八年级数学下册第16章《分式》综合水平测试题

合集下载

八年级数学下册第16章《分式》综合水平测试题[1]

八年级数学下册第16章《分式》综合水平测试题[1]

八年级数学下册第16章《分式》综合水平测试一、选择题:(每小题2分,共20分) 1.下列各式:2b a -,x x 3+,πy+5,()1432+x ,ba b a -+,)(1y x m-中,是分式的共有( )A.1个B.2个C.3个D.4个 2.下列判断中,正确的是( ) A .分式的分子中一定含有字母 B .当B =0时,分式B A无意义 C .当A =0时,分式BA的值为0(A 、B为整式)D .分数一定是分式 3.下列各式正确的是( ) A .11++=++b a x b x a B .22x y x y = C .()0,≠=a mana m n D .am an m n --=4.下列各分式中,最简分式是( ) A .()()y x y x +-8534 B .yx x y +-22 C .2222xy y x y x ++D .()222y x y x +-5.化简2293mmm --的结果是( ) A.3+m m B.3+-m m C.3-m m D.mm-36.若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( )A .扩大3倍B .不变C .缩小3倍D .缩小6倍7.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) A .9448448=-++x x B .9448448=-++x x C .9448=+x D .9496496=-++x x8.已知230.5x y z ==,则32x y z x y z +--+的值是( ) A .17 B.7 C.1 D.139.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.47 10.已知226a b ab +=,且0a b >>,则a ba b+-的值为( ) A .2 B .2± C .2 D .2±二、填空题:(每小题3分,共24分)11.分式392--x x 当x 时分式的值为零,当x 时,分式xx2121-+有意义.12.利用分式的基本性质填空:(1)())0(,10 53≠=a axy xy a (2)()1422=-+a a 13.分式方程1111112-=+--x x x 去分母时,两边都乘以 . 14.要使2415--x x 与的值相等,则x =. 15.计算:=+-+3932a a a . 16. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为.17.若分式231-+x x 的值为负数,则x 的取值范围是.18. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为. 三、解答题:(共56分) 19.计算:(1)11123x x x++ (2)32÷x y2620. 计算: ()3322232n m n m --⋅21. 计算(1)168422+--x x xx (2)mn nn m m m n n m -+-+--222. 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==-23. 解下列分式方程. (1)xx 3121=- (2)1412112-=-++x x x24. 计算: (1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4214121111x x x x ++++++-25.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.26.先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).27.某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?28.A、B两地相距20 ,甲骑车自A地出发向B地方向行进30分钟后,乙骑车自B地出发,以每小时比甲快2倍的速度向A地驶去,两车在距B地12 的C地相遇,求甲、乙两人的车速.答案 一、选择题1.C 2.B 3.C 4.C 5.B 6.C 7.B 8.A 9.B 10.A二、填空题(每小题3分,共24分)11.=-3、≠1212.26a 、2a - 13.(1)(1)x x +- 14.6 15.3a - 16. 17.-1<x <2318.2(提示:设24y y m +=,原方程变形为211x m x m -=--,方程两边同时乘以(1)(1)x m --,得(1)(1)(2)x m x m -=--,化简得m x +=2,即24y y m ++=2.三、解答题(共56分) 19.(1)原式=632666x x x ++=116x (2)原式=2236x xy y =212x20.原式=243343m n m n -=1712m n -21.(1)原式=2(4)(4)x x x --=4xx - (2)原式=2m n m n m n m n m n -++----=2m n m n m n -++--=mm n-- 22.原式=22222()()[]1()()()a a a a b a a b a b a b a b a b --÷-+--+-- =2222()[]1()()()a ab a a a b a a b a b a b ----÷+-+-=2()()1()ab a b a b a b ab-+-÷+-- =a b a b a b a b +-+--=2aa b- 当2,33a b ==-时,原式=2232(3)3⨯--=43113=411 23.(1)方程两边同时乘以3(2)x x -,得32x x =-,解得x =-1,把x =-1代入3(2)x x -,3(2)x x -≠0,∴原方程的解,∴原方程的解是x =-1.(2)方程两边同乘以最简公分母(1)(1)x x +-,得4)1(2)1(=++-x x ,解这个整式方程得,1=x ,检验:把1=x 代入最简公分母(1)(1)x x +-,(1)(1)x x +-=0,∴1=x 不是原方程的解,应舍去,∴原方程无解.24.(1)原式=1111x x x -⎛⎫+⎪-⎝⎭=1111x x x x -+--=11x x x x--=1(2)原式=241124(1)(1)(1)(1)11x x x x x x x x +-+++-+-+++=224224111x x x++-++=22222242(1)2(1)4(1)(1)(1)(1)1x x x x x x x +-++-++-+=2222422224(1)(1)1x x x x x ++-+-++=444411x x +-+=4444444(1)4(1)(1)(1)(1)(1)x x x x x x +-+-++-=4484(1)4(1)1x x x ++--=881x -25.原式=222218339x x x x +-++--=22(3)2(3)(218)9x x x x --+++- 2269x x +-=2(3)(3)(3)x x x ++-=23x -,∵918232322-++-++x x x x 是整数,∴23x -是整数,∴3x -的值可能是±1或±2,分别解得x =4,x =2,x =5,x =1,符合条件的x 可以是1、2、4、5.26.①241≤x ≤300;②x m 12-,6012+-x m27.设原计划每小时加工x 个零件,根据题意得:1500150052x x-=,解得x =150,经检验,x =150是原方程的根,答:设原计划每小时加工150个零件. 28.设甲速为,乙速为3,则有xx x31260301220=--,解之得8=x ,经检验,x =8是原方程的根,答:甲速为8,乙速为24.。

最新八年级数学下册第16章《分式》综合水平测试题[1]

最新八年级数学下册第16章《分式》综合水平测试题[1]

八年级数学下册第16章《分式》综合水平测试一、选择题:(每小题2分,共20分)1.下列各式:2b a -,x x 3+,πy +5,()1432+x ,b a b a -+,)(1y x m -中,是分式的共有( )A.1个B.2个C.3个D.4个2.下列判断中,正确的是( )A .分式的分子中一定含有字母B .当B =0时,分式B A 无意义C .当A =0时,分式BA 的值为0(A 、B 为整式) D .分数一定是分式3.下列各式正确的是( )A .11++=++b a x b x aB .22x y x y =C .()0,≠=a ma na m nD .am a n m n --= 4.下列各分式中,最简分式是( )A .()()y x y x +-8534B .y x x y +-22C .2222xy y x y x ++ D .()222y x y x +- 5.化简2293m m m --的结果是( ) A.3+m m B.3+-m m C.3-m m D.mm -3 6.若把分式xy y x 2+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍7.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) A .9448448=-++x x B .9448448=-++xx C .9448=+x D .9496496=-++x x 8.已知230.5x y z ==,则32x y z x y z +--+的值是( )A .17 B.7 C.1 D.139.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.4710.已知226a b ab +=,且0a b >>,则a b a b +-的值为( ) A .2 B .2± C .2 D .2±二、填空题:(每小题3分,共24分)11.分式392--x x 当x _________时分式的值为零,当x ________时,分式xx 2121-+有意义. 12.利用分式的基本性质填空:(1)())0(,10 53≠=a axy xy a (2)()1422=-+a a 13.分式方程1111112-=+--x x x 去分母时,两边都乘以 . 14.要使2415--x x 与的值相等,则x =__________. 15.计算:=+-+3932a a a __________. 16. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 17.若分式231-+x x 的值为负数,则x 的取值范围是__________. 18. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为______. 三、解答题:(共56分)19.计算:(1)11123x x x++ (2)3xy 2÷x y 2620. 计算: ()3322232n m n m --⋅21. 计算 (1)168422+--x x x x (2)mn n n m m m n n m -+-+--222. 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==-23. 解下列分式方程.(1)x x 3121=- (2)1412112-=-++x x x24. 计算:(1)1111-÷⎪⎭⎫ ⎝⎛--x x x (2)4214121111xx x x ++++++-25.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.26.先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).27.某工人原计划在规定时间内恰好加工1500个零件,改进了工具和操作方法后,工作效率提高为原来的2倍,因此加工1500个零件时,比原计划提前了5小时,问原计划每小时加工多少个零件?28. A 、B 两地相距20 km ,甲骑车自A 地出发向B 地方向行进30分钟后,乙骑车自B 地出发,以每小时比甲快2倍的速度向A 地驶去,两车在距B 地12 km 的C 地相遇,求甲、乙两人的车速.答案一、选择题1.C 2.B 3.C 4.C 5.B 6.C 7.B 8.A 9.B 10.A二、填空题(每小题3分,共24分)11.=-3、≠1212.26a 、2a - 13.(1)(1)x x +- 14.6 15.3a - 16. 17.-1<x <23 18.2(提示:设24y y m +=,原方程变形为211x m x m -=--,方程两边同时乘以(1)(1)x m --,得(1)(1)(2)x m x m -=--,化简得m x +=2,即24y y m ++=2.三、解答题(共56分)19.(1)原式=632666x x x ++=116x(2)原式=2236x xyy =212x 20.原式=243343m n m n -=1712m n -21.(1)原式=2(4)(4)x x x --=4x x - (2)原式=2m n m n m n m n m n -++----=2m n m n m n -++--=m m n -- 22.原式=22222()()[]1()()()a a a a b a a b a b a b a b a b--÷-+--+-- =2222()[]1()()()a ab a a a b a a b a b a b ----÷+-+-=2()()1()ab a b a b a b ab-+-÷+-- =a b a b a b a b +-+--=2a a b- 当2,33a b ==-时,原式=2232(3)3⨯--=43113=41123.(1)方程两边同时乘以3(2)x x -,得32x x =-,解得x =-1,把x =-1代入3(2)x x -,3(2)x x -≠0,∴原方程的解,∴原方程的解是x =-1.(2)方程两边同乘以最简公分母(1)(1)x x +-,得4)1(2)1(=++-x x ,解这个整式方程得,1=x ,检验:把1=x 代入最简公分母(1)(1)x x +-,(1)(1)x x +-=0,∴1=x 不是原方程的解,应舍去,∴原方程无解.24.(1)原式=1111x x x -⎛⎫+⎪-⎝⎭=1111x x x x -+--=11x x x x --=1(2)原式=241124(1)(1)(1)(1)11x x x x x x x x +-+++-+-+++=224224111x x x ++-++=22222242(1)2(1)4(1)(1)(1)(1)1x x x x x x x +-++-++-+=2222422224(1)(1)1x x x x x ++-+-++=444411x x+-+=4444444(1)4(1)(1)(1)(1)(1)x x x x x x +-+-++-=4484(1)4(1)1x x x ++--=881x- 25.原式=222218339x x x x +-++--=22(3)2(3)(218)9x x x x --+++-2269x x +-=2(3)(3)(3)x x x ++-=23x -,∵918232322-++-++x x x x 是整数,∴23x -是整数,∴3x -的值可能是±1或±2,分别解得x =4,x =2,x =5,x =1,符合条件的x 可以是1、2、4、5.26.①241≤x ≤300;②x m 12-,6012+-x m 27.设原计划每小时加工x 个零件,根据题意得:1500150052x x-=,解得x =150,经检验,x =150是原方程的根,答:设原计划每小时加工150个零件.28.设甲速为xkm/h ,乙速为3xkm/h ,则有xx x 31260301220=--,解之得8=x ,经检验,x =8是原方程的根,答:甲速为8km/h ,乙速为24km/h.。

最新八年级下期数学第十六章分式单元测试题及答案

最新八年级下期数学第十六章分式单元测试题及答案

八年级下期数学第十六章分式单元测试题及答案一、选择题(本题共16分,每小题2分)1、在x 1、21、212+x 、πxy 3、y x +3、ma 1+中分式的个数有( ) A 、2个 B 、3个 C 、4个 D 、5个2、下列各式中,一定成立的是( )A 、1-=---b a a b B 、()222b a b a -=- C 、y x yx xy y x -=---1222 D 、()2222a b b ab a -=+- 3、与分式23.015.0+-x x 的值,始终相等的是( ) A 、2315+-x x B 、203105+-x x C 、2032+-x x D 、2315 4、下列分式中的最简分式(不能再约分的)是( )A 、112++a aB 、aa a 222++ C 、cd ab 42 D 、2)1(22++a a 5、下列说法正确的是 ( )A 、若n m >,则88->-n mB 、42≤-x 的解集是2≥xC 、当m =32时, m m 23-无意义 D 、分式2)2(++m m m 总有意义6、下列从左边到右边的变形正确的是( )A 、)32(4124822b a ab ab ab b a -=--B 、22)21(41-=+-x x x C 、mm m 2321=+ D 、1=-+-b a b b a a7、若分式)1)(4()4)(4(--+-m m m m 的值为零,则m = ( )A 、±4B 、 4C 、 4-D 、 18、下列化简正确的是 ( )A 、b a b a b a +=++2B 、1-=+--b a b aC 、1-=---b a b aD 、b a b a b a -=--22二、填空题(本题共16分,每小题2分)1、 当x 时,分式42+-x x 有意义。

2、若32=a b ,则=+-ba b a 。

3、当x 时,分式242+-x x 的无意义;(1分) 当x 时,分式242+-x x 值为零;(1分) 4、计算(结果用科学计数技术法表示)(1) (3×10-8)×(4×103)= (1分) (2) (2×10-3)2÷(10-3)3 = (1分)5、化简:ab bc a 2= ,(1分) 12122+--x x x -2122x x -- = ;(1分) 6、化简:a y ya 242-⋅= ,(1分) =-÷+-)1(11m m m . (1分) 7、如果分式333++x x x 与的差为2 ,那么x 的值是 . 8、若=++≠==a c b a a c b a 则),0(753 .三、化简、计算(本题共25分,第1—5题每小题4分,第6题5分)1、a b a b a b a -+-+2、y y y y y y 93322-⋅⎪⎪⎭⎫ ⎝⎛+--3、 19)1(961222--⨯+÷++-a a a a a a4、x x x x x x x x -÷+----+4)44122(225、2224442yx x y x y x y x y y x x +÷--+⋅-6、已知:ba ab ab b a ++-==+21,4求:的值。

华师大版八年级数学下册 第十六章《分式》整章水平测试

华师大版八年级数学下册  第十六章《分式》整章水平测试

八年级数学下册第十六章《分式》整章水平测试(总分:100分,时间:40分钟)一、 试试你的身手(每小题4分,共28分)1.若分式11x x -+的值为零,则x 的值为 . 2.不改变分式的值,把分式10.720.3a b a b-+的分子与分母的各项系数化为整数为: . 3.当a 时,分式2521a a -+的值不小于0. 4.化简:3222222232a b a b a ab ab a ab b a b +--÷++-= . 5.生物学家发现一种病毒的长度约为0.000043㎜,用科学记数法表示0.000043的结果为㎜.6.若方程56x x a x x -=--有增根,则a 的值可能是 . 7.把题目补充完整:轮船在顺流中航行64km 与逆流中航行34km 一共用去的时间等于该船在静水中航行180km 所用的时间,已知水流的速度是每小时3km ,求该船 . 设 ,依题意列方程 .二、相信你的选择(每小题4分,共32分)1.在有理式21121,,(),,,,(15)321x x x m n m n R x a m n yππ-+--+中,分式有( ). (A )1个 (B )2个 (C )3个 (D )4个2.如果226x x x ---=0,则x 等于( ). (A )±2 (B )-2 (C )2 (D )33.分式2232x x y-中的,x y 同时扩大2倍,则分式的值( ).(A )不变 (B )是原来的2倍 (C )是原来的4倍 (D )是原来的21 4.下列各式从左到右的变形正确的是( ). (A )122122x y x y x yx y --=++(B )0.220.22a b a b a b a b ++=++(C )11x x x y x y +--=-- (D )a b a b a b a b +-=-+ 5.已知111,11ab M a b ==+++,11a b N a b =+++,则M 与N 的大小关系为( ). (A )M>N (B )M=N (C )M<N (D )不确定6.关于x 的方程(1)43a x x +=+的解是负数,则a 的取值范围是( ).(A )a =3 (B )a <3且a ≠-1 (C )a ≥3 (D )a ≤3且a ≠-17.在正数范围内定义一种运算“※”,其规则为a ※b =11a b+,根据这个规则方程x ※(1x +)=0的解为( ).(A )1 (B )0 (C )无解 (D )12- 8.学生有m 个,若每n 个人分配1间宿舍,则还有一人没有地方住,问宿舍的间数为( ).(A )1m n + (B )1m n - (C )1m n - (D )1m n + 三、挑战你的技能(本大题共37分)1.(本题8分)解方程:214 1.11x x x +-=--2.(本题10分)先化简代数式222222()()()a b a b aba b a b a b a b+--÷-+-+,然后请选择一组你喜欢的,a b的值代入求值.3.(本题12分)同一条高速公路沿途有三座城市A、B、C,C市在A市与B市之间,A、C两市的距离为540千米,B、C两市的距离为600千米.现有甲、乙两辆汽车同时分别从A、B两市出发驶向C 市,已知甲车比乙车的速度慢10千米/时,结果两辆车同时到达C市.求两车的速度.四、拓广探索(本大题共12分)请阅读某同学解下面分式方程的具体过程. 解方程1423.4132x x x x +=+---- 解:13244231x x x x -=-----, ① 222102106843x x x x x x -+-+=-+-+, ② 22116843x x x x =-+-+, ③ ∴22684 3.x x x x -+=-+ ④ ∴5.2x =把52x =代入原方程检验知52x =是原方程的解. 请你回答:(1)得到①式的做法是 ;得到②式的具体做法是 ;得到③式的具体做法是 ;得到④式的根据是 .(2)上述解答正确吗?如果不正确,从哪一步开始出现错误?答: .错误的原因是 .(3)给出正确答案(不要求重新解答,只需把你认为应改正的加上即可).参考答案:一、1.1 2.57310a b a b -+ 3.a ≤524.2ab 5.54.310-⨯6.6 7.在静水中的速度,船在静水中的速度为x km/h ,64348033x x x +=+-.。

人教版八年级下册数学第十六章分式混合运算测试题(含答案)

人教版八年级下册数学第十六章分式混合运算测试题(含答案)

分式混合运算测试题姓名__________ 班级___________ 分数_______________一、选择题(每小题3分,共30分)1.化简(322211x x x x x x ---++)÷211x x ++的结果为( )A 、1x -B 、21x -C 、21x +D 、1x +2.计算(22x x x x --+)÷42x x -的结果是( ) A 、12x + B 、12x -+ C 、-1 D 、13.计算1a a -÷(1a a -)的正确结果是( )A 、11a +B 、1C 、11a - D 、-14.若0xy x y =-≠,则分式11y x-等于( )A 、1xyB 、y x -C 、1D 、-15.在一段坡路上,小明骑自行车上坡的速度为每小时1v 千米,下坡时的速度为每小时2v 千米,则他在这段坡路上的平均速度是每小时( )千米 A 、122v v + B 、1212v v v v + C 、12122v vv v + D 、无法确定 6.计算(22a a a a --+)·24a a-的结果是( ) A 、-4 B 、4 C 、2a D 、24a +7.化简1x x -÷(1x x -)的结果是( )A 、11x +B 、1C 、11x - D 、-18.分式34x x y -与4x y y x +-的和减去74yx y-,所得的差为( )A 、264x y x y+-- B 、264x yx y -- C 、-2 D 、29.把分式2221,,322136a a a a a a -+++++通分后,各分子的和是( )A 、22711a a ++B 、2244a a ++C 、241113a a ++D 、2810a a ++10.设A x y =+,B x y =-,则A B A BA B A B+---+等于( ) A 、22x y xy - B 、222x y xy - C 、22x y xy + D 、222x y xy+二、填空题(每小题3分,共24分)11.已知3,1a b ab +==,则a bb a+的值等于_________________________. 12.若222222m xy y x yx y x y x y --=+--+,则m =_________________________. 13.若()111A B n n n n +=++,则A=___________,B=______________. 14.已知115a b a b +=+,则b aa b +的值为_________________________.15.若2222a ab a b b abab b a ab++-÷-- 的值是正整数,则整数a 的值为_________________________.16.计算422a a+--的结果为_________________________.17.已知:,a b 为实数,且1ab =,设M=11a b a b +++,N=1111a b +++,则M 与N 的大小关系是M________N,(填“>”、“<”、或“=”).18.油库有油m 升,计划每天用n 升,实际用油每天节约了d 升,这些油可以多用________________天. 三、计算题(每小题4分,共24分)(1)(22x x x x --+)÷42x x - (2)22a b a b--÷(222a b ab ++)(3)21x x --÷(311x x +--) (4)(1n m +)÷(1n m -)·(22m n -)(5)b a b -+32322222b ab b a a b ab b a +÷-+- (6)()2222x y x y x y y x++--四、化简求值(每小题6分,共18分) (1)先化简,再求值:(4ab a b a b -+-)(4ab a b a b +-+),其中31,22a b ==-(2)先化简,再求值:(2221244a a a a a a ---+++)·24a a +-,其中a 满足2210a a +-=(3)先化简,再求值:112x x y-+(222x y x y x +-+)其中2,3x y ==五、条件求值(每小题6分,共24分)(1)已知12012,2012a b ==,求(22a b a b b a---)÷a b ab +的值.(2)已知52,52a b =+=-,求2b aa b++的值.(3)已知269a a -+与1b -互为相反数,求(a bb a-)÷()a b +已知230,3260,0x y z x y z xyz -+=--=≠,求2222222x y z x y z+++-的值.分式混合运算测试题(参考答案)一、选择题 题号 1 2 3 4 5 6 7 8 9 10 答案ABACCAADAB二、填空题11. 7 12. 2x 13. A=1,B=1 14. 315.1a =- 16.22a a - 17. = 18.2md n nd -三、计算题(1)12x + (2)ab a b+ (3)12x -+ (4)222m mn n ++(5)ba(6)x y +四、化简求值(1)原式=22a b -,其值为2 (2)原式=212a a+,其值为1 (3)原式=y x -,其值为32-五、条件求值(1)原式=ab ,其值为1 (2)原式=()2a b ab+其值为20(3)原式=a b ab-,其值为23 (4)1320。

2021-2022学年度华东师大版八年级数学下册第十六章分式章节测评试题(含详细解析)

2021-2022学年度华东师大版八年级数学下册第十六章分式章节测评试题(含详细解析)

华东师大版八年级数学下册第十六章分式章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果关于x 的不等式组45253m x x x ->⎧⎨+≥+⎩所有整数解中非负整数解有且仅有三个,且关于y 的分式方程2301322my y y --=--有正整数解,则符合条件的整数m 有( )个 A .1 B .2 C .3 D .42、若关于x 的一元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩的解集为x a ≤-,且关于x 的分式方程32222ax x x x +=+--有非负整数解,则所有满足条件的整数a 的值之和是( )A .14-B .5-C .9-D .6- 3、要使式子5a b a b -+值为0,则( ) A .a ≠0 B .b ≠0 C .5a =bD .5a =b 且b ≠0 4、根据分式的基本性质,分式22m -可以变形为( ) A .11m - B .22m -- C .22m -+ D .21m-5、下列关于x 的方程,是分式方程的是( )A .325xx -= B .11523x y -= C .32xx x π=+ D .1212x x=-+ 6、已知分式2ab a b +的值为25,如果把分式2ab a b+中的,a b 同时扩大为原来的3倍,那么新得到的分式的值为( )A .25 B .45 C .65 D .4257、下列运算正确的是( )A .22352a b a b -=-B .()22448a b a b -= C .()224--= D .()22224a b a b -=- 8、已知5a b +=,3ab =,则b a a b+的值为( ) A .6 B .193 C .223 D .89、若关于x 的一元一次不等式组()21122x x x m ⎧+-<+⎨-≤⎩的解集为1x <;关于x 的分式方程2422x m m x x ++=--的解为非负整数.则满足条件的整数m 的值之和是( )A .13B .12C .14D .1510、一辆汽车以60千米/时的速度行驶,从A 城到B 城需t 小时,如果该车的速度每小时增加v 千米,那么从A 城到B 城需要( )小时.A .60t v B .6060t v + C .60vt v + D .60vt 第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、计算下列各题:(1)|3﹣4|﹣1=_____;(2=_____;(3)30=_____;(4)32y xy x+=_____. 2、计算:24133--+=--m m m m _________. 3、如果分式2356x x x --+的值为零,那么x =____. 4、将0.000927用科学计数法表示为______.5、当x ≠4时,(x ﹣4)0=___.6、计算:1322x x x -+=++________. 7、已知ab =﹣4,a +b =3,则11a b +=_____. 8、若分式21x +无意义,则x 的值为__. 9、化简:1111x x x ⎛⎫+÷= ⎪--⎝⎭______. 10、计算:02202211122-⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭______. 三、解答题(5小题,每小题6分,共计30分)1、如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①11x x -+;②222a b a b --;③22x y x y +-,其中是“和谐分式”的是 (填写序号即可); (2)若a 为整数,且214x x ax --++为“和谐分式”,写出满足条件的a 的值为 ; (3)在化简22344a ab ab b b -÷-时,小明和小娟分别进行了如下三步变形:小明:原式22222323232232444444()()a a a a a b a ab b ab b b b ab b b ab b b --=-⋅=-=---, 小娟:原式22223222444444()()()a a a a a a ab ab b b b b a b b b a b --=-⋅=-=---, 你比较欣赏谁的做法?先进行选择,再根据你的选择完成化简过程,并说明你选择的理由.2、计算(1)()()()223a b a b a a b -+-+ (2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭3、计算:()03.14π-4、计算:1111x y x y ----+-. 5、计算:(1)()()()23123a a a a -+--(2)()254111x x x x x --⋅++---参考答案-一、单选题1、B【解析】【分析】解不等式组和分式方程得出关于x 的范围,根据不等式组有且仅有非负整数解和分式方程的解为正整数解得出m 的范围,继而可得整数m 的个数.解:解不等式45m x ->,得:54m x -<, 解不等式253x x +≥+,得:2x ≥-,不等式组有且仅有三个非负整数解,4234m -∴<≤, 解得:1216m <≤,解关于y 的分式方程2301322my y y --=--, 23013(2)my y --=-,(13)58m y -=, 得:1358y m =-, 分式方程有正整数解, ∴58013m >-,且58213m ≠-,即42m ≠, 解得:13m >且42m ≠,综上,1316m <≤,所以所有满足条件的整数m 的值为14,15,一共2个.故选:B .【点睛】本题主要考查分式方程的解和一元一次不等式组的解,解题的关键是熟练掌握解分式方程和不等式组的能力,并根据题意得到关于m 的范围.2、B【解析】先解不等式组根据解集x a ≤-,求出得a 的范围,再解分式方程,根据非负整数解,求出a 的值即可求解.【详解】 解一元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩得5x x a ≤⎧⎨≤-⎩ ∵元一次不等式组3132x x x a+⎧≤+⎪⎨⎪≤-⎩的解集为x a ≤-∴5a ≥-,即5a ≥-解关于x 的分式方程32222ax x x x +=+--得61x a =-+ ∵分式方程32222ax x x x+=+--有非负整数解, ∴11a +=-或12a +=-或13a +=-或16a +=-,解得2a =-或3a =-或4a =-或7a =-, ∵621x a =-≠+ ∴4a ≠-∵5a ≥-∴2a =-或3a =-∴2(3)5-+-=-或3a =-故选:B【点睛】本题考查分式方程、一元一次不等式组,熟练掌握分式方程、一元一次不等式组的解法,注意分式方程增根的情况是解题的关键.3、D【解析】【分析】根据分式有意义的条件,即可求解.【详解】解:根据题意得:50a b -= 且0a b +≠ ,∴5a b = 且0b ≠ .故选:D【点睛】本题主要考查了,熟练掌握分式有意义的条件是分式的分子等于0且分母不等于0是解题的关键.4、B【解析】【分析】根据分式的基本性质即可求出答案.【详解】 解:原式2222m m =---, 故选B .【点睛】本题考查的是分式的基本性质,即分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.5、D【解析】【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【详解】解:A.方程分母中不含未知数,故不是分式方程,不符合题意;B.方程分母中不含未知数,故不是分式方程,不符合题意;C.方程分母中不含表示未知数的字母,π是常数,故不是分式方程,不符合题意;D.方程分母中含未知数x,故是分式方程,符合题意.故选:D.【点睛】本题主要考查了分式方程的定义,解题的关键是掌握判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).6、C【解析】【分析】直接利用分式的基本性质进而化简得出答案.【详解】解:把分式2aba b+中的,a b都扩大为原来的3倍,则分式223392263333()55ab a b aba b a b a b===⨯=+++,故选:C.【点睛】本题主要考查了分式的基本性质,解题的关键是正确化简分式.7、B【解析】【分析】由题意依据合并同类项和积、幂的乘方以及负指数幂和完全平方差公式逐项进行运算判断即可.【详解】解:A. 222352a b a b a b -=-,本选项运算错误;B. ()22448a b a b -=,本选项运算正确; C. ()2124--=,本选项运算错误; D. ()222244a b a ab b -=-+,本选项运算错误.故选:B.【点睛】本题考查整式的混合运算以及完全平方差公式,熟练掌握合并同类项和积、幂的乘方以及负指数幂运算是解题的关键.8、B【解析】【分析】 将原式同分,再将分子变形为2()2a b ab ab+-后代入数值计算即可. 【详解】解:∵5a b +=,3ab =, ∴2222()25231933b a a b a b ab a b ab ab ++--⨯+====, 故选:B .【点睛】此题考查了分式的化简求值,正确掌握完全平方公式的变形计算是解题的关键.9、B【解析】【分析】由关于x 的一元一次不等式组可得m ≥-1,关于x 的分式方程的解为83m x -=,根据题意得出所有满足条件的整数m 的值,求和即可.【详解】解:解不等式组2(1)122x x x m +-<+⎧⎨-≤⎩得,12x x m <⎧⎨≤+⎩, 因为不等式组的解集为1x <;所以21m +≥,解得,1m ≥-; 解分式方程2422x m m x x ++=--得,83m x -=, 因为关于x 的分式方程2422x m m x x ++=--的解为非负数. 所以,803m -≥且823m -≠, 解得,8m ≤且2m ≠,又因为方程的解是非负整数,则整数m 的值为-1,5,8;它们的和为:-1+5+8=12;故选:B【点睛】本题主要考查了分式方程的解,一元一次不等式组的解集,有理数的混合运算.考虑解分式方程可能产生增根是解题的关键.10、B【解析】【分析】根据题意求出全程,及后来行驶的速度,相除即可得到时间.【详解】解:一辆汽车以60千米/时的速度行驶,从A城到B城需t小时,故全程为60t千米,该车的速度每小时增加v千米后的速度为每小时(60+v)千米,则从A城到B城需要6060tv+小时,故选:B.【点睛】此题考查了分式的实际应用,正确理解题意是解题的关键.二、填空题1、 0 3 1 5 x【解析】【分析】(1)先化简绝对值,再计算减法运算即可得;(2)先计算有理数的乘方,再计算算术平方根即可得;(3)计算零指数幂即可得;(4)根据分式的加法运算法则即可得.【详解】解:(1)原式11110=--=-=,故答案为:0;(2)原式3==,故答案为:3;(3)原式1=,故答案为:1;(4)原式325x x x+==, 故答案为:5x .【点睛】本题考查了零指数幂、算术平方根、分式的加法等知识点,熟练掌握各运算法则是解题关键.2、-1【解析】【分析】根据同分母分式的加法法则计算即可.【详解】 解:241241313333m m m m m m m m m---+--+===-----. 故答案为:-1.【点睛】本题考查了同分母分式的加减运算,同分母分式的加减法则:分母不变,分子相加减.3、3-【解析】【分析】根据分时的值为0的条件,可得30x -= 且2560x x -+≠ ,即可求解.【详解】 解:根据题意得:30x -= 且2560x x -+≠ ,即3x =± 且()()230x x --≠ ,∴3x =± 且2x ≠ 且3x ≠ ,∴3x =- .故答案为:3-【点睛】本题主要考查了分时的值为0的条件,熟练掌握当分式的分子等于0,且分母不等于0时,分时的值为0是解题的关键.4、9.27×10-4【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000927=9.27×10-4,故答案为:9.27×10-4.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5、1【解析】【分析】根据零指数幂的定义:a0=1(a≠0),求解即可.【详解】解:∵x≠4,∴x-4≠0,∴(x-4)0=1.故答案是:1.【点睛】本题考查了零指数幂,掌握运算法则是解答本题的关键.6、1【解析】【分析】根据b c b ca a a++=计算即可.【详解】∵1322 xx x-+++=13222 x xx x-++=++=1,故答案为:1.【点睛】本题考查了同分母分式的加法,熟练掌握同分母分式的加减法的法则是解题的关键.7、3 4 -【解析】先通分:11a ba b ab++=,然后再代入数据即可求解.【详解】解:由题意可知:113344a ba b ab++===--,故答案为:34 -.【点睛】本题考查了分式的加减运算及求值,属于基础题,计算过程中细心即可.8、-1【解析】【分析】根据使分式无意义的条件“分母为0”,计算即可.【详解】根据题意有10x+=,解得:1x=-.故答案为:-1.【点睛】本题考查使分式无意义的条件.掌握使分式无意义的条件是分母为0是解答本题的关键.9、1【解析】【分析】根据分式的加减运算法则以及乘除运算法则即可求出答案.解:原式=1111x xx x +--⨯-=11x xx x-⨯-=1故答案为:1.【点睛】本题考查分式的混合运算,解题的关键是熟练运用分式的加减运算以及乘除运算法则,本题属于基础题型.10、-4【解析】【分析】先运用乘方、零次幂、负整数次幂化简,然后计算即可.【详解】解:02 202211122-⎛⎫⎛⎫-+--⎪ ⎪⎝⎭⎝⎭=114-+-=-4.故答案为-4.【点睛】本题主要考查了乘方、零次幂、负整数次幂等知识点,灵活运用相关运算法则成为解答本题的关键.三、解答题1、(1)②(3)我欣赏小娟的做法,见解析【解析】【分析】(1)根据和谐分式的定义判断即可得出答案;(2)根据完全平方公式和十字相乘法即可得出答案;(3)小娟利用了和谐分式,通分时找到了最简公分母,完成化简即可.(1)解:①分子或分母都不可以因式分解,不符合题意;②分母可以因式分解,且这个分式不可约分,符合题意;③这个分式可以约分,不符合题意;故答案为:②;(2)解:将分母变成完全平方公式得:244x x ±+,此时4a =±;将分母变形成(1)(4)x x ++,此时5a =;故答案为:4±或5;(3)我欣赏小娟的做法, 原式222444()a a ab b a b -+=- 24()ab b a b =- 4()a b a b =-, 理由:小娟利用了和谐分式,通分时找到了最简公分母.解:我欣赏小娟的做法, 原式222444()a a ab b a b -+=- 24()ab b a b =- 4()a b a b =-, 理由:小娟利用了和谐分式,通分时找到了最简公分母.【点睛】本题考查了分式的混合运算,解题的关键是掌握在分式的混合运算中,能因式分解的多项式要分解因式,便于约分.2、 (1)243b ab -- (2)21x x -- 【解析】【分析】(1)根据单项式乘多项式和平方差公式可以解答本题;(2)先因式分解,再根据分式的减法和除法解答本题.(1)解:(1)()()()223a b a b a a b -+-+()22243a b a ab =--+22243a b a ab =---243b ab =--(2)22242211x x x x x x ⎛⎫-+÷- ⎪-+-⎝⎭()()()()222212111x x x x x x x x -+-⎡⎤+=÷-⎢⎥---⎣⎦ ()()()()222211x x x x x -+-+⎡⎤=÷⎢⎥--⎣⎦()()()()()222121x x x x x ⎡⎤-+-=⎢⎥-+-⎢⎥⎣⎦ 21x x -=- 【点睛】本题考查整式的混合计算,分式的混合运算、单项式乘多项式、平方差公式,熟悉相关性质是解答本题的关键.3、6【解析】【分析】先运用零次幂、算术平方根的性质、立方根的知识化简,然后计算即可.【详解】解:()03.14π-=1+2-(-3)=1+2+3=6.【点睛】本题主要考查了零次幂、算术平方根、立方根等知识点,灵活运用相关知识是解答本题的关键.4、y x y x+-. 【解析】【分析】根据负整数指数幂、分式的加减法与除法法则即可得.【详解】 解:原式1111x y x y+=-y x xy xy y x xy xy+=- y xxy y xxy+=- y x y x+=-. 【点睛】本题考查了负整数指数幂、分式的加减法与除法,熟练掌握分式的运算法则是解题关键.5、 (1)3a + (2)11x - 【解析】【分析】(1)先利用单项式乘多项式和多项式乘多项式运算法则计算,然后再合并即可;(2)运用分式的四则混合运算法则计算即可.(1)解:()()()23123a a a a -+--=2262253a a a a -+-+=3a +.(2) 解:()254111x x x x x --⋅++-- =()()()541111x x x x x x --⋅+++-- =5411x x x x --+-- =541x x x -+-- =11x -. 【点睛】本题主要考查整式乘法混合运算、分式四则混合运算等知识点,灵活运用相关知识点成为解答本题的关键.。

第16章 分式 华东师大版八年级数学下册学情评估试题(含答案)

第16章 分式 华东师大版八年级数学下册学情评估试题(含答案)

第16章分式学情评估试题一、选择题(每题3分,共24分)1.在式子3a2π,x22x,34a+b,x+3x-1,-m2,am中,分式有( )A.2个B.3个C.4个D.5个2.碘是人体必需的微量元素之一,在人的身体成长、发育过程中起着至关重要的作用.已知碘原子的半径约为0.000 000 013 3 cm,数字0.000 000 013 3用科学记数法表示为( )A.13.3×10-8B.1.33×10-8C.1.33×10-9D.0.133×10-73.若分式x2-25x+5的值为0,则x的值为( )A.0 B.5 C.-5 D.±54.把分式2x2x-3y中的x和y都扩大为原来的5倍,那么这个分式的值( )A.扩大为原来的5倍B.不变C.缩小到原来的15D.扩大为原来的52倍5.分式1a+b,2aa2-b2,bb-a的最简公分母是( )A.(a2-b2)(a+b)(a-b) B.(a2-b2)(a+b) C.(a2-b2)(b-a) D.a2-b26.解分式方程x2x-1+11-2x=2时,去分母可得( )A.x+1=2 B.x-1=2(2x-1)C.x+1=2(2x-1) D.x-1=27.中华优秀传统文化是中华民族的“根”和“魂”.为了大力弘扬中华优秀传统文化,某校决定开展名著阅读活动,用3 600元购买“四大名著”若干套后,发现这批图书满足不了学生的阅读需求,图书管理员在购买第二批时正赶上图书城八折销售该套书,于是用2 400元购买的套数只比第一批少4套,设第一批购买的“四大名著”每套的价格为x 元,则符合题意的方程是( )A.3 6000.8x-2 400x=4 B.3 600x -2 4000.8x=4 C.2 4000.8x -3 600x =4 D.2 400x -3 6000.8x=48.对于实数a ,b ,定义一种新运算“⊗”:a ⊗b =1a -b 2.例如:1⊗3=11-32=-18.则方程x ⊗(-2)=2x -4-1的解是( )A .x =4B .x =5C .x =6D .x =7二、填空题(每题3分,共18分)9.要使分式1x -2有意义,则x 的取值范围是________.10.计算35x +x -35x 的结果是________.11.计算:9-(π-1)0=________.12.若关于x 的分式方程2x -3+x +m3-x =2有增根,则m 的值是________.13.已知 x 2-4x +1=0,则2(x -1)x -4-x +6x的值为________.14.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,如三根弦的长度之比是15￿12￿10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do 、mi 、sol ,研究15、12、10这三个数的倒数发现:112-115=110-112,我们称15、12、10这三个数为一组调和数.现有一组两两各不相等的数:4、6、x ,若要使这三个数组成一组调和数,则x 的值为________.三、解答题(15题8分,16题16分,17~20题每题8分,21题10分,22题12分,共78分)15.当x =5时,分式x -b x +a 无意义;当x =-2时,分式x -b x +a 的值为0,求分式a +bab的值.16.计算:(1)x -3x +2÷2x -6x 2-4; (2)x 2+2x +1x +1-x 2+xx;(3)m -n m÷(m 2+n 2m -2n );(4)(-13)-2+(-1)2 024-|-23|+(π-5)0.17.解方程:(1)2x+1+1=xx-1;(2)x+1x-1-4x2-1=1;(3)23x-1-1=36x-2.18.先化简:3m2-9mm-2÷(m+2-5m-2),然后从1,2,3中选择一个合适的数作为m的值代入求值.19.老师让同学们化简(x2x2-4-1)÷2x-2,某同学给出了如下的解答过程:解:原式=x2-(x2-4)x2-4×x-22 ①=x2-x2-4x2-4×x-22 ②=-4(x+2)(x-2)×x-22 ③=-2x+2. ④请回答下列问题:(1)该同学的解答过程从第______步开始出现错误,该步错误的原因是__________________________;(2)请你给出正确的解答过程.20.已知关于x的方程2xx-2+mx-2=-2.(1)当m=5时,求方程的解;(2)当m取何值时,此方程无解;(3)当此方程的解是正数时,求m的取值范围.21.根据以下素材,探索完成任务.如何设计奖品购买及兑换方案?素材1某文具店销售某种钢笔与笔记本,已知钢笔的单价是笔记本的2倍,用120元购买笔记本的数量比用160元购买钢笔的数量多8.素材2某学校花费400元购买该文具店的钢笔和笔记本作为奖品颁发给“优秀学生”,两种奖品的购买数量均不少于20,且购买笔记本的数量是10的倍数.素材3学校花费400元后,文具店赠送m张(1<m<10)兑换券(如图)用于商品兑换.兑换后,笔记本与钢笔数量相同.(第21题)问题解决任务1求商品单价请运用适当方法,求出钢笔与笔记本的单价.任务2探究购买方案探究购买钢笔和笔记本数量的所有方案.任务3确定兑换方式运用数学知识,任选一种购买方案并说明符合条件的兑换方式.22.先阅读下列解法,再解答后面的问题.已知3x-4x2-3x+2=Ax-1+Bx-2,求A,B的值.解法一:去分母,得3x-4=A(x-2)+B(x-1),即3x -4=(A +B )x -(2A +B ),所以{A +B =3,-(2A +B )=-4,解得{A =1,B =2.解法二:在已知等式中取x =0,有-A +B-2=-2,整理,得2A +B =4;取x =3,有A 2+B =52,整理,得A +2B =5,解{2A +B =4,A +2B =5,得{A =1,B =2.(1)已知11x-3x 2-14x +24=A x +6+B 4-3x,用上面的解法一或解法二求A ,B 的值;(2)计算[1(x -1)(x +1)+1(x +1)(x +3)+1(x +3)(x +5)+…+1(x +9)(x +11)](x +11),并求当x 取何整数时,这个式子的值为正整数.答案一、1.B 2.B 3.B 4.B 5.D 6.B 7.B 8.B 二、9.x ≠2 10.15 11.2 12.-1 点拨:解分式方程得x =8-m 3.因为该方程有增根,所以x =3,所以8-m3=3,解得m =-1.13.-2314.3,245或12 点拨:当x <4时,根据题意得14-16=1x -14,整理得1x =13,解得x =3,经检验,x =3是原方程的解;当4<x <6时,根据题意得1x -16=14-1x ,整理得2x =512,解得x =245,经检验,x =245是原方程的解;当x >6时,根据题意得16-1x =14-16,整理得1x =112,解得x =12,经检验,x =12是原方程的解.所以x 的值为3,245或12.三、15.解:由题意可得5+a =0,-2-b =0,解得a =-5,b =-2,所以a +b ab =-5+(-2)-5×(-2)=-710.16.解:(1)原式=x -3x +2·(x +2)(x -2)2(x -3)=x -22.(2)原式=(x +1)2x +1-x (x +1)x=(x +1)-(x +1)=0.(3)原式=m -n m ÷m 2+n 2-2mn m =m -n m ·m (m -n )2=1m -n .(4)原式=9+1-8+1=3.17.解:(1)去分母,得2(x -1)+(x +1)(x -1)=x (x +1),解得x =3.检验:把x =3代入(x +1)(x -1),得(3+1)(3-1)≠0,所以x =3是原分式方程的解.(2)去分母,得(x +1)2-4=x 2-1,解得x =1.检验:把x =1代入x 2-1,得12-1=0,所以x =1是原分式方程的增根,所以原分式方程无解.(3)去分母,得4-2(3x -1)=3,解得x =12.检验:把x =12代入2(3x -1),得2×(3×12-1)≠0,所以x =12是原分式方程的解.18.解:原式=3m (m -3)m -2÷[(m +2)(m -2)m -2-5m -2]=3m (m -3)m -2÷m 2-9m -2=3m (m -3)m -2×m -2(m +3)(m -3)=3mm +3.因为m ≠2,m ≠±3,所以m =1.当m =1时,原式=3×11+3=34.19.解:(1)②;括号前为“-”, 去括号后,括号内的第二项没有变号(2)原式=x 2-(x 2-4)x 2-4×x -22=x 2-x 2+4x 2-4×x -22=4(x +2)(x -2)×x -22=2x +2.20.解:去分母,得2x +m =-2(x -2),整理,得4-4x =m .(1)当m =5时,4-4x =5,解得x =-14.经检验,x =-14是原方程的解.(2)因为此方程无解,所以x -2=0,所以x =2.当x =2时,m =4-4x =-4,所以当m =-4时,此方程无解.(3)解此方程,得x =4-m4,因为此方程有解,且解是正数,所以{4-m4>0,4-m4≠2,解得m <4且m ≠-4.21.解:任务1:设笔记本的单价为x 元,则钢笔的单价为2x 元.根据题意,得120x=1602x+8,解得x =5.经检验,x =5是所列方程的解,当x =5时,2x =10.所以钢笔的单价为10元,笔记本的单价为5元.任务2:设购买钢笔a 支,笔记本b 本.根据题意,得10a +5b =400,则a =40-12b ,由题意知a ≥20,b ≥20,且b 是10的倍数,所以{a =30,b =20或{a =25,b =30或{a =20,b =40,所以购买方案有:购买钢笔30支,笔记本20本;购买钢笔25支,笔记本30本;购买钢笔20支,笔记本40本.任务3(答案不唯一):当购买钢笔30支,笔记本20本时,设用y 张兑换券兑换钢笔,则用(m -y )张兑换券兑换笔记本.根据题意,得30+y =20+2(m -y ),整理得y =2m -103.因为1<m <10,y ≥0,且m ,y 均为整数,所以易得{m =5,y =0或{m =8,y =2.所以文具店赠送5张兑换券,均兑换笔记本,或赠送8张兑换券,其中2张兑换钢笔,6张兑换笔记本.22.解:(1)去分母,得11x =A (4-3x )+B (x +6),即11x =(-3A +B )x +(4A +6B ),所以{-3A +B =11,4A +6B =0,解得{A =-3,B =2.(解法不唯一)(2)原式=12(1x -1-1x +1+1x +1-1x +3+1x +3-1x +5+…+1x +9-1x +11)(x +11)=12(1x -1-1x +11)(x +11)=12×12(x -1)(x +11)×(x +11)=6x -1.要使式子的值为正整数,则x -1=1或2或3或6,则x 的值为2或3或4或7.经检验,当x 取2,3,4,7时均符合题意.。

华师版八年级数学下册第16章综合素质评价含答案

华师版八年级数学下册第16章综合素质评价含答案

华师版八年级数学下册第16章综合素质评价一、选择题(每题3分,共30分)1.【教材P 2例1变式】下列式子是分式的是( )A .a -b 2B .5+y πC .x +3x D .1+x 2.【2022·九江期末】下列计算正确的是( )A .(-2)-2=4 B .30=0 C .-1-1=1 D .(12)-1=23.若x ,y 的值均扩大为原来的5倍,则下列分式的值保持不变的是( )A .2+x 2+yB .x 2y 3C .x +y x 2-y 2D .x 3(x +y )34.分式①a +2a 2+3,②a -b a 2-b 2,③4a 12(a -b ),④1x -2中,最简分式有( )A .1个B .2个C .3个D .4个5.【教材P 14例1变式】【2022·平房区三模】方程1x -1=32x +1的解为( )A .x =4B .x =-4C .x =3D .x =-36.若关于x 的分式方程x x -3+3a3-x=2a 无解,则a 的值为( )A .1B .12C .1或12 D .以上都不是7.【2022·杭州】照相机成像应用了一个重要原理,用公式1f =1u +1v(v ≠f )表示,其中f 表示照相机镜头的焦距,u 表示物体到镜头的距离,v 表示胶片(像)到镜头的距离,已知f ,v ,则u =( ) A .fv f -v B .f -v fv C .fv v -fD .v -f fv8.【2022·定海区期末】2022年北京冬奥会的吉祥物“冰墩墩”和“雪容融”深受国内外广大朋友的喜爱,某特许零售店准备购进一批吉祥物销售.已知用300元购进“冰墩墩”的数量与用250元购进“雪容融”的数量相同,且购进“冰墩墩”的单价比“雪容融”的单价多10元,设购进“雪容融”的单价为x 元,则列出方程正确的是( )A . 300x =250x +10B .300x =250x +10C .300x +10=250xD .300x =250x -109.若a =-0.32,b =-3-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则a ,b ,c ,d 的大小关系是( )A .a <b <c <dB .c <a <d <bC .a <d <c <bD .b <a <d <c10.【2022·通辽】若关于x 的分式方程:2-1-2k x -2=12-x的解为正数,则k 的取值范围为( )A .k <2B .k <2且k ≠0C .k >-1D .k >-1且k ≠0 二、填空题(每题3分,共24分)11.纳米(nm)是一种长度单位,常用于度量物质原子的大小,1 nm=10-9 m .已知某种植物孢子的直径为45 000 nm ,用科学记数法表示该种植物孢子的直径为____________m. 12.当分式|x |-3x +3的值为0时,x 的值为________.13.【2022·连云港期末】分式12x 2y 2和16xy 2的最简公分母为________. 14.已知1a +1b =4,则4a +3ab +4b -3a +2ab -3b=________.15.【2022·绍兴期末】若关于x 的分式方程x +1x -4=2-m4-x有增根,则常数m 的值是________.16.【教材P 26复习题T 16改编】观察下列一组数:32,1,710,917,1126,…,它们是按一定规律排列的,那么这组数的第n 个数是__________.(n 为正整数)17.目前,步行已成为人们最喜爱的健身运动之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现,小琼步行12 000步与小博步行9 000步消耗的能量相同.若小琼每消耗1千卡能量行走的步数比小博的多10步,则小博每消耗1千卡能量需要行走________步.18.【探究规律】若1(2n -1)(2n +1)=a 2n -1-b2n +1对于任意自然数n 都成立,则a =________,b =________;计算:m =11×3+13×5+15×7+…+12 021×2 023=________.三、解答题(19题20分,20~22题每题8分,23题10分,24题12分,共66分)19.【教材P 25复习题T 8变式】计算:(1)⎝ ⎛⎭⎪⎫12-1+2 0240+16;(2)b 2c -2·⎝ ⎛⎭⎪⎫12b -2c 2-3;(3)【2022·临沂】1x +1-1x -1; (4)(a -2-4a -2)÷a -4a 2-4.20.解分式方程:(1)【2022·宿迁】2x x -2=1+1x -2;(2)x +1x -1+4x 2-1=1.21.已知x -y =2,1x -1y =-1,求x 2y -xy 2的值.22.【2022·广安】先化简:⎝ ⎛⎭⎪⎫4x -2+x +2÷x 2-2xx 2-4x +4,再从0、1、2、3中选择一个适当的数代入求值.23.【阅读理解】阅读下面的材料,解答后面的问题.解方程:x -1x -4xx -1=0.解:设y =x -1x ,则原方程可化为y -4y =0,方程两边同时乘以y ,得y 2-4=0,解得y 1=2,y 2=-2.经检验,y 1=2,y 2=-2都是方程y -4y =0的解.当y =2时,x -1x =2,解得x =-1;当y =-2时,x -1x =-2,解得x =13.经检验,x =-1或x =13都是原分式方程的解.∴原分式方程的解为x =-1或x =13.上述这种解分式方程的方法称为换元法. 问题:(1)若在方程x -14x -xx -1=0中,设y =x -1x ,则原方程可化为________________;(2)若在方程x -1x +1-4x +4x -1=0中,设y =x -1x +1,则原方程可化为________________;(3)模仿上述换元法解方程:x -1x +2-3x -1-1=0.24.【数学建模】【2022·呼和浩特】今年我市某公司分两次采购了一批土豆.第一次花费30万元,第二次花费50万元.已知第一次采购时每吨土豆的价格比去年的平均价格上涨了200元,第二次采购时每吨土豆的价格比去年的平均价格下降了200元,第二次的采购数量是第一次采购数量的2倍.(1)问去年每吨土豆的平均价格是多少元?(2)该公司可将土豆加工成薯片或淀粉,因设备原因,两种产品不能同时加工.若单独加工成薯片,每天可加工5吨土豆,每吨土豆获利700元;若单独加工成淀粉,每天可加工8吨土豆,每吨土豆获利400元.由于出口需要,所有采购的土豆必须全部加工完且用时不超过60天,其中加工成薯片的土豆数量不少于加工成淀粉的土豆数量的23,为获得最大利润,应将多少吨土豆加工成薯片?最大利润是多少?答案一、1.C 2.D 3.D 4.B 5.A 6.C 7.C 8.C 9.D 10.B 二、11.4.5×10-5 12.3 13.6x 2y 2 14.-1910 15.5 16.2n +1n 2+1 17.3018.12;12;1 0112 023点拨:∵a 2n -1-b2n +1=a (2n +1)-b (2n -1)(2n -1)(2n +1)=(2a -2b )n +a +b(2n -1)(2n +1)=1(2n -1)(2n +1), ∴⎩⎪⎨⎪⎧2a -2b =0,a +b =1,∴⎩⎪⎨⎪⎧a =12,b =12.∴1(2n -1)(2n +1)=12(12n -1-12n +1), 利用上述结论可得m =12×(1-13+13-15+15-17+…+ 12 021-12 023)=12×⎝ ⎛⎭⎪⎫1-12 023=12×2 0222 023=1 0112 023. 三、19.解:(1)原式=2+1+4=7.(2)原式=b 2c -2·8b 6c -6=8b 8c -8=8b 8c 8.(3)原式=x -1-(x +1)(x +1)(x -1)=-2x 2-1.(4)原式=[(a -2)2a -2-4a -2]·(a +2)(a -2)a -4=a 2-4a +4-4a -2·(a +2)(a -2)a -4=a (a -4)a -2·(a +2)(a -2)a -4=a (a +2).20.解:(1)2x x -2=1+1x -2,去分母,得2x =x -2+1, 解得x =-1.经检验,x =-1是原方程的解. 则原方程的解是x =-1.(2)方程两边都乘以(x +1)(x -1),得(x +1)2+4=(x +1)(x -1),解得x =-3.检验:当x =-3时,(x +1)(x -1)≠0,所以x =-3为原分式方程的解. 21.解:∵x -y =2,∴1x -1y =y -x xy =-2xy =-1, ∴xy =2,∴x 2y -xy 2=xy (x -y )=2×2=4.22.解:原式=⎝ ⎛⎭⎪⎫4x -2+x 2-4x -2·(x -2)2x (x -2)=x 2x -2·x -2x=x .∵x (x -2)≠0,∴x ≠0,x ≠2.当x =1时,原式=1; 当x =3时,原式=3. 23.解:(1)y 4-1y =0 (2)y -4y =0(3)原方程可化为x -1x +2-x +2x -1=0,①设y =x -1x +2,则方程①可化为y -1y =0.方程两边同时乘以y ,得y 2-1=0,解得y 1=1,y 2=-1.经检验,y 1=1,y 2=-1都是方程y -1y =0的解. 当y =1时,x -1x +2=1,该方程无解;当y =-1时,x -1x +2=-1,解得x =-12,经检验,x =-12是原分式方程的解.∴原分式方程的解为x =-12.24.解:(1)设去年每吨土豆的平均价格是x 元,则今年第一次采购时每吨土豆的价格为(x +200)元,第二次采购时每吨土豆的价格为(x -200)元.由题意得300 000x +200×2=500 000x -200,解得x = 2 200.经检验,x =2 200是原分式方程的解,且符合题意. 答:去年每吨土豆的平均价格是2 200元.11 (2)由(1)得,今年采购的土豆数量为300 0002 200+200×3=375(吨). 设应将m 吨土豆加工成薯片,则应将(375-m )吨土豆加工成淀粉,由题意得⎩⎨⎧m ≥23(375-m ),m 5+375-m 8≤60,解得150≤m ≤175.∵总利润为700m +400(375-m )=300m +150 000(元), ∴当m =175时,总利润最大,为300×175+150 000= 202 500(元).答:为获得最大利润,应将175吨土豆加工成薯片,最大利润是202 500元.。

华东师大版数学八年级下册-第16章-分式--章节检测题-含答案

华东师大版数学八年级下册-第16章-分式--章节检测题-含答案

华东师大版数学八年级下册 第16章 分式 章节检测题一、选择题1.下列分式是最简分式的是( )A 。

错误!B 。

错误!C.a +b a 2+b 2D.错误! 2.使分式错误!有意义,x 应满足的条件是( )A .x ≠1B .x ≠2C .x ≠1或x ≠2D .x ≠1且x ≠23.若分式x -2x +3的值为0,则x 的值是( ) A .-3 B .-2 C .0 D .24.下列各式中,与分式错误!相等的是( )A.错误! B 。

错误!C.错误!(x ≠y ) D 。

错误!5.下列等式成立的是( )A .(-3)-2=-9B .(-3)-2=错误!C .a -2×b -2=a 2×b 2 D.a 2-b 2b -a=a +b 6.分式方程3x =4x +1+1的解是( ) A .x =-3 B .x =1C .x 1=3,x 2=-1D .x 1=1,x 2=-37.若关于x 的分式方程错误!=2-错误!的解为正数,则满足条件的正整数m 的值为( )A .1,2,3B .1,2C .1,3D .2,38.已知a 2+a -2=7,则a +a -1的值( )A .49B .47C .±3D .39.甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地.已知A,C 两地间的距离为110千米,B ,C 两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C 地,求两人的平均速度.为解决此问题,设乙骑自行车的平均速度为x 千米/时,由题意列出方程,下列正确的是( )A.错误!=错误!B.错误!=错误!C 。

错误!=错误!D 。

错误!=错误!二、填空题10.若分式错误!(m -n≠0)的分母经过通分后变为m 2-n 2,则分子变为_____5m 2+5mn _______.11.已知错误!与错误!互为倒数,则x 的值为________.12.在学习负整数指数幂的知识后,明明给同桌晶晶出了如下题目:将(p 3q -2)2(-3p 4q ( ))-3的结果化为只含有正整数指数幂的形式,其结果为-错误!,其中“( )"处的数字是多少?聪明的你替晶晶同学填上“( )”的数字______.13.若关于x 的分式方程错误!-2=错误!有增根,则m 的值为______.14.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM 2.5检测指标,“PM 2.5”是指大气中危害健康的直径小于或等于2。

数学:第16章《分式》整章水平测试(一)(人教版八年级下)

数学:第16章《分式》整章水平测试(一)(人教版八年级下)

第十六章《分式》整章水平测试(一)一、选择题:(每小题3分,共24分)1、当x=2时,其值为零的分式是 ( ) 22A.32x x x --+ 1B.2x - 24C.1x x -- 2D.1x x ++ 2、使分式22256x x x x +-++的值等于零,则x 的值为 ( ) A.1 B.-2 C.1或-2 D.-1或23、分式()()113x x x -+-有意义,则x 应满足条件 ( ) A 、1-≠x B 、3≠x C 、1-≠x 或3≠x D 、1-≠x 且3≠x4、分式ax y 434+,1142--x x ,y x y xy x ++-22,2222b ab ab a -+中,最简分式有( ) A.1个 B.2个 C.3个 D.4个.5、若x 等于它的倒数,则分式1332622+-+÷--+x x x x x x 的值为 ( ) A.-1 B.5 C.-1或5 D.-41或4. 6.已知为整数,且918232322-++-++x x x x 为整数,则符合条件的有( ) A .2个 B .3个 C .4个 D .5个7、使方程(m+1)x=m-1有解的m 值是 ( )A.0m ≠B.1m ≠-C.1m =±D. 1m ≠8、现有20%的盐水10千克,问加食盐多少千克,才能恰好配得40%的盐水?解设加食盐x 千克,则正确的方程是 ( )A 、004010=+x xB 、0040101002010=++⨯x xC 、004010020=+x xD 、0040100201002010=++⨯x x 二、填空题(每小题3分,共24分)9、对于分式521-+x x ,当x 时,该分式有意义。

10、当x= 时,分式242--x x 的值为零. 11、化简:1342+⋅⎪⎭⎫ ⎝⎛+-x x x 得__________。

12、计算:3)3(32-+-x x x x =_________。

八年级数学下册第16章《分式》综合水平测试题-推荐下载

八年级数学下册第16章《分式》综合水平测试题-推荐下载
2012 年 02 月八年级数学第一次抽考水平测试
一、选择题:(每小题 2 分,共 14 分)
1.下列各式:
有( )A.1 个
2.下列各式正确的是( )
A. a x a 1 b x b1
3.分式:①
A.1 个
4 m2
ab x3 5 y
3
2
,②
B.2 个

x

B.2 个
,
(a
0)
(2)
a2 a2 4
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

八年级数学下册第16章《分式》综合水平测试4人教版

八年级数学下册第16章《分式》综合水平测试4人教版

八年级数学下册第16章《分式》综合水平测试一、选择题(让你算的少,要你想的多,只选一个可要认准啊!每小题3分,共30分) 1. 下列各组代数式都不是分式的是( ) A .3(1)(2)x x x +-,3x π+B .3x π+,13(x+y )C .753ab x y -,2(3)4xy x +D .-26()2x y x y ++,25()3()a b a b ++ 2. (滨州)若分式2362x xx--的值为0,则x 的值为( )A.0 B.2 C.2-D.0或23. (某某)下列运算正确的是( ) A.y yx y x y=----B.2233x y x y +=+C.22x y x y x y+=++D.221y x x y x y-=---4. 如果把分式2xx y+中的x 和y 都扩大2倍,那么分式的值( ) A.不变 B.扩大2倍 C.扩大4倍 D.缩小2倍 5. (某某)若22237y y ++的值为14,则21461y y +-的值为( ) (A )1 (B )-1 (C )-17 (D )156. (某某)计算2a b a -+a ba b +-的结果是( ) (A )3a b b a +- (B )3a ba b+- (C )1 (D )-17. (某某旅顺口)已知两个分式:244A x =-,1122B x x=++-,其中2x ≠±,则A 与B 的关系是( )A 、相等B 、互为倒数C 、互为相反数D 、A 大于B8. (某某)已知114a b -=,则2227a ab b a b ab---+的值等于( ) (A )6 (B )-6 (C )215 (D ) 27-9. (某某)方程01221=---x x 的根是( )A .-3B .0 C10. A、B两地相距m 千米,某人从A地到B地,以每小时x 千米的速度步行前往,返回时改乘汽车,每小时比步行多行80千米,结果所用的时间是去时的17,则可列方程为( ) A.1807m m x x -=+ B.1807m m x x -=+C.780m m x x =+ D.780m m x x =- 二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共30分)11.,用科学记数表示为____________微米.12. (某某)若代数式(x -2)(x -1)|x |-1的值为零,则x 的取值应为_______________.13. (某某中考题)不改变分式的值,使它的分子、分母的最高次项的系数都是正数,则2311a a a a--=+-__________. 14. (呼和浩特)如果226()(1)x x A y =+,那么A =_________. 15. (荷泽)已知:15a a+=,则4221a a a ++=_____________. 16. (潍坊)已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b--的值是. 17..对于公式12111f f f =+(f 2≠f ),若已知f ,f 2,则f 1=________. 18. 观察下列各等式:1111212=-⨯,1112323=-⨯,1113434=-⨯,… 根据你发现的规律,计算:2222122334(1)n n ++++=⨯⨯⨯⨯+…(n 为正整数). 19. 有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值X 围是x≠±1;丙:当x=-2时,分式的值为1,•请你写出满足上述全部特点的一个分式___________.20. 如果记y=221x x +=f (x ),并且f (1)表示当x=1时y 的值,即f (1)=22111+=12;f (12)表示当x=12时y 的值,即f (12)=221()12151()2=+,那么f (1)+f (2)+f (12)+f (3)+f (13)+……+f (n )+f (1n)=_______(结果用含n 的代数式表示,n 为正整数).三、解答题(耐心计算,仔细观察,表露你萌动的智慧!每小题8分,共40分)21. (某某)课堂上,李老师给大家出了这样一道题:当x=3,,式22211x x x -+-÷221x x -+的值.小明一看,“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?•请你写出具体过程. 22. 已知关于x 的方程323-=--x mx x 解为正数,求m 的取值X 围. 23. (某某)阅读下列题目的计算过程:23211x x x---+ 3(1)(1)x x x -=+-2(1)(1)(1)x x x --+- (A )32(1)x x =--- (B )322x x =--+ (C ) 1x =-- (D )(1)上述计算过程,从哪一步开始出现错误?请写出该步的代号_____; (2)错误的原因:________________;(3)本题目正确的结论为_____________________.24. 已知下面一列等式.(1)请你从左边这些等式的结构特征写出它的一般性等式: 1×12=1-1212×13=12-13 13×14=13-14; 14×15=14-15;…… (2)验证一下你写出的等式是否成立. (3)利用等式计算:1111(1)(1)(2)(2)(3)(3)(4)x x x x x x x x ++++++++++.25. (某某)在社会主义新农村建设中,某乡镇决定对一段公路进行改造.已知这项工程由甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求乙工程队单独完成这项工程所需的天数; (2)求两队合做完成这项工程所需的天数.四、解答题(合情推理,准确表述,展示你聪灵的气质!每小题10分,共20分)26. 某班13位同学参加每周一次的卫生大扫除,按学校的卫生要求需要完成总面积为80m 2的三个项目的任务,三个项目的面积比例和每人每分钟完成各项目的工作量如下图所示:(1) 从上述统计图中可知:每人每分钟能擦课桌椅_________m 2;擦玻璃,擦课桌椅,扫地拖地的面积分别是______ m 2,________ m 2,___________ m 2;(2) 如果每人每分钟擦玻璃的面积是y m 2,那么y 关于x 的函数关系式是____________ (3) 他们一起完成扫地和拖地的任务后,把这13人分成两组,一组去擦玻璃,,该如何分配这两组的人数,才能最快的完成任务. 27. 阅读材料: 关于x 的方程:11x c x c +=+的解是1x c =,21x c =; 11x c x c -=-(即11x c x c --+=+)的解是1x c =21x c =-;22x c x c +=+的解是1x c =,22x c =;33x c x c +=+的解是1x c =,23x c=;……(1)请观察上述方程与解的特征,比较关于x 的方程()0m mx c m x c+=+≠与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证。

八年级数学下册第16章分式综合水平测试课标试题

八年级数学下册第16章分式综合水平测试课标试题

内蒙古达拉特旗第十一中学八年级数学下册 第16章?分式?综合程度测试 人教新课标版一、选择题:〔每一小题2分,一共20分〕1.以下各式:2b a -,x x 3+,πy +5,()1432+x ,b a b a -+,)(1y x m -中,是分式的一共有〔 〕个个个个2.以下判断中,正确的选项是〔 〕A .分式的分子中一定含有字母B .当B =0时,分式BA 无意义 C .当A =0时,分式B A 的值是0〔A 、B 为整式〕 D .分数一定是分式3.以下各式正确的选项是〔 〕A .11++=++b a x b x aB .22x y x y =C .()0,≠=a ma na m nD .am a n m n --= 4.以下各分式中,最简分式是〔 〕A .()()y x y x +-8534B .y x x y +-22C .2222xy y x y x ++D .()222y x y x +- 5.化简2293m m m --的结果是〔 〕 A.3+m m B.3+-m m C.3-m m D.mm -3 6.假设把分式xyy x 2+中的x 和y 都扩大3倍,那么分式的值〔 〕 A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍7.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,一共用去9小时,水流速度为4千米/时,假设设该轮船在静水中的速度为x 千米/时,那么可列方程〔 〕A .9448448=-++x xB .9448448=-++xx C .9448=+x D .9496496=-++x x 8.230.5x y z ==,那么32x y z x y z +--+的值是〔 〕 A .17 B.7 C.1 D.13 9.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,那么一竹排从B 地漂到A 地需要的天数是〔 〕A .10.226a b ab +=,且0a b >>,那么a b a b +-的值是〔 〕 A .2 B .2± C .2 D .2±二、填空题:〔每一小题3分,一共24分〕11.分式392--x x 当x _________时分式的值是零,当x ________时,分式xx 2121-+有意义. 12.利用分式的根本性质填空:〔1〕())0(,10 53≠=a axy xy a 〔2〕()1422=-+a a 13.分式方程1111112-=+--x x x 去分母时,两边都乘以 . 14.要使2415--x x 与的值相等,那么x =__________. 15.计算:=+-+3932a a a __________.16. 假设关于x 的分式方程3232-=--x m x x 无解,那么m 的值是__________. 17.假设分式231-+x x 的值是负数,那么x 的取值范围是__________. 18. 2242141x y y x y y +-=-+-,那么的值是24y y x ++______. 三、解答题:〔一共56分〕19.计算:〔1〕11123x x x++ 〔2〕3xy 2÷x y 2620. 计算: ()3322232n m nm --⋅21. 计算 〔1〕168422+--x x x x 〔2〕m n n n m m m n n m -+-+--223. 解以下分式方程.〔1〕xx 3121=- 〔2〕1412112-=-++x x x24. 计算:〔1〕1111-÷⎪⎭⎫ ⎝⎛--x x x 〔2〕4214121111x x x x ++++++- 励志赠言经典语录精选句;挥动**,放飞梦想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年02月八年级数学第一次抽考水平测试
一、选择题:(每小题2分,共14分)
1.下列各式:2b a -,x x 3+,πy +5,()
1432+x ,b a b a -+,)(1y x m -中,是分式的共有( )A.1个 B.2个 C.3个 D.4个
2.下列各式正确的是( )
A .11++=++b a x b x a
B .22
x
y x y = C .()0,≠=a ma na m n D .a m a n m n --= 3.分式:①223a a ++,②22a b a b --,③412()
a a
b -,④12x -中,最简分式有( ) A .1个 B .2个 C .3个 D .4个
4.化简2293m
m m --的结果是( )A.3+m m B.3+-m m C.3-m m D.m m -3 5.A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )
A .9448448=-++x x
B .9448448=-++x x
C .9448=+x
D .94
96496=-++x x 6.已知230.5
x y z ==,则32x y z x y z +--+的值是( ) A .17 B.7 C.1 D.13
7.已知226a b ab +=,且0a b >>,则
a b a b +-的值为( ) A .2 B .2± C .2 D .2±
二、填空题:(每空2分,共16分)
8.分式3
92--x x 当x _________时分式的值为零,当x ________时,分式x x 2121-+有意义. 9.利用分式的基本性质填空:
(1)())0(,10 53≠=a axy xy a (2)() 14
22=-+a a
10.()3322232n m n m --⋅=----------------------------------
11. 若关于x 的分式方程3
232
-=--x m x x 无解,则m 的值为__________. 12.若分式2
31-+x x 的值为负数,则x 的取值范围是__________. 13. 已知2242141
x y y x y y +-=-+-,则的24y y x ++值为______. 三、解答题:(共30分)
14.计算3分:222---x x x 15. 计算4分:1111-÷⎪⎭⎫ ⎝⎛--x x x
16. 计算5分:
4
214121111x x x x ++++++-
17. 先化简,后求值:5分 22
2222
()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==-
18. 解分式方程.6分
1
412112-=-++x x x
(注意:第19,20题请你任选一题,两题都做对也只给7分)
19、阅读下列材料7分:

111
1
1323
⎛⎫
=-

⨯⎝⎭

1111
35235
⎛⎫
=-

⨯⎝⎭

1111
57257
⎛⎫
=-

⨯⎝⎭
,……
1111
171921719
⎛⎫
=-

⨯⎝⎭


1111 1335571719 ++++
⨯⨯⨯⨯
=11111111111 (1)()()() 2323525721719 -+-+-++-
=11111111
(1)
2335571719
-+-+-++- =
119
(1)
21919
-=.
解答下列问题:
(1)在和式
111
133557
+++
⨯⨯⨯
中,第6项为______,第n项是__________.
(2)上述求和的想法是:将和式中的各分数转化为两数之差,使得除首末两项外的中间各项可以抵消,从而达到求和的目的,受此启发,请你解下面
的方程:
1113 (3)(3)(6)(6)(9)218
x x x x x x x
++=
++++++

20.7分A、B两地相距20 km,甲骑车自A地出发向B地方向行进30分钟后,乙骑车自B地出发,以每小时比甲快2倍的速度向A地驶去,两车在距B地12 km的C地相遇,求甲、乙两人的车速.
答案
一、选择题
1.C 2.B 3.C 4.C 5.B 6.C 7.B 8.A 9.B 10.A
二、填空题(每小题3分,共24分)
11.=-3、≠
12
12.26a 、2a - 13.(1)(1)x x +- 14.6 15.3a - 16.3± 17.-1<x <23 18.2(提示:设24y y m +=,原方程变形为211x m x m -=--,方程两边同时乘以(1)(1)x m --,得(1)(1)(2)x m x m -=--,化简得m x +=2,即
24y y m ++=2.
三、解答题(共56分)
19.(1)原式=632666x x x ++=116x
(2)原式=2236x xy
y =212x 20.原式=243343m n m n -=1712m n -
21.(1)原式=2(4)(4)
x x x --=4x x - (2)原式=2m n m n m n m n m n -++----=2m n m n m n
-++--=m m n -- 22.原式=22
222()()[]1()()()a a a a b a a b a b a b a b a b
--÷-+--+-- =222
2()[]1()()()
a a
b a a a b a a b a b a b ----÷+-+-=2()()1()ab a b a b a b ab -+-÷+-- =a b a b a b a b +-+--=2a a b
- 当2,33a b ==-时,原式=2232(3)3⨯
--=4
3113=411 23.(1)方程两边同时乘以3(2)x x -,得32x x =-,解得x =-1,把x =-1代入3(2)x x -,3(2)x x -≠0,∴原方程的解,∴原方程的解是x =-1.
(2)方程两边同乘以最简公分母(1)(1)x x +-,得4)1(2)1(=++-x x ,解这个整式方程得,1=x ,检验:把1=x 代入最简公分母(1)(1)x x +-,(1)(1)x x +-=0,∴1=x 不是原方程的解,应舍去,∴原方程无解.
24.(1)原式=1111x x x
-⎛
⎫+ ⎪-⎝⎭=1111x x x x -+--=11x x x x --=1 (2)原式=241124(1)(1)(1)(1)11x x x x x x x x +-+++-+-+++ =224224111x x x ++-++=2222224
2(1)2(1)4(1)(1)(1)(1)1x x x x x x x +-++-++-+ =2222422224(1)(1)1x x x x x ++-+-++=444411x x +-+=4444444(1)4(1)(1)(1)(1)(1)x x x x x x +-+-++- =4484(1)4(1)1x x x ++--=881x - 25.原式=222218339x x x x +-++--=22(3)2(3)(218)9x x x x --+++-
2269x x +-=2(3)(3)(3)x x x ++-=23x -,∵918232322-++-++x x x x 是整数,∴23
x -是整数, ∴3x -的值可能是±1或±2,分别解得x =4,x =2,x =5,x =1,符合条件的x 可以是1、2、4、5.
26.①241≤x ≤300;②x m 12-,60
12+-x m 27.设原计划每小时加工x 个零件,根据题意得:1500150052x x
-=,解得x =150,经检验,x =150是原方程的根,答:设原计划每小时加工150个零件.
28.设甲速为xkm/h ,乙速为3xkm/h ,则有x
x x 31260301220=-
-,解之得8=x ,经检验,x =8是原方程的根,答:甲速为8km/h ,乙速为24km/h.。

相关文档
最新文档