三相异步电动机常见的制动方法与应用
三相异步电机的制动
摘要近几十年来,随着电力电子技术、微电子技术及现代控制理论的发展,中、小功率电动机在工农业生产及人们的日常生活中都有极其广泛的的应用。
特别是在乡镇企业及家用电器中,更需要有大量的中、小功率电动机。
由于这种电动机的发展及广泛的应用,它的使用、保养和维护工作也越来越重要。
电机是现代工农业生产和交通运输的重要设备,与电机配套的控制设备的性能已经成为用户关注的焦点。
电机的控制包括电机的起动、调速和制动。
异步电动机由于具有结构简单、体积小、价格低廉、运行可靠、维修方便、运行效率较高、工作特性较好等优点,因而在电力拖动平台上得到了广泛应用。
据统计,其耗电量约占全国发电量的40%左右。
当电机并入电网时,电机转速从静止加速到额定转速的过程称为电机的起动过程。
异步电动机的起动性能最重要的是起动电流和起动转矩。
因此在电机的起动过程中,如何降低起动电流,增大起动转矩,一直是机电行业的专家们探讨的重要课题。
电动机机应用广泛,种类繁多、性能各异,分类方法也很多。
本文是对三相异步电动机做出深入的剖析与设计。
三相异步电动机是一种具有高效率、低磨损、低噪声的电机机种.本设计在介绍三相异步电动机中,关于相数、极数、槽数及绕组连接方式的选择方法和应遵从的规律详细的加以说明和介绍。
文中主要介绍了几种常用的制动方式的特点,对不同制动方式进行了技术比较,分析了他们各自的实用场所,为实际应用提供了科学的理论依据。
关键词:三相异步电动机结构制动方式前言电动机是把电能转换成机械能的设备。
近几十年随着科技的发展电动机在机械、冶金、石油、煤炭、化学、航空、交通、农业以及其他各种工业中,被广泛地应用着。
随着工业自动化程度不断提高,需要采用各种各样的控制电机作为自动化系统的元件,人造卫星的自动控制系统中,电机也是不可缺少的。
此外在国防、文教、医疗及日常生活中(现代化的家电工业中)电动机也愈来愈广泛地应用起来与单相电动机相比,三相异步电动机运行性能好,并可节省各种材料。
浅析电动机电气制动方法及其应用
着 交流 调速 与 电力 、 电子技 术 的不 断创 新和 发展 , 于提 升 电动 机 对 的 电气 制 动性 能具 有重 要 的意义 。本 文 从三 相异 步 电动 机机 械 特
征 的角 度 出发 , 对其 电气制 动方 法及 应用 进行 了简要 论述 , 以进 一 步 提升 其 电气制 动性 能。
一
坏 , 响其 使用性 能和寿 命 。 影 目前, 内主 要在 容量为 l W 以下 的 国 O k
电动 机 中采 用 反接 制 动方 法 , 比较 常 见的有 : 中型车 床 、 铣床 、 床 镗
等, 电动机 的主轴采 用反 接制动 方法 , 以使其达 到预 期的制动 效果 。 动转矩 与运行转 矩越大 , 启动性 能、 其 过载 能力更为突 出 。 22 再 生 发 电制动 方 法 . 般是利用 图表进行三相 异步电动机机械特性 的描绘 , 其主要表 三 相 异步 电动 机 的再 生发 电制 动方 法 也被 称 为 “ 回馈 制动 ” , 现为一条非线性 的曲线 。通常情况下 , 三相异步 电动 机的最大转矩 将 主要 应用 于 安装 多速 异 步 电动 机 的大 型起 重机 械 中 。当 电动机 处 作为分界点 , 线性段表 示稳 定运行 区, 线性段则表 示不 稳定运行 区。 非 于运 行状 态 时 , 过采 用 再 生发 电的制 动方 法 , 通 改变 电动 机 转 子 的 另外 , 相异步 电机 直接启 动时 , 动电流很 大 , 三 启 经过 振荡后 , 于平 趋 实 际转速 , 到迫 使 电动机 处 于“ 达 回馈制 动 ” 状态 的 效果 。 稳 : 过程 中转速 上升 很快 , 启动 但有 超调 ; 启动 转矩有 明显的振 荡现 以再 生发 电制 动方 法 在大 型起 重机 械 中 的应用 为 例 ,当起 重 象, 如直接减小启动 电流 , 则启动转矩 明显减 小 。 为解 决异步 电机带 负 机上 升 到一 定 高度 时 , 了保 证 重物 的 平稳 、 为 安全 下放 , 须对 电 必 载启动时的 电流冲击 问题 , 以采用 分级变频的软启动方法 。 可 动机 进行 电气 制动 。 在起 重 机正 常运 行 中, 设其 电动 机 的正 常转 假 2 三 相 异 步 电 动 机 的 电 气 制 动 方 法 及 应 用 速 为 n 同步 转速 为 当 n t时 , 重 机 的 电动机 处 于常 规 的 电 , <r , 起
关于三相异步电动机的启动与制动问题的分析
关于三相异步电动机的启动与制动问题的分析摘要现阶段,异步电动机的电力拖动已被广泛地应用在各个工业电气自动化领域中。
本文就三相异步电动机的启动、制动等技术问题进行分析。
关键词三相异步电动机;启动;制动;分析1 三相异步电动机的启动电动机接上电源,转速由零开始增大,直至稳定运转状态的过程,称为启动过程。
对电动机启动的要求是:启动电流小,启动转矩大,启动时间短。
当异步电动机刚接上电源,转子尚未旋转瞬间(n=0),定子旋转磁场对静止的转子相对速度最大,于是转子绕组感应电动势和电流也最大,则定子的感应电流也最大,它往往可达额定电流的5-7倍。
笼型异步电动机的启动方法有直接启动(全压启动)和降压启动两种。
1.1 直接启动直接启动也称全压启动。
启动时,电动机定子绕组直接接入额定电压的电网上。
这是一种最简单的启动方法,不需要复杂的启动设备,但是,它的启动性能恰好与所要求的相反,即:1)启动电流I大。
对于普通笼型异步电动机,启动电流是额定电流的4—7倍。
启动电流大的原因是:启动时n=0,s=1,转子电动势很大,所以转子电流很大,根据磁通势平衡关系,定子电流也必然很大。
2)启动转矩TST不大。
对于普通笼型异步电动机,启动转矩倍数KST=1-2。
由上可见,笼型异步电动机直接启动时,启动电流大,而启动转矩不大,这样的启动性能是不理想的。
过大的启动电流对电网电压的波动及电动机本身均会带来不利影响,因此,直接启动一般只在小容量电动机中使用,如:7.5kW以下的电动机可采用直接启动。
如果电网容量很大,就可允许容量较大的电动机直接启动。
若电动机的启动电流倍数K1、容量与电网容量满足下列经验公式:则电动机便可直接启动,否则应采用下面介绍的降压启动方法。
1.2 降压启动降压启动的目的是为了限制启动电流,但问题是在限制启动电流的同时,启动转矩也受限制,因此它只适用于在空载或轻载情况下启动。
启动时,通过启动设备使加到电动机上的电压小于额定电压,待电动机转速上升到一定数值时,再使电动机承受额定电压,保证电动机在额定电压下稳定工作。
简述三相异步电动机能耗制动的工作原理
简述三相异步电动机能耗制动的工作原理全文共四篇示例,供您参考第一篇示例:三相异步电动机的能耗制动是指利用电动机内部的旋转磁场产生的感应电动势来实现制动效果的一种制动方式。
这种制动方式既可以实现快速制动,又能够实现较大的制动力矩,因此在许多工业应用中得到了广泛的应用。
下面将简述三相异步电动机能耗制动的工作原理。
三相异步电动机的工作原理是利用旋转磁场的相对速度产生感应电动势。
当电动机运行时,旋转磁场产生感应电动势,这个感应电动势会引起转子绕组上感应出电流,将引起电流的阻尼,最终起到制动的效果。
在三相异步电动机的能耗制动中,主要是通过改变电动机的电源供电方式来实现。
当电动机在运行时,改变供电方式,使得电机转子上直接带电,通过转子电流产生的磁场与定子绕组产生的磁场相互作用,从而产生电磁力矩,实现制动效果。
一般来说,三相异步电动机能耗制动可以分为两种类型:直流电制动和交流电制动。
直流电制动是通过将交流电源切换为直流电源,使得电机无法正常运行,产生制动效果;而交流电制动则是通过改变交流电源的频率和幅值,从而改变电动机的运行状态,实现制动效果。
需要注意的是,三相异步电动机的能耗制动过程中会产生较大的能量消耗,因此在实际应用中需要考虑能耗问题。
针对这一问题,可以通过在制动过程中回馈能量到电网或者利用储能装置来减少能量损耗,从而提高能耗制动的效率。
三相异步电动机的能耗制动是通过改变电动机的供电方式来实现制动效果,其中包括直流电制动和交流电制动两种方式。
在实际应用中,需要综合考虑制动效果、能耗和安全性等因素,合理选择制动方式,并采取相应的措施来提高能耗制动的效率和可靠性。
第二篇示例:三相异步电动机能耗制动是一种常见的制动方式,它通过将电动机转化为发电机,将机械能转化为电能,从而实现制动的目的。
在工业生产中,这种制动方式被广泛应用于各种类型的设备和机械,具有较为成熟的技术和可靠的性能。
下面我们来简要介绍三相异步电动机能耗制动的工作原理。
三相异步电动机的能耗制动
三相异步电动机的能耗制动
所谓能耗制动就是将正常运行的电动机的定子绕组的三相交流电源切断,同时给定子绕组的任意两相通入直流电,此时定子中的旋转磁场消失,由直流电产生了恒定磁场。
由于转子在惯性作用下继续转动,转子导体切割恒定磁场,产生转子感应电动势,从而产生感应电流;同时,转子中的感应电流又与磁场相互作用,产生与转速方向相反的电磁转矩,即制动转矩。
因此,转子转速迅速下降,当转速下降至零时,转子中的感应电动势和感应电流均为零,制动过程结束。
制动期间,转子的动能转变为电能消耗在转子回路的电阻上,所以称这种制动为能耗制动。
设电动机原来工作在固有机械特性曲线上的A点,制动瞬间,因转速不能突变,工作点由A点过渡到能耗制动机械特性曲线上(曲线1)的B点,在制动转矩的作用下,电动机开始减速,工作点沿曲线1变化,直到原点(n=0,T=0),制动结束。
若电动机负载为位能性负载,则当电动机转速为零时,就要实现停车,必须立即采用机械制动的方法将电动机轴刹住,否则电动机将在位能性负载的作用下反转,机械特性曲线将进入第IV象限。
为了限制制动电流,在转子回路中串入了制动电阻RB,制动电阻的选择要适当,不能太大,否则制动效果不好,也不能太小,否则制动电流又太小,影响电动机的可靠性。
能耗制动广泛应用于要求平稳准确停车的场合,也应用于起重机一类位能性负载的机械上,用来限制重物的下降速度,以使重物稳定下放。
三相异步电动机的三种制动方式
三相异步电动机的三种制动方式最经济:回馈制动最迅速:反接制动能制停:能耗制动时间:2010-04-27 16:47来源:作者:点击:次三相异步电动机与直流电动机一样,也有再生回馈制动、反接制动和能耗制动三种方式。
它们的共同点是电动机的转矩M与转速n的方向相反,以实现制动。
此时电动机由轴上吸收机械能,并转换成电能。
一、再生回馈制动再生回馈制动是在外加转矩的作用下,转子转速超过同步转速,电磁转矩改变方向成为制动转矩的运行状态。
再生回馈制动与反接制动和能耗制动不同,再生回馈制动不能制动到停止状态。
以下是再生回馈制动存在:(1)当电网的频率突然下降或者电机的极数突然增高,电机可能工作在发电状态,此时的电机将机械能转变成电能回馈给电网。
如图1,当电机在电动状态下运行时工作于P点,在突然变极或者变频时,电机的工作特性会突然在a线1段部分(蓝线部分),电机的转矩突然变负,其制动作用,直到最后重新稳定工作于P点为止,电机又回到电动状态。
2图1(2)当电机在位能负载(如吊车、提升机)的作用下,使其转速n高于同步转速n,此时,电机的输出转矩变负,电机由轴上吸收机械能,当电机的转矩(制0点),此动转矩)与负载的位能转矩相平衡时,电机既稳定运行(如图2中P3时电机以高于同步转速的速度运行。
在转子电路中串入不同的电阻,可得到不同的人为机械特性,并可得到不同的稳定速度,串入的电阻越大,稳定速度越高,一般在回馈制动时不串入电阻,以免转速过高。
图2二、反接制动反接制动是在电机定子三根电源线中的任意两根对调而使电机输出转矩反向产生制动,或者在转子电路上串接较大附加电阻使转速反向,而产生制动。
(1)电源两相反接的反接制动:点稳定运行,为使电机停转,将定子三根电源线中如图3所示,电机原在P1的任意两根对调,使旋转磁场反向,电机的转矩反向,起制动作用,电机运行在a线段。
当电机制动停止时,应及时将电机与电网分离,否则电机会反转。
电源两相反接反接制动的优点是制动效果强,缺点是能量损耗大,制动准确度差。
三相异步电动机的制动控制
三相异步电动机的制动控制制动:就是给电动机一个与转动方向相反的转矩使它迅速停转(或限制其转速)。
制动的方法一般有两类:机械制动和电气制动。
机械制动:利用机械装置使电动机断开电源后迅速停转的方法叫机械制动。
机械制动常用的方法有:电磁抱闸和电磁离合器制动。
电气制动:电动机产生一个和转子转速方向相反的电磁转矩,使电动机的转速迅速下降。
三相交流异步电动机常用的电气制动方法有能耗制动、反接制动和回馈制动。
一、反接制动1.反接制动的方法异步电动机反接制动有两种,一种是在负载转矩作用下使电动机反转的倒拉反转反接制动,这种方法不能准确停车。
另一种是依靠改变三相异步电动机定子绕组中三相电源的相序产生制动力矩,迫使电动机迅速停转的方法。
反接制动的优点是:制动力强,制动迅速。
缺点是:制动准确性差,制动过程中冲击强烈,易损坏传动零件,制动能量消耗大,不宜经常制动。
因此反接制动一般适用于制动要求迅速、系统惯性较大,不经常启动与制动的场合。
2.速度继电器(文字符号KS)速度继电器是依靠速度大小使继电器动作与否的信号,配合接触器实现对电动机的反接制动,故速度继电器又称为反接制动继电器。
感应式速度继电器是靠电磁感应原理实现触头动作的。
从结构上看,与交流电机类似,速度继电器主要由定子、转子和触头三部分组成。
定子的结构与笼型异步电动机相似,是一个笼型空心圆环,有硅钢片冲压而成,并装有笼型绕组。
转子是一个圆柱形永久磁铁。
速度继电器的结构原理图速度继电器的符号速度继电器的轴与电动机的轴相连接。
转子固定在轴上,定子与轴同心。
当电动机转动时,速度继电器的转子随之转动,绕组切割磁场产生感应电动势和电流,此电流和永久磁铁的磁场作用产生转矩,使定子向轴的转动方向偏摆,通过定子柄拨动触头,使常闭触头断开、常开触头闭合。
当电动机转速下降到接近零时,转矩减小,定子柄在弹簧力的作用下恢复原位,触头也复原。
常用的感应式速度继电器有JY1和JFZ0系列。
JY1系列能在3000r/min的转速下可靠工作。
三相异步电动机的启动、调速和制动
第5页
调
速三
和相
制异 三
动步 电
相 异
动 机 的
步 电 动 机
启的
动启
、动
1.1
第6页
1 笼型异步电动机的启动
(2)降压启动
Ist IL
3IPΔ
3 U1N Z
调
速三
和相
制异 三
动步 电
相 异
动 机 的
步 电 动 机
启的
动启
、动
1.1
1 笼型异步电动机的启动
(2)降压启动
① Y–Δ降压启动 这种方法适用于正常运转时定子绕组进 行三角形连接的电动机。在启动时,可先 将定子绕组连接成星形,启动结束时再连 接成三角形。这样,启动时定子绕组上的
电压就降为了额定电压的1/ 3 。
启动时,将开关扳到“启动”位置,自耦变压 器一次侧接电源,二次侧接电动机定子绕组,实现 降压启动。当转速接近额定值时,再将开关扳向 “运行”位置,切除自耦变压器,使电动机直接接 电源运行。
第7页
调
速三
和相
制异 三
动步 电
相 异
动 机 的
步 电 动 机
启的
动启
、动
1.1
第8页
因自耦变压器的一、二次电压之比等于一、二次绕组的匝数 之比,以及启动电流与启动电压成正比,可得出引入自耦变压 器前后启动电流的关系为:
电 工 电 子 技 术
自耦变压器备有多个抽头,可根据所要求的启动转矩来选择不同的电压 (如电源电压的73%、64%、55%)。但这种启动方法的设备费用高,不宜频 繁启动。
三相异步电动机制动方法
三相异步电动机制动方法
三相异步电动机的制动方法主要包括以下几种:
1.直接制动法:在电机的转子上加装电阻,使电机的电动势和电源电
势之差减小,从而强制电机停转。
适用于小功率电机的制动。
2.反接电源制动法:将电机的三相综合线缆任意两根交换后再接入电源,此时电机会以大于额定转矩的负载停转。
适用于较大功率电机的制动。
3.短路制动法:电机转子上装有短路环,当电机运行时,把短路环接地,使转子形成闭合回路,从而制动电机。
4.动态制动法:在电机的转速较高时,突然断电,电机中的惯性力使
转子继续旋转而在负载的作用下逐渐停转。
5.逆变器制动法:通过逆变器控制电机电源电压和频率的变化,使电
机制动。
6.机械制动法:通过机械装置(例如制动盘、制动轮等)制动电机。
以上是常见的三相异步电动机制动方法,在实际应用中需要根据具体
情况选用合适的方法。
三相异步电动机的反转与制动
2023年8月26日 星期六
§4-9 三相异步电动机的反转与制动
3、电路安装
接触器KM1线圈 电
电动机正转
按下按钮 SB1
4、频繁反转的缺点
接触器KM2线圈 得电
电动机反转
按下按钮 SB2
2023年8月26日 星期六
§4-9 三相异步电动机的反转与制动
异步电动机在反转瞬间,转子由于惯 性,还朝原方向转动,而定子旋转磁场 方向已经改变,转子绕组与旋转磁场相 对速度为(n1 + n),转子感应电流很 大I2↑→I1↑> Ist,若频繁反转,会使 电机绕组过热,同时使转速产生很大的 冲击,损坏电机。
一、三相异步电动机的反转 1、原理
三相异步电动机的转子旋转方向取决于旋 转磁场方向,旋转磁场方向和电源相序有关, 所以只要改变旋转磁场的旋转方向,就能使 三相异步电动机反转。 2、方法
用倒顺开关、组合开关控制、接触器联锁 控制。来实现,即将电动机两相绕组与交流电 源的接线互相对调,则旋转磁场反向,电动 机跟着反转。
2023年8月26日 星期六
§4-9 三相异步电动机的反转与制动
③ 特点
制动力较强,能耗少,制动较平稳,
对电网及机械设备冲击小;但在低速时
制动力矩也随之减小,不易制动停止,
需要直流电源,常用于机床设备。
⑶再生制动(发电制动)
① 定义:在电动机工作过程中,由于外力 的作用,使n>n1导条切割旋转磁场的方向 相反,则电磁转矩方向与转子旋转的方 向相反,变为制动转矩。
返回
能耗制动电路原理图
2023年8月26日 星期六
§4-9 三相异步电动机的反转与制动
返回
绕线转子异步电动机转子串电阻的反接制动
三相异步电动机的能耗制动
能耗制动的应用 多用于直流和交流电机车的停车制动。
2 能耗制动
2.2 能耗制动的机械特性
n
TL
TL
nT 制动运行
n T
电动运行
能耗制动特性
n1
c
B 风机型负载
转速n为0时,制 动转矩T也为0
oA
电动特性 T
过程说明
电动机在B点稳定电动运
行时,切断定子三相交流电源, 1
通入直流电。
机械特性转到制动特性的C
《电机拖动与控制》课程
三相异步电动机的能耗制动
2 能耗制动
2.1 能耗制动涵义、特点及其应用
能耗制动的涵义
将运行着的异步电动机的定子绕组从三相交流电源上断开后, 立即接到直流电源上,转子的惯性动能转变为电能消耗在转 子回路中,转速迅速减小,因此称为能耗制动
能耗制动的特点
能耗制动的制动转矩随转速降低而减小,制动过程比较平稳; 需要专门的直流电源或整流装置; 转速为零后要及时切断直流电源,以免定子绕组发热。
点,制动转矩和负载转矩一起
2
使得电动机减速,制动力也随
着转速n的降低而减小。
当转速接近零时,制动转 矩也变为零,实现平稳停车。
3
即可将直流电源切断,制动结
束。
2 能耗制动
2.3 能耗制动时制动力是怎样产生的? 定子
F
n
转
F
向
转
子
定子稳恒磁场
将正在运转的交流电动机 的三相定子交流电源切断
通直流电源产生稳恒磁场 N-SFra bibliotekQS FU
KM2
1
2
切交流
将正在运转电动机的三 相交流电源切断。
KM1
三相异步电动机能耗制动控制
Abstract
Under normal circumstances, if special processing is not performed, when the power of the three-phase asynchronous motor is turned off, theoretically, it cannot stop the motion immediately. This is due to the inertia in the rotation process, based on the viewpoint of the mechanical process. Phenomenon must not occur. For example, in various types of machine tools such as boring, illing, drilling, etc., regardless of precision positioning or production efficiency, the motor needs to be able to stop relatively instantaneously, which needs to be introduced for specific situations. Corresponding braking devices or braking methods, in general, the so-called braking methods can be summarized into two categories: electrical and mechanical braking, introducing a certain torque opposite to the original motor steering, to prevent the motor from continuing to operate, This method is called electric mode braking; then there is the introduction of the relevant mechanical device to cause the motor to produce braking effect, which is called mechanical braking. This paper mainly focuses on the energy-saving braking to force the three-phase asynchronous motor to brake. A series of researches on the working principle of the three-phase asynchronous motor are introduced in the paper. The energy consumption braking control system is designed and implemented in the experimental platform. The three-phase asynchronous motor is quickly shut down.
三相异步电动机的反接制动
授课时间授课班级上课地点 教学单元名称三相异步电动机的反接制动 课时数 0.4 教学目标 1.三相异步电动机的反接制动几种方式。
2.培养学生分析问题、解决问题的能力。
教学重点 反接制动几种方式教学难点反接制动几种方式 目标群体 普专教学环境 实训室教学方法 项目驱动、讲练结合等时间安排 教学过程设计1. 转速反向反接制动(或称倒拉反向反接制动)图4-36电动机转速反向反接制动电路图转速反向反接制动如图4-36,异步电机转子串接较大电阻接通电源,起动转矩方向与重物G 产生的负载转矩的方向相反,而且T st <T L ,在重物G 的作用下,迫使电机反T st 的方向旋转,并在重物下放的方向加速。
其转差率s 为1)(11>--=n n n s (4-12) 随|-n|的增加,s 、I 2及T em 都增大,直到满足T=T L (图4-37B 点),电机转速为-n 2稳定运行,重物匀速下放。
图4-38中所示机械特性的第四象限(实线部分),即为异步电机转速反向反接制动的机械特性。
图4-37转速反向反接制动时的异步电机特性转速反向反接制动适用于低速匀速下放重物。
电动机工作在反接制动状态时,它由轴上输入机械功率,定子又通过气隙向转子输送电功率,这两部分功率都消耗在转子电路的总电阻上。
2. 定子两相反接的反接制动图4-38 异步电机定子两相反接的电路图与机械特性(a)电路图;(b)机械特性设异步电动机带反抗性负载原来稳定运行于电动状态如图4-38)的A 点,为了迅速停车或反转,可将定子两相反接,并同时在绕线式异步电动机转子回路中接电阻R f ,如图4-38)所示,由于定子相序的改变,使旋转磁场的方向发生改变,从而使异步电动机的工作点从原来电动机运行机械特性上的A 点,转移到新的机械特性(通过-n 1的特性)上的B 点。
此时,由于转子切割磁场的方向与电动状态时相反,则感应电动势的方向也改变。
此时的转差率为1n n n n n n s 111>+=---= (4-13)由上式可知,s>1是反接制动的特点(含转速反向和两相反接两种制动)。
三相异步电动机的启动、调速、反转与制动(一)
解: (1)Ist =7 IN =720=140A
(2) I st Y = Ist /3=140/3=47A
(3)自耦变压器降压启动:
I sta
'
1 I 2 st K
优点: 缺点:
1、不论电动机定子绕组采用Y或都可使用; 2、启动电压可根据需要选择,使用灵活,适用于不同的负载。
设备体积大、笨重,成本高。
本模块结束
性能都优于鼠笼式异步机,但其结构复
杂,维修不易且造价较高。
三、 三相异步电动机的反转
四、 三相异步电动机的制动(刹车)
电动机断电后由于机械惯性总要经过一段时间才能停 下来。为了提高生产效率及安全,采用一定的方法让高速 运转的电动机迅速停转,就是所谓的制动。 1、能耗制动
当电动机三相定子绕组与交流电源断开后,把直 流电通入两相绕组,产生固定不动的磁场n0。 电动机由于惯性仍在运转。
电机及控制技术
——三相异步电动机的启动、 调速、反转与制动
电子课件
徐州工业职业技术学院
三相异步电动机的启动、调速、反转与制动 能力目标:
1、能分析交流电动机的机械特性 2、能根据交流电动机的类型和使用场合,分析交流电动机 的启动、调速和制动
知识目标:
1、了解交流电机的结构,熟悉交流电机的工作原理 2、掌握交流电机的启动、调速与制动
(2)Y-Δ降压启动 适用范围: 优点:
正常运行时定子绕组为三角形连接。
启动电流为全压启动时的1/3。
缺点: TstY
L1 L2 L3 QS1 FU
1 TSt 不适合高启动转矩场合,适合空载或轻载启动 3
A
UP'
Z X Y C
启 正常 B 动 运行
三相异步电动机电气制动方法
三相异步电动机电气制动方法
三相异步电动机电气制动的方法:
一、抗止法制动
1、原理:抗止法制动的原理就是通过利用电机的电感与抗感特性,把电机产生的磁场转换为交流电源形成的反向偏置电流,使电机减速停止。
2、方法:通过调节抗止式制动电机反向偏置电流大小来实现电机的加减速调速控制。
3、优点:反应快,传动速度稳定、有效,保养简单,安全性较高;
4、缺点:偏置时需要消耗大量功率,制动力量比较弱,结尾时制动力快速衰减。
二、微报法制动
1、原理:微报法制动的原理就是当加入微报信号时,电机发出的偏心磁场会发生均匀的变动,迫使电机产生频率与微报信号同频的微报电流,使电机减速制动停转。
2、方法:使电动机的感应电流发生小幅度变动,以产生比较纯正的指令电流,通过改变反向微报量的大小来实现升速减速调节控制;
3、优点:驱动快速、正确性高;
4、缺点:体积大、结构复杂,控制精度欠佳。
三、强制冷却
1、原理:强制冷却法制动的原理就是在油室内给电机装上开启电机冷却风机,在油室内加入空气或者冷却液体,使电机保持特定的温度,从而使无条件的制动有条件的实现。
2、方法:给电机装上开启的冷却风机,通过调节风机转速来调节电机的温度以及制动速度;
3、优点:噪声低,制动力大,精度高;
4、缺点:投入成本较高,控制要求复杂,使用前需要对制动系统进行调试。
总结:三相异步电动机电气制动的方法主要有抗止法制动、微报法制动和强制冷却法制动,每种方法都有各自的优点和缺点,应根据电机制动的要求,结合使用实际情况选择制动方法。
三相异步电动机制动控制ppt课件全文
第一节 机械制动 第二节 电力制动
8/16/2024
返回第一张
上一张幻灯片 下一张幻灯片
制动:就是给电动机一个与转动方向相反的转矩使它 迅速停转(或限制其转速)。
制动的方法一般有两类:机械制动和电力制动。
第一节 机械制动
利用机械装置使电动机断开电源后迅速停转的方法叫机械制动。 机械制动常用的方法有:电磁抱闸制动器制动和电磁离合器制动。
常用电磁铁的符号如上页图4‐1b)、c)、d)所示。
(2)直流电磁铁
线圈中通以直流电的电磁铁称为直流电磁铁。 直流长行程制动电磁铁主要用于闸瓦制动器,其工作原理与 交流制动电磁铁相同。MZZ2—H型电磁铁的结构如下页图4‐2所 示。
8/16/2024
返回第一张
上一张幻灯片 下一张幻灯片
图4‐2 直流长行程制动电磁铁的结构 1—黄铜垫圈 2—线圈 3—外壳4—导向管 5—衔铁 6—法兰 7—油封
型号及含义:
8/16/2024
返回第一张
上一张幻灯片 下一张幻灯片
结构如图4‐1所示。
8/16/2024
图4‐1 MZDI型制动电磁铁与制动器 a) 结构 b) 电磁铁的一般符号 c) 电磁制动器符号 d) 电磁阀符号 1—线圈 2—衔铁 3—铁心 4—弹簧 5—闸轮 6—杠杆 7—闸瓦 8—轴
返回第一张
图4‐8 JY1速度继电器结构原理图及符号 1‐转子 2‐电动机轴 3‐定子 4‐绕组 5‐定子柄 6、7‐静触点 8、9‐簧片(动触点)
它主要由定子、转子和触点三部分组成。 一般情况下,速度继电器的触点,在转速达120r/min时能动 作,低于100r/min左右时能恢复正常位置。 速度继电器在电路图中的符号如图4‐8所示。
三相异步电动电源反接制动原理
三相异步电动电源反接制动原理三相异步电动机是一种常见的电动机类型,广泛应用于工业生产和生活中的各个领域。
在电机的使用过程中,为了实现一些特定的功能,例如制动、反接等,需要对电机进行相应的控制。
本文将介绍三相异步电动机反接制动的原理。
三相异步电动机反接制动是一种能够使电机快速制动并逆转运动方向的方法。
该方法通过改变电机的电源接线方式,使电机的旋转磁场反方向与电机转子的旋转方向相反,从而实现制动和逆转运动。
三相异步电动机的运行原理是基于电机的旋转磁场和转子的相对运动产生的感应电动势而实现转动。
在正常运行时,电机的三相电源分别与转子三个绕组相连接,通过两个相邻绕组之间的电流差异产生旋转磁场,进而驱动转子转动。
在制动时,我们需要使电机迅速停止转动。
此时,可以通过对电源接线进行改变来实现制动。
反接制动原理就是将电机三相电源的接线方式改为两相交换接线,即将两个相邻的绕组的两个接线端交换连接。
交换接线后,原本正常运行时产生的旋转磁场方向改为反方向。
当电机的转子在原来的旋转磁场中运动时,由于磁场方向的改变,感应电动势的方向也相应改变。
根据安培定律,转子受到的电动力也会变化方向,从而使电机迅速制动。
在反接制动时,电机没有外界的驱动作用,电机的负载作用与转向力矩作用相平衡。
当电机停转后,由于电机的机械惯性作用,转子还会继续运动一段时间,直到停止。
这一过程中,电机产生的反向电动势会通过相应的电流回路来消耗。
通常情况下,为了保证电机正常运行,需要在回路中加入逆变器或者消耗器等设备,从而将产生的电流导入外部,防止电机内部电压过高。
三相异步电动机反接制动原理是通过改变电机电源的接线方式来改变电机的旋转磁场方向,从而使得转子受到的电动力也改变方向,进而实现电机的制动和逆转运动。
反接制动时,需要注意对电流进行合理的回路设置,以防止电机内部电压过高。
三相异步电动机反接制动是一种有效的制动方案,具有制动迅速、制动力矩大、制动效果好等优点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相异步电动机常见的制动方法与应用
三相异步电动机切除电源后依惯性总要转动一段时间才能停下来。
而生产中起重机的吊钩或卷扬机的吊蓝要求准确定位;万能铣床的主轴要求能迅速停下来。
这些都需要对拖动的电动机进行制动,其方法有两大类:机械制动和电力制动。
1.机械制动
采用机械装置使电动机断开电源后迅速停转的制动方法。
如电磁抱闸、电磁离合器等电磁铁制动器。
(1)电磁抱闸断电制动控制电路
电磁抱闸断电制动控制电路如图1所示。
合上电源开关QS和开关K,电动机接通电源,同时电磁抱闸线圈YB得电,衔铁吸合,克服弹簧的拉力使制动器的闸瓦与闸轮分开,电动机正常运转。
断开开关电动机失电,同时电磁抱闸线圈YB 也失电,衔铁在弹簧拉力作用下与铁芯分开,并使制动器的闸瓦紧紧抱住闸轮,电动机被制动而停转。
图中开关K可采用倒顺开关、主令控制器、交流接触器等控制电动机的正反转,满足控制要求。
倒顺开关接线示意图如图2所示。
这种制动方法在起重机械上广泛应用,如行车、卷扬机、电动葫芦(大多采用电磁离合器制动)等。
其优点是能准确定位,可防止电动机突然断电时重物自行坠落而造成事故。
图1 电磁抱闸断电制动控制电路
图2
(2)电磁抱闸通电制动控制电路
电磁抱闸断电制动其闸瓦紧紧抱住闸轮,若想手动调整工作是很困难的。
因此,对电动机制动后仍想调整工件的相对位置的机床设备就不能采用断电制动,而应采用通电制动控制,其电路如图3所示。
当电动机得电运转时,电磁抱闸线圈无法得电,闸瓦与闸轮分开无制动作用;当电动机需停转按下停止按钮SB2时,复合按钮 SB2的常闭触头先断开切断KM1线圈,KM1主、辅触头恢复无电状态,结束正常运行并为KM2线圈得电作好准备,经过一定的行程SB2的常开触头接通KM2线圈,其主触头闭合电磁抱闸的线圈得电,使闸瓦紧紧抱住闸轮制动;当电动机处于停转常态时,电磁抱闸线圈也无电,闸瓦与闸轮分开,这样操作人员可扳动主轴调整工件或对刀等。
图3 电磁抱闸通电制动控制电路
机械制动主要采用电磁抱闸、电磁离合器制动,两者都是利用电磁线圈通电后产生磁场,使静铁芯产生足够大的吸力吸合衔铁或动铁芯(电磁离合器的动铁芯被吸合,动、静摩擦片分开),克服弹簧的拉力而满足工作现场的要求。
电磁抱闸是靠闸瓦的摩擦片制动闸轮.电磁离合器是利用动、静摩擦片之间足够大的摩擦力使电动机断电后立即制动。
2.电力制动
电动机在切断电源的同时给电动机一个和实际转向相反的电磁力矩(制动力矩)使电动迅速停止的方法。
最常用的方法有:反接制动和能耗制动。
(1) 反接制动
在电动机切断正常运转电源的同时改变电动机定子绕组的电源相序,使之有反转趋势而产生较大的制动力矩的方法。
反接制动的实质:使电动机欲反转而制动,因此当电动机的转速接近零时,应立即切断反接转制动电源,否则电动机会反转。
实际控制中采用速度继电器来自动切除制动电源。
反接制动控制电路如图4所示。
其主电路和正反转电路相同。
由于反接制动时转子与旋转磁场的相对转速较高,约为启动时的2倍,致使定子、转子中的电流会很大,大约是额定值的10倍。
因此反接制动电路增加了限流电阻R。
KM1为运转接触器,KM2为反接制动接触器,KV为速度继电器,其与电动机联轴,当电动机的转速上升到约为100转/分的动作值时.KV常开触头闭合为制动作好准备。
图4 反接制动控制电路
反接制动分析:停车时按下停止按钮SB2,复合按钮SB2的常闭先断开切断KM1线圈,KM1主、辅触头恢复无电状态,结束正常运行并为反接制动作好准备,后接通KM2线圈(KV常开触头在正常运转时已经闭合),其主触头闭合,电动机改变相序进入反接制动状态,辅助触头闭合自锁持续制动,当电动机的转速下降到设定的释放值时,KV触头释放,切断KM2线圈,反接制动结束。
一般地,速度继电器的释放值调整到90转/分左右,如释放值调整得太大,反接制动不充分;调整得太小,又不能及时断开电源而造成短时反转现象。
反接制动制动力强,制动迅速,控制电路简单,设备投资少,但制动准确性差,制动过程中冲击力强烈,易损坏传动部件。
因此适用于l0kw以下小容量的电动机制动要求迅速、系统惯性大,不经常启动与制动的设备,如铣床、镗床、中型车床等主轴的制动控制。
(2)能耗制动
电动机切断交流电源的同时给定子绕组的任意二相加一直流电源,以产生静止磁场,依靠转子的惯性转动切割该静止磁场产生制动力矩的方法。
原理分析:电动机切断电源后,转子仍沿原方向惯性转动,如图5设为顺时针方向,这时给定子绕组通入直流电,产生一恒定的静止磁场,转子切割该磁场产生感生电流,用右手定则判断其方向如图示。
该感生电流又受到磁场的作用产生电磁转矩,由左手定则知其方向正好与电动机的转向相反而使电动机受到制动迅速停转。
可逆运行能耗制动的控制电路如图6所示。
KV1、KV2分别为速度继电器KV的正、反转动作触头,接触器KM1、KM2、KM3之间互锁,防止交流电源、直流制动电源短路。
停车时按下停止按钮SB3,复合按钮SB3的常闭先断开切断正常运行接触器KM1或KM2线圈,后接通KM3线圈,KM3主、辅触头闭合,交流电流经变压器T,全波整流器VC通入V、W相绕组直流电,产生恒定磁场进行制动。
RP调节直流电流的大小,从而调节制动强度。
图5 顺时针方向
图6 可逆运行能耗制动的控制电路
能耗制动平稳、准确,能量消耗小,但需附加直流电源装置,设备投资较高,制动力较弱,在低速时制动力矩小。
主要用于容量较大的电动机制动或制动频繁的场合及制动准确、平稳的设备,如磨床、立式铣床等的控制,但不适合用于紧急制动停车。
能耗制动还可用时间继电器代替速度继电器进行制动控制。
电动机的制动方法较多,还有如电容制动、再生发电制动等,但实际应用主要是上述四种方法,其各有特点和使用场合。
电动机在运转中如果降低指令频率,即电动机的转速低于机械负载的转速,则电动机变为异步发电机工作状态,在电动机的轴上产生的力矩,该力矩的方向与转速的方向相反,即在轴上产生机械制动力矩。
这种制动叫再生制动(也叫回馈制动)。
从电动机再生出来的能量储存在变频器的滤波电容中,由于电容器的容量和耐压的关系,通用变频器的再生制动力矩约为额定转矩的10%~20%,如采用选用件制动单元,可以达到50%~100%。