第21章 一元二次方程全章教案及检测题
人教版初中数学九年级上册第二十一章:一元二次方程(全章教案)
第二十一章一元二次方程本章的主要内容包括:一元二次方程及其有关概念,一元二次方程的解法(配方法、公式法、因式分解法),一元二次方程根与系数的关系,运用一元二次方程分析和解决实际问题.其中解一元二次方程的基本思路和具体解法是本章的重点内容.方程是科学研究中重要的数学思想方法,也是后续内容学习的基础和工具,本章是对一元一次方程知识的延续和深化,同时为二次函数的学习做好准备.联系一元二次方程和函数的基本知识,继续探索实际问题中的数量关系及其变化规律,让学生进一步体会“方程是刻画现实世界的一个有效的数学模型”.本章是中考考查的重点内容,主要考查一元二次方程的解及其解法、一元二次方程根与系数的关系、建立一元二次方程模型解决实际问题.【本章重点】一元二次方程的解法及应用.【本章难点】1.一元二次方程根与系数的关系的应用.2.利用一元二次方程解决实际问题.【本章思想方法】1.体会和掌握转化法,如:在解一元二次方程时,利用转化法将一元二次方程转化为一元一次方程.2.掌握建模思想,如:在利用一元二次方程解决实际问题时,根据题意建立适当的一元二次方程,将实际问题转化为数学模型.21.1一元二次方程1课时21.2解一元二次方程4课时21.3实际问题与一元二次方程1课时21.1一元二次方程一、基本目标【知识与技能】1.理解一元二次方程及相关概念.2.掌握一元二次方程的一般形式.3.了解一元二次方程根的概念,会检验一个数是不是一元二次方程的解.【过程与方法】从实际问题中建立方程模型,体会一元二次方程的概念.【情感态度与价值观】通过从实际问题中抽象出方程模型来认识一元二次方程,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】1.一元二次方程的概念及其一般形式.2.判断一个数是不是一元二次方程的解.【教学难点】能准确判断一元二次方程的二次项、二次项系数、一次项、一次项系数及常数项.环节1自学提纲,生成问题【5 min阅读】阅读教材P1~P4的内容,完成下面练习.【3 min反馈】1.解决下列问题:问题1:如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样大小的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?【解析】设切去的正方形的边长为x cm,则盒底的长为__(100-2x)_cm__,宽为__(50-2x)_cm__.列方程,得__(100-2x )(50-2x )=3600__, 化简,整理,得__x 2-75x +350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【解析】全部比赛的场数为__4×7=28(场)__.设应邀请x 个队参赛,每个队要与其他__(x -1)__个队各赛一场.因为甲队对乙队的比赛和乙队对甲队的比赛是同一场比赛,所以全部比赛共__12x (x -1)__场.列方程,得__12x (x -1)=28__.化简、整理,得 __x 2-x -56=0__.②归纳总结:方程①②的共同特点是:方程的两边都是__整式__,只含有__一个__未知数,并且未知数的最高次数是__2__.2.一元二次方程的定义:等号两边都是__整式__,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.3.一元二次方程的一般形式是__ax 2+bx +c =0(a ≠0)__.其中__ax 2__是二次项,__a __是二次项系数,__bx __是一次项,__b __是一次项系数,__c __是常数项.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】判断下列方程,哪些是一元二次方程? (1)x 3-2x 2+5=0; (2)x 2=1;(3)5x 2-2x -14=x 2-2x +35;(4)2(x +1)2=3(x +1); (5)x 2-2x =x 2+1; (6)ax 2+bx +c =0.【互动探索】(引发学生思考)要判断一个方程是一元二次方程,那么它应该满足哪些条件?【解答】(2)(3)(4)是一元二次方程.【互动总结】(学生总结,老师点评)判断一个方程是不是一元二次方程,首先看方程等号两边是不是整式,然后移项,使方程的右边为0,再观察左边是否只有一个未知数,且未知数的最高次数是否为2.【例2】将方程2x ⎝⎛⎭⎫12-x +2=5(x -1)化成一元二次方程的一般形式,并指出各项系数. 【互动探索】(引发学生思考)一元二次方程的一般形式是怎样的?【解答】去括号,得x-2x2+2=5x-5.移项,合并同类项,得一元二次方程的一般形式:2x2+4x-7=0.其中二次项系数是2,一次项系数是4,常数项是-7.【互动总结】(学生总结,老师点评)将一元二次方程化成一般形式时,通常要将二次项化负为正,化分为整.【例3】下面哪些数是方程2x2+10x+12=0的解?-4,-3,-2,-1,0,1,2,3,4.【互动探索】(引发学生思考)你能类比判断一个数是一元一次方程的解的方法判断一元二次方程的解吗?【解答】将上面的这些数代入后,只有-2和-3满足等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的解.【互动总结】(学生总结,老师点评)要判断一个数是否是方程的解,只要把这个数代入等式,看等式两边是否相等即可.若相等,则这个数是方程的解,若不相等,则这个数不是方程的解.【活动2】巩固练习(学生独学)1.下列方程是一元二次方程的是(D)A.ax2+bx+c=0 B.3x2-2x=3(x2-2)C.x3-2x-4=0 D.(x-1)2+1=02.已知x=2是一元二次方程x2-2mx+4=0的一个解,则m的值为(A)A.2B.0C.0或2D.0或-2【教师点拨】将x=2代入x2-2mx+4=0得,4-4m+4=0.再解关于m的一元一次方程即可得出m的值.3.把一元二次方程(x+1)(1-x)=2x化成二次项系数大于0的一般式是__x2+2x-1=0__,其中二次项系数是__1__,一次项系数是__2__,常数项是__-1__.【活动3】拓展延伸(学生对学)【例4】求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.【互动探索】(引发学生思考)已知关于x的方程,且含有字母系数,要证明该方程是一元二次方程,则该方程的二次项系数必须满足什么条件?【证明】m2-8m+17=m2-8m+42+1=(m-4)2+1.∵(m-4)2≥0,∴(m-4)2+1>0,即(m-4)2+1≠0,∴不论m取何值,该方程都是一元二次方程.【互动总结】(学生总结,老师点评)要证明不论m 取何值,该方程都是一元二次方程,只需证明二次项系数恒不为0,即m 2-8m +17≠0.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.一元二次方程⎩⎪⎨⎪⎧必须满足的三要素⎩⎪⎨⎪⎧ 是整式方程只有一个未知数未知数的最高次数是2一般形式:ax 2+bx +c =0(a ≠0)2.判断一个数是否是一元二次方程解的方法:将这个数分别代入方程的左右两边,如果“左边=右边”,则这个数是方程的解;如果“左边≠右边”,则这个数不是方程的解.请完成本课时对应练习!21.2解一元二次方程21.2.1配方法(第1课时)一、基本目标【知识与技能】1.理解一元二次方程“降次”转化的数学思想,并能应用它解决一些具体问题.2.理解并掌握直接开方法、配方法解一元二次方程的方法.【过程与方法】1.通过根据平方根的意义解形如x2=n(n≥0)的方程,迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.2.通过把一元二次方程转化为形如(x-a)2=b的过程解一元二次方程.【情感态度与价值观】通过对一元二次方程解法的探索,体会“降次”的基本思想,培养学生良好的研究问题的习惯,使学生逐步提高自己的数学素养.二、重难点目标【教学重点】掌握直接开平方法和配方法解一元二次方程.【教学难点】把一元二次方程转化为形如(x-a)2=b的形式.环节1自学提纲,生成问题【5 min阅读】阅读教材P5~P9的内容,完成下面练习.【3 min反馈】1.一般地,对于方程x2=p:(1)当p>0时,根据平方根的意义,方程有两个不等的实数根,x1=__p__,x2=__-p __.(2)当p=0时,方程有两个相等的实数根x1=x2=__0__;(3)当p<0时,方程__无实数根__.2.用直接开平方法解下列方程:(1)(3x +1)2=9; x 1=23,x 2=-43.(2)y 2+2y +1=25. y 1=4,y 2=-6. 3.(1)x 2+6x +__9__=(x +__3__)2; (2)x 2-x +__14__=(x -__12__)2;(3)4x 2+4x +__1__=(2x + __1__)2.4.一般地,如果一个一元二次方程通过配方转化成(x +n )2=p 的形式,那么就有:(1)当p >0时,根据平方根的意义,方程有两个不等的实数根,x 1=,x 2=;(2)当p =0时,方程有两个相等的实数根x 1=x 2=__-n __; (3)当p <0时,方程__无实数根__. 环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学) 【例1】用配方法解下列关于x 的方程: (1)2x 2-4x -8=0; (2)2x 2+3x -2=0.【互动探索】(引发学生思考)用配方法解一元二次方程的实质和关键点是什么? 【解答】(1)移项,得2x 2-4x =8. 二次项系数化为1,得x 2-2x =4.配方,得x 2-2x +12=4+12,即(x -1)2=5. 由此可得x -1=±5, ∴x 1=1+5,x 2=1- 5. (2)移项,得2x 2+3x =2.二次项系数化为1,得x 2+32x =1.配方,得⎝⎛⎭⎫x +342=2516. 由此可得x +34=±54,∴x 1=12,x 2=-2.【互动总结】(学生总结,老师点评)用配方法解一元二次方程的实质就是对一元二次方程进行变形,转化为开平方所需要的形式,配方法的一般步骤可简记为:一移,二化,三配,四开.【活动2】 巩固练习(学生独学)1.若x 2-4x +p =(x +q )2,则p 、q 的值分别是( B ) A .p =4,q =2 B .p =4,q =-2 C .p =-4,q =2D .p =-4,q =-22.用直接开平方法或配方法解下列方程: (1)3(x -1)2-6=0 ; (2)x 2-4x +4=5; (3)9x 2+6x +1=4; (4)36x 2-1=0; (5)4x 2=81; (6)x 2+2x +1=4. (1)x 1=1+2,x 2=1- 2. (2)x 1=2+5,x 2=2- 5. (3)x 1=-1,x 2=13.(4)x 1=16,x 2=-16.(5)x 1=92,x 2=-92.(6)x 1=1,x 2=-3.【活动3】 拓展延伸(学生对学)【例2】如果x 2-4x +y 2+6y +z +2+13=0,求(xy )z 的值.【互动探索】(引发学生思考)一个数的平方是正数还是负数?一个数的算术平方根是正数还是负数?几个非负数相加的和是正数还是负数?【解答】由已知方程,得x 2-4x +4+y 2+6y +9+z +2=0, 即(x -2)2+(y +3)2+z +2=0, ∴x =2,y =-3,z =-2. ∴(xy )z =[2×(-3)]-2=136.【互动总结】(学生总结,老师点评)若几个非负数相加等于0,则这几个数都等于0. 环节3 课堂小结,当堂达标 (学生总结,老师点评)用配方法解一元二次方程的一般步骤: 一移项→二化简→三配方→四开方请完成本课时对应练习!21.2.2 公式法(第2课时)一、基本目标 【知识与技能】1.理解一元二次方程求根公式的推导过程,了解公式法的概念. 2.会熟练运用公式法解一元二次方程. 【过程与方法】复习具体数字的一元二次方程配方法的解题过程,引入ax 2+bx +c =0(a ≠0)的求根公式的推导,并应用公式法解一元二次方程.【情感态度与价值观】在一元二次方程求根公式的推导过程中,激发学生兴趣,了解解决问题多样性. 二、重难点目标 【教学重点】求根公式的推导及用公式法解一元二次方程. 【教学难点】一元二次方程求根公式的推导.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P9~P12的内容,完成下面练习. 【3 min 反馈】1.用配方法解下列方程: (1)x 2-5x =0; x 1=0,x 2=5. (2)2x 2-4x -1=0. x 1=1+62,x 2=1-62. 2.如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它的两根? x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a.【教师点拨】因为前面解具体数字的一元二次方程已做得很多,我们现在不妨把a 、b 、c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.3.一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a 、b 、c 而定.(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0.当b 2-4ac ≥0时,将a 、b 、c 代入式子x =-b ±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的__求根公式__. (3)利用求根公式解一元二次方程的方法叫__公式法__.(4)由求根公式可知,一元二次方程最多有__2__个实数根,也可能__没有__实数根. (5)一般地,式子b 2-4ac 叫做方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=__b 2-4ac __.当Δ__>__0时,方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根;当Δ__=__0时,方程ax 2+bx +c =0(a ≠0)有两个相等的实数根;当Δ__<__0时,方程ax 2+bx +c =0(a ≠0)没有实数根.4.不解方程,判断方程根的情况. (1)16x 2+8x =-3; (2)9x 2+6x +1=0; (3)2x 2-9x +8=0; (4)x 2-7x -18=0.解:(1)没有实数根. (2)有两个相等的实数根. (3)有两个不相等的实数根. (4)有两个不相等的实数根.【教师点拨】将方程化为一般形式,再用判别式进行判断. 环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学) 【例1】用公式法解下列方程: (1)2x 2+1=3x ; (2)2x (x -1)-7x =2.【互动探索】(引发学生思考)用公式法解一元二次方程的步骤是怎样的? 【解答】(1)原方程整理,得2x 2-3x +1=0. 其中a =2,b =-3,c =1,则Δ=b 2-4ac =(-3)2-4×2×1=1>0. ∴x =-b ±b 2-4ac 2a =-(-3)±12×2,即x 1=12,x 2=1.(2)原方程整理,得2x 2-9x -2=0. 其中a =2,b =-9,c =-2,则Δ=b 2-4ac =(-9)2-4×2×(-2)=97>0. ∴x =-b ±b 2-4ac 2a =-(-9)±972×2,即x 1=9+974,x 2=9-974.【互动总结】(学生总结,老师点评)用公式法解一元二次方程的一般步骤:(1)把方程化为一般形式,确定a 、b 、c 的值;(2)求出Δ=b 2-4ac 的值;(3)当Δ>0时,方程有两个不相等的实数根,即x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac2a ;当Δ=0时,方程有两个相等的实数根,即x 1=x 2=-b2a;当Δ<0时,方程没有实数根.【活动2】 巩固练习(学生独学)1.方程x 2-4x +4=0的根的情况是( B ) A .有两个不相等的实数根 B .有两个相等的实数根 C .有一个实数根 D .没有实数根2.如果方程5x 2-4x =m 没有实数根,那么m 的取值范围是__m <-45__.3.用公式法解下列方程:(1)2x 2-6x -1=0; (2)2x 2-2x +1=0; (3)5x +2=3x 2.解:(1)x 1=3+112,x 2=3-112.(2)方程没有实数根. (3)x 1=2,x 2=-13.【活动3】 拓展延伸(学生对学)【例2】已知a 、b 、c 分别是三角形的三边,试判断方程(a +b )x 2+2cx +(a +b )=0的根的情况.【互动探索】(引发学生思考)三角形的三边满足什么关系?是怎样根据一元二次方程的系数判断根的情况?【解答】∵a 、b 、c 分别是三角形的三边,∴a +b >0,c +a +b >0,c -a -b <0,∴Δ=(2c )2-4(a +b )·(a +b )=4(c +a +b )(c -a -b )<0,故原方程没有实数根.【互动总结】(学生总结,老师点评)解答本题的关键是掌握三角形三边的关系,即两边之和大于第三边,以及运用根的判别式Δ=b 2-4ac 判断方程的根的情况.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.一元二次方程根的情况⎩⎪⎨⎪⎧Δ>0⇔方程有两个不相等的实数根Δ=0⇔方程有两个相等的实数根Δ<0⇔方程没有实数根2.当Δ≥0时,方程ax 2+bx +c =0(a ≠0)的实数根为x =-b ±b 2-4ac2a.请完成本课时对应练习!21.2.3因式分解法(第3课时)一、基本目标【知识与技能】1.掌握用因式分解法解一元二次方程.2.能根据具体一元二次方程的特征,灵活选择方程的解法.【过程与方法】通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.【情感态度与价值观】了解因式分解法是一元二次方程解法中应用较为广泛的简便方法,它避免了复杂的计算,提高了解题速度和准确程度,培养学生的应用意识和创新能力.二、重难点目标【教学重点】运用因式分解法解一元二次方程.【教学难点】选择适当的方法解一元二次方程.环节1自学提纲,生成问题【5 min阅读】阅读教材P12~P14的内容,完成下面练习.【3 min反馈】1.将下列各题因式分解:am+bm+cm=__m(a+b+c)__;a2-b2=__(a+b)(a-b)__;a2+2ab+b2=__(a+b)2__;x2+5x+6=__(x+2)(x+3)__;3x2-14x+8=__(x-4)(3x-2)__.2.按要求解下列方程:(1)2x2+x=0(用配方法);(2)3x2+6x-24=0(用公式法).解:(1)x 1=0,x 2=-12. (2)x 1=2,x 2=-4.3.对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做__因式分解法__.4.如果ab =0,那么a =0或b =0,这是因式分解法的根据.即:如果(x +1)(x -1)=0,那么x +1=0或 __x -1=0__,即x =-1或__x =1__.环节2 合作探究,解决问题 【活动1】 小组讨论(师生对学) 【例1】用因式分解法解下列方程: (1)x 2-3x -10=0; (2)5x 2-2x -14=x 2-2x +34;(3)3x (2x +1)=4x +2; (4)(x -4)2=(5-2x )2.【互动探索】(引发学生思考)用因式分解法解一元二次方程的一般步骤是什么? 【解答】(1)因式分解,得(x +2)(x -5)=0. ∴x +2=0或x -5=0, ∴x 1=-2,x 2=5.(2)移项、合并同类项,得4x 2-1=0. 因式分解,得(2x +1)(2x -1)=0. ∴2x +1=0或2x -1=0, ∴x 1=-12,x 2=12.(3)原方程可变形为3x (2x +1)-2(2x +1)=0. 因式分解,得(2x +1)(3x -2)=0. ∴2x +1=0或3x -2=0, ∴x 1=-12,x 2=23.(4)移项,得(x -4)2-(5-2x )2=0. 因式分解,得(1-x )(3x -9)=0, ∴1-x =0或3x -9=0, ∴x 1=1,x 2=3.【互动总结】(学生总结,老师点评)用因式分解法解一元二次方程的步骤:(1)将一元二次方程化成一般形式,即方程右边为0;(2)将方程左边进行因式分解,将一元二次方程转化成两个一元一次方程;(3)对两个一元一次方程分别求解.【活动2】 巩固练习(学生独学) 1.解方程: (1)x 2-3x -10=0; (2)3x (x +2)=5(x +2); (3)(3x +1)2-5=0; (4)x 2-6x +9=(2-3x )2. 解:(1)x 1=5,x 2=-2. (2)x 1=-2,x 2=53.(3)x 1=-1+53,x 2=5-13.(4)x 1=-12,x 2=54.2.三角形两边的长是3和4,第三边的长是方程x 2-12x +35=0的根,求该三角形的周长.解:解x 2-12x +35=0,得x 1=5,x 2=7.∵3+4=7,∴x =5,故该三角形的周长=3+4+5=12. 【活动3】 拓展延伸(学生对学) 【例2】已知9a 2-4b 2=0,求代数式a b -b a -a 2+b 2ab的值. 【互动探索】(引发学生思考)a 、b 的值能求出来吗?a 、b 之间有怎样的关系?怎样将a 、b 的值与已知代数式联系起来.【解答】原式=a 2-b 2-a 2-b 2ab =-2ba .∵9a 2-4b 2=0, ∴(3a +2b )(3a -2b )=0, 即3a +2b =0或3a -2b =0, ∴a =-23b 或a =23b .当a =-23b 时,原式=-2b-23b =3;当a =23b 时,原式=-3.【互动总结】(学生总结,老师点评)要求a b -b a -a 2+b 2ab 的值,首先要对它进行化简,然后从已知条件入手,求出a 与b 的关系后代入,但也可以直接代入,因计算量比较大,容易发生错误.本题注意不要漏解.环节3课堂小结,当堂达标(学生总结,老师点评)用因式分解法解一元二次方程的一般步骤:先将方程一边化为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.请完成本课时对应练习!*21.2.4一元二次方程的根与系数的关系(第4课时)一、基本目标【知识与技能】掌握一元二次方程的根与系数的关系.【过程与方法】利用求根公式得到一元二次方程的根,推导出根与系数的关系,体现了数学推理的严密性与严谨性.【情感态度与价值观】通过公式的引入,培养学生寻求简便方法的探索精神及创新意识,培养学生观察思考、归纳概括的能力.二、重难点目标【教学重点】理解一元二次方程的根与系数的关系.【教学难点】利用一元二次方程根与系数的关系解决问题.环节1自学提纲,生成问题【5 min阅读】阅读教材P15~P16的内容,完成下面练习.【3 min反馈】1.解下列方程,并填写表格:方程x1x2x1+x2x1·x2x2-2x=00220x2+3x-4=0-41-3-4x2-5x+6=0235 6(1)用语言描述你发现的规律:__一元二次方程的两根之和为一次项系数的相反数;两根之积为常数项__.(2)关于x的方程x2+px+q=0的两根为x1、x2,请用式子表示x1、x2与p、q的关系:__x1+x2=-p,x1x2=q__.2.解下列方程,并填写表格:(1)用语言描述你发现的规律:__两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比__.(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,请用式子表示x 1、x 2与a 、b 、c 的关系:__x 1+x 2=-b a ,x 1x 2=ca__.3.求下列方程的两根之和与两根之积. (1)x 2-6x -15=0; (2)5x -1=4x 2; (3)x 2=4; (4)2x 2=3x .解:(1)x 1+x 2=6,x 1x 2=-15. (2)x 1+x 2=54,x 1x 2=14.(3)x 1+x 2=0,x 1x 2=-4. (4)x 1+x 2=32,x 1x 2=0.环节2 合作探究,解决问题 【活动1】 小组讨论(师生互学)【例1】x 1、x 2是方程2x 2-3x -5=0的两个根,不解方程,求下列代数式的值: (1)x 1+x 2 ; (2)1x 1+1x 2;(3)x 21+x 22; (4)x 21+3x 22-3x 2.【互动探索】(引发学生思考)根据一元二次方程的根与系数的关系可考虑将所求代数式转化为两根之和与两根之积的关系.【解答】(1)x 1+x 2=32,(2)∵x 1x 2=-52,∴1x 1+1x 2=x 1+x 2x 1x 2=-35.(3)x 21+x 22=(x 1+x 2)2-2x 1x 2=294. (4)x 21+3x 22-3x 2=(x 21 +x 22 ) +(2x 22 -3x 2 )=1214. 【互动总结】(学生总结,老师点评)解答这类问题一般先将求值式进行变形,使其含有两根的和与两根的积,再求出方程的两根的和与两根的积,整体代入即可求解.【活动2】 巩固练习(学生独学)1.不解方程,求下列方程的两根和与两根积. (1)x 2-5x -3=0; (2)9x +2=x 2; (3)6x 2-3x +2=0; (4)3x 2+x +1=0. 解:(1)x 1+x 2=5,x 1x 2=-3. (2)x 1+x 2=9,x 1x 2=-2. (3)方程无解. (4)方程无解.2.已知方程x 2-3x +m =0的一个根为1,求另一根及m 的值. 解:另一根为2,m =2.【教师点拨】本题有两种解法:一种是根据根的定义,将x =1代入方程先求m ,再求另一个根;另一种是利用根与系数的关系解答.3.若一元二次方程x 2+ax +2=0的两根满足:x 21 +x 22 =12,求a 的值.解:a =±4.【教师点拨】由x 21 + x 22 =(x 1+x 2)2-2x 1x 2=12,再整体代入方程的两根之和与两根之积得到答案.【活动3】 拓展延伸(学生对学)【例2】已知关于x 的方程x 2-(k +1)x +14k 2+1=0,且方程两实根的积为5,求k 的值.【互动探索】(引发学生思考)一元二次方程有根的条件是什么?一元二次方程两实根的积与什么有关?【解答】∵方程两实根的积为5,∴ ⎩⎨⎧Δ=[-(k +1)]2-4⎝⎛⎭⎫14k 2+1≥0,x 1x 2=14k 2+1=5,∴k ≥32,k =±4.故当k =4时,方程两实根的积为5.【互动总结】(学生总结,老师点评)根据一元二次方程两实根满足的条件,求待定字母的值,务必要注意方程有两实根的条件,即所求的值应满足Δ≥0.环节3 课堂小结,当堂达标 (学生总结,老师点评)一元二次方程ax 2+bx +c =0(a ≠0)的两根x 1、x 2和系数的关系如下: x 1+x 2=-b a ,x 1x 2=ca.请完成本课时对应练习!。
初中数学九年级上册第二十一章 一元二次方程《一元二次方程》教案
一元二次方程一、教学目标:知识技能:1.理解一元二次方程的概念;2.掌握一元二次方程的一般形式,并能将一元二次方程转化为一般形式,确定出二次项系数、一次项系数和常数项;3..理解一元二次方程的根的意义,能够运用代入法检验根的正确性.数学思考:在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性.问题解决:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移得到一元二次方程的概念.情感态度:通过用数学知识解决实际问题的思想激发学生的学习热情和积极性.二、教学重难点:通过类比一元一次方程,了解一元二次方程的概念、一般形式ax2+bx+c=0(a≠0)及一元二次方程的根等概念,并能用这些概念解决简单问题.把实际问题转化为一元二次方程模型.教学时间:两课时三、教学过程:第一课时洋葱小视频分享一、有关解方程的科学家的故事,激发学生学习方程的兴趣。
洋葱小视频分享二、一元二次方程的定义讲解,激发学生利用手中的工具提前预习,轻松学习知识。
(一)、知识回顾、教师引导学生完成下列题目,复习一元一次方程的相关知识:一元一次方程的知识:1.一元一次方程中的“一元”是指__1个未知数__,“一次”是指__未知数的次数是1__,一元一次方程左右两边都是__整式__的形式.2.一元一次方程的一般形式是__ax+b=0(a,b是常数,且a≠0)__.若关于x的方程(m+1)x|m|+1=0是一元一次方程,则m=____1____.3.什么是一元一次方程的解?如何判断一个数是不是一元一次方程的解?若已知x=1是方程ax+3=0的解,则a=__-3__.(二)、【课堂引入】问题1:有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参加比赛?学生先自主探究、分析,再在小组内合作讨论,设出合适的未知数,根据等量关系列出方程.1.探究交流观察[课堂引入]中所列的方程,分析以上两个方程是不是一元二次方程,它们与一元一次方程有什么区别与联系.学生观察、思考、讨论、交流、汇报.教师重点引导学生观察得到所列方程的特点:①整式;②一元;③二次.引入课题(板书):一元二次方程.2.归纳定义问题:根据找出的一元二次方程的特征,你能给一元二次方程下个定义吗?教师引导学生结合所列方程的三个特征及一元二次方程的名称,类比一元一次方程的定义,得出一元二次方程的定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.教师板书:整式;一元;二次.(三)、新知探究运用1、(试一试)抢答:下列各方程是不是一元二次方程:①3x+2=5x-2;②2x2-2x=0;③x2=0;④-=0;⑤3y2=(3y+1)(y-2);⑥ax2+bx+c=0;⑦3x2=5x-1;⑧(x+3)(2x-4)=0.第二课时教学过程:一、简单回顾一元二次方程的定义及判断二、新知探究:(一)、一元二次方程的一般形式:问题1:类比一元一次方程的一般形式,你能写出一元二次方程的一般形式,并说出各项的名称吗?师生共同小结(板书):一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.(试一试)抢答:指出下列各方程的二次项、一次项和常数项.①3x2+2x-1=0;②2x2=3;③=0.(二)、问题2:类比一元一次方程的解的定义,你能给一元二次方程的根下定义吗?师生共同小结(板书):概念:一元二次方程的根:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根. (试一试)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3,4.(三)、【应用举例】例1将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.变式练习:将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.例2已知关于x的方程x2-2x+k2=0的一个根是1,那么k的值是________.变式练习:已知关于x的一元二次方程x2+ax+b=0有一个非零根-b,则a-b的值为________.(四)、【拓展提升】例3已知关于x的方程(2a-4)x2-2x+a=0,在什么条件下,此方程为一元一次方程?在什么条件下,此方程为一元二次方程?例4已知关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,求a的值.例5求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.学生自主思考,教师做好指导,最后由个别学生进行课堂解答,教师给予评价和辅导.教师指出解答问题的易错点和方法应用.三、【达标测评】1.若方程mx2-2x+m=0是关于x的一元二次方程,则( C )A.m为任意实数B.m=0C.m≠0 D.m=0或m=12.下列方程中,不含一次项的是(D)A.3x2-5=2x B.16x=x2C.x(x-7)=0 D.(x+5)(x-5)=03.若关于x的一元二次方程ax2+bx+c=0有一个根为1,则a+b+c=__0__;若a-b+c=0,则方程必有一根为__-1__.4.一元二次方程2x2=1-4x的二次项系数、一次项系数和常数项之和为__5__.5.若关于x的方程(k-1)x|k|-1-x-2=0是一元二次方程,求k的值.学生进行当堂检测,完成后,教师进行批阅、点评、讲解.四、课堂总结:(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?说一说!五、【教学反思】①[授课流程反思]在问题导入环节中,出示的问题有难度,需要教师进一步讲解;在新知探究环节中,学生充分发挥主动性,总结新知能力较强;在能力训练环节中,学生完成较好,值得鼓励与表扬.②[讲授效果反思]对于一元二次方程的定义,教师必须强调:(1)把握一般形式;(2)二次项系数不为0;(3)分清各项系数.③[师生互动反思]从课堂过程和效果分析,学生能够充分交流、合作,对于问题思考和解答都有独立性,效果较好.。
人教版九年级上册第21章一元二次方程教学案
第二十一章一元二次方程知识要点:1.了解一元二次方程及有关概念一般式ax2+bx+c=0a≠0及其派生的概念应用一元二次方程概念解决一些简单题目。
2.掌握通过配方法、公式法、因式分解法降次──解一元二次方程掌握依据实际问题建立一元二次方程的数学模型的方法应用熟练掌握以上知识解决问题。
重点1一元二次方程及其它有关的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题。
2.判定一个数是否是方程的根3.用配方法、公式法、因式分解法降次──解一元二次方程。
难点1一元二次方程配方法解题。
2 用公式法解一元二次方程时的讨论。
考点:方程的根与解方程一元二次方程应用题知识点知识点一 一元二次方程的定义如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。
知识点二 一元二次方程的一般形式一元二次方程的一般形式为02=++c bx ax (a ,b ,c 是已知数,0≠a )。
其中a ,b ,c 分别叫做二次项系数、一次项系数、常数项。
知识点三 一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解,如:当2=x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。
一元二次方程的解也叫一元二次方程的根。
知识点四 解方程1、直接开平方法:若()02≥=a a x ,则x 叫做a 的平方根,表示为a x ±=,这种解一元二次方程的方法叫做直接开平方法。
2、配方法:若()02≥=a a x ,则x 叫做a 的平方根,表示为a x ±=,这种解一元二次方程的方法叫做直接开平方法。
3、公式法:一元二次方程)0(02≠=++a c bx ax 的根aacb b x 242-±-=当042>-ac b 时,方程有两个实数根,且这两个实数根不相等;。
21 一元二次方程全章教案
21.1一元二次方程1.理解一元二次方程及其相关概念,能够熟练地把一元二次方程化为一般形式.2.会应用一元二次方程的解的定义解决有关问题.3.在分析、揭示实际问题中的数量关系,并把实际问题转化为数学模型的过程中,感受方程是刻画现实世界中的数量关系的工具,增强对一元二次方程的感性认识.一、情境导入参加一次集会,如果有x个人,每两人之间都握一次手,共握了21次手,请你列出符合上述条件的方程,并判断方程是什么类型?二、合作探究探究点一:一元二次方程的概念【类型一】一元二次方程的识别下列选项中,是关于x的一元二次方程的是( )A.x2+1x2=1 B.3x2-2xy-5y2=0C.(x-1)(x-2)=3 D.ax2+bx+c=0解析:选项A中的方程分母含有未知数,所以它不是一元二次方程;选项B中的方程含有2个未知数,所以它不是一元二次方程;当a=0时,选项D中的方程不含二次项,所以它不是一元二次方程,排除A、B、D,故选C.方法总结:判断一个方程是不是一元二次方程,必须将方程化简后再进行判断.一元二次方程的三个条件:一是方程两边都是整式;二是只含有一个未知数;三是未知数的最高次数是 2.上述三个条件必须同时满足,缺一不可.【类型二】利用一元二次方程的概念确定字母系数关于x的方程(k+1)x|k-1|+kx+1=0是一元二次方程,则k的值为________.解析:由题意得⎩⎪⎨⎪⎧|k-1|=2,k+1≠0,∴⎩⎪⎨⎪⎧k=3或k=-1,k≠-1.∴k=3.方法总结:由一元二次方程的概念满足的条件:未知数最高次数为2,构造方程,解出字母取值,并利用二次项系数不为0排除使二次项系数为0的字母取值,从而确定字母取值.探究点二:一元二次方程的一般形式将下列方程化为一元二次方程的一般形式,并指出它们的二次项系数、一次项系数及常数项.(1)3x2-2=5x;(2)9x2=16;(3)2x(3x+1)=17;(4)(3x-5)(x+1)=7x-2.解析:先分别将各方程化为一般形式,再指出它们的各部分的名称.解:(1)方程化为一般形式为3x2-5x-2=0,二次项系数是3,一次项系数是-5,常数项是-2.(2)方程化为一般形式为9x2-16=0,二次项系数是9,一次项系数是0,常数项是-16.(3)方程化为一般形式为6x2+2x-17=0,二次项系数是6,一次项系数是2,常数项是-17.(4)方程化为一般形式为3x2-9x-3=0,二次项系数是3,一次项系数是-9,常数项是-3.方法总结:求一元二次方程的各项系数和常数项,必须先把方程化为一般形式,特别要注意确认各项系数和常数项一定要包括前面的符号.探究点三:列一元二次方程(2015·深圳一模)在一张矩形的床单四周绣上宽度相等的花边,剩下部分面积为1.6m 2.已知床单的长是2m ,宽是1.4m ,求花边的宽度.请根据题意列出方程.解析:设花边的宽度为x m ,则由图可知剩下部分的长为(2-2x )m ,剩下部分的宽为(1.4-2x )m.∵剩下部分面积为1.6m 2,∴可列方程(2-2x )(1.4-2x )=1.6.方法总结:列方程最重要的是审题,只有理解题意,才能恰当的设出未知数,准确地找出已知量和未知量之间的等量关系,正确的列出方程.探究点四:一元二次方程的解 【类型一】判断一元二次方程的解方程x -2x =0的解为( ) A .x 1=1,x 2=2 B .x 1=0,x 2=1C .x 1=0,x 2=2D .x 1=12,x 2=2解析:把各选项中未知数的值分别代入方程的左右两边,只有选项C 中的x 1=0,x 2=2都能使方程x 2-2x =0的左右两边相等,所以选C.方法总结:判断一个未知数的值是否是一元二次方程的解,可以把未知数的值代入方程左右两边,能使方程左右两边相等的未知数的值就是一元二次方程的解.【类型二】利用一元二次方程的解的意义求字母或代数式的值已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( )A .1B .-1C .0D .无法确定解析:根据方程的根的概念,直接代入方程,左右两边相等,但考虑到是一元二次方程,所以二次项系数不能等于0.由此得,(m -1)+1+1=0,解得m =-1,此时m -1=-2≠0,∴m =-1.故选B.方法总结:方程的根是能使方程左右两边相等的未知数的值,在涉及方程根的题目中,我们一般是把这个根代入方程左右两边转化为求待定系数的方程来解决问题.三、板书设计教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为数学问题,体会数学建模的思想方法.21.2.1 配方法 第1课时 直接开平方法1.学会根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.2.运用开平方法解形如(x +m )2=n 的方程. 3.体验类比、转化、降次的数学思想方法,增强学习数学的兴趣.一、情境导入一个正方形花坛的面积为10,若设其边长为x ,根据正方形的面积可列出怎样的方程?用怎样的方法可以求出所列方程的解呢?二、合作探究探究点:直接开平方法 【类型一】用直接开平方法解一元二次方程运用开平方法解下列方程: (1)4x 2=9;(2)(x +3)2-2=0.解析:(1)先把方程化为x 2=a (a ≥0)的形式;(2)原方程可变形为(x +3)2=2,则x +3是2的平方根,从而可以运用开平方法求解.解:(1)由4x 2=9,得x 2=94,两边直接开平方,得x =±32,∴原方程的解是x 1=32,x 2=-32.(2)移项,得(x +3)2=2.两边直接开平方,得x +3=± 2.∴x +3=2或x +3=- 2.∴原方程的解是x 1=2-3,x 2=-2-3. 方法总结:由上面的解法可以看出,一元二次方程是通过降次,把一元二次方程转化为一元一次方程求解的,这是解一元二次方程的基本思想;一般地,对于形如x 2=a (a ≥0)的方程,根据平方根的定义,可解得x 1=a ,x 2=-a .【类型二】直接开平方法的应用 次方程ax 2=b (ab >0)的两个根分别是m +1与2m -4,则ba=________.解析:∵ax 2=b ,∴x =±ba,∴方程的两个根互为相反数,∴m +1+2m -4=0,解得m =1,∴一元二次方程ax 2=b (ab>0)的两个根分别是2与-2,∴ba=2,∴b a=4,故答案为4.【类型三】直接开平方法与方程的解的综合应用若一元二次方程(a +2)x 2-ax +a 2-4=0的一个根为0,则a =________.解析:∵一元二次方程(a +2)x 2-ax +a 2-4=0的一个根为0,∴a +2≠0且a 2-4=0,∴a =2.故答案为2.【类型四】直接开平方法的实际应用有一个边长为11cm 的正方形和一个长为13cm ,宽为8cm 的矩形,要作一个面积为这两个图形的面积之和的正方形,边长应为多少厘米?分析:要求新正方形的边长,可先求出原正方形和矩形的面积之和,然后再用开平方计算.解:设新正方形的边长为x cm ,根据题意得x 2=112+13×8,即x 2=225,解得x =±15.因为边长为正,所以x =-15不合题意,舍去,所以只取x =15.答:新正方形的边长应为15cm.方法总结:在解决与平方根有关的实际问题时,除了根据题意解题外,有时还要结合实际,把平方根中不符合实际情况的负值舍去.三、板书设计教学过程中,强调利用开平方法解一元二次方程的本质是求一个数的平方根的过程.同时体会到解一元二次方程过程就是一个“降次”的过程.第2课时 配方法1.了解配方的概念,掌握运用配方法解一元二次方程的步骤.2.探索直接开平方法和配方法之间的区别和联系,能够熟练地运用配方法解决有关问题.一、情境导入李老师让学生解一元二次方程x 2-6x -5=0,同学们都束手无策,学习委员蔡亮考虑了一下,在方程两边同时加上14,再把方程左边用完全平方公式分解因式……,你能按照他的想法求出这个方程的解吗?二、合作探究 探究点:配方法 【类型一】配方用配方法解一元二次方程x 2-4x=5时,此方程可变形为( )A .(x +2)2=1B .(x -2)2=1C .(x +2)2=9D .(x -2)2=9 解析:由于方程左边关于x 的代数式的二次项系数为1,故在方程两边都加上一次项系数一半的平方,然后将方程左边写成完全平方式的形式,右边化简即可.因为x2-4x =5,所以x 2-4x +4=5+4,所以(x -2)2=9.故选D.方法总结:用配方法将一元二次方程变形的一般步骤:(1)把常数项移到等号的右边,使方程的左边只留下二次项和一次项;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【类型二】利用配方法解一元二次方程用配方法解方程:x2-4x+1=0.解析:二次项系数是1时,只要先把常数项移到右边,然后左、右两边同时加上一次项系数一半的平方,把方程配成(x+m)2=n(n≥0)的形式再用直接开平方法求解.解:移项,得x2-4x=-1.配方,得x2-4x+(-2)2=-1+(-2)2.即(x-2)2=3.解这个方程,得x-2=± 3.∴x1=2+3,x2=2- 3.方法总结:用配方法解一元二次方程,实质上就是对一元二次方程变形,转化成开平方所需的形式.【类型三】用配方解决求值问题已知:x+4x+y-6y+13=0,求x-2yx2+y2的值.解:原方程可化为(x+2)2+(y-3)2=0,∴(x+2)2=0且(y-3)2=0,∴x=-2且y=3,∴原式=-2-613=-813.【类型四】用配方解决证明问题(1)用配方法证明2x-4x+7的值恒大于零;(2)由第(1)题的启发,请你再写出三个恒大于零的二次三项式.证明:(1)2x2-4x+7=2(x2-2x)+7=2(x2-2x+1-1)+7=2(x-1)2-2+7=2(x-1)2+5.∵2(x-1)2≥0,∴2(x-1)2+5≥5,即2x2-4x+7≥5,故2x2-4x+7的值恒大于零.(2)x2-2x+3;2x2-2x+5;3x2+6x+8等.【类型五】配方法与不等式知识的综合应用证明关于x的方程(m2-8m+17)x2+2mx+1=0不论m为何值时,都是一元二次方程.解析:要证明“不论m为何值时,方程都是一元二次方程”,只需证明二次项系数m2-8m+17的值不等于0.证明:∵二次项系数m2-8m+17=m2-8m+16+1=(m-4)2+1,又∵(m-4)2≥0,∴(m-4)2+1>0,即m2-8m+17>0.∴不论m为何值时,原方程都是一元二次方程.三、板书设计教学过程中,强调配方法解方程就是将方程左边配成完全平方式的过程.因此需熟练掌握完全平方式的形式.21.2.2 公式法1.知道一元二次方程根的判别式的概念. 2.会用判别式判断一元二次方程的根的情况及根据一元二次方程的根的情况确定字母的取值范围. 3.经历求根公式的推导过程并会用公式法解简单的一元二次方程. 一、情境导入老师写了4个一元二次方程让同学们判断它们是否有解,大家都才解第一个方程呢,小强突然站起来说出每个方程解的情况,你想知道他是如何判断的吗? 二、合作探究 探究点一:一元二次方程的根的情况 【类型一】判断一元二次方程根的情况 不解方程,判断下列方程的根的情况. (1)2x 2+3x -4=0; (2)x 2-x +14=0; (3)x 2-x +1=0. 解析:根据根的判别式我们可以知道当b 2-4ac ≥0时,方程才有实数根,而b 2-4ac <0时,方程没有实数根.由此我们不解方程就能判断一元二次方程根的情况. 解:(1)2x 2+3x -4=0,a =2,b =3,c =-4,∴b 2-4ac =32-4×2×(-4)=41>0.∴方程有两个不相等的实数根. (2)x 2-x +14=0,a =1,b =-1,c =14.∴b 2-4ac =(-1)2-4×1×14=0.∴方程有两个相等的实数根.(3)x 2-x +1=0,a =1,b =-1,c =1.∴b 2-4ac =(-1)2-4×1×1=-3<0.∴方程没有实数根. 方法总结:给出一个一元二次方程,不解方程,可由b 2-4ac 的值的符号来判断方程根的情况.当b 2-4ac >0时,一元二次方程有两个不相等的实数根;当b 2-4ac =0时,一元二次方程有两个相等的实数根;当b 2-4ac <0时,一元二次方程无实数根.【类型二】由一元二次方程根的情况确定字母系数的取值已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( )A .a >2B .a <2C .a <2且a ≠1D .a <-2 解析:由于一元二次方程有两个不相等的实数根,判别式大于0,得到一个不等式,再由二次项系数不为0知a -1不为0.即4-4(a -1)>0且a -1≠0,解得a <2且a ≠1.选C.方法总结:若方程有实数根,则b 2-4ac ≥0.由于本题强调说明方程是一元二次方程,所以,二次项系数不为0.因此本题还是一道易错题.【类型三】说明含有字母系数的一元二次方程根的情况已知:关于x 的方程2x 2+kx -1=0,求证:方程有两个不相等的实数根.证明:Δ=k 2-4×2×(-1)=k 2+8,无论k 取何值,k 2≥0,所以k 2+8>0,即Δ>0,∴方程2x 2+kx -1=0有两个不相等的实数根. 方法总结:要说明一个含字母系数的一元二次方程的根的情况,只需求出该方程根的判别式,分析其正、负情况,即可得出结论.【类型四】一元二次方程的根的情况的实际应用小林准备进行如下操作实验:把一根长为40cm的铁丝剪成两段,并把每一段各围成一个正方形.小峰对小林说:“这两个正方形的面积之和不可能等于48cm2”,他的说法对吗?请说明理由.解:假设能围成.设其中一个正方形的边长为x,则另一个正方形的边长是(10-x),由题可得,x2+(10-x)2=48.化简得x2-10x+26=0.因为b2-4ac=(-10)2-4×1×26=-4<0,所以此方程没有实数根.所以小峰的说法是对的.探究点二:公式法解一元二次方程【类型一】用公式法解一元二次方程用公式法解下列方程:(1)2x2+x-6=0;(2)x2+4x=2;(3)5x2-4x+12=0;(4)4x2+4x+10=1-8x.解析:方程(1)(3)是一元二次方程的一般形式,可以直接确定a,b,c的值,并计算b2-4ac的值,然后代入求根公式,即可求出方程的根;方程(2)(4)则需要先化成一般形式,再求解.解:(1)这里a=2,b=1,c=-6,b2-4ac=12-4×2×(-6)=1+48=49.∴x=-b±b2-4ac2a=-1±492×2=-1±74,即原方程的解是x1=-2,x2=32.(2)将方程化为一般形式,得x2+4x-2=0.∵b2-4ac=24,∴x=-4±242=-2± 6.∴原方程的解是x1=-2+6,x2=-2- 6.(3)∵b2-4ac=-224<0,∴原方程没有实数根.(4)整理,得4x2+12x+9=0.∵b2-4ac=0,∴x1=x2=-32.方法总结:用公式法解一元二次方程时,一定要先将方程化为一般形式,再确定a,b,c的值.【类型二】一元二次方程解法的综合运用三角形的两边分别为2和6,第三边是方程x2-10x+21=0的解,则第三边的长为( )A.7 B.3C.7或3 D.无法确定解析:解一元二次方程x2-10x+21=0,得x1=3,x2=7.根据三角形三边的关系,第三边还应满足4<x<8.所以第三边的长x=7.故选A.方法总结:解题的关键是正确求解一元二次方程,并会运用三角形三边的关系进行取舍.三、板书设计教学过程中,强调用判别式去判断方程根的情况,首先需把方程化为一般形式.同时公式法的得出是通过配方法来的,用公式法解方程∴前提是Δ≥0.21.2.3 因式分解法1.认识用因式分解法解方程的依据. 2.会用因式分解法解一些特殊的一元二次方程.一、情境导入我们知道ab =0,那么a =0或b =0,类似的解方程(x +1)(x -1)=0时,可转化为两个一元一次方程x +1=0或x -1=0来解,你能求出(x +3)(x -5)=0的解吗? 二、合作探究 探究点一:用因式分解法解一元二次方程 【类型一】利用提公因式法分解因式解一元二次方程用因式分解法解下列方程: (1)x 2+5x =0;(2)(x -5)(x -6)=x -5.解析:变形后方程右边是零,左边是能分解的二次三项式,可用因式分解法.解:(1)原方程转化为x (x +5)=0,∴x =0或x +5=0,∴原方程的解为x 1=0,x 2=-5; (2)原方程转化为(x -5)(x -6)-(x -5)=0,∴(x -5)[(x -6)-1]=0,∴(x -5)(x -7)=0,∴x -5=0或x -7=0,∴原方程的解为x 1=5,x 2=7. 【类型二】利用公式法分解因式解一元二次方程 用因式分解法解下列方程: (1)x 2-6x =-9; (2)4(x -3)2-25(x -2)2=0. 解:(1)原方程可变形为:x 2-6x +9=0,则(x -3)2=0,∴x -3=0,因此原方程的解为:x 1=x 2=3.(2)[2(x -3)]2-[5(x -2)]2=0,[2(x -3)+5(x -2)][2(x -3)-5(x -2)]=0,(7x -16)(-3x +4)=0,∴7x -16=0或-3x +4=0,∴原方程的解为x 1=167,x 2=43. 方法总结:因式分解法解一元二次方程的一般步骤是:①将方程的右边化为0;②将方程的左边分解为两个一次因式的乘积;③令每一个因式分别为零,就得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.探究点二:用因式分解法解决问题若a 、b 、c 为△ABC 的三边,且a 、b 、c 满足a 2-ac -ab +bc =0,试判断△ABC的形状. 解析:先分解因式,确定a ,b ,c 的关系,再判断三角形的形状.解:∵a 2-ac -ab +bc =0,∴(a -b )(a-c )=0,∴a -b =0或a -c =0,∴a =c 或a =b ,∴△ABC 为等腰三角形.三、板书设计利用因式分解法解一元二次方程,能否分解是关键,因此,要熟练掌握因式分解的知识,提高用分解因式法解方程的能力.在使用因式分解法时,先考虑有无公因式,如果没有再考虑公式法.*21.2.4 一元二次方程的根与系数的关系 1.探索一元二次方程的根与系数的关系. 2.会不解方程利用一元二次方程的根与系数解决问题.一、情境导入一般地,对于关于x 的方程x 2+px +q =0(p ,q 为已知常数,p 2-4q ≥0),试用求根公式求出它的两个解x 1、x 2,算一算x 1+x 2、x 1·x 2的值,你能得出什么结果? 二、合作探究 探究点:一元二次方程根与系数的关系 【类型一】利用一元二次方程根与系数的关系求关于方程根的代数式的值 已知m 、n是方程2x -x -2=0的两实数根,则1m +1n的值为( )A .-1 B.12 C .-12 D .1解析:根据根与系数的关系,可以求出m +n 和mn 的值,再将原代数式变形后,整体代入计算即可.因为m 、n 是方程2x 2-x -2=0的两实数根,所以m +n =12,mn =-1,1m +1n =n +m mn =12-1=-12.故选C. 方法总结:解题时先把代数式变形成与两根和、积有关的形式,注意前提:方程有两个实数根时,判别式大于或等于0.【类型二】根据方程的根确定一元二次方程已知一元二次方程的两根分别是4和-5,则这个一元二次方程是( )A .x 2-6x +8=0B .x 2+9x -1=0C .x 2-x -6=0D .x 2+x -20=0解析:∵方程的两根分别是4和-5,设两根为x 1,x 2,则x 1+x 2=-1,x 1·x 2=-20.如果令方程ax 2+bx +c =0中,a =1,则-b =-1,c =-20.∴方程为x 2+x -20=0.故选D. 方法总结:先把所构造的方程的二次项系数定为1,利用一元二次方程根与系数的关系确定一元二次方程一次项系数和常数项. 【类型三】根据根与系数的关系确定方程的解 (2014·云南曲靖)已知x =4是一元二次方程x 2-3x +c =0的一个根,则另一个根为________.解析:设另一根为x 1,则由根与系数的关系得x 1+4=3,∴x 1=-1.故答案为x =-1.方法总结:解决这类问题时,利用一元二次方程的根与系数的关系列出方程即可解决. 【类型四】利用一元二次方程根与系数的关系确定字母系数 )关于x 的方程x 2-ax +2a =0的两根的平方和是5,则a的值是( )A .-1或5B .1C .5D .-1解析:将两根平方和转化为用两根和、积表示的形式,从而利用一元二次方程根与系数的关系解决.设方程两根为x 1,x 2,由题意,得x 21+x 22=5.∴(x 1+x 2)2-2x 1x 2=5.∵x 1+x 2=a ,x 1x 2=2a ,∴a 2-2×2a =5.解得a 1=5,a 2=-1.又∵Δ=a 2-8a ,当a =5时,Δ<0,此时方程无实数根,所以舍去a =5.当a =-1时,Δ>0,此时方程有两实数根.所以取a =-1.故选D.方法总结:解答此类题的关键是将与方程两根有关的式子转化为用两根和、积表示的形式,从而利用一元二次方程根与系数的关系解决问题.注意不要忽略题目中的隐含条件Δ≥0,导致解答不全面.【类型五】一元二次方程根与系数的关系和根的情况的综合应用已知x 1、x 2是一元二次方程(a -6)x 2+2ax +a =0的两个实数根.(1)是否存在实数a ,使-x 1+x 1x 2=4+x 2成立?若存在,求出a 的值;若不存在,请你说明理由;(2)求使(x 1+1)(x 2+1)为负整数的实数a 的整数值.解:(1)根据题意,得Δ=(2a )2-4×a (a -6)=24a ≥0.解得a ≥0.又∵a -6≠0,∴a ≠6.由根与系数关系得:x 1+x 2=-2aa -6,x 1x 2=aa -6.由-x 1+x 1x 2=4+x 2得x 1+x 2+4=x 1x 2,∴-2a a -6+4=a a -6,解得a =24.经检验a =24是方程-2a a -6+4=aa -6的解.即存在a =24,使-x 1+x 1x 2=4+x 2成立.(2)原式=x 1+x 2+x 1x 2+1=-2a a -6+aa -6+1=66-a 为负整数,则6-a 为-1或-2,-3,-6.解得a =7或8,9,12.三、板书设计教学过程中,强调一元二次方程的根与系数的关系是通过求根公式得到的,在利用此关系确定字母的取值时,一定要记住Δ≥0这个前提条件.21.3实际问题与一元二次方程第1课时传播问题与一元二次方程1.会根据具体问题中的数量关系列出一元二次方程并求解,能根据问题中的实际意义,检验所得的结果是否合理.2.联系实际,让学生进一步经历“问题情境——建立模型——求解——解释与应用”的过程,获得更多运用数学知识分析、解决实际问题的方法和经验,进一步掌握解应用题的步骤和关键.一、情境导入某细菌利用二分裂方式繁殖,每次一个分裂成两个,那么五次繁殖后共有多少个细菌呢?二、合作探究探究点:传播问题与一元二次方程【类型一】疾病传染问题有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了多少个人?(2)如果不及时控制,第三轮将又有多少人被传染?解析:设每轮传染中平均一个人传染了x个人,根据题意可知,在第一轮,有x个人被传染,此时,共有(1+x)人患了流感;到了第二轮,患流感的(1+x)人作为“传染源”,每个人又传染给了x个人,这样,在第二轮中新增加的患了流感的人有x(1+x)人,根据等量关系可列一元二次方程解答.解:(1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64,解之,得x1=7,x2=-9(不合题意,舍去).答:每轮传染中平均一个人传染了7个人.(2)7×64=448(人).答:又将有448人被传染.方法总结:建立数学模型,利用一元二次方程来解决实际问题.读懂题意,正确的列出方程是解题的关键.【类型二】分裂增长问题月季生长速度很快,开花鲜艳诱人,且枝繁叶茂.现有一棵月季,它的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干、小分支的总数是73.求每个支干长出多少小分支?解:设每个支干长出x个小分支,根据题意得:1+x+x2=73,解得:x1=8,x2=-9(舍去).答:每个支干长出8个小分支.三、板书设计教学过程中,强调利用一元二次方程解应用题的步骤和关键.特别是解有关的传播问题时,一定要明确每一轮传染源的基数.第2课时平均变化率与一元二次方程1.掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.2.会解有关“增长率”及“销售”方面的实际问题.一、情境导入月季花每盆的盈利与每盆的株数有一定的关系.每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元.要使每盆的盈利达到15元,每盆应多植多少株?二、合作探究探究点:用一元二次方程解决增长率问题【类型一】增长率问题(2014·辽宁大连)某工厂一种产品2013年的产量是100万件,计划2015年产量达到121万件.假设2013年到2015年这种产品产量的年增长率相同.(1)求2013年到2015年这种产品产量的年增长率;(2)2014年这种产品的产量应达到多少万件?解析:(1)通过增长率公式列出一元二次方程即可求出增长率;(2)依据求得的增长率,代入2014年产量的表达式即可解决.解:(1)设这种产品产量的年增长率为x,根据题意列方程得100(1+x)2=121,解得x1=0.1,x2=-2.1(舍去).答:这种产品产量的年增长率为10%.(2)100×(1+10%)=110(万件).答:2014年这种产品的产量应达到110万件.方法总结:增长率问题中可以设基数为a,平均增长率为x,增长的次数为n,则增长后的结果为a(1+x)n;而增长率为负数时,则降低后的结果为a(1-x)n.(2014·新疆乌鲁木齐)某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元;从今年1月份起使用新设备,生产收入提高且无设备维护费,使用当月生产收入达100万元,1至3月份生产收入以相同的百分率逐月增长,累计达364万元,3月份后,每月生产收入稳定在3月份的水平.(1)求使用新设备后,2月、3月生产收入的月增长率;(2)购进新设备需一次性支付640万元,使用新设备几个月后,该厂所得累计利润不低于使用旧设备的累计利润?(累计利润是指累计生产收入减去旧设备维护费或新设备购进费)解析:(1)设2月,3月生产收入的月增长率为x,根据题意建立等量关系,即3个月之和为364万元,解方程时要对结果进行合理取舍;(2)根据题意,建立不等关系:前三个月的生产收入+以后几个月的收入减去一次性支付640万元大于或等于旧设备几个月的生产收入-每个月的维护费,然后解不等式.解:(1)设2月,3月生产收入的月增长率为x,根据题意有100+100(1+x)+100(1+x)2=364,即25x2+75x-16=0,解得,x1=-3.2(舍),x2=0.2,所以2月,3月生产收入的月增长率为20%.(2)设m个月后,使用新设备所得累计利润不低于使用旧设备的累计利润,根据题意有364+100(1+20%)2(m-3)-640≥90m-5m,解得,m≥12.所以,使用新设备12个月后所得累计利润不低于使用旧设备的累计利润.方法总结:根据实际问题中的数量关系或是题目中给出的数量关系得到方程,通过解方程解决实际问题,当方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型二】利润问题一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元.该校最终向园林公司支付树苗款8800元.请问该校共购买了多少棵树苗?解析:根据条件设该校共购买了x棵树苗,根据“售价=数量×单价”就可求解.解:∵60棵树苗售价为120元×60=7200元<8800元,∴该校购买树苗超过60棵.设该校共购买了x棵树苗,由题意得x[120-0.5(x-60)]=8800,解得x1=220,x2=80.当x1=220时,120-0.5(220-60)=40<100,∴x1=220不合题意,舍去;当x2=80时,120-0.5(80-60)=110>100,∴x2=80,∴x=80.答:该校共购买了80棵树苗.方法总结:根据实际问题中的数量关系或题目中给出的数量关系得到方程,当求出的方程的解不只一个时,要根据题意及实际问题确定出符合题意的解.【类型三】方案设计问题(2014·内蒙古兴安)菜农李伟种植的某蔬菜计划以每千克5元的价格对外批发销售.由于部分菜农盲目扩大种植,造成该蔬菜滞销,李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的价格对外批发销售.(1)求平均每次下调的百分率;(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一,打九折销售;方案二,不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠?请说明理由.分析:第(1)小题设平均每次下调的百分率为x,列一元二次方程求出x,舍去不合题意的解;第(2)小题通过计算进行比较即可求解.解:(1)设平均每次下调的百分率为x,由题意,得5(1-x)2=3.2,解得x1=0.2=20%,x2=1.8(舍去).∴平均每次下调的百分率为20%;(2)小华选择方案一购买更优惠,理由如下:方案一所需费用为:3.2×0.9×5000=14400(元);方案二所需费用为:3.2×5000-200×5=15000(元),∵14400<15000,∴小华选择方案一购买更优惠.三、板书设计教学过程中,强调解决有关增长率及利润问题时,应考虑实际,对方程的根进行取舍.。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程配方法(第1课时)教案
21.2解一元二次方程21.2.1配方法一、教学目标【知识与技能】1.会利用直接开平方法解形如x2=p(p≥0)的方程;2.初步了解形如(x+n)2=p(p≥0)方程的解法.3.能根据具体问题的实际意义检验结果的合理性.【过程与方法】通过对实例的探究过程,体会类比、转化、降次的数学思想方法.【情感态度与价值观】在成功解决实际问题过程中,体验成功的快乐,增强数学学习的信心和乐趣.二、课型新授课三、课时第1课时,共2课时四、教学重难点【教学重点】解形如x2=p(p≥0)的方程.【教学难点】把一个方程化成x2=p(p≥0)的形式.五、课前准备课件六、教学过程(一)导入新课1.什么是平方根?一个数的平方根怎么样表示?(出示课件2)一个数的平方等于a,这个数就叫做a的平方根...x2.2.求出下列各式中x的值,并说说你的理由.(出示课件3)⑴x2=9;⑵x2=5.;⑵思考:如果方程转化为x2=p,该如何解呢?(二)探索新知探究直接开平方法一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?(出示课件5)教师问:设一个盒子的棱长为xdm,则它的外表面面积为6x2dm2,10个这种盒子的外表面面积的和为10×6x2,由此你可得到方程为10×6x2=1500,你能求出它的解吗?学生思考后,共同解答如下:.解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2,可列出方程:10×6x2=1500,由此可得x2=25.开平方得x=±5,即x 1=5,x 2=-5.因棱长不能是负值,所以正方体的棱长为5dm.教师问:解下列方程,并说明你所用的方法,与同伴交流.(出示课件6)(1)x 2=4;(2)x 2=0;(3)x 2+1=0.学生回答:⑴根据平方根的意义,得x 1=2,x 2=-2.⑵根据平方根的意义,得x 1=x 2=0.⑶根据平方根的意义,得x 2=-1,因为负数没有平方根,所以原方程无解.教师归纳:(出示课件7)一般地,对于可化为方程x 2=p,(I)(1)当p>0时,根据平方根的意义,方程(I)有两个不等的实数根1x =-,2x =;(2)当p=0时,方程(I)有两个相等的实数根x 1=x 2=0;(3)当p<0时,因为任何实数x,都有x 2≥0,所以方程(I)无实数根.利用平方根的定义直接开平方求一元二次方程的根的方法叫直接开平方法.例1利用直接开平方法解下列方程:(出示课件8)(1)x 2=6;(2)x 2-900=0.师生共同讨论解答如下:解:(1)直接开平方,得x =±12,∴==-x x (2)移项,得x 2=900.直接开平方,得x=±30,∴x 1=30,x 2=-30.出示课件9:解下列方程:(1)2280;x -=(2)2953.x -=学生自主思考并解答.解:(1)移项,得228.=x 系数化为1,得2 4.=x ∴=±x即122,2;==-x x (2)移项,得298.=x 系数化为1,得28.9=x 122222,.33∴==-x x 教师问:对照前面方法,你认为怎样解方程(x+3)2=5①?(出示课件10)学生自主讨论后回答:解:把x+3看做一个整体,两边开平方得3x +=±33.x x ∴+=+=,或③于是,方程(x+3)2=5的两个根为1233x x ∴=-+=--,或教师总结:由方程①得到②,实质是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程①转化为我们会解的方程了.例2解下列方程:(1)(x+1)2=2;(出示课件11)教师分析:本题中只要将(x+1)看成是一个整体,就可以运用直接开平方法求解.师生共同解答如下:解:(1)∵x+1是2的平方根,∴x+1=即x12=-1-(2)(x-1)2-4=0;(出示课件12)教师分析:本题先将-4移到方程的右边,再同第1小题一样地解.师生共同解答如下:解:(2)移项,得(x-1)2=4.∵x-1是4的平方根,∴x-1=±2.即x1=3,x2=-1.(3)12(3-2x)2-3=0.(出示课件13)教师分析:本题先将-3移到方程的右边,再两边都除以12,再同第1小题一样地去解,然后两边都除以-2即可.师生共同解答如下:解:(3)移项,得12(3-2x)2=3,两边都除以12,得(3-2x)²=0.25.∵3-2x 是0.25的平方根,∴3-2x=±0.5.即3-2x=0.5,3-2x=-0.5,∴x 1=54x 2=74.出示课件14,学生自主思考并解答.例3解下列方程:(出示课件15)(1)2445x x -+=;(2)29614x x ++=.师生共同解答如下:解:(1)()225,x -=2x ∴-=22x x -=-=-方程的两根为12=+x 22x =-(2)()2314,x +=312,x ∴+=±312312,x x , +=+=-方程的两根为113,=x 21.x =-出示课件16,学生自主思考并解答.(三)课堂练习(出示课件17-21)1.一元二次方程x 2﹣9=0的解是______________.2.下列解方程的过程中,正确的是()A.x 2=-2,解方程,得B.(x-2)2=4,解方程,得x-2=2,x=4C.4(x-1)2=9,解方程,得4(x-1)=±3,x 1=14,x 2=74D.(2x+3)2=25,解方程,得2x+3=±5,x 1=1;x 2=-43.填空:(1)方程x 2=0.25的根是______________.(2)方程2x 2=18的根是______________.(3)方程(2x-1)2=9的根是______________.4.下面是李昆同学解答的一道一元二次方程的具体过程,你认为他解的对吗?如果有错,指出具体位置并帮他改正.解:21150,3⎛⎫+-= ⎪⎝⎭y 2115,3⎛⎫+= ⎪⎝⎭y①113+=y②113=-+y③3 1.y =-④5.解方程22(2)(25)x x -=+参考答案:1.x 1=3,x 2=﹣3解析:∵x 2﹣9=0,∴x 2=9,解得:x 1=3,x 2=﹣3.故答案为:x 1=3,x 2=﹣3.2.D3.⑴x 1=0.5,x 2=-0.5⑵x 1=3,x 2=-3⑶x 1=2,x 2=-14.解:不对,从②开始错,应改为113y +=123, 3.y y =-=--5.解:()()22225,x x -=+2(25),x x ∴-=±+225,22 5.∴-=+-=--x x x x 方程的两根为17,=-x 21.=-x (四)课堂小结(1)你学会怎样解一元二次方程了吗?有哪些步骤?(2)通过今天的学习你了解了哪些数学思想方法?与同伴交流.(五)课前预习预习下节课(21.2.1)第2课时的相关内容。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程教案 配方法(第2课时)教案
21.2 解一元二次方程21.2.1 配方法一、教学目标【知识与技能】了解配方的概念,能够熟练地利用配方法解一元二次方程及解决有关问题。
【过程与方法】理解通过变形运用开平方法解一元二次方程的方法,进一步体会降次的数学思想方法.【情感态度与价值观】在学生合作交流过程中,进一步增强合作交流意识,培养探究精神,增强数学学习的乐趣.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】用配方法解一元二次方程.【教学难点】用配方法解一元二次方程的方法和技巧.五、课前准备课件六、教学过程(一)导入新课要使一块矩形场地的长比宽多6米,并且面积为16平方米,求场地的长和宽应各是多少?(出示课件2)教师展示以下问题,学生思考。
如果设这个长方形场地的宽为xm,则长为,由题意可列出的方程为,化为一般式,得,怎样解这个方程?能不能用直接开平方法?(二)探索新知让学生阅读第6~7页探究内容,思考并回答如下问题:(出示课件4)1.用直接开平方法解下列方程:(1)9x2=1;(2)(x-2)2=2.2.下列方程能用直接开平方法来解吗?(1)x2+6x+9=5;(2)x2+6x+4=0.教师总结:把两题转化成(x+n)2=p(p≥0)的形式,再利用开平方来解.出示课件5:填一填下列完全平方公式.(1)a2+2ab+b2=( )2;(2)a2-2ab+b2=( )2.出示课件6:填一填2222222222(1)10___(2)12___(3)5____2(4)___3(5)___(__)(__)(__)(__)(__)x x x x x b x x x x x x x x x x ++=-+=++=-+==+++-+-+教师问:你发现了什么规律?学生答:⑴二次项系数都为1.⑵配方时, 等式两边同时加上的是一次项系数一半的平方.出示课件7:怎样解方程: x 2+6x+4=0(1)(1)方程(1)怎样变成(x+n)2=p 的形式呢?学生思考后,共同解答如下:教师强调:二次项系数为1的完全平方式:常数项等于一次项系数一半的平方.(2)为什么在方程x 2+6x=-4的两边加上9?加其他数行吗?(出示课件8) 学生思考后,教师加以提示:不行,只有在方程两边加上一次项系数一半的平方,方程左边才能变成完成平方x 2+2bx+b 2的形式.归纳总结:(出示课件9)像上面那样,通过配成完全平方的形式来解一元二次方程的方法叫做配方法.配方是为了降次 ,把一个一元二次方程转化成两个一元一次方程来解. 例1 解方程:(出示课件10)2810x x -+=.师生共同讨论解答如下:解:移项,得x 2-8x =-1配方,得x 2-8x+4²=-1+4²,整理,得(x-4)2=15,由此可得4x -=1244x x =+=-出示课件11:解方程:x 2+8x-4=0.学生自主思考并解答.解:移项,得 x 2+8x =4配方,得 x 2+8x+4²=4+4²,整理,得 (x+4)2=20,由此可得 x+4=±,x 1=4-+,x 2=4--.例2 解方程(1)2213 +=x x ;(出示课件12) 师生共同讨论解答如下:解:移项,得2x 2-3x=-1,二次项系数化为1,得231,22x x -=-配方,得2223313,2424x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭ 231,416x ⎛⎫-= ⎪⎝⎭ 由此可得31,44x -=±2111,.2x x ==(2)2 3640.-+=x x (出示课件13)师生共同讨论解答如下:解:移项,得2364,x x -=- 二次项系数化为1,得242,3x x -=- 配方,得2224211,3x x -+=-+即()211.3x -=- 因为实数的平方不会是负数,所以x 取任何实数时,上式都不成立,所以原方程无实数根.教师问:用配方法解一元二次方程时,移项时要注意些什么?(出示课件14)学生答:移项时需注意改变符号.教师问:用配方法解一元二次方程的一般步骤.学生答:①移项,二次项系数化为1;②左边配成完全平方式;③左边写成完全平方形式;④降次;⑤解一次方程.根据解方程的过程及学生的回答,教师总结如下:(出示课件15)一般地,如果一个一元二次方程通过配方转化成(x+n )2=p.⑴当p>0时,则 ,方程的两个根为x 1, x 2(2)当p=0时,则(x+n)2=0,x+n=0,开平方得方程的两个根为x 1=x 2=-n;(3)当p<0时,则方程(x+n)2=p 无实数根.出示课件16-19,选4名学生板演,师生共同完成后,老师仍要向学生强调方程无实数根的情况.例3试用配方法说明:不论k 取何实数,多项式 k 2-4k +5 的值必定大于零.(出示课件20)师生共同讨论解答如下:解:k 2-4k +5=k 2-4k +4+1=(k -2)2+1因为(k -2)2≥0,所以(k -2)2+1≥1.所以k 2-4k +5的值必定大于零.教师强调:证明代数式的值恒为正数,需要利用配方法将代数式化成几个非负数的和,利用非负数的性质说明代数式的值恒为正数.例4若a,b,c 为△ABC 的三边长,且试判断△ABC 的形状. (出示课件21)x n +=2268250,a a b b -+-=师生共同讨论解答如下:解:对原式配方,得根据非负数的性质得由此可得 即根据勾股定理的逆定理可知,△ABC 为直角三角形.出示课件22,进行及时巩固.教师问:配方法的应用有哪些?(出示课件23)配方法的应用()()22340,-+-+=a b ()()2230,40,-=-==a b 345,===a b c ,,222222345,+=+==a b c(三)课堂练习(出示课件24-29)1. 一元二次方程y2﹣y ﹣=0配方后可化为( )A.(y+)2=1B.(y-)2=1C.(y+)2=D.(y-)2=2.解方程:4x 2-8x-4=0.3.利用配方法证明:不论x 取何值,代数式-x 2-x -1的值总是负数,并求出它的最大值.4.若 ,求(xy)z 的值.5.如图,在一块长35m 、宽26m 的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,要使剩余部分的面积为850m2,道路的宽应为多少?6.已知a,b,c 为△ABC 的三边长,且试判断△ABC 的形状. 参考答案:3412121234123401326422=+-+++-z y y x x 2220,a b c ab ac bc ++---=1.B2.解:移项,得4x 2-8x=4,二次项系数化为1,得x 2-2x=1,配方,得x 2-2x+1=1+1,整理,得(x-1)2=2,3. 证明:原式=-(x 2+x )-1 =-[x 2+x+(12)2]+14-1=-(x+12)2-344.解:对原式配方,得由非负数的性质可知5.解:设道路的宽为xm, 根据题意得(35-x)(26-x)=850,整理得11=+x 21=-x 2211()0()022-因为,即 x+x+≥≤-x 所以2133(+)--,244≤2121.34-因此当 时,---有最-大值x=x x ()()22230,-+++=x y ()()2220,30,0.-=+==x y 2,32.,==-=由此可得x y z ()()()222.6363⎡⎤=⨯-=-=⎣⎦因此z xyx 2-61x+60=0.解得x 1=60(不合题意,舍去), x 2=1.答:道路的宽为1m.6.解:对原式配方,得由代数式的性质可知所以,△ABC 为等边三角形(四)课堂小结(1)你学会怎样解一元二次方程了吗?有哪些步骤?(2)通过今天的学习你了解了哪些数学思想方法?与同伴交流.(五)课前预习预习下节课(21.2.2)公式法的相关内容。
第21章 一元二次方程教案
第二十一章一元二次方程课题课时1课时课型新授课学习目标1、理解一元二次方程的概念;2、知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;3、会判断一元二次方程的二次项系数、一次项系数和常数项。
重点由实际问题列出一元二次方程和一元二次方程的概念。
判定一个数是否是方程的根;难点由实际问题列出一元二次方程。
准确理解一元二次方程的二次项和系数以及一次项和系数还有常数项。
考点一元二次方程的定义、一般式、系数。
导学流程【自主预习】------不议不讲(一)温故知新问题1如图,有一块长方形铁皮,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm,则盒底的长为__________,宽为__________.得方程_____________________________整理得_____________________________ ②问题2 要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为___________.设应邀请x个队参赛,每个队要与其他_________个队各赛1场,所以全部比赛共_________________场.列方程____________________________化简整理得________________________ ③(二)探索新知请回答下面问题:(1)方程①②中未知数的个数各是多少?(2)它们最高次数分别是几次?方程①②的共同特点是:这些方程的两边都是_________,只含有_______未知数(一元),并且未知数的最高次数是_____(二次)的方程.(三)、总结归纳1.一元二次方程:_____________________________________________.2.一元二次方程的一般形式:____________________________ .。
第21章《一元二次方程》教案
分析:要想确定上述方程的根的情况,只需算出“△”, 确定它的符号情况即可. 例 2. 当 k 取什么值时, 关于 x 的方程 2x -(4k+1)x+2k -1=0 (1)有两个不相等的实数根;(2)有两个相等实数根;(3) 方程没有实数根. 例 3. 求证关于 x 的方程(k2+1)x2-2kx+(k2+4)=0 没有实数根.
页
课题 学习目标
22.2 解一元二次方程(求根公式法) 1.使学生掌握一般一元二次方程的求根公式的推导过程, 并由此培养学生的分析、综合和计算能力. 2.使学生掌握公式法解一元二次方程的方法. 要求学生正确运用求根公式解一元二次方程. 1.求根公式的推导过程. 2.含有字母参数的一元二次方程的公式解法. 学习流程 讨论完善
讨论完善
同时指导学生把学过的方程分为两大类:
2.一元二次方程的一般形式 注意引导学生考虑方程 x2-70x+825=0 和方程 x(x+5)=150,即 x2+5x=150, 可化为:x2+5x-150=0. 从而引导学生认识到:任何一个一元二次方程,经过 整理都可以化为 ax2+bx+c=0(a≠0)的形式.并称之为一元二次方程的一 般形式. 其中 ax2,bx,c 分别称为二次项、一次项、常数项;a, b 分别称为二次项系数、一次项系数. 【注意】二次项系数 a 是不等于 0 的实数(a=0 时,方程化 为 bx+c=0,不再是二次方程了);b,c 可为任意实数. 例 把方程 5x(x+3)=3(x-1)+8 化成一般形式.并写出 它的二次项系数、一次项系数及常数项. 课堂练习 P4 练习 1、2 题
第二十一章 一元二次方程 第 3
第21章一元二次方程-一元二次方程根的判别式、根与系数的关系(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了一元二次方程根的判别式、根与系数的关系的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一元二次方程的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元二次方程根的判别式的基本概念。判别式Δ是判断一元二次方程根的性质的重要工具。它是通过计算b^2 - 4ac得到的,可以帮助我们快速判断方程有几个实数根。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何使用判别式解决实际问题,以及它如何帮助我们判断方程根的情况。
第21章一元二次方程-一元二次方程根的判别式、根与系数的关系(教案)
一、教学内容
第21章一元二次方程-一元二次方程根的判别式、根与系数的关系。本节课我们将学习以下内容:
1.一元二次方程的一般形式:ax^2 + bx + c = 0(a≠0)。
2.判别式Δ(delta)的计算:Δ = b^2 - 4ac。
3.重点难点解析:在讲授过程中,我会特别强调判别式的计算方法和根与系数的关系这两个重点。对于难点部分,如判别式与根的性质的对应关系,我会通过具体例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元二次方程相关的实际问题,如物体抛射运动的轨迹问题。
第二十一章一元二次方程(教案)
第二十一章 一元二次方程 21.1 一元二次方程1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a ≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a ≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1 复习旧知1.什么是方程?你能举一个方程的例子吗?2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式. (1)2x -1 (2)mx +n =0 (3)1x+1=0 (4)x 2=13.下列哪个实数是方程2x -1=3的解?并给出方程的解的概念. A .0 B .1 C .2 D .3 活动2 探究新知 根据题意列方程.1.教材第2页 问题1.提出问题:(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程? (3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程. 2.教材第2页 问题2.提出问题:(1)本题中有哪些量?由这些量可以得到什么?(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?(3)如果有x 个队参赛,一共比赛多少场呢?3.一个数比另一个数大3,且两个数之积为0,求这两个数.提出问题:本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列? 4.一个正方形的面积的2倍等于25,这个正方形的边长是多少? 活动3 归纳概念 提出问题:(1)上述方程与一元一次方程有什么相同点和不同点?(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?(3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程.2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.提出问题:(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?(2)为什么要限制a≠0,b,c可以为0吗?(3)2x2-x+1=0的一次项系数是1吗?为什么?3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4例题与练习例1在下列方程中,属于一元二次方程的是________.(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;(4)2x2-2x(x+7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2教材第3页 例题.例3以-2为根的一元二次方程是()A.x2+2x-1=0 B.x2-x-2=0C.x2+x+2=0 D.x2+x-2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.练习:1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x2=81;(2)(3x-2)(x+1)=8x-3.3.教材第4页 练习第2题.4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.答案:1.a≠1;2.略;3.略;4.k=4.活动5课堂小结与作业布置课堂小结我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?作业布置教材第4页 习题21.1第1~7题.21.2解一元二次方程21.2.1配方法(3课时)第1课时 直接开平方法理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重点运用开平方法解形如(x +m)2=n(n ≥0)的方程,领会降次——转化的数学思想. 难点通过根据平方根的意义解形如x 2=n 的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n ≥0)的方程.一、复习引入学生活动:请同学们完成下列各题. 问题1:填空(1)x 2-8x +________=(x -________)2;(2)9x 2+12x +________=(3x +________)2;(3)x 2+px +________=(x +________)2.解:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(p 2)2 p2.问题2:目前我们都学过哪些方程?二元怎样转化成一元?一元二次方程与一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?二、探索新知上面我们已经讲了x 2=9,根据平方根的意义,直接开平方得x =±3,如果x 换元为2t +1,即(2t +1)2=9,能否也用直接开平方的方法求解呢?(学生分组讨论)老师点评:回答是肯定的,把2t +1变为上面的x ,那么2t +1=±3 即2t +1=3,2t +1=-3 方程的两根为t 1=1,t 2=-2例1 解方程:(1)x 2+4x +4=1 (2)x 2+6x +9=2分析:(1)x 2+4x +4是一个完全平方公式,那么原方程就转化为(x +2)2=1. (2)由已知,得:(x +3)2=2直接开平方,得:x +3=± 2 即x +3=2,x +3=- 2所以,方程的两根x 1=-3+2,x 2=-3- 2 解:略.例2 市政府计划2年内将人均住房面积由现在的10 m 2提高到14.4 m 2,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x ,一年后人均住房面积就应该是10+10x =10(1+x);二年后人均住房面积就应该是10(1+x)+10(1+x)x =10(1+x)2解:设每年人均住房面积增长率为x ,则:10(1+x)2=14.4 (1+x)2=1.44直接开平方,得1+x =±1.2 即1+x =1.2,1+x =-1.2所以,方程的两根是x 1=0.2=20%,x 2=-2.2因为每年人均住房面积的增长率应为正的,因此,x 2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%.(学生小结)老师引导提问:解一元二次方程,它们的共同特点是什么?共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.我们把这种思想称为“降次转化思想”.三、巩固练习教材第6页 练习.四、课堂小结本节课应掌握:由应用直接开平方法解形如x2=p(p≥0)的方程,那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0)的方程,那么mx+n=±p,达到降次转化之目的.若p<0则方程无解.五、作业布置教材第16页 复习巩固1.第2课时 配方法的基本形式理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.重点讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.难点将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.一、复习引入(学生活动)请同学们解下列方程:(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p(p≥0).如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?二、探索新知列出下面问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面前三个方程的解法呢?问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x 的完全平方式而后二个不具有此特征.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2+6x-16=0移项→x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5解一次方程→x1=2,x2=-8可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解. 例1 用配方法解下列关于x 的方程: (1)x 2-8x +1=0 (2)x 2-2x -12分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.解:略. 三、巩固练习教材第9页 练习1,2.(1)(2).四、课堂小结 本节课应掌握:左边不含有x 的完全平方形式的一元二次方程化为左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、作业布置教材第17页 复习巩固2,3.(1)(2).第3课时 配方法的灵活运用了解配方法的概念,掌握运用配方法解一元二次方程的步骤. 通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重点讲清配方法的解题步骤. 难点对于用配方法解二次项系数为1的一元二次方程,通常把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方;对于二次项系数不为1的一元二次方程,要先化二次项系数为1,再用配方法求解.一、复习引入(学生活动)解下列方程:(1)x 2-4x +7=0 (2)2x 2-8x +1=0 老师点评:我们上一节课,已经学习了如何解左边不含有x 的完全平方形式的一元二次方程以及不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:略. (2)与(1)有何关联? 二、探索新知讨论:配方法解一元二次方程的一般步骤: (1)先将已知方程化为一般形式; (2)化二次项系数为1; (3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x +p)2=q 的形式,如果q ≥0,方程的根是x =-p±q ;如果q <0,方程无实根.例1 解下列方程:(1)2x 2+1=3x (2)3x 2-6x +4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方式.解:略.三、巩固练习教材第9页 练习2.(3)(4)(5)(6).四、课堂小结本节课应掌握:1.配方法的概念及用配方法解一元二次方程的步骤.2.配方法是解一元二次方程的通法,它的重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性.在今后学习二次函数,到高中学习二次曲线时,还将经常用到.五、作业布置教材第17页 复习巩固3.(3)(4).补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,求x+y+z的值.(2)求证:无论x,y取任何实数,多项式x2+y2-2x-4y+16的值总是正数.21.2.2公式法理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导,并应用公式法解一元二次方程.重点求根公式的推导和公式法的应用.难点一元二次方程求根公式的推导.一、复习引入1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程(1)x2=4(2)(x-2)2=7提问1这种解法的(理论)依据是什么?提问2这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程.)2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式.)(学生活动)用配方法解方程 2x2+3=7x(老师点评)略总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程无实根.二、探索新知 用配方法解方程:(1)ax 2-7x +3=0 (2)ax 2+bx +3=0如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac2a(这个方程一定有解吗?什么情况下有解?)分析:因为前面具体数字已做得很多,我们现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.解:移项,得:ax 2+bx =-c二次项系数化为1,得x 2+b a x =-ca配方,得:x 2+b a x +(b 2a )2=-c a +(b2a)2即(x +b 2a 2=b 2-4ac4a 2∵4a 2>0,当b 2-4ac ≥0时,b 2-4ac 4a 2≥0∴(x +b 2a 2=(b 2-4ac 2a)2直接开平方,得:x +b 2a ±b 2-4ac 2a即x =-b±b 2-4ac2a∴x 1=-b +b 2-4ac 2a ,x 2=-b -b 2-4ac 2a由上可知,一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac2a就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法. 公式的理解(4)由求根公式可知,一元二次方程最多有两个实数根. 例1 用公式法解下列方程:(1)2x 2-x -1=0 (2)x 2+1.5=-3x (3)x 2-2x +12=0 (4)4x 2-3x +2=0分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可. 补:(5)(x -2)(3x -5)=0 三、巩固练习教材第12页 练习1.(1)(3)(5)或(2)(4)(6). 四、课堂小结 本节课应掌握:(1)求根公式的概念及其推导过程; (2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0;2)找出系数a ,b ,c ,注意各项的系数包括符号;3)计算b 2-4ac ,若结果为负数,方程无解;4)若结果为非负数,代入求根公式,算出结果.(4)初步了解一元二次方程根的情况. 五、作业布置教材第17页 习题4,5.21.2.3 因式分解法掌握用因式分解法解一元二次方程. 通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重点用因式分解法解一元二次方程. 难点让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.一、复习引入(学生活动)解下列方程:(1)2x 2+x =0(用配方法) (2)3x 2+6x =0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x 前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项? (2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解. 因此,上面两个方程都可以写成:(1)x(2x +1)=0 (2)3x(x +2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x =0或2x +1=0,所以x 1=0,x 2=-12.(2)3x =0或x +2=0,所以x 1=0,x 2=-2.(以上解法是如何实现降次的?)因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1 解方程:(1)10x -4.9x 2=0 (2)x(x -2)+x -2=0 (3)5x 2-2x -14=x 2-2x +34 (4)(x -1)2=(3-2x)2思考:使用因式分解法解一元二次方程的条件是什么?解:略 (方程一边为0,另一边可分解为两个一次因式乘积.) 练习:下面一元二次方程解法中,正确的是( )A .(x -3)(x -5)=10×2,∴x -3=10,x -5=2,∴x 1=13,x 2=7B .(2-5x)+(5x -2)2=0,∴(5x -2)(5x -3)=0,∴x 1=25,x 2=35C .(x +2)2+4x =0,∴x 1=2,x 2=-2D .x 2=x ,两边同除以x ,得x =1 三、巩固练习教材第14页 练习1,2.四、课堂小结 本节课要掌握:(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.五、作业布置教材第17页 习题6,8,10,11.21.2.4 一元二次方程的根与系数的关系1.掌握一元二次方程的根与系数的关系并会初步应用. 2.培养学生分析、观察、归纳的能力和推理论证的能力. 3.渗透由特殊到一般,再由一般到特殊的认识事物的规律. 4.培养学生去发现规律的积极性及勇于探索的精神.重点根与系数的关系及其推导 难点正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和、两根的积与系数的关系.一、复习引入1.已知方程x 2-ax -3a =0的一个根是6,则求a 及另一个根的值.2.由上题可知一元二次方程的系数与根有着密切的关系.其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有更简洁的关系?3.由求根公式可知,一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac 2a .观察两式右边,分母相同,分子是-b +b 2-4ac 与-b -b 2-4ac.两根之间通过什么计算才能得到更简洁的关系?二、探索新知解下列方程,并填写表格:方程 x 1 x 2 x 1+x 2 x 1·x 2 x 2-2x =0 x 2+3x -4=0x 2-5x +6=0观察上面的表格,你能得到什么结论?(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 之间有什么关系?(2)关于x 的方程ax 2+bx +c =0(a ≠0)的两根x 1,x 2与系数a ,b ,c 之间又有何关系呢?你能证明你的猜想吗?解下列方程,并填写表格:方程 x 1 x 2 x 1+x 2 x 1·x 2 2x 2-7x -4=0 3x 2+2x -5=0 5x 2-17x +6=0小结:根与系数关系:(1)关于x 的方程x 2+px +q =0(p ,q 为常数,p 2-4q ≥0)的两根x 1,x 2与系数p ,q 的关系是:x 1+x 2=-p ,x 1·x 2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零.)(2)形如ax 2+bx +c =0(a ≠0)的方程,可以先将二次项系数化为1,再利用上面的结论.即:对于方程 ax 2+bx +c =0(a ≠0) ∵a ≠0,∴x 2+b a x +c a =0∴x 1+x 2=-b a ,x 1·x 2=ca(可以利用求根公式给出证明)例1 不解方程,写出下列方程的两根和与两根积: (1)x 2-3x -1=0 (2)2x 2+3x -5=0 (3)13x 2-2x =0 (4)2x 2+6x = 3 (5)x 2-1=0 (6)x 2-2x +1=0例2 不解方程,检验下列方程的解是否正确? (1)x 2-22x +1=0 (x 1=2+1,x 2=2-1) (2)2x 2-3x -8=0 (x 1=7+734,x 2=5-734)例3 已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)例4 已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值. 变式一:已知方程x 2-2kx -9=0的两根互为相反数,求k ; 变式二:已知方程2x 2-5x +k =0的两根互为倒数,求k.三、课堂小结1.根与系数的关系.2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.四、作业布置1.不解方程,写出下列方程的两根和与两根积.(1)x2-5x-3=0(2)9x+2=x2(3)6x2-3x+2=0(4)3x2+x+1=02.已知方程x2-3x+m=0的一个根为1,求另一根及m的值.3.已知方程x2+bx+6=0的一个根为-2,求另一根及b的值.21.3实际问题与一元二次方程(2课时)第1课时 解决代数问题1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点利用一元二次方程解决传播问题、百分率问题.难点如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.一、引入新课1.列方程解应用题的基本步骤有哪些?应注意什么?2.科学家在细胞研究过程中发现:(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?二、教学活动活动1:自学教材第19页探究1,思考教师所提问题.有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.(2)本题中有哪些数量关系?(3)如何利用已知的数量关系选取未知数并列出方程?解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?活动2:自学教材第19页~第20页探究2,思考老师所提问题.两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.三、课堂小结与作业布置课堂小结1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.2.传播问题解决的关键是传播源的确定和等量关系的建立.3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.作业布置教材第21-22页 习题21.3第2-7题.第2课时 解决几何问题1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.重点通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.难点在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.活动4课堂小结与作业布置课堂小结1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.作业布置教材第22页 习题21.3第8,10题.。
第二十一章一元二次方程教案
第二十一章一元二次方程教学目标1.知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.2.过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.根据数学模型恰如其分地给出一元二次方程的概念.(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.(6)提出问题、分析问题,建立一元二次方程的数学模型,并用该模型解决实际问题.3.情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.教学重点1.一元二次方程及其它有关的概念.2.用配方法、公式法、因式分解法降次──解一元二次方程.3.利用实际问题建立一元二次方程的数学模型,并解决这个问题.教学难点1.一元二次方程配方法解题.2.用公式法解一元二次方程时的讨论.3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.21.1 一元二次方程(第一课时)教学内容一元二次方程概念及一元二次方程一般式及有关概念.教学目标了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.2.一元二次方程的一般形式及其有关概念.3.解决一些概念性的题目.4.态度、情感、价值观4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.重难点1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.2.难点:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.教学过程一、复习引入学生活动:列方程.问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?如果假设门的高为x尺,那么这个门的宽为_______尺,根据题意,得________.整理、化简,得:__________.问题(2)如图,如果AC CBAB AC,那么点C叫做线段AB的黄金分割点.如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.整理得:_________.问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.老师点评并分析如何建立一元二次方程的数学模型,并整理.二、探索新知学生活动:请口答下面问题.(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?或与以前多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程.因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得:40-16x-10x+4x2=18移项,得:4x2-26x+22=0其中二次项系数为4,一次项系数为-26,常数项为22.例2.(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:去括号,得:x2+2x+1+x2-4=1移项,合并得:2x2+2x-4=0其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.三、巩固练习教材P4练习1、2四、归纳小结(学生总结,老师点评)本节课要掌握:(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.五、布置作业教材P4 习题21.1 1、2.六、反思21.1 一元二次方程(第二课时)教学内容1.一元二次方程根的概念;2.根据题意判定一个数是否是一元二次方程的根及其利用它们解决一些具体题目.教学目标了解一元二次方程根的概念,会判定一个数是否是一个一元二次方程的根及利用它们解决一些具体问题.提出问题,根据问题列出方程,化为一元二次方程的一般形式,列式求解;由解给出根的概念;再由根的概念判定一个数是否是根.同时应用以上的几个知识点解决一些具体问题.重难点关键1.重点:判定一个数是否是方程的根;2.•难点关键:由实际问题列出的一元二次方程解出根后还要考虑这些根是否确定是实际问题的根.教学过程一、复习引入学生活动:请同学独立完成下列问题.问题1.如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m,那么梯子的底端距墙多少米?108设梯子底端距墙为xm,那么,根据题意,可得方程为___________.整理,得_________.列表:问题2.一个面积为设苗圃的宽为xm,则长为_______m.根据题意,得________.整理,得________.列表:老师点评(略)二、探索新知提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少?(2)如果抛开实际问题,问题1中还有其它解吗?问题2呢?老师点评:(1)问题1中x=6是x2-36=0的解,问题2中,x=10是x2+2x-120=0的解.(3)如果抛开实际问题,问题(1)中还有x=-6的解;问题2中还有x=-12的解.为了与以前所学的一元一次方程等只有一个解的区别,我们称:一元二次方程的解叫做一元二次方程的根.回过头来看:x2-36=0有两个根,一个是6,另一个是-6,但-6不满足题意;同理,问题2中的x=-12的根也满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.例1.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.例2.你能用以前所学的知识求出下列方程的根吗?(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0分析:要求出方程的根,就是要求出满足等式的数,可用直接观察结合平方根的意义.解:(1)移项得x2=64 根据平方根的意义,得:x=±8 即x1=8,x2=-8(2)移项、整理,得x2=2 根据平方根的意义,得x=即x1,x2(3)因为x2-3x=x(x-3)所以x2-3x=0,就是x(x-3)=0所以x=0或x-3=0即x1=0,x2=3三、巩固练习教材P33思考题练习1、2.四、应用拓展例3.要剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm,这块铁片应该怎样剪?设长为xcm,则宽为(x-5)cm列方程x(x-5)=150,即x2-5x-150=0请根据列方程回答以下问题:(1)x可能小于5吗?可能等于10吗?说说你的理由.(2)完成下表:(3分析:x2-5x-150=0与上面两道例题明显不同,不能用平方根的意义和八年级上册的整式中的分解因式的方法去求根,但是我们可以用一种新的方法──“夹逼”方法求出该方程的根.解:(1)x不可能小于5.理由:如果x<5,则宽(x-5)<0,不合题意.x不可能等于10.理由:如果x=10,则面积x2-5x-150=-100,也不可能.(2)(3)铁片长五、归纳小结(学生归纳,老师点评)本节课应掌握:(1)一元二次方程根的概念及它与以前的解的相同处与不同处;(2)要会判断一个数是否是一元二次方程的根;(3)要会用一些方法求一元二次方程的根.六、布置作业习题21.1 3、421.2解一元二次方程21.2.1 直接开平方法教学内容运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.教学目标理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax2+c=0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex+f)2+c=0型的一元二次方程.重难点1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.2.难点:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.教学过程一、复习引入学生活动:请同学们完成下列各题问题1.填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.问题2.如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s•的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,•P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?BCAQ P老师点评:问题1:根据完全平方公式可得:(1)16 4;(2)4 2;(3)(2p )2 2p . 问题2:设x 秒后△PBQ 的面积等于8cm 2 则PB=x ,BQ=2x依题意,得:12x ·2x=8x 2=8根据平方根的意义,得x=±即x 1,x 2可以验证,和都是方程12x ·2x=8的两根,但是移动时间不能是负值. 所以PBQ 的面积等于8cm 2. 二、探索新知上面我们已经讲了x 2=8,根据平方根的意义,直接开平方得x=±,如果x 换元为2t+1,即(2t+1)2=8,能否也用直接开平方的方法求解呢? (学生分组讨论)老师点评:回答是肯定的,把2t+1变为上面的x ,那么2t+1=±即,方程的两根为t 1-12,t 2-12例1:解方程:x 2+4x+4=1分析:很清楚,x 2+4x+4是一个完全平方公式,那么原方程就转化为(x+2)2=1. 三、巩固练习 教材P 6 练习.四、归纳小结 本节课应掌握:由应用直接开平方法解形如x 2=p (p ≥0),那么x=±转化为应用直接开平方法解形如(mx+n )2=p (p ≥0),那么mx+n=五、布置作业教材P 16 习题1 六、反思21.2.1 配方法(第一课时)教学内容间接即通过变形运用开平方法降次解方程.教学目标理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的解题步骤.重难点关键1.重点:讲清“直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.2.难点:不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.教学过程一、复习引入(学生活动)请同学们解下列方程(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得x=mx+n=p≥0).如:4x2+16x+16=(2x+4)2二、探索新知列出下面二个问题的方程并回答:(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?(2)能否直接用上面三个方程的解法呢?问题1:印度古算中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮,告我总数共多少,两队猴子在一起”.大意是说:一群猴子分成两队,一队猴子数是猴子总数的18的平方,另一队猴子数是12,那么猴子总数是多少?你能解决这个问题吗?问题2:如图,在宽为20m,长为32m的矩形地面上,•修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为5000m2,道路的宽为多少?老师点评:问题1:设总共有x只猴子,根据题意,得:x=(18x)2+12整理得:x2-64x+768=0问题2:设道路的宽为x,则可列方程:(20-x)(32-2x)=500整理,得:x2-36x+70=0(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.(2)不能.既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:x2-64x+768=0 移项→x=2-64x=-768两边加(642)2使左边配成x2+2bx+b2的形式→ x2-64x+322=-768+1024左边写成平方形式→(x-32)2=256 降次→x-32=±16 即x-32=16或x-32=-16解一次方程→x1=48,x2=16可以验证:x1=48,x2=16都是方程的根,所以共有16只或48只猴子.学生活动:例1.按以上的方程完成x2-36x+70=0的解题.老师点评:x2-36x=-70,x2-36x+182=-70+324,(x-18)2=254,x-18=±,x-18=或x1≈34,x2≈2.可以验证x1≈34,x2≈2都是原方程的根,但x≈34不合题意,所以道路的宽应为2.例2.解下列关于x的方程(1)x2+2x-35=0 (2)2x2-4x-1=0分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.三、巩固练习教材P9练习1四、归纳小结本节课应掌握:左边不含有x的完全平方形式,左边是非负数的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.五、反思21.2.2 配方法(第二课时)教学内容给出配方法的概念,然后运用配方法解一元二次方程.教学目标了解配方法的概念,掌握运用配方法解一元二次方程的步骤.通过复习上一节课的解题方法,给出配方法的概念,然后运用配方法解决一些具体题目.重难点关键1.重点:讲清配方法的解题步骤.2.难点与关键:把常数项移到方程右边后,•两边加上的常数是一次项系数一半的平方.教具、学具准备小黑板教学过程一、复习引入(学生活动)解下列方程:(1)x2-8x+7=0 (2)x2+4x+1=0老师点评:我们前一节课,已经学习了如何解左边含有x的完全平方形式,•右边是非负数,不可以直接开方降次解方程的转化问题,那么这两道题也可以用上面的方法进行解题.解:(1)x2-8x+(-4)2+7-(-4)2=0 (x-4)2=9 x-4=±3即x1=7,x2=1 (2)x2+4x=-1 x2+4x+22=-1+22(x+2)2=3即x+2=x1,x2二、探索新知像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.例1.解下列方程(1)x2+6x+5=0 (2)2x2+6x-2=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方.解:(1)移项,得:x2+6x=-5配方:x2+6x+32=-5+32(x+3)2=4由此可得:x+3=±2,即x1=-1,x2=-5(2)移项,得:2x2+6x=-2二次项系数化为1,得:x2+3x=-1配方x2+3x+(32)2=-1+(32)2(x+32)2=54由此可得x+32=±2,即x1=2-32,x2=-2-32(3)去括号,整理得:x2+4x-1=0移项,得x2+4x=1配方,得(x+2)2=5x+2=x1,x2-2三、巩固练习教材P9练习 2四、应用拓展例2.用配方法解方程(6x+7)2(3x+4)(x+1)=6分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4=12(6x+7)+12,x+1=16(6x+7)-16,因此,方程就转化为y的方程,像这样的转化,我们把它称为换元法.解:设6x+7=y则3x+4=12y+12,x+1=16y-16依题意,得:y2(12y+12)(16y-16)=6去分母,得:y2(y+1)(y-1)=72 y2(y2-1)=72,y4-y2=72(y2-12)2=2894y2-12=±172y2=9或y2=-8(舍)∴y=±3当y=3时,6x+7=3 6x=-4 x=-2 3当y=-3时,6x+7=-3 6x=-10 x=-5 3所以,原方程的根为x1=-23,x2=-53五、归纳小结本节课应掌握:配方法的概念及用配方法解一元二次方程的步骤.六、布置作业教材P17 习题3七、反思21.2.2 公式法教学内容1.一元二次方程求根公式的推导过程;2.公式法的概念;3.利用公式法解一元二次方程.教学目标理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)的求根公式的推导公式,并应用公式法解一元二次方程.重难点1.重点:求根公式的推导和公式法的应用.2.难点:一元二次方程求根公式法的推导.教学过程一、复习引入(学生活动)用配方法解下列方程(1)6x2-7x+1=0 (2)4x2-3x=52总结用配方法解一元二次方程的步骤(学生总结,老师点评).(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m)2=n的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.二、探索新知如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.问题:已知ax 2+bx+c=0(a ≠0)且b 2-4ac ≥0,试推导它的两个根x 1=,x 2 分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去. 解:移项,得:ax 2+bx=-c二次项系数化为1,得x 2+b a x=-ca配方,得:x 2+b a x+(2b a )2=-c a +(2b a )2 即(x+2ba)2=2244b ac a -∵b 2-4ac ≥0且4a 2>0 ∴2244b ac a -≥0 直接开平方,得:x+2ba=±2a即x=2b a -± ∴x 1=2b a -,x 2=2b a--由上可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b-4ac ≥0时,将a 、b 、c 代入式子x=2b a-±就得到方程的根.(2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法. (4)由求根公式可知,一元二次方程最多有两个实数根. 例1.用公式法解下列方程.(1)2x 2-4x-1=0 (2)5x+2=3x 2 (3)(x-2)(3x-5)=0 (4)4x 2-3x+1=0 三、巩固练习 教材P 12 练习题四、归纳小结 五、反思22.2.3 因式分解法教学内容用因式分解法解一元二次方程.教学目标掌握用因式分解法解一元二次方程.通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法──因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.重难点关键1.重点:用因式分解法解一元二次方程.2.•难点与关键:让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题简便.教学过程一、复习引入(学生活动)解下列方程.(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.二、探索新知(学生活动)请同学们口答下面各题.(老师提问)(1)上面两个方程中有没有常数项?(2)等式左边的各项有没有共同因式?(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解:2x2+x=x(2x+1),3x2+6x=3x(x+2)因此,上面两个方程都可以写成:(1)x(2x+1)=0 (2)3x(x+2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.(2)3x=0或x+2=0,所以x1=0,x2=-2.因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.例1.解方程(1)4x2=11x (2)(x-2)2=2x-4分析:(1)移项提取公因式x;(2)等号右侧移项到左侧得-2x+4提取-2因式,即-2(x-2),再提取公因式x-2,便可达到分解因式;一边为两个一次式的乘积,•另一边为0的形式解:(1)移项,得:4x2-11x=0因式分解,得:x(4x-11)=0于是,得:x=0或4x-11=0x1=0,x2=11 4(2)移项,得(x-2)2-2x+4=0(x-2)2-2(x-2)=0因式分解,得:(x-2)(x-2-2)=0 整理,得:(x-2)(x-4)=0于是,得x-2=0或x-4=0x1=2,x2=4例2.已知9a2-4b2=0,求代数式22a b a bb a ab+--的值.分析:要求22a b a bb a ab+--的值,首先要对它进行化简,然后从已知条件入手,求出a与b的关系后代入,但也可以直接代入,因计算量比较大,比较容易发生错误.解:原式=22222 a b a b bab a ---=-∵9a2-4b2=0∴(3a+2b)(3a-2b)=0 3a+2b=0或3a-2b=0,a=-23b或a=23b当a=-23b时,原式=-223bb-=3当a=23b时,原式=-3.三、巩固练习教材P45练习1、2.四、应用拓展例3.我们知道x2-(a+b)x+ab=(x-a)(x-b),那么x2-(a+b)x+ab=0就可转化为(x-a)(x-b)=0,请你用上面的方法解下列方程.(1)x2-3x-4=0 (2)x2-7x+6=0 (3)x2+4x-5=0分析:二次三项式x2-(a+b)x+ab的最大特点是x2项是由x·x而成,常数项ab是由-a·(-b)而成的,而一次项是由-a·x+(-b·x)交叉相乘而成的.根据上面的分析,•我们可以对上面的三题分解因式.解(1)∵x2-3x-4=(x-4)(x+1)∴(x-4)(x+1)=0∴x-4=0或x+1=0∴x1=4,x2=-1(2)∵x2-7x+6=(x-6)(x-1)∴(x-6)(x-1)=0∴x-6=0或x-1=0∴x1=6,x2=1(3)∵x2+4x-5=(x+5)(x-1)∴(x+5)(x-1)=0∴x+5=0或x-1=0∴x1=-5,x2=1上面这种方法,我们把它称为十字相乘法.五、归纳小结本节课要掌握:(1)用因式分解法,即用提取公因式法、•十字相乘法等解一元二次方程及其应用.(2)三种方法(配方法、公式法、因式分解法)的联系与区别:联系①降次,即它的解题的基本思想是:将二次方程化为一次方程,即降次.②公式法是由配方法推导而得到.③配方法、公式法适用于所有一元二次方程,因式分解法适用于某些一元二次方程. 区别:①配方法要先配方,再开方求根. ②公式法直接利用公式求根.③因式分解法要使方程一边为两个一次因式相乘,另一边为0,•再分别使各一次因式等于0. 六、布置作业教材P17 复习巩固621.2.4一元二次方程的根与系数的关系教学目标: 知识技能目标1.能说出根与系数的关系;2.会利用根与系数的关系解有关的问题. 过程性目标在经历观察、归纳、猜想、验证的这个探索发现过程中,通过尝试与交流,开拓思路,体会应用自己探索成果的喜悦.情感态度目标1.通过观察、实践、讨论等活动,经历发现问题,发现关系的过程,养成独立思考的习惯;2.通过交流互动,逐步养成合作的意识及严谨的治学精神. 重点和难点:重点:一元二次方程两根之和,及两根之积与原方程系数之间的关系; 难点:对根与系数这一性质进行应用. 教学过程: 一、创设情境1.请说出解一元二次方程的四种解法.2.解下列方程,将得到的解填入下面的表格中,你发现表格中两个解的和与积和原来的方程有什么联系?(1)x 2-2x =0; (2)x 2+3x -4=0; (3)x 2-5x +6=0.方程1x 2x 21x x + 21x x •.二、探究归纳方程1x 2x 21x x + 21x x • x 2-2x =0 0 2 2 0 x 2+3x -4=01-4-3-4x 2-5x +6=02 3 5 6可以得到;两个解的和等于一次项系数的相反数,两个解的积等于常数项.一般地,对于关于x 的方程x 2+px +q =0(p ,q 为已知常数,p 2-4q 一般地,对于关于x 的方程x 2+px +q =0(p ,q 为已知常数,p 2-4q ≥0),试用求根公式求出它的两个解x 1、x 2,算一算x 1+x 2、x 1•x 2的值,你能得出什么结果?与上面发现的现象是否一致.(此探索过程让学生分组进行交流、协作完成) 探索过程qqp p q p p x x pqp p q p p x x qp p x q p p x q p p a ac b b x q p ac b q c p b a q px x =---•-+-=•-=---+-+-=+---=-+-=-±-=-±-=≥-=-====++24242424242424240441022212221222122222,,,结论:两根之和等于一次项系数的相反数,两根之积等于常数项,这与上面的发现是一致的.三、实践应用例 1 已知关于x 的方程x 2-px +q =0的两个根是0和-3,求p 和 q 的值. 解法一:因为关于x 的方程x 2-px +q =0的两个根是0和-3,所以有.q p q p q p q p 03030)3()3(00022=-=⎩⎨⎧=-=⎪⎩⎪⎨⎧=+-⨯--=+⨯-,所以解这个方程组得解法二:由q x x p x x =•-=+2121,,方程x 2-px +q =0的两个根是0和-3,可得 .q p q p03)3(0)3(0=-==-⨯,即得=--+例2 写出下列方程的两根和与两根积:05)4(032)3(02114)2(017)1(2222=-+-=-+=-+=+-n nx x x x x x x x5)4(2321)3(2114)2(17)1(2121212121212121-=•=+=•-=+=•-=+=•=+n x x n x x x x x x x x x x x x x x ,-,-,,解课堂练习1.写出下列方程的两根和与两根积: 03)4(0532)3(04411)2(025)1(2222=-+-=-+=-+=+-m mx x x x x x x x2.已知关于x 的方程x 2-6x +p 2-2p +5=0的一个根是2,求方程的另一个根和p 的值. 四、交流反思1.通过这节课的学习,掌握探索的步骤:观察——归纳——猜想——证明;2.通过本节课探索出一元二次方程的根与系数的关系. 五、检测反馈1.已知关于x 的方程x 2-2x +m 2+m -2=0的一个根是2,求方程的另一个根和m 的值.2.写出下列方程的两根和与两根积: 03)4(0152)3(0)2(047)1(2222=+-=+-=-+=+-m x x x x n mx x x x 3.已知关于x 的方程2x 2-mx -m 2=0有一个根是1,求m 的值. 六、布置作业 习题21.2 7题21.3 实际问题与一元二次方程(第一课时)教学内容由“增长率”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题. 教学目标掌握用“增长率”建立数学模型,并利用它解决一些具体问题和实际实际问题. 重难点关键 用“增长率”建立数学模型 教学过程一、问题引入教材19页 探究1 探究2二、探索新知(教师语言引入)(学生活动)问题2:某工厂第一季度的一月份生产电视机是1万台,第一季度生产电视机的总台数是3.31万台,求二月份、三月份生产电视机平均增长的百分率是多少?老师点评分析:直接假设二月份、三月份生产电视机平均增长率为x .因为一月份是1万台,。
21.2.1用配方法解一元二次方程(教案)
本节课的核心素养目标主要包括以下三个方面:
1.培养学生的逻辑推理能力:通过配方法解一元二次方程的过程,使学生理解数学逻辑推理的重要性,提高他们在解决问题时的逻辑思维能力。
2.增强学生的数学建模素养:让学生在实际问题中运用配方法求解一元二次方程,培养他们将现实问题转化为数学模型的能力,从而提高解决实际问题的数学素养。
其次,在新课讲授环节,我发现学生们在理解配方法的原理和步骤上存在一定困难。虽然我通过详细的解释和举例来说明,但仍有部分学生感到困惑。在以后的教学中,我需要更加关注学生的反馈,针对他们的疑难点进行有针对性的讲解和练习。同时,可以增加一些互动环节,让学生在课堂上及时提问,以便于我了解他们的掌握情况。
在实践活动和小组讨论环节,学生们表现得相当积极。他们能够将所学知识应用到实际问题中,并通过小组合作解决问题。这一点让我感到很欣慰。但同时我也注意到,有些小组在讨论过程中出现了偏离主题的现象,导致讨论效果不佳。针对这个问题,我需要在今后的教学中加强对学生讨论方向的引导,确保讨论能够紧紧围绕主题进行。
21.2.1用配方法解一元二次方程(教案)
一、教学内容
本节课选自九年级数学教材《代数与方程》第21章第2节,主题为“21.2.1用配方法解一元二次方程”。教学内容主要包括以下两个方面:
1.掌握配方法解一元二次方程的步骤,并能熟练运用该方法解决实际问题。
2.了解配方法的原理,理解为何配方法可以求解一元二次方程。
a.将一元二次方程的一般形式ax^2 + bx + c = 0转换为完全平方形式。
b.利用完全平方公式解出方程的根。
c.分析解的实际情况,如重根、无解等。
(2)运用配方法解决实际问题:学生需学会将实际问题抽象为一元二次方程,然后运用配方法求解,例如以下例题:
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程的根与系数的关系教案
21.2解一元二次方程21.2.4一元二次方程的根与系数的关系一、教学目标【知识与技能】1.掌握一元二次方程根与系数的关系;2.能运用根与系数的关系解决具体问题.【过程与方法】经历探索一元二次方程根与系数的关系的过程,体验观察→发现→猜想→验证的思维转化过程,培养学生分析问题和解决问题的能力.【情感态度与价值观】通过观察、归纳获得数学猜想,体验数学活动充满着探索性和创造性,理解事物间相互联系、相互制约的辩证唯物主义观点,掌握由“特殊——一般——特殊”的数学思想方法,培养学生勇于探索的精神.二、课型新授课三、课时1课时四、教学重难点【教学重点】一元二次方程根与系数的关系及其应用.【教学难点】探索一元二次方程根与系数的关系.五、课前准备课件六、教学过程(一)导入新课1.一元二次方程的求根公式是什么?(出示课件2)学生口答:2(40).2b b ac x b ac a-±=-≥2.如何用判别式b 2-4ac 来判断一元二次方程根的情况?学生口答:对一元二次方程:ax 2+bx+c=0(a≠0).b 2-4ac>0时,方程有两个不相等的实数根.b 2-4ac=0时,方程有两个相等的实数根.b 2-4ac<0时,方程无实数根.想一想:方程的两根x 1和x 2与系数a、b、c 还有其他关系吗?(二)探索新知探究根与系数的关系填表,观察、猜想(出示课件4)方程x 1,x 2x 1+x 2x 1·x 2x 2-2x +1=0x 2+3x -10=0x 2+5x +4=0你发现什么规律?①用语言叙述你发现的规律;②x2+px+q=0的两根x1,x2用式子表示你发现的规律.出示课件5:若一元二次方程的两根为x1,x2,则有x-x1=0,且x-x2=0,那么方程(x-x1)(x-x2)=0(x1,x2为已知数)的两根是什么?将方程化为x2+px+q=0的形式,你能看出x1,x2与p,q之间的关系吗?教师引导:归纳结论:(出示课件6)如果关于x的方程x2+px+q=0的两根为x1,x2,则:x1+x2=-p,x1·x2=q.教师问:如果方程二次项系数不为1呢?(出示课件7)方程x1,x2x1+x2x1·x22x2-3x-2=03x2-4x+1=0上面发现的结论在这里成立吗?请完善规律.①用语言叙述发现的规律;②ax2+bx+c=0的两根x1,x2用式子表示你发现的规律.师生共同归纳:(出示课件8)一元二次方程根与系数的关系(韦达定理):若一元二次方程ax2+bx+c=0(a≠0)有两实数根x1,x2,则x1+x2=-ba ,x1·x2=ca.这表明两根之和为一次项系数与二次项系数的比的相反数,两根之积等于常数项与二次项系数的比.请同学用求根公式证明.(一生板演)教师问:在运用根与系数的关系解决具体问题时,是否需要考虑根的判别式Δ=b2-4ac≥0呢?强调:能用根与系数的关系的前提条件为b2-4ac≥0.出示课件9,10:例1利用根与系数的关系,求下列方程的两根之和、两根之积.(1)x2+7x+6=0;(2)2x2-3x-2=0.学生思考后,共同解答如下:解:⑴这里a=1,b=7,c=6.Δ=b2-4ac=72–4×1×6=25>0.∴方程有两个实数根.设方程的两个实数根是x1,x2,那么x1+x2=-7,x1·x2=6.⑵这里a=2,b=-3,c=-2.Δ=b2-4ac=(-3)2–4×2×(-2)=25>0,∴方程有两个实数根.设方程的两个实数根是x1,x2,那么x1+x2=32,x1·x2=-1.出示课件11:不解方程,求方程两根的和与两根的积:①x2+3x-1=0;②2x2-4x+1=0.学生自主思考并解答.解:⑴x1+x2=-3,x1·x2=-1.⑵原方程可化为:2122=+-xxx1+x2=2,x1·x2=1 2 .出示课件12:例2已知方程5x2+kx-6=0的一个根是2,求它的另一个根及k 的值.学生思考后,共同解答如下:解:设方程的两个根分别是x1,x2,其中x1=2.所以:x1·x2=2x2=6, 5-即:x2=3, 5-由于x1+x2=2+3 ()5-=,5k-得:k=-7.答:方程的另一个根是3,5-k=-7.出示课件13:已知方程x2-(k+1)x+3k=0的一个根是2,求它的另一个根及k 的值.学生自主思考并解答.解:设方程的另一个根为x1.把x=2代入方程,得4-2(k+1)+3k=0.解这方程,得k=-2.由根与系数关系,得x1·2=3k,即2x1=-6.∴x 1=-3.答:方程的另一个根是-3,k 的值是-2.出示课件14:例3不解方程,求方程2x 2+3x-1=0的两根的平方和、倒数和.师生共同分析:将所求代数式分别化为只含有x 1+x 2和x 1·x 2的式子后,用根与系数的关系,可求其值.师生共同解答如下:解:根据根与系数的关系可知:121231,.22+=-⋅=-x x x x ()()22212112212,∵+=++x x x x x x ∴()2221212122+=+-x x x x x x 21331;4222⎛⎫⎛⎫=--⨯-= ⎪ ⎪⎝⎭⎝⎭()1212121132.2312+⎛⎫⎛⎫+==-÷- ⎪ ⎪⎝⎭⎝=⎭x x x x x x 出示课件15:设x 1,x 2为方程x 2-4x+1=0的两个根,则:⑴x 1+x 2=,(2)x 1·x 2=,(3)=-221)(x x ,(4)=+2221x x .学生自主解答后,口答:⑴4;⑵1;⑶12;⑷14.出示课件16:例4设x 1,x 2是方程x 2-2(k-1)x+k 2=0的两个实数根,且x 12+x 22=4,求k 的值.教师分析:将x 1+x 2=2(k -1),x 1x 2=k 2,代入x 12+x 22=4可求出k 值.此时需用Δ=b 2-4ac 来判断k 的取值,这是本例的关键.解:由方程有两个实数根,得Δ=4(k -1)2-4k 2≥0即-8k +4≥0.∴.21≤k 由根与系数的关系得x 1+x 2=2(k -1),x 1x 2=k 2.∴x 12+x 22=(x 1+x 2)2-2x 1x 2=4(k -1)2-2k 2=2k 2-8k +4.由x 12+x 22=4,得2k 2-8k+4=4,解得k 1=0,k 2=4.经检验,k 2=4不合题意,舍去.师生共同总结归纳如下:(出示课件17)12111.x x +=1212;x x x x +2221212122.()2;x x x x x x +=+-12213.x x x x +221212x x x x +=2121212()2;x x x x x x +-=124.(1)(1)x x ++=1212()1;x x x x +++125.x x -==教师强调:求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.出示课件18:当k 为何值时,方程2x 2-(k+1)x+k+3=0的两根差为1.学生自主思考并解答.解:设方程两根分别为x1,x2(x1>x2),则x1-x2=1.∵(x2-x1)2=(x1+x2)2-4x1x2,由根与系数的关系得x1+x2=12k+,x1x2=32k+.∴(12k+)2-4×32k+=1.解得k1=9,k2=-3.当k=9或-3时,由于Δ>0,∴k的值为9或-3.(三)课堂练习(出示课件19-25)1.一元二次方程x2﹣2x=0的两根分别为x1和x2,则x1x2为()A.﹣2B.1C.2D.02.如果-1是方程2x2-x+m=0的一个根,则另一个根是___,m=____.3.已知一元二次方程x2+px+q=0的两根分别为-2和1,则:p=,q=.4.已知方程3x2-19x+m=0的一个根是1,求它的另一个根及m的值.5.已知x1,x2是方程2x2+2kx+k-1=0的两个根,且(x1+1)(x2+1)=4;(1)求k的值;(2)求(x1-x2)2的值.6.设x1,x2是方程3x2+4x–3=0的两个根.利用根系数之间的关系,求下列各式的值.(1)(x1+1)(x2+1);(2).2112xxxx+7.当k为何值时,方程2x2-kx+1=0的两根差为1.8.已知关于x的一元二次方程mx2-2mx+m-2=0(1)若方程有实数根,求实数m的取值范围.(2)若方程两根x1,x2满足∣x1-x2∣=1求m的值.参考答案:1.D2.32;-33.1;-24.解:将x =1代入方程中:3-19+m=0.解得m=16,设另一个根为x 1,则:1×x 1=16.3c a =∴x 1=16.35.解:(1)根据根与系数的关系12,x x k +=-121.2k x x -=得(x 1+1)(x 2+1)=x 1x 2+(x 1+x 2)+1=1()14,2k k -+-+=解得:k=-7;(2)因为k=-7,所以127,x x +=12 4.x x =-则:222121212()()474(4)65.x x x x x x -=+-=-⨯-=6.解:根据根与系数的关系得:12124, 1.3b c x x x x a a +=-=-⋅==-(1)(x 1+1)(x 2+1)=x 1x 2+x 1+x 2+1=44(-1)1;33-++=-(2)222211212121212123492x x x x x x x x x x x x x x +++===-()-.7.解:设方程两根分别为x 1,x 2(x 1>x 2),则x 1-x 2=1,由根与系数的关系,得,221k x x =+,2121=∙x x ∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=1,∴1,21422=⨯-⎪⎪⎭⎫ ⎝⎛k ∴3,22=⎪⎪⎭⎫ ⎝⎛k ∵△>0,∴=±k 8.解:(1)方程有实数根,24b acD =-=(-2m )2-4m (m -2)22448m m m=-+=8m ≠0∴m 的取值范围为m>0.(2)∵方程有实数根x 1,x 2,∴.22,2121mm x x x x -=⋅=+∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=1,∴1.2422=-⨯-m m 解得m=8.经检验m=8是原方程的解.(四)课堂小结通过这节课的学习你有哪些收获和体会?有哪些地方需要特别注意的?谈谈你的看法.(五)课前预习预习下节课(21.3)第1课时的相关内容。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)因式分解法教案
21.2 解一元二次方程21.2.3 因式分解法一、教学目标【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度与价值观】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.二、课型新授课三、课时1课时四、教学重难点【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.五、课前准备课件六、教学过程(一)导入新课1.解一元二次方程的方法有哪些?(出示课件2)学生答:直接开平方法:x2=a (a≥0),配方法:(x+m)2=n (n≥0),公式法:x=2ba-±(b2-4ac≥0).2. 什么叫因式分解?学生答:把一个多项式分解成几个整式乘积的形式叫做因式分解,也叫把这个多项式分解因式.3.分解因式的方法有那些?(出示课件3)学生答:(1)提取公因式法:am+bm+cm=m(a+b+c).(2)公式法:a²-b²=(a+b)(a-b), a²±2ab+b²=(a±b) ².(3)十字相乘法.教师问:下面的方程如何使解答简单呢?x2+25x=0.出示课件5:根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)教师问:你能根据题意列出方程吗?学生答:设物体经过x s 落回地面,这时它离地面的高度为0m ,即10x -4.9x 2=0.教师问:你能想出解此方程的简捷方法吗?(二)探索新知探究 因式分解法的概念学生用配方法和公式法解方程10x -4.9x 2=0.(两生板演)配方法解方程10x -4.9x 2=0. 解:2100049x x -=,22210050500494949x x ⎛⎫⎛⎫-+-=+- ⎪ ⎪⎝⎭⎝⎭2250504949x ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭50504949x -=±50504949x =±+110049,=x 20.=x公式法解方程10x -4.9x 2=0.解:24.9100x x -=,a=4.9,b=-10,c=0.b 2-4ac= (-10)2-0=100,a acb b x 242-±-=()10102 4.9--±=⨯110049,=x20. =x教师引导学生尝试找出其简洁解法为:(出示课件7)x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.这种解法是不是很简单?教师问:以上解方程的方法是如何使二次方程降为一次方程的?x(10-4.9x)=0,①x=0或10-4.9x=0,②通过学生的讨论、交流可归纳为:(出示课件8)可以发现,上述解法中,由①到②的过程,不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫做因式分解法.教师提示:(出示课件9)1.用因式分解法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的方法;3.理论依据是“ab=0,则a=0或b=0 ”.师生共同归纳:(出示课件10)分解因式法解一元二次方程的步骤是:1.将方程右边化为等于0的形式;2.将方程左边因式分解为A×B;3.根据“ab=0,则a=0或b=0”,转化为两个一元一次方程;4.分别解这两个一元一次方程,它们的根就是原方程的根.例1 解下列方程:(出示课件11)(1)x(x-2)+x-2=0; (2)5x 2-2x-14=x 2-2x+34. 师生共同解答如下: 解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x 1=2,x 2=-1;(2)原方程整理为4x 2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x 1=-12,x 2=12. 想一想 以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.学生思考后,教师总结如下:(出示课件12)一.因式分解法简记歌诀:右化零,左分解;两因式,各求解.二.选择解一元二次方程的技巧:1.开平方法、配方法适用于能化为完全平方形式的方程.2.因式分解法适用于能化为两个因式之和等于0的形式的方程.3.配方法、公式法适用于所有一元二次方程.出示课件13:解下列方程:2222221 +=0; (2) -=0; (3) 3-6=-3;(4) 4-121=0; (5) 3(2+1)=4+2; (6) (-4)=(5-2).()x x x x x x x x x x x 学生自主思考并解答.(六生板演)解:⑴因式分解,得x(x+1)=0.于是得x=0或x+1=0,x 1=0,x 2=-1.⑵因式分解,得x (x)=0于是得x=0或x-2=0x1=0,x2=2.⑶将方程化为x2-2x+1 = 0. 因式分解,得(x-1)(x-1)=0.于是得x-1=0或x-1=0,x1=x2=1.⑷因式分解,得(2x+11)(2x-11)=0.于是得2x+11=0或2x-11=0,x1=-5.5,x2=5.5.⑸将方程化为6x2-x-2=0. 因式分解,得(3x-2)(2x+1)=0. 于是得3x-2=0或2x+1 = 0,x1=23,x2=12.⑹将方程化为(x-4)2-(5-2x)2=0.因式分解,得(x-4-5+2x)(x-4+5-2x)=0.(3x-9)(1-x)=0.于是得3x-9=0或1-x=0,x1=3,x2=1.出示课件16:用适当方法解下列方程:−x)2;(2)x2-6x-19=0;(3)3x2=4x+1;(4)y2-15=2y;(5)5x(x-3)-(x-3)(x+1)=0;(6)4(3x+1)2=25(x-2)2.教师提示:根据方程的结构特征,灵活选择恰当的方法来求解.四种方法的选择顺序是:直接开平方法→因式分解法→公式法→配方法.师生共同解答如下.(出示课件17,18,19)解:(1)(1-x)2=3,∴(x-1)2=3,x-1∴x1=1x2=1.(2)移项,得x2-6x=19.配方,得x2-6x+(-3)2=19+(-3)2.∴(x-3)2=28.∴x-3=±.∴x1=3+,x2=3-.(3)移项,得3x2-4x-1=0.∵a=3,b=-4,c=-1,∴x=−(−4)±√(−4)2−4×3×(−1)2×3=2±73.∴x1=2+73,x2=2-73.(4)移项,得y2-2y-15=0.把方程左边因式分解,得(y-5)(y+3)=0. ∴y-5=0或y+3=0.∴y1=5,y2=-3.(5)将方程左边因式分解,得(x-3)[5x-(x+1)]=0. ∴(x-3)(4x-1)=0.∴x-3=0或4x-1=0.∴x1=3,x2=1 4 .6)移项,得4(3x+1)2-25(x-2)2=0.∴[2(3x+1)]2-[5(x-2)]2=0.∴[2(3x+1)+5(x-2)]·[2(3x+1)-5(x-2)]=0. ∴(11x-8)(x+12)=0.∴11x-8=0或x+12=0.∴x1=811,x2=-12.出示课件20,21:用适当的方法解下列方程:(1)x2-41=0;(2) 5(3x+2)2=3x(3x+2).学生自主思考并解答.解:(1)∵x2-14=0,∴x2=14,即x=±14.∴x1=12,x2=-12.⑵原方程可变形为5(3x+2)2-3x(3x+2)=0,∴(3x+2)(15x+10-3x)=0.∴3x+2=0或12x+10=0.∴x1=-23,x2=-56.(三)课堂练习(出示课件22-30)1.已知x=2是关于x的一元二次方程kx²+(k²﹣2)x+2k+4=0的一个根,则k的值为.2. 解方程:2(x﹣3)=3x(x﹣3).3.解下列方程:(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12.4.小华在解一元二次方程x2-x=0 时,只得出一个根x=1,则被漏掉的一个根是()A.x=4 B.x=3C.x=2 D.x=05.我们已经学习了一元二次方程的四种解法:直接开平方法、配方法、公式法和因式分解法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x2-3x+1=0;②(x-1)2=3;③x2-3x=0;④x2-2x=4.我选择______________________.6.解方程:(x2+3)2-4(x2+3)=0.参考答案:1.-32.解:2(x﹣3)=3x(x﹣3),移项得2(x﹣3)﹣3x(x﹣3)=0,因式分解得(x﹣3)(2﹣3x)=0,x﹣3=0或2﹣3x=0,解得:x1=3,x2=32.3.解:⑴x2+2x+2=0,(x+1)2=-1.此方程无解.⑵x2-4x-12=0,(x-2)2=16.x1=6,x2=-2.4.D5.解:答案不唯一.若选择①,①适合公式法,x2-3x+1=0,∵a=1,b=-3,c=1,∴b2-4ac=9-4=5>0.∴x=3±5 2.∴x1=3+52,x2=3-52.若选择②,②适合直接开平方法,∵(x-1)2=3,x-1=±3,∴x1=1+3,x2=1- 3. 若选择③,③适合因式分解法,x2-3x=0,因式分解,得x(x-3)=0.解得x1=0,x2=3.若选择④,④适合配方法,x2-2x=4,x2-2x+1=4+1=5,即(x-1)2=5.开方,得x-1=± 5.∴x1=1+5,x2=1- 5.5.提示:把(x2+3)看作一个整体来提公因式,再利用平方差公式,因式分解.解:设x2+3=y,则原方程化为y2-4y=0.分解因式,得y(y-4)=0,解得y=0,或y=4.①当y=0 时,x2+3=0,原方程无解;②当y=4 时,x2+3=4,即x2=1.解得x=±1.所以原方程的解为x1=1,x2=-1.(四)课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?⑴公式法虽然是万能的,对任何一元二次方程都适用,但不一定是最简单的,因此在解方程时我们首先考虑能否应用“直接开平方法”、“因式分解法”等简单方法,若不行,再考虑公式法(适当也可考虑配方法).⑵方程中有括号时,应先用整体思想考虑有没有简单方法,若看不出合适的方法时,则把它去括号并整理为一般形式再选取合理的方法.(五)课前预习预习下节课(21.2.4)的相关内容。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)
21.3实际问题与一元二次方程第1课时一、教学目标【知识与技能】会根据具体问题中的数量关系,列出一元二次方程并求解,能根据问题中的实际意义,检验所得结果的合理性.【过程与方法】经过“问题情境——建立模型——求解——解释与应用”的过程中,进一步锻炼学生的分析问题,解决问题的能力.【情感态度与价值观】通过建立一元二次方程解决实际问题,体验数学的应用价值,增强学习数学的兴趣.二、课型新授课三、课时第1课时,共3课时。
四、教学重难点【教学重点】构建一元二次方程解决实际问题.【教学难点】会用代数式表示问题中的数量关系,能根据问题的实际意义,检验所得结果的合理性.五、课前准备课件六、教学过程(一)导入新课有一人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了几个人?(出示课件2)你能解决这个问题吗?(出示课件4)(二)探索新知出示课件5:设每轮传染中平均一个人传染了x个人.传染源记作小明,其传染示意图如下:(1)第一轮传染后共有人患了流感;(2)第二轮传染后共人患了流感.根据示意图,列表如下:(出示课件6)第1轮传染后的人数第2轮传染后的人数传染源人数1最后师生共同完成解答过程:解:设每轮传染中平均一个人传染了x个人,列方程为1+x+(1+x)·x=121提取公因式,得(1+x)(1+x)=121,即(1+x)2=121.∴x1=10,x2=-12(不合题意,应舍去),故平均一个人传染了10个人.教师强调:一元二次方程的解有可能不符合题意,所以舍去.想一想:如果按照这样的传染速度,三轮传染后有多少人患流感?(出示课件7)师生共同分析:第一轮传染后的人数第二轮传染后的人数第三轮传染后的人数生1口答:第1种做法:以1人为传染源,3轮传染后的人数是:(1+x)3=(1+10)3=1331(人).生2口答:第2种做法:以第2轮传染后的人数121为传染源,传染一次后就是:121(1+x)=121(1+10)=1331(人).思考:如果按这样的传染速度,n轮后传染后有多少人患了流感?(出示课件8)师生共同分析:传染源新增患者人数本轮结束患者总人数第一轮第二轮第三轮第n轮达成共识:经过n轮传染后共有(1+x)n人患流感.出示课件9:例1某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支?师生共同分析后解答如下:解:设每个支干长出x个小分支,由题意可列方程为1+x+x2=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,应舍去),答:每个支干长出9个小分支.出示课件10:引导学生思考并解答如下问题:1.在分析引例和例1中的数量关系时它们有何区别?答案:每个树枝只分裂一次,每名患者每轮都传染.2.解决这类传播问题有什么经验和方法?答案:(1)审题,设元,列方程,解方程,检验,作答;(2)可利用表格梳理数量关系;(3)关注起始值、新增数量,找出变化规律.教师问:运用一元二次方程模型解决实际问题的步骤有哪些?(出示课件11)学生自主思考后,教师归纳如下:出示课件12:电脑勒索病毒的传播非常快,如果开始有6台电脑被感染,经过两轮感染后共有2400台电脑被感染.每轮感染中平均一台电脑会感染几台电脑?学生思考后自主解决.解:设每轮感染中平均一台电脑会感染x台电脑.依题意得6+6x+6x(1+x)=2400.6(1+x)²=2400.解得x1=19或x2=-21(舍去).答:每轮感染中平均一台电脑会感染19台电脑.出示课件13:例2一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共多少人?引导学生积极思考,寻求出实际问题中所蕴含的等量关系,最后师生共同完成解答过程.解:设这个小组共x人,根据题意列方程,得x(x-1)=72.化简,得x2-x-72=0.解方程,得x1=9,x2=-8(舍去).答:这个小组共9人.出示课件14:生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,求全组有多少名同学?学生独立思考,自主探究,找出题目中的等量关系后自主解答:解:全组有x名同学,根据题意,得x(x-1)=182.解得x1=14,x2=-13(不合题意,舍去).答:全组有14名同学.(三)课堂练习(出示课件15-22)1.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为()A.9人B.10人C.11人D.12人2.某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4B.5C.6D.73.元旦将至,九年级一班全体学生互赠贺卡,共赠贺卡1980张,问九年级一班共有多少名学生?设九年级一班共有x名学生,那么所列方程为()A.x2=1980B.x(x+1)=1980C.x(x-1)=1980D.x(x-1)=19804.有一根月季,它的主干长出若干数目的枝干,每个枝干又长出同样数目的小分支,主干、枝干、小分支的总数是73,设每个枝干长出x个小分支,根据题意可列方程为()A.1+x+x(1+x)=73B.1+x+x2=73C.1+x2=73D.(1+x)²=735.早期,甲肝流行,传染性很强,曾有2人同时患上甲肝.在一天内,一人平均能传染x人,经过两天传染后128人患上甲肝,则x的值为()?A.10B.9C.8D.76.为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,以此类推,已知经过两轮传播后,共有111个人参与了传播活动,则n=______.7.某校初三各班进行篮球比赛(单循环制),每两班之间共比赛了6场,求初三有几个班?8.某生物实验室需培育一群有益菌,现有60个活体样本,经过两轮培植后,总和达24000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后共有多少个有益菌?参考答案:1.C2.C3.D4.B5.D6.107.解:初三有x个班,根据题意列方程,得1(1) 6.x x-=2化简,得x2-x-12=0.解方程,得x1=4,x2=-3(舍去).答:初三有4个班.8.分析:设每轮分裂中平均每个有益菌可分裂出x个有益菌.传染源本轮分裂成有益菌数目本轮结束有益菌总数第一轮6060x60(1+x)第二轮60(1+x)60(1+x)x60(1+x)2第三轮60(1+x)260(1+x)2x60(1+x)3解:设每个有益菌一次分裂出x个有益菌.60+60x+60(1+x)x=24000.x1=19,x2=-21(舍去).因此每个有益菌一次分裂出19个有益菌.三轮后有益菌总数为24000×(1+19)=480000.(四)课堂小结通过这节课的学习,你对传播类的应用问题的处理有哪些体会和收获?谈谈你的看法.(五)课前预习预习下节课(21.3第2课时)的相关内容.七、课后作业配套练习册内容八、板书设计:九、教学反思:1.教师引导学生熟悉列一元二次方程解应用题的步骤,创设问题推导出列一元二次方程解应用题的步骤,有利于学生熟练掌握用一元二次方程解应用题的步骤.2.传播类和增长率问题是一元二次方程中的重点问题,本设计问题中反映出不同的“传播”和增长率,有利于学生更好地掌握这一问题.。
九年级上册数学第二十一章-一元二次方程教案
第二十一章 一元二次方程21.1 一元二次方程1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.重点]通过类比一元一次方程,了解一元二次方程的概念及一般式ax 2+bx +c =0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.难点一元二次方程及其二次项系数、一次项系数和常数项的识别.活动1 复习旧知1.什么是方程你能举一个方程的例子吗2.下列哪些方程是一元一次方程并给出一元一次方程的概念和一般形式. (1)2x -1 (2)mx +n =0 (3)1x +1=0 (4)x 2=1·3.下列哪个实数是方程2x -1=3的解并给出方程的解的概念. A .0 B .1 C .2 D .3 活动2 探究新知 根据题意列方程.1.教材第2页 问题1. 提出问题:(1)正方形的大小由什么量决定本题应该设哪个量为未知数(2)本题中有什么数量关系能利用这个数量关系列方程吗怎么列方程^(3)这个方程能整理为比较简单的形式吗请说出整理之后的方程. 2.教材第2页 问题2. 提出问题:(1)本题中有哪些量由这些量可以得到什么(2)比赛队伍的数量与比赛的场次有什么关系如果有5个队参赛,每个队比赛几场一共有20场比赛吗如果不是20场比赛,那么究竟比赛多少场(3)如果有x 个队参赛,一共比赛多少场呢3.一个数比另一个数大3,且两个数之积为0,求这两个数. 提出问题: <本题需要设两个未知数吗如果可以设一个未知数,那么方程应该怎么列 4.一个正方形的面积的2倍等于25,这个正方形的边长是多少 活动3 归纳概念 提出问题:(1)上述方程与一元一次方程有什么相同点和不同点(2)类比一元一次方程,我们可以给这一类方程取一个什么名字 (3)归纳一元二次方程的概念.1.一元二次方程:只含有________个未知数,并且未知数的最高次数是________,这样的________方程,叫做一元二次方程. 】2.一元二次方程的一般形式是ax 2+bx +c =0(a≠0),其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.提出问题:(1)一元二次方程的一般形式有什么特点等号的左、右分别是什么 (2)为什么要限制a≠0,b ,c 可以为0吗(3)2x 2-x +1=0的一次项系数是1吗为什么3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).活动4 例题与练习例1 在下列方程中,属于一元二次方程的是________. ,(1)4x 2=81;(2)2x 2-1=3y ;(3)1x 2+1x =2;(4)2x 2-2x(x +7)=0.总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的最高次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.例2 教材第3页 例题.例3 以-2为根的一元二次方程是( ) A .x 2+2x -1=0 B .x 2-x -2=0 C .x 2+x +2=0 D .x 2+x -2=0总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等. ;练习:1.若(a -1)x 2+3ax -1=0是关于x 的一元二次方程,那么a 的取值范围是________. 2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.(1)4x 2=81;(2)(3x -2)(x +1)=8x -3. 3.教材第4页 练习第2题.4.若-4是关于x 的一元二次方程2x 2+7x -k =0的一个根,则k 的值为________. 答案:≠1;2.略;3.略;=4. 活动5 课堂小结与作业布置 >课堂小结我们学习了一元二次方程的哪些知识一元二次方程的一般形式是什么一般形式中有什么限制你能解一元二次方程吗作业布置教材第4页 习题第1~7题. 解一元二次方程21. 配方法(3课时) 第1课时 直接开平方法:理解一元二次方程“降次”——转化的数学思想,并能应用它解决一些具体问题.提出问题,列出缺一次项的一元二次方程ax 2+c =0,根据平方根的意义解出这个方程,然后知识迁移到解a(ex +f)2+c =0型的一元二次方程.重点运用开平方法解形如(x +m)2=n(n≥0)的方程,领会降次——转化的数学思想. 难点通过根据平方根的意义解形如x 2=n 的方程,将知识迁移到根据平方根的意义解形如(x +m)2=n(n≥0)的方程.。
2024年人教版九年级数学上册教案及教学反思全册第21章 一元二次方程(教案)公式法教案
21.2解一元二次方程21.2.2公式法一、教学目标【知识与技能】1.理解并掌握求根公式的推导过程;2.能熟练应用公式法求一元二次方程的解.【过程与方法】经历探索求根公式的过程,加强推理技能,进一步发展逻辑思维能力.【情感态度与价值观】用公式法求解一元二次方程的过程中,锻炼学生的运算能力,养成良好的运算习惯,培养严谨认真的科学态度.二、课型新授课三、课时1课时四、教学重难点【教学重点】用公式法解一元二次方程.【教学难点】推导一元二次方程求根公式的过程.五、课前准备课件六、教学过程(一)导入新课1.利用配方法解一元二次方程2704x x --=.(出示课件2)学生板演如下:解:移项,得274xx -=,配方222171242xx ⎛⎫⎛⎫-+=+ ⎪⎪⎝⎭⎝⎭,2122x ⎛⎫-= ⎪⎝⎭由此可得12x -=±,112x =+212x =-2.用配方法解一元二次方程的步骤?(出示课件3)学生口答:化:把原方程化成x 2+px+q =0的形式.移项:把常数项移到方程的右边,如x 2+px =-q.配方:方程两边都加上一次项系数一半的平方.x 2+px+(2p )2=-q+(2p )2开方:根据平方根的意义,方程两边开平方.(x+2p )2=-q+(2p )2求解:解一元一次方程.定解:写出原方程的解.我们知道,对于任意给定的一个一元二次方程,只要方程有解,都可以利用配方法求出它的两个实数根.事实上,任何一个一元二次方程都可以写成ax 2+bx+c=0的形式,我们是否也能用配方法求出它的解呢?想想看,该怎样做?(二)探索新知探究一公式法的概念教师问:一元二次方程的一般形式是什么?(出示课件5)学生答:ax 2+bx+c=0(a≠0).教师问:如果使用配方法解出一元二次方程一般形式的根,那么这个根是不是可以普遍适用呢?师生共同探究:用配方法解一般形式的一元二次方程20ax bx c ++=)0(≠a (出示课件6)解:移项,得ax 2+bx=-c.二次项系数化为1,得x 2+b a x=-c a .配方,得x 2+b a x+2(2b a =-c a +2()2ba ,即2224(42)b a a a b x c-+=.教师问:(1)两边能直接开平方吗?为什么?(2)你认为下一步该怎么办?谈谈你的看法.师生共同完善认知:(出示课件7)20,40,≠>a a 当240,-b a c≥.22b x a a +=±x 1=-b+b 2-4ac 2a ,x 2=-b-b 2-4ac 2a.出示课件8:由上可知,一元二次方程ax 2+bx+c=0(a≠0)的根由方程的系数a,b,c 确定.因此,解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0(a≠0).当b 2-4ac≥0时,将a,b,c 代入式子x=42b a-±,就得到方程的根,这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法,由求根公式可知,一元二次方程最多有两个实数根.例1用公式法解方程:(1)x 2-4x-7=0;(出示课件9)学生思考后,共同解答如下:解:∵a=1,b=-4,c=-7,∴b 2-4ac=(-4)2-4×1×(-7)=44>0.4.2=x∴12=+x 22=x (2)2x 2x+1=0;(出示课件10)教师问:这里的a、b、c 的值分别是什么?解:2,21.==-=a bc 224(24210.△=-=--⨯⨯=ba c则方程有两个相等的实数根:12.2222-==-=-=⨯b x x a (3)5x 2-3x=x+1;(出示课件11)解:原方程可化为25410x x --=1,4,5-=-==c b a ,224(4)45(1)36>0△b =-=--⨯⨯-=ac则方程有两个不相等的实数根(4)46.22510-±--±±===⨯b x a 12464611,.10105+-====-x x (4)x 2+17=8x.(出示课件12)解:原方程可化为28170x x -+=,17c 8,1,=-==b a ,,0<41714)8(422-=⨯⨯--=-=acb△方程无实数根.教师归纳:(出示课件13)⑴当∆=b 2-4ac>0时,一元二次方程有两个不相等的实数根;⑵当∆=b 2-4ac=0时,一元二次方程有两个相等的实数根;⑶当∆=b 2-4ac<0时,一元二次方程没有的实数根.教师问:用公式法解一元二次方程的步骤是什么?学生思考后,共同总结如下:(出示课件14)用公式法解一元二次方程的一般步骤:1.将方程化成一般形式,并写出a,b,c 的值.2.求出∆的值.3.(1)当∆>0时,代入求根公式:2b x a-±=,写出一元二次方程的根.(2)当∆=0时,代入求根公式:2b x a-±=,写出一元二次方程的根.(3)当∆<0时,方程无实数根.出示课件15:用公式法解方程:23620x x --= 学生自主思考并解答.解:a=3,b=-6,c=-2,∆=b 2-4ac=(-6)2-4×3×(-2)=60.6.23±=⨯x 13,3+=x 2.3=x 探究二一元二次方程的根的情况出示课件16:用公式法解下列方程:(1)x 2+x-1=0;(2)x 2-+3=0;(3)2x 2-2x+1=0.学生板演后,教师问:观察上面解一元二次方程的过程,一元二次方程的根的情况与一元二次方程中二次项系数、一次项系数及常数项有关吗?能否根据这个关系不解方程得出方程的解的情况呢?教师进一步问:(出示课件17)不解方程,你能判断下列方程根的情况吗?⑴x 2+2x-8=0;⑵x 2=4x-4;⑶x 2-3x=-3.学生思考后回答:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)没有实数根.教师问:你有什么发现?学生答:b 2-4ac 的符号决定着方程的解.师生共同总结如下:(出示课件18)一元二次方程)(0 02≠=++a c bx ax的根的情况⑴当b 2-4ac>0时,有两个不等的实数根:12,;22b b x x a a-+--==(2)当b 2-4ac=0时,有两个相等的实数根:12;2bx x a-==(3)当b 2-4ac<0时,没有实数根.一般的,式子b 2-4ac 叫做一元二次方程根的判别式,通常用希腊字母“∆”来表示,即∆=b 2-4ac.出示课件20,21:例1不解方程,判断下列方程根的情况:(1) 06622=-+-x x ;(2)x 2+4x=2.(3)4x 2+1=-3x;(4)x²-2mx+4(m-1)=0.师生共同讨论解答如下:解:⑴a=﹣1,b=,c=﹣6,∵△=b 2-4ac=24-4×(﹣1)×(-6)=0.∴该方程有两个相等的实数根.⑵移项,得x2+4x-2=0,a=1,b=4,c=﹣2,∵△=b2-4ac=16-4×1×(-2)=24>0.∴该方程有两个不相等的实数根.⑶移项,得4x2+3x+1=0,a=4,b=3,c=1,∵△=b2-4ac=9-4×4×1=-7<0.∴该方程没有实数根.⑷a=1,b=-2m,c=4(m-1),∵△=b2-4ac=(-2m)²-4×1×4(m-1)=4m2-16(m-1)=4m2-16m+16=(2m-4)2≥0.∴该方程有两个实数根.选一选:(出示课件22)(1)下列方程中,没有实数根的方程是()A.x²=9B.4x²=3(4x-1)C.x(x+1)=1D.2y²+6y+7=0(2)方程ax2+bx+c=0(a≠0)有实数根,那么总成立的式子是()A.b²-4ac>0B.b²-4ac<0C.b²-4ac≤0D.b²-4ac≥0学生口答:⑴D⑵D出示课件23:例2m为何值时,关于x的一元二次方程2x2-(4m+1)x+2m2-1=0:(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?学生思考后,教师板演解题过程:解:a=2,b=-(4m+1),c=2m2-1,b2-4ac=〔-(4m+1)〕2-4×2(2m2-1)=8m+9.(1)若方程有两个不相等的实数根,则b2-4ac>0,即8m+9>0,∴m>9 8-;(2)若方程有两个相等的实数根,则b2-4ac=0即8m+9=0,∴m=9 8-;(3)若方程没有实数根,则b2-4ac<0即8m+9<0,∴m<9 8-.∴当m>98-时,方程有两个不相等的实数根;当m=98-时,方程有两个相等的实数根;当m<98-时,方程没有实数根.出示课件24:m为任意实数,试说明关于x的方程x2-(m-1)x-3(m+3)=0恒有两个不相等的实数根.学生自主思考并解答.解:b2−4ac=[−(m−1)]2−4[−3(m+3)]=m2+10m+37=m2+10m+52−52+37=(m+5)2+12.∵不论m 取任何实数,总有(m+5)2≥0,∴b 2-4ac=(m+5)2+12≥12>0,∴不论m 取任何实数,上述方程总有两个不相等的实数根.(三)课堂练习(出示课件25-29)1.若一元二次方程x 2﹣2x+m=0有两个不相同的实数根,则实数m 的取值范围是()A.m≥1B.m≤1C.m>1D.m<12.解方程x 2﹣2x﹣1=0.3.方程x 2-4x+4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根4.关于x 的一元二次方程kx2-2x-1=0有两个不等的实根,则k 的取值范围是()A.k>-1B.k>-1且k≠0C.k<1D.k<1且k≠05.已知x 2+2x=m-1没有实数根,求证:x 2+mx=1-2m 必有两个不相等的实数根.参考答案:1.D2.解:a=1,b=﹣2,c=﹣1,△=b 2﹣4ac=4+4=8>0,所以方程有两个不相等的实数根,4222x 122b a -±±===±1211x x =+=-3.B4.B5.证明:∵没有实数根,∴4-4(1-m)<0,∴m<0.对于方程x 2+mx=1-2m ,即2210x mx m ++-=.,∵,∴△>0.∴x 2+mx=1-2m 必有两个不相等的实数根.(四)课堂小结通过这节课的学习,你有哪些收获和体会?说说看.(五)课前预习预习下节课(21.2.3)的相关内容。
第21章 一元二次方程 教案+导学案+课件+检测题 (22份打包)-18.ppt
一、复习引入 (学生活动)请同学们解下列方程: (1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9
(4)4x2+16x=-7 老师点评:上面的方程都能化成 x2=p 或(mx+n)2=p(p≥0)的形 式,那么可得 x=± p或 mx+n=± p(p≥0). 如:4x2+16x+16=(2x+4)2,你能把 4x2+16x=-7 化成(2x+ 4)2=9 吗?
讲清配方法的解题步骤.
难点 将不可直接降次解方程化为可直接降次解方程的“化为”的 转化方法与技巧.对于用配方法解二次项系数为1 的一元二次 方程,通常把常数项移到方程右边后,两边加上的常数是一次 项系数一半的平方;对于二次项系数不为1 的一元二次方程 , 要先化二次项系数为1,再用配方法求解.
需要更完整的资源请到 新世纪教 育网 -
需要更完整的资源请到 新世纪教 育网 -
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方 法,叫配方法. 可以看出,配方法是为了降次,把一个一元二次方程转化为两个一 元一次方程来解. 例1 用配方法解下列关于x的方程: (1)x2-8x+1=0 (2)x2-2x-=0 分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的 方法化为完全平方式;(2)同上. 解:略.
步骤.了解配方法的概念 , 掌握运用配方法解一元二次方程的步 骤.
通过复习上一节课的解题方法,给出配方法的概念,然后运用配
方法解决一些具体题目.
需要更完整的资源请到 新世纪教 育网 -
重点
讲清直接降次有困难 , 如 x2 + 6x - 16 = 0 的一元二次方程的 解题步骤.
需要更完整的资源请到 新世纪教 育网 -
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第21章一元二次方程
教材内容
1.本单元教学的主要内容.
一元二次方程概念;解一元二次方程的方法;一元二次方程应用题.
2.本单元在教材中的地位与作用.
一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法.学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程.应该说,一元二次方程是本书的重点内容.
教学目标
1.知识与技能
了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题.
2.过程与方法
(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型.•根据数学模型恰如其分地给出一元二次方程的概念.
(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等.
(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,•导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程.
(4)通过用已学的配方法解ax2+bx+c=0(a≠0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac>0,b2-4ac=0,b2-4ac<0.
(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它.
(6)提出问题、分析问题,建立一元二次方程的数学模型,•并用该模型解决实际问题.
3.情感、态度与价值观
经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣.
教学重点
1.一元二次方程及其它有关的概念.
2.用配方法、公式法、因式分解法降次──解一元二次方程.
3.利用实际问题建立一元二次方程的数学模型,并解决这个问题.
教学难点
1.一元二次方程配方法解题.
2.用公式法解一元二次方程时的讨论.
3.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别.教学关键
1.分析实际问题如何建立一元二次方程的数学模型.
2.用配方法解一元二次方程的步骤.
3.解一元二次方程公式法的推导.
课时划分
本单元教学时间约需14课时,具体分配如下:
21.1 一元二次方程1课时
21.2 降次──解一元二次方程6课时
21.3 实际问题与一元二次方程3课时
《一元二次方程》小结与复习2课时
单元测试2课时
想一想:
在解决实际问题的过程中,得出的这几个方程 (1)它们是否是一元一次方程吗?
(2)这些方程和一元一次方程有什么共同点和不同点? 共同点:①它们都是整式方程;②都含有一个未知数. 不同点:方程中未知数的最高次数是2;而一元一次方程的未知数最高次数是1。
问题: 1)你能给这种不同于一元一次方程的新方程起个名字吗?
2)你能类比一元一次方程的概念给出一元二次方程的概念吗?
1.一元二次方程的概念:
只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 观察、思考:
上述一元二次方程还有哪些相同点和不同点?你能类比一元一次方程的一般形式得出一元二次方程的一般形式吗?
2.一元二次方程的一般形式:
我们把一元二次方程按未知数的降幂排列有:
20(0)ax bx c a ++=≠.这种形式叫做一元二次方程的一
般形式.其中a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项.
想一想:为什么要限制a≠0 ? b 、c 可以为零吗? 强调:一元二次方程的一般形式中“=”的左边最多三项、其中一次项、常数项可以不出现,但二次项必须存在,而且左边通常按未知数的次数从高到低排列,特别注意的是“=”的右边必须整理成0。
二次项、二次项系数、一次项、一次项系数、常数项都是包括符号的。
例 将方程3(1)5(2)x x x -=+化成一元二次方程的一般形式,并写出其中的二次项系数及常数项.
解:去括号得,2
33510x x x -=+,移项,合并同类项得一元二次方程的一般形式:2
38100x x --=
其中二次项系数是3,一次项系数是-8,常数项是-10. 教师活动:引导学生分析例题,指出要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式,因为各项名称都是在方程为一般形式的前提下定义的.
学生活动:学生自主解决问题,通过去括号 移项等步骤把方程化为一般形式,然后指出各项系数.
第21章一元二次方程单元检测班级姓名得分一、选择题(本大题共8小题,每小题3分,共24分)
1. 下列方程中,一元二次方程是( )
(A ) 221x
x +(B ) bx ax +2(C ) ()()121=+-x x (D ) 052322=--y xy x 2.关于x 的一元二次方程(a 2-1)x 2+x -2=0是一元二次方程,则a 满足( )
A .a ≠1
B .a ≠-1
C .a ≠±1
D .为任意实数
3.用配方法解方程x 2-2x -5=0时,原方程应变形为( )
A .(x +1)2=6
B .(x -1)2=6
C .(x +2)2=9
D .(x -2)2=9
4.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是( )
A .k >-1
B .k >-1且k ≠0
C .k <1
D .k <1且k ≠0
5.若关于x 的一元二次方程ax 2+bx +5=0(a ≠0)的解是x =1,则2013-a -b 的值是( )
A .2018
B .2008
C .2014 D. 2012
6.方程x 2-9x +18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为( )
A .12
B .12或15
C .15
D .不能确定
7.对于任意实数k ,关于x 的方程x 2-2(k +1)x -k 2+2k -1=0的根的情况为( )
A .有两个相等的实数根
B .没有实数根
C .有两个不相等的实数根
D .无法确定
8.已知一元二次方程()002≠=+m n mx ,若方程有解,则必须( ) A 、0=n B 、同号mn C 、的整数倍是m n D 、异号mn
二、填空题(本大题共8小题,每空2分,共24分)
9. 当 ≥0时,一元二次方程02=++c bx ax 的求根公式为 。
10.已知两个数的差等于4,积等于45,则这两个数为和。
11.一元二次方程x2-3=0的解为________________.
12.把一元二次方程(x-3)2=4化为一般形式为:________________,二次项为:______,一次项系数为:______,常数项为:________. 13.已知2是关于x的一元二次方程x2+4x-p=0的一个根,则该方程的另一个根是__________.
14.已知x1,x2是方程x2-2x-1=0的两个根,则1
x1+1
x2=__________.
15.若|b-1|+a-4=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是________.
16.以-3和7为根且二次项系数为1的一元二次方程是。
三、解方程(本大题共3小题,每小题6分,共18分)
17.(公式法)2x2-4x-5=0. 18.(配方法)x2-4x+1=0. 19.(因式分解法):()()2
2
32-
=
-x
x
x
四、应用题(本大题共5小题,共34分)
20.(6分)已知:关于x的方程x2-2(m+1)x+m2=0.当m取何值时,方程有两个实数根?
21.(7分)某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为多少?
22.(7分)如图在宽为20 m,长为32 m的矩形耕地上,修筑同样宽的三条道路(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570 m2,道路应为多宽?
23.(7分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天
盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?
24、(7分)如图,在s
cm B AB A p ,B ,ABC 190以向点开始沿边从点点中︒=∠∆的速度移动,与此同时,点Q 从点B 开始沿边BC 向点C 以s
cm 2的速度移动。
如果P 、Q 分别从A 、B 同时出发,经过几秒,PBQ ∆的面积等于28cm ?(AB=6cm,BC=8cm )
Q P C
B A。