的全市经济工作会议预计徐州实现地区生产总值5750亿元,比去年增长8.5%.5750亿元用科学记数法可表示为________元.三、解答题(共5题,共计25分)26、计算:(﹣2)2+4×(﹣3)2﹣(﹣4)2÷(﹣2)27、“一个数,如果不是正数,那么一定就是负数”,这句话对吗?为什么?28、先化简,再求值:﹣3a2b+(4ab2﹣a2b)﹣2(2ab2﹣a2b),其中(a+1)2+|b﹣2|=0.29、有一个水库某天8:00的水位为以警戒线为基准,记高于警戒线的水位为正在以后的6个时刻测得的水位升降情况如下记上升为正,单位::,,0,,,经过6次水位升降后,水库的水位超过警戒线了吗?30、观察下面三行数:-2, 4, -8, 16,-32, 64,…①0,6, -6, 18,-30, 66,…②-1, 2,-4, 8,-16, 32,…③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行的第十个数,计算这三个数的和。

第2章 有理数数学七年级上册-单元测试卷-苏科版(含答案)

第2章 有理数数学七年级上册-单元测试卷-苏科版(含答案)

第2章有理数数学七年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、两个非零有理数的和为正数,那么这两个有理数为()A.都是正数B.至少有一个为正数C.正数大于负数D.正数大于负数的绝对值,或都为正数2、a表示有理数,则﹣a一定是()A.负数B.正数C.正数或负数D.以上都不对3、下列计算正确的是( )A. B. C. D.4、下列计算:①0-(-5)=-5;②(-3)+(-9)=-12;③×(-)=-;④(-36)÷(-9)=-4.其中正确的个数是( )A.1个B.2个C.3个D.4个5、在下列各数中,最小的数是()A.1B.-1C.-3D.06、的倒数是( )A. B. C. D.7、一只蜗牛从深度为10米的井底向上爬3米,然后向下爬1米,接着又向上爬3米,然后又向下爬I米,则此时蜗牛离井口的距离为()A.4米B.5米C.6米D.7米8、四个有理数其中最小的是()A.2B.1C.0D.-19、计算(﹣8)×3÷(﹣2)2得()A.-6B.6C.-12D.1210、计算﹣42的结果等于()A.﹣8B.﹣16C.16D.811、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在()A.文具店B.玩具店C.文具店西40米处D.玩具店西60米处12、地球的半径约为6370000m,用科学记数法表示正确的是()A. B. C. D.13、在﹣(﹣2),﹣[﹣(﹣3)],+(﹣),﹣|﹣2|这四个数中,负数的个数是()A.1个B.2个C.3个D.4个14、有理数在数轴上对应的点的位置如图所示,则下列式子正确的是( )A. B. C. D.15、温岭市冬季某天的最高气温是5℃,最低气温是-3℃,那么这天的最高气温与最低气温的差是()A.-2℃B.8℃C.– 8 ℃D.2℃二、填空题(共10题,共计30分)16、数学真奇妙,小慧同学研究有两个有理数a和b,若计算a+b,a-b,ab,的值,发现有三个结果恰好相同,小慧突发灵感,想考考大家,请你们求________17、 ________.18、白云湖是广州市政府便民利民的综合性水利工程,北部水系首期工程完工后,每天可以从珠江西航道引入1000000万立方米的活水进入白云湖,进而改善周边河涌的水质.将1000000用科学记数法可记为________.19、化简: =________20、如果a、b互为相反数,x、y互为倒数,那么(a+b)﹣2015xy=________.21、同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=________(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是________22、在正数范围内定义一种运算“△”,其规则是a△b= ,根据这一规则,方程x△(x+1)= 的解是________.23、 5月20日,第15届中国国际文化产业博览交易会落下帷幕.短短5天时间,有7800000人次参观数据7800000用科学记数法表示为________.24、若关于x的一元二次方程有实数根,则n的取值范围是________.25、在一条数轴上有A、B两点,点A表示数﹣4,点B表示数6,点P是该数轴上的一个动点(不与A、B重合)表示数x.点M、N分别是线段AP、BP的中点(1)如果点P在线段AB上,则点M表示的数是________,则点N表示的数是________(用含x的代数式表示),并计算线段MN的长;(2)如果点P在点B右侧,请你计算线段MN的长________.三、解答题(共5题,共计25分)26、27、已知 |a| = 5, |b| = 3,且ab >0,求a+b的值28、如图,数轴上的点A,B,C所对应的数分别为a,b,c,化简|2a|+|b+c|-|a-b-c|.29、已知a2+b2+2a﹣4b+5=0,求2a2+4b﹣3的值.30、11﹣(﹣9)﹣(+3).参考答案一、单选题(共15题,共计45分)1、D2、D3、A4、B5、C7、C8、D9、A10、B11、A12、C13、C14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、30、。

苏科版七年级数学上册 第二单元有理数单元测试卷(含答案)

苏科版七年级数学上册 第二单元有理数单元测试卷(含答案)

苏科版七年级数学上册 第二单元有理数单元测试卷一、选择题1.负数的引入是数学发展史上的一大飞跃,使数的家族得到了扩张,为人们认识世界提供了更多的工具.中国是世界上最早认识和应用负数的国家,比西方早一千多年,负数最早记载于下列哪部著作中( )A .B .C .D .2.数轴的原型来源于生活实际,数轴体现了( )的数学思想,是我们学习和研究有理数的重要工具. A .整体B .方程C .转化D .数形结合3.某种芯片每个探针单元的面积为20.00000164cm ,0.00000164用科学记数法可表示为( ) A .51.6410-⨯B .61.6410-⨯C .716.410-⨯D .50.16410-⨯4.如图,关于A 、B 、C 这三部分数集的个数,下列说法正确的是( )A .A 、C 两部分有无数个,B 部分只有一个0 B .A 、B 、C 三部分有无数个 C .A 、B 、C 三部分都只有一个D .A 部分只有一个,B 、C 两部分有无数个5.下列说法:① 平方等于64的数是8;② 若a ,b 互为相反数,ab ≠0,则1ab=-;③ 若a a -=,则3()a -的值为负数;④ 若ab ≠0,则a ba b+的取值在0,1,2,-2这四个数中,不可取的值是0.正确的个数为( ) A .0个B .1个C .2个D .3个6.(2019·江西省大吉山中学初一期末)当使用计算器的键,将1156的结果切换成小数格式19.16666667,则对应这个结果19.16666667,以下说法错误的是( )A .它不是准确值B .它是一个估算结果C .它是四舍五入得到的D .它是一个近似数7.设n 是自然数,则()()2112nn +-+-的值为( )A .1B .-1C .0D .1或-18.如图,数轴上A ,B 两点所表示的数互为倒数,则关于原点的说法正确的是( )A .一定在点A 的左侧B .一定与线段AB 的中点重合C .可能在点B 的右侧D .一定与点A 或点B 重合9.)“!”是一种运算符号,并且1!=1,2!=1×2,3!=1×2×3,4!=1×2×3×4, 则20182017!!的值是( ) A .1 B .2016 C .2017 D .201810.数32019・72020・132021的个位数是 ( ) A .1B .3C .7D .911.有一张厚度为0.1毫米的纸片,对折1次后的厚度是20.1⨯毫米,继续对折,2次,3次,4次……假设这张纸对折了20次,那么此时的厚度相当于每层高3米的楼房层数约是( )(参考数据:1021024=, 2021048576=) A .3层B .20层C .35层D .350层12.若a ,b 为有理数,下列判断正确的个数是( )(1)12a ++总是正数;(2)()224a ab +-总是正数;(3)()255ab +-的最大值为5;(4)()223ab -+的最大值是3.A .1B .2C .3D .4二、填空题13.若()2320m n -++=,则m+2n 的值是______。

苏教版七年级数学第二章《有理数》单元测试卷

苏教版七年级数学第二章《有理数》单元测试卷

第二章《有理数》单元测试卷 一、选择题 1.若规定收入为“+”,那么-50元表示 [ ]A.收入了50元B.支出了50元C.没有收入也没有支出D.收入了100元2.下列说法不正确的是 [ ]A.-3.14既是负数、分数,也是有理数B.0既不是正数,也不是负数,但他是正数C.-2000既是负教,也是整数,但不是有理数D.0是非正数3.下列运算中正确的是 [ ]A.(+8)+(-10)=-(10-8 ) =-2B.(-3)+(-2)=-(3-2) =-1C.(-5)+(+6)=+( 6+5 )=+11D.(-6)+(-2)=+(6+2)=+ 84.下列各组数中.互为相反数的有 [ ] ①21和 -21 ②-(-6)和+(-6) ③-(-4)和+(+4) ④-(+1)和+(-1) ⑤+521和+(-521) ⑥-371和-(-371) A.4组 B.3组C.2组D.1组5. 如图,四个有理数在数轴上的对应点M,P ,N,Q,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是 [ ]A.点MB.点NC.点PD.点Q6. 如果a>0,b<0,a+b<0,那么下列各式中大小关系正确的是 [ ]A. -b<-a<b<aB. -a<b<a<-bC. b<-a<-b<aD. b<-a<a<-b7.下列说法正确的是 [ ]A. 所有的整数都是正数B.不是正数的数一定是负数C. 0不是最小的有理数D. 正有理数包括整数和分数8.下列结论不正确的有 [ ]①两个有理数相加,和一定大于每一个加数; ②一个正数和一个负数相加得正数; ⑧两个负数和的绝对值等于它们绝对值的和; ④一个正数加一个负数,和一定大于那个负数 A.0个 B. 1个C.2个D. 3个9.下列各组数在数轴上对应点之间的距离最大的是 [ ]A.3与-2.2B. 4.75与2.25C.-4与4.5D. -332与23110.如图,M ,N ,P ,R 分别是数轴上四个正数所对应的点,其中有一点是原点,并且MN=NP=PR= 1,数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若│a │+│b │=3,则原点可能是[ ]A. M 或RB. N 或PC. M 或ND. P 或R二、填空题11.在数+8.3,-4,-0.8,-51,0,90,-421,-│-24│中,负整数有 个。

第2章 有理数数学七年级上册-单元测试卷-苏科版(含答案)

第2章 有理数数学七年级上册-单元测试卷-苏科版(含答案)

第2章有理数数学七年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,数轴上的点A所表示的数为a,化简|a|+|1﹣a|的结果为()A.1B.2a﹣1C.2a+1D.1﹣2a2、绝对值大于1而小于4的整数有()个A.1B.2C.3D.43、如图,数轴上A,B两点分别对应实数a,b,则下列结论错误的是( )A. B. C. D.4、下列说法中①是负数;②是二次单项式;③倒数等于它本身的数是;④若,则;⑤由变形成,正确个数是( )A.1个B.2个C.3个D.4个5、下列各式正确的是()A. B. C. D.6、根据如图所示的程序计算,若输入x的值为1,则输出y的值为().A.0B.2C.-2D.47、若x的相反数是2,│y│=3,则│x+y│的值为( )A.5B.-5C.-5或1D.以上都不对8、下列实数中,有理数是( ).A. B. C. D.3.141599、下列各数中,绝对值最大的是()A.2B.-1C.0D.-310、有理数a,b在数轴上的位置如图所示,下列结论中正确的是()A.-b>aB.-a<bC.b>aD.∣a∣>∣b∣11、下列说法正确的有()个①规定了原点,正方向和单位长度的直线叫数轴;②最小的整数是0;③正数,负数和零统称整数;④数轴上的点都表示有理数A.0B.1C.2D.312、下列四个运算中,结果最小的是()A.-1+(-2)B.1-(-2)C.1×(-2)D.1÷(-2)13、下列实数中,−、、、-3.14,、、0、0.3232232223…(相邻两个3之间依次增加一个2),无理数的个数是()A.1个B.2个C.3个D.4个14、在-1.732,,π, 3, 2+ ,3.212212221…,3.14这些数中,无理数的个数为( )A.5B.2C.3D.415、在下列各数中,你认为是无理数的是()A. B. C. D.二、填空题(共10题,共计30分)16、“*”是规定的一种运算法则:a*b=a2﹣2b.那么2*3的值为________ ;若(﹣3)*x=7,那么x=________17、a的相反数是一,则a的倒数是________.18、已知a,b互为相反数,c,d互为倒数,,则的值是________.19、太原冬季某日的最高气温是3℃,最低气温为﹣12℃,那么当天的温差是________℃.20、如图,四个有理数在数轴上的对应点分别为M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是________.21、有六张完全相同的卡片,其正面分别标有数字:﹣2,,π,0,,,将它们背面朝上洗匀后,从中随机抽取一张卡片,则其正面的数字为无理数的概率是________.22、计算:﹣22﹣(﹣2)2=________23、小明的妈妈在超市买了一瓶消毒液,发现在瓶上印有这样一段文字:“净含量(750±5)ml”,这瓶消毒液至少有________mL.24、-(-4)= ________.25、﹣1的绝对值是________.三、解答题(共5题,共计25分)26、计算:-32×(5-3)-(-2)2÷l-4l27、根据试验测定,高度每增加100米,气温大约下降0.6 ,小王是一名登山运动员,他在攀登山峰的途中发回信息,报告他所在的位置的气温是-15 ,若此时地面温度为3 ,则小王所在位置离地面的高度是多少米?28、如图,用粗线在数轴上表示了一个“范围”,这个“范围”包含所有大于1小于2的有理数.请你在数轴上表示出一范围,使得这个范围同时满足以下三个条件:(1)至少有100对相反数和200对倒数;(2)有最大的负整数;(3)这个范围内最大的数与最小的数表示的点的距离大于4但小于5.29、规定一种新运算:=a-b+c, =-xz+(w-y)求 + 的值。

苏教版七年级上第二章《有理数》单元检测试卷含答案解析.doc

苏教版七年级上第二章《有理数》单元检测试卷含答案解析.doc

苏教版七年级上第二章《有理数》单元检测试卷含答案解析班级: ____________姓名:____________一、单选题 (每小题 4 分,共 6 题,共 24 分 )1、 2017 的倒数是()1B.﹣ 2017 C. 2017 D. 2017A.20172、实数 a, b 在数轴上的对应点的位置如图所示,把﹣ab, 0 按照从小到大的顺序排列,正确的是()A.﹣ a <b<0B. 0<﹣ a <b C. b< 0<﹣a D. 0< b<﹣a3、已知 a=﹣ 2,则代数式 a+1 的值为()A.﹣3B.﹣2C.﹣1D. 14、下列说法:①有理数是指整数和分数;②有理数是指正数和负数;③没有最大的有理数,最小的有理数是 0;④有理数的绝对值都是非负数;⑤几个数相乘,当负因数的个数为奇数时,积为负;⑥倒数等于本身的有理数只有1.其中正确的有()A.2 个B.3个C.4个D.多于 4 个5、下列各数:﹣5,, 4.11212121212 , 0,22, 3.14 ,其中无理数有()3 7A.1 个B.2个C.3 个D.4 个6、已知 ab≠ 0,则a b+ 的值不可能的是()a bA.0 B. 1 C.2D.﹣2二、填空题 (每小题 3 分,共 10 题,共 30 分 )7、如图是一个程序运算,若输入的x 为﹣ 5,则输出 y 的结果为 ______.8、试举一例,说明“ 两个无理数的和仍是无理数” 是错误的:.9、中国人最先使用负数,魏晋时期的数学家刘徽在“ 正负术” 的注文中指出,可将算筹(小棍形状的记数工具)正放表示正数,斜放表示负数.如图,根据刘徽的这种表示法,观察图①,可推算图②中所得的数值为________.----210、如果 |y ﹣ 3|+ ( 2x ﹣ 4)=0,那么 3x﹣y的值为.11、把下列各数填在相应的大括号里(将各数用逗号分开):﹣4, 0.62 ,22, 18, 0,﹣ 8.91 , +100 7正数: {_______________________}负数: {_________________}整数: {______________________}分数: {_____________________} .12、若 a、b 互为相反数, c、d 互为倒数, |m|=2 ,则 a b 2+m﹣3cd=______.4m13、有理数 a、 b、c 在数轴上的位置如图所示,化简|a+b| ﹣ |a ﹣ c|+|b ﹣ c| 的结果是___________.14、在学习了《有理数及其运算》以后,小明和小亮一起玩“ 24 点”游戏,规则如下:从一副扑克牌(去掉大、小王)中任意抽取 4 张,根据牌面上的数字进行混合运算(每张牌只能用一次),使得运算结果为24 或﹣ 24,其中红色扑克牌代表负数,黑色扑克代表正数,J, Q, K 分别代表 11, 1, 13.现在小亮抽到的扑克牌代表的数分别是:3,﹣ 4,﹣ 6, 10.请你帮助他写出一个算式,使其运算结果等于24 或﹣ 24:.15、若有理数a、b,满足 a b , a b 0 和 ab 0 ,试用“ <”号连接 a 、b、a b:____16、 1 加上它的1得到一个数,再加上所得数的 1 又得到一个数,再加上这个数的1 又得2 3 4到一个数,以此类推,一直加到上一个数的1,那么最后得到的数为 ____ 2011三、解答题 (共 5 题,共46分)17、 (6 分 )已知快递公司坐落在一条东西向的街道上,某快递员从快递公司取件后在这条街道上送快递,他先向东骑行1km 到达 A 店,继续向东骑行2km 到达 B 店,然后向西骑行5km到达 C店,最后回到快递公司.(1)以快递公司为原点,以向东方向为正方向,用1cm表示 1km,画出数轴,并在数轴上表示出 A、B、 C 三个店的位置;(2) C 店离 A 店有多远?(3)快递员一共骑行了多少千米?---- 2----18、 (6 分 )已知 a 的 2 倍比 b 的相反数少4.(1)求 4+4a+2b 的值;5 (2a+b)﹣3(2a+b)+2a﹣b表示整数吗?若是,是奇数还(2)若 b 为负整数,代数式2是偶数,若不是,请说明理由.19、 (10 分 )小红爸爸上星期五买进某公司股票1000 股,每股 27 元,下表为本周内每日该股票的涨跌情况.(单位:元)(1)通过上表你认为星期三收盘时,每股是多少?(2)本周内每股最高是多少?最低是多少元?(3)已知小红爸爸买进股票时付了 1.5 ‰的手续费,卖出时还需付 1.5 ‰的手续费和1‰的交易税,如果小红爸爸在星期五收盘时将全部股票卖出,请你对他的收益情况进行简单的评价?20、 (10 分 )( 1)请用“>” 、“<” 、“ =”填空:2①3+2 2×3×2;②(3)2+( 2)2 2× 3× 2;2 22 ×5×5;③5+5④(﹣2)2+(﹣2)2 2 ×(﹣2)×(﹣2)(2)观察以上各式,请猜想a2+b2与 2ab 的大小;(3)请你借助完全平方公式证明你的猜想.----21、 (14 分 )数学问题:计算数列8, 5, 2,前 n 项的和.探究问题:为解决上面的问题,我们从最简单的问题进行探究.探究一:首先我们来认识什么是等差数列.数学上,称按一定顺序排列的一列数为数列,其中排在第一位的数称为第一项,用a1表示;排在第二位的数称为第二项,用a2表示;:排在第n 位的数称为第n 项,用 a n表示,并称 a n为数列的通项,如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,那么这个数叫做等差数列,这个常数叫等差数列的公差,公差通常用 d 表示.(1)根据以上表述:可得: a2 =a1+d, a3=a1+2d, a4 =a1+3d,;则通项 a n=__________________;(2)已知数列 8,5, 2,为等差数列,请判断﹣ 100 是否是此等差数列的某一项,若是,请求出是第几项;若不是,说明理由;探究二: 200 多年前,数学王子高斯用他独特的方法快速计算出1+2+3+ +100 的值.我们从这个算法中受到启发,用先方法计算数列1,2, 3,, n0的前 n 项和;1 2 +n - 1+nn+n- 1+ +2+1n+1 n ()( +1)( 1)(+1)( 1)n+ 可知 1+2+3+ +n=2.由 n n+ + n(3)请你仿照上面的探究方式,解决下面的问题:若 a1, a2, a3, a n为等差数列的前n 项,前 n 项和 S n=a1+a2+a3+ +a n.n()n-1证明: S n=na1+2d.解决问题:( 4)计算:数列8, 5, 2,前n项的和S n(写出计算过程).答案解析一、单选题 (每小题 4 分,共 6 题,共 24 分 )1【答案】A【解析】 2017 得到数是1 20172【答案】 A【解析】∵ b< 0< a, |a| > |b| ,---- 4----∴﹣ a< b< 0.故选: A.3【答案】 C【解析】当 a=﹣2时,原式 =﹣2+1=﹣1,4【答案】 A【解析】①正确,符合有理数定义;②错误,还有 0;③错误,没有最大的有理数,也没有最小的有理数;④正确,符合绝对值的性质;⑤错误,存在 0 时错误;5【答案】 A【解析】无理数有,共 1个,3故选 A.6【答案】 B【解析】①当 a、 b 同号时,原式 =1+1=2;或原式 =﹣1﹣1=﹣2;②当 a、 b 异号时,原式 =﹣1+1=0.故a+b的值不可能的是 1. a b二、填空题 (每小题 3 分,共 10 题,共 30 分 )7【答案】 -10【解析】根据题意可得,y=[x+4 ﹣(﹣ 3)] ×(﹣ 5),当 x=﹣5时,y=[ ﹣5+4﹣(﹣ 3) ] ×(﹣ 5)=(﹣ 5+4+3)×(﹣ 5)=2×(﹣ 5)=﹣10.8【答案】220 等(互为相反数的两个无理数之和)答案不唯一【解析】如果两个无理数互为相反数,----则这两个无理数的和就不是无理数如2 2 0 ,答案不唯一.∴两个无理数的和仍是无理数是错误的.故答案为:∵2 2 0 ,0 是有理数,9 【答案】﹣3【解析】图②中表示( +2) +(﹣ 5)=﹣3.10 【答案】 3.【解析】∵ |y ﹣3|+ (2x ﹣4) 2=0, ∴ y =3, x=2.∴ 3x ﹣y=3×2﹣3=6﹣3=3.【答案】11 0.62 ,22, 18, +100;﹣ 4,﹣ 8.91 ;﹣ 4, 18, 0,+100; 0.62 ,22,﹣ 8.91 77【解析】正数: {0.62 ,22, 18,+100} ;7负数: { ﹣4,﹣ 8.91} ;整数: { ﹣4, 18, 0, +100} ;22分数: {0.62 ,,﹣ 8.91} ;12 【答案】1【解析】由题意得: a+b=0, cd=1, m=2或﹣ 2,则原式 =0+4﹣3=113 【答案】﹣ 2a【解析】先根据数轴判断出a 、b 、c 的正负情况以及绝对值的大小,然后判断出( a+b ),( a ﹣c ),( b ﹣c )的正负情况,再根据绝对值的性质去掉绝对值号,合并同类项即可.解:根据图形, c < b < 0< a ,且 |a| < |b| <|c| ,∴ a +b < 0,a ﹣c > 0,b ﹣c > 0,∴原式 =(﹣ a ﹣b )﹣( a ﹣c ) +(b ﹣c ),=﹣a ﹣b ﹣a+c+b ﹣c , =﹣2a 14【答案】 3× {10 ﹣ [ ﹣ 4﹣(﹣ 6)]}=24 (答案不唯一) 【解析】 3×{10 ﹣[ ﹣4﹣(﹣ 6) ]}=24 .----6 ----15【答案】 ba a b【解析】该题考查的是比大小.∵ a b , ab 0 ,∴ a 0 , b 0∴ a 0 , a b 0∵a b 0 ,∴ a b ,∴ a b故 ba a b .16【答案】 1006【解析】该题考查的是实数运算.根据题意得: 1 1 1 1 1 1 1 1 12 3 4 20111 3 5 20122 4 2011=120122=1006 .三、解答题 (共 5 题,共 46 分 )【答案】( 1)如图所示:17(2)3km;(3)10km【解析】 1)根据题意画出数轴,在数轴上表示出A、B、 C 三点即可;(2)根据数轴上两点间的距离公式即可得出结论;(3)把各数的绝对值相加即可.解:( 1)如图所示:(2)C 店离 A 店: 1﹣(﹣ 2) =3km;(3)快递员一共行了: |1+|+|2|+| ﹣5|+|2|=10km18【答案】( 1)b( 2)﹣ 2b﹣2为偶数.【解析】( 1)∵a的 2 倍比 b 的相反数少 4,----∴2a=﹣b﹣4,∴4+4a+2b=4+(﹣ b﹣4) +2b =b;(2)5( 2a+b)﹣ 3( 2a+b)+2a﹣b 2=5(﹣ b﹣4+b)﹣ 3(﹣ b﹣4+b) +(﹣ b﹣4﹣b) 2=﹣10+12﹣2b﹣4=﹣2b﹣2.∵b为负整数,∴﹣ 2b﹣2也为整数,又﹣ 2b﹣2=2(﹣ b﹣2),∴﹣ 2b﹣2为偶数.19【答案】( 1)34.5 ( 2)周二最高, 35.5 元;周五最低, 26 元( 3)小红的爸爸赔了【解析】( 1)27+4+4.5﹣1=35.5 ﹣1=34.5 ;(2)由表可知,周二最高, 27+4+4.5=35.5 元,周五最低, 35.5 ﹣1﹣2.5 ﹣6=26元;(3)∵ 26< 27,∴小红的爸爸赔了.【答案】( 1)①>;②>;③ =;④ =;20( 2)a2 +b2≥2ab;( 3)见解析【解析】( 1)①∵32+22=13,2×3×2=12 ,2 2> 2×3×2,∴3+2故答案为:>;②∵(3)2+(2)2=5,2×3×2=2 6= 24,∴(3)2+( 2 )2>2×3× 2 ,故答案为:>;---- 8----③∵52+52 =50, 2×5×5=50 ,22∴5+5 =2×5×5,故答案为: =;④∵(﹣ 2) 2+(﹣ 2) 2=8, 2× (﹣ 2) × (﹣ 2) =8,∴(﹣ 2) 2+(﹣ 2) 2=2× (﹣ 2) × (﹣ 2),故答案为: =;( 2)a 2 +b 2≥2ab ;( 3)证明:∵( a+b ) 2≥0,22∴a﹣2ab+b ≥0,22∴a +b ≥2ab .21【答案】见解析【解析】( 1)答案为: a n =a 1 +(n ﹣1) d ( 2)﹣ 100 是此数列的某一项.理由如下:∵在通项公式a n =a 1 +(n ﹣1) d 中, a n =﹣100, a 1=8,d=5﹣8=﹣3,∴ 8﹣3(n ﹣1)=﹣100,解之得: n=37即:﹣ 100 是此数列的第 37 项( 3)证明:∵S n =a 1+a 2 +a 3+ +a n ﹣1+a n ①∴S n =a n +a n ﹣1+a n ﹣2++a 2+a 1 ②则:① +②得: 2S n =n ( a 1+a n ),又∵a n =a 1 +(n ﹣1) d , ∴ 2S n =n[a 1+a 1+(n ﹣1) d] ,n ()n-1∴S =na +2d .n1( 4)∵a 1=8,d=﹣3,n ()n-1∴由前 n 项和的公式 S n =na 1+2d 得:3n ()n-1S n =8n ﹣219n 3n 2∴S n =219n 3n 2 即:此数列前 n 项的和 S n =2.-------- 10----。

苏科版七年级数学上册 第二章 有理数 单元检测试题

苏科版七年级数学上册  第二章  有理数 单元检测试题

第二章有理数单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计9 小题,每题3 分,共计27分,)1. 已知代数式(x−a)2+b的值恒为正,那么b的值应该为()A.负数B.非负数C.非正数D.正数2. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10103. 下列说法中,正确的是()A.任何实数的平方都是正数B.正数的倒数必小于这个正数C.绝对值等于它本身的数必是非负数D.零除以任何一个实数都等于零4. 下列计算正确的是()÷(−7)=7×(−7) B.(−2)+2=4A.17C.(−3)−(+3)=0D.2−8=2+(−8),√2,−π中,无理数的个数有()5. 实数−2,0.3,17A.1个B.2个C.3个D.4个6. a、b互为倒数,x、y互为相反数,且y≠0,则(a+b)(x+y)−ab−x的值为()yA.−1B.0C.1D.无法确定7. 数轴上点所表示的数是整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为18厘米的线段AB ,则线段AB 盖住的整点数是( ) A.17个或18个 B.17个或19个C.18个或19个D.18个或20个8. 下列式子中,−(−3),−|−3|,−(−2)3,3−5,−1−5,是负数的有( ) A.1个 B.2个C.3个D.4个9. 在0、1、−3、4这四个数中,是负数的是( ) A.4B.0C.−3D.1二、 填空题 (本题共计 9 小题 ,每题 3 分 ,共计27分 , ) 10. −125 的相反数是________,倒数是________,绝对值是________.11. 下列各数3.1415926,√9,1.212212221⋯,17,2−π,−2020,√43中,无理数有________个.12. 若(m −4)2+|5−n|=0,则m +n =________.13. 在数轴上,有一点M 表示的数是−5,则它到原点的距离是________.14. 若|x −3|+(y +2)2=0,则x −2y =________.15. 若|2x −1|+|3y −4|=0,则x +y =________.16. 已知|5x −y +9|与(3x +y −1)2互为相反数,则x +y =________.17. |a +1|与|b −2|互为相反数,则a =________,b =________.18. 从−1中减去−34,−23,与−12的和,列式为:________,所得的差是________.三、解答题(本题共计7 小题,共计66分,)19. (−7)×(−0.25)×(−4).20. 计算:(1)(−12557)÷(−5);(2)−23÷94×(−23)2.21. 若|x−2|+(3y+2)2=0,求x+y的值.22. 已知|a|=5,|b|=3,回答下列问题:(1)由|a|=5,可得a=________;由|b|=3,可得b=________;(2)求a⋅b的值.23. 一根木棍原长为m米,如果从第一天起每天折断它的一半.(1)请写出木棍第一天,第二天,第三天的长度分别是多少?(2)试推断第n天木棍的长度是多少?24. 某粮油店有8袋大米,以每袋50千克为准,超过的千克记作正数,不足的千克记作负数,它们分别为:−2,+1,+4,+6,−3,−4,+5,−3.(1)最重的一袋大米与最轻的一袋大米相差多少千克?(2)这8袋大米总共重多少?25. 某地区水泥厂仓库6天内进出水泥的吨数如下(“+”表示进库,“−”表示出库):+50、−45、−33、+48、−49、−36.(1)经过这6天,仓库里的水泥是增多还是减少了?增多或减少了多少吨?(2)经过这6天,仓库管理员结算发现库里还存200吨水泥,那么6天前,仓库里存有水泥多少吨?(3)如果进出仓库的水泥装卸费都是每吨5元,那么这6天要付多少元装卸费.参考答案一、选择题(本题共计9 小题,每题 3 分,共计27分)1.【答案】D【解答】解:∵(x−a)2+b的值恒为正,(x−a)2的值最小为0,∴b的值应该为正数.故选D.2.【答案】B【解答】解:根据科学记数法的定义可知,4 400 000 000=4.4×109.故选B.3.【答案】C【解答】解:对于A,由于0的平方是0,而不是正数,故A错误;对于B,由于1的倒数是1,故B错误;对于C,由绝对值的性质可知,绝对值等于它本身的数必是非负数,故C正确;对于D,当除数为0时,没有意义,故D错误.故选C.4.【答案】D【解答】解:17÷(−7)=17×(−17),故A错误,(−2)+2=2−2=0,故B错误,(−3)−(+3)=−3−3=−6,故C错误,2−8=2+(−8),D正确。

苏科版数学七年级上册第二章《有理数》单元测试(含答案)

苏科版数学七年级上册第二章《有理数》单元测试(含答案)
Nhomakorabea.
64
3. 用“>”或“<”填空: − − 3
− (−3.1) ; − 7 − 6 .
8
7
4. 数轴上到原点的距离为1 2 的点表示的有理数是
.
3
5. 设是 a 最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,则 a-b+c=
.
6. 用科学记数法表示 51200000=
.
7. 计算: − 22 +(− 2)2 − −1 3 (4)2 =
属于非负整数的共有 ( )
A. 1 个
B. 2 个
C. 3 个
D. 4 个
12. 在一个数的前面加上一个“-”号,就可以得到一个( )
A. 负数
B. 非正数
C. 正数或负数
D. 原数的相反数
13. 下列各组数中,互为相反数的是( )
A. 2 与 1 2
B. (−1)2 与 1 C. −1与 (−1)2
的有理数之和为 19,求 A + H + M + Q + X 的值.
2/5
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
参考答案
一、填空题(每空 3 分,共 48 分)
1. 3 的相反数为 − 3 ; − 2 1 的倒数为 − 3
3
7
; −( − 2)3 = 8
.
2. 绝对值等于 2 的数为 2
.
7. 计算: − 22 +(− 2)2 − −1 3 (4)2 = 3
− 16 . 9
8. 若 a、b 互为相反数,c、d 互为倒数,则 a+b+cd+1= 2 .
9. 在 − 24 中,底数为 2 ,指数为 4 ,乘方的结果为 −16

苏科版七年级数学上册《第2章有理数》单元测试(含答案)

苏科版七年级数学上册《第2章有理数》单元测试(含答案)

苏科版七年级数学上册《第2章有理数》单元测试(含答案)一、选择题(本大题共8小题,每小题3分,共24分.在每小题列出的四个选项中,只有一项符合题意)1.-2的绝对值是( )A .-2B .2C .-12 D.122.在3.14159,4,1.1010010001,4.2·1·,π,132中,无理数有( ) A .1个 B .2个 C .3个 D .4个3.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000 kg 的煤所产生的能量.把130000000 kg 用科学记数法可表示为( )A .13×107 kgB .0.13×108 kgC .1.3×107 kgD .1.3×108 kg4.下列说法中,正确的是( )A .两个有理数的和一定大于每个加数B .3与-13互为倒数C .0没有倒数也没有相反数D .绝对值最小的数是05.在数-3,2,0,3中,大小在-1和2之间的数是( ) A .-3 B .2 C .0 D .36.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( )A .少5B .少10C .多5D .多107.在-(-2),(-1)3,-22,(-2)2,-|-2|,(-1)2n(n 为正整数)这六个数中,负数的个数是( ) A .1 B .2 C .3 D .48.依次排列4个数:2,11,8,9.对于相邻的两个数,都用右边的数减去左边的数,所得的差排在这两个数之间得到一串新的数:2,9,11,-3,8,1,9.这称为一次操作,做两次操作后得到一串新的数:2,7,9,2,11,-14,-3,11,8,-7,1,8,9.这样下去,第100次操作后得到的一串数的和是( )A .737B .700C .723D .730二、填空题(本大题共9小题,每小题3分,共27分)9.若将顺时针旋转60°记为-60°,则逆时针旋转45°可记为________.10.小明家的冰箱冷冻室的温度是-2 ℃,冷藏室的温度是5 ℃,则小明家的冰箱冷藏室的温度比冷冻室的温度高________ ℃.11.计算:3-22=________.12.将下列各数:-0.2,-12,-13,按从小到大的顺序排列应为________<________<________. 13.若a <0,b >0,且|a|>|b|,则a +b________0.14.已知2,-3,-4,6四个数,取其中的任意三个数求和,和最小是________.15.若数轴上的点A 所表示的有理数是-223,则与点A 相距5个单位长度的点所表示的有理数是____________.16.在算式1-︱-2□3︱中的“□”里,填入运算符号(在符号+,-,×,÷中选择一个):________,使得算式的值最小.17.已知(a -3)2+|b -2|=0,则a b =________.三、解答题(本大题共5小题,共49分)18.(16分)计算下列各题:(1)25.3+(-7.3)+(-13.7)+7.3;(2)(-54)×214÷⎝⎛⎭⎪⎫-412×29;(3)-(-3)2-|(-5)3|×⎝ ⎛⎭⎪⎫-252-18÷|-32|;(4)(-3)3÷214×⎝ ⎛⎭⎪⎫-232+4-22×⎝ ⎛⎭⎪⎫-13.19.(8分)用简便方法计算下列各题:(1)⎝ ⎛⎭⎪⎫-112-136+34-16×(-48);(2)-201.8×⎝ ⎛⎭⎪⎫-318-201.8×⎝ ⎛⎭⎪⎫-678.20.(6分)登山队员攀登珠穆朗玛峰,在海拔3000 m 时,气温为-20 ℃,已知每登高1000 m ,气温降低6 ℃,当海拔为5000 m和8000 m时,气温分别是多少?21.(8分)邮递员小王从邮局出发,向东走3 km到M家,继续向前走1 km到N家,然后折回头向西走6 km到Z家,最后回到邮局.图1-Z-1(1)若以邮局为原点,向东为正方向,1个单位长度表示1 km,画一条数轴(如图1-Z-1),请在数轴上分别表示出M,N,Z的位置;(2)小王一共走了多少千米?22.(11分)某自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因,无法按计划进行生产,下表是一周的生产情况(超产为正,减产为负,单位:辆):(1)(2)这一周自行车产量最多的一天比产量最少的一天多生产________辆;(3)该厂实行计件工资制,每生产一辆自行车厂方付给工人工资60元,超额完成计划任务的每辆奖励15元,没有完成计划任务的每辆车要扣15元,则该厂工人这一周的工资总额是多少?1.B.2.A.3.D.4.D.5.C.6. D7.C.8.D.9.[答案] +45°10.[答案] 7[解析] 5-(-2)=5+2=7(℃).11.[答案] -112.[答案] -12 -13-0.2 13.[答案] <14.[答案] -515.[答案] -723或21316.[答案] ×17.[答案] 9[解析] 由题意得a =3,b =2,则a b =32=9.18.解:(1)原式=11.6.(2)原式=(-54)×94×⎝ ⎛⎭⎪⎫-29×29=6. (3)原式=-9-20-2=-31.(4)原式=-27×49×49+4+43=-163+4+43=0. 19.解:(1)原式=⎝ ⎛⎭⎪⎫-112×(-48)-136×(-48)+34×(-48)-16×(-48)=4+43-36+8=-2223. (2)原式=-201.8×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-318+⎝ ⎛⎭⎪⎫-678=-201.8×(-10)=2018.20.解:当海拔为5000 m 时,-20-5000-30001000×6=-32(℃). 当海拔为8000 m 时,-20-8000-30001000×6=-50(℃), 因此当海拔为5000 m 时,气温为-32 ℃,当海拔为8000 m 时,气温为-50 ℃.21.解:(1)如图所示:(2)3+1+6+2=12(千米).答:小王一共走了12千米.22.解:(1)812 (2)28(3)5-2-6+15-9-13+8=-2(辆),(1400-2)×60-2×15=83850(元).答:该厂工人这一周的工资总额是83850元.。

苏科版七年级数学上册第二章 有理数 单元提高测试卷5份

苏科版七年级数学上册第二章 有理数 单元提高测试卷5份

苏科版七年级数学上册第二章 有理数 单元提高测试卷5份苏科版七年级数学上册第二章 有理数 单元提高测试卷一、选择题(每小题2分,共20分)1.下列说法正确的是 ( ) A .0是最小的整数 B .“+15 m”表示向东走15 m C .a<0,-a 一定是负数D .一个数前面加上“-”,就变成了负数2.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是 ( ) A .a>b B .ab<0 C .0b a -> D .0a b +>3.下列各组数中,不是互为相反意义的量的是( )A.收入300元与支出30元B.上升10米和下降7米C.超过0.05mm 与不足0.03mD.增大2岁与减少2升 4.下列说法正确的是( )A.一个数的相反数一定是负数B.若| a |= b ,则a = bC.若-|m |=-2,则m =±2D.-a 一定是负数5.从数6,-1,15,-3中,任取三个不同的数相加,所得到的结果中最小的是 ( ) A .-3 B .-1 C .3 D .26.若a=-22,b=(-2) 2,c=(-2)3÷(-1+5),则a ,b ,c 的大小关系是 ( ) A .a <b <c B .a <c <b C .c <a <b D .c <b <a7.若a-b>0,且ab<0,那么a 、b 应满足的条件是 ( ) A .a >0、b >0 B .a <0,b <0C .a 、b 同号D .a 、b 异号,且负数的绝对值较大 8.西部地区面积占我国国土面积的23,我国国土面积约为960万平方千米,用科学记数法表示我国西部地区的面积为 ( ) A .66410⨯平方千米 B .66.410⨯平方千米C.76.410⨯平方千米D.46410⨯平方千米9.若a,b为有理数,有下列结论:(1)如果a≠b,那么|a|≠|b|;(2)如果a>b,那么|a|>|b|;(3)如果|a|>|b|,那么a>b;(4)如果|a|≠|b|,那么a≠b。

苏科新版 七年级上册数学 第2章有理数 单元测试卷

苏科新版 七年级上册数学 第2章有理数 单元测试卷

苏科新版七年级上册数学第2章有理数单元测试卷一.选择题(共10小题).1.检测4个排球,其中超过标准的克数记为正数,低于标准的克数记为负数,从轻重的角度来看,最接近标准的球是()A.B.C.D.2.在下列实数:、、、、﹣1.010010001…中,无理数有()A.2个B.3个C.4个D.5个3.﹣的相反数是()A.B.﹣C.D.﹣4.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数5.a为有理数,下列说法正确的是()A.﹣a为负数B.a一定有倒数C.|a+2|为正数D.|﹣a|+2为正数6.下列数:﹣0.5,,0.1,﹣3,0,﹣(﹣0.7),其中负分数有()A.2个B.3个C.4个D.5个7.两个有理数a,b在数轴上的位置如图,下列四个式子中运算结果为正数的式子是()A.a+b B.a﹣b C.ab D.﹣b﹣a8.一种零件的直径尺寸在图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,加工要求尺寸最大不超过()A.0.03B.0.02C.30.03D.29.979.下面的说法错误的是()A.0是最小的整数B.1是最小的正整数C.0是最小的自然数D.自然数就是非负整数10.在数轴上,点A对应的数是﹣6,点B对应的数是﹣2,点O对应的数是0.动点P、Q 分别从A、B同时出发,以每秒3个单位,每秒1个单位的速度向右运动.在运动过程中,线段PQ的长度始终是另一线段长的整数倍,这条线段是()A.PB B.OP C.OQ D.QB二.填空题11.某商店出售的某种品牌的面粉袋上,标有质量为(50±0.2)千克的字样,从中任意拿出两袋,他们的质量最多相差千克.12.对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么﹣3克表示.13.有理数中,是整数而不是正数的数是,是负数而不是分数的是.14.在数轴上点P到原点的距离为5,点P表示的数是.15.数轴上距离原点2.4个单位长度的点有个,它们分别是.16.a﹣b的相反数是;|3.14﹣π|=.17.化简:=,﹣{﹣[+(﹣2.6)]}=.18.一次数学测试,如果96分为优秀,以96分为基准简记,例如106分记为+10分,那么85分应记为分.19.在有理数3.14,3,﹣,0,+0.003,﹣3,﹣104,6005中,负分数的个数为x,正整数的个数为y,则x+y的值等于.20.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.三.解答题21.2018年国庆节放假八天,高速公路免费通行,各地风景区游人如织其中,其中闻名于世的“三孔”,在10月1日的游客人数就已经达到了10万人,接下来的七天中,每天的游客人数变化(单位:万人)如下表(正数表示比前一天多的人数,负数表示比前一天少的人数):日期10月2日10月3日10月4日10月5日10月6日10月7日10月8日人数变化+0.6+0.2+0.1﹣0.2﹣0.8﹣1.6﹣0.1(1)10月3日的人数为万人;(2)这八天,游客人数最多的是多少万人?最少呢?(3)这8天参观的总人数约为多少万人?22.把下列各数填入相应的大括号里.﹣0.78,3,+,﹣8.47,10,﹣,0,﹣4.正数:{…};分数:{…};非负整数:{…};负有理数:{…}.23.把下列各数分别填在相应的集合中:﹣,,﹣,0,﹣,、,0.,3.1424.请把下列各数填在相应的集合内:,﹣5,0.34,,20,﹣3.14,﹣1,正数集合{ }负整数集合{ }整数集合{ }分数集合{ }非正数集合{ }非负整数集合{ }.25.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值﹣3﹣2﹣1.501 2.5(单位:千克)筐数142328(1)20筐白菜中,最重的一筐比最轻的一筐重千克.(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2元,则出售这20筐白菜可卖多少元?26.出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,以他接到的第一位乘客开始计算,他这天上午连续所接六位乘客的行车里程(单位:km)如下:﹣2,+5,﹣1,+1,﹣6,﹣2,问:(1)将最后一位乘客送到目的地时,小李在第一位乘客上车点哪个方位?多远?(2)若汽车耗油量为0.15L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?(3)若出租车起步价为8元,起步里程为3km(包括3km),超过部分每千米2元,问小李这天上午共得车费多少元?27.云云的爸爸驾驶一辆汽车从A地出发,且以A为原点,向东为正方向.他先向东行驶15千米,再向西行驶25千米,然后又向东行驶20千米,再向西行驶40千米,问汽车最后停在何处?已知这种汽车行驶100千米消耗的油量为8.9升,问这辆汽车这次消耗了多少升汽油?参考答案与试题解析一.选择题1.解:通过求四个排球的绝对值得,D球的绝对值最小.所以D球是接近标准的球.故选:D.2.解:无理数有:,,﹣1.020010001…,共有3个.故选:B.3.解:根据相反数的含义,可得﹣的相反数等于:﹣(﹣)=.故选:A.4.解:A、0的相反数为0,所以A选项错误;B、数轴上原点两旁且到原点的距离的点所表示的数是互为相反数,所以B选项错误;C、符号不同且绝对值相等的两个数是互为相反数,所以C选项错误;D、正数的相反数是负数,负数的相反数是正数,所以D选项正确.故选:D.5.解:当a=0时,﹣a也等于0,不是负数,因此选项A不正确;当a=0时,0没有倒数,因此选项B不正确;当a=﹣2时,|a+2|=0,因此选项C不正确;|a|≥0,|a|+2≥2,因此选项D正确;故选:D.6.解:﹣0.5,﹣是负分数,故选:A.7.解:由有理数a,b在数轴上的位置可得,a<﹣1,0<b<1,∴a+b<0;a﹣b<0;ab<0;﹣a﹣b>0;故选:D.8.解:根据正数和负数的意义可知,图纸上是30±0.03(单位:mm),它表示这种零件的标准尺寸是30mm,误差不超过0.03mm;加工要求尺寸最大不超过30.03mm.故选:C.9.解:A、没有最小的整数,故错误;B、1是最小的正整数,正确;C、0是最小的自然数,正确;D、自然数是0和正整数的统称,即自然数就是非负整数,正确.故选:A.10.解:设运动的时间为t秒,则运动后点P所表示的数为﹣6+3t,点Q表示的数为﹣2+t,PQ=|﹣6+3t﹣(﹣2+t)|=2|t﹣2|;OQ=|﹣2+t﹣0|=|t﹣2|,故选:C.二.填空题11.解:根据题意得:标有质量为(50±0.2)的字样,∴最大为50+0.2=50.2,最小为50﹣0.2=49.8,故他们的质量最多相差0.4千克.故答案为:0.4.12.解:“正”和“负”相对,若一盒装牛奶超出标准质量2克,记作+2克,那么﹣3克表示低于标准质量3克.13.解:零既不是正数也不是负数.故在理数中,是整数而不是正数的数是0和负整数;是负数而不是分数的是负整数.故答案为:0和负整数;负整数.14.解:∵在数轴上点P到原点的距离为5,即|x|=5,∴x=±5.故答案为:±5.15.解:设数轴上距离原点2.4个单位长度的点为a,则|a|=2.4,解得a=±2.4.故答案为:2;+2.4,﹣2.4.16.解:a﹣b的相反数是b﹣a;|3.14﹣π|=π﹣3.14.故答案为:b﹣a;π﹣3.14.17.解:﹣|﹣(﹣)|=﹣;﹣{﹣[+(﹣2.6)]}=﹣2.6.故答案为:﹣;﹣2.6.18.解:85﹣96=﹣11,故答案为:﹣11.19.解:负分数为:,,共2个;正整数为:3,6005,共2个,则x+y=2+2=4.故答案为:4.20.解:设=x=0.777…①,则10x=7.777…②则由②﹣①得:9x=7,即x=;根据已知条件=0.333…=.可以得到=1+=1+=.故答案为:;.三.解答题21.解:(1)2日的人数为:10+0.6=10.6万人,3日的人数为:10.6+0.2=10.8万人.故答案为10.8;(2)4日的人数为:10.8+0.1=10.9万人,5日的人数为:10.9﹣0.2=10.7万人,6日的人数为:10.7﹣0.8=9.9万人,7日的人数为:9.9﹣1.6=8.3万人,8日的人数为:8.3﹣0.1=8.2万人,所以这八天,游客人数最多的是10月4日,达到10.9万人.游客人数最少的是10月8日,达到8.2万人.(3)10+10.6+10.8+10.9+10.7+9.9+8.3+8.2=79.422.解:在﹣0.78,3,+,﹣8.47,10,﹣,0,﹣4中,分类如下:正数:{3,+,10,…};分数:{﹣0.78,+,﹣8.47,﹣,…};非负整数:{3,10,0,…};负有理数:{﹣0.78,﹣8.47,﹣,﹣4,…}.故答案为:3,+,10;﹣0.78,+,﹣8.47,﹣;3,10,0;0.78,﹣8.47,﹣,﹣4.23.解:有理数集合:(﹣,﹣,0,,0.,3.14,…),无理数集合:(,﹣,,…).24.解:正数集合{,0.34,20…};负整数集合{﹣5,﹣1…};整数集合{﹣5,0,20,﹣1…};分数集合{,0.34,﹣2,﹣3.14…};非正数集合{﹣5,﹣2,0,﹣3.14,﹣1…};非负整数集合{0,20…}.25.解:(1)最重的一筐超过2.5千克,最轻的差3千克,求差即可2.5﹣(﹣3)=5.5(千克),故最重的一筐比最轻的一筐重5.5千克.故答案为:5.5;(2)1×(﹣3)+4×(﹣2)+2×(﹣1.5)+3×0+1×2+8×2.5=﹣3﹣8﹣3+2+20=8(千克).故20筐白菜总计超过8千克;(3)2×(25×20+8)=2×508=1016(元).故出售这20筐白菜可卖1016元.26.解:(1)﹣2+5﹣1+1﹣6﹣2=﹣5.故此时小李在第一位乘客上车点的西边5km的位置;(2)|﹣2|+|+5|+|﹣1|+|+1|+|﹣6|+|﹣2|=2+5+1+1+6+2=17(千米),0.15×17=2.55(L).答:出租车共耗油2.55L;(3)根据题意可得:6×8+(2+3)×2=48+10=58(元).答:小李这天上午共得车费58元.27.解:根据题意得:15﹣25+20﹣40=35﹣65=﹣30,即汽车最后同在A西边30米处;根据题意得:(15+25+20+40)÷100×8.9=8.9(升),即这辆汽车这次消耗了8.9升汽油.。

苏科版七年级数学上册第二章 有理数 单元测试卷5套卷

苏科版七年级数学上册第二章 有理数 单元测试卷5套卷

17.(1)0 (2) 1 61 (3)一 4(4) 41
64
6
18.解:故 a b c 3 1 . 3
19.解:如答图所示.
20.解:[5 一(一 2)]÷6×1= 7 ≈1.17(千米). 6
21.解:6×2+5×0 一 4×2=4(分),所以七年级(5)班得 4 分.
22.解 l(1)小虫最后回到了出发点 O (2)小虫距离出发点 O 最远是 16 cm.
23. 2008 2009
第二章 有理数 单元测试卷
(时间:90 分钟 满分:100 分)
一、选择题(每题 2 分,共 16 分)
1.-0.2 的倒数是
A.0.2
B.5
C.-0.2
2.下列式子的结果是负数的是
A. 3
B.-(-3)
C.(-3)2
D.-5
()
()
D.-(-1)2021
3.下列计算正确的是 A.0-(-8)=- 8
()
A.一 3 B.3 C.一 10 D.10
5. a 与 一 2 互 为 相 反 数 , 那 么 a 等 于
()
A.一 2
B.2
C. 1 2
6.若 a a ,则 a 一定是
D. 1 2
()
A.正数
B.负数
C.非负数
7.4.7 ( 8.9) 7.5+( 6)的值等于
A.12.1
B.0.1
9. 1 的绝对值是_________. 4
10.如果运进粮食 200 t 记作+200 t,那么-80 t 表示______________.
11.数轴上到原点的距离为 2 3 的点所表示的数为________. 4

苏科版七年级数学上册第二章《有理数》单元检测试卷

苏科版七年级数学上册第二章《有理数》单元检测试卷

七年级数学上册第二章《有理数》单元检测卷考试总分:120 分考试时间:120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共10 小题,每小题 3 分,共30 分)1.在一条东西向的跑道上,小明先向西走了米,记作“米”,又向东走了米,此时他的位置可记作()A.米B.米C.米D.米2. 最新统计,中国注册志愿者总数已超人,用科学记数法表示为()A. B.C. D.3.下列分数中,能化为有限小数的是()A. B. C. D.4.有理数,在数轴上的位置如图所示,则()A. B. C. D.5.如图,数轴上有,,,四个点,其中表示互为相反数的点是()A.点与点B.点与点C.点与点D.点与点6.下列说法正确的是()A.所有的有理数都能用数轴上的点表示B.有理数分为正数及负数C.没有相反数D.的倒数仍为7.在有理数,,,,中,属于正数的有()A. B. C. D.8.陆地上最高处是珠穆朗玛峰顶,高出海平面,记为;陆地上最低处是地处亚洲西部的死海,低于海平面约,记为()A. B. C. D.9.有下列各数,,,,,,,,其中属于非负整数的共()A.个B.个C.个D.个10.下列说法中不正确的是()A.一定是负数B.既不是正数,也不是负数C.任何正数都大于它们的相反数D.绝对值小于的所有整数的和为二、填空题(共10 小题,每小题 3 分,共30 分)11.已知有理数,满足,则________.12.的倒数是________,的相反数是________.13.绝对值不大于的所有整数的和是________.14.绝对值不大于的非负整数有________.15.若,,,则________.16.已知,,且,则的值是________.17.计算:________.18.与互为倒数,与互为相反数,那么________.19.学校、家、书店依次坐落在一条南北走向的大街上,学校在家的南边米,书店在家北边米,张明同学从家里出发,向北走了米,接着又向北走了米,此时张明的位置在________.20.小王沿街匀速行走,发现每隔分钟从背后驶过一辆路公交车,每隔分钟从迎面驶来一辆路公交车.假设每辆路公交车行驶速度相同,而且路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是________分钟.三、解答题(共 6 小题,每小题10 分,共60 分)21.计算下列各题22.我国最新研制的巨型计算凯“曙光超级服务器”,它的峰值(即最大运算速度)为次.我国的载人飞船在发射前的天内要完成次运算.问这台计算机能否满足发射载人飞船的计算要求?23.某巡警骑摩托车在一条南北大道上巡逻,某天他从岗亭出发,晚上停留在处,规定向北方向为正,当天行驶情况记录如下(单位:千米):,,,,,,,;处在岗亭何方?距离岗亭多远?若摩托车每行驶千米耗油升,这一天共耗油多少升?24.探究规律,完成相关题目沸羊羊说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:❈;❈;❈;❈;❈;❈.智羊羊看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,________.特别地,和任何数进行❈(加乘)运算,或任何数和进行❈(加乘)运算,________.计算:❈________.(括号的作用与它在有理数运算中的作用一致)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)25.出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:)如下:,,,,,,问:将最后一位乘客送到目的地时,小李在什么位置?若汽车耗油量为(升/千米),这天上午小李接送乘客,出租车共耗油多少升?若出租车起步价为元,起步里程为(包括),超过部分每千米元,问小李这天上午共得车费多少元?26.先阅读材料,再根据所学方法解答下列问题:我们在求的值时,可以用下面的方法;我们设①,那么,②;然后,我们把①+②得:,共个.;.亲爱的同学们,根据以上所学方法,聪明的你能解下面的题吗?当然,你会用其它方法解答也是正确的呀!请写出必要的步骤,否则不给分呀!;.参考答案1.A2.C3.A4.B5.B6.A7.B8.B9.D 10.A11.12.13.14.,,15.或16.或17.18.19.家南边米处20.21.解:,,;,,;,,;,,,.22.解:(秒)(次),∵,∴不能.23.处在岗亭南方,距离岗亭千米;(千米),(升).答:这一天共耗油升.24.同号得正,异号得负,并把绝对值相加等于这个数的绝对值25.出租车共耗油升.(元).答:小李这天上午共得车费元.26.解:设①,那么②,①+②得:,共个.,所以:,即;设①,那么②,①+②得:,共个,,所以.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

()
8. (1)100 (1)101 等于
()
A.0
B.1
C.2
D.一 2
9.从“第二届互联网大会”上获悉,中国的互联网上网用户数已超过 7800 万,居世界第二
位.7800 万用科学记数法表示为 A. 7.8106 B. 7.8107 C. 7.8108 D. 0.78108
()
10.“ ”表示一种运算符号,其意义是: a b 2a b ,如果 x (1 3) 2 ,那么 x 等于
22.一只小虫从某点 O 出发,在一条直线上来回爬动。如果把向右爬行的路程记为正数, 向左爬行的路程记为负数,则小虫爬行过的各段路程依次为(单位:cm):+5,一 3,+10, 一 8,+12,一 10,一 6.(10 分) (1)小虫最后是否回到了出发点 O? (2)小虫距离出发点 O 最远是多少厘米?
A.0 个 B.1 个 C.2 个 D.3 个
()
3.已知 a,b 两数在数轴上对应的点如图所示,下列结论正确的是
()
A.a>b
B.ab<0
C. b a 0 D. a b 0
4.点 M 在数轴上运动,先向右移动 7 个单位长度,再向左移动 4 个单位长度,此时正好在
原点处,M 开始运动时表示的数是
次捏合后,可拉出 32 根细面条.
(3)经过第 n 次捏合后,可拉出
根细面条.
16.某工厂去年四季度利润如下(盈为正):137.5 万元,一 160 万元,一 75.5 万元,315
万元,此厂去年总的盈亏情况是

万元.
三、解答题(共 62 分) 17.计算:(12 分)
(1) (2) 2 (2)2
;Leabharlann (3)韩非出生于公元前 206 年,记做

(4)欧阳修出生于公元 1007 年,记做

12.
的倒数等于本身,
的相反数等于本身,
的绝对值等于本身,一
个数除以或乘以
等于这个数的相反数.
13.把下列各有理数填入相应的大括号里:
一 2.5,3.14,一 2,+72,一 0.6,0.618, 22 ,0,一 0.0101. 7
正数集合:{3.14.+72,0.618, 22 …} 7
负数集合:{一 2.5,一 2,一 0.6,一 0.010 1…} 整数集合:{一 2,+72,0…}
分数集合:{一 2.5,3.14,一 0.6,0.618, 22 ,一 0.010 l…) 7
14.> 15.8 5 2n 16.赢 217
17.(1)0 (2) 1 61 (3)一 4(4) 41
64
6
18.解:故 a b c 3 1 . 3
19.解:如答图所示.
20.解:[5 一(一 2)]÷6×1= 7 ≈1.17(千米). 6
21.解:6×2+5×0 一 4×2=4(分),所以七年级(5)班得 4 分.
22.解 l(1)小虫最后回到了出发点 O (2)小虫距离出发点 O 最远是 16 cm.
3
2
20.高度每增加 1 千米,气温大约降低 6℃,今测得高空气球的温度是 2℃,地面温度是 5℃,
求气球的大约高度.(保留 3 个有效数字)(6 分)
21.七年级举行链球碧环赛,规则是:胜一场得 2 分,平一场得 0 分,负一场得一 2 分,比 赛结果是七年级(5)班 6 胜 5 平 4 负,七年级(5)班得几分?(8 分)
正数集合:{
…};负数集合:{
…};
整数集合:{
…};分数集合:{
…}.
14.比较大小:一 2 3
一3 . 4
15.你喜欢吃拉面吗?你发现拉面馆的师傅,用一根较粗的面条,把两头捏合在一起拉伸,
再捏合,再拉伸,重复几次,就把这根很粗的面条拉成了许多细的面条.
(1)经过第三次捏合后,可拉出
根细面条.
(2)经过第
()
A.一 3 B.3 C.一 10 D.10
5.a 与一 2 互为相反数,那么 a 等于
A.一 2
B.2
C. 1 2
D. 1 2
()
6.若 a a ,则 a 一定是
()
A.正数
B.负数
C.非负数
7.4.7 ( 8.9) 7.5+( 6)的值等于
A.12.1 B.0.1
C.一 0.1
D.非正数 D.一 12.1
23. 2008 2009
第二章 有理数 单元测试卷
(时间:90 分钟 满分:100 分)
一、选择题(每题 2 分,共 16 分)
1.-0.2 的倒数是
A.0.2
B.5
C.-0.2
2.下列式子的结果是负数的是
D.-5
() ()
A. 3
B.-(-3)
C.(-3)2
D.-(-1)2021
3.下列计算正确的是 A.0-(-8)=- 8
苏科版七年级数学上册第二章 有理数 单元测试卷 5 套卷
第二章 有理数 单元测试卷
第Ⅰ卷 选择题(共 20 分)
一、选择题(每小题 2 分,共 20 分)
1.下列说法正确的是
()
A.0 是最小的数
B.“+15 m”表示向东走 15 m
C.-a 不一定是负数
D.一个数前面加上“--”,就变成了负数
2.在有理数 (3) , (2)2 ,0, 32 , 3 , 1 中,负数的个数是 3
(2) 22 ( 1 )2 (0.8)3 2
(3) 100 16 (2)4 1 (5)2 100 5
(4)
1
2
(1
1 3
0.5)
32
(2)2
18.已知 (a 1)2 (2a b)4 a 3c 0 ,求 a b c 的值.(8 分)
19.画一条数轴,并在数轴上找出表示比 2 1 大,且比 2 1 小的整数点.(6 分)
() A.1
B. 1 2
C. 3 2
D.2
第Ⅱ卷 非选择题(共 80 分)
二、填空题(每空 1 分,共 18 分)
11.孔子出生于公元前 551 年,如果用一 551 年表示,那么下列历史文化名人的出生年代应
该如何表示?
(1)司马迁出生于公元前 145 年,记做

(2)李白出生于公元 701 年,记做
23.若 a、b 为实数,且 a 1 (ab 2)2 0 ,求
1
1
1
1
的值 (12 分)
ab (a 1)(b 1) (a 2)(b 2)
(a 2007)(b 2007)
参考答案
1.C 2.D 3.A 4.A 5.B 6.D 7.B 8.A 9.B l0.C 11.(1)一 145 年 (2)701 年 (3)一 206 年 (4)1007 年 12.士 1 0 正数或 0(非负数) 一 1
相关文档
最新文档