七年级数学辅导资料14

合集下载

七年级数学下册培优辅导讲义(人教版)

七年级数学下册培优辅导讲义(人教版)

1第12讲 与相交有关概念及平行线的判定考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、中旁内角的定义,并能用图形或几何符号表示它们.3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系.经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共构成哪几对邻补角? 【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角. 12对邻补角.【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 的对顶角是 . 邻补角是 .⑵中有几对对顶角,几对邻补角? 02.当两条直线相交于一点时,共有2对对顶角; 当三条直线相交于一点时,共有6对对顶角; 当四条直线相交于一点时,共有12对对顶角. 问:当有100条直线相交于一点时共有 对顶角.【例2】如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、 ∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解;【解】⑴∵OE 、OF 平分∠BOC 、∠AOC ∴∠EOC =21∠BOC ,∠FOC =21∠AOC ∴∠EOF =∠EOC +∠FOC =21∠BOC +21∠AOC =()AOC BOC ∠+∠21又∵∠BOC +∠AOC =180° ∴∠EOF =21×180°=90° ⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE .【变式题组】01.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,且∠EOC =100°,则∠BOD 的度数是( )A .20°B . 40°C .50°D .80°02.(杭州)已知∠1=∠2=∠3=62°,则∠4= .【例3】如图,直线l 1、l 2相交于点O ,A 、B 分别是l 1、l 2上的点,试用三角尺完成下列作图: ⑴经过点A 画直线l 2的垂线. ⑵画出表示点B 到直线l 1的垂线段.【解法指导】垂线是一条直线,垂线段是一条线段.【变式题组】 01.P 为直线l 外一点,A 、B 、C 是直线l 上三点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离为( ) A .4cm B . 5cm C .不大于4cm D .不小于6cmABC D EF AB C DEF PQ RABCEF E A ACD O (第1题图)1 4 32 (第2题图)l 2202 如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 为位于公路两侧的村庄; ⑴设汽车行驶到路AB 上点P 的位置时距离村庄M 最近.行驶到AB 上点Q 的位置时,距离村庄N 最近,请在图中的公路上分别画出点P 、Q 的位置. ⑵当汽车从A 出发向B 行驶的过程中,在 的路上距离M 村越来越近..在 的路上距离村庄N 越来越近,而距离村庄M越来越远. 【例4】如图,直线AB 、CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠AOC 的度数. 【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF =90°,OF ⊥AB .【变式题组】 01.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数. 02.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD . ⑴求∠AOC 的度数; ⑵试说明OD 与AB 的位置关系.03.如图,已知AB ⊥BC 于B ,DB ⊥EB 于B ,并且∠CBE ︰∠ABD =1︰2,请作出∠CBE 的对顶角,并求其度数.【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称: ∠1和∠2:∠1和∠3:∠1和∠6:∠2和∠6: ∠2和∠4: ∠3和∠5:∠3和∠4:【解法指导】正确辩认同位角、内错角、同旁内角的思路是:首先弄清所判断的是哪两个角,其次是找到这两个角公共边所在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它们的名称.F B A O CD E C D B A EO B ACDO A BA E DC F E BAD 1 4 2 3 6 53【变式题组】01.如图,平行直线AB 、CD 与相交直线EF ,GH 相交,图中的同旁内角共有( )A .4对B . 8对C .12对D .16对02.如图,找出图中标出的各角的同位角、内错角和同旁内角.03.如图,按各组角的位置判断错误的是( )A .∠1和∠2是同旁内角B .∠3和∠4是内错角C .∠5和∠6是同旁内角D .∠5和∠7是同旁内角【例6】如图,根据下列条件,可推得哪两条直线平行?并说明理由•⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180°⑶∠ACD =∠BAC【解法指导】图中有即即有同旁内角,有“ ”即有内错角.【解法指导】⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行. ⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行.⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行.【变式题组】01.如图,推理填空.⑴∵∠A =∠ (已知) ∴AC ∥ED ( ) ⑵∵∠C =∠ (已知)∴AC ∥ED ( )⑶∵∠A =∠ (已知) ∴AB ∥DF ( ) 02.如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 的位置关系. 解:∵AD 是∠BAC 的平分线(已知) ∴∠BAC =2∠1(角平分线定义) 又∵EF 平分∠DEC (已知) ∴ ( ) 又∵∠1=∠2(已知) ∴ ( ) ∴AB ∥DE ( ) 03.如图,已知AE 平分∠CAB ,CE 平分∠ACD .∠CAE +∠ACE =90°,求证:AB ∥CD . ABDCHG EF7 1 5 6 8 4 1 2 乙丙 3 2 3 4 56 1 2 3 4甲 1 A B C 2 3 4 56 7 A B C DOA B D E FCABCDE A B CD EF 1 204.如图,已知∠ABC=∠ACB,BE平分∠ABC,CD平分∠ACB,∠EBF=∠EFB,求证:CD∥EF.【例7】如图⑴,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.【解法指导】如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31°则12×31°=372°>360°这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°【变式题组】01.平面内有18条两两不平行的直线,试证:在所有的交角中至少有一个角小于11°.02.在同一平面内有2010条直线a1,a2,…,a2010,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5……那么a1与a2010的位置关系是 .03.已知n(n>2)个点P1,P2,P3…Pn.在同一平面内没有任何三点在同一直线上,设S n表示过这几个点中的任意两个点所作的所有直线的条数,显然:S2=1,S3=3,S4=6,∴S5=10…则Sn= .演练巩固·反馈提高01.如图,∠EAC=∠ADB=90°.下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补02.如图,已知直线AB、CD被直线EF所截,则∠EMB的同位角为()A.∠AMF B.∠BMF C.∠ENC D.∠END03.下列语句中正确的是()A.在同一平面内,一条直线只有一条垂线B.过直线上一点的直线只有一条C.过直线上一点且垂直于这条直线的直线有且只有一条D.垂线段就是点到直线的距离04.如图,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数有()①AB⊥AC②AD与AC互相垂直③点C到AB的垂线段是线段AB④线段AB的长度是点B到AC的距离⑤垂线段BA是点B到AC的距离⑥AD >BDA.0 B. 2 C.4 D.6ABCD El1l2l3l4l5l6图⑴l1l2l3l4l5l6图⑵AEB C FDABC DFEMNα第1题图第2题图AB D C第4题图4505.点A 、B 、C 是直线l 上的三点,点P 是直线l 外一点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离是( ) A .4cm B .5cm C .小于4cm D .不大于4cm 06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB +∠DOC= .07.如图,矩形ABCD 沿EF 对折,且∠DEF =72°,则∠AEG = . 08.在同一平面内,若直线a 1∥a 2,a 2⊥a 3,a 3∥a4,…则a 1 a 10.(a 1与a 10不重合)09.如图所示,直线a 、b 被直线c 所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a ∥b 的条件的序号是 .10.在同一平面内两条直线的位置关系有 .11.如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠E =∠ABE +∠EDC .试说明AB ∥CD ?12.如图,已知BE 平分∠ABC ,CF 平分∠BCD ,∠1=∠2,那么直线AB 与CD 的位置关系如何?13.如图,推理填空:⑴∵∠A = (已知) ∴AC ∥ED ( ) ⑵∵∠2= (已知) ∴AC ∥ED ( )⑶∵∠A + =180°(已知) ∴AB ∥FD .14.如图,请你填上一个适当的条件 使AD ∥BC .ABCDOABCDEFG H abc第6题图第7题图第9题图1 2 3 4 5 6 7 81A CDEB AB C DEF12AB CD EF第14题图6培优升级·奥赛检测 01.平面图上互不重合的三条直线的交点的个数是( ) A .1,3 B .0,1,3 C .0,2,3 D .0,1,2,3 02.平面上有10条直线,其中4条是互相平行的,那么这10条直线最多能把平面分成( )部分. A .60 B . 55 C .50 D .45 03.平面上有六个点,每两点都连成一条直线,问除了原来的6个点之外,这些直线最多还有( )个交点. A .35 B . 40 C .45 D .55 04.如图,图上有6个点,作两两连线时,圆内最多有__________________交点. 05.如图是某施工队一张破损的图纸,已知a 、b 是一个角的两边,现在要在图纸上画一条与这个角的平分线平行的直线,请你帮助这个施工队画出这条平行线,并证明你的正确性. 06.平面上三条直线相互间的交点的个数是( ) A .3 B .1或3 C .1或2或3 D .不一定是1,2,3 07.请你在平面上画出6条直线(没有三条共点)使得它们中的每条直线都恰好与另三条直线相交,并简单说明画法? 08.平面上有10条直线,无任何三条交于一点,要使它们出现31个交点,怎么安排才能办到?09.如图,在一个正方体的2个面上画了两条对角线AB 、AC ,那么两条对角线的夹角等于( ) A .60° B . 75° C .90°D .135° 10.在同一平面内有9条直线如何安排才能满足下面的两个条件? ⑴任意两条直线都有交点;⑵总共有29个交点.第13讲 平行线的性质及其应用 考点·方法·破译1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系; 2.初步了解命题,命题的构成,真假命题、定理; 3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用.经典·考题·赏析 【例1】如图,四边形ABCD 中,AB ∥CD , BC ∥AD 求∠C 的度数. 【解法指导】两条直线平行,同位角相等; 两条直线平行,内错角相等;两条直线平行,同旁内角互补. 平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截线,识别角的关系式关键.【解】:∵AB ∥CD BC ∥AD ∴∠A +∠B =180° ∠B +∠C =180°(两条直线平行,同旁内角互补) ∴∠A =∠C ∵∠A =38° ∴∠C =38°a b AB C7【变式题组】01.如图,已知AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155°,则∠DBC的度数为( ) A .155° B .50° C .45° D .25°02.(安徽)如图,直线l 1 ∥ l 2,∠1=55°,∠2=65°,则∠3为( )A . 50°B . 55°C . 60° D .65°03.如图,已知FC ∥AB ∥DE ,∠α:∠D :∠B =2: 3: 4, 试求∠α、∠D 、∠B的度数.【例2】如图,已知AB ∥CD ∥EF ,GC ⊥CF ,∠B =60°,∠EFC =45°,求∠BCG 的度数.【解法指导】平行线的性质与对顶角、邻补角、垂直和角平分线相结合,可求各种位置的角的度数,但注意看清角的位置.【解】∵AB ∥CD ∥EF ∴∠B =∠BCD ∠F =∠FCD (两条直线平行,内错角相等)又∵∠B =60° ∠EFC =45° ∴∠BCD =60° ∠FCD =45° 又∵GC ⊥CF ∴∠GCF =90°(垂直定理) ∴∠GCD =90°-45°=45° ∴∠BCG =60°-45°=15°【变式题组】01.如图,已知AF ∥BC , 且AF 平分∠EAB ,∠B =48°,则∠C 的的度数=_______________02.如图,已知∠ABC +∠ACB =120°,BO 、CO 分别∠ABC 、∠ACB ,DE 过点O 与BC 平行,则∠BOC =___________03.如图,已知AB ∥ MP ∥CD , MN 平分∠AMD ,∠A =40°,∠D =50°,求∠NMP 的度数.【例3】如图,已知∠1=∠2,∠C =∠D . 求证:∠A =∠F . 【解法指导】因果转化,综合运用.逆向思维:要证明∠A =∠F ,即要证明DF ∥AC . 要证明DF ∥AC , 即要证明∠D +∠DBC =180°, 即:∠C +∠DBC =180°;要证明∠C +∠DBC=180°即要证明DB ∥EC . 要证明DB ∥EC 即要证明∠1=∠3.证明:∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3 ∴DB ∥EC (同位角相等•两直线平行)∴∠DBC +∠C =180°(两直线平行,同旁内角互补)∵∠C =∠D ∴∠DBC +∠D =180° ∴DF ∥AC (同旁内角,互补两直线平行)∴∠A =∠F (两直线平行,内错角相等) AB CDOE FAEBC (第1题图) (第2题图) E A F GDC B BA MCD N P (第3题图)CDABE F 1 328DA2 E1 B C B F E AC D 【变式题组】01.如图,已知AC ∥FG ,∠1=∠2,求证:DE ∥FG02.如图,已知∠1+∠2=180°,∠3=∠B . 求证:∠AED =∠ACB03.如图,两平面镜α、β的夹角θ,入射光线AO 平行 于β入射到α上,经两次反射后的出射光线O′B 平行 于α,则角θ等于_________. 【例4】如图,已知EG ⊥BC ,AD ⊥BC ,∠1=∠3. 求证:AD 平分∠BAC . 【解法指导】抓住题中给出的条件的目的,仔细分析 条件给我们带来的结论,对于不能直接直接得出结论 的条件,要准确把握住这些条件的意图.(题目中的: ∠1=∠3) 证明:∵EG ⊥BC ,AD ⊥BC ∴∠EGC =∠ADC =90° (垂直定义)∴EG ∥AD (同位角相等,两条直线平行) ∵∠1=∠3 ∴∠3=∠BAD (两条直线平行,内错角相等) ∴AD 平分∠BAC (角平分线定义) 【变式题组】 01.如图,若AE ⊥BC 于E ,∠1=∠2,求证:DC ⊥BC .02.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F , AC ∥ED ,CE 平分∠ACB . 求证:∠EDF =∠BDF .AB ∥CD ,∠B =40°,CN 是∠BCE 的平分线. CM ⊥CN ,求:的度数.A D M C N EB GB 3C A 1D 2E F (第1题图) A2 C F3 E D1B(第2题图)3 1 AB G DC E9 α βP B C D A ∠P =α+β3 2 1 γ 4ψDα β E B CAFH F γ Dα β E B C AF D EBC A B C AA ′ lB ′C ′【例5】已知,如图,AB ∥EF ,求证:∠ABC +∠BCF +∠CFE =360° 【解法指导】从考虑360°这个特殊角入手展开联想,分析类比, 联想周角.构造两个“平角”或构造两组“互补”的角. 过点C 作CD ∥AB 即把已知条件AB ∥EF 联系起来,这是关键. 【证明】:过点C 作CD ∥AB ∵CD ∥AB ∴∠1+∠ABC =180° (两直线平行,同旁内角互补) 又∵AB ∥EF ,∴CD ∥EF (平行 于同一条直线的两直线平行) ∴∠2+∠CFE =180°(两直线平行, 同旁内角互补) ∴∠ABC +∠1+∠2+∠CFE =180°+180°=360° 即∠ABC +∠BCF +∠CFE =360° 【变式题组】 01.如图,已知,AB ∥CD ,分别探究下面四个图形中∠APC 和∠PAB 、∠PCD 的关系,请你从所得四个关系中选出任意一个,说明你探究的结论的正确性. 结论:⑴____________________________ ⑵____________________________ ⑶____________________________ ⑷____________________________ 【例6】如图,已知,AB ∥CD ,则∠α、∠β、∠γ、∠ψ之间的关系是 ∠α+∠γ+∠ψ-∠β=180° 【解法指导】基本图形 善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路. 【解】过点E 作EH ∥AB . 过点F 作FG ∥AB . ∵AB ∥EH ∴∠α=∠1(两直线平行,内错角相等)又∵FG ∥AB ∴EH ∥FG (平行于同一条直线的两直线平行)∴∠2=∠3 又∵AB ∥CD ∴FG ∥CD (平行于同一条直线的两直线平行)∴∠ψ+∠4=180°(两直线平行,同旁内角互补)∴∠α+∠γ+∠ψ-∠β=∠1+∠3+∠4-ψ-∠1-∠2=∠4+ψ=180°【变式题组】 01.如图, AB ∥EF ,∠C =90°,则∠α、∠β、∠γ的关系是( )A . ∠β=∠α+∠γB .∠β+∠α+∠γ=180°C . ∠α+∠β-∠γ=90°D .∠β+∠γ-∠α=90° 02.如图,已知,AB ∥CD ,∠ABE 和∠CDE 的平分线相交于点F ,∠E =140°,求∠BFD 的度数.【例7】如图,平移三角形ABC ,设点A 移动到点A /,画出平移后的三角形A /B /C /.【解法指导】抓住平移作图的“四部曲”——定,找,移,连. ⑴定:确定平移的方向和距离. ⑵找:找出图形的关键点. ⑶移:过关键点作平行且相等的线段,得到关键点的对应点. ⑷连: 按原图形顺次连接对应点. 【解】①连接AA / ②过点B 作AA /的平行线l ③在l 截取BB /=AA /,则点B /就是的B 对应点,用同样的方法作出点C 的对应点C /.连接A /B /,B /C /,C /A /就得到平移后的三角形A /B /C /.B AP C A C C D A A P C B D PBPD B D ⑴ ⑵ ⑶ ⑷ FE D 2 1 AB C10西B 30° A北东 南【变式题组】01.如图,把四边形ABCD 按箭头所指的方向平移21cm ,作出平移后的图形.02.如图,三角形ABC 中,∠C =90°, BC =4,AC =4,现将△ABC 沿CB 方向平移到△A /B /C /的位置,若平移距离为3, 求△ABC与△A /B /C /的重叠部分的面积.03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移BE 的距离,就得到此图形,求阴影部分的面积.(单位:厘米)演练巩固 反馈提高01.如图,由A 测B 得方向是( )A .南偏东30°B .南偏东60°C .北偏西30°D .北偏西60°02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有( ) A .1个 B .2个 C .3个 D .4个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是( ) A .第一次向左拐30°,第二次向右拐30° B .第一次向右拐50°,第二次向左拐130°C .第一次向左拐50°,第二次向右拐130°D .第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是( )A .对顶角相等B . 同位角相等C .内错角相等D .同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]从图中可知,小敏画平行线的依据有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行. A .①② B .②③ C .③④ D .①④06.在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°.现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是( )A .北偏东52°B .南偏东52°C .西偏北52°D .北偏西38°B B /AA /C C /150°120°DBCE 湖07.下列几种运动中属于平移的有()①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.1种B.2种C.3种D.4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移. 平移方向为射线AD的方向. 平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.12.把下列命题改写成“如果……那么……”的形式,并指出命题的真假.⑴互补的角是邻补角;⑵两个锐角的和是锐角;⑶直角都相等.13.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.DEAB CE DB CE D AB CED AB CEDA B C43 2 1ABE F CD 4 P 23 1A BEFC D 14.如图,一条河流两岸是平行的,当小船行驶到河中E 点时,与两岸码头B 、D 成64°角. 当小船行驶到河中F 点时,看B 点和D 点的视线FB 、FD 恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F 与码头B 、D 所形成的角∠BFD 的度数吗?15.如图,AB ∥CD ,∠1=∠2,试说明∠E 和∠F 的关系.培优升级·奥赛检测01.如图,等边△ABC 各边都被分成五等分,这样在△ABC 内能与△DEF 完成重合的小三角形共有25个,那么在△ABC 内由△DEF 平移得到的三角形共有( )个02.如图,一足球运动员在球场上点A 处看到足球从B 点沿着BO 方向匀速滚来,运动员立即从A 处以匀速直线奔跑前去拦截足球.若足球滚动的速度与该运动员奔跑的速度相同,请标出运动员的平移方向及最快能截住足球的位置.(运动员奔跑于足球滚动视为点的平移) 03.如图,长方体的长AB =4cm ,宽BC =3cm ,高AA 1=2cm . 将AC 平移到A 1C 1的位置上时,平移的距离是___________,平移的方向是___________. 04.如图是图形的操作过程(五个矩形水平方向的边长均为a ,竖直方向的边长为b );将线段A 1A 2向右平移1个单位得到B 1B 2,得到封闭图形A 1A2B 2B 1 [即阴影部分如图⑴];将折现A 1A 2 A 3向右平移1个单位得到B 1B 2B 3,得到封闭图形A 1A 2 A 3B 3B 2B 1[即阴影部分如图⑵];⑴在图⑶中,请你类似地画出一条有两个折点的直线,同样的向右平移1个单位,从而得到1个封闭图形,并画出阴影.⑵请你分别写出上述三个阴影部分的面积S 1=________, S 2=________, S 3=________. ⑶联想与探究:如图⑷,在一矩形草地上,有一条弯曲的柏油小路(小路在任何地方的水平宽度都是1个单位),请你猜想空白部分草地面积是多少?⑶⑷CB 1AA 1C 1D 1BD. AF E B A CG D05.一位模型赛车手遥控一辆赛车,先前进一半,然后原地逆时针旋转α°(0°<α°<180°),被称为一次操作,若5次后发现赛车回到出发点,则α°角为( ) A .720° B .108°或144° C .144° D .720°或144°06.两条直线a 、b 互相平行,直线a 上顺次有10个点A 1、A 2、…、A 10,直线b上顺次有10个点B 1、B 2、…、B 9,将a 上每一点与b 上每一点相连可得线段.若没有三条线段相交于同一点,则这些选段的交点个数是( ) A .90 B .1620 C .6480 D .200607.如图,已知AB ∥CD ,∠B =100°,EF 平分∠BEC ,EG ⊥EF . 求∠BEG 和∠DEG .08.如图,AB ∥CD ,∠BAE =30°,∠DCE =60°,EF 、EG 三等分∠AEC . 问:EF 与EG 中有没有与AB 平行的直线?为什么? 09.如图,已知直线CB ∥OA ,∠C =∠OAB =100°,E 、F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF . ⑴求∠EOB 的度数;⑵若平行移动AB ,那么∠OBC :∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.⑶在平行移动AB 的过程中,是否存在某种情况,使∠OEC =∠OBA ?若存在,求出其度数;若不存在,说明理由.10.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11.如图,正方形ABCD 的边长为5,把它的对角线AC 分成n 段,以每一小段为对角线作小正方形,这n 个小正方形的周长之和为多少?12.如图将面积为a 2的小正方形和面积为b 2的大正方形放在一起,用添补法如何求出阴影部分面积?FEB AC GD 100° FE BAC O A BCD第06讲 实 数考点·方法·破译 1.平方根与立方根:若2x =a (a ≥0)则x 叫做a 的平方根,记为:a 的平方根为x =a 的平方根为xa 的算术平方根.若x 3=a ,则x 叫做a 的立方根.记为:a 的立方根为x.2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数pq(p 、q 是两个互质的整数,且q≠0)的形式. 3非负数:实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a >0,2na ≥0(n 为正整数)0(a ≥0) .经典·考题·赏析【例1】若2m -4与3m -1是同一个数的平方根,求m 的值. 【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m −4与3m −l 是同一个数的平方根,∴2m −4 +3m −l =0,5m =5,m =l .【变式题组】01.一个数的立方根与它的算术平方根相等,则这个数是____. 02.已知m的最大整数,则m 的平方根是____. 03____.04.如图,有一个数值转化器,当输入的x 为64时,输出的y 是____.【例2】(全国竞赛)已知非零实数a 、b 满足24242a b a -+++=,则a +b 等于( ) A .-1 B . 0 C .1 D .2有意义,∵a 、b 为非零实数,∴b 2>0∴a -3≥0a ≥3∵24242a b a -+++=∴24242a b a -+++=,∴20b +=.∴()22030b a b +=⎧⎪⎨-=⎪⎩,∴32a b =⎧⎨=-⎩,故选C .【变式题组】0l3b +=0成立,则a b =____. 02()230b -=,则ab的平方根是____. 03.(天津)若x 、y 为实数,且20x +=,则2009x y ⎛⎫⎪⎝⎭的值为( )A .1B .-1C .2D .-204.已知x1x π-的值是( )A .11π-B .11π+C .11π- D .无法确定【例3】若a 、b都为有理效,且满足1a b -=+a +b 的平方根.【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.∵1a b -+=+∴1a b -=⎧⎪=1a b -=⎧⎪=,∴1312a b =⎧⎨=⎩,a +b =12 +13=25.∴a +b的平方根为:5==±. 【变式题组】01.(西安市竞赛题)已知m 、n2)m +(3-n +7=0求m 、n .02.(希望杯试题)设x 、y 都是有理数,且满足方程(123π+)x +(132π+)y −4−π=0,则x −y =____.【例4】若a−2的整数部分,b −1是9的平方根,且a b b a -=-,求a +b 的值.【解法指导】−2=整数部分+小数部分.整数部分估算可得2,则小数部分−2 −2−4.∵a =2,b −1=±3 ,∴b =-2或4∵a b b a -=-.∴a <b ,∴a =2, b =4,即a +b =6. 【变式题组】01.若3a ,b ,则a +b 的值为____. 02a ,小数部分为ba )·b =____. 演练巩固 反馈提高 0l .下列说法正确的是( )A .-2是(-2)2的算术平方根B .3是-9的算术平方根C . 16的平方根是±4D .27的立方根是±3 02.设a =b = -2,2c =-,则a 、b 、c 的大小关系是( ) A .a <b <c B .a <c <b C . b <a <c D .c <a <b 03.下列各组数中,互为相反数的是( )A .-9与81的平方根B .4与C .4D .304.在实数1.414,,0.1•5•,π,3.1•4•( ) A .2个 B .3个 C .4个 D . 5个05.实数a 、b 在数轴上表示的位置如图所示,则( )A .b >aB .a b >C . -a <bD .-b > a06.现有四个无理数5,6,7,8,其中在2+1与3+1之间的有( )A . 1个B .2个C . 3个D .4个 07.设m 是9的平方根,n =()23.则m ,n 的关系是( )A . m =±nB .m =nC .m =-nD .m n ≠08.(烟台)如图,数轴上 A 、B 两点表示的数分别为-1和3,点B 关于点A的对称点C ,则点C 所表示的数为( )A .-23-B .-13-C .-2 +3D .l +309.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 左边,则A 、B 之间的距离为____. 10.用计算器探索:已知按一定规律排列的一组数:1,12,13…,119,120.如果从中选出若干个数,使它的和大于3,那么至少要选____个数. 11.对于任意不相等的两个数a 、b ,定义一种运算※如下:a ※b =a ba b+-,如3※2=3232+-=5.那么12.※4=____. 12.(长沙中考题)已知a 、b 为两个连续整数,且a <7 <b ,则a +b =____.13.对实数a 、b ,定义运算“*”,如下a *b =()()22a ba b aba b ⎧⎪⎨⎪⎩≥<,已知3*m =36,则实数m =____.14.设a 是大于1的实数.若a ,23a +,213a +在数轴上对应的点分别是A 、B 、C ,则三点在数轴上从左自右的顺序是____.15.如图,直径为1的圆与数轴有唯一的公共点P .点P 表示的实数为-1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P ′,那么点P ′所表示的数是____.16.已知整数x 、y 满足x +2y =50,求x 、y .17.已知2a −1的平方根是±3,3a +b −1的算术平方根是4,求a +b +1的立方根.18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B 点恰好落在数轴上时,(1)求此时B 点所对的数;(2)求圆心O 移动的路程.19.若b 315a - 153a - +3l ,且a +11的算术平方根为m ,4b +1的立方根为n ,求(mn −2)(3mn +4)的平方根与立方根.20.若x 、y 为实数,且(x −y +1)2533x y --22x y +值.培优升级 奥赛检测 01.(荆州市八年级数学联赛试题)一个正数x 的两个平方根分别是a +1与a −3,则a 值为( )A . 2B .-1C . 1D . 0 02.x 1x -2x -( )A .0B . 12C .1D . 2 0353x +−2的最小值为____.04.设a 、b 为有理数,且a 、b 满足等式a 2+3b +33,则a +b =____. 05.若a b -=1,且3a =4b ,则在数轴上表示a 、b 两数对应点的距离为____. 06.已知实数a 满足20092010a a a --=,则a − 20092=_______.m 满足关系式3523199199x y m x y m x y x y +--+-=-+--,试确定m 的值.08.(全国联赛)若a 、b满足5b =7,S=3b ,求S 的取值范围.09.(北京市初二年级竞赛试题)已知0<a <1,并且123303030a a a ⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2830a ⎡⎤+++⎢⎥⎣⎦2930a ⎡⎤++⎢⎥⎣⎦18=,求[10a ]的值[其中[x ]表示不超过x 的最大整数] .10.(北京竞赛试题)已知实数a 、b 、x 、y 满足y+21a =-,231x y b -=--,求22x y a b +++的值.第14讲平面直角坐标系(一)考点.方法.破译1.认识有序数对,认识平面直角坐标系.2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积.经典.考题.赏析【例1】在坐标平面内描出下列各点的位置.A(2,1),B(1,2),C(-1,2),D(-2,-1),E(0,3),F(-3,0)【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性.【变式题组】01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P得坐标是_____________.02.在平面直角坐标系中,如果m.n>0,那么(m, |n|)一定在____________象限.03.指出下列各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-3.14,3.14-π)【例2】若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解法指导】∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0,b-1<0,故选C.【变式题组】01.若点G(a,2-a)是第二象限的点,则a的取值范围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a >202.如果点P(3x-2,2-x)在第四象限,则x的取值范围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.【例3】已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标.【解法指导】关于x轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)互为相反数,关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y)相等.【变式题组】01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m的取值范围是____________.05.如果点M(a+b,ab)在第二象限内,那么点N(a,b) 关于y轴对称的点在第______象限.【例4】P(3,-4),则点P到x轴的距离是____________.【解法指导】P(x,y)到x轴的距离是| y|,到y轴的距离是|x|.则P到轴的距离是|-4|=4【变式题组】01.已知点P(3,5),Q(6,-5),则点P、Q到x轴的距离分别是_________,__________.P到y轴的距离是点Q到y轴的距离的________倍.02.若x轴上的点P到y轴的距离是3,则P点的坐标是__________.03.如果点B(m+1,3m-5) 到x轴的距离与它到y轴的距离相等,求m的值.04.若点(5-a,a-3)在一、三象限的角平分线上,求a的值.05.已知两点A(-3,m),B(n,4),AB∥x轴,求m的值,并确定n的取值范围.。

最新2023年人教版七年级数学下册复习提纲(全册)

最新2023年人教版七年级数学下册复习提纲(全册)

最新2023年人教版七年级数学下册复习
提纲(全册)
1. 基本概念复
- 数的基本概念和运算规律
- 有理数的概念和性质
- 整式的加减乘除法
- 算术式和代数式的转化
2. 分数与分式
- 分数的概念和意义
- 分数的相等性质和大小比较
- 分数的四则运算
- 分式的概念和运算法则
3. 一次函数
- 一次函数的概念和性质
- 一次函数的图像和表示方法
- 一次函数的斜率和截距
- 一次函数的应用问题
4. 几何图形与运动
- 几何图形的分类和性质
- 平面图形的周长和面积计算- 直角坐标系和平面直角坐标系- 图形的变换与运动
5. 数据统计
- 统计调查的方法和步骤
- 数据的收集和整理
- 统计图表的绘制和分析
- 数据的描述和解读
6. 算法与逻辑
- 算法的基本概念和特点
- 算法设计的基本思想和方法- 逻辑推理和问题求解
- 编程思维的培养
7. 考试复重点
- 各章节的重点知识和考点
- 典型题型的解题思路和方法
- 题的抽取和分类复
- 考前重点强化和应试技巧
以上就是最新2023年人教版七年级数学下册的复习提纲,希望对你的学习和备考有所帮助。

祝你学习进步!。

七年级数学复习资料

七年级数学复习资料

七年级数学复习资料篇一:七年级数学下册辅导复习资料第五章1、填一填相交线与平行线5.1.1相交线2二、概括归纳1、邻补角概念:,这样的两个角叫互为邻补角;请指出上图中的邻补角:性质:2、.对顶角概念:,这样的两个角叫互为对顶角;三、课堂检测:1、如图,直线AB、CD、EF相交于点O,∠BOE的对顶角是_______,∠COF的邻补角是________.若∠AOC:∠AOE=2:3,∠EOD=130°,则∠BOC=_________.EACFDB2、如图,直线AB、CD相交于点O.DA(1)若∠AOC+∠BOD=100°,求各角的度数.(2)若∠BOC比∠AOC的2倍多33°,求各角的度数B5.1.2垂线(一)1、如图,若∠1=60°,那么∠2=、∠3=、∠4=.2、改变上图中∠1的大小,若∠1=90°,请画出这种图形,并求出此时∠2=、∠3=、∠4的大小。

上面所画图形中两条直线的关系是__________,知道两条直线互相________是两条直线相交的特殊情况。

2、用语言概括垂直定义两条直线相交,所成四个角中有一个角是_____时,我们称这两条直线__________其中一条直线是另一条的_____,他们的交点叫做_____。

3、垂直的表示方法:垂直用符号“⊥”来表示,若“直线AB垂直于直线CD,垂足为O”,则记为__________________4、垂直的推理应用:(1)∵∠AOD=90°()∴AB⊥CD()(2)∵AB⊥CD()∴∠AOD=90°()画图实践:1.用三角尺或量角器画已知直线L的垂线.(1)已知直线L,画出直线L的垂线,能画几条LAOD小组内交流,明确直线L的垂线有_________条,即存在,但位置有不______性。

(2)怎样才能确定直线L的垂线位置呢在直线L上取一点A,过点A画L的垂线,能画几条再经过直线L外一点B画直线L的垂线,这样的垂线能画出几条LLB.A从中你能得出什么结论____________________________________________.二、检测:1、如图,直线AB、EF相交于O点,C于O点,DAB,EOD12819BOF,AOFC2、(1)画图:①直线AB、CD②过O点作OE⊥CD于O,并使OE、OB在CD的同侧。

七年级上数学辅导资料

七年级上数学辅导资料

第一章 有理数 课题:1.1 正数和负数正数和负数的表示方法一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的.正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“-”(读作负)号来表示,如上面的-3、—8、-47。

正数、负数的概念1)大于0的数叫做 ,小于0的数叫做 。

2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。

【课堂练习】:1.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,—4万元表示________________. 2.已知下列各数:51-,432-,3。

14,+3065,0,—239; 则正数有_____________________;负数有____________________。

3.下列结论中正确的是 …………………………………………( )A .0既是正数,又是负数B .O 是最小的正数C .0是最大的负数D .0既不是正数,也不是负数5.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2010; 其中是负数的有 ……………………………………………………( ) A .2个 B .3个C .4个D .5个【拓展训练】:1.零下15℃,表示为_________,比O℃低4℃的温度是_________.2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为—5米,其中最高处为_______地,最低处为_______地.3.“甲比乙大-3岁”表示的意义是______________________.4.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度。

我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用__________ 和___________来分别表示它们.例 (1)一个月内,小明体重增加2kg ,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;解:(1)这个月小明体重增长__________ ,小华体重增长_________ ,小强体重增长_________ (2)2001年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%, 德国增长1.3%, 法国减少2.4%, 英国减少3.5%, 意大利增长0.2%, 中国增长7。

七年级数学北师大版总复习资料.doc

七年级数学北师大版总复习资料.doc

七年级数学北师大版总复习资料七年级数学北师大版总复习资料一第一章有理数一、知识要点本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

有理数的概念可以利用数轴来认识、理解,同时,利用数轴又可以把这些概念串在一起。

有理数的运算是全章的重点。

在具体运算时,要注意四个方面,一是运算法则,二是运算律,三是运算顺序,四是近似计算。

基础知识:1、正数(position number):大于0的数叫做正数。

2、负数(negation number):在正数前面加上负号“-”的数叫做负数。

3、0既不是正数也不是负数。

4、有理数(rational number):正整数、负整数、0、正分数、负分数都可以写成分数的形式,这样的数称为有理数。

5、数轴(number axis):通常,用一条直线上的点表示数,这条直线叫做数轴。

数轴满足以下要求:在直线上任取一个点表示数0,这个点叫做原点(origin);通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;选取适当的长度为单位长度。

6、相反数(opposite number):绝对值相等,只有负号不同的两个数叫做互为相反数。

7、绝对值(absolute value)一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

记做|a|。

由绝对值的定义可得:|a-b|表示数轴上a点到b点的距离。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小。

8、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。

(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0.(3)一个数同0相加,仍得这个数。

加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变。

表达式:a+b=b+a。

加法结合律:有理数的加法中,三个数相加,先把前两个数相加或者先把后两个数相加,和不变。

七年级数学上册辅导资料

七年级数学上册辅导资料

七年级数学上册辅导资料七年级数学上册辅导资料一、教材解读知识点1有理数加减法统一成加法的意义1.有理数加减混合运算,可以通过有理数减法法则将减法转化为加法,统一成只有加法运算的和式.如:(-11)-(+7)+(-4)-(-3)=(-11)+(-7)+(-4)+(3)2.在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式:如:(-11)+(-7)+(-4)+(+3)=-11-7-4+33.和式的读法:一是按这个式子表示的意义,读作“-11,-7,-4,+3的和”二是按运算意义读作“负11,减7,减4,加3”.例1把下列各式写成省略加号的和的形式.(1)(-26)-(-7)+(-10)-(-3);(2)(-30)-(-8)+(-12)-(-5).分析:先统一成加法,再省略括号和加号.解:(1)(-26)-(-7)+(-10)-(-3)=-26+(+7)+(-10)+(+3)=-26+7-10+3.(2)(-30)-(-8)+(-12)-(-5)=(-30)+(+8)+(-12)+(+5)=-30+8-12+5.小结:在把加减混合运算的式子写成省略加号的和的形式时,符号容易变错,做这样的题目时,一定要注意符号的变化.知识点2有理数的加减混合运算的加法和步骤1.运用减法法则将有理数的混合运算中的加减法变化为加法,写成省略加号,括号的代数和.2.利用加法的交换律、结合律简化运算,这里应注意的是:通常把同号(指同正、同负)的结合,整数与整数结合,同分母分数或容易通分的分数结合,互为相反数的结合,几个加数能凑整的结合在一起相加;对于特殊结构的计算题要灵活运用运算律.例2计算:(-47111)-(-5)+(-4)-(+3).8248分析:加减混合运算应注意有条理按步骤进行,下面将具体作法及其根据写在每一步后面的括号里,以便你更好地归纳.解:原式=(-47111)+(+5)+(-4)+(-3)(统一化成加法)82487111+5-4-3(省略加号)82487111=-4-4+5-3(加法交换律)84287111=(-4-4+3)+5(加法结合律)84827111=(-4+4+3)+5(加法法则)848211=-12+5423=-6(加法法则).4=4小结:把同号的数相结合相加,这样可以使计算简便.二、典型题解析(一)基本概念题例1把下列各式写成省略加号的和的形式,并说出它们的两种读法.(1)-2-(+3)-(-5)+(-4);(2)(+8)-(-9)+(-12)+(+5).分析:先把加减法统一成加法;再省略括号和加号.解:(1)-2-(+3)-(-5)+(-4)=-2+(-3)+(+5)+(-4)=-2-3+5-4读作:①负2,负3,正5,负4的和;②负2减3加5减4.(2)(+8)-(-9)+(-12)+(+5)=(+8)+(+9)+(-12)+(+5)=8+9-12+5学习是一个不断深入的过程,他需要我们对每天学习的新知识点及时整理,接下来由为大提供了初一上册数学辅导练习,望大家好好阅读。

浙教版七年级数学复习资料

浙教版七年级数学复习资料

浙教版七年级数学复习资料俗话说:"温故而知新',这就是说,对我们以前学过的数学知识和技能要常常复习,但这种复习不是机械地、简单地反复,而是要加深对已学知识的了解。

下面给大家分享一些浙教版(七班级数学)复习资料,大家快来跟一起欣赏吧。

浙教版七班级数学复习资料(一)三元一次方程组的解法1、概念:由三个方程组成方程组,且方程组中共含有三个未知数,每个方程中含有的未知数的次数都是1次,这样的方程组叫三元一次方程组。

注:三元一次方程组中的三个方程并不一定都是三元一次方程,只需满足"方程组中共含有三个未知数'的条件即可。

2、解三元一次方程组的基本思想:消元消元三元一次二元一次一元一次方程组方程组方程(代入法、加减法) (代入法、加减法)3x + 4z = 7 3x + 4y + z = 14x + 5y + 2z = 17 例1:解方程组2x + 3y + z = 95x2x + 2y - z = 3 9y + 7z = 8例2:在y = ax+bx+c中,当x=1时,y=0;x=2时,y=3;x=3时,y=28,求a、b、c的值。

当x = -1时,y的值是多少?例3:甲、乙、丙三数之和是26,甲数比乙数大1,甲数的两倍与丙数的和比乙数大18,求这三个数。

例4:小明从家到学校的路程为3.3千米,其中有一段上坡路,一段平路,一段下坡路,如果保持上坡路每小时行3千米,平路每小时行4千米,下坡路每小时行5千米,那么小明从家到学校需要1小时,从学校回家只需要44分钟。

求小明家到学校的上坡路、平路、下坡路各是多少千米?浙教版七班级数学复习资料(二)整式的乘法1.同底数幂的乘法:aman=am+n ,底数不变,指数相加.2.幂的乘方与积的乘方:(am)n=amn ,底数不变,指数相乘; (ab)n=anbn ,积的乘方等于各因式乘方的积.3.单项式的乘法:系数相乘,相同字母相乘,只在一个因式中含有的字母,连同指数写在积里.4.单项式与多项式的乘法:m(a+b+c)=ma+mb+mc ,用单项式去乘多项式的每一项,再把所得的积相加.5.多项式的乘法:(a+b)(c+d)=ac+ad+bc+bd ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.6.乘法公式:(1)平方差公式:(a+b)(a-b)= a2-b2,两个数的和与这两个数的差的积等于这两个数的平方差;(2)完全平方公式:① (a+b)2=a2+2ab+b2, 两个数和的平方,等于它们的平方和,加上它们的积的2倍;② (a-b)2=a2-2ab+b2 , 两个数差的平方,等于它们的平方和,减去它们的积的2倍;※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc,略.7.配方:pq(1)若二次三项式x2+px+q是完全平方式,则有关系式:2; 2(2)二次三项式ax2+bx+c经过配方,总可以变为a(x-h)2+k的形式,利用a(x-h)2+k①可以判断ax2+bx+c值的符号; ②当x=h时,可求出ax2+bx+c 的最大(或最小)值k.1x2x2xx※(3)注意:. 2128.同底数幂的除法:aman=am-n ,底数不变,指数相减.9.零指数与负指数公式:1(1)a0=1 (a0); a-n=a,(a0). 注意:00,0-2无意义;(2)有了负指数,可用科学记数法记录小于1的数,例如:0.0000201=2.0110-5 .浙教版七班级数学复习资料(三)因式分解因式分解定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。

初中数学竞赛辅导资料(七年级用)

初中数学竞赛辅导资料(七年级用)

初中数学竞赛辅导资料第一讲 数的整除一、内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.能被7整除的数的特征:①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。

如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除) 二、例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。

求x,y解:x,y 都是0到9的整数,∵75y 能被9整除,∴y=6. ∵328+92x =567,∴x=3 例2已知五位数x 1234能被12整除,求x解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+x 能被3整除时,x=2,5,8 当末两位4x 能被4整除时,x =0,4,8∴x=8例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234,但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263。

练习一1、分解质因数:(写成质因数为底的幂的连乘积)①756②1859③1287④3276⑤10101⑥10296987能被3整除,那么a=_______________2、若四位数ax能被11整除,那么x=__________3、若五位数123435m能被25整除4、当m=_________时,59610能被7整除5、当n=__________时,n6、能被11整除的最小五位数是________,最大五位数是_________7、能被4整除的最大四位数是____________,能被8整除的最大四位数是_________。

人教版七年级数学培优教程

人教版七年级数学培优教程

比例数.
有限小数
可化为分数形式,是有理数
小数 无限循环小数
无限不循环小数 不可化为分数形式,不是有理数
有理数的分类:
正整数
整数

自然数
有理数(按定义分类)
负整数
分数
正分数 负分数
正整数
正有理数
正分数
有理数(按符号分类) 零(零既不是正数,也不是负数)
负有理数
负整数 负分数
该定义更接近分类而非本质定义,例如小数是有理数吗?下面给出有理数更加接近本质的定
义.
定义:能写成 m (m、n 为整数,n≠0,(m,n)=1)的数. n
例: 12 3 , 3 3 , 0.1
1

0.3
1
82
1
10
3
有理数:rational number,rational(有道理的)的词根为 ratio(比例),有理数可以理解为
6、数轴上:B 到 A 的距离为 1,C 到 B 的距离为 2,求 AC=________
动点(规律类) 1、数轴上:点 A 从原点向右移一个单位,再向左移动两个单位,求现在位置 2、数轴上:点 A 向左移动 3 个单位,向右移动 5 个单位到 2014,求开始的位置 3、数轴上:点 A 从原点开始按照右移 1 个单位,左移 2 个单位,右移 3 个单位,左移 4 个 单位……右移 99 个单位,左移 100 个单位的规律移动 (1)最后的位置________. (2)共移动了多少个单位长度? (3)若 A 为一个起始为 300kg 的质点,每移动一个单位减少 1kg,A 点消失的位置? 基础夯实 【例 3】(1)如右图所示,数轴的一部分被墨水污染了,被污染的部分内含有的整数为

七年级上册数学第四章基本平面图形

七年级上册数学第四章基本平面图形

O C A D B OC A E DB 第四章 基本平面图形3【知识点】【知识点】角的平分线: 从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

14、多边形: 由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n 边形分割成(n-2)个三角形。

n 边形内角和等于(n-2)×1800,正多边形(每条边都相等,每个内角都相等的多边形)的每个内角都等于(n-2)×1800 / n 过n 边形一个顶点有(n-3)条对角线,n 边形共(n-3)×n / 2条对角线. 圆、弧、扇形圆、弧、扇形 圆:平面上一条线段绕着固定的一个端点旋转一周,另一个端点形成的图形叫做圆。

固定的端点称为圆心固定的端点称为圆心 弧:圆上A 、B 两点之间的部分叫做圆弧,简称弧。

两点之间的部分叫做圆弧,简称弧。

扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。

圆心角:顶点在圆心的角叫圆心角。

圆心角:顶点在圆心的角叫圆心角。

4.4 角的比较※课时达标 1.1.若若OC 是∠是∠AOB AOB 的平分线的平分线,,则∠则∠AOC=_____;AOC=_____;AOC=_____;∠∠AOC=12______; ______; ∠∠AOB=2_______. 2.12平角平角=_____=_____=_____直角直角直角, , 14周角周角=______=______=______平角平角平角=_____=_____=_____直角直角直角,135,135,135°角°角°角=______=______=______平角平角平角. . 3.3.如图如图如图,(1),(1),(1)∠∠AOC=_____ +_____ = ____ -____ ;(2) (2)∠∠AOB=______-______ =______-_____.第第3题图题图 第第4题图题图4.4.如图如图如图,O ,O 是直线AB 上一点上一点,,∠AOC=90AOC=90°°,∠DOE=90DOE=90°°,则图中相等的角有则图中相等的角有_________对对( ( 小于直角的角小于直角的角小于直角的角))分别是______.5.5.下列说法正确的是下列说法正确的是下列说法正确的是( ). ( ).A. A.两条相交直线组成的图形叫做角两条相交直线组成的图形叫做角两条相交直线组成的图形叫做角B. B.有一个公共端点的两条线段组成的图形叫做角有一个公共端点的两条线段组成的图形叫做角有一个公共端点的两条线段组成的图形叫做角C. C.一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角一条射线绕着端点从一个位置旋转到另一个位置所成的图形叫做角D. D.角是从同一点引出的两条射线角是从同一点引出的两条射线角是从同一点引出的两条射线★基础巩固1.1.已知已知O 是直线AB 上一点上一点,OC ,OC 是一条射线是一条射线, ,则∠则∠则∠AOC AOC 与∠与∠BOC BOC 的关系是的关系是( ). ( ).A. A.∠∠AOC 一定大于∠一定大于∠BOCB.BOC B.BOC B.∠∠AOC 一定小于∠一定小于∠BOC BOCC. C.∠∠AOC 一定等于∠一定等于∠BOCD.BOC D.BOC D.∠∠AOC 可能大于可能大于,,等于或小于∠等于或小于∠BOC BOC2.2.已知∠已知∠已知∠AOB=3AOB=3AOB=3∠∠BOC,BOC,若∠若∠若∠BOC=30BOC=30BOC=30°°,则∠则∠AOC AOC 等于等于( ) ( )A.120 A.120°°B.120 B.120°或°或6060°°C.30 C.30°°D.30 D.30°或°或9090°°3.3. a Ð和b Ð的顶点和一边都重合的顶点和一边都重合,,另一边都在公共边的同侧另一边都在公共边的同侧,,且a b Ð>Ð,那么a Ð的另一半落在另一半落在b Ð的( ).A. A.另一边上另一边上另一边上B. B. B.内部内部内部;C.; C.; C.外部外部外部D. D. D.以上结论都不对以上结论都不对以上结论都不对4.2704.270°°=_______=_______直角直角直角_____________________平角平角平角________________________周角周角周角. .5.5.已知一条射线已知一条射线OA,OA,如果从点如果从点O 再引两条射线OB 和OC,OC,使∠使∠使∠AOB=60AOB=60AOB=60°°, , ∠∠BOC=20BOC=20°°,求∠求∠求∠AOC AOC 的度数的度数. .6.6.如图如图如图,,如果∠如果∠1=651=651=65°°1515′′,∠2=782=78°°3030′′,求∠求∠33是多少度是多少度? ?312☆能力提高7.7.如图(如图(如图(11),OD,OE 分别是∠分别是∠AOC AOC 和∠和∠BOC BOC 的平分线的平分线,,∠AOD=40AOD=40°°,∠BOE=25BOE=25°°,求∠求∠AOB AOB 的度数的度数. . 解解:∵OD 平分∠平分∠AOC,OE•AOC,OE•AOC,OE•平分∠平分∠平分∠BOC(•BOC(•BOC(•已知已知已知)•,• )•,•∴∠∴∠∴∠AOC=•2•AOC=•2•AOC=•2•∠∠AOD,•∠∠BOC=•2•BOC=•2•∠∠_____( ),∵∠∵∠AOD=40AOD=40AOD=40°°,∠_______=25_______=25°°(已知已知), ),∴∠∴∠AOC=2AOC=2AOC=2××4040°°=80=80°°(•(•等量代换等量代换等量代换). ).∠BOC=2BOC=2××( )( )°°=( ),∴∠∴∠∴∠AOB=________. AOB=________.8.8.如图(如图(如图(22),若∠若∠AOC=AOC=AOC=∠∠DOB,DOB,则∠则∠则∠AOB= AOB= AOB= ∠∠COD;•COD;•若∠若∠若∠AOB=•AOB=•AOB=•∠∠COD,•COD,•则∠则∠则∠AOC___AOC___AOC___∠∠DOB.9.9.已知∠已知∠已知∠AOB AOB 和∠和∠BOC BOC 之和为180180°°,这两个角的平分线所成的角是这两个角的平分线所成的角是_______. _______.10.10.如图(如图(如图(33),∠AOB 是直角是直角,,∠AOC=38AOC=38°°,∠COD=COD=∠∠COB=1:2,COB=1:2,则∠则∠则∠BOD=( ). BOD=( ).A.38 A.38°°B.52 B.52°°C.26 C.26°°D.64 D.64°° E C B B A D OCB A DO (1) (2)CB AD OE C BA DO(3) (4)11.11.如图(如图(如图(44)所示)所示,OE ,OE 平分∠平分∠BOC,OD BOC,OD 平分∠平分∠AOC,AOC,AOC,∠∠BOE=20BOE=20°°,∠AOD=40•AOD=40•°°,•,•求∠求∠求∠DOE DOE 的度数的度数. .●中考在线12.12.用一副三角尺用一副三角尺用一副三角尺,,可以拼出小于180180°的角有°的角有n 个,则n 等于等于( ). A.4 B.6 C.11 D.13 ( ). A.4 B.6 C.11 D.13 13.13.已知已知α、β都是钝角都是钝角,,甲、乙、丙、丁四人计算16(α+β)的结果依次是5050°°,26,26°°,72•,72•°°,90,90°°,那么结果正确的可能是果正确的可能是( ). A.( ). A.( ). A.甲甲 B. B.乙乙 C. C.丙丙 D. D.丁丁14.14.点点P 在∠在∠MAN MAN 内部内部,,现在四个等式现在四个等式::①∠①∠PAM=PAM=PAM=∠∠MAP;MAP;②∠②∠②∠PAN=PAN=12∠A;•A;•③∠③∠③∠MAP=MAP=12∠MAN,MAN,④∠④∠④∠MAN=2MAN=2MAN=2∠∠MAP,其中能表示AP 是角平分线的等式有是角平分线的等式有( ). A.1( ). A.1个 B.2个 C.3个 D.4个15.15.如图如图如图,,∠AOD=AOD=∠∠BOC=90BOC=90°°,∠COD=42COD=42°°,求∠求∠AOC AOC AOC、∠、∠、∠AOB AOB 的度数的度数. .O C ADB16.16.如图如图如图,OA ,OA ,OA⊥⊥OB OB、、OC OC⊥⊥OD,OE 是OD 的反向延长线的反向延长线. .(1) (1)试说明∠试说明∠试说明∠AOC=AOC=AOC=∠∠BOD.(2) (2)若∠若∠若∠BOD=50BOD=50BOD=50°°,求∠求∠AOE. AOE.O CAE DB17.17.如图如图如图,AO ,AO ,AO⊥⊥CO,BO CO,BO⊥⊥DO,DO,∠∠BOC=30BOC=30°°,求∠求∠AOD AOD 的度数的度数..O CADB18.18.如图所示如图所示如图所示,OE ,OE 平分∠平分∠BOC,OD BOC,OD 平分∠平分∠AOC,AOC,AOC,∠∠BOE=20BOE=20°°,∠AOD=40•AOD=40•°°,•,•求∠求∠求∠DOE DOE 的度数的度数..E CB ADO19.19.如图如图如图,AO ,AO ,AO⊥⊥CO,BO CO,BO⊥⊥DO,DO,∠∠BOC=30BOC=30°°,求∠求∠AOD AOD 的度数的度数..OCA DB4.5 多边形和圆的初步认识※课时达标1.________1.________,,__________________,,__________________,,__________________等都是多边形等都是多边形等都是多边形. .2.2.各边相等,各角也相等的多边形叫做各边相等,各角也相等的多边形叫做各边相等,各角也相等的多边形叫做____________. ____________.3.3.下列说法中正确的是下列说法中正确的是下列说法中正确的是( ( ).A.A.圆上任意两点间的部分叫做圆弧圆上任意两点间的部分叫做圆弧圆上任意两点间的部分叫做圆弧B. B. B.圆上任意两点间的线段叫做弧圆上任意两点间的线段叫做弧圆上任意两点间的线段叫做弧C. C.圆上任意两点间的线段长度叫做弧圆上任意两点间的线段长度叫做弧圆上任意两点间的线段长度叫做弧D. D. D.任意两点间的部分叫做弧任意两点间的部分叫做弧任意两点间的部分叫做弧4.4.将一个圆分割成三个扇形,它们的圆心角的度数比为将一个圆分割成三个扇形,它们的圆心角的度数比为1:2:3,则这三个扇形的圆心,则这三个扇形的圆心角的度数分别是角的度数分别是角的度数分别是( ( ).A.30 A.30°,°,°,606060°,°,°,909090°°B.60 B.60°,°,°,120120120°,°,°,180180180°°C.40 C.40°,°,°,808080°,°,°,120120120°°D.50 D.50°,°,°,100100100°,°,°,150150150°°5.5.如图如图如图,,从四边形ABCD 的顶点A 出发,可以画出出发,可以画出__________________对角线对角线对角线,,是线段是线段____. ____.6.6.将一个圆分成三个大小相同扇形,则它们的圆心角是将一个圆分成三个大小相同扇形,则它们的圆心角是将一个圆分成三个大小相同扇形,则它们的圆心角是__________________°。

七年级上册辅导材料

七年级上册辅导材料

比零小的数一、知识要点:1、负数的认识2、会判断一个数是正数还是负数.3、有理数分类二、基础知识练习1、若飞机的高度为80m ,潜水艇的高度是-50m ,则飞机比潜水艇高多少米?2、数学兴趣小组测量校园周长,测得的数据是2503m ,2498m ,2502m ,2497m (1)求这4次测量的平均值(2)以“平均值”为基准,用正、负数表示出每一次测量的数值与平均值的差。

(3)请你想一想你还有什么更好的求上述四个数的平均值的方法。

把你的想法能与我们分享吗? 3、把下列各数填写在相应的集合里,正整数集合{ …};负整数集合{ …}; 正分数集合{ …};负分数集合{ …};4、填空(1)如果温度上升4℃,记作+4℃,那么下降7℃,记作____ (2)如果顺时针转300,记作-30°,那么逆时针转60°,记作_____ (3)成本提高-4%,实际表示______(4)向北走-100m 的实际意义是_____5、判断题。

(1)向南走-20米,表示向北走20米; ( ) (2)若前进3千米记作+3千米,则-5千米表示后退-5千米; ( ) (3)温度下降-3°C ,是零上3°C ; ( ) (4)有理数包括正数和负数两部分; ( ) (5)0是整数但不是正数; ( ) (6)31.25不是分数,所以不是有理数。

( ) 6、用“<”将它们连接起来: -3, 0, 1, -23, 1.5, +5, 621, -310.7、把下列各数填在相应的集合内. -3,7,-25,-0.86,0,227,0.7523,-2.3536.整数集合{ …}; 负数集合{ …}. 三、基础知识提高。

1.如果零上8℃记作8℃,那么零下5℃记作__________.2.如果温度上升2℃记作2℃,那么温度下降3℃记作_________. 3.如果向西走6米记作-6米,那么向东走10米记作_________. 4.如果产量减少5%记作-5%,那么20%表示_________. 5.判断题:(1)一个整数不是正数就是负数. ( ) (2)最小的整数是零. ( ) (3)负数中没有最大的数. ( )+0.02㎏-0.03㎏ (4)自然数一定是正整数. ( ) (5)有理数包括正有理数、零和负有理数. ( )6.下列说法中正确的是……………………………………………………( ) A .有最小的正数; B .有最大的负数;C .有最小的整数; D .有最小的正整数7.零是 ……………………………………………………………………( ) A .最小的正数 B .最大的负数 C .最小的有理数 D .整数8.下列一组数:-8,2.6,-312,223,-5.7中负分数有………………( )A .1个B .2个C .3个D .4个10、一零件的长度在图纸上标为10±0.05(单位:毫米),表示这种零件的长度为10毫米,则加工时要求最大不超过多少?最小不少于多少?实际生产时,测得一零件的长为9.9毫米,问此零件合格吗?1、观察下面一列数,根据规律写出横线上的数,;第2012个数是 。

七年级数学上册复习资料

七年级数学上册复习资料

七年级数学上册复习资料一、本节学习指导本节知识点比较多,同学们要认真学习并加以总结,用自己的语言来理解部分知识是有助于我们记忆的.对于本节的知识如果一时记不住也不要急,毕竟我们才刚刚进入初级数学的学习.二、知识要点1、正数和负数[1]、大于0的数叫做正数.[2]、在正数前面加上负号“-”的数叫做负数.[3]、数0既不是正数,也不是负数,0是正数与负数的分界.[4]、在同一个问题中,分别用正数与负数表示的量具有相反的意义.2、有理数(1)凡能写成分数形式的数,都是有理数,整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,如:-[-2]=4,这个时候的a=-2. π不是有理数;(2)有理数的分类:①⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 (3)自然数⇔0和正整数; a >0 ⇔a 是正数;a <0 ⇔a 是负数;a ≥0⇔a 是正数或 0⇔是非负数;a ≤0⇔a 是负数或0⇔a 是非正数.3、数轴【重点】[1]、用一条直线上的点表示数,这条直线叫做数轴.它满足以下要求:① 在直线上任取一个点表示数0,这个点叫做原点;② 通常规定直线上从原点向右[或上]为正方向,从原点向左[或下]为负方向;③ 选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示 1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…[2]、数轴的三要素:原点、正方向、单位长度.[3]、画数轴的步骤:一画[画一条直线并选取原点];二取[取正反向];三选[选取单位长度];四标[标数字].数轴的规范画法:是条直线,数字在下,字母在上.注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数.[4]、一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度.4、相反数[1]、只有符号不同的两个数叫做互为相反数.① 注意:a 的相反数是-a ;a-b 的相反数是b-a ;a+b 的相反数是-(a+b)=-a-b ;② 非零数的相反数的商为-1;③ 相反数的绝对值相等.[2]、一般地,设a 是一个正数,数轴上与原点的距离是a 的点有两个,他们分别在原点的两侧,表示a 和-a ,我们说这两点关于原点对称.[3]、a 和-a 互为相反数.0的相反数是0,正数的相反数是负数,负数的相反数是正数.相反数是它本身的数只有0.[4]、在任意一个数前面添上“-”号,新的数就表示原数的相反数.[5]、若两个数a 、b 互为相反数,就可以得到a+b=0;反过来若a+b=0,则a 、b 互为相反数.[6]、多重符号的相乘由“-”的个数来定:若“-”的个数为偶数,相乘结果为正数;若“-“的个数为奇数,化简结果为负数.比如:-2×4×[-3]×[-1]×[-5],首先由4个负号,所以最终结果是正数,再算数字相乘得到1205、绝对值[1]、绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作|a|.[2]、正数的绝对值等于它本身;0的绝对值是0[或者说0的绝对值是它本身,或者说0的绝对值是它的相反数];负数的绝对值等于它的相反数;[注意:绝对值的意义是数轴上表示某数的点离开原点的距离;].0是绝对值最小的数.[3]、绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 或⎩⎨⎧≤-≥=)0()0(a a a a a ; [4]、01>⇔=a a a ;01<⇔-=a a a ;[5]、任何数的绝对值总是非负数[非负数是正数或0],即|a|≥0.[6]、互为相反数的两个数的绝对值相等.绝对值相等的两个数可能是互为相反数或者相等. [7]、有理数比大小:① 正数比0大,0大于负数,正数大于负数;② 两个负数比较,绝对值大的反而小;③ 数轴上的两个数,右边的数总比左边的数大;[8]、比较两个负数的大小的步骤如下:① 先求出两个数负数的绝对值;② 比较两个绝对值的大小;③ 根据“两个负数,绝对值大的反而小”做出正确的判断.三、经验之谈:本节我们要理解很多的名词概念,希望同学们多读几遍.其次我们还要重点理解正数和负数的关系,以及对绝对值几何意义,还有数轴的画法.总之本节我们要认真学习.有理数的运算一、本节学习指导有理数的运算和我们小学学习的四则运算很相似,运算规律都一样,不同的是有负数参与,所以相对要复杂一些,本节要多加练习.本节有配套学习视频.二、知识要点1、有理数的加法[1]、有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加;②异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;③一个数与0相加,仍得这个数.[2]、加法计算步骤:先定符号,再算绝对值.[3]、有理数加法的运算律:①加法的交换律:a+b=b+a;②加法的结合律:[a+b]+c=a+[b+c].[4]、为了计算简便,往往会采取以下方法:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加.2、有理数的减法[1]、有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+[-b].[有理数减法运算时注意两“变”:①减法变加法;②把减数变为它的相反数.]注:有理数的减法实质就是把减法变加法.3、有理数的乘法[1]、有理数乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘;②任何数同零相乘都得零;[2]、一个数同1相乘,结果是原数;一个数同-1相乘,结果是原数的相反数.[3]、乘积为1的两个数互为倒数;注意:0没有倒数;若ab=1<====>a、b互为倒数.[4]、几个不是偶的数相乘,积的符号由负因式的个数决定.负因数的个数是偶数时,积是正数;负因数的个数是奇数是,积是负数.[5]、有理数乘法的运算律:①乘法的交换律:ab=ba;②乘法的结合律:[ab]c=a[bc];③乘法的分配律:a[b+c]=ab+ac.4、有理数的除法[1]、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.[2]、有理数除法符号法则:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0.[3]、乘除混合运算的步骤:①先把除法转化为乘法;②确定积的符号;③运用乘法运算律和乘法法则进行计算得出结果.5、有理数的乘方[1]、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n中,a叫做底数,n叫做指数.[2]、a n表示的意义是n个a相乘.如:2³=2×2×2=8[3]、分数的乘方,在书写时一定要把整个分数用小括号括起来.如:[1/2]²[4]、负数的乘方,在书写时一定要把整个负数[连同负号]用小括号括起来.[5]、10的几次方,幂的结果中1后面就有几个0.如:105 =100000[6]、负数的奇次幂是负数,负数的偶次幂是正数.显然,正数的任何次幂都是正数,0的任何正整数次幂都是0.1的任何次幂都是1.-1的奇数次幂是-1,-1的偶数次幂是1.6、科学记数法[1]、把一个大于10数表示成a×10n的形式[其中a是整数数位只有一位的数,而且1≤︱a︱<10,n是正整数],使用的是科学计数法.[2]、用科学记数法表示一个n位整数,其中10的指数是n-1.例:240 000 000用科学计数法记为2.4×1087、近似数[1]、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数.[2]、精确度:近似数与准确数的接近程度可以用精确度表示.[3]、利用四舍五入法得到的近似数,四舍五入到哪一位,就说这个近似数精确到哪一位. [4]、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字.[5]、解题技巧:①近似数精确到哪一位,只需看这个数的最末一位在原数的哪一位.②当四舍五入到十位或十位以上时,应先用科学记数法表示这个数,再按要求取近似数. [6]、a×10n中有效数字是指a的有效数字.7、等于本身的数汇总:①相反数等于本身的数:0②倒数等于本身的数:1,-1③绝对值等于本身的数:正数和0④平方等于本身的数:0,1⑤立方等于本身的数:0,1,-1.第二章整式的加减1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式.2.单项式系数:单项式中不为零的数字因数,叫单项式数字系数,简称单项式的系数;3.单项式的次数:单项式中所有字母的指数的和,叫单项式的次数.4.多项式:几个单项式的和叫做多项式.5.多项式的项与项数:多项式中每个单项式叫多项式的项;不含字母的项叫做常数项.多项式里所含单项式的个数就是多项式的项数;6.多项式的次数:多项式里,次数最高项的次数叫多项式的次数;常数项的次数为0注意:[若a、b、c、p、q是常数]ax2+bx+c和x2+px+q是常见的两个二次三项式. 7.多项式的升幂排列:把一个多项式的各项按某个字母的指数从小到大排列起来,叫做按这个字母的升幂排列.多项式的降幂排列:把一个多项式的各项按某个字母的指数从大到小排列起来,叫做按这个字母的降幂排列.[注意:多项式计算的最后结果一般应该进行升幂[或降幂]排列.8.整式:单项式和多项式统称为整式,即凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.9.整式分类:⎩⎨⎧多项式单项式整式 . [ 注意:分母上含有字母的不是整式.] 10.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 11.合并同类项法:各同类项系数相加,所得结果作为系数,字母和字母指数不变. 12.去括号的法则:(原理:乘法分配侓)[1]括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不变; [2]括号前面是“—”号,把括号和它前面的“—”号去掉,括号里各项的符号都要改变. 13.添括号的法则:[1]若括号前边是“+”号,括号里的各项都不变号;[2]若括号前边是“-”号,括号里的各项都要变号.14. 整式的加减:进行整式的加减运算时,如果有括号先去括号,再合并同类项;整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.整式加减的步骤:[1]列出代数式;[2]去括号;[3]添括号[4]合并同类项. 整式的加减:一找:[划线];二“+”[务必用+号开始合并]三合:[合并]一元一次方程知识点汇总【知识点归纳】一、方程的有关概念1.方程:含有未知数的等式就叫做方程.2. 一元一次方程:只含有一个未知数(元)x ,未知数x 的指数都是1(次)的方程叫做一元一次方程.3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.二、等式的性质等式的性质(1):等式两边都加上(或减去)同一个数(或式子),结果仍相等. 用式子形式表示为:如果a=b ,那么a±c=b±c等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 用式子形式表示为:如果a=b ,那么ac=bc;如果a=b(c≠0),那么a c =b c三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.四、去括号法则 〔依据分配律:a [b+c ]=ab+ac 〕1. 括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.2. 括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.五、解方程的一般步骤1. 去分母(方程两边同乘各分母的最小公倍数)2. 去括号(按去括号法则和分配律)3. 移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)4. 合并(把方程化成ax = b (a≠0)形式)5. 系数化为1(在方程两边都除以未知数的系数a [或乘未知数的倒数],得到方程的解x=b a). 六、用方程思想解决实际问题的一般步骤1. 审:审题,分析题中已知什么,求什么,找:明确各数量之间的关系;2. 设:设未知数(可分直接设法,间接设法), 表示出有关的含字母的式子;3. 列:根据题意列方程;4. 解:解出所列方程, 求出未知数的值;5. 检:检验所求的解是否是方程的解,是否符合题意;6. 答:写出答案(有单位要注明答案).七、有关常用应用题类型及各量之间的关系1. 和、差、倍、分问题[增长率问题]: 增长量=原有量×增长率 现在量=原有量+增长量[1]倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,几分之几,增长率,减少,缩小……”来体现.[2]多少关系:通过关键词语“多、少、大、小、和、差、不足、剩余……”来体现. 审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别.2. 等积变形问题:[1]“等积变形”是以形状改变而体积不变(等积)为前提,是等量关系的所在.常用等量关系为:①形状面积变了,周长没变; ②原料体积=成品体积.[2]常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S ·h =πr 2h②长方体的体积 V =长×宽×高=abc3. 劳力调配问题:从调配后的数量关系中找等量关系,要注意调配对象流动的方向和数量.这类问题要搞清人数的变化,常见题型有:[1]既有调入又有调出;[2]只有调入没有调出,调入部分变化,其余不变;[3]只有调出没有调入,调出部分变化,其余不变4. 数字问题: 要正确区分“数”与“数字”两个概念, 同一个数字在不同数位上,表示的数值不同,这类问题通常采用间接设法,常见的解题思路分析是抓住数字间或新数、原数之间的关系寻找等量关系列方程.列方程的前提还必须正确地表示多位数的代数式,一个多位数是各位上数字与该位计数单位的积之和.[1]要搞清楚数的表示方法:一般可设个位数字为a ,十位数字为b ,百位数字为c ,十位数可表示为10b+a ,百位数可表示为100c+10b+a [其中a 、b 、c 均为整数,且0≤a ≤9, 0≤b ≤9, 1≤c ≤9].[2]数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n 表示,连续的偶数用2n+2或2n —2表示;奇数用2n+1或2n —1表示.5. 工程问题[生产、做工等类问题]:工作量=工作效率×工作时间 工作时间工作量工作效率= 工作效率工作量工作时间=合做的效率=各单独做的效率的和. 一般情况下把总工作量设为1,完成某项任务的各工作量的和=总工作量=1.分析时可采用列表或画图来帮助理解题意.工程问题常用等量关系:先做的+后做的=完成量.6.行程问题:利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系[可把未知数看做已知量],填入有关的代数式是获得方程的基础.[1]行程问题中的三个基本量及其关系:路程=速度×时间 速度路程时间= 时间路程速度=.要特别注意:路程、速度、时间的对应关系[即在某段路程上所对应的速度和时间各是多少][2]基本类型有①单人往返 各段路程和=总路程 各段时间和=总时间 匀速行驶时速度不变②相遇问题[相向而行]:快行距+慢行距=原总距 两者所走的时间相等或有提前量.③追及问题[同向而行];快行距-慢行距=原总距 两者所走的时间相等或有提前量.④环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程.行程问题可以采用画示意图的方法来帮助理解题意,并注意两者运动时出发的时间和地点.⑤航行问题: 顺水[风]速度=静水[风]速度+水流[风]速度;逆水[风]速度=静水[风]速度-水流[风]速度.水流速度=21[顺水速度-逆水速度] 抓住两码头间距离不变,水流速和船速[静速]不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.⑥考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然. 常见的还有:相背而行;行船问题;环形跑道问题7. 商品销售问题:[1]%100⨯=商品成本价商品利润商品利润率;[2]商品销售额=商品销售价×商品销售量;[3]商品销售利润=[销售价-成本价]×销售量;[4]商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.关系式:商品售价=商品标价×折扣率.8. 银行储蓄问题:⑴顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数[存期],利息与本金的比叫做利率.利息的20%付利息税.⑵利息=本金×利率×期数本息和=本金+利息利息税=利息×税率[20%](3) 利润=每个期数内的利息本金×100%注意利率有日利率、月利率和年利率: 年利率=月利率×12=日利率×365.9.溶液配制问题: 溶液质量=溶质质量+溶剂质量溶质质量=溶液中所含溶质的质量分数.常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意.10.年龄问题: 大小两个年龄差不会变;主要等量关系:抓住年龄增长,一年一岁,人人平等.11.时钟问题:⑴将时钟的时针、分针、秒针的尖端看作一个点来研究⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析.常用数据:①时针的速度是0.5°/分②分针的速度是6°/分③秒针的速度是6°/秒12.配套问题: 这类问题的关键是找对配套的两类物体的数量关系13.比例分配问题:各部分之和=总量比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式.14.比赛积分问题: 注意比赛的积分规则,胜、负、平各场得分之和=总分15.方案选择问题: 根据具体问题,选取不同的解决方案《几何图形初步》知识点总汇一、知识结构框图⎧⎨⎩⎧⎨⎩二、具体知识点梳理[一]几何图形(是多姿多彩的)立体图形:棱柱、棱锥、圆柱、圆锥、球等.1、几何图形 平面图形:三角形、四边形、圆等.主[正]视图---------从正面看; 2、几何体的三视图 侧[左]视图-----从左面边看; 俯视图---------------从上面看.[1]会判断简单物体[直棱柱、圆柱、圆锥、球]的三视图.[2]能根据三视图描述基本几何体或实物原型.3、立体图形的平面展开图[1]同一个立体图形按不同的方式展开,得到的平面图形不一样的.[2]了解直棱柱、圆柱、圆锥的平面展开图,能根据展开图判断和制作立体模型.4、点、线、面、体[1]几何图形的组成点:线和线相交的地方是点,它是几何图形最基本的图形.线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面.体:几何体也简称体.[2]点动成线,线动成面,面动成体.[二]直线、射线、线段1、基本概念2、直线的性质 经过两点有一条直线,并且只有一条直线. 简称:两点确定一条直线.3、画一条线段等于已知线段 [1]度量法 [2]用尺规作图法4、线段的大小比较方法 [1]度量法 [2]叠合法5、线段的中点[二等分点]、三等分点、四等分点等定义:把一条线段平均分成两条相等线段的点叫做线段的中点.图形: 符号:若点M 是线段AB 的中点,则AM=BM=12AB ,AB=2AM=2BM. 6、线段的性质:两点的所有连线中,线段最短.简称:两点之间,线段最短.7、两点的距离:连接两点的线段长度叫做这两点的距离.8、点与直线的位置关系 [1]点在直线上; [2]点在直线外.[三]角1、角:由公共端点的两条射线所组成的图形叫做角.2、角的表示法[四种]:∠1 ; α∠ ; β∠ ; ABC ∠.3、角的度量单位及换算4、角的分类:锐角、直角、钝角、平角、周角.5、角的比较方法 [1]度量法 [2]叠合法6、角的和、差、倍、分及其近似值7、画一个角等于已知角[1]借助三角尺能画出15°的倍数的角,在0~180°之间共能画出11个角. [2]借助量角器能画出给定度数的角.[3]用尺规作图法,可以作出任意给定的角.8、角的平线线定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线. 图形: 符号:9、互余、互补[1]若∠1+∠2=90°,则∠1与∠2互为余角.其中∠1是∠2的余角,∠2是∠1的余角.[2]若∠1+∠2=180°,则∠1与∠2互为补角.其中∠1是∠2的补角,∠2是∠1的补角.[3]余[补]角的性质:同[等]角的余角相等. 同[等]角的补角相等.10、方向角[1]正方向;[2]北[南]偏东[西]方向;[3]东[西]北[南]方向.。

北师大版七年级数学下册全部知识点归纳

北师大版七年级数学下册全部知识点归纳


(a

b)2
2ab

(a
b)2

2ab

1 2
[(a
b)2

(a
b)2 ]
(2) (a b)2 (a b)2 4ab
(3)
ab

1 4
[(a

b)2

(a

b)2
]
4、完全平方式:我们把形如: a2 2ab b2 , a2 2ab b2 , 的二次三项式称作完全平方式。
2、单项式的数字因数叫做单项式的系数。
3、单项式中所有字母的指数和叫做单项式的次数。
4、单独一个数或一个字母也是单项式。
5、只含有字母因式的单项式的系数是 1 或―1。
6、单独的一个数字是单项式,它的系数是它本身。
7、单独的一个非零常数的次数是 0。
8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。
2、单项式或多项式都是整式。
3、整式不一定是单项式。
1
4、整式不一定是多项式。 5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。 四、整式的加减 1、整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。 2、几个整式相加减,关键是正确地运用去括号法则,然后准确合并同类项。 3、几个整式相加减的一般步骤:
(1)列出代数式:用括号把每个整式括起来,再用加减号连接。 (2)按去括号法则去括号。 (3)合并同类项。 4、代数式求值的一般步骤: (1)代数式化简。 (2)代入计算 (3)对于某些特殊的代数式,可采用“整体代入”进行计算。 五、同底数幂的乘法 1、n 个相同因式(或因数)a 相乘,记作 an,读作 a 的 n 次方(幂),其中 a 为底数,n 为指数,an 的结 果叫做幂。 2、底数相同的幂叫做同底数幂。 3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:am﹒an=am+n。 4、此法则也可以逆用,即:am+n = am﹒an。 5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。 六、幂的乘方 1、幂的乘方是指几个相同的幂相乘。(am)n 表示 n 个 am 相乘。 2、幂的乘方运算法则:幂的乘方,底数不变,指数相乘。(am)n =amn。 3、此法则也可以逆用,即:amn =(am)n=(an)m。 七、积的乘方 1、积的乘方是指底数是乘积形式的乘方。 2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab) n=anbn。 3、此法则也可以逆用,即:anbn =(ab)n。 八、三种“幂的运算法则”异同点 1、共同点: (1)法则中的底数不变,只对指数做运算。 (2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。 (3)对于含有 3 个或 3 个以上的运算,法则仍然成立。 2、不同点: (1)同底数幂相乘是指数相加。 (2)幂的乘方是指数相乘。 (3)积的乘方是每个因式分别乘方,再将结果相乘。 九、同底数幂的除法 1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:am÷an=am-n(a≠0)。 2、此法则也可以逆用,即:am-n = am÷an(a≠0)。 十、零指数幂 1、零指数幂的意义:任何不等于 0 的数的 0 次幂都等于 1,即:a0=1(a≠0)。 十一、负指数幂

新人教版七年级数学培训资料Word版上下册(全年级章节培优已整理完善)

新人教版七年级数学培训资料Word版上下册(全年级章节培优已整理完善)

七年级数学培训资料Word版上下册目录第01讲与有理数有关的概念(2--8)第02讲有理数的加减法(3--15)第03讲有理数的乘除、乘方(16--22)第04讲整式(23--30)第05讲整式的加减(31--36)第06讲一元一次方程概念和等式性质(37--43)第07讲一元一次方程解法(44--51)第08讲实际问题与一元一次方程(52--59)第09讲多姿多彩的图形(60--68)第10讲直线、射线、线段(69--76)第11讲角(77--82)第12讲与相交有关概念及平行线的判定(83--90)第13讲平行线的性质及其应用(91--100)第14讲平面直角坐标系(一)(101--106)第15讲平面直角坐标系(二)(107--112)第16讲认识三角形(113--119)第17讲认识多边形(120--126)第18讲二元一次方程组及其解法(127--134)第19讲实际问题与二元一次方程组(135--145)第20讲三元一次方程组和一元一次不等式组(146--155)第21讲一元一次不等式(组)的应用(156--164)第22讲一元一次不等式(组)与方程(组)的结合(165--174)第23讲数据的收集与整理(175--186)模拟测试一模拟测试二模拟测试三第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数.经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( )A . -18%B . -8%C . +2%D . +8% 02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( )A . -5吨B . +5吨C . -3吨D . +3吨03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l 5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置15,-19,215,-138,0.1.-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.【变式题组】 01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 . 02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____.【例4】(2008年河北张家口)若l +m2的相反数是-3,则m 的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m2=-4,m =-8【变式题组】 01.(四川宜宾)-5的相反数是( )A .5B . 15C . -5D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0 【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b |>a ,则a ,b 、-a ,-b 的大小顺序是( )A . b <-a <a <-bB . –a <b <a <-bC . –b <a <-a <bD . –a <a <-b <b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a |,用式子表示为|a |=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a 、b ,依相反数的意义标出-b ,-a ,故选A .【变式题组】01.推理①若a =b ,则|a |=|b |;②若|a |=|b |,则a =b ;③若a ≠b ,则|a |≠|b |;④若|a |≠|b |,则a ≠b ,其中正确的个数为( )A . 4个B . 3个C . 2个D . 1个 02.a 、b 、c 三个数在数轴上的位置如图,则|a |a +|b |b +|c |c= .03.a 、b 、c 为不等于O 的有理散,则a |a |+b |b |+c|c |的值可能是____.【例6】(江西课改)已知|a -4|+|b -8|=0,则a +bab的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a |≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a +b ab =1232=38【变式题组】01.已知|a |=1,|b |=2,|c |=3,且a >b >c ,求a +b +C . 02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( )A . -4B . -1C . 0D . 403.已知|a |=8,|b |=2,且|a -b |=b -a ,求a 和b 的值【例7】(第l 8届迎春杯)已知(m +n )2+|m |=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n )2+|m |的符号,挖掘出m 的符号特征,从而把问题转化为(m +n )2=0,|2m -n -2|=0,找到解题途径.解:∵(m +n )2≥0,|m |≥O∴(m +n )2+|m |≥0,而(m +n )2+|m |=m∴ m ≥0,∴(m +n )2+m =m ,即(m +n )2=0 ∴m +n =O ① 又∵|2m -n -2|=0 ∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】 01.已知(a +b )2+|b +5|=b +5且|2a -b –l |=0,求a -B . 02.(第16届迎春杯)已知y =|x -a |+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y 的最大值.演练巩固·反馈提高01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( )A . 156B . 172C . 190D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个 04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b 05.数轴上表示互为相反数的两点之间距离是6,这两个数是( )A . 0和6B . 0和-6C . 3和-3D . 0和3 06.若-a 不是负数,则a ( )A . 是正数B . 不是负数C . 是负数D . 不是正数 07.下列结论中,正确的是( )①若a =b ,则|a |=|b | ②若a =-b ,则|a |=|b | ③若|a |=|b |,则a =-b ④若|a |=|b |,则a =b A . ①② B . ③④ C . ①④ D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b |的大小关系正确的是( )A . |b |>a >-a >bB . |b | >b >a >-aC . a >|b |>b >-aD . a >|b |>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a |a +|b |b +|abc |abc +|c |c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、ba的形式,试求a 、b 的值.13.已知|a |=4,|b |=5,|c |=6,且a >b >c ,求a +b -C .14.|a|具有非负性,也有最小值为0,试讨论:当x为有理数时,|x-l|+|x-3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b| 当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是 , 数轴上表示-2和-5的两点之间的距离是 , ,数轴上表示1和-3的两点之间的距离是;⑵数轴上表示x和-1的两点分别是点A和B,则A、B之间的距离是,如果|AB|=2,那么x=;⑶当代数式|x+1|+|x-2|取最小值时,相应的x的取值范围是.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 2001 02.(第l 8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①abc <0;②|a -b |+|b -c |=|a -c |;③(a -b )(b -c )(c -a )>0;④|a |<1-bc .其中正确的结论有( )A . 4个B . 3个C . 2个D . 1个03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a |+b |b |+c |c |+abc|abc |的所有可能的值为( )A . -1B . 1或-1C . 2或-2D . 0或-2 04.已知|m |=-m ,化简|m -l |-|m -2|所得结果( )A . -1B . 1C . 2m -3D . 3- 2m05.如果0<p <15,那么代数式|x -p |+|x -15|+|x -p -15|在p ≤x ≤15的最小值( )A . 30B . 0C . 15D . 一个与p 有关的代数式 06.|x +1|+|x -2|+|x -3|的最小值为 .07.若a >0,b <0,使|x -a |+|x -b |=a -b 成立的x 取值范围 . 08.(武汉市选拔赛试题)非零整数m 、n 满足|m |+|n |-5=0所有这样的整数组(m ,n )共有 组 09.若非零有理数m 、n 、p 满足|m |m +|n |n +|p |p =1.则2mnp|3mnp |= .10.(19届希望杯试题)试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.已知(|x +l |+|x -2|)(|y -2|+|y +1|)(|z -3|+|z +l |)=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)132164116181412-a -b 0b a【例3】计算111112233420082009++++⨯⨯⨯⨯【解法指导】依111(1)1n n n n =-++进行裂项,然后邻项相消进行化简求和.解:原式=1111111(1)()()()2233420082009-+-+-++-=111111112233420082009-+-+-++-=112009-=20082009【变式题组】01.计算1+(-2)+3+(-4)+ … +99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111248163264128256+++++++=__________. 【例4】如果a <0,b >0,a +b <0,那么下列关系中正确的是( ) A .a >b >-b >-a B .a >-a >b >-b C .b >a >-b >-a D .-a >b >-b >a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论.解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b>a【变式题组】01.若m >0,n <0,且| m |>| n |,则m +n ________ 0.(填>、<号) 02.若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)03.已知a <0,b >0,c <0,且| c |>| b |>| a |,试比较a 、b 、c 、a +b 、a +c 的大小【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811=4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511 ()()()()(1) 32632 --+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+3 5+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+2 50+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+ (49)49(491)2⨯+=1225 ∴S=12252【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+1 2004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±5 03.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-3 04.两个有理数的和是正数,下面说法中正确的是()05.下列等式一定成立的是()A.|x|-x=0 B.-x-x=0 C.|x|+|-x|=0 D.|x|-|x|=0 06.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx值为()A.0或1 B.0或2 C.0或-1 D.0或-2 09.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-等于( ) A .14 B .14- C .12 D .12- 02.自然数a 、b 、c 、d 满足21a +21b +21c +21d =1,则31a +41b +51c+61d 等于( ) A .18 B .316 C .732 D .1564 03.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是( )A .30B .32C .34D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c25632015201051216158412410982654321534333231305.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯的值得整数部分为( )A .1B .2C .3D .406.(-2)2004+3×(-2)2003的值为( )A .-22003B .22003C .-22004D .2200407.(希望杯邀请赛试题)若|m |=m +1,则(4m +1)2004=__________ 08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________ 09.19191976767676761919-=__________ 10.1+2-22-23-24-25-26-27-28-29+210=__________11.求32001×72002×132003所得数的末位数字为__________12.已知(a +b )2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+...+n 3的公式并计算出13+23+33+43+ (1003)值.第03讲 有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算 ⑴11()24⨯- ⑵1124⨯ ⑶11()()24-⨯- ⑷25000⨯ ⑸3713()()(1)()5697-⨯-⨯⨯- 【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积. 解:⑴11111()()24248⨯-=-⨯=- ⑵11111()24248⨯=⨯= ⑶11111()()()24248-⨯-=+⨯= ⑷250000⨯= ⑸3713371031()()(1)()()569756973-⨯-⨯⨯-=-⨯⨯⨯=- 【变式题组】01.⑴(5)(6)-⨯- ⑵11()124-⨯ ⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯- ⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯ 3.1111(2345)()2345⨯⨯⨯⨯---04.111(5)323(6)3333-⨯+⨯+-⨯A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a 、b 异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab <0知a 、b 异号,又由a +b <0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D .【变式题组】01.若a +b +c =0,且b <c <0,则下列各式中,错误的是( )A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >002.已知a +b >0,a -b <0,ab <0,则a___________0,b___________0,|a|___________|b|. 03.(山东烟台)如果a +b <0,0b a>,则下列结论成立的是( ) A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >004.(广州)下列命题正确的是( )A .若ab >0,则a >0,b >0B .若ab <0,则a <0,b <0C .若ab =0,则a =0或b =0D .若ab =0,则a =0且b =0【例3】计算⑴(72)(18)-÷- ⑵11(2)3÷- ⑶13()()1025-÷ ⑷0(7)÷- 【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184-÷-=÷= ⑵17331(2)1()1()3377÷-=÷-=⨯-=-⑶131255()()()()10251036-÷=-⨯=- ⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷- ⑵112(1)36÷- ⑶10(2)3÷- ⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷ ⑶530()35÷-⨯03.113()(10.2)(3)245÷-+-÷⨯-【例4】(茂名)若实数a 、b 满足0a b +=,则ab =___________.【解法指导】依绝对值意义进行分类讨论,得出a 、b 的取值范围,进一步代入结论得出结果.解:当ab >0,2(0,0)2(0,0)a b a b a b a b >>⎧+=⎨-<<⎩; 当ab <0,0a b a b+=,∴ab <0,从而ab ab =-1. 【变式题组】01.若k 是有理数,则(|k|+k )÷k 的结果是( )A .正数B .0C .负数D .非负数02.若A .b 都是非零有理数,那么ab a b a b ab ++的值是多少?03.如果0x y x y +=,试比较x y -与xy 的大小.【例5】已知223(2),1x y =-=-⑴求2008xy 的值; ⑵求32008x y的值. 【解法指导】n a 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1x y =-=-⑴当2,1x y ==-时,200820082(1)2xy=-= 当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=-⑵当2,1x y ==-时,332008200828(1)x y ==- 当2,1x y =-=-时,3320082008(2)8(1)x y -==-- 【变式题组】01.(北京)若2(2)0m n m -+-=,则nm 的值是___________.02.已知x 、y 互为倒数,且绝对值相等,求()n n x y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为( )A .0.135×106B .1.35×106C .0.135×107D .1.35×107【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为( )A .1.03×105B .0.103×105C .10.3×104D .103×10302.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( )A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ 【解法指导】找出21005000k k -+的通项公式=22(50)50k -+ 原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+ 222222222495150[](4950)50(5150)50(5050)50++-+-+-+ =49222+1++⋅⋅⋅+个=99【变式题组】3333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅A .31003 B .31004 C .1334 D .1100002.(第10届希望杯试题)已知11111111 1.2581120411101640+++++++= 求111111112581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为( )A .1个B .2个C .3个D .1个或3个 02.两个有理数的和是负数,积也是负数,那么这两个数( )A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数 03.已知abc >0,a >0,ac <0,则下列结论正确的是( )A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >004.若|ab |=ab ,则( )A .ab >0B .ab ≥0C .a <0,b <0D .ab <005.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a b m cd m +-+的值为( )A .-3B .1C .±3D .-3或106.若a >1a,则a 的取值范围( ) A .a >1 B .0<a <1 C .a >-1 D .-1<a <0或a >1 07.已知a 、b 为有理数,给出下列条件:①a +b =0;②a -b =0;③ab <0;④1a b =-,其中能判断a 、b 互为相反数的个数是( )A .1个B .2个C .3个D .4个08.若ab≠0,则a b a b+的取值不可能为( ) A .0 B .1 C .2 D .-209.1110(2)(2)-+-的值为( )A .-2B .(-2)21C .0D .-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是( )A .2.89×107B .2.89×106C .2.89×105D .2.89×10411.已知4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,则a +b +c +d =___________.12.21221(1)(1)(1)n n n +--+-+-(n 为自然数)=___________.13.如果2x y x y +=,试比较x y-与xy 的大小.14.若a 、b 、c 为有理数且1a b c a b c ++=-,求abc abc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c c b b a -+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y------中负数的个数是( ) A .1个 B .2个 C .3个 D .0个或2个 02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是( )A .1B .3C .7D .5 03.已知23450ab c d e <,下列判断正确的是( )A .abcde <0B .ab 2cd 4e <0 C .ab 2cde <0 D .abcd 4e <0 04.若有理数x 、y 使得,,,xx y x y xy y+-这四个数中的三个数相等,则|y |-|x |的值是( ) A .12-B .0C .12D .3205.若A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A -1996的末位数字是( )A .0B .1C .7D .9 06.如果20012002()1,()1a b a b +=--=,则20032003a b +的值是( )A .2B .1C .0D .-1 07.已知5544332222,33,55,66a b c d ====,则a 、b 、c 、d 大小关系是( )A .a >b >c >dB .a >b >d >cC .b >a >c >dD .a >d >b >c 08.已知a 、b 、c 都不等于0,且a b c abc a b c abc+++的最大值为m ,最小值为n ,则2005()m n +=___________. 09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753- 第二组:112,315-第三组:52.25,,412-10.一本书的页码从1记到n ,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少? 11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,32,41,15,24,23,42,51,16,…(*),在(*)中左起第m 个数记为F(m),当F(m)=12001时,求m 的值和这m 个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.32 x6413.(第12届“华杯赛”试题)已知m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+ 111111(1)(1)(1)(1)(1)(1).2233B n n=-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++== ⑵126A B -=,求m 、n 的值.第04讲整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念.3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,错误!未找到引用源。

人教版初中数学14章教案

人教版初中数学14章教案

人教版初中数学14章教案教学目标:1. 理解数据收集、整理与表达的意义和作用;2. 学会使用调查、实验等方法收集数据;3. 学会利用图表、统计表等方式整理和表达数据;4. 培养学生分析数据、解决问题的能力。

教学内容:1. 数据的收集:通过调查、实验等方式收集数据;2. 数据的整理:利用图表、统计表等方式整理数据;3. 数据的表达:利用图表、统计表等方式表达数据;4. 数据分析:通过分析数据,解决实际问题。

教学过程:一、导入(5分钟)1. 引导学生思考:在日常生活中,我们为什么要收集和整理数据?2. 学生分享自己的经历,教师总结数据收集和整理的重要性。

二、新课导入(15分钟)1. 讲解数据的收集方法:调查、实验等;2. 讲解数据的整理方法:图表、统计表等;3. 讲解数据的表达方式:图表、统计表等;4. 举例说明数据分析在实际问题中的应用。

三、课堂实践(15分钟)1. 学生分组,每组选择一个主题,进行数据收集和整理;2. 学生展示自己的成果,教师点评并指导。

四、巩固练习(10分钟)1. 学生独立完成练习题;2. 教师讲解答案,解析难点。

五、课堂小结(5分钟)1. 学生总结本节课所学内容;2. 教师补充并进行总结。

六、作业布置(5分钟)1. 完成课后练习题;2. 选择一个主题,进行数据收集和整理,下周分享。

教学反思:本节课通过讲解、实践、巩固等方式,使学生掌握了数据收集、整理与表达的方法和技巧。

在课堂实践中,学生分组进行数据收集和整理,培养了学生的团队协作能力。

在巩固练习环节,学生独立完成练习题,巩固了所学知识。

通过本节课的学习,学生能够运用数据分析和解决实际问题,提高了学生的数学素养。

在教学过程中,要注意关注学生的学习情况,及时进行指导和解答。

同时,要注重培养学生的动手操作能力和团队协作能力,提高学生的实践能力。

七年级上册数学资料

七年级上册数学资料

七年级上册数学资料数学是一门具有重要意义的学科,通过学习数学可以培养我们的逻辑思维能力和解决问题的能力。

本文将为大家介绍七年级上册的数学内容,希望能够帮助同学们更好地理解和掌握这些知识。

一、整数整数是数学中的一种基本概念,包括正整数、负整数和零。

在七年级上册中,我们将学习整数的四则运算,包括加法、减法、乘法和除法。

通过练习,我们可以提高对整数运算规则的掌握能力,并学会在实际问题中运用整数知识解决问题。

二、分数分数是表示一个数相对于另一个数的比值的方法,由一个分子和一个分母组成。

在七年级上册中,我们将学习分数的基本概念、分数的加减法和乘除法,并且学会在实际问题中应用分数进行计算。

三、代数式和方程式代数式和方程式是数学中的重要概念,代数式是由数字、字母和运算符号组成的式子,方程式是一个等式,其中包含一个未知数。

在七年级上册中,我们将学习如何化简代数式、解方程以及利用方程解决实际问题,这将有助于我们提高代数思维和问题解决能力。

四、几何基本概念几何是研究空间形状、大小和相对位置关系的学科。

在七年级上册中,我们将学习几何中的基本概念,如点、线、面,以及各种图形的特点和性质。

我们将通过实际的图形绘制和计算来加深对几何概念的理解,并学会运用几何知识解决实际问题。

五、统计与概率统计与概率是数学中的一个重要分支,通过统计,我们可以收集、整理和分析数据,了解事物的规律和趋势;通过概率,我们可以预测事物发生的可能性。

在七年级上册中,我们将学习统计学中的基本概念、数据整理和图形表示方法,以及概率的计算方法。

这将有助于我们提高对数据的分析和利用能力。

六、三角形三角形是几何学中的一个重要概念,它由三条边和三个角组成。

在七年级上册中,我们将学习三角形的分类、特点和性质,通过实际问题的解决来加深对三角形的理解。

同时,我们还将学习三角形的周长和面积的计算方法,以及利用三角形性质解决实际问题。

总结通过七年级上册的数学学习,我们可以掌握整数、分数、代数式和方程式、几何基本概念、统计与概率以及三角形等数学知识。

七年级数学刷题资料推荐江西

七年级数学刷题资料推荐江西

七年级数学刷题资料推荐江西
江西省的七年级数学刷题资料有很多,以下是其中一部分推荐:
1. 《江西中考数学试题集锦》
这本图书是江西省历年中考数学真题的集锦,它可以帮助学生快速了解和掌握江西省中考数学的出题规律和考点,并通过大量的练习题来提高学生对数学的理解和运用能力。

2. 《江西中考数学真题解析》
这本图书详细解析了江西省历年中考数学的真题,包括解题思路、步骤、注意点等,并给出了答案和详细的解析步骤。

这对于提高学生的数学思维能力和解题能力有很大的帮助。

3. 《江西省初中数学同步辅导教材》
这本教材是江西省教育厅编写的一份初中数学同步辅导教材,重点讲解了该省初中数学课程的核心知识点和难点,以及一些常见题型的解题方法和技巧。

它可以帮助学生全面而系统地掌握江西省七年级数学的知识和技能。

4. 《江西省教育厅数学统编教材》
这套教材是江西省的官方数学教材,其编写与教学质量备受推崇。

它不仅符合江西省课程标准,而且采用了现代教育技术手段,其中的练习也是很多学生所推荐的。

以上是我对江西省七年级数学刷题资料的推荐,希望对你有所帮助。

七年级数学上学期第14课辅导训练 试题

七年级数学上学期第14课辅导训练  试题

七年级上学期数学学科第〔十四〕课单位:乙州丁厂七市润芝学校 时间:2022年4月12日 创编者:阳芡明姓名_________评价_______________一、选择题1.在-3,-1,0,2这四个数中,最小的数是〔 〕A .-3B .-1C .0D .22.南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为〔 〕A .0.35×108B .3.5×107C .3.5×106D .35×1053.以下合并同类项中,正确的选项是 ( )A. xy y x 633=+B. 332532a a a =+C. 257=-x xD. 033=-nm mn4.单项式ba 231-的系数为( )A .-3B .-1C .31 D .31- 5.如图,∠1+∠2=〔 〕A .60°B .90° C.110° D.180°6.一个长方体的主视图与俯视图如下图,那么这个长方体的体积是〔 〕21〔第5题图〕 〔第6题图〕A .48B .32C .24D .167.点P 是直线l 外一点,A 、B 、C 为直线l 上的三点,PA =4cm ,PB =5cm ,PC =2cm ,那么点P 到直线l 的间隔 〔 〕A .不超过2cm B. 小于2cm C. 等于2cm D. 等于4cm8.一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一局部,剩下局部如下图,那么被截去局部纸环的个数可能是〔 〕 A.102B.103C.104D.105二、填空题 9.写出一个在212- 和1之间的负整数: . 10.单项式-a mb 与14-n b a 是同类项,那么m +n 的值是 .11.x =2是方程ax -1=x +3的一个解,那么a = .12.如图,把两块三角板按右图所示那样拼在一起,那么∠ABC 为 度.13.如图,B 是线段AD 上一点,C 是线段AD 的中点,假设AD =10,BC =3,那么AB = . 14.小林同学在一个正方体盒子的每个面都写有一个字,分别是:我、喜、欢、数、学、课,其平面展开图如下图.那么在该正方体盒子中,和“我〞相对的面所写的字是“ 〞.CBAACBA B C D〔第12题图〕 〔第13题图〕 〔第14题图〕… …红 黄 绿 蓝 紫 红 黄 绿 黄 绿 蓝 紫〔第8题〕15.假设x x 22+的值是6,那么5632-+x x 的值是 .16.如图是一个简单的数值运算程序,当输入n 的值是3时,那么输出的结果为 .17.一件商品按本钱价进步20%后标价,又以9折销售,售价为270元.设这件商品的本钱价为x 元.根据题意可得方程为 .18.A 、B 两地相距10km ,甲、乙两人分别从A 、B 两地沿直线AB 相向而行,同时出发,甲的速度为4km /h ,乙的速度为1km /h ,那么 小时后两人相距5km .三、解答题 19.计算与化简:〔1〕计算: 321003234)3(1⎪⎭⎫⎝⎛-⨯÷---;〔2〕先化简,再求值:)3()3(52222b a ab ab b a +--,其中31,21==b a .20.解方程: 142312-+=-y y .21.如以下图,是由一些棱长都为1cm 的一样的小正方体组合成的简单几何体. 〔1〕试画出该几何体的主视图和左视图;主视图 左视图〔2〕该几何体的外表积〔含下底面〕是 cm 2.22.如图,直线AB 经过格点A 、B ,〔1〕用直尺过点A 画AD ⊥AB ,过格点C 画CF ⊥AB ,垂足为F ,并在图中标出所画直线AD 、CF 经过的另一个格点;〔2〕通过画图,观察直线AD 与CF 的位置关系,写出你发现的结论: . 23.如图,直线AB 与CD 相交于点O ,OE ⊥AB ,OF ⊥CD ,OP 是∠BOC 的平分线, 〔1〕写出∠EOC 的余角 ; 〔2〕假如∠AOD =40°,那么∠BOP= °; 〔3〕假如∠AOD =40°,求∠BOF 的度数.24.为了响应“生态文明建立〞,某城主干道两边方案栽种芙蓉树苗和桂花树苗一共5000棵,其中桂花树苗的棵数比芙蓉树苗的棵数的2倍多50棵.芙蓉树苗的购置单价比桂花树苗少20元,4棵芙蓉树苗和5棵桂花树苗一共需550元.〔1〕求芙蓉树苗和桂花树苗分别购置多少棵?〔2〕求该总一共投入多少资金购置这两种树苗?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新丰三中七年级数学辅导资料(14)
班级: 姓名: 座号:
1、计算: (1) ()2129312323⎛⎫-÷+-⨯+- ⎪⎝⎭ (2)241416()2-+⨯-(3)72°35′÷2 + 18°33′×4
2、m 等于什么数时,式子13m m --
与7-35
m +的值相等?
3、若符号“
a b c d ”称为二阶行列式,规定它的运算法则为:a b ad bc c d
=-,请你根据上述规定求出下列等式中x 的值:x 2 1
3-x =1.
4、如图,请按照要求回答问题:
(A )数轴上的点C 表示的数是 ______;
线段AB 的中点D 表示的数是_____,
(B )线段AB 的中点D 与线段BC 的中点E 的距离DE 等于多少?
(C )在数轴上方有一点M ,下方有一点N ,且∠ABM=120°,∠CBN=60°,请画
出示意图,判断 BC 能否平分∠MBN ,并说明理由.
4、已知代数式3a-7b的值为-3,求代数式
2(2a+b-1)+5(a-4b+1)-3b的值。

5、已知线段AB=12cm,直线AB上有一点C,且BC=6cm,M是线段AB的中点,N是线段BC的中点,求MN的长.
6、如图,已知AOB是一条直线,∠1=∠2,∠3=∠4,OF⊥AB。


(1)∠AOC的补角是;
(2)是∠AOC的余角;
(3)∠DOC的余角是;
(4)∠COF的补角是
7、某服装厂生产一种西装和领带,西装每套定价200元,
领带每条定价40元。

厂方在开展促销活动期间,向客户提
供两种优惠方案:①买一套西装送一条领带;②西装和领带都按定价的90%付款。

现某客户要到该服装厂购买西装20套,领带x条(20
x )。

(1)若该客户按方案①购买,需付款元(用含x的代数式表示); 若该客户按方案②购买,需付款元(用含x的代数式表示)。

(2)请你通过计算帮该顾客设计较为合算购买方案。

相关文档
最新文档