九年级数学切线的性质与判定2

合集下载

切线的判定和性质2

切线的判定和性质2

切线的判定和性质切线是数学中一个重要的概念,尤其在微积分和几何学中使用得非常广泛。

本文将讨论如何判定一条直线是否为曲线的切线以及切线的一些性质。

切线的判定判定一条直线是否为曲线的切线,有以下两种常见的方法:1. 函数导数法设曲线的方程为 y = f(x),如果某一点 (a, f(a)) 处的函数导数f’(a) 存在且等于切线的斜率 k,则直线 y = kx + b 是曲线在点 (a, f(a)) 处的切线。

2. 函数极限法设曲线的方程为 y = f(x),如果点 (a, f(a)) 处的函数 f(x) 在 x = a 处的极限存在且等于切线的斜率 k,则直线 y = kx + b 是曲线在点 (a, f(a)) 处的切线。

需要注意的是,以上两种方法得到的切线方程并不一定相同,因为函数在某一点处的导数和极限不一定相等。

但是当函数是可导的时候,两种方法能得到相同的结果。

切线的性质切线作为曲线的一条特殊直线,具有以下一些性质:1. 切点切点是切线与曲线相交的点,切线与曲线通常只有一个交点。

切点坐标为 (a, f(a)),其中 a 是曲线上的一点,f(a) 是曲线在点 a 处的函数值。

2. 切线的斜率切线与曲线在切点处的斜率是相等的。

切线的斜率可以通过上述判定切线的两种方法得到。

3. 切线方程切线方程可以使用点斜式或一般式表示。

点斜式为 y - f(a) = k(x - a),其中 k 是切线的斜率。

一般式为 Ax + By + C = 0,其中 A、B、C 是切线方程的系数。

4. 切线与曲线的关系切线与曲线在切点处相切,因此切线方程所表示的直线与曲线在切点处重合。

切线与曲线在切点处的函数值相等,即切线方程与曲线方程在切点处相等。

5. 切线的几何意义切线可以看作曲线在切点处的局部近似,切线的斜率表示曲线在切点处的变化速率。

当切线的斜率为正时,曲线在切点处向上增长;当切线的斜率为负时,曲线在切点处向下增长;当切线的斜率为零时,曲线在切点处取极值。

人教版九年级数学上册24.2.3《切线的判定和性质》教学设计

人教版九年级数学上册24.2.3《切线的判定和性质》教学设计

人教版九年级数学上册24.2.3《切线的判定和性质》教学设计一. 教材分析人教版九年级数学上册24.2.3《切线的判定和性质》这一节主要介绍了直线与圆的位置关系,特别是圆的切线。

学生将学习如何判定一条直线是否为圆的切线,以及切线与圆的性质。

教材通过丰富的例题和练习题,帮助学生理解和掌握切线的相关知识。

二. 学情分析九年级的学生已经具备了一定的几何基础,对直线、圆等基本几何图形有一定的了解。

但是,对于切线的判定和性质,他们可能还比较陌生。

因此,在教学过程中,我需要从学生的实际出发,逐步引导他们理解和掌握切线的判定和性质。

三. 教学目标1.知识与技能目标:使学生理解切线的定义,学会判定一条直线是否为圆的切线,掌握切线的性质。

2.过程与方法目标:通过观察、分析、推理等数学活动,培养学生的几何思维能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.重点:切线的定义,判定一条直线是否为圆的切线,切线的性质。

2.难点:理解并掌握切线的判定定理,以及如何运用到实际问题中。

五. 教学方法1.情境教学法:通过丰富的实例,引导学生观察、分析和推理,让学生在实际情境中理解切线的定义和性质。

2.问题驱动法:提出问题,引导学生思考,激发学生的求知欲,培养学生解决问题的能力。

3.合作学习法:学生进行小组讨论,鼓励学生互相交流、分享,培养学生的团队协作能力。

六. 教学准备1.教学课件:制作精美的课件,展示切线的定义、判定和性质。

2.练习题:准备一些有关切线的练习题,以便在课堂上进行操练和巩固。

3.教学道具:准备一些圆形模型和直线模型,以便在课堂上进行直观展示。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的圆形物体,如篮球、乒乓球等,引导学生观察这些圆形物体上的切线。

然后提出问题:“你们认为,什么是切线?切线有哪些特点?”2.呈现(10分钟)介绍切线的定义,通过动画演示切线的形成过程,让学生直观地理解切线的定义。

九年级数学-切线长定理—知识讲解-提高

九年级数学-切线长定理—知识讲解-提高

切线长定理—知识讲解(提高)审稿:【学习目标】1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义;2.掌握切线长定理;利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线的判定定理和性质定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定方法:(1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线;(2)定理:和圆心的距离等于半径的直线是圆的切线;(3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可).2.切线的性质定理:圆的切线垂直于过切点的半径.要点诠释:切线的性质:(1)切线和圆只有一个公共点;(2)切线和圆心的距离等于圆的半径;(3)切线垂直于过切点的半径;(4)经过圆心垂直于切线的直线必过切点;(5)经过切点垂直于切线的直线必过圆心.要点二、切线长定理1.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释:切线长定理包含两个结论:线段相等和角相等.3.圆外切四边形的性质:圆外切四边形的两组对边之和相等.要点三、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).【典型例题】类型一、切线长定理1.如图,等腰三角形ABC中,6AC BC==,8AB=.以BC为直径作⊙O交AB于点D,交AC于点G,DF AC⊥,垂足为F,交CB的延长线于点E.求证:直线EF是⊙O的切线.【答案与解析】如图,连结OD、CD,则90BDC∠=︒.∴CD AB⊥.∵ AC BC=,∴AD BD=.∴D是AB的中点.∵O是BC的中点,∴DO AC∥.∵EF AC⊥于F.∴EF DO⊥.∴EF是⊙O的切线.【总结升华】连半径,证垂直.举一反三:【变式】已知:如图,在梯形 ABCD中,AB∥DC,∠B=90°,AD=AB+DC,AD是⊙O的直径.求证:BC和⊙O相切.【答案】作OE⊥BC,垂足为E,∵ AB∥DC,∠B=90°,∴ OE∥AB∥DC,∵ OA=OD,∴ EB=EC,∴ BC是⊙O的切线.2.已知:如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,求证:DC是⊙O的切线.【答案与解析】连接OD.∵ OA=OD,∴∠1=∠2.∵ AD∥OC,∴∠1=∠3,∠2=∠4.因此∠3=∠4.又∵ OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC.∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°,∴ DC是⊙O的切线.【总结升华】因为AB是直径,BC切⊙O于B,所以BC⊥AB.要证明DC是⊙O的切线,而DC和⊙O有公共点D,所以可连接OD,只要证明DC⊥OD.也就是只要证明∠ODC=∠OBC.而这两个角分别是△ODC和△OBC的内角,所以只要证△ODC≌△OBC.这是不难证明的.举一反三:【高清ID号:356967 关联的位置名称(播放点名称):练习题精讲】【变式】已知:∠MAN=30°,O为边AN上一点,以O为圆心、2为半径作⊙O,交AN于D、E两点,设AD=x,⑴如图⑴当x取何值时,⊙O与AM相切;⑵如图⑵当x为何值时,⊙O与AM相交于B、C两点,且∠BOC=90°.【答案】(1)设AM与⊙O相切于点B,并连接OB,则OB⊥AB;在△AOB中,∠A=30°,则AO=2OB=4,所以AD=AO-OD,即AD=2.x=AD=2.(2)过O点作OG⊥AM于G∵OB=OC=2,∠BOC=90°,∴BC=,,∵∠A=30°∴OA=图(2)∴x=AD= 2类型二、三角形的内切圆3.如图,点I 为△ABC 的内心,点O 为△ABC 的外心,∠O =140°,则∠I 为( ) (A )140° (B )125° (C )130° (D )110°【答案】B .【解析】因点O 为△ABC 的外心,则∠BOC 、∠A 分别是BC 所对的圆心角、圆周角,所以∠O =2∠A ,故∠A =21×140°=70°.又因为I 为△ABC 的内心, 所以∠I =90°+21∠A =90°+21×70°=125°.【总结升华】本题考查圆心角与圆周角的关系,内心、外心的概念.注意三角形的内心与两顶点组成的角与另一角的关系式.类型三、与相切有关的计算与证明【高清ID 号: 356967 关联的位置名称(播放点名称):经典例题4】4. 如图,已知直径与等边△ABC 的高相等的圆O 分别与边AB 、BC 相切于点D 、E ,边AC 过圆心O与圆O 相交于点F 、G. (1) 求证:DE ∥AC.(2) 若△ABC 的边长为a ,求△ECG 的面积.【答案与解析】(1)∵△ABC 是等边三角形,∴∠B=∠A=60°∵AB 、BC 是圆O 的切线,D 、E 是切点,∴BD=BE.∴∠BDE=60°=∠A, ∴DE//AC.(2)分别连接OD 、OE ,作EH ⊥AC 于点H .∵AB 、BC 是圆O 的切线,D 、E 是切点,O 是圆心, ∴∠ADO=∠OEC=90°,OD=OE ,AD=EC.∴△ADO ≌△CEO,有AO=OC=12a . ∵圆O 直径等于△ABC 的高,∴半径 ,∴CG=OC+OG=2a . ∵EH ⊥OC ,∠C =60°,可推知EH =8a . ∴【总结升华】本题是一道综合性很强的习题,考查到切线的性质,全等三角形的判断,等边三角形的性质等,是一道很不错的题.。

冀教版九年级下册数学《切线的性质和判定》PPT(第2课时)

冀教版九年级下册数学《切线的性质和判定》PPT(第2课时)

知2-讲
导引:(1)已知BC是⊙O的直径,可连接CD,构造直径 所对的圆周角,结合AD=DB,可得AC=BC;
(2)要证DE是⊙O的切线,而点D在圆上,可联想 到连接OD,设法证DE⊥OD即可.
解:(1) 连接CD,如图. ∵BC是⊙O的直径, ∴∠BDC=90°,即CD⊥AB, ∵AD=DB, ∴AC=BC=2OC=10.
知1-练
6 如图,AB是⊙O的直径,线段BC与⊙O的交点D 是BC的中点,DE⊥AC于点E,连接AD,则下列 结论中正确的个数是(D )
①AD⊥BC;②∠EDA=∠B;
③OA= 1 AC;④DE是⊙O的切线.
2
A.1
B.2
C.3
D.4
知识点 2 切线的性质和判定的应用
知2-导
例2 [中考·湖州]如图,已知BC是⊙O的直径,AC切⊙O 于点C,AB交⊙O于点D,E为AC的中点,连接DE. (1)若AD=DB,OC=5, 求切线AC的长; (2)求证:DE是⊙O的切线.
B.3个
C.2个
D.1个
1 知识小结

线
↗的





线
↘切 线 的


↗ → ↘ ↗ → ↘
定义法 数量法d=r 判定定理
切线和圆只有一个公共点 圆心到切线的距离等于半径 圆的切线垂直于过切点的半径
2 易错小结
如图,点O为∠MPN的平分线上一点,以点O为圆心 的⊙O与PN相切于点A. 求证:PM为⊙O的切线.
(来自《典中点》)
知识点 2 切线长定理的应用
知2-讲
例2 如图,PA,PB是⊙O的切线,切点分别为A,B, BC为⊙O的直径,连接AB,AC,OP. 求证:(1)∠APB=2∠ABC; (2)AC∥OP.

人教版数学九年级上册24.2《切线的判定和性质定理、切线长定理》教学设计

人教版数学九年级上册24.2《切线的判定和性质定理、切线长定理》教学设计

人教版数学九年级上册24.2《切线的判定和性质定理、切线长定理》教学设计一. 教材分析人教版数学九年级上册第24.2节《切线的判定和性质定理、切线长定理》是九年级数学的重要内容,主要让学生了解和掌握切线的判定方法、性质定理以及切线长定理。

本节内容是在学习了函数图像、直线与圆的位置关系等知识的基础上进行学习的,为后续学习解析几何和高中数学打下基础。

二. 学情分析九年级的学生已经掌握了函数图像、直线与圆的位置关系等知识,具备了一定的几何直观能力和逻辑思维能力。

但是,对于切线的判定和性质定理、切线长定理的理解和应用还需要加强。

因此,在教学过程中,要注重引导学生从实际问题中发现切线,培养学生的几何直观能力,同时,通过实例讲解,使学生理解和掌握切线的性质定理和切线长定理。

三. 教学目标1.让学生了解和掌握切线的判定方法。

2.使学生理解和掌握切线的性质定理和切线长定理。

3.培养学生运用切线知识解决实际问题的能力。

四. 教学重难点1.教学重点:切线的判定方法、性质定理和切线长定理。

2.教学难点:切线性质定理和切线长定理的理解和应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中发现和理解切线。

2.使用多媒体辅助教学,通过动画演示和实例讲解,使学生直观地理解和掌握切线的性质定理和切线长定理。

3.采用小组合作学习的方式,让学生在讨论和探究中加深对切线知识的理解。

六. 教学准备1.准备相关的多媒体教学课件和教学素材。

2.准备切线相关的实际问题,用于引导学生学习。

3.准备黑板和粉笔,用于板书。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,如:如何判断一条直线是否为圆的切线?圆的切线有什么特殊的性质?引发学生对切线的兴趣,从而导入新课。

2.呈现(10分钟)讲解切线的判定方法,通过多媒体动画演示和实例讲解,让学生直观地理解和掌握切线的判定方法。

3.操练(10分钟)让学生通过练习一些切线的判定问题,加深对切线判定方法的理解和应用。

人教版数学九年级上册24.2《切线的判定和性质定理、切线长定理》说课稿

人教版数学九年级上册24.2《切线的判定和性质定理、切线长定理》说课稿

人教版数学九年级上册24.2《切线的判定和性质定理、切线长定理》说课稿一. 教材分析人教版数学九年级上册第24.2节《切线的判定和性质定理、切线长定理》是初中数学的重要内容,旨在让学生理解和掌握切线的判定方法、性质定理和切线长定理,为后续学习解析几何打下基础。

本节内容涉及直线与圆的位置关系,通过研究切线与圆的切点,引导学生探究切线的性质,培养学生的逻辑思维能力和空间想象能力。

二. 学情分析九年级的学生已经具备了一定的几何基础,对直线、圆等基本概念有所了解。

但是,对于切线的判定和性质定理、切线长定理等概念,学生可能较为抽象,不易理解。

因此,在教学过程中,需要结合学生的实际情况,采用生动形象的教学手段,引导学生理解和掌握切线的相关知识。

三. 说教学目标1.知识与技能:使学生掌握切线的判定方法、性质定理和切线长定理,能够运用这些知识解决一些简单的问题。

2.过程与方法:通过观察、操作、猜想、验证等过程,培养学生的探究能力和合作意识。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的自信心和克服困难的意志。

四. 说教学重难点1.教学重点:切线的判定方法、性质定理和切线长定理。

2.教学难点:切线性质定理的理解和应用。

五. 说教学方法与手段本节课采用“问题驱动”的教学方法,引导学生通过观察、操作、猜想、验证等环节,自主探究切线的性质。

同时,运用多媒体课件、几何画板等教学手段,为学生提供丰富的学习资源,提高教学效果。

六. 说教学过程1.导入新课:通过复习直线和圆的相关知识,引出本节课的内容——切线的判定和性质定理、切线长定理。

2.自主探究:让学生通过观察、操作,猜想切线的性质,然后进行验证。

在此过程中,引导学生发现切线的判定方法和性质定理。

3.讲解与演示:教师对切线的判定方法和性质定理进行讲解,并用多媒体课件和几何画板进行演示,帮助学生加深理解。

4.练习与拓展:布置一些相关的练习题,让学生巩固所学知识,并进行拓展训练。

初中数学切线的性质和判定

初中数学切线的性质和判定

图29-3
线的性质和判定
解 析 (1)由切线的性质,即可得OA⊥PA,OB⊥PB,又由圆周角 定理,求得∠AOB的度数,继而求得∠APB的大小; (2)由切线长定理,可求得∠APO的度数,继而求得∠AOP的度数,易得 PO是AB的垂直平分线,然后利用三角函数的性质,求得AD与OD的长.
┃ 切线的性质和判定
切线的性质和判定
中考预测
如图 29-6,△ABC 内接于⊙O,∠B=60°,
CD 是⊙O 的直径,点 P 是 CD 延长线上的一点,
且 AP=AC.
(1)求证:PA 是⊙O 的切线;
(2)若 PD= 3,求⊙O 的直径.
图29-6
切线的性质和判定

(1)证明:连接 OA, ∵∠B=60°,
∴∠AOC=2∠B=120°.
切线的性质和判定
[方法点析] 解三角形内切圆问题,主要是切线长定理的运 用.解决此类问题,常转化到直角三角形中,利用勾股定理或 直角三角形的性质及三角函数等解决.
┃ 切线的性质和判定
回归教材
切线问题中必需的半径
教材母题
如图 29-5,设 AB 是⊙O 的直径,如 果圆上点 D 恰使∠ADC=∠B,那么直线 CD 与⊙O 相切吗?若相切,请给出证明.
∴S△AOB=12×AB×OD=12×10 3×5=25 3(cm2).
切线的性质和判定
[方法点析] (1)利用过圆外一点作圆的两条切线,这两条切 线的长相等,是解题的基本方法.(2)利用方程思想求切线长常 与勾股定理,切线长定理,圆的半径相等紧密相连.
切线的性质和判定
探究四 三角形的内切圆
命题角度: 1. 三角形的内切圆的定义; 2. 求三角形的内切圆的半径.

人教版数学九年级上册24.2.2切线的判定定理与性质定理(第二课时)优秀教学案例

人教版数学九年级上册24.2.2切线的判定定理与性质定理(第二课时)优秀教学案例
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成小组,让他们在小组内进行讨论和合作,共同解决问题。我会设计一些具有挑战性的练习题,让学生在小组内共同探讨和解决。通过这种合作学习,学生能够更好地理解和掌握所学知识,并能够培养团队合作意识和沟通能力。
(四)总结归纳
在总结归纳环节,我会组织学生进行反思和总结。首先,我会让学生回顾本节课所学的切线的判定定理与性质定理,让他们自己总结出关键点和难点。然后,我会让学生进行自我评价,思考自己在学习过程中的优点和不足之处。最后,我会根据学生的表现和反馈,给予他们及时的指导和鼓励,帮助他们提高学习效果。
3.能够运用切线的判定定理与性质定理解决实际问题,如求解曲线在某一点的切线方程等。
(二)过程与方法
在本节课的教学过程中,我会采用引导学生观察、思考、交流和探究的方法,帮助学生自主发现和归纳切线的判定定理与性质定理。具体来说,学生需要通过以下几个步骤来达到学习目标:
1.观察和分析实际问题,发现切线的判定定理与性质定理的线索。
2.培养观察能力,善于发现问题和解决问题,提高思维能力。
3.培养团队合作意识,学会与同学交流和合作,共同解决问题。
4.培养坚持不懈的学习精神,不怕困难,勇于克服困难,相信自己能够掌握所学的知识。
三、教学策略
(一)情景创设
为了激发学生的学习兴趣和动机,我会运用情景创设的教学策略。在课堂开始时,我会呈现一个实际问题,例如:“在一条曲线上,如何找到与给定点距离最近的切线?”这个问题将与学生的日常生活经验相结合,激发他们的好奇心,引发思考。接着,我会引导学生观察和分析这个问题,使他们感受到数学与生活的紧密联系,从而激发他们对数学的兴趣。
在教学过程中,我会关注每一个学生的学习情况,及时给予指导和鼓励,使他们在课堂上充分参与、积极思考。对于学习有困难的学生,我会耐心辅导,帮助他们克服困难,提高学习兴趣。对于学习优秀的学生,我会引导他们深入思考,拓展思维,提高他们的创新能力。通过这样的教学方式,我希望让每一个学生都能在课堂上收获知识,提高能力,培养他们热爱数学、善于思考的良好习惯。

人教版数学九年级上册24.2.2.2《切线的判定和性质》说课稿

人教版数学九年级上册24.2.2.2《切线的判定和性质》说课稿

人教版数学九年级上册24.2.2.2《切线的判定和性质》说课稿一. 教材分析《切线的判定和性质》是人教版数学九年级上册第24章《圆》的第二个知识点。

本节内容是在学生已经掌握了圆的定义、性质以及圆的基本运算的基础上进行学习的。

本节内容主要介绍了切线的定义、判定和性质,以及切线与圆的位置关系。

这些知识对于学生理解和掌握圆的性质,解决与圆有关的问题具有重要意义。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于圆的性质和运算已经有了一定的了解。

但是,对于切线的定义、判定和性质以及切线与圆的位置关系可能还比较陌生。

因此,在教学过程中,我需要注重引导学生从已知的圆的性质出发,推导出切线的性质,从而帮助学生理解和掌握切线的相关知识。

三. 说教学目标1.知识与技能目标:使学生理解和掌握切线的定义、判定和性质,以及切线与圆的位置关系。

2.过程与方法目标:通过观察、思考、讨论和操作,培养学生的观察能力、逻辑思维能力和动手操作能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 说教学重难点1.教学重点:切线的定义、判定和性质,以及切线与圆的位置关系。

2.教学难点:切线的判定和性质的推导过程,以及切线与圆的位置关系的理解。

五. 说教学方法与手段在本节课的教学中,我将采用讲授法、引导发现法、小组合作学习和动手操作相结合的教学方法。

同时,利用多媒体课件和几何画板等教学手段,帮助学生直观地理解切线的性质和判定。

六. 说教学过程1.导入:通过复习圆的性质,引导学生思考与圆有关的问题,激发学生的学习兴趣。

2.引导发现:引导学生从已知的圆的性质出发,观察和思考切线的性质,引导学生发现切线的判定和性质。

3.讲解与示范:讲解切线的定义、判定和性质,以及切线与圆的位置关系,并通过几何画板进行演示。

4.动手操作:让学生利用几何画板或者手工画图,自己尝试作出圆的切线,并判断其性质。

5.小组合作学习:让学生分组讨论,总结切线的性质和判定,以及切线与圆的位置关系。

切线的判定和性质定理_课件

切线的判定和性质定理_课件

提示:连接AO,DO,作 OE⊥AC 于点E.
E
总结:看到切线,就要连接切点和圆心,利用切线性质.
AB 是 ⊙O 的直径,AE 平分∠BAC 交 ⊙O 于点E,过点 E 作⊙O 的切线交AC 于点D,试判断△AED 的形状,并说明理 由提.示:连接OE.
答案:△AED是直角三角形. 总结:看到切线,就要连接切点和圆心,利用切线性质.
判断一条直线是圆的切线,你现在会有多少种方法? 有以下三种方法: 1.定义法:和圆有且只有一个公共点的直线是圆的切线. 2.数量法(d=r):圆心到直线的距离等于半径的直线是圆 的切线. 3.判定定理:经过半径外端且垂直于这条半径的直线是圆的 切线.
生活中的切线
1.当你在下雨天快速转
2.砂轮打磨零件时
知识回顾 直线和圆的位置关系
相交
图形
公共点个数 公共点名称 直线名称 距离d与半径r的关系
2个 交点 割线 d<r
相切
相离
1个 切点 切线 d=r
0个 —— —— d>r
思考
如图,在 ⊙O 中,经过半径 OA 的外端点 A 作直线 l⊥OA, 则圆心 O 到直线 l 的距离是多少?直线 l 和 ⊙O 有什么位置关 系?
圆的切线垂直于过切点的半径.
切线的性质定理 圆的切线垂直于过切点的半径.
几何表述: ∵ l 与 ⊙O 相切于点 A ∴ OA⊥l
切线的性质定理的证明
证明切线性质定理需要用到反证法:
假设OA与 l 不垂直,
过点O 作OM⊥l,垂足为M.
M
根据垂线段最短的性质,有OM<OA,
这说明圆心 O 到直线l的距离小于半径OA.
提示:连接OD,证明三角形全等.
补充题

人教版九年级数学上册教案:24.2.2圆的切线的判定与性质(2)课堂(教案)

人教版九年级数学上册教案:24.2.2圆的切线的判定与性质(2)课堂(教案)
3.重点难点解析:在讲授过程中,我会特别强调圆的切线判定定理和性质这两个重点。对于难点部分,如切线与半径垂直的证明,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与圆的切线相关的实际问题,如求切线长度、判断直线是否为圆的切线等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用直尺和圆规在纸上画出圆和切线,观察切线与半径的关系。
-实际应用:将切线性质和判定定理应用于解决生活中的实际问题,如计算圆的弦长、角度等。
举例:讲解切线判定定理时,可以通过具体图形和示例,如圆心为O,半径为r,直线L到圆心的距离为r,证明L是圆的切线。
2.教学难点
-难点理解:圆的切线判定定理中,学生需要理解“到圆心的距离等于半径”的概念,并能够运用点到直线的距离公式进行计算。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《圆的切线的判定与性质》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要确定直线是否为圆的切线的情况?”(如切苹果时,切到果核的直线)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索圆的切线的奥秘。
其次,关于教学方法的运用。我采用了提问、讨论、实验等多种方式,旨在激发学生的学习兴趣,帮助他们更好地理解圆的切线知识。从学生的反馈来看,这种教学方法取得了较好的效果。但我也注意到,在小组讨论过程中,部分学生参与度不高,可能需要我在以后的教学中更加关注这些学生,鼓励他们积极参与。
再次,关于教学难点的突破。在讲解切线判定定理和性质的过程中,我特意强调了难点部分,并通过举例和比较来帮助学生理解。但从学生的作业和课堂表现来看,仍有一部分学生对这部分内容掌握不够扎实。我打算在课后针对这部分学生进行个别辅导,以便让他们更好地掌握这个知识点。

沪科版初中数学九年级下册 (HK) 同步练习 第2课时 切线的性质和判定

沪科版初中数学九年级下册 (HK) 同步练习 第2课时 切线的性质和判定

24.4 直线与圆的位置关系第2课时切线的性质和判定知识点一切线的性质1.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,连接OC,AC.若∠D=50°,则∠A的度数是()A.20° B.25° C.40° D.50°第1题图第2题图第3题图2.如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.如果∠A=34°,那么∠C等于()A.28° B.33° C.34° D.56°3..如图,PA为⊙O的切线,A为切点,PO交⊙O于点B,PA=8,OA=6,sin∠APO 的值为()A.34B.35C.45D. 434.如图,AT切⊙O于点A,AB是⊙O的直径.若∠ABT=40°,则∠ATB=_________.第4题图第5题图第6题图5.如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,AB=2,OD=3,则BC的长为_________.6.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O 的切线交AB的延长线于E,则sinE的值为_________.7.如图,已知点O为Rt△ABC斜边AC上一点,以点O 为圆心,OA长为半径的⊙O与BC相切于点E,与AC相交于点D,连接AE.求证:AE平分∠CAB;8.已知⊙O中,AC为直径,MA、MB分别切⊙O于点A、B.(1)如图①,若∠BAC=23°,求∠AMB的大小;(Ⅱ)如图②,过点B作BD∥MA,交AC于点E,交⊙O于点D,若BD=MA,求∠AMB的大小.知识点二切线的判定1.过圆上一点可以作圆的______条切线;过圆外一点可以作圆的_____条切线;•过圆内一点的圆的切线______.2.以三角形一边为直径的圆恰好与另一边相切,则此三角形是_______.3.下列直线是圆的切线的是()A.与圆有公共点的直线 B.到圆心的距离等于半径的直线C.垂直于圆的半径的直线 D.过圆直径外端点的直线4.OA平分∠BOC,P是OA上任意一点(O除外),若以P为圆心的⊙P与OC相切,那么⊙P与OB的位置位置是()A.相交 B.相切 C.相离 D.相交或相切5.△ABC中,∠C=90°,AB=13,AC=12,以B为圆心,5为半径的圆与直线AC的位置关系是()A.相切 B.相交 C.相离 D.不能确定6.菱形的对角线相交于O,以O为圆心,以点O到菱形一边的距离为半径的⊙O•与菱形其它三边的位置关系是()A.相交 B.相离 C.相切 D.无法确定7.平面直角坐标系中,点A(3,4),以点A为圆心,5为半径的圆与直线y=-x的位置关系是()A.相离 B.相切 C.相交 D.以上都有可能8.如图,AB是半径⊙O的直径,弦AC与AB成30°角,且AC=CD.(1)求证:CD是⊙O的切线;(2)若OA=2,求AC的长.9.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.10.如图,AB为⊙O的直径,弦CD⊥AB于点M,过点B作BE∥CD,交AC•的延长线于点E,连结BC.(1)求证:BE为⊙O的切线;,求⊙O的直径.(2)如果CD=6,tan∠BCD=12,∠11.如图,已知:△ABC内接于⊙O,点D在OC的延长线上,sin=12D=30°.(1)求证:AD是⊙O的切线;(2)若AC=6,求AD的长.12.已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B•点,OC=BC,AC=1OB.2(1)求证:AB是⊙O的切线;(2)若∠ACD=45°,OC=2,求弦CD的长.13.如图,P为⊙O外一点,PO交⊙O于C,过⊙O上一点A作弦AB⊥PO 于E,若∠EAC=∠CAP,求证:PA是⊙O的切线.14.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O 的切线,与CA的延长线相交于点E,G是AD的中点,连结OG并延长与BE相交于点F,延长AF•与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是⊙O的切线;(3)若FG=BF,且⊙O的半径长为,求BD和FG的长度.。

人教版数学九年级上册24.2.2切线的判定与性质课件(共24张PPT)

人教版数学九年级上册24.2.2切线的判定与性质课件(共24张PPT)

知识回顾
直线与圆相切的判定: 1.利用定义判定:直线和圆只有一
个公共点时,直线与圆相切. 2.利用直线与圆心距离判定:当圆
心与直线的距离等于该圆的半径时,直 线与圆相切.
O
l
O d=r
l
新知探究
知识点1 切线的判定
思考:如图,在⊙O中,经过半径OA 的外端点 A 作直线 l⊥OA. (1)圆心O到直线 l 的距离是多少?
l
∴OA⊥l
ห้องสมุดไป่ตู้ 反证法证明切线的性质
如图,直线CD与⊙O相切,求证:⊙O的半径OA
与直线CD垂直.
证明:(1)假设AB与CD不垂直,过
B
点O作一条直线垂直于CD,垂足为M;
(2)则OM<OA,即圆心到直线CD的
O
距离小于⊙O的半径,因此,CD与⊙O
相交.这与已知条件“直线与⊙O相切”相 C 矛盾;
A MD
证明:连接OA,OD,作OE⊥AC 于E . ∵ ⊙O与AB相切于E, ∴OD⊥AB.
又∵△ABC为等腰三角形,
O是底边BC的中点,
B
A D
1
O
E C
∴AO平分∠BAC,
∴OD=OE ,即OE是⊙O半径.
∴AC是⊙O的切线. 方法总结:无交点,作垂直,证半径.
随堂练习
1.如图,已知⊙O的直径AB与弦AC的夹角为31°,
d l
A
3.判定定理:经过半径的外端并且垂直于
O
这条半径的直线是圆的切线.
l
A
已 知 : 直 线 AB 经 过 ⊙ O 上 的 点 C , 并 且 OA=OB ,
CA=CB.求证:直线AB是⊙O的切线.
证明:连接OC.

人教版九下数学第二十四章 第2节 第2课时 切线的判定与性质

人教版九下数学第二十四章 第2节 第2课时 切线的判定与性质

人教版九下数学第二十四章第2节第2课时切线的判定与性质课标要求:了解直线和圆的位置关系,掌握切线的概念、性质和判定,探索切线与过切点的半径的关系教材分析:切线的性质和判定它是学了直线和圆三种位置关系之后提出的,切线的性质和判定定理是研究三角形的内切圆,切线长定理的基础。

学好它今后数学和物理学科的学习会有很大的帮助。

学情分析:学生在七、八年级基础上有了一定的分析、归纳和简单的逻辑推理能力,以及通过添加辅助线解决几何问题的能力,本节课通过学生动脑动手进一步提升学生的识图能力和总结经验方法的能力。

学之难,教之困,思维误区与障碍:学生普遍的问题是看到题没思路,不会用已学知识,方法解决问题,没有捕捉典型图的能力,识图能力弱,分析能力弱,缺少给什么想什么,缺什么找什么的意识,导致没思路,而且思路不清,逻辑关系混乱,推理过程繁琐。

教学目标:1.通过练习回顾知识,形成相应的知识结构,从而整体复习圆的切线的判定定理与性质定理。

2.通过题组练习,让学生熟练运用圆的切线的判定定理和性质定理解决与圆有关的数学问题,并进一步培养学生运用已有知识解决数学问题的能力。

3.通过运用圆的切线的判定定理和性质定理解决数学问题的过程中,拓宽了解题思路,提高了解题技巧,从而使学生能够灵活应用所学知识解决问题。

教学重点:让学生熟练运用圆的切线的判定定理和性质定理解决与圆有关的数学问题,并归纳总结运用切线的性质和判定解决问题的方法。

教学难点:掌握切线性质和判定解决问题的方法,并能灵活运用。

教学环节一、知识回顾在上面三个图中,直线l和圆的三种位置关系分别是__相交__、__相切__、__相离__.设计意图通过具体图形形象直观的感受切线的特征。

通过几个图形的识别复习了切线的三种判定方法。

以及判定和性质的符号语言。

二、新课导入问题1:我们这一章主要研究了什么图形?请大家看图,你有什么样的方法判断直线与圆相切呢?生活动:教师引导,在图形中,直线l满足了什么条件?“,我们可以把直线与圆相切的定义,从图形的角度来理解.如何重新描述这个定义?引导学生得出:d=r板书:今天我们重点研究切线,如何判断一条直线是否是某个圆的切线呢?定义法:和圆有且只有一个公共点的直线是圆的切线.数量关系法(d=r):到圆心的距离等于半径的直线是圆的切线.例1如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D.求证:AC 是⊙O 的切线.证明:如图,过D 作DE ⊥AC 于E.∵∠ABC =90°∴DB ⊥AB.∵AD 平分∠BAC ,DE ⊥AC ,∴DE =DB =r实例引入法切线的性质与判定的内容看似与生活关系不大,实际上,生活中有不少的圆的切线的例子.本节课的教学中可以从生活中的实例引入,提出问题,激发学生的求知欲.如图所示,下雨天,快速转动雨伞时雨滴飞出的方向和用砂轮打磨工件火星飞出的方向都是沿圆的切线方向飞出的.那么,怎么判定是不是圆的切线呢?图1通过实例引出问题,让学生带着问题去听课,加强学习的针对性,增强学生的听课效果,并让学生明确本节课的知识目标.二:提出问题,问题1:我们这一章主要研究了什么图形?请大家看图1,你能过圆上的点A 画出⊙O 的什么线?师生活动:学生思考,并动手画一画,然后教师借助几何画板演示,过点A 的无数条直线中,有圆的割线、切线,割线可以画出无数条,而圆的切线只有一条.设计意图:通过问题,引导学生回顾上节课学过的直线与圆的位置关系,为本节l课学习切线的判定定理和性质定理作好铺垫.由旧知得出新知,探索切线的判定定理问题2:在生活中,有许多直线和圆相切的实例,你能举出几个吗?设计意图:通过展示实际生活中的图片,让学生感受切线与现实有着密切的联系.问题3:在图1中,除了上面提到的当直线与圆有唯一公共点时,直线是圆的切线.我们还可以根据什么判断一条直线是圆的切线?你能过点A画出⊙O的切线吗?师生活动:让学生回顾上节课所学内容,什么是圆的切线?学生思考得出,要想准确画出圆的切线,就得出现d=r,因此得需要做出半径r和d.连接OA,过点A 作直线l⊥OA,则此时直线l是⊙O的切线(如图2).问题4:你能从图形的角度概括上面得出的结论吗?师生活动:教师引导,在图形中,直线l满足了什么条件?“垂直于半径”、“经过半径的外端”.为了便于应用,我们可以把直线与圆相切的定义,从图形的角度来理解.如何重新描述这个定义?引导学生得出:经过半径的外端并且垂直于半径的直线是圆的切线,同时引导学生得出切线判定定理的符号语言.设计意图:通过问题,引导学生借助旧知得到新知,也就是利用直线和圆相切的定义得出切线的判定定理;学生通过自己思考,动手画图可以更深刻的感受切线的判定定理.切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.∵OA⊥l于A∴l是⊙O的切线.4.运用定理,解决问题.例2.如图,△ABC 中,AB =AC ,以AB 为直径的⊙O 交边BC 于P ,PE ⊥AC 于E.求证:PE 是⊙O 的切线.证明:连接OP ,如图.∵AB =AC ,∴∠B =∠C.∵OB =OP ,∴∠B =∠OPB.∴∠OPB =∠C.∴OP ∥AC.∵PE ⊥AC ,∴PE ⊥OP.∴PE 为⊙O 的切线.三.探索切线的性质定理.问题1:把得到的切线的判定定理中题设结论反过来,结论还成立吗?如图3,l 为⊙O 的切线,切点为A ,那么半径OA 与直线l 是不是一定垂直?师生活动:学生通过观察思考,发现半径OA 垂直于直线l.师生讨论后发现直接证明垂直并不容易.此时引导学生可以考虑反证法:假设OA 与直线l 不垂直,过点O 作OM ⊥l ,根据垂线段最短的性质,有OM <OA ,这说明圆心O 到直线l 的距离小于半径OA ,于是直线l 就与圆相交,而这与直线l 是⊙O 的切线矛盾.因此OA 与直线l 垂直.从而得到切线的性质定理,同时引导学生得出切线性质定理的符号语言.切线的性质圆的切线垂直于经过切点的半径.图3l∵直线l是⊙O的切线,A是切点,∴直线l⊥OA例1:直线AB经过⊙O上的点C,并且OA=OB,CA=CB,求证:直线AB是⊙O的切线师生活动:教师引导学生分析证明思路:1中由于直线AB经过⊙O上的点C,所以连接OC,只需证OC⊥AB即可。

人教版数学第二十四章 第2节 切线的判定与性质

人教版数学第二十四章 第2节 切线的判定与性质

人教版数学第二十四章第2节切线的判定与性质一、内容和内容解析本节课的内容是人教版九年级数学下册《圆》这一章的第二节直线和圆的位置关系。

圆是几何学习中的重点难点,尤其是切线的相关知识是中考中的热点与难点。

切线的判定的教学在平面几何乃至整个中学数学教学中都占有重要地位和作用。

除了在证明和计算中有着广泛的应用外,它也是研究三角形内切圆的作法,切线长定理以及后面研究两圆的位置关系和正多边形与圆的关系的基础,所以它是《圆》这一章的重要内容,也可以说是本章的核心。

本节课的教学内容如下:一、切线的判定方法1.定义法:和圆只有一个公共点的直线是圆的切线,但是不常用。

2.数量法(距离法):圆心到直线的距离等于半径的直线是圆的切线。

3.判定定理(最常用的方法):经过半径的外端,并且垂直半径的直线是圆的切线,这是从位置关系进行判定。

其中使用判定定理时,两个条件缺一不可。

经过半径的外端垂直于这条半径的直线是圆的切线。

二、证明切线作辅助线的两种方法1.如果已知直线经过圆上一点,则连接这点和圆心得到辅助半径,再证所作半径与这条直线垂直。

简记:有公共点、连半径、证垂直。

2.如果已知条件中不知直线与圆是否有公共点,则过圆心作直线的垂线段为辅助线。

再证垂线段的长等于半径的长,即为有公共点、作垂直、证半径。

让学生在经历数学知识的探索和发现过程中,体验几何学习中推理的无穷乐趣,感受数学思维的严谨性和数学结论的确定性。

二、目标和目标解析按照课标要求,学生经历探索切线判定定理的过程,要能够灵活运用会运用切线的判定定理解决问题。

鉴于本节课是新授课,根据《数学课程标准》,数学教学必须建立在学生的认知发展水平和已有的知识经验基础之上,所以我确定了如下目标:1.知识与技能:①理解切线的判定定理,并能初步运用它解决简单的问题。

②知道判定切线的常用的三种方法,初步掌握方法的选择。

③掌握在解决切线的问题中常用的辅助线的作法。

2.过程与方法:①通过判定一条直线是否为圆的切线,训练学生的推理判断能力。

切线与切点的性质

切线与切点的性质

切线与切点的性质在数学中,切线与切点是几何学中重要的概念,它们在解决曲线问题和相关应用中具有重要的作用。

本文将阐述切线与切点的性质,并探讨其在数学中的应用。

一、切线的定义和性质切线是曲线上某一点处与该点处曲线相切的线段。

下面我们来说明切线的定义和性质。

1. 切线的定义给定一个曲线,选取曲线上一点P,如果通过P的直线与曲线相交于该点且相交处的过程逐渐接近于只有该点(也就是说,通过P的直线与曲线的交点与P的距离逐渐减小的极限即为P),则该直线称为曲线在点P处的切线。

2. 切线的性质(1)切线与曲线在切点处的切点垂直。

(2)切线在切点处与曲线的变化趋势相同。

二、切点的定义和性质切点是切线与曲线相交的点。

下面我们来说明切点的定义和性质。

1. 切点的定义对于给定曲线上的一条切线,切线与曲线的交点称为切点。

2. 切点的性质(1)切点在曲线上。

(2)切点处的切线是唯一的。

三、切线与切点的应用切线与切点在数学中的应用非常广泛,涵盖了几何、微积分和物理学的许多领域。

1. 几何中的应用在几何中,切线与切点常用于证明几何定理和解决几何问题。

例如,在平面几何中,通过构造切线和切点,可以证明两条直线的垂直、平行和相等等关系。

2. 微积分中的应用在微积分中,切线与切点是求解曲线的导数的重要工具。

通过求解切线与切点的斜率,可以得到曲线在切点处的斜率,从而计算出曲线的切线方程。

此外,切线还可以用于求解曲线的凹凸性、拐点以及切线与曲线的交点等问题。

3. 物理学中的应用在物理学中,切线与切点常用于研究物体的运动轨迹和力的作用。

通过切线与切点,可以分析物体在不同位置和不同时刻的运动状态,以及物体受力时的受力方向和大小等。

综上所述,切线与切点是数学中重要的概念,它们在几何、微积分和物理学中都有广泛的应用。

通过理解和运用切线与切点的定义和性质,我们可以解决各种与曲线相关的问题,从而探索数学的深奥之处。

对于学习和应用切线与切点的同学来说,掌握它们的性质和运用方法将会产生巨大的学习价值和实际应用效果。

九年级上册数学:.切线的判定和性质教案

九年级上册数学:.切线的判定和性质教案

(1)CD 与⊙O 相切吗?若相切,请证明,若不相切,请说明理由.
(2)若 CD 与⊙O 相切,且∠D=30°,BD=10,求⊙O 的半径.
三、课堂训练
完成课本 96 页练习
四、小结归纳
1.切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.
2.切线的性质:圆的切线垂直于过切点的半径.
3.常见作辅助线方法
考,为探究本节课定理作
二、探究新知
铺垫.
通过学生亲自动 手画图,进行探 究,得出结论. 通过该问题引起
(一)切线的判定定理
学生画一个圆,半径 OA, 学生思考,准确
1.推导定理:根据“直线 l 和⊙O 相切 d=r”,如图所示,因为 d=r
直线 l 和⊙O 相切,这里的 d 是圆心 O 到直线 l 的距离,即垂直,并由
题,思考,画出反例图形, 引导学生初步应
分析:○1 垂直于一条半径的直线有几条?
进一步理解定理.
用定理,培养学
○2 经过半径的外端可以做出半径的几条垂线?
生的应用意识, 教师引导学生汇总切线
○3 去掉定理中的“经过半径的外端”会怎样?去掉“垂直于半径”呢? 的几种判定方法
并巩固知识.通
过①②的解决, 思考 1:根据上面的判定定理,要证明一条直线是⊙O 的切线,需要满 学生独立思考,然后小组
作课类 别
课题
24.2.2.2 切线的判定和性质
课 型 新授
教学媒体
知识

技能
Байду номын сангаас

过程

方法

情感
态度
教学重点
教学难点
多媒体 1.理解切线的判定定理和性质定理,并能灵活运用. 2.会过圆上一点画圆的切线. 以圆心到直线的距离和圆的半径之间的数量关系为依据,探究切线的判定定理和性质定理,领 会知识的延续性,层次性.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
玩彩票有什么办法每天赢
[填空题]压缩机中的惯性力可分为()惯性力和()惯性力。 [单选]复治涂阴肺结核的治疗方案可写为()A.2HRZES/4~6HRB.4HRZES/4~6HREC.2HZES/4~6HRED.2HZES/4~6HRSE.2HRZES/4~6HRE [多选]关于近曲小管的描述正确的是()。A.细胞呈锥体形或立方形,界限清楚B.腔面有刷状缘?C.细胞基部有纵纹D.胞质嗜酸性E.细胞核圆形,位于细胞中央 [单选]关于以下毒性弥漫性甲状腺肿合并周期性麻痹的描写正确的是()A.大量钾离子从尿中排出B.大量钾离子从肠道排出C.大量出汗,钾离子从皮肤丧失D.血中钾离子向细胞内转移E.甲亢高代谢,而钾的摄入不足 [单选]对于长期处于潮湿环境的重要混凝土结构用砂,应采用砂浆棒(快速法)或砂浆长度法进行骨料的碱活性检验。经上述检验判断为有潜在危害时,应控制混凝土中的碱含量不超过()。A.1kg/m3B.2kg/m3C.3kg/m3 [填空题]所有电气设备的()均应有良好的接地装置。使用中不准将接地装置()或对其进行()。 [单选,A2型题,A1/A2型题]巨噬细胞趋化功能减弱见于()A.懒惰白细胞综合征B.葡萄糖-6-磷酸脱氢酶高度缺陷C.糖尿病D.烧伤E.补体缺陷症 [单选,A型题]破伤风痉挛毒素()A.抑制多种细胞的蛋白质合成B.阻断上下神经元之间的正常抑制性神经冲动传递C.抑制胆碱能运动神经释放乙酰胆碱D.激活肠粘膜腺苷环化酶,增高细胞内cAMP水平E.作用于呕吐中枢 [单选]急性肾衰竭患者每日所需热量是()A.20kcal/kgB.25kcal/kgC.30kcal/kgD.35kcal/kgE.40kcal/kg [单选,A型题]关于预激综合征心电图特征的描述,不正确的是()。A.QRS波群起始部有delta波B.PR间期<0.12sC.PJ间期延长D.大多有继发性ST-T改变E.QRS波群增宽≥0.12s [填空题]接触器是可用于频繁地接通和()负荷电路。 [单选]不符合甲状腺危象的诊断标准的是()A.心率160次/分B.体温37.5℃C.恶心呕吐D.皮肤潮红、多汗E.失水、休克 [单选,A1型题]风寒感冒兼胸脘痞闷,食少纳呆,脉濡者,治疗应首选()。A.荆防败毒散B.香苏散C.杏苏散D.羌活胜湿汤E.三仁汤 [填空题]操作站进行回路状态修改时,“手动”状态可以修改控制回路()的大小 [单选]排卵是指哪些结构一起随卵泡液自卵巢排入到盆腔的过程()A.颗粒层、透明带、初级卵母细胞和第一极体B.透明带、放射冠、次级卵母细胞和第一极体C.卵丘、初级卵母细胞和第一极体D.透明带、放射冠、初级卵母细胞和第一极体E.卵泡膜、次级卵母细胞和第一极体 [单选]小脑幕孔疝疝入的脑组织是()A.小脑蚓部B.大脑扣带回C.颞叶沟回D.小脑扁桃E.延髓 [单选]患者女,23岁,风湿性心脏病二尖瓣狭窄合并心房颤动,有活动性气短,查体:心界增大,心率130次/min,心律绝对不齐,双下肢水肿。ECG示快速心房颤动,最佳治疗是()A.阿替洛尔B.口服地高辛C.静脉注射西地兰D.口服胺碘酮E.静脉注射美托洛尔 [单选]锚具、夹具和连接器进场时,进行硬度检验验收时的抽检比例是()。A.抽取3%的锚具且不少于3套B.抽取5%的锚具且不少于5套.C.抽取8%的锚具且不少于8套D.抽取10%的锚具且不少于10套 [名词解释]人本主义心理学 [单选]产后子宫重量逐渐减少,不恰当的是()A.产后2周约为200gB.分娩结束时约有1000gC.产后2周约为300gD.产后1周约为500gE.产后6周约为50g [问答题,简答题]请简述农村合作金融机构发生的广告费和业务宣传费,计税时如何扣除? [单选]建筑高度不超过32m的二类高层建筑应设()楼梯间。A、开敞楼梯间B、敞开楼梯间C、封闭楼梯间D、防烟楼梯间 [单选]非侵袭性感染烧伤创面菌量为()A.<105/g组织B.>105/g组织C.<103/g组织D.>103/g组织E.<106/g组织 [填空题]消费心理学是商品经济发展到一定阶段的产物,对它的研究有助于实现消费者的消费需求;有助于();有助于提高服务水平;有助于()的发展。 [单选]在粉末中含草酸钙簇晶的薄壁细胞常纵列成行的药材是A.大黄B.白芍C.人参D.何首乌E.金银花 [单选]保留给自环测试的IP地址是()A.164.0.0.0B.130.0.0.0C.200.0.0.0D.127.0.0.0 [单选]关于早期食管癌的病理分型哪项正确()A.乳头型多为原位癌B.斑块型少见C.乳头型最早D.隐伏型均为原位癌E.糜烂型为高分化 [问答题,简答题]回流突然中断怎么处理? [单选]我国《合同法》规定,工程施工合同应当采用()。A.口头形式B.书面形式C.其它形式D.以上都不对 [判断题]受教育权是一种内容广泛的民事权利,既包括财产权,又包括人格权。A.正确B.错误 [单选]下列选项中哪项不是小肠运动的基本形式?()A、钟摆运动B、集团蠕动C、蠕动和逆蠕动D、分节运动 [单选]贯彻落实《女职工劳动保护特别规定》,促使企业改善女职工劳动安全卫生条件,既可增强职工对企业的认同感和归属感,又解除了女职工的后顾之忧,有利于促进()的和谐与稳定。A、劳动关系B、劳资关系C、企业关系 [单选,A2型题,A1/A2型题]中性粒细胞碱性磷酸酶活性明显降低的疾病是().A.慢性粒细胞白血病B.急性淋巴细胞白血病C.骨髓纤维化D.类白血病反应E.慢粒合并感染者 [单选,A2型题,A1/A2型题]2000年6月,美、英、日、法、德、中六国公布:人类基因组序列图的"工作框架图"绘出。2001年2月12日,六国又联合公布了经过整理、分类和排序后更加准确、清晰、完整的人类基因组图谱。这一成就将为解释人类疾病的本原、新药的设计、新治疗方法的产生提供重 [单选]初步可行性研究阶段的投资估算精度可以达到()。A.±20%B.±25%C.±30%D.±40% [名词解释]螺旋式卵裂 [单选]下列几种集体资产增值的情况中,属于真正意义上的资产增值的是()。A.通过经营使原有集体资产价值量和实物量都得到增加B.通过再投入集体资产使集体资产总量得到增加C.通过地区差价使集体资产得到增值D.通过时间差价使集体资产得到增值 [多选]低压开关设备是指用于()以下的开关电器。A.交流1200VB.交流380VC.直流1500VD.直流220V [单选]处理放射治疗鼻出血时,下列哪项是错误的()A.病人取坐位或卧位,为稳定情绪可用镇静剂B.出血不多可用麻黄素滴鼻或填入棉花块C.出血较多者可做鼻腔、后鼻孔填塞D.难以控制的鼻出血可做颈外动脉结扎E.因放射治疗引起的鼻出血不必做合血准备,输液即可 [单选]取消乡统筹费后,乡级道路建设资金由()负责。A.政府B.村集体C.农民D.乡镇企业
ห้องสมุดไป่ตู้
相关文档
最新文档