热力学第二定律的理解
热力学第二定律 概念及公式总结
热力学第二定律一、 自发反应-不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。
二、 热力学第二定律1. 热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin :不可能从单一热源取出热使之完全变为功,而不发生其他的变化2. 文字表述: 第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功 热 【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变) 可逆性:系统和环境同时复原3. 自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、 卡诺定理(在相同高温热源和低温热源之间工作的热机)ηη≤ηη (不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、 熵的概念1. 在卡诺循环中,得到热效应与温度的商值加和等于零:ηηηη+ηηηη=η 任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质 :周而复始 数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2. 热温商:热量与温度的商3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量ηη :起始的商 ηη :终态的熵 ηη=(ηηη)η(数值上相等) 4. 熵的性质:(1)熵是状态函数,是体系自身的性质 是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。
物理学中的热力学第二定律分析
物理学中的热力学第二定律分析热力学第二定律是热力学中的基本定律之一,它是对热力学过程中的不可逆性的表述。
热力学第二定律指出,在热力学过程中,能量总是从高温物体流向低温物体,而不会反向流动。
该定律的发现和理解对于工业生产以及自然界的运动过程都有着重要的意义。
本文将探讨热力学第二定律的内涵和应用。
热力学第二定律的内涵能量守恒定律是热力学的基本定律之一,它表明能量在物理交换过程中不会消失,只能从一种形式转换为另一种形式。
但是,热力学第二定律进一步揭示了能源转换的方向性,即能量从高温区域流向低温区域。
这个方向性的存在导致了热量的流动是单向的,不能像其他物理过程那样反向。
热力学第二定律的证明有几个不同的方法。
其中,最著名和最普遍的方法是卡诺循环。
卡诺循环实际上是一种理想化的热机,其中一个热机从高温热源吸收热量,转换为功,然后把剩余的热量放到低温热源中,完成循环。
卡诺循环能够实现最大的热效率,因为它采用了可逆过程,其中热量是从高温热源转移到低温热源,因此不存在任何热量的浪费。
其他热机在实际运行中都存在一定的不可逆性,因此它们的热效率都低于卡诺循环。
这也说明了热力学第二定律的本质,即所有真实的热机都无法实现100%的热效率。
热力学第二定律的应用热力学第二定律的应用非常广泛。
它不仅在热学领域中有着重要的应用,还在工业、环境科学和天文学等其他领域中发挥着重要的作用。
在工业领域中,热力学第二定律主要用于优化能量利用和减少能量浪费。
例如,在能源生产和传输过程中,热力学第二定律可以帮助人们更好地制定策略,减少热量的浪费和能量的损失。
在能源利用方面,热力学第二定律也被应用于太阳能、空气能、地热能等新能源的研究和开发中。
环境科学中,热力学第二定律主要应用于节约能源和环境保护。
例如,在建筑设计中,热力学第二定律可以帮助人们选择合适的材料和设计方案,减少能量的损失和热量的浪费,促进能源节约和环境保护。
在天文学中,热力学第二定律被应用于研究星系的演化和宇宙结构的形成。
热力学第二定律的微观解释
第五节
热力学第二定律 的微观解释
知识回顾
热力学第二定律
两种表述
克劳修斯表述: 热量不能自发地 从低温物体传到 高温物体 等价
开尔文表述:不 可能从单一热库 吸收热量,使之 完全变成功,而 不产生其他影响
热力学第二定律:
反映宏观自然过程具有方向性
A B
A
B
宏观过程的自发定向性 与系统大量微观粒子的无 规则运动有关。 学习用微观的统计方法,从本质上说明热力学第 二定律的统计意义。
4.常规能源的大量消耗带来了环境问题 (1)温室效应:温室效应是由于大气里温室气体(二氧化碳、甲 烷等)含量增大而形成的。石油和煤炭燃烧时产生二氧化碳。 (2)酸雨:大气中酸性污染物质,如二氧化硫、二氧化碳、氢氧 化物等,在降水过程中溶入雨水,使其成为酸雨。煤炭中含有 较多的硫,燃烧时产生二氧化硫等物质。 (3)光化学烟雾:氮氧化合物和碳氢化合物在大气中受到阳光中 强烈的紫外线照射后产生的二次污染物质 —— 光化学烟雾,主 要成分是臭氧。
新知学习
有序
无序
宏观态
微观态
1.有序和无序
有序:一个系统的个体按确定的某种规则,有顺 序地排列,即为有序。
无序:对个体分布没有确定的要求,“怎样分布 都可以”,即为无序。
自然界有怎样的规则?
宏观状态生活中的有序和无序
有序的队伍
散乱的人群
宏观状态生活中的有序和无序
以大小排列为规则
杂乱无章的扑克牌
有序排列的扑克牌
宏观状态生活中的有序和无序 以花色排列为规则
杂乱无章的扑克牌
有序排列的扑克牌
总结:由于规则的变更,有序和无序是相对的
如果以大小排列为规则,判断有序、无序 如果以花色排列为规则,判断有序、无序
3.4 热力学第二定律(解析版)
第4节热力学第二定律【知识梳理与方法突破】1.热力学第二定律的理解(1)“自发地”过程就是不受外来干扰进行的自然过程,在热传递过程中,热量可以自发地从高温物体传到低温物体,却不能自发地从低温物体传到高温物体。
要将热量从低温物体传到高温物体,必须“对外界有影响或有外界的帮助”,就是要有外界对其做功才能完成。
电冰箱就是一例,它是靠电流做功把热量从低温处“搬”到高温处的。
(2)“不产生其他影响”的含义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响。
如吸热、放热、做功等。
(3)热力学第二定律的每一种表述都揭示了大量分子参与的宏观过程的方向性。
如机械能可以全部转化为内能,内能却不可能全部转化为机械能而不引起其他变化,进一步揭示了各种有关热的物理过程都具有方向性。
(4)适用条件:只能适用于由很大数目分子所构成的系统及有限范围内的宏观过程。
而不适用于少量的微观体系,也不能把它扩展到无限的宇宙。
(5)热力学第二定律的两种表述是等价的,即一个说法是正确的,另一个说法也必然是正确的;如一个说法是错误的,另一个说法必然是不成立的。
2.热力学第一定律与第二定律的比较项目热力学第一定律热力学第二定律定律揭示的问题它从能量守恒的角度揭示了功、热量和内能改变量三者间的定量关系它指出自然界中出现的宏观过程是有方向性的机械能和内能的转化当摩擦力做功时,机械能可以全部转化为内能内能不可能在不引起其他变化的情况下全部转化为机械能热量的传递热量可以从高温物体自发地传到低温物体说明热量不能自发地从低温物体传到高温物体表述形式只有一种表述形式有多种表述形式联系两定律都是热力学基本定律,分别从不同角度揭示了与热现象有关的物理过程所遵循的规律,二者相互独立,又相互补充,都是热力学的理论基础3.能量耗散的理解(1)各种形式的能最终都转化为内能,流散到周围的环境中,分散在环境中的内能不管数量多么巨大,它也只能使地球、大气稍稍变暖一点,却再也不能自动聚集起来驱动机器做功了。
热力学第二定律的实际意义
热力学第二定律的实际意义热力学第二定律是物理学中一项重要的基本原理,它描述了自然界中热量的流动方向以及热量转化为其他形式能量的限制。
它具有深远的实际意义,影响着科学技术和社会经济的各个领域。
1. 热力学第二定律的基本原理热力学第二定律的核心思想是热量不会自发地从低温物体传递到高温物体,热量的自然流动方向是从高温物体传递到低温物体。
这一原理被称为“熵增原理”,它保证了能量在系统内的均衡分布并维持系统的稳定状态。
2. 热力学第二定律在工程中的应用热力学第二定律的实际应用广泛存在于各种工程领域中。
例如,在热机工程中,热力学第二定律规定了热机的效率上限,即卡诺循环效率,它决定了能量转化的可行性和效率。
利用热力学第二定律,工程师可以设计出更加高效和环保的热机设备,提高能源利用效率。
3. 热力学第二定律与自然生态系统热力学第二定律对理解和保护自然生态系统也具有重要作用。
生态系统中能量的自然流动和生物种群的维持运行都受到热力学第二定律的限制。
热力学第二定律的应用使我们能更好地理解生态系统中能量的转化和物种的适应性,有助于生态保护和可持续发展。
4. 热力学第二定律与经济社会发展热力学第二定律的实际意义还体现在经济和社会发展中。
例如,在能源领域,热力学第二定律强调了能源效率的重要性,倡导节能减排,减少资源消耗和环境污染。
在工业生产过程中,合理利用热力学第二定律的原理,优化生产流程和热能利用方式,能够提高生产效率和经济效益。
5. 热力学第二定律与科学探索热力学第二定律的实际意义不仅体现在实际应用中,也对科学探索产生了重要影响。
热力学第二定律的提出推动了科学家对物质世界的深刻认识和对能量转化机制的研究。
它促进了热力学、统计物理学等学科的发展,为科学研究提供了理论基础。
总结起来,热力学第二定律是一项具有重要实际意义的基本原理,它在工程技术、生态环境、经济社会等多个领域发挥着重要作用。
深入理解和应用热力学第二定律,有助于推动科学技术的进步、提高资源利用效率、促进可持续发展。
热力学第二定律热量传递的方向性
热力学第二定律热量传递的方向性热力学第二定律是热力学学科中的基本定律之一,它描述了热量的传递方向性。
热力学第二定律表明,热量总是自高温区流向低温区,而不会自发地从低温区流向高温区。
本文将详细介绍热力学第二定律以及它对热量传递方向性的影响。
1. 热力学第二定律的基本原理热力学第二定律是基于实验观察而得出的,并通过数学关系进行了总结和推导。
热力学第二定律的基本原理可以概括为以下两个方面:第一,热力学第二定律排斥永动机的存在。
永动机是指能够连续不断地转化热能为机械能的理想机器。
然而,热力学第二定律指出,热量不会自发地从低温区传递到高温区,因此无法从单一热源中提取出的热量完全转化为机械能。
这一原理排除了永动机的存在。
第二,热力学第二定律引入了“熵”的概念。
熵是描述系统无序程度的物理量,可以理解为系统的混乱程度。
热力学第二定律指出,任何一个孤立系统中的熵都不会减少,而是自发地趋向于增大。
这意味着热量会不可避免地从高熵区域(低温区)流向低熵区域(高温区),进一步加强了热传递方向的确定性。
2. 热力学第二定律与热传递方向性的关系热力学第二定律对热传递方向性产生了深远的影响。
根据热力学第二定律,热量传递总是从高温区流向低温区,而不会自发地反向传递。
这一原理可以从微观和宏观两个层面进行解释。
微观层面上,物体的温度是由其微观粒子的热运动引起的。
高温意味着粒子运动更为剧烈,相邻粒子之间的能量传递更为频繁。
相反,低温意味着粒子运动较为缓慢,能量传递的频率较低。
因此,热量自然地从高温区向低温区传递。
宏观层面上,我们可以用温度差来描述热传递方向的确定性。
温度差是指不同区域之间的温度差异。
根据热力学第二定律,热传递总是自高温区向低温区进行。
这可以解释为温度差的存在使得熵增大,而熵的增大是自然趋势。
因此,热量传递方向的确定性可以从温度差的存在进行解释。
3. 热力学第二定律的应用热力学第二定律在工程和科学领域有着广泛的应用。
以下是一些热力学第二定律的应用案例:第一,热力学第二定律被应用于热机效率的研究。
热力学第二定律 概念及公式总结
(不可逆热机的效率小于可逆热机)
所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关
四、熵的概念
1.在卡诺循环中,得到热效应与温度的商值加和等于零:
任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关
热温商具有状态函数的性质 :周而复始 数值还原
五、克劳修斯不等式与熵增加原理
不可逆过程中,熵的变化量大于热温商
1.某一过程发生后,体系的热温商小于过程的熵变,过程有可能进行不可逆过程
2.某一过程发生后,热温商等于熵变,则该过程是可逆过程
3.热温商大于熵变的过程是不可能发生的
4.热力学第二定律的数学表达式:
5. 隔离系统中, (一个隔离系统的熵永不减少)
6.熵增加原理:
7.隔离系统中有: 【根据熵增加原理知,若从体系的熵值变化量判断过程一定是自发过程,那么该过程一定是隔离系统】
六、热力学基本方程式与T-S图
1.热力学基本方程:
2.根据热二定律基本方程得: 可逆过程中有
3.绝热可逆过程:
七、 熵变的计算
1.等温过程中熵的变化值:
(1)理想气体等温可逆变化: 、 、
从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数
2.热温商:热量与温度的商
3. 熵:热力学状态函数 熵的变化值可用可逆过程的热温商值来衡量 (数值上相等)
4. 熵的性质:
(1)熵是状态函数,是体系自身的性质是系统的状态函数,是容量性质
(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和
(2)等温、等压可逆相变:
I :在标准压力下,任何物质之间的熔沸点之间的相变为可逆相变;
热力学第二定律及其涵义
热力学第二定律及其涵义热力学第二定律是热力学中的一条基本定律,也是热力学学科发展的重要里程碑之一。
它揭示了自然界中热量传递的方向以及能量守恒的局限性,对于能源利用和工程实践具有重要的指导意义。
本文将深入探讨热力学第二定律的概念、表述以及其在热力学系统中的涵义。
热力学是研究能量转化和传递规律的学科,其中热力学第一定律规定了能量守恒的基本原理,而热力学第二定律则涉及到热量的传递方向。
热力学第二定律一般有两种表述方式,即克劳修斯表述和普朗克表述。
克劳修斯表述是经典热力学中对热力学第二定律最常见的表述方式,它指出热量不会自发地从低温物体传递到高温物体,也就是热量永远只能从高温物体传递到低温物体。
这是因为热量传递实际上是由分子的热运动引起的,分子具有无规则的热运动,热量自发地从高温处流向低温处是分子热运动方向的必然结果。
克劳修斯表述表明了热力学中的一个重要方向性规律。
普朗克表述则更为抽象和数学化,它利用熵的概念定义了热力学系统中的一个状态函数,称为熵。
熵是描述系统无序程度的物理量,它越大表示系统越无序。
普朗克表述指出,热力学系统的熵在一个孤立系统内总是不断增加,而永远不会减小。
这就意味着在系统中,不可避免地产生熵增加的过程,也即是不可逆过程。
而熵的增加又与能量的质量不断降低以及能量转化的效率有关。
热力学第二定律的涵义主要体现在以下几个方面。
首先,热力学第二定律对于能源利用和能量转化的效率有着重要的指导意义。
热力学第二定律告诉我们,任何热能转化过程都不可能实现100%的效率,总会有一部分能量转化为无用的热量散失。
因此,在能源利用和工程实践中,我们需要尽可能提高能量转化的效率,减少能量的浪费,以遵循热力学第二定律,实现可持续的能源利用。
其次,热力学第二定律揭示了自然界中一个普遍存在的趋势,即系统不断朝着更高的无序性发展,也即是“熵增加”的趋势。
这一趋势体现了自然界的不可逆性和不平衡性,它为我们理解宇宙起源、演化和生命起源提供了一种理论基础。
热力学第二定律及其应用
热力学第二定律及其应用热力学第二定律是热力学中最基本的定律之一,在热力学中具有很重要的地位。
它描述了热量不可能自发地从低温物体传递到高温物体,也描述了热机转换热能成为功的效率上限。
在这篇文章中,我们将会探究热力学第二定律及其应用。
1. 热力学第二定律的概念热力学第二定律是一个非常有意思的概念。
它告诉我们,在热量传递中,热量自发地从高温物体流向低温物体。
这个过程是不可逆的,也就是说,它根本不可能反过来。
这一点有什么实际的应用呢?在工业生产中,为了生产出一些物品,要通过一系列的化学反应来完成。
通常这些反应都需要耗费能量,并且会放出热量。
如果我们想要将这些热量利用起来,转化为能量,我们就需要使用热机。
然而,热机转换热能成为功是有很大限制的。
根据热力学第二定律,热机最高只能将能量转换成功的一部分,另一部分则会成为废热散发到周围环境中。
这就是为什么汽车引擎等热机设备在运行的时候会产生很多废热的原因了。
2. 热力学第二定律的表达式热力学第二定律有不同的表达方式,在这里我们来介绍一下热力学中常用的两个表达式,分别是卡诺热机效率公式和熵增原理。
卡诺热机效率公式:卡诺热机是一种理想化的热机,在热力学中被普遍用来探讨热机的效率问题。
卡诺热机效率公式是:$$\eta = 1-\frac{T_c}{T_h}$$其中,$\eta$为热机效率,$T_h$为热源温度,$T_c$为冷却温度。
这个公式告诉我们,当热源温度和冷却温度固定的时候,热机的效率是固定的。
这个效率上限就是这个公式所描述的。
熵增原理:热力学第二定律中的另一个表达方式是熵增原理。
它告诉我们,一个孤立的系统中的熵总是会增加,永远不会减少。
这个定律可以形式化地表达为:$$\Delta S \ge \frac{\Delta Q}{T}$$其中,$\Delta S$是系统内外熵的变化,$\Delta Q$是系统热量变化,$T$是温度。
这个式子告诉我们,如果一个孤立的系统中的熵增加,那么这个系统中的温度也会增加。
热力学第二定律的通俗解释
热力学第二定律的通俗解释
热力学第二定律的通俗解释是:热量不会自发地从低温物体传递到高温物体,而是会自发地从高温物体传递到低温物体。
热力学第二定律也可以表述为:在任何热力学过程中,总是存在一个物理量,即热力学熵,随时间不断增加,除非输入能量来降低熵。
热力学熵描述了系统的无序程度,包括温度、压力、体积、物质等物理性质。
熵的增加代表了系统不可逆的趋势,热能总是从高温度向低温度流动,而不会相反。
热力学第二定律是物理学的重要定律,性质类似于牛顿第二定律和能量守恒定律。
它指导了许多工程和自然科学领域的应用,例如热工学、热电力学和化学反应动力学等。
热力学第二定律的理解
热力学第二定律①热不可能自发地、不付代价地从低温物体传到高温物体(不可能使热量由低温物体传递到高温物体,而不引起其他变化,这是按照热传导的方向来表述的)。
②不可能从单一热源取热,把它全部变为功而不产生其他任何影响(这是从能量消耗的角度说的,它说明第二类永动机是不可能实现的)。
(1)说明①热力学第二定律是热力学的基本定律之一。
它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。
上述(1)中①的讲法是克劳修斯(Clausius)在1850年提出的。
②的讲法是开尔文于1851年提出的。
这些表述都是等效的。
在①的讲法中,指出了在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。
要使热传递方向倒转过来,只有靠消耗功来实现。
在②的讲法中指出,自然界中任何形式的能都会很容易地变成热,而反过来热却不能在不产生其他影响的条件下完全变成其他形式的能,从而说明了这种转变在自然条件下也是不可逆的。
热机能连续不断地将热变为机械功,一定伴随有热量的损失。
第二定律和第一定律不同,第一定律否定了创造能量和消灭能量的可能性,第二定律阐明了过程进行的方向性,否定了以特殊方式利用能量的可能性。
.②人们曾设想制造一种能从单一热源取热,使之完全变为有用功而不产生其他影响的机器,这种空想出来的热机叫第二类永动机。
它并不违反热力学第一定律,但却违反热力学第二定律。
有人曾计算过,地球表面有10亿立方千米的海水,以海水作单一热源,若把海水的温度哪怕只降低O.25度,放出热量,将能变成一千万亿度的电能足够全世界使用一千年。
但只用海洋做为单一热源的热机是违反上述第二种讲法的,因此要想制造出热效率为百分之百的热机是绝对不可能的。
③从分子运动论的观点看,作功是大量分子的有规则运动,而热运动则是大量分子的无规则运动。
显然无规则运动要变为有规则运动的几率极小,而有规则的运动变成无规则运动的几率大。
热力学第二定律知识点总结
热力学第二定律知识点总结热力学是研究能量转化和能量传递规律的学科,其中热力学第二定律是热力学的核心和基础。
热力学第二定律描述了自然界中热量如何传递的方向和限制。
本文将对热力学第二定律的几个重要知识点进行总结。
一、热力学第二定律的表述热力学第二定律有多种表述形式,其中最为常见的是克劳修斯表述和开尔文表述。
克劳修斯表述指出,不能将能量从低温物体传递到高温物体而不引起其他变化。
换句话说,热量只能从高温物体传递到低温物体,不可能自发地从低温物体移动到高温物体中。
开尔文表述则强调了热力学第二定律的实际应用,它指出热量不可能从自发流动的热源中完全转化为功,一定会有一部分热量转化为无用的热量,最终导致热能的不可逆损失。
二、熵的概念熵是描述热力学系统混乱程度或无序程度的物理量。
熵的增加表示系统的混乱度增加,而熵的减少则表示系统的混乱度减少。
根据热力学第二定律,孤立系统的熵总是会增加,不可能自发减少。
根据熵的定义,我们可以得出一个结论:任何自发过程都会伴随着熵的增加。
这也是为什么自发发生的过程是不可逆的原因之一。
熵的增加导致能量的不可逆转化,使得系统无法恢复到原来的状态。
三、热机效率和热泵效率热机效率是指热机从热源中吸收的热量与做功所消耗的热量之比。
根据热力学第二定律,热机效率的上限由克劳修斯表述给出,即热机效率不能超过1减去低温热源与高温热源的温度比之间的比值。
热泵效率是指热泵从低温热源中吸收的热量与提供给高温热源的热量之比。
热泵效率的上限同样由克劳修斯表述限制。
四、热力学不可逆性热力学第二定律揭示了热力学过程的不可逆性。
不可逆性的存在使得热流只能从高温物体传递到低温物体,而不能反向流动。
不可逆性还导致了热机效率和热泵效率的存在上限。
热力学第二定律的不可逆性在自然界广泛存在,如热传导、功的转化等过程都受到了不可逆性的约束。
能量的不可逆流动使得一部分能量转化为无用的热量,增加了能量损失。
五、热力学第二定律的应用热力学第二定律在工程和科学研究中有着广泛的应用。
热力学第二定律的意义与应用
热力学第二定律的意义与应用热力学是研究物质内部能量转化的一门学科,其中热力学第二定律是热力学的一条基本定律,它揭示了物质内部能量转化的规律和方向,具有重要的意义和应用。
一、热力学第二定律的意义热力学第二定律是指,在封闭系统内,不可逆过程总是使系统的熵增加,即自发性过程总是使系统的混沌程度不断增加,最终达到平衡态,而可逆过程则是使系统的熵不变。
这个定律的意义是揭示了物质内部能量转化的规律和方向,熵增是物质运动不可逆的重要表现,它是指系统内部的混沌程度增加,能量不断地流向混沌状态,而可逆过程则是指系统内部的能量转化是可逆的,能量不断地流向秩序状态。
热力学第二定律的意义在于,它限制了物质内部能量转化的方向和效率,为我们研究各种物质和物理现象提供了重要的理论依据。
此外,热力学第二定律的发现也促进了科学技术的发展,比如蒸汽机、热机、制冷技术等等,都是以热力学第二定律为基础,通过能量转化和系统熵增的规律实现的。
二、热力学第二定律的应用1.热机效率热机效率是以热力学第二定律为基础的,热机是一种将热能转化成机械能的设备,热机效率指热机所转化的热量与热机所获得的机械功之比。
热机效率的计算需要考虑热机的工作过程中的能量转化效率和系统熵增的影响,热力学第二定律揭示了热机效率受到系统熵增的限制,因此热机效率的提高需要依据热力学第二定律的规律进行优化。
2.制冷技术制冷技术也是以热力学第二定律为基础的,制冷技术是将热能从低温环境中转移到高温环境中的技术,其所遵循的法则就是热力学第二定律。
制冷机就是将热能从低温环境中吸收,并通过能量转化和熵增的过程,将其传递到高温环境中,制冷机的制冷效果和效率也是受到热力学第二定律的影响的。
3.生物学、化学、社会科学等其他领域的应用热力学第二定律的应用不仅限于物理领域,在生物学、化学、社会科学等其他领域,也使用热力学第二定律来分析和解释各种现象。
比如在生物学中,根据热力学第二定律,生物进化和发展过程中会产生熵增,从而提高生物体的复杂度和适应能力;在化学中,热力学第二定律被用来研究化学反应的熵变、反应速率等问题;在社会科学中,热力学第二定律被应用到各种社会和经济问题的研究中,比如市场竞争、人类行为的规律等等。
热力学第二定律 概念及公式总结
一、自发反应-不可逆性(自发反应乃是热力学的不可逆过程)一个自发反应发生之后,不可能使系统和环境都恢复到原来的状态而不留下任何影响,也就是说自发反应是有方向性的,是不可逆的。
二、热力学第二定律1.热力学的两种说法:Clausius:不可能把热从低温物体传到高温物体,而不引起其它变化Kelvin:不可能从单一热源取出热使之完全变为功,而不发生其他的变化2.文字表述:第二类永动机是不可能造成的(单一热源吸热,并将所吸收的热完全转化为功)功热【功完全转化为热,热不完全转化为功】(无条件,无痕迹,不引起环境的改变)可逆性:系统和环境同时复原3.自发过程:(无需依靠消耗环境的作用就能自动进行的过程)特征:(1)自发过程单方面趋于平衡;(2)均不可逆性;(3)对环境做功,可从自发过程获得可用功三、卡诺定理(在相同高温热源和低温热源之间工作的热机)(不可逆热机的效率小于可逆热机)所有工作于同温热源与同温冷源之间的可逆机,其热机效率都相同,且与工作物质无关四、熵的概念1.在卡诺循环中,得到热效应与温度的商值加和等于零:任意可逆过程的热温商的值决定于始终状态,而与可逆途径无关热温商具有状态函数的性质:周而复始数值还原从物理学概念,对任意一个循环过程,若一个物理量的改变值的总和为0,则该物理量为状态函数2. 热温商:热量与温度的商3. 熵:热力学状态函数熵的变化值可用可逆过程的热温商值来衡量(数值上相等)4. 熵的性质:(1)熵是状态函数,是体系自身的性质是系统的状态函数,是容量性质(2)熵是一个广度性质的函数,总的熵的变化量等于各部分熵的变化量之和(3)只有可逆过程的热温商之和等于熵变(4)可逆过程热温商不是熵,只是过程中熵函数变化值的度量(5)可用克劳修斯不等式来判别过程的可逆性(6)在绝热过程中,若过程是可逆的,则系统的熵不变(7)在任何一个隔离系统中,若进行了不可逆过程,系统的熵就要增大,所以在隔离系统中,一切能自动进行的过程都引起熵的增大。
热力学第二定律的意义
热力学第二定律的意义
意义:热力学第二定律说明热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物体(克劳修斯表述);也可表述为:两物体相互摩擦的结果使功转变为热,但却不可能将这摩擦热重新转变为功而不产生其他影响。
对于扩散、渗透、混合、燃烧、电热和磁滞等热力过程,虽然其逆过程仍符合热力学第一定律,但却不能自发地发生。
热力学第一定律未解决能量转换过程中的方向、条件和限度问题,这恰恰是由热力学第二定律所规定的。
热力学中的热力学第二定律
热力学中的热力学第二定律热力学第二定律是热力学中的重要原理之一,指出了一个自然过程的方向性。
它限制了热量如何在系统中传递并转化为做功的能力。
热力学第二定律有许多不同的表述方式,我们将探讨其中几种。
一、卡诺循环卡诺循环是解释热力学第二定律的重要工具。
它是由封闭系统中的两个等温和两个绝热过程组成的循环。
卡诺循环具有最高效率,不可逆过程的效率始终低于卡诺循环的效率。
二、熵增定理熵是热力学中一个非常重要的物理量,它可以看作是系统的无序程度。
根据熵增定理,孤立系统的熵将不断增加,而不会减少。
这意味着热量转化为做功时会产生一定的熵增。
三、布朗运动布朗运动是指微观粒子在溶液中作无规则的运动。
这种无规则的运动表明热力学中微观粒子的运动是不可逆的。
无论是液体中的溶质分子还是气体中的分子,它们的运动都是受到热力学第二定律的限制。
四、热力学势函数热力学势函数是热力学中用来描述系统状态的函数。
吉布斯自由能和哈密顿函数都是物理系统中的热力学势函数。
根据热力学第二定律,一个孤立系统在达到平衡时,其吉布斯自由能将取得最小值。
五、霍金辐射霍金辐射是由黑洞事件视界附近的虚粒子产生的辐射。
根据热力学第二定律,黑洞的质量和面积之间存在一条关系,称为黑洞面积定理。
这表明黑洞在蒸发的过程中,它的面积将不断变小。
六、微观解释热力学第二定律在微观尺度上可以通过统计力学解释。
根据玻尔兹曼原理,微观粒子的状态数随着能量的分配方式而增加。
由于自然趋向高熵状态的发展,低熵状态的出现概率远小于高熵状态。
结语热力学第二定律是热力学中的重要原理,它限制了热量在系统中传递和转化的方式。
通过卡诺循环、熵增定理、布朗运动、热力学势函数、霍金辐射和微观解释等方面的探讨,我们可以更好地理解和应用热力学第二定律。
深入了解和研究这一定律,对于推动科学的发展和应用都具有重要意义。
物理化学热力学第二定律总结
热力学第二定律1.热力学第二定律:通过热功转换的限制来研究过程进行的方向和限度。
2.热力学第二定律文字表述:第二类永动机是不可能造成的。
(从单一热源吸热使之完全变为功而不留下任何影响。
)3.热力学第二定律的本质: 一切自发过程,总的结果都是向混乱度增加的方向进行(a. 热与功转换的不可逆性; b.气体混合过程的不可逆性; c.热传导过程的不可逆性)4.热力学第二定律的数学表达式:Clausius 不等式5.卡诺循环→热机效率(即:热转化为功的限度有多大?)→卡诺定理(所有工作于同温热源和同温冷源之间的热机,其效率都不能超过可逆机,即可逆机的效率最大。
)→从卡诺循环得到结论:热效应与温度商值的加和等于零。
→任意可逆循环热温商的加和等于零→熵的引出→熵的变化值可用可逆过程的热温商值来衡量→Clausius 不等式:d QS Tδ≥→熵增加原理(熵增加原理)→把与体系密切相关的环境也包括在一起,用来判断过程的自发性(∆S iso =∆S (体系)+∆S (环境)≥0):“>” 号为自发过程;“=” 号为可逆过程) 6.等温过程的熵变:(1)理想气体等温变化:∆S =nRln(V 2/V 1)=nRln(P 1/P 2);(2)等温等压可逆相变(若是不可逆相变,应设计可逆过程): ∆S(相变)=∆H (相变)/T(相变);(3)理想气体(或理想溶液)的等温混合过程:∆S =-R ∑n B lnx B 7. 变温过程的熵变:(1)等容变温:⎰=∆21d m ,T TV TTnC S(2)等压变温:(3):8.标准压力下,求反应温度T 时的熵变值:9.用熵作为判据时,体系必须是孤立体系,也就是说必须同时考虑体系和环境的熵变,这很不方便→有必要引入新的热力学函数,利用体系自身状态函数的变化,来判断自发变化的方向和限度。
因此引入新的函数:亥姆霍兹函数A=U-TS 与吉布斯函数G=H-TS 。
10.等温、可逆过程中,体系对外所作的最大功等于体系亥姆霍兹函数的减少值;自发变化总是朝着亥姆霍兹函数减少的方向进行。
专题10.4 热力学第二定律
第十章热力学定律第4节热力学第二定律对热力学第二定律的理解1.在热力学第二定律的表述中,“自发地”、“不产生其他影响”的涵义。
(1)“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助。
(2)“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响。
如吸热、放热、做功等。
学-科网2.热力学第二定律的实质热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有。
特别提醒:热量不可能从低温物体传到高温物体,但在有外界影响的条件下,热量可以从低温物体传到高温物体,如电冰箱;在引起其他变化的条件下内能可以全部转化为机械能,如气体的等温膨胀过程。
3.两类永动机的比较第一类永动机第二类永动机不需要任何动力或燃料,却能不断地对外做功的机器从吸收热量,使之完全变成功,而不产生其他影响的机器违背,不可能制成不违背能量守恒定律,但违背热力学第二定律,不可能制成热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,使人们认识到自然界中进行的涉及热现象的宏观过程都具有方向性。
5.热力学第二定律的其他描述:(1)一切宏观自然过程的进行都具有。
(2)气体向真空的自由膨胀是。
(3)第二类永动机是不可能制成的。
特别说明理解热力学第二定律的方法:(1)理解热力学第二定律的实质,即自然界中进行的所有涉及热现象的宏观过程都具有方向性。
理解的关键在于“自发”和“不引起其他变化”。
(2)还要正确理解哪些过程不会达到100%的转化而不产生其他影响。
方向性自发地能量守恒定律单一热源方向性不可逆的1.热力学第一定律与热力学第二定律的比较区别联系热力学第一定律热力学第二定律区别热力学第一定律是能量守恒定律在热力学中的表现,否定了产生能量和消灭能量的可能性,从而否定了第一类永动机热力学第二定律是关于在有限空间和时间内,一切和热现象有关的物理过程、化学过程具有不可逆性的经验总结,从而否定了第二类永动机联系两定律都是热力学基本定律,分别从不同角度揭示了与热现象有关的物理过程所遵循的规律,二者相互独立,又相互补充,都是热力学的理论基础比较第一类永动机第二类永动机设计要求不消耗任何能量,可以不断做功(或只给予很小的能量启动后,可以永远运动下去)将内能全部转化为机械能,而不引起其他变化(或只有一个热源,实现内能与机械能的转化)不可能的原因违背了能量守恒定律违背了热力学第二定律构成热力学知识的理论基础,前者对自然过程没有任何限制,只指出在任何热力学过程中能量不会有任何增加或损失,反映的是物体内能的变化与热量、做功的定量关系;后者则是解决哪些过程可以自发地发生,哪些过程必须借助于外界条件才能进行。
热力学第二定律的表述及理解
热力学第二定律的表述理解热力学第一定律阐明了能量转换过程中的守恒关系,指出了不消耗能量而能不断输出功的第一类永动机确是一种幻想。
热力学第二定律则更深刻地揭示了能量的品质问题。
熵,或许发明这一物理量的先贤也未始能预料到其对自然科学甚至哲学竟能产生如此巨大的影响。
热力学第二定律有数种表达形式,最闻名于世的有克劳修斯表达和开尔文表达。
1.开尔文表述英国物理学家开尔文(1824~1907),1845年毕业于剑桥大学,1846年受聘为格拉斯哥大学自然哲学教授,长达50余年,1851年被选为英国皇家学会会员,1877年被选为法国科学院院士,1890年至1895年担任皇家学会会长,他对热学和电磁学的发展都作出了重要的贡献。
1851年开尔文在爱丁堡皇家学会会刊上发表了一篇论文,题目是“论热的动力理论”,文章指出:不存在这样一个循环过程,系统从单一热源吸收热量,使之完全变为有用功而不产生其他影响.表述中“单一热源”是指温度均匀且恒定的热源;“其他影响”指除了由单一热源吸热,把吸收的热用来做功以外的任何其他变化.若有其他影响产生时,把由单一热源吸来的热量全部用以对外做功是可能的.自然界任何形式的能都可能转化为热,但热却不能在不产生其他影响的条件下完全转变成其他形式的能.开尔文的论述虽然较克劳修斯晚一年,但他的论述更为明确,使得热力学第二定律的研究更加深入,此外,开尔文还从第二定律断言:能量耗散是普遍趋势.2.克劳修斯表述德国物理学家克劳修斯(1822~1888),曾在柏林大学学习4年,后于1848年毕业于哈雷大学.1850年他任柏林皇家炮工学校物理教授,1855年后他相继任苏黎士维尔茨堡和波恩大学物理教授.他除了建立热力学第二定律,引入态函数——熵,还对气体分子动理论做了较全面的论述,用统计平均的方法导出了理想气体的压强、温度和气体的平均自由程公式。
克劳修斯于1850年在《德国物理学年鉴》上率先发表了《论热的动力及能由此推出的关于热本质的定律》,把卡诺定理作了扬弃而改造成与热力学第一定律并列的热力学第二定律.他提出,热量总是自动地从高温物体传到低温物体,不可能自动地由低温物体向高温物体传递.或者说不可能把热量从低温物体传到高温物体,而不引起其他变化.即在自然条件下,这个转变过程是不可逆的,若想让热传递的方向逆转,则必须消耗功才能实现.以上两种表述是等效的,说明了热量不可能全部转化为机械功以及这一转化过程的方向性.人们一度曾设想一种能从单一热源吸收热量,使之完全转变成有用的机械功而不产生其他影响的第二类永动机,第二类永动机虽不违背热力学第一定律,但违背热力学第二定律,因而是不可能造成的.第二定律除了以上两种表述外,还有其他不同的表述,例如热效率为100%的热机是不可能制成的;不需要由外加功而可操作致冷的机器是不可能造成的等.第二定律无论采用何种表述,其内容实质相同,不外乎主张不可逆变化的存在.各种表述的实质在于说明一切与热现象有关的实际宏观过程都是不可逆的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热力学第二定律①热不可能自发地、不付代价地从低温物体传到高温物体(不可能使热量由低温物体传递到高温物体,而不引起其他变化,这是按照热传导的方向来表述的)。
②不可能从单一热源取热,把它全部变为功而不产生其他任何影响(这是从能量消耗的角度说的,它说明第二类永动机是不可能实现的)。
(1)说明①热力学第二定律是热力学的基本定律之一。
它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。
上述(1)中①的讲法是克劳修斯(Clausius)在1850年提出的。
②的讲法是开尔文于1851年提出的。
这些表述都是等效的。
在①的讲法中,指出了在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。
要使热传递方向倒转过来,只有靠消耗功来实现。
在②的讲法中指出,自然界中任何形式的能都会很容易地变成热,而反过来热却不能在不产生其他影响的条件下完全变成其他形式的能,从而说明了这种转变在自然条件下也是不可逆的。
热机能连续不断地将热变为机械功,一定伴随有热量的损失。
第二定律和第一定律不同,第一定律否定了创造能量和消灭能量的可能性,第二定律阐明了过程进行的方向性,否定了以特殊方式利用能量的可能性。
.②人们曾设想制造一种能从单一热源取热,使之完全变为有用功而不产生其他影响的机器,这种空想出来的热机叫第二类永动机。
它并不违反热力学第一定律,但却违反热力学第二定律。
有人曾计算过,地球表面有10亿立方千米的海水,以海水作单一热源,若把海水的温度哪怕只降低O.25度,放出热量,将能变成一千万亿度的电能足够全世界使用一千年。
但只用海洋做为单一热源的热机是违反上述第二种讲法的,因此要想制造出热效率为百分之百的热机是绝对不可能的。
③从分子运动论的观点看,作功是大量分子的有规则运动,而热运动则是大量分子的无规则运动。
显然无规则运动要变为有规则运动的几率极小,而有规则的运动变成无规则运动的几率大。
一个不受外界影响的孤立系统,其内部自发的过程总是由几率小的状态向几率大的状态进行,从此可见热是不可能自发地变成功的。
④热力学第二定律只能适用于由很大数目分子所构成的系统及有限范围内的宏观过程。
而不适用于少量的微观体系,也不能把它推广到无限的宇宙。
⑤根据热力学第零定律,确定了态函数——温度;根据热力学第一定律,确定了态函数——内能和焓;根据热力学第二定律,也可以确定一个新的态函数——熵。
.可以用熵来对第二定律作定量的表述。
第二定律指出在自然界中任何的过程都不可能自动地复原,要使系统从终态回到初态必需借助外界的作用,由此可见,热力学系统所进行的不可逆过程的初态和终态之间有着重大的差异,这种差异决定了过程的方向,人们就用态函数熵来描述这个差异,从理论上可以进一步证明:可逆绝热过程Sf=Si,不可逆绝热过程Sf>Si,式中Sf和Si分别为系统的最终和最初的熵。
也就是说,在孤立系统内对可逆过程,系统的熵总保持不变;对不可逆过程,系统的熵总是增加的。
这个规律叫做熵增加原理。
这也是热力学第二定律的又一种表述。
熵的增加表示系统从几率小的状态向几率大的状态演变,也就是从比较有规则、有秩序的状态向更无规则,更无秩序的状态演变。
熵体现了系统的统计性质。
第二定律在有限的宏观系统中也要保证如下条件:1、该系统是线性的;2、该系统全部是各向同性的。
另外有部分推论很有意思:比如热辐射:恒温黑体腔内任意任意位置及任意波长的辐射强度都相同,且在加入任意光学性质的物体时,腔内任意位置及任意波长的辐射强度都不变。
(2)热力学第二定律与时间的单方向性所有不涉及热现象的物理规律均时间反演对称, 它们没有对时间的方向作出规定. 所谓时间反演, 通俗地讲就是时光倒流; 而物理定律时间反演对称则指, 经过时间反演后, 该定律依然成立.以牛顿定律为例, 它是时间反演对称的. 不妨考察自由落体运动: 一物体由静止开始, 在重力作用下自由下落, 其初速度V(0)=0, 加速度a=g, 设其末速度为V(t), 下落高度为h. 现进行时间反演, 则有其初速度V'(0)=-V(t), 加速度a'=g, 末速度V'(t)=V(0), 上升高度为h, 易证这依然满足牛顿定律.但热现象则不同, 一杯水初始温度等于室温, 为T(0), 放在点燃酒精灯上, 从酒精灯火焰吸收热量Q后温度为T(t). 现进行时间反演, 则是水的初温为T'(0)=T(t), 放在点燃酒精灯上, 放出热量Q给酒精灯火焰, 自身温度降为T'(t)=T(0). 显然这违背了热力学第二定律关于热量只能从高温物体传向低温物体的陈述. 故热力学第二定律禁止时间反演. 在第一个例子中, 如果考虑到空气阻力, 时间反演后也会与理论相悖, 原因在于空气阻力做功产生了热.热力学第二定律体现了客观世界时间的单方向性, 这也正是热学的特殊性所在.热力学第二定律是热力学定律之一,是指热永远都只能由热处转到冷处。
1824年法国工程师萨迪·卡诺提出了卡诺定理,德国人克劳修斯(Rudolph Clausius)和法国人开尔文(Lord Kelvin)在热力学第一定律建立以后重新审查了卡诺定理,意识到卡诺定理必须依据一个新的定理,即热力学第二定律。
他们分别于1850年和1851年提出了克劳修斯表述和开尔文表述。
这两种表述在理念上是相通的。
(3)热力学第二定律两种表述等价的证明:如果假设热量由高温传向低温的不可逆性消失了,即热量能自动地经过某种假想装置从低温传向高温。
这是我们可以设计一部热机,使它在一次循环中由高温热库(热源)吸热,对外做功,向低温热库放热(),这种热机能自动进行动作,然后利用那个假想装置使热量自动地传给高温热库,而使低温热库恢复原来状态。
当我们把该假想装置与此热机看成一个整体时,它们就能从热库吸出热量而全部转变为对外做的功,而不引起其他任何变化。
这就是说,功变热的不可逆性也消失了。
同理,反之也成立。
卡诺循环:理想气体从状态1(P1,V1,T1)等温膨胀到状态2(P2,V2,T2),再从状态2绝热膨胀到状态3(P3,V3,T3),此后,从状态3等温压缩到状态4(P4,V4,T4),最后从状态4绝热压缩回到状态1。
这种由两个等温过程和两个绝热过程所构成的循环成为卡诺循环。
卡诺循环可以想象为是工作与两个恒温热源之间的准静态过程,其高温热源的温度为T1,低温热源的温度为T2。
这一概念是1824年N.L.S.卡诺在对热机的最大可能效率问题作理论研究时提出的。
卡诺假设工作物质只与两个恒温热源交换热量,没有散热、漏气、擦等损耗。
为使过程是准静态过程,工作物质从高温热源吸热应是无温度差的等温膨胀过程,同样,向低温热源放热应是等温压缩过程。
因限制只与两热源交换热量,脱离热源后只能是绝热过程。
作卡诺循环的热机叫做卡诺热机。
通过热力学相关定理我们可以得出,卡诺循环的效率ηc=1-T2/T1,由此可以看出,卡诺循环的效率只与两个热源的热力学温度有关,如果高温热源的温度T1愈高,低温热源的温度T2愈低,则卡诺循环的效率愈高。
因为不能获得T1→∞的高温热源或T2=0K(-273℃)的低温热源,所以,卡诺循环的效率必定小于1。
1850年,克劳修斯在卡诺的基础上统一了能量守恒和转化定律与卡诺原理,指出:一个自动运作的机器,不可能把热从低温物体移到高温物体而不发生任何变化,这就是热力学第二定律。
不久,开尔文又提出:不可能从单一热源取热,使之完全变为有用功而不产生其他影响;或不可能用无生命的机器把物质的任何部分冷至比周围最低温度还低,从而获得机械功。
这就是热力学第二定律的“开尔文表述”。
奥斯特瓦尔德则表述为:第二类永动机不可能制造成功。
在提出第二定律的同时,克劳修斯还提出了熵的概念S=Q/T,并将热力学第二定律表述为:在孤立系统中,实际发生的过程总是使整个系统的熵增加。
但在这之后,克劳修斯错误地把孤立体系中的熵增定律扩展到了整个宇宙中,认为在整个宇宙中热量不断地从高温转向低温,直至一个时刻不再有温差,宇宙总熵值达到极大。
这时将不再会有任何力量能够使热量发生转移,此即“热寂论”。
熵 (entropy):是表示任何一种能量在空间中分布的均匀程度。
能量分布越均匀,熵就越大。
熵是混乱和无序的度量。
物理意义:物质微观热运动时,混乱程度的标志。
热力学中表征物质状态的参量之一,通常用符号S表示。
在经典热力学中,可用增量定义为dS=(dQ/T),式中T为物质的热力学温度;dQ为熵增过程中加入物质的热量。
下标―可逆‖表示加热过程所引起的变化过程是可逆的。
若过程是不可逆的,则dS>(dQ/T)不可逆。
单位质量物质的熵称为比熵,记为s。
熵最初是根据热力学第二定律引出的一个反映自发过程不可逆性的物质状态参量。
热力学第二定律是根据大量观察结果总结出来的规律,有下述表述方式:①热量总是从高温物体传到低温物体,不可能作相反的传递而不引起其他的变化;②功可以全部转化为热,但任何热机不能全部地、连续不断地把所接受的热量转变为功(即无法制造第二类永动机);③在孤立系统中,实际发生的过程总使整个系统的熵值增大,此即熵增原理。
摩擦使一部分机械能不可逆地转变为热,使熵增加。
热量dQ由高温(T1)物体传至低温(T2)物体,高温物体的熵减少dS1=dQ/T1,低温物体的熵增加dS2=dQ/T2,把两个物体合起来当成一个系统来看,熵的变化是dS =dS2-dS1>0,即熵是增加的。
◎物理学上指热能除以温度所得的商,标志热量转化为功的程度。
◎科学技术上泛指某些物质系统状态的一种量(liàng)度,某些物质系统状态可能出现的程度。
亦被社会科学用以借喻人类社会某些状态的程度。
◎在信息论中,熵表示的是不确定性的量度。
只有当你所使用的那个特定系统中的能量密度参差不齐的时候,能量才能够转化为功,这时,能量倾向于从密度较高的地方流向密度较低的地方,直到一切都达到均匀为止。
正是依靠能量的这种流动,你才能从能量得到功。
江河发源地的水位比较高,那里的水的势能也比河口的水的势能来得大。
由于这个原因,水就沿着江河向下流入海洋。
要不是下雨的话,大陆上所有的水就会全部流入海洋,而海平面将稍稍升高。
总势能这时保持不变。
但分布得比较均匀。
正是在水往下流的时候,可以使水轮转动起来,因而水就能够做功。
处在同一个水平面上的水是无法做功的,即使这些水是处在很高的高原上,因而具有异常高的势能,同样做不了功。
在这里起决定性作用的是能量密度的差异和朝着均匀化方向的流动。
熵是混乱和无序的度量。
熵值越大,混乱无序的程度越大。
我们这个宇宙是熵增的宇宙。
热力学第二定律体现的就是这个特征。