利用导数研究函数单调性(学案)

合集下载

第21讲 利用导数研究函数的单调性(解析版)

第21讲 利用导数研究函数的单调性(解析版)

第21讲 利用导数研究函数的单调性【基础知识回顾】1. 利用导数研究函数的单调性在某个区间(a ,b)内,如果f′(x)≥0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递增;如果f′(x)≤0且在(a ,b)的任意子区间上不恒为0,那么函数y =f(x)在这个区间内单调递减.2. 判定函数单调性的一般步骤 (1)确定函数y =f(x)的定义域; (2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0或f′(x)<0; (4)根据(3)的结果确定函数的单调区间. 3. 已知函数单调性求参数的值或参数的范围 (1)函数y =f(x)在区间(a ,b)上单调递增,可转化为f ′(x)≥0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆增区间.函数y =f(x)在区间(a ,b)上单调递减,可转化为f′(x)≤0在(a ,b)上恒成立,且在(a ,b)的任意子区间上不恒为_0;也可转化为(a ,b)⊆减区间.(2)函数y =f(x)的增区间是(a ,b),可转化为(a ,b)=增区间,也可转化为f′(x)>0的解集是(a ,b);函数y =f(x)的减区间是(a ,b),可转化为(a ,b)=减区间,也可转化为a ,b 是f′(x)=0的两根.1、.函数f (x )=3+x ln x 的单调递减区间是( ) A.⎝⎛⎭⎫1e ,e B.⎝⎛⎭⎫0,1e C.⎝⎛⎭⎫-∞,1eD.⎝⎛⎭⎫1e ,+∞【答案】 B【解析】因为函数f (x )的定义域为(0,+∞),且f ′(x )=ln x +x ·1x =ln x +1,令f ′(x )<0,解得0<x <1e,故f (x )的单调递减区间是⎝⎛⎭⎫0,1e . 2、函数f(x)=ax 3+bx 2+cx +d 的图像如图,则函数y =ax 2+32bx +c3的单调递增区间是( )第2题图A . (-∞,-2]B . ⎣⎡⎭⎫12,+∞ C . [)-2,3 D . ⎣⎡⎭⎫98,+∞【答案】D【解析】 由题图可知d =0. 不妨取a =1,∵f(x)=x 3+bx 2+cx ,∴f ′(x)=3x 2+2bx +c. 由图可知f′(-2)=0,f ′(3)=0,∴12-4b +c =0,27+6b +c =0,∴b =-32,c =-18. ∴y =x 2-94x -6,y ′=2x -94. 当x >98时,y ′>0,∴y =x 2-94x -6的单调递增区间为[98,+∞).故选D .3、函数f (x )=ln x -ax (a >0)的单调递增区间为( ) A.⎝⎛⎭⎫0,1a B.⎝⎛⎭⎫1a ,+∞ C.⎝⎛⎭⎫-∞,1a D .(-∞,a )【答案】A【解析】 由f ′(x )=1x -a >0,x >0,得0<x <1a .∴f (x )的单调递增区间为⎝⎛⎭⎫0,1a . 4、若函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,则实数a 的取值范围是________. 【答案】 (-∞,2ln 2-2)【解析】 ∵函数f (x )=x 2-e x -ax 在R 上存在单调递增区间,∴f ′(x )=2x -e x -a >0,即a <2x -e x 有解.设g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得极大值也是最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2.考向一 求函数的单调区间例1、求下列函数的单调区间:(1)f(x)=x 3-12x 2-2x +3;(2)g(x)=x 2-2ln x.【解析】 (1)∵f′(x)=3x 2-x -2=(3x +2)(x -1),定义域为R ,∴当f ′(x )>0时,x ∈⎝⎛⎭⎫-∞,-23∪(1,+∞);当f ′(x )<0时,x ∈⎝⎛⎭⎫-23,1. ∴函数的单调增区间为⎝⎛⎭⎫-∞,-23和(1,+∞),单调减区间为⎝⎛⎭⎫-23,1. (2)g ′(x )=2x -2x =2(x +1)(x -1)x,定义域为(0,+∞),令g ′(x )=0,解得:x =1或x =-1(舍去),列表:x (0,1) 1 (1,+∞) g ′(x ) - 0+ g (x ) 减 极小值 增变式1、(1)下列函数中,在(0,+∞)内为增函数的是( ) A.f (x )=sin 2x B.f (x )=x e x C.f (x )=x 3-xD.f (x )=-x +ln x【答案】 B【解析】 由于x >0,对于A ,f ′(x )=2cos 2x ,f ′⎝⎛⎭⎫π3=-1<0,不符合题意; 对于B ,f ′(x )=(x +1)e x >0,符合题意;对于C ,f ′(x )=3x 2-1,f ′⎝⎛⎭⎫13=-23<0,不符合题意; 对于D ,f ′(x )=-1+1x ,f ′(2)=-12<0,不符合题意.(2)函数f (x )=2x 2-ln x 的单调递减区间是( ) A.⎝⎛⎭⎫-12,12 B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫12,+∞ 【答案】 C【解析】 ∵函数f (x )=2x 2-ln x ,∴f ′(x )=4x -1x =4x 2-1x=4⎝⎛⎭⎫x -12⎝⎛⎭⎫x +12x.由f ′(x )<0,解得0<x <12,∴函数的单调递减区间是⎝⎛⎭⎫0,12. (3).已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的递增区间是________. 【答案】 ⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 【解析】 f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2.变式2、(1)函数f(x)=x 3-15x 2-33x +6的单调减区间为__ __.(2) 函数f(x)=1+x -sin x 在(0,2π)上的单调情况是__ __.(3)已知a<0,函数f(x)=x 3+ax 2-a 2x +2的单调递减区间是__ .【解析】(1)由f(x)=x 3-15x 2-33x +6得f ′(x)=3x 2-30x -33,令f′(x)<0,即3(x -11)(x +1)<0,解得-1<x<11,∴函数f(x)的单调减区间为(-1,11). (2) f′(x)=1-cos x>0在(0,2π)上恒成立,∴f(x)单调递增.(3)f′(x)=3x 2+2ax -a 2=(3x -a)(x +a),令f′(x)<0,得a3<x<-a ,∴减区间为⎝⎛⎭⎫a3,-a . 方法总结:1. 利用导数求函数f(x)的单调区间的一般步骤为:(1)确定函数f(x)的定义域;(2)求导函数f ′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)根据(3)的结果确定函数f(x)的单调区间. 2. 利用导数求函数单调性,在对函数求导以后要对导函数进行整理并因式分解,方便后面求根和判断导函数的符号.考向二 给定区间求参数的范围例2、设函数()32132a f x x x bx c =-++,曲线()y f x =在点()()0,0f 处的切线方程为1y =. (1)求,bc 的值;(2)若0a >,求函数()f x 的单调区间;(3)设函数()()2g x f x x =+,且()g x 在区间(2,1)--内存在单调递减区间,求实数a 的取值范围.【解析】:(1)f ′(x )=x 2-ax +b ,由题意得⎩⎪⎨⎪⎧ f 0=1,f ′0=0,即⎩⎪⎨⎪⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0),当x ∈(-∞,0)时,f ′(x )>0;当x ∈(0,a )时,f ′(x )<0;当x ∈(a ,+∞)时,f ′(x )>0. 所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立,即x ∈(-2,-1)时,a <(x +2x )max =-22,当且仅当x =2x 即x =-2时等号成立.所以满足要求的a 的取值范围是(-∞,-22).变式1、已知g (x )=2x +ln x -ax .(1)若函数g (x )在区间[1,2]内单调递增,求实数a 的取值范围; (2)若g (x )在区间[1,2]上存在单调递增区间,求实数a 的取值范围.【解析】(1)g (x )=2x +ln x -ax (x >0),g ′(x )=2+1x +ax2(x >0).∵函数g (x )在[1,2]上单调递增, ∴g ′(x )≥0在[1,2]上恒成立, 即2+1x +ax 2≥0在[1,2]上恒成立,∴a ≥-2x 2-x 在[1,2]上恒成立, ∴a ≥(-2x 2-x )max ,x ∈[1,2]. 在[1,2]上,(-2x 2-x )max =-3, 所以a ≥-3.∴实数a 的取值范围是[-3,+∞). (2)g (x )在[1,2]上存在单调递增区间, 则g ′(x )>0在[1,2]上有解, 即a >-2x 2-x 在[1,2]上有解, ∴a >(-2x 2-x )min ,又(-2x 2-x )min =-10,∴a >-10.变式2、若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)上单调递增,则a 的取值范围是( )A.[-1,1]B.⎣⎡⎦⎤-1,13C.⎣⎡⎦⎤-13,13D.⎣⎡⎦⎤-1,-13 【答案】 C【解析】 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x +53.由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立. 令t =cos x ,t ∈[-1,1], 则-43t 2+at +53≥0,在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立. 令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13方法总结: 1.明晰导数概念及其几何意义在解题中的应用,强化方程的思想,培养基本运算能力.2. 辨析区间上单调和区间上存在单调区间的本质区别和处理策略的不同,提升参变分离和构造函数等解决问题的方法和技巧,感悟数学解题背后的思维和内涵.考向三 函数单调区间的讨论例3、已知函数.当时,讨论的单调性; 【解析】函数的定义域为., 因为,所以, ①当,即时,由得或,由得, 所以在,上是增函数, 在上是减函数; ②当,即时,所以在上是增函数;③当,即时,由得或,由得,所以在,.上是增函数,在.上是减函 综上可知:当时在,上是单调递增,在上是单调递减; 当时,在.上是单调递增;当时在,上是单调递增,在上是单调递减. 变式1、讨论下列函数的单调性. (1)f (x )=x -a ln x ; (2)g (x )=13x 3+ax 2-3a 2x .【解析】 (1)f (x )的定义域为(0,+∞), f ′(x )=1-a x =x -ax ,令f ′(x )=0,得x =a ,①当a ≤0时,f ′(x )>0在(0,+∞)上恒成立, ∴f (x )在(0,+∞)上单调递增. ②当a >0时,x ∈(0,a )时,f ′(x )<0,()()11ln f x x m x m R x x ⎛⎫=+-+∈ ⎪⎝⎭1m ()f x ()f x (0,)+∞'21()1m m f x x x -=+-2221(1)[(1)]x mx m x x m x x -+----==1m 10m ->011m <-<12m <<()0f x '>1x >1x m <-()0f x '<11m x -<<()f x ()0,1m -()1,+∞()1,1m -11m -=2m =()0f x '≥()f x ()0,∞+11m ->2m >()0f x '>1x m >-1x <()0f x '<11x m <<-()f x ()0,1()1,m -+∞()1,1m -12m <<()f x ()0,1m -()1,+∞()1,1m -2m =()f x ()0,∞+2m >()f x ()0,1()1,m -+∞()1,1m -x ∈(a ,+∞)时,f ′(x )>0,∴f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. 综上,当a ≤0时,f (x )在(0,+∞)上单调递增,当a >0时,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. (2)g (x )的定义域为R ,g ′(x )=x 2+2ax -3a 2=(x +3a )(x -a ), 当a =0时,g ′(x )≥0, ∴g (x )在R 上单调递增. 当a >0时,x ∈(-∞,-3a )∪(a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(-3a ,a )时,g ′(x )<0,g (x )单调递减. 当a <0时,x ∈(-∞,a )∪(-3a ,+∞)时,g ′(x )>0,g (x )单调递增, x ∈(a ,-3a )时,g ′(x )<0,g (x )单调递减, 综上有a =0时,g (x )在R 上单调递增;a <0时,g (x )在(-∞,a ),(-3a ,+∞)上单调递增,在(a ,-3a )上单调递减; a >0时,g (x )在(-∞,-3a ),(a ,+∞)上单调递增,在(-3a ,a )上单调递减. 变式2、已知函数f (x )=x -2x +a (2-ln x ),a >0.讨论f (x )的单调性.【解析】 由题知,f (x )的定义域是(0,+∞), f ′(x )=1+2x 2-a x =x 2-ax +2x 2,设g (x )=x 2-ax +2, g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )在(0,+∞)上单调递增. ②当Δ=0,即a =22时,仅对x =2, 有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )在(0,+∞)上单调递增.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根, x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:x (0,x 1) x 1 (x 1,x 2) x 2 (x 2,+∞)f ′(x )+-+f (x )单调递增 极大值 单调递减 极小值 单调递增此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增,在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.方法总结: 对含参函数的合理分类,关键是找到引起分类讨论的原因.2. 会对函数进行准确求导,求导以后进行整理并因式分解,其中能否因式分解、每个因式系数的正负、根的大小等都是引起分类讨论的原因.考向四 构造函数研究单调性例4、(1)设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2,则下列不等式在R 上恒成立的是( )A .f (x )>0B .f (x )<0C .f (x )>xD .f (x )<x(2)已知定义域为{x |x ≠0}的偶函数f (x ),其导函数为f ′(x ),对任意正实数x 满足xf ′(x )>-2f (x ),若g (x )=x 2f (x ),则不等式g (x )<g (1)的解集是( )A .(-∞,1)B .(-1,1)C .(-∞,0)∪(0,1)D .(-1,0)∪(0,1)【答案】 (1)A (2)D【解析】(1)法一:令g (x )=x 2f (x )-14x 4,则g ′(x )=2xf (x )+x 2f ′(x )-x 3=x [2f (x )+xf ′(x )-x 2],当x >0时,g ′(x )>0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x <0时,g ′(x )<0,∴g (x )>g (0), 即x 2f (x )-14x 4>0,从而f (x )>14x 2>0;当x =0时,由题意可得2f (0)>0,∴f (0)>0. 综上可知,f (x )>0.法二:∵2f (x )+xf ′(x )>x 2,∴令x =0,则f (0)>0,故可排除B 、D ,不妨令f (x )=x 2+0.1,则已知条件2f (x )+xf ′(x )>x 2成立,但f (x )>x 不一定成立,故C 也是错误的,故选A.(2)∵f (x )是定义域为{x |x ≠0}的偶函数, ∴f (-x )=f (x ).对任意正实数x 满足xf ′(x )>-2f (x ), ∴xf ′(x )+2f (x )>0. ∵g (x )=x 2f (x ),∴g (x )也是偶函数,当x ∈(0,+∞)时,g ′(x )=2xf (x )+x 2f ′(x )>0. ∵g (x )在(0,+∞)上单调递增, ∴g (x )在(-∞,0)递减. 若g (x )<g (1),则|x |<1(x ≠0), 解得0<x <1或-1<x <0.故g (x )<g (1)的解集是(-1,0)∪(0,1). 变式1、已知定义在上的函数的导函数为,且,,则下列判断中正确的是( )A .B .C .D . 【答案】CD 【解析】令,,则, 因为, 所以在上恒成立, 因此函数在上单调递减, 因此,即,即,故A 错;又,所以,所以在上恒成立, 0,2π⎡⎫⎪⎢⎣⎭()f x ()f x '()00f =()cos ()sin 0f x x f x x '+<6624f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ln 03f π⎛⎫> ⎪⎝⎭363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()()cos f x g x x =0,2x π⎡⎫∈⎪⎢⎣⎭2()cos ()sin ()cos f x x f x x g x x '+'=()cos ()sin 0f x x f x x '+<2()cos ()sin ()0cos f x x f x x g x x '+'=<0,2π⎡⎫⎪⎢⎣⎭()()cos f x g x x =0,2π⎡⎫⎪⎢⎣⎭64g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭64cos cos64f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>664f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭()00f =(0)(0)0cos0f g ==()()0cos f x g x x =≤0,2π⎡⎫⎪⎢⎣⎭因为,所以,故B 错; 又,所以,即,故C 正确;又,所以,即,故D 正确;故选:CD.变式2、设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是________. 【答案】 (-∞,-1)∪(0,1)【解析】 因为f (x )(x ∈R )为奇函数,f (-1)=0, 所以f (1)=-f (-1)=0. 当x ≠0时,令g (x )=f (x )x ,则g (x )为偶函数,g (1)=g (-1)=0. 则当x >0时,g ′(x )=⎣⎡⎦⎤f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上单减,在(-∞,0)上单增.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0,得f (x )x >0,所以f (x )>0;在(-∞,0)上,当x <-1时,由g (x )<g (-1)=0,得f (x )x<0,所以f (x )>0. 综上知,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1).变式3、设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集为________. 【答案】 (-∞,-3)∪(0,3) 【解析】 f ′(x )g (x )+f (x )g ′(x )>0⇔ [f (x )g (x )]′>0,所以函数y =f (x )g (x )在(-∞,0)上单调递增. 又由题意知函数y =f (x )g (x )为奇函数,所以其图象关于原点对称,且过点(-3,0),(3,0).ln0,32ππ⎡⎫∈⎪⎢⎣⎭ln 03f π⎛⎫< ⎪⎝⎭63g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭63cos cos 63f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>363f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭43cos cos43f f ππππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭>243f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭数形结合可求得不等式f (x )g (x )<0的解集为(-∞,-3)∪(0,3).方法总结:(1)对于不等式f ′(x )+g ′(x )>0(或<0),构造函数F (x )=f (x )+g (x );(2)对于不等式f ′(x )-g ′(x )>0(或<0),构造函数F (x )=f (x )-g (x ); 特别地,对于不等式f ′(x )>k (或<k )(k ≠0),构造函数F (x )=f (x )-kx . (3)对于不等式f ′(x )g (x )+f (x )g ′(x )>0(或<0),构造函数F (x )=f (x )g (x ); (4)对于不等式f ′(x )g (x )-f (x )g ′(x )>0(或<0),构造函数F (x )=f xg x(g (x )≠0);(5)对于不等式xf ′(x )+f (x )>0(或<0),构造函数F (x )=xf (x ); (6)对于不等式xf ′(x )-f (x )>0(或<0),构造函数F (x )=f xx(x ≠0).1、函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是【答案】D【解析】原函数先减再增,再减再增,且0x =位于增区间内,因此选D .2、设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________. 【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤, 即实数a 的取值范围是(],0-∞.3、(2021·深圳市龙岗区龙城高级中学高三月考)已知函数()ln f x x =,()g x x =,则当120x x >>时( ) A .1122|()()||()()|f x g x f x g x -<-|B .1122|()()||()()|f x g x f x g x ->-C .1221|()()||()()|f x g x f x g x -<- D .1221|()()||()()|f x g x f x g x ->-【答案】C【解析】令()ln h x x x =-,则()111xh x x x-'=-=,当()0,1x ∈时,()0h x '>,()h x 单调递增,当()1,x ∈+∞时,()0h x '<,()h x 单调递减, 则()()110h x h ≤=-<,则()h x 在()0,1单调递减,在()1,+∞单调递增,∴()1h x 和()2h x 的大小不确定,故AB 错误;由()0h x <可知221ln x x x <<,即()()210f x g x -<, 令1221|()()||()()|W f x g x f x g x =---, 则1221|()()|()()W f x g x f x g x =-+-,当()()12f x g x ≥时,[][]12211122()()()()()()()()0W f x g x f x g x f x g x f x g x =-+-=-+-<; 当()()12f x g x <,[][]21212211()()()()()()()()W g x f x f x g x f x g x f x g x =-+-=+-+,()()ln y f x g x x x =+=+单调递增,0W ∴<, 综上,1221|()()||()()|f x g x f x g x -<-,故C 正确,D 错误.故选:C.4、(2021·广东高三月考)已知函数()ln f x x ax =+在函数()22g x x x b =-+的递增区间上也单调递增,则实数a 的取值范围是( ) A .(],1-∞- B .[)0,+∞C .(][),10,-∞-+∞ D .(]1,0-【答案】B【解析】因为()g x 的单调递增区间为[)1,+∞, 则由题意()f x 在[)1,+∞递增, 而()1axf x x+'=, 所以当0a ≥时,()0f x '>在 [)1,+∞恒成立,()f x 在区间[)1,+∞单调递增,符合题意; 当0a <时,由()10ax f x x +'=>,解得10x a<<- ()f x 的单调递增区间为10,a ⎛⎫- ⎪⎝⎭,不合题意.综上,0a ≥. 故选:B5、(2021·广东高三月考)若对任意的1x ,()2,x m ∈+∞,且12x x <,都有122121ln ln 2x x x x x x -<-,则m 的最小值是( )(注: 2.71828e =⋅⋅⋅为自然对数的底数) A .1eB .eC .1D .3e【答案】A【解析】由题意知210x x >>,可得210x x ->, 则122121ln ln 2x x x x x x -<-等价于()122121ln ln 2x x x x x x -<-,即121212ln 2ln 2x x x x x x +<+,所以()()1221ln 2ln 2x x x x +<+, 所以2121ln 2ln 2x x x x ++<, 令()ln 2x f x x+=,可得21f x f x ,又由21x x m >>,所以()f x 在(),m +∞上是减函数, 所以()2ln 10x f x x--'=≤,解得1x e ≥,则1m e ≥,即m 的最小值为1e . 故选:A.6、(2021·深圳市第七高级中学高三月考)已知定义在R 上的函数()f x 满足()()()()0,6f x f x f x f x +-=+=-,且对[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+,则以下判断正确的是( )A .函数()f x 是偶函数B .函数()f x 在[]9,6--单调递增C .3x =是函数()f x 的对称轴D .函数()f x 的最小正周期是12【答案】BCD【解析】由定义域为R , ()()0f x f x +-=,即()()f x f x -=-,则函数为奇函数,故A 错误;因为()()6f x f x +=-,而()()f x f x -=-,所以()()6f x f x +=-,所以函数的对称轴为6032x +==,故C 选项正确; 因为()()6f x f x +=-,所以()()()126f x f x f x +=-+=,所以()f x 的最小正周期是12,故D 选项正确;因为[]12,3,0x x ∀∈-,当12x x ≠时,都有()()()()11221221x f x x f x x f x x f x +<+, 则()()()()12120x x f x f x --<,所以[]3,0x ∈-时,()f x 为减函数. 因为函数为奇函数,所以[]0,3x ∈时,()f x 为减函数,又因为函数()f x 关于3x =对称,所以[]3,6x ∈时,()f x 为增函数.因为()f x 的最小正周期是12,所以[]9,6x ∈--的单调性与[]3,6x ∈时的单调性相同. 故,[]9,6x ∈--时,()f x 单调递增,故B 选项正确. 故选:BCD. 7、()3211232f x x x ax =-++,若()f x 在2,3⎛⎫+∞ ⎪⎝⎭上存在单调递增区间,则a 的取值范围是_______ 【答案】19a >- 【解析】:()'22fx x x a =-++,有已知条件可得:2,+3x ⎛⎫∃∈∞ ⎪⎝⎭,使得()'0f x ≥,即()212a x x ≥-,只需()2min12a x x ⎡⎤≥-⎢⎥⎣⎦,而()221122122339y x x ⎡⎤⎛⎫=->-=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,所以19a >-。

《4.3.1 利用导数研究函数的单调性》教案

《4.3.1 利用导数研究函数的单调性》教案

《4.3.1 利用导数研究函数的单调性》教案教学目标:知识与技能:借助函数的图象了解函数的单调性与导数的关系,能利用导数研究函数的单调性;过程与方法:通过本节的学习,掌握利用导数判断函数单调性的方法;情感、态度与价值观:通过实例探究函数的单调性与导数的关系的过程,体会知识间的相互联系和运动变化的观点,提高理性思维能力.教学重点:利用导数判断一个函数在其定义区间内的单调性;教学难点:利用导数的符号判断函数的单调性;判断复合函数的单调区间及应用. 教学过程:一、自学导航1.情境:(1) 必修一中,如何定义函数单调性的?(2)如何用定义判断一些函数的单调性?一般地,设函数f(x) 的定义域为I:如果对于属于定义域I内某个区间上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.当x1<x2时,都有f(x1)>f(x2),那么就说f(x) 在这个区间上是减函数.问题:能否用定义法讨论函数()xf x e x=-的单调性?学生活动讨论函数342+-=x x y 的单调性. 解:取x1<x2,x1、x2∈R , 取值 f(x1)-f(x2)=(x12-4x1+3)-(x22-4x2+3) 作差 =(x1-x2)(x1+x2-4) 变形当x1<x2<2时,x1+x2-4<0,f(x1)>f(x2), 定号 ∴y =f(x)在(-∞, 2)单调递减. 判断 当2<x1<x2时, x1+x2-4>0,f(x1)<f(x2),∴y =f(x)在(2, +∞)单调递增.综上所述y =f(x)在(-∞, 2)单调递减,y =f(x)在(2, +∞)单调递增.2. 研究函数342+-=x x y 的导函数值的符号与单调性之间的关系. 二、探究新知1.导数符号与函数单调性之间的关系我们已经知道,曲线y=f(x)的切线的斜率就是函数y=f(x)的导数.从函数342+-=x x y 的图像可以看到:在区间(2,∞+)内,切线的斜率为正,函数y=f(x)的值随着x 的增大而增大,即y '>0时,函数y=f(x) 在区间(2,∞+)内为增函数;在区间(∞-,2)内,切线的斜率为负,函数y=f(x)的值随着x 的增大而减小,即y '<0时,函数y=f(x) 在区间(∞-,2)内为减函数.定义:一般地,设函数y=f(x) 在某个区间内有导数. 如果在这个区间内y '>0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内y '<0,那么函数y=f(x) 在为这个区间内的减函数.说明:(1)如果某个区间内恒有y '=0,则f(x)等于常数;(2)y '>0(或y '<0)是函数在(a ,b )上单调增(或减)的充分不必要条件.2.利用导数确定函数的单调性的步骤: (1) 确定函数f(x)的定义域; (2) 求出函数的导数;(3) 解不等式f '(x)>0,得函数的单调递增区间;解不等式f '(x)<0,得函数的单调递减区间.三、例题精讲:例1 求函数()23252x f x x x =--+的单调区间.解:()f x '=3x2-x -2=0,得x=1,23-.在(-∞,-32)和[1,+∞)上()f x '>0,f (x )为增函数;在[-32,1]上f '(x )<0,f (x )为减函数.所以所求f (x )的单调增区间为(-∞,-32]和[1,+∞),单调减区间为[-32,1].变式题1:求函数2()2ln f x x x =-的单调区间. 答案:增区间为1,2⎛⎫+∞ ⎪⎝⎭,减区间为10,2⎛⎫ ⎪⎝⎭ 变式题2:设函数()(0)kx f x xe k =≠.求函数()f x 的单调区间; 解:由()()'10kxf x kx e =+=,得()10x k k =-≠,若0k >,则当1,x k ⎛⎫∈-∞- ⎪⎝⎭时,()'0f x <,函数()f x 单调递减, 当1,,x k ⎛⎫∈-+∞ ⎪⎝⎭时,()'0f x >,函数()f x 单调递增,w.w.w.k.s.5.u.c.o.m若0k <,则当1,x k ⎛⎫∈-∞- ⎪⎝⎭时,()'0f x >,函数()f x 单调递增,当1,,x k ⎛⎫∈-+∞ ⎪⎝⎭时,()'0f x <,函数()f x 单调递减..w.k.s.5.u.c.o点评:(1)注意定义域和参数对单调区间的影响; (2)同一函数的两个单调区间不能并起来;(3)求函数的单调区间,求导的方法不是唯一的方法,也不一定是最好的方法,但它是一种一般性的方法.例2 若函数123+++=mx x x y 是R 上的单调函数,则实数m 的取值范围是答案:1[,)3+∞变式题1:若函数123+++=mx x x y 有三个单调区间,则实数m 的取值范围是 .答案:1(,)3-∞ 变式题2:若函数123+++=mx x x y 在(0,1)上单调递减,在(1,+∞)上单调递增,则实数m 的值是 . 答案:-5变式题3:若函数123+++=mx x x y 在1(0,)2上既不是单调递增函数也不是单调递减函数,则整数m 的值是 . 答案:-1.m 变式题4:若函数123+++=mx x x y 的单调递减区间是4[2,]3-,则则实数m 的值是 .答案:-8例3 设函数()y f x =在定义域内可导,()y f x =的图象如图1所示,则导函数()y f x '=可能为 答案:④变式题1:如果函数()y f x =的导函数的图象如下图所示,给出下列判断:①函数()y f x =在区间1(3,)2--内单调递增; ②函数()y f x =在区间1(,3)2-内单调递减;③函数()y f x =在区间(4,5)内单调递增; ④函数()y f x =的单调递增区间是xyO图xyO①xyO ② xyO ③yO④x-2 2xyO1-1 -11[2,2][4,)-+∞则上述判断中正确的是____________.答案:③变式题2:已知函数()y xf x '=的图象如右图所示(其中()f x '是函数()f x 的导函数),下面四个图象中()y f x =的图象大致是 答案:③备选例题:已知函数()ln 3(R)f x a x ax a =--∈.(1)求函数()f x 的单调区间;(2)若函数()y f x =的图象在点(2,(2))f 处的切线的倾斜角为45︒,对于任意的]2,1[∈t ,函数32()['()]2mg x x x f x =++在区间)3,(t 上总不是单调函数,求m 的取值范围;(3)求证:ln 2ln3ln 4ln 1(2,N )234n n n n n *⨯⨯⨯⨯<≥∈.解:(1)(1)'()(0)a x f x x x -=>当0>a 时,)(x f 的单调增区间为(]0,1,减区间为[)1,+∞;当0<a 时,)(x f 的单调增区间为[)1,+∞,减区间为(]0,1;O-22xy1 -1-2 12Oxy-2-2 21-112O-2 4xy1-1 -212 O-22xy-124 ①② ③ ④当0=a 时,)(x f 不是单调函数(2)12)2('=-=a f 得2-=a ,()2ln 23f x x x =-+- ∴x x mx x g 2)22()(23-++=,∴2)4(3)('2-++=x m x x g ∵)(x g 在区间)3,(t 上总不是单调函数,且()02'g =-∴⎩⎨⎧><0)3('0)('g t g 由题意知:对于任意的]2,1[∈t ,'()0g t <恒成立,所以,'(1)0'(2)0'(3)0g g g <⎧⎪<⎨⎪>⎩,∴3793m -<<-(3)令1-=a 此时3ln )(-+-=x x x f ,所以2)1(-=f ,由(Ⅰ)知3ln )(-+-=x x x f 在),1(+∞上单调递增,∴当),1(+∞∈x 时)1()(f x f >,即01ln >-+-x x ,∴1ln -<x x 对一切),1(+∞∈x 成立,∵2,N*n n ≥∈,则有1ln 0-<<n n ,∴n n n n 1ln 0-<<ln 2ln 3ln 4ln 12311(2,N )234234n n n n n n n *-∴⋅⋅⋅⋅<⋅⋅⋅⋅=≥∈四、课堂精练1. 设f(x)=x2(2-x),则f(x)的单调增区间是 .答案:(0,)342. 已知函数()y f x =在定义域[4,6]-内可导,其图象如图,记()y f x =的导函数为'()y f x =,则不等式'()0f x ≥的解集为 .411[4,][1,]33-- 3. 若函数()321f x x ax =-+在(0,2)内单调递减,则实数a 的取值范围为 .答案:a≥3 讨论函数1()cos 2f x x x =-的单调性.答案:函数在7[2,2]()66k k k Z ππππ-+∈上单调递增;在711[2,2]()66k k k Z ππππ++∈上单调递增五、回顾小结判断函数单调性的方法;2.导数符号与函数单调性之间的关系;3.利用导数确定函数的单调性的步骤. 分层训练1.函数y=8x2-lnx 的单调递增区间是 . 答案:1[,)4+∞2.已知x R ∈,奇函数32()f x x ax bx c =--+在[1,)+∞上单调,则字母,,a b c 应满足的条件是 . 答案:a=c=0,3b ≤3.已知函数3221()(41)(1527)23f x x m x m m x =--+--+在(-∞,+∞)上是增函数,则m 的取值范围是 . 答案:2<m <44.若函数2()2ln f x x x =-在定义域内的一个子区间(1,1)k k -+内不是单调函数,则实数k 的取值范围是 .答案:33(,)22-5. 已知函数()ln f x x =,()a g x x =,设()()()F x f x g x =+.求函数()F x 的单调区间;解:()()()()ln 0aF x f x gx x=+=+>,()()221'0a x aF x x x x x -=-=>(1)若0a >,由()()'0,F x x a >⇒∈+∞,∴()F x 在(),a +∞上单调递增.由()()'00,F x x a <⇒∈,∴()F x 在()0,a 上单调递减.∴()F x 的单调递减区间为()0,a ,单调递增区间为(),a +∞.(2)若0a ≤,则()'0F x >在()0,+∞上恒成立,∴()F x 在()0,+∞上单调递增.6.已知函数32()(1)(2)(,)f x x a x a a x b a b R =+--++∈.若函数()f x 在区间(-1,1)上不单调,求a 的取值范围.答案:(-5,-1) 六、拓展延伸1.已知函数32()f x x bx cx d =+++在(,0)-∞上是增函数,在(0,2)上是减函数,且方程f (x)=0有三个根,它们分别是,2,αβ.(1)求c 的值; (2)求证:(1)2f ≥; (3)求||αβ-的取值范围.(1)解:2()32f x x bx c '=++,由条件知(0)0f '=,0c ∴=.(2)证明:由2()320f x x bx '=+=得1220,3bx x ==-,∵ f (x)在(0,2)上是减函数,2223b x ∴=-≥即3b ≤-,又(2)84f b d =++=(1)13f b d b ∴=++=--≥. (3)解:322()(84)(2)[(2)24]f x x bx b x x b x b =+-+=-++++由 f (x)=0有三个根分别是,2,αβ,,αβ∴是方程2(2)240x b x b ++++=的两根2||(2)16b αβ∴-=-+,由(2)可知3b ≤-||3αβ∴-≥. 2.已知a R ∈,函数3211()2()32f x x ax ax x R =-++∈. (1)当a=1时,求函数f (x)的单调递增区间;(2)函数f (x)是否在R 上单调递减,若是,求出a 的取值范围;若不是,请说明理由; (3)若函数f (x)在[1,1]-上单调递增,求a 的取值范围.解: (1) 当a=11a =时,3211()232f x x x x=-++,2()2f x x x ∴'=-++. 令()0,f x ∴'>即2()2f x x x ∴'=-++, 即220x x -++>, 解得12x -<<.所以函数f (x)的单调递增区间是(1,2)-.(2) 若函数f(x)在R 上单调递减,则()0f x ∴'≤对x R ∈都成立,所以220x ax a -++≤对x R ∈都成立, 即220x ax a --≥对x R ∈都成立.280a a ∴∆=+≤, 解得80a -≤≤.∴当80a -≤≤时, 函数f (x)在R 上单调递减.(3) 解法一:∵函数f(x)在[-1,1]上单调递增,()0f x ∴'≥对[1,1]x ∈-都成立, 220x ax a --≤对[1,1]x ∈-都成立.令2()2g x x ax a =--,则(1)120(1)120g a a g a a =--≤⎧⎨-=+-≤⎩, 解得1a ≥. 解法二: 函数f (x)在[1,1]-上单调递增,()0f x ∴'≥对[1,1]x ∈-都成立, 220x ax a --≤对[1,1]x ∈-都成立.即22x a x ≥+对[1,1]x ∈-都成立. 令2()2x g x x =+, 则2(4)()(2)x x g x x +'=+. 当10x -≤<时,()0g x '<;当01x <≤01x <≤时,()0g x '>. ()g x ∴在[1,0]-上单调递减,在[0,1]上单调递增.1(1)1,(1)3g g -==,()g x ∴在[1,1]-上的最大值是1.1a ∴≥.七、课后作业八、教学后记:。

1.1 导数与函数的单调性(一)学案(含答案)

1.1 导数与函数的单调性(一)学案(含答案)

1.1 导数与函数的单调性(一)学案(含答案)1函数的单调性与极值11导数与函数的单调性一学习目标1.理解导数与函数的单调性的关系.2.掌握利用导数判断函数单调性的方法.3.能利用导数求不超过三次多项式函数的单调区间知识点函数的单调性与导数思考1已知函数1y2x1,2y3x,3y2x,请判断它们的导数的正负与它们的单调性之间的关系答案1y20,y2x1是增函数;2y30,y3x是减函数;3y2xln20,y2x是增函数思考2观察图中函数fx,填写下表导数值切线的斜率倾斜角曲线的变化趋势函数的单调性00锐角上升增加的00钝角下降减少的梳理函数的单调性与导数符号的关系导数符号单调性在某个区间内,fx0在这个区间内,函数yfx是增加的在某个区间内,fx0在这个区间内,函数yfx是减少的1函数fx在定义域上都有fx0,则函数fx在定义域上是减少的2函数fx在某区间内是增加的,则一定有fx0.3函数在某区间上变化越快,函数在这个区间上的导数的绝对值越大类型一函数与导数的图像间的关系例11fx是函数yfx的导函数,若yfx的图像如图所示,则函数yfx的图像可能是考点函数的单调性与导数的关系题点根据导函数图像确定原函数图像答案D解析由导函数的图像可知,当x0时,fx0,即函数fx为增函数;当0x2时,fx0,即fx为减函数;当x2时,fx0,即函数fx为增函数观察选项易知D正确2设函数fx在定义域内可导,yfx的图像如图所示,则导函数yfx的图像可能为考点函数的单调性与导数的关系题点根据原函数图像确定导函数的图像答案D解析应用函数的单调性与其导函数的正负关系来判断导函数的图像反思与感悟函数图像的单调性可以通过导数的正负来分析判断,即符号为正,图像上升;符号为负,图像下降看导函数图像时,主要是看图像在x轴上方还是下方,即关心导数值的正负,而不是其单调性解决问题时,一定要分清是函数图像还是其导函数图像跟踪训练1在同一坐标系中作出三次函数fxax3bx2cxda0及其导函数的图像,下列一定不正确的序号是ABCD考点题点答案C解析当fx0时,yfx是增加的;当fx0时,yfx是减少的故可得,中函数图像的增减趋势与导函数的正负区间是吻合的;而中导函数为负的区间内相应的函数不减少,故错误;中导函数为负的区间内相应的函数不减少,故错误类型二利用导数求函数的单调区间例2求下列函数的单调区间1yx2lnx;2yxb0考点利用导数求函数的单调区间题点利用导数求不含参数函数的单调区间解1函数yx2lnx的定义域为0,,又y.若y0,即解得x1;若y0,即解得0x1.故函数yx2lnx的单调增区间为1,;单调减区间为0,12函数fx的定义域为,00,,fx1,令fx0,则xx0,所以x或x.所以函数的单调增区间为,,,令fx0,则xx0,所以x且x0.所以函数的单调减区间为,0,0,反思与感悟求函数yfx的单调区间的步骤1确定函数yfx的定义域2求导数yfx3解不等式fx0,函数在解集所表示的定义域内为增函数4解不等式fx0,函数在解集所表示的定义域内为减函数跟踪训练2函数fxx22xexxR的单调减区间为____________考点利用导数求函数的单调区间题点利用导数求不含参数函数的单调区间答案2,2解析由fxx24x2ex0,即x24x20,解得2x2.所以fxx22xexxR的单调减区间为2,2例3讨论函数fxax2xa1lnxa0的单调性考点利用导数求函数的单调区间题点利用导数求含参数函数的单调区间解函数fx的定义域为0,,fxax1.当a0时,fx,由fx0,得x1,由fx0,得0x1.fx在0,1内为减函数,在1,内为增函数当a0时,fx,a0,0.由fx0,得x1,由fx0,得0x1.fx在0,1内为减函数,在1,内为增函数综上所述,当a0时,fx在0,1内为减函数,在1,内为增函数反思与感悟1 讨论参数要全面,做到不重不漏2解不等式时若涉及分式不等式要注意结合定义域化简,也可转化为二次不等式求解跟踪训练3设函数fxexax2,求fx的单调区间考点利用导数求函数的单调区间题点利用导数求含参数函数的单调区间解fx的定义域为,,fxexa.若a0,则fx0,所以fx在,上是增加的若a0,则当x,lna时,fx0;当xlna,时,fx0.所以fx在,lna上是减少的,在lna,上是增加的综上所述,当a0时,函数fx在,上是增加的;当a0时,fx在,lna上是减少的,在lna,上是增加的.1函数yxlnx,x0,1A在区间0,1上是增加的B在区间0,1上是减少的C在上是减少的,在上是增加的D在上是增加的,在上是减少的考点函数的单调性与导数的关系题点利用导数值的正负号判定函数的单调性答案C解析ylnx1,当0x时,y0,函数yxlnx是减少的;当x1时,y0,函数yxlnx是增加的2若函数fx的图像如图所示,则导函数fx的图像可能为考点函数的单调性与导数的关系题点根据原函数图像确定导函数图像答案C解析由fx的图像可知,函数fx的单调增区间为1,4,单调减区间为,1和4,,因此,当x1,4时,fx0,当x,1和x4,时,fx0,结合选项知选C.3函数fxx3ex的递增区间是A,2B0,3C1,4D2,考点利用导数求函数的单调区间题点利用导数求不含参数函数的单调区间答案D解析fxx3exx3exx2ex,令fx0,解得x2,故选D.4若函数fxx3bx2cxd的单调减区间为1,2,则b________,c________.考点利用导数求函数的单调区间题点已知单调区间求参数值答案6解析fx3x22bxc,由题意知,fx0即3x22bxc0的两根为1和2.由得5试求函数fxkxlnx的单调区间考点利用导数求函数的单调区间题点利用导数求含参数函数的单调区间解函数fxkxlnx 的定义域为0,,fxk.当k0时,kx10,fx0,则fx在0,上是减少的当k0时,由fx0,即0,解得0x;由fx0,即0,解得x.当k0时,fx的单调减区间为,单调增区间为.综上所述,当k0时,fx的单调减区间为0,;当k0时,fx的单调减区间为,单调增区间为.1导数的符号反映了函数在某个区间上的单调性,导数绝对值的大小反映了函数在某个区间或某点附近变化的快慢程度2利用导数求函数fx的单调区间的一般步骤1确定函数fx的定义域;2求导数fx;3在函数fx的定义域内解不等式fx0和fx0;4根据3的结果确定函数fx的单调区间。

利用导数研究函数的单调性教案

利用导数研究函数的单调性教案

利用导数研究函数的单调性教案教案:利用导数研究函数的单调性一、教学目标1.了解函数的单调性概念,以及单调递增和单调递减的定义;2.掌握利用导数研究函数的单调性的方法;3.能够通过导数的正负性分析函数的单调区间,并作出相应的图像。

二、教学准备1.教师准备:书本、黑板、白板、彩色粉笔、计算器、实例练习题;2.学生准备:笔记本、课本。

三、教学过程1.引入导入(10分钟)导师通过提问等方式,引导学生回顾函数的增减性、最值点等概念,为接下来的学习做铺垫。

2.学习讲解(25分钟)1)导师先通过实例展示导数与函数单调性之间的关系,比如分别给出函数f(x)=x^2和函数g(x)=-x^2的导数,并解释导数大于零时函数单调递增,导数小于零时函数单调递减。

2)导师详细讲解如何利用导数分析函数的单调性:首先,对函数f(x)求导,得到它的导函数f'(x);其次,求出f'(x)的零点,即导数为零的点。

这些点将把函数f(x)的定义域划分为若干个开区间;然后,对每个开区间分别求取f'(x)的正负性,从而得到导数f'(x)在各开区间的取值范围;最后,结合导数f'(x)的正负性来分析函数f(x)的单调性。

3.实例训练(35分钟)导师通过多个实例进行讲解和学生训练,帮助学生熟悉和掌握利用导数研究函数单调性的方法。

4.小结提问(10分钟)导师通过提问进行小结,确保学生对函数的单调性及利用导数分析函数单调性的方法有一个深入的理解。

五、作业布置给定函数f(x)=2x^3+3x^2-12x+1,设置一个问题,让学生利用导数分析函数的单调性,并解决问题。

六、板书设计函数的单调性单调递增:导数大于零单调递减:导数小于零怎样利用导数研究函数的单调性?1.求导函数2.导函数的零点3.导函数的正负性导函数的正负性与函数的单调性的关系七、教学反思通过本堂课的教学,学生基本能够理解函数的单调性概念,知道如何利用导数研究函数的单调性。

利用导数研究函数的单调性学案

利用导数研究函数的单调性学案

利用导数研究函数的单调性考试大纲解读:1.了解可导函数的单调性与其导数的关系.2.导数是研究函数性质的重要工具,它的突出作用是用于研究函数的单调性.每年高考都从不同角度考查这一知识点,往往与不等式结合考察.知识点归纳:一、函数的导数与函数的单调性:1.若()0f x '>,则()f x 为增函数;若()0f x '<,则()f x 为减函数;若()0f x '=恒成立,则()f x 为常数函数;若()f x '的符号不确定,则()f x 不是单调函数。

2.若函数y =f (x )在区间(a ,b )上单调递增,则f ′(x )≥0,且在(a ,b )的任意子区间,等号不恒成立;若函数y =f (x )在区间(a ,b )上单调递减,则f ′(x )≤0,且在(a ,b )的任意子区间,等号不恒成立.3.使f ′(x )=0的离散的点不影响函数的单调性.二、利用导数求函数单调区间的步骤:(1)求()f x ';(2)求方程()0f x '=的根,设根为12,,n x x x ; (3)12,,n x x x 将给定区间分成n+1个子区间,再在每一个子区间内判断()f x '的符号,由此确定每一子区间的单调性。

例题与习题求下列函数的单调区间1.3()-f x x x =2.()ln (0)f x x x x =>3. 2()ln(23)f x x x =++4.f (x )=(x -1)2-ln(x -1)2;5.f (x )=1x ln x . 6、f (x )=x 2+1x -17、f (x )=x +21-x 8、f (x )=sin x2+cos x注意事项:利用导数求单调性是高考的重要热点:1.若f (x )在区间(a ,b )上为减函数不能得出在(a ,b )上有f ′(x )<0; 2.划分单调区间一定要先求函数定义域;3.单调区间一般不能并起来.。

2013-2014学年高二数学1-1导学案:3.3.1利用导数研究函数的单调性(1)

2013-2014学年高二数学1-1导学案:3.3.1利用导数研究函数的单调性(1)
Байду номын сангаас
课堂检测——
课题:3.3.1 研究函数的单调性 ⑴
姓名:
2
1.确定下列函数的单调区间: (1) y x 2 ( x 3) :
(2) y sin x cos x :
2.求证当 x 0,
时, x sin x 2
3.已知曲线 y x 3 3x 2 6 x 10 点 P 在该曲线上移动, 过点 P 的切线为 L, ⑴求证:此函数在 R 上单调递增; ⑵求 L 的斜率的取值范围。
2.作出函数 f(x)=
1 的图像,并用单调性定义证明其在(0,+∞)上递减. x
三:课堂研讨 例 1 函数 f ( x) x ln x 的单调增区间是 ;
1
例 2.(1)证明函数 f ( x) e e
x
x
在 0, 上是增函数;
例 3 证明当 x 0,
时,证明 tan x x 2
课题 3.3.1——利用导数研究函数的单调性 ⑴ 一:学习目标 1. 利用导数求函数的单调区间 2. 利用导数证明函数的单调性 二:课前预习 1.(1)作出函数 y x 2 4 x 3 的图像,并指出其单调区间:
姓名: 备 注
(2)作出函数 f ( x) sin x( x 0,2 ) 的图像,并指出其单调区间:
课外作业——
利用导数研究函数的单调性 (1)
姓名:
3
1. 函数 f x x 3 x 的单调增区间为
2.函数 f ( x) ( x 3)e x 的单调递增区间是_____________
3.函数 y x
1 的单调区间为 x
4.用导数证明 ① y e x x ,在 x ,0 上是减函数。 ② y sin x 在区间

高中数学新湘教版精品教案《湖南教育出版社高中数学选修1-1 3.3.1 利用导数研究函数的单调性》

高中数学新湘教版精品教案《湖南教育出版社高中数学选修1-1 3.3.1 利用导数研究函数的单调性》

利用导数研究函数的单调性珠海市斗门区第一中学 邢维金 高二2021【教材分析】“函数单调性与导数”是高中数学(选修1-1)第三章导数及其应用的第三节,本节的教学内容属导数的应用,是在学生学习了导数的概念、计算、几何意义的基础上学习的内容,学好它既可加深对导数的理解,又可为后面研究函数的极值和最值打好基础,起到承上启下的作用【学情分析】课堂学生为高二年级的文科班学生,他们在高一已经掌握了单调性的定义,并能用定义判定在给定区间上函数的单调性通过本节课的学习,应使学生体验到,用导数判断单调性要比用定义判断简捷得多(尤其对于三次和三次以上的多项式函数,或图象难以画出的函数而言),充分展示了导数解决问题的优越性【教学目标】1三维目标知识与技能:1探索函数的单调性与导数的关系;2会利用导数判断函数的单调性并求函数的单调区间过程与方法:让学生经历知识的建构过程,培养学生观察、探究能力,在探究函数单调性与导数符号关系的过程中,渗透数形结合、转化等思想方法;情感态度价值观:利用几何画板的精彩演示,增强图形美感,使学生享受数学美,培养学生数学学习的兴趣2. 核心素养目标数学抽象:从几何与数量关系中抽象函数单调性与导数的关系,让学生学会“用数学的眼光看”数学问题; 逻辑推理:使用以已知探求未知,从特殊到一般的推导方法,让学生学会“用数学的思维”思考问题; 数学模型:建系让“数”和“形”之间建立联系,让学生学会“用数学的语言”表述问题【教学重难点】教学重点:利用导数研究函数的单调性,会求函数的单调区间教学难点:⒈ 探究函数的单调性与导数的关系;⒉ 如何用导数判断函数的单调性易错易混点:导数的正负决定函数的单调性,而不是导数的单调性决定函数的单调性【教学策略与方法】教学方法:启发讲授式与问题探究式.教学准备:多媒体课件、几何画板、互动课堂平台【教学过程】一、温故知新问题引领问题一:判断函数的单调性有哪些方法?问题二: 如何判断函数=2-4+3的单调性?问题三:如果遇到函数323y x x =-,如何判断单调性呢?你能画出该函数的图像吗?【设计意图】通过复习回顾,巩固旧知从已学过的知识(判断二次函数的单调性)入手,提出新的问题(判断三次函数的单调性),引起认知冲突,激发学习的兴趣二、探究新知简例探究引例:几何画板观察函数=2-4+3的图象的切线情况【设计意图】从熟悉的二次函数出发,提出本节课要探索的问题,函数的单调性与导数的关系为学生提供一个联想的“源”,巧妙设问,把学习任务转移给学生;让学生完成对函数单调性与导数关系的第一次认识,明确研究课题师生共同总结:通过以上四个函数的单调性及其导数符号的关系说明,在区间),(b a 内,如果_______,那么函数)(x f y =在这个区间内单调递增;如果_______,那么函数)(x f y =在这个区间内单调递减【设计意图】从具体的函数出发,体会数形结合思想的运用让学生体会从特殊到一般,从具体到抽象的过程,降低思维难度,让学生在老师的引导下自主学习和探索,提高学习的成就感和自信心三、理解新知归纳论证函数的单调性与导数的关系: 在某个区间),(b a 内,如果0)(/>x f ,那么函数)(x f y =在这个区间内单调递增;如果0)(/<x f ,那么函数)(x f y =在这个区间内单调递减.说明:1如果0)(/=x f ,那么函数)(x f y =在这个区间内是常函数.2正确理解“ 某个区间 ”的含义,它必是定义域内的某个区间.【设计意图】通过导数的几何意义来验证由具体函数所得到的结论,形成一般性结论让学生经历观察、分析、归纳、发现规律的过程,体会函数单调性与导数的关系四、运用新知典例精析例1求函数323y x x =-的单调区间【师生活动】几何画板演示函数图像【变式训练1】判断下列函数的单调性,并求其单调区间。

14导数、利用导数研究函数的单调性(含答案)

14导数、利用导数研究函数的单调性(含答案)

14导数:利用导数研究函数的单调性1.函数的单调性与导数的关系2.确定不含参数的函数单调区间的步骤(1)确定函数f(x)的定义域.(2)求f′(x).(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间.(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.3.确定含参数的函数的单调性的基本步骤(1)确定函数f(x)的定义域.(2)求f′(x),并尽量化为乘积或商的形式.(3)令f′(x)=0,①若此方程在定义域内无解,考虑f′(x)恒大于等于0(或恒小于等于0),直接判断单调区间.如举例说明中a≥1时,f′(x)>0,a≤0时,f′(x)<0.②若此方程在定义域内有解,则用之分割定义域,逐个区间分析f′(x)的符号确定单调区间.如举例说明中0<a<1时,f′(x)=0有一个实根练习1.设f′(x)是函数f(x)的导函数,y=f′(x)的图象如图所示,则y=f(x)的图象最有可能的是( )答案 C解析由y=f′(x)的图象易得,当x<0或x>2时,f′(x)>0;当0<x<2时,f′(x)<0.所以函数y=f(x)在(-∞,0)和(2,+∞)上单调递增,在(0,2)上单调递减,故选C.2.f(x)=x3-6x2的单调递减区间为( )A.(0,4) B.(0,2)C.(4,+∞) D.(-∞,0)答案 A解析f′(x)=3x2-12x=3x(x-4),由f′(x)<0得0<x<4,所以f(x)的单调递减区间为(0,4).3.函数f(x)=(x-3)e x的单调递增区间是( )A.(-∞,2) B.(0,3)C.(1,4) D.(2,+∞)答案 D解析函数f(x)=(x-3)e x的导数为f′(x)=[(x-3)e x]′=e x+(x-3)e x =(x-2)e x.由函数导数与函数单调性的关系,得当f′(x)>0时,函数f(x)单调递增,此时由不等式f′(x)=(x-2)e x>0,解得x>2.4.函数f(x)=e x-e x,x∈R的单调递增区间是( )A.(0,+∞) B.(-∞,0)C.(-∞,1) D.(1,+∞)答案 D解析 依题意得f ′(x )=e x -e.由函数导数与函数单调性的关系,得当f ′(x )>0时,函数f (x )单调递增,此时由不等式f ′(x )=e x -e>0,解得x >1.5.函数f (x )=3xx 2+1的单调递增区间是___________. 解析 函数f (x )的定义域为R ,f ′(x )=31-x 2x 2+12=31-x 1+xx 2+12.要使f ′(x )>0,只需(1-x )(1+x )>0,解得x ∈(-1,1).6.已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间.解 (1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y =12x ,知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32(x >0).则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,解得x =-1或x =5. 但-1∉(0,+∞),舍去. 当x ∈(0,5)时,f ′(x )<0; 当x ∈(5,+∞)时,f ′(x )>0.∴f (x )的增区间为(5,+∞),减区间为(0,5).7.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是.答案 ⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2解析 因为f (x )=x sin x +cos x ,所以f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )>0,得x cos x >0. 又因为-π<x <π,所以-π<x <-π2或0<x <π2, 所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-π,-π2,⎝ ⎛⎭⎪⎫0,π2.8.讨论函数f (x )=(a -1)ln x +ax 2+1的单调性. 解 f (x )的定义域为(0,+∞),f ′(x )=a -1x +2ax =2ax 2+a -1x .①当a ≥1时,f ′(x )>0, 故f (x )在(0,+∞)上单调递增;②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; ③当0<a <1时,令f ′(x )=0,解得x =1-a2a, 则当x ∈⎝ ⎛⎭⎪⎫0,1-a 2a 时,f ′(x )<0; 当x ∈⎝⎛⎭⎪⎫1-a2a ,+∞时,f ′(x )>0, 故f (x )在⎝ ⎛⎭⎪⎫0,1-a 2a 上单调递减, 在⎝⎛⎭⎪⎫1-a2a ,+∞上单调递增. 综上所述,当a ≥1时,f (x )在(0,+∞)上单调递增; 当a ≤0时,f (x )在(0,+∞)上单调递减; 当0<a <1时,f (x )在⎝ ⎛⎭⎪⎫0,1-a 2a 上单调递减, 在⎝ ⎛⎭⎪⎫1-a2a ,+∞上单调递增.9.已知函数f (x )=(x -1)e x -x 2,g (x )=a e x -2ax +a 2-10(a ∈R ).(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数h(x)=f(x)-g(x)(x>0)的单调性.解(1)由题意,得f′(x)=x e x-2x,则f′(1)=e-2.又f(1)=-1,故所求切线方程为y-(-1)=(e-2)(x-1),即y=(e-2)x+1-e.(2)由已知,得h(x)=f(x)-g(x)=(x-a-1)e x-x2+2ax-a2+10.此函数的定义域为(0,+∞).则h′(x)=e x+(x-a-1)e x-2x+2a=(x-a)(e x-2).①若a≤0,则x-a>0.当0<x<ln 2时,h′(x)<0,当x>ln 2时,h′(x)>0.所以h(x)在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增.②若0<a<ln 2,则当0<x<a或x>ln 2时,h′(x)>0.当a<x<ln 2时,h′(x)<0.所以h(x)在(0,a)上单调递增,在(a,ln 2)上单调递减,在(ln 2,+∞)上单调递增.③若a=ln 2,则h′(x)≥0,所以h(x)在(0,+∞)上单调递增.④若a>ln 2,则当0<x<ln 2或x>a时,h′(x)>0;当ln 2<x<a时,h′(x)<0.所以h(x)在(0,ln 2)上单调递增,在(ln 2,a)上单调递减,在(a,+∞)上单调递增.10.设函数f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(3)=0,则不等式f(x)g(x)>0的解集是?解析∵f′(x)g(x)+f(x)g′(x)>0,即[f(x)g(x)]′>0.∴f(x)g(x)在(-∞,0)上单调递增,又f(x),g(x)分别是定义在R上的奇函数和偶函数,∴f(x)g(x)为奇函数,f(0)g(0)=0,∴f(x)g(x)在(0,+∞)上也是增函数.∵f(3)g(3)=0,∴f(-3)g(-3)=0.∴f(x)g(x)>0的解集为(-3,0)∪(3,+∞).11.已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 解 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x-ax -2,由于h (x )在(0,+∞)上存在单调递减区间, 所以当x ∈(0,+∞)时, 1x-ax -2<0有解,即a >1x 2-2x有解.设G (x )=1x 2-2x,所以只要a >G (x )min 即可.而G (x )=⎝ ⎛⎭⎪⎫1x -12-1,所以G (x )min =-1.所以a >-1. 又因为a ≠0,所以a 的取值范围为(-1,0)∪(0,+∞). (2)因为h (x )在[1,4]上单调递减, 所以当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立.由(1)知G (x )=1x 2-2x,所以a ≥G (x )max , 而G (x )=⎝ ⎛⎭⎪⎫1x -12-1,因为x ∈[1,4],所以1x ∈⎣⎢⎡⎦⎥⎤14,1,所以G (x )max =-716(此时x =4),所以a ≥-716,又因为a ≠0,所以a 的取值范围是 ⎣⎢⎡⎭⎪⎫-716,0∪(0,+∞). 12.已知函数f (x )的导函数f ′(x )=ax 2+bx +c 的图象如图所示,则f (x )的图象可能是( )答案 D解析 当x <0时,由导函数f ′(x )=ax 2+bx +c <0,知相应的函数f (x )在该区间内单调递减;当x >0时,由导函数f ′(x )=ax 2+bx +c 的图象可知,导函数在区间(0,x 1)内的值是大于0的,则在此区间内函数f (x )单调递增.只有D 项符合题意.13.已知函数f (x )=x 3+ax ,则“a >0”是“f (x )在R 上单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 当a ≥0时,f ′(x )=3x 2+a ≥0,f (x )在R 上单调递增,“a >0”是“f (x )在R 上单调递增”的充分不必要条件.故选A.14.已知函数f (x )=3x +2cos x ,若a =f (32),b =f (2),c =f (log 27),则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a答案 D解析 ∵f (x )=3x +2cos x 的定义域为R ,f ′(x )=3-2sin x >0,∴f (x )为R 上的单调递增函数.又y =log 2x 为(0,+∞)上的单调递增函数,∴2=log 24<log 27<log 28=3.∵y =3x 为R 上的单调递增函数,∴32>31=3,∴2<log 27<3 2.∴f (2)<f (log 27)<f (32),即b <c <a .15.若函数f (x )=e x -(a -1)x +1在(0,1)上单调递减,则a 的取值范围为( )A.(e+1,+∞) B.[e+1,+∞)C.(e-1,+∞) D.[e-1,+∞)答案 B解析由f(x)=e x-(a-1)x+1,得f′(x)=e x-a+1.因为函数f(x)=e x -(a-1)x+1在(0,1)上单调递减,所以f′(x)=e x-a+1≤0在(0,1)上恒成立,即a≥e x+1在(0,1)上恒成立,令g(x)=e x+1,x∈(0,1),则g(x)在(0,1)上单调递增,所以g(x)<g(1)=e+1.所以a≥e+1.所以实数a的取值范围为[e+1,+∞).故选B.16.已知定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)<0,其中f′(x)是函数f(x)的导函数.若2f(m-2019)>(m-2019)f(2),则实数m的取值范围为( )A.(0,2019) B.(2019,+∞)C.(2021,+∞) D.(2019,2021)答案 D解析令h(x)=f xx,x∈(0,+∞),则h′(x)=xf′x-f xx2.∵xf′(x)-f(x)<0,∴h′(x)<0,∴函数h(x)在(0,+∞)上单调递减,∵2f(m-2019)>(m-2019)f(2),m-2019>0,∴f m-2019m-2019>f22,即h(m-2019)>h(2).∴m-2019<2且m-2019>0,解得2019<m<2021.∴实数m的取值范围为(2019,2021).17.已知f(x)=1+ln x2ax(a≠0,且a为常数),求f(x)的单调区间.解因为f(x)=1+ln x2ax(a≠0,且a为常数),所以f′(x)=-2a ln x2ax2=-ln x2ax2,x>0.所以①若a>0,当0<x<1时,f′(x)>0;当x>1时,f′(x)<0.即a>0时,函数f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).②若a<0,当0<x<1时,f′(x)<0;当x>1时,f′(x)>0.即a <0时,函数f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1). 18.已知函数f (x )=x 3+ax 2+2x -1.(1)若函数f (x )在区间[1,3]上单调递增,求实数a 的取值范围; (2)若函数f (x )在区间[-2,-1]上单调递减,求实数a 的取值范围. 解 由f (x )=x 3+ax 2+2x -1,得f ′(x )=3x 2+2ax +2.(1)因为函数f (x )在区间[1,3]上单调递增,所以f ′(x )≥0在[1,3]上恒成立.即a ≥-3x 2-22x 在[1,3]上恒成立.令g (x )=-3x 2-22x ,则g ′(x )=-3x 2+22x 2,当x ∈[1,3]时,g ′(x )<0,所以g (x )在[1,3]上单调递减,所以g (x )max =g (1)=-52,所以a ≥-52.(2)因为函数f (x )在区间[-2,-1]上单调递减,所以f ′(x )≤0在[-2,-1]上恒成立,即a ≥-3x 2-22x 在[-2,-1]上恒成立,由(1)易知,g (x )=-3x 2-22x 在[-2,-1]上单调递减,所以a ≥g (-2),即a ≥72.。

专题02 利用导数研究函数单调性问题(含参数讨论) (解析版)

专题02 利用导数研究函数单调性问题(含参数讨论) (解析版)

导数及其应用专题二:利用导数研究函数单调性问题(含参数讨论)一、知识储备往往首先考虑是否导数恒大于零或恒小于零,再考虑可能大于零小于零的情况。

常与含参数的一元二次不等式的解法有关,首先讨论二次项系数,再就是根的大小或判别式,能表示出对应一元二次方程的根时讨论根的大小、端点实数的大小,不能时讨论判别式。

二、例题讲解1.(2022·山东莱州一中高三开学考试)已知函数()1ln f x x a x =--(其中a 为参数). (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求导可得()af x x x'-=,分0a ≤和0a >进行讨论即可; 【详解】 (1)()af x x x'-=,(0,)x ∈+∞, 当0a ≤时,()0f x '>,()f x ∴在(0,)+∞上递增, 当0a >时,令()0f x '=,得x a =,()0,x a ∈时,()f x 单调递减, (,)x a ∈+∞时,()f x 单调递增;综上:0a ≤时,()f x 在(0,)+∞上递增,无减区间,当0a >时,()f x 的单调递减区间为()0,a ,单调递增区间为(,)a +∞;2.(2022·宁夏银川一中高三月考(文))已知函数2()(2)ln f x x a x a x =---(a R ∈) (1)求函数()y f x =的单调区间; 【分析】(1)先求出函数的定义域,然后对函数求导,分0a ≤和0a >两种情况判断导数的正负,从而可求得函数的单调区间, 【详解】(1)函数()f x 的定义域是(0,)+∞,(1)(2)()2(2)a x x a f x x a x x'+-=---= 当0a ≤时,()0f x '>对任意(0,)x ∈+∞恒成立, 所以,函数()f x 在区间(0,)+∞单调递增; 当0a >时,由()0f x '>得2a x >,由()0f x '<,得02ax <<, 所以,函数在区间,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在区间0,2a ⎛⎫ ⎪⎝⎭上单调递减;综上:0a ≤时,()f x 的单调增区间为(0,)+∞,无单调减区间. 0a >时,()f x 的单调增区间为,2a ⎛⎫+∞ ⎪,单调减区间为0,2a ⎛⎫ ⎪.3.(2022·广西高三开学考试(理))函数()322f x x x ax =++,(1)讨论()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调性.【详解】(1)()'234f x x x a =++,1612a ∆=-①若43a ≥,则0∆≤,()'0f x ≥;()f x 单调递增; ②若43a <则0∆>,当x <x >()'0f x >,()f x 单调递增;x <<,()'0f x <,()f x 单调递减; 【点睛】若函数的导函数含有参数,则需要对参数进行分类讨论,分类讨论要做到不重不漏.三、实战练习1.(2022·全国高三月考)设函数()()()21ln 11f x x x ax x a =++--+-,a R ∈.(1)求()f x '的单调区间 【答案】(1)答案见解析; 【分析】(1)先对函数()f x 进行求导,构造函数再分0a ≤,0a >两种情况进行讨论,利用导数研究函数的单调性即可求解; 【详解】(1)由题意可得()f x 的定义域为{}1x x >-,()()ln 12f x x ax +'=-. 令()()()ln 121g x x ax x =+->-, 则()1122211a axg x a x x --=-='++. 当0a ≤时,当()1,x ∈-+∞时,()0g x '>,函数()g x 单调递增; 当0a >时,当11,12x a ⎛⎫∈-- ⎪⎝⎭时,()0g x '>,函数()g x 单调递增;当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x '<,函数()g x 单调递减,所以当0a ≤时,()f x '的单调递增区间为()1,-+∞; 当0a >时,()f x '的单调递增区间为11,12a ⎛⎫-- ⎪⎝⎭,单调递减区间为11,2a ⎛⎫-+∞ ⎪⎝⎭.2.(2022·浙江舟山中学高三月考)已知函数()22ln (R)f x x x a x a =-+∈(1)当0a >时,求函数()f x 的单调区间; 【答案】(1)当12a ≥时,函数在()0+∞,递增;当102a <<时,函数在()10,x 递增,()12,x x 递减,()2,x +∞递增其中12x x =; 【分析】(1)求()f x ',令()0f x '=可得2220x x a -+=,分别讨论0∆≤和0∆>时,求不等式()0f x '>,()0f x '<的解集,即可求解;【详解】(1)()22ln (R)f x x x a x a =-+∈定义域为()0,∞+, ()22222a x x af x x x x-+'=-+=()0x >, 令()0f x '=可得2220x x a -+=, 当480a ∆=-≤即12a ≥时,()0f x '≥对于()0,x ∈+∞恒成立, 所以()f x 在()0,∞+上单调递增,当480a ∆=->即102a <<时,由2220x x a -+=可得:x =,由()0f x '>可得:0x <<或x >由()0f x '<x <<所以()f x 在⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭上单调递增,在⎝⎭上单调递减, 综上所述:当12a ≥时,()f x 的单调递增区间为()0,∞+;当102a <<时,()f x 的单调递增区间为⎛ ⎝⎭和⎫+∞⎪⎪⎝⎭单调递减区间为⎝⎭. 3.(2022·山东济宁一中)已知函数()ln f x x a x =-,a ∈R . (1)求函数()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)对函数求导,进而讨论a 的范围,最后得到函数的单调区间; 【详解】(1)函数()f x 的定义域为{}0x x >,()1a x a f x x x'-=-=0a ≤时,()0f x '>恒成立,函数()f x 在()0,∞+上单调递增;0a >时,令()0f x '=,得x a =.当0x a <<时,()0f x '<,函数()f x 为减函数; 当x a >时,()0f x '>,函数()f x 为增函数.综上所述,当0a ≤时,函数()f x 的单调递增区间为()0,∞+,无单调递减区间; 当0a >时,函数()x 的单调递减区间为()0,a ,单调递增区间为(),a +∞. 4.(2022·仪征市精诚高级中学高三月考)已知函数()()1n f x x ax a =-∈R . (1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析;(2)证明见解析. 【分析】(1)求出函数导数,讨论a 的范围结合导数即可得出单调性; 【详解】 (1)11()(0)axf x a x xx-'=-=> 当0a ≤时,()0f x '>,所以()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增, 当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递减.5.(2022·嘉峪关市第一中学高三模拟预测(理))已知函数()21xf x e ax =--,()()2ln 1g x a x =+,a R ∈.(1)求()f x 的单调区间; 【答案】(1)答案见解析; 【分析】(1)求出函数()f x 的导函数()f x ',按a 分类解不等式()0f x '<、()0f x '>即得;【详解】(1)对函数()21x f x e ax =--求导得,()2xf x e a '=-,当0a ≤时,()0f x '>,()f x 在R 上为增函数,当0a >时,由()20xf x e a '=-=,解得:()ln 2x a =,而()f x '在R 上单调递增,于是得当(,ln(2))∈-∞x a 时,()0f x '<,()f x 在(,ln(2))a -∞上为减函数, 当()()ln 2,x a ∈+∞时,()0f x '>,()f x 在()()ln 2,a +∞上为增函数, 所以,当0a ≤时,()f x 的单调递增区间为R ,当0a >时,()f x 的单调递减区间是(,ln(2))a -∞,单调递增区间是()()ln 2,a +∞;6.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【分析】(1)求出导函数()212121ax x f x ax x x -'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. 7.(2022·嘉峪关市第一中学高三三模(理))设函数()2ln f x ax a x =--,其中a ∈R .(1)讨论()f x 的单调性; 【答案】(1)答案见解析; 【分析】(1)求导,当0a ≤时,可得()0f x '<,()f x 为单调递减函数;当0a >时,令()0f x '=,可得极值点,分别讨论在⎛ ⎝和+⎫∞⎪⎭上,()'f x 的正负,可得()f x 的单调区间,即可得答案.【详解】(1)()()212120.ax f x ax x x x-'=-=>当0a ≤时,()0f x '<,()f x 在()0,∞+内单调递减. 当0a >时,由()0f x '=,有x =此时,当x ∈⎛⎝时,()0f x '<,()f x 单调递减;当x ∈+⎫∞⎪⎭时,()0f x '>,()f x 单调递增. 综上:当0a ≤时,()f x 在()0,∞+内单调递减,当0a >时,()f x 在⎛ ⎝内单调递减,在+⎫∞⎪⎭单调递增. 8.(2022·贵州省思南中学高三月考(文))设函数()22ln 1f x x mx =-+.(1)讨论函数()f x 的单调性; 【答案】(1)函数()f x 的单调性见解析; 【分析】(1)求出函数()f x 的定义域及导数,再分类讨论导数值为正、为负的x 取值区间即得; 【详解】(1)依题意,函数()f x 定义域为(0,)+∞,()222(1)2mx f x mx x x-'=-=,当0m ≤时,()0f x '>,()f x 在(0,)+∞上单调递增,当0m >时,由()0f x '=得x =,当0x <<()0f x '>,当x >时,()0f x '<,于是得()f x 在上单调递增,在)+∞上单调递减,所以,当0m ≤时,()f x 在(0,)+∞上单调递增,当0m >时,()f x 在上单调递增,在)+∞上单调递减;9.(2022·河南(理))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案不唯一,具体见解析; 【分析】(1)求导得到221()mx mx f x x --'=-,转化为二次函数2()21g x mx mx =--的正负进行讨论,分0∆≤,0∆>两种情况讨论,即得解; 【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>, 令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,故()f x 单调递增;当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减; 当80m -≤<时,()f x 在()0,∞+单调递增.10.(2022·河南高三月考(文))已知函数()()2ln f x x m x x =--(8m ≥-,且0m ≠).(1)讨论函数()f x 的单调性;【答案】(1)答案见解析;(2)证明见解析. 【分析】(1)求导2121()(21)mx mx f x m x x x --'=--=-,令2()21g x mx mx =--,然后由0∆≤,0∆>讨论求解;【详解】(1)函数()f x 的定义域为()0,∞+,2121()(21)mx mx f x m x x x--'=--=-, 令2()21g x mx mx =--,()g x 为二次函数,28m m ∆=+, ①当80m -≤<时,0∆≤,()0g x ≤, 所以()0f x '≥,故()f x 在()0,∞+单调递增; ②当0m >时,0∆>,令()0g x =,得1x =2x =,显然120x x <<,所以当()20,x x ∈,()0g x <, 所以()0f x '>,()f x 单调递增; 当()2,x x ∈+∞时,()0g x >, 所以()0f x '<,()f x 单调递减.综上,当80m -≤<时, ()f x 在()0,∞+单调递增;当0m >时,()f x 在⎛ ⎝⎭单调递增,在⎫+∞⎪⎪⎝⎭上单调递减. 11.(2022·湖南高三模拟预测)设函数1()ln ,()3a f x x g x ax x-=+=-. (1)求函数()()()x f x g x ϕ=+的单调递增区间; 【答案】(1)答案见解析;(2)存在符合题意的整数λ,其最小值为0.【分析】(1)求出函数的导数,通过讨论a 的范围,求出函数的单调区间即可;【详解】解:(1)函数()ϕx 的定义域为()0,∞+,函数()ϕx 的导数2(1)(1)()x ax a x x ϕ'++-=, 当0a <时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递增,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递减 当01a 时,()ϕx 在R +上单调递增.当1a >时,()ϕx 在10,a a -⎛⎫ ⎪⎝⎭上单调递减,在1,a a -⎛⎫+∞ ⎪⎝⎭上单调递增. 综上可知,当0a <时,()ϕx 的单调递增区间是10,a a -⎛⎫ ⎪⎝⎭;当01a 时,()ϕx 的单调递增区间是(0,)+∞;当1a >时,()ϕx 的单调递增区间是1,a a -⎛⎫+∞ ⎪⎝⎭. 12.(2022·安徽高三月考(文))已知函数21()ln 2f x x a x =-. (1)讨论()f x 的单调性; 【答案】(1)答案不唯一,具体见解析;(2)12a =. 【分析】 (1)求导函数()'f x ,分类讨论确定()'f x 的正负,得单调区间;【详解】解:(1)由题意,可得0x >且2 ()a x a f x x x x-'=-= ①若0a ≤,()0f x '>恒成立,则()f x 在(0,)+∞上是增函数②0a >,则2()a x a f x x x x -==='-所以当x ∈时,()0f x '<,当)x ∈+∞时,()0f x '>则()f x 在上是减函数,在)+∞上是增函数综上所述,若0a ≤,()y f x =在(0,)+∞上是增函数若0a >,()y f x =在上是减函数,在)+∞上是增函数13.(2022·湖北武汉·高三月考)已知函数2()ln (1),2a f x x x a x a R =+-+∈ (1)讨论函数()f x 的单调区间;【答案】(1)答案见解析;【分析】(1)求得(1)(1)()x ax f x x '--=,分0a ≤,01a <<,1a =和1a >四种情况讨论,结合导数的符号,即可求解; 【详解】(1)由题意,函数2()ln (1)2a f x x x a x =+-+的定义域为(0,)+∞, 且21(1)1(1)(1)()(1)ax a x x ax f x ax a x x x-++--=+-+==', ①当0a ≤时,令()0f x '>,解得01x <<,令()0f x '<,解得1x >,所以()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;②当01a <<时,令()0f x '>,解得01x <<或1x a>, 令()0f x '<,解得11x a <<, 所以()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减; ③当1a =时,则()0f x '≥,所以在(0,)+∞上()f x 单调递增,④当1a >时,令()0f x '>,解得10x a<<或1x >, 令()0f x '<,解得11x a <<, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 综上,当0a ≤时,()f x 在(0,1)上单调递增,在(1,)+∞上单调递减;当01a <<时,()f x 在(0,1),1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,a ⎛⎫ ⎪⎝⎭上单调递减;当1a =时,()f x 在(0,)+∞上单调递增;当1a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭,(1,)+∞上单调递增,在1,1a ⎛⎫ ⎪⎝⎭上单调递减; 14.(2022·双峰县第一中学高三开学考试)已知函数()2()1e x f x x ax =-+.(1)讨论()f x 的单调性;【答案】(1)当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;【分析】(1)先对函数求导,然后结合导数与单调性的关系,讨论0a =,0a >和0a <情况下,导数的正负,即可得到()f x 的单调性;【详解】(1)函数()2()1e x f x x ax =-+,求导()()()()21e 11e 2x x f x x a x a x a x '⎡⎤+=⎣+-⎦=-+-+由()0f x '=,得11x a =-,21x =-①当0a =时,()()21e 0x f x x '+≥=,()f x ∴在R 上单调递增;②当0a <时, 在(),1x a ∈-∞-有()0f x '>,故()f x 单调递增;在()1,1x a ∈--有()0f x '<,故()f x 单调递减;在(1,)x ∈-+∞有()0f x '>,故()f x 单调递增;③当0a >时, 在(),1x ∈-∞-有()0f x '>,故()f x 单调递增;在()1,a 1x ∈--有()0f x '<,故()f x 单调递减;在(1,)x a ∈-+∞有()0f x '>,故()f x 单调递增;综上所述,当0a =时,()f x 在R 上单调递增;当0a <时,()f x 在(),1a -∞-和(1,)-+∞上单调递增,在()1,1a --上单调递减;当0a >时,()f x 在(),1-∞-和(1,)a -+∞上单调递增,在()1,1a --上单调递减;。

利用导数判断函数的单调性教案

利用导数判断函数的单调性教案

利用导数判断函数的单调性教案一、教学目标1. 理解导数的定义和几何意义2. 学会利用导数判断函数的单调性3. 能够运用单调性解决实际问题二、教学内容1. 导数的定义和几何意义2. 导数与函数单调性的关系3. 利用导数判断函数单调性的方法4. 单调性在实际问题中的应用三、教学重点与难点1. 重点:导数的定义,导数与函数单调性的关系,利用导数判断函数单调性2. 难点:导数的几何意义,利用导数判断函数单调性的方法四、教学方法与手段1. 讲授法:讲解导数的定义和几何意义,引导学生理解导数与函数单调性的关系2. 案例分析法:分析实际问题,让学生学会运用单调性解决实际问题3. 练习法:让学生通过练习,巩固利用导数判断函数单调性的方法4. 教学手段:多媒体课件,黑板,粉笔五、教学过程1. 导入:复习导数的定义和几何意义,引导学生思考导数与函数单调性的关系2. 新课:讲解导数与函数单调性的关系,引导学生学会利用导数判断函数单调性3. 案例分析:分析实际问题,让学生学会运用单调性解决实际问题4. 练习:让学生通过练习,巩固利用导数判断函数单调性的方法六、教学设计1. 教学流程:a. 导入:复习导数的基本概念和几何意义b. 新课:讲解导数与函数单调性的关系c. 案例分析:分析实际问题,让学生学会运用单调性解决实际问题d. 练习:让学生通过练习,巩固利用导数判断函数单调性的方法2. 教学时间安排:45分钟七、教学评价1. 课堂参与度:观察学生在课堂上的积极参与程度,提问和回答问题的积极性2. 练习完成情况:检查学生完成的练习情况,评估学生对利用导数判断函数单调性的掌握程度3. 案例分析:评估学生在案例分析中的表现,判断学生能否运用单调性解决实际问题八、教学反思1. 课堂讲解:反思导数与函数单调性关系的讲解是否清晰易懂,是否引导学生充分理解2. 案例分析:反思案例分析环节是否有效地引导学生运用单调性解决实际问题3. 练习环节:反思练习题的设计是否合理,是否有助于巩固学生对导数判断函数单调性的掌握九、课后作业1. 复习导数的基本概念和几何意义2. 复习导数与函数单调性的关系3. 完成课后练习题,巩固利用导数判断函数单调性的方法十、拓展学习建议1. 深入学习导数的应用,如求函数的极值、最值等2. 研究导数在其他数学领域中的应用,如微分方程、微积分等3. 了解导数在实际问题中的应用,如物理学、经济学等领域重点和难点解析六、教学设计补充和说明:案例分析环节是学生将理论知识应用于实际问题的重要环节。

3用导数研究函数的单调性 学案

3用导数研究函数的单调性 学案
③当 时,函数 的单调递增区间是 , ,单调递减区间是
④当 时,函数 的单调递增区间是 ,单调递减区间是
【题干】设 .讨论 的单调区间;
【答案】见解析
【解析】
由 , ,
① 时, ,此时 ,
∴ 在R上递减.
② 时, ,令 ,解得 ,
令 ,解得 或 ,
解得 ,
故 在 , 上递减,
在 上递增.
1.函数 的单调减区间为________________.
2.函数 的单调递减区间是__________.
3.已知函数 .求函数 的单调区间;
4.若函数 在 上单调递增,则 的取值范围是__________.
5.已知函数 ,求:
(1)函数 的图象在点 处的切线方程;
(2) 的单调递减区间.
6.已知函数 .
(Ⅰ)当 时,求函数 在 处的切线方程;
(Ⅱ)求函数 的单调区间;
【答案】(Ⅰ) ;(Ⅱ)见解析.
【解析】
(Ⅰ)当 时,

∴ , ;
∴函教 的图象在点 处的切线方程为 .
(Ⅱ)由题知,函数 的定义域为 , ,
令 ,解得 , ,
①当 时,所以 ,在区间 和 上 ;在区间 上 ,
故函数 的单调递增区间是 和 ,单调递减区间是 .
②当 时, 恒成立,故函数 的单调递增区间是 .
③当 时, ,在区间 ,和 上 ;在 上 ,
故函数 的单调递增区间是 , ,单调递减区间是
④当 时, , 时 , 时 ,
函数 的单调递增区间是 ,单调递减区间是
⑤当 时, ,函数 的单调递增区间是 ,
单调递减区间是 ,
综上,① 时函数 的单调递增区间是 和 ,单调递减区间是

区公开课-课题:利用导数研究函数的单调性---学案

区公开课-课题:利用导数研究函数的单调性---学案

课题:利用导数研究函数的单调性学案教学目标:1:掌握利用导数研究函数的单调性的方法步骤;2:让学生理解“分类讨论思想”在解题中的应用。

教学重点:利用“分类讨论思想”讨论含有参数的函数的单调性问题。

教学难点:让学生理解分类的原则和方法,解决如何分类的问题。

教学过程:课堂导入:求函数f (x)=x32-3x-4的单调区间。

3+x设计意图:通过本题的练习,让学生复习、强化求函数的单调区间的一般步骤和方法。

大约时间4分钟。

小结:求函数单调区间的步骤:课堂练习:1、(2011天津文)已知函数322=+-+-∈,其中()4361,f x x tx t x t x Rt≠时,求()t R∈.当0f x的单调区间;设计意图:对含有参数的函数单调性讨论,关键是对两个跟的大小进行分类,简称“大不大”。

大约时间8分钟。

小结:对含有参数的函数,求导时要注意: 变式练习1:已知函数2()ln f x x ax b x =++(实数a ,b 为常数).若2a b +=-,讨论函数()f x 的单调性.设计意图:在上一题的基础上,增加了定义域的限制,要对跟在不在定义域内进行讨论。

简称“在不在”。

大约时间12分钟。

小结:对含有参数的函数,求导时要注意:变式练习 2:已知函数32()4361,f x x tx x t x R =+++-∈,其中t R ∈.当0t ≠时,求()f x 的单调区间;设计意图:和第一题的主要区别是,跟不能直接求出来,需要对跟的存在性进行讨论。

即对“△”进行讨论,简称“有没有”.大约时间15分钟。

小结:对含有参数的函数,求导时要注意:课时总结:(Ⅱ)∵2()ln f x x x x =+- ∴()f x 的定义域为(0,)+∞又∵2a b +=-,则2a b =--,∴2()(2)ln f x x b x b x =-++,则(2)(1)()2(2)b x b x f x x b x x--'=-++=令()0f x '=,得12bx =,21x =. 1):当02b≤,即0b <时, 函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞;2):当012b<<,即02b <<时,函数()f x 的单调递增区间为(0,)2b ,(1,)+∞,单调递减区间为(,1)2b;3):当12b =,即2b =时,函数()f x 的单调递增区间为(0,)+∞;4):当12b >,即2b >时,函数()f x 的单调递增区间为(0,1),(,)2b +∞,单调递减区间为(1,)2b;综上:当02b≤,即0b <时,函数()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞;当012b <<,即02b <<时,函数()f x 的单调递增区间为(0,)2b ,(1,)+∞,单调递减区间为(,1)2b ; 当12b=,即2b =时,函数()f x 的单调递增区间为(0,)+∞; 当12b >,即2b >时,函数()f x 的单调递增区间为(0,1),(,)2b +∞,单调递减区间为(1,)2b .解:∵22()1266f x x tx t '=+-,令()0f x '=,解得.2t x t x =-=或因为0t ≠,以下分两种情况讨论:(1)若0,,2tt t <<-则∴()f x 的单调递增区间是(),,,;()2t t f x ⎛⎫-∞-+∞ ⎪⎝⎭的单调递减区间是,2t t ⎛⎫- ⎪⎝⎭。

学案1:1.3.1利用导数研究函数的单调性

学案1:1.3.1利用导数研究函数的单调性

利用导数研究函数的单调性学案【使用说明】1.仔细阅读课本,课前完成预习案,牢记基础知识,掌握基本题型,在做题过程中,如遇到不会的问题再回去阅读课本。

2.限时独立完成,书写规范,课上小组合作探究,答疑解惑。

3.小组长在课上讨论环节要在组内起引领作用,控制讨论节奏。

【学习目标】1.了解函数单调性与导数的关系;2.能利用导数研究函数的单调性,会求函数的单调区间.3.激情投入,从科学家探索物质构成奥秘的史实中体会科学探究的过程和方法。

预 习 案知识衔接1.指出下列函数的单调性:○1 122-+=x x y ; xx y 1+=; ○2 x x y +=3; x x y 1-=; ○3 ()12log 2+-=x y2.○1函数在某点附近的单调性与该点导数正负的关系 观察右图,填空:1。

()1x f '______0(填< ,> ,=);此时函数在1x 附近单调递____(增,减); 2.()2x f '______0;此时函数在2x 附近单调递______;3.()3x f '______0;此时函数在3x 附近单调递______;4.()4x f '______0;函数在4x 附近单调递______;5. ()5x f '______0;函数在5x 附近单调递______.○2函数的单调性与导函数正负的关系定理:在某个区间(,)a b 内,如果'()0f x >,那么函数()y f x =在这个区间内单调递增;如果'()0f x <,那么函数()y f x =在这个区间内单调递减.说明:特别的,如果'()0f x =,那么函数()y f x =在这个区间内是_________.探 究 案例1.已知导函数'()f x 的下列信息,试画出函数()y f x =图像的大致形状.当14x <<时,'()0f x >;当4x >,或1x <时,'()0f x <;当4x =,或1x =时,'()0f x =例2.判断下列函数的单调性,并求出单调区间.(1)3()3f x x x =+; (2)2()23f x x x =--(3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+拓展1 求函数x e x f x -=)(的单调区间拓展2 证明:函数x x y 33-=在区间[]1,1-上单调递减小结:求解函数()y f x =单调区间的步骤:例3.如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图像.四、课堂小结【随堂检测】1.函数()1129223++-=x x x x f 的单调递减区间为( ) A .()21, B .()∞+,2 C .()1-,∞ D .()1-,∞和()∞+,2 2.已知对任意实数x ,()()()()x g x g x f x f =--=-,成立.当0>x 时,()()0,0>'>'x g x f ;当0<x 时( )A .()()0,0>'>'x g x fB .()()0,0<'>'x g x fC .()()0,0>'<'x g x fD .()()0,0<'<'x g x f3.若()x f y '=的图像如右图所示,则()x f y =的图像最有可能是( )A .B .C .D .4.函数()ππ,,cos sin -∈+=x x x x y 的单调增区间为( )A .⎪⎭⎫ ⎝⎛--2,ππ 和⎪⎭⎫ ⎝⎛2,0πB .⎪⎭⎫ ⎝⎛-0,2π和⎪⎭⎫ ⎝⎛2,0π C .⎪⎭⎫ ⎝⎛--2,ππ 和 ⎪⎭⎫ ⎝⎛ππ,2 D .⎪⎭⎫ ⎝⎛-0,2π和 ⎪⎭⎫ ⎝⎛ππ,2 5.函数x e x y 2=的单调递增区间是 .6.已知函数()1323+-+=x x ax x f 在R 上是减函数,则a 的取值范围是 .7.四个函数:○1x e y -=;○2x y ln =;○3x a y =;○431xy =中,在区间()0,∞-内为减函数的有.8.已知函数1623-++=x bx ax y 的递增区间为()3,2-,求b a ,的值.。

用导数研究函数的单调性教案

用导数研究函数的单调性教案

⽤导数研究函数的单调性教案⽤导数研究函数单调性【课题】导数的应⽤—⽤导数研究函数的单调性【教学⽬标】1.正确理解利⽤导数判断函数的单调性的原理;2.掌握利⽤导数判断函数单调性的⽅法【教学重点】利⽤导数判断函数单调性【教学难点】如何⽤导数研究函数的单调性【课型】新授课【教具】多媒体【引例】1、确定函数243=-+y x x 在哪个区间内是增函数?在哪个区间内是减函数?解:2243(2)1y x x x =-+=--,在(,2)-∞上是减函数,在(2,)+∞上是增函数。

问:1、为什么243=-+y x x 在(,2)-∞上是减函数,在(2,)+∞上是增函数?2、研究函数的单调区间你有哪些⽅法?(1)观察图象的变化趋势;(函数的图象必须能画出的)(2)利⽤函数单调性的定义。

(复习⼀下函数单调性的定义)2、确定函数f (x )=2x 3-6x 2+7在哪个区间内是增函数?哪个区间内是减函数?(1)能画出函数的图象吗?那如何解决?试⼀试。

提问⼀个学⽣:解决了吗?到哪⼀步解决不了?(产⽣认知冲突)(2)(多媒体放映)【发现问题】定义是解决单调性最根本的⼯具,但有时很⿇烦,甚⾄解决不了。

尤其是在不知道函数的图象的时候,如函数f (x )=2x 3-6x 2+7,这就需要我们寻求⼀个新的⽅法来解决。

(研究的必要性)事实上⽤定义研究函数243=-+y x x 的单调区间也不容易。

【探究】我们知道函数的图象能直观的反映函数的变化情况,下⾯通过函数的图象规律来研究。

问:如何⼊⼿?(图象)从函数f (x )=2x 3-6x 2+7的图象吗?1、研究⼆次函数243=-+y x x 的图象;(1)学⽣⾃⼰画图研究探索。

(2)提问:以前我们是通过⼆次函数图象的哪些特征来研究它的单调性的?(3)(开⼝⽅向,对称轴)既然要寻求⼀个新的办法,显然要换个⾓度分析。

(4)提⽰:我们最近研究的哪个知识(通过图象的哪个量)能反映函数的变化规律?(5)学⽣继续探索,得出初步规律。

函数的单调性与导数(导学案).doc

函数的单调性与导数(导学案).doc

1. 3. 1函数的单调性与导数导学案)【学习目标】1.探索函数的单调性与导数的关系;会利用导数判断函数的单调性并求函数的单调区间。

2 •能由导数信息绘制函数大致图象。

【学习重点】探索并应用函数单调性与导数的关系求单调区间。

【学习难点】利用导数信息绘制函数的大致图象。

【学习方法】:发现式、启发式。

【学习过程】一.回顾与思考1、判断函数的单调性有哪些方法?比如判断曲的单调性,如何进行?(分别用定义法、图像法完成)二.新知探究函数的单调性与导数之间的关系【思考】如图(1),它表示跳水运动中高度力随时问r变化的函数/谊)=_4.9八+6.5/+ 10的图像,图(2)表示高台跳水运动员的速度v随时间f变化的函数卩⑴二"⑴=一9& + 6.5的图像.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?【引导】随着时间的变化,运动员离水面的高度的变化有什么趋势?是逐渐增大还是逐步减小?【探究】通过观察图像,我们可以发现:(1)运动员从起点到最高点,离水面的高度力随时间r的增加而增加,即/?⑴是增函数•相应地,_________________ .(2)从最高点到入水,运动员离水面的高力随时间f的增加而减少,即力⑴是减函数.相应地,_________________ .【思考】导数的几何意义是函数在该点处的切线的斜率,函数图象上每个点处的切线的斜率都是变化的,那么函数的单调性与导数有什么关系呢?【引导】可先分析函数的单调性与导数的符号之间的关系.【探究】观察下面函数的图象,探讨函数的单调性与其导数正负的关系.(1)函数y = x的定义域为—,并且在定义域上是_____ ,其导数 __________ ;(2)函数y = /的定义域为_,在(_oo, 0)上单调_____ ,在(0, +°°)上单调______ ;而y=(x2y=2x,当兀<()时,其导数—;当兀〉o时,其导数—;当兀=o时,其导数—o(3)____________________________________________ 函数)=疋的定义域为在定义域上为;而y=(x3y=3%2,若wo,则其导数当*0时,其导数_;(4)________________________________________________________ 函数)U丄的定义域为(- 8,0)U(0,+oe),在(-00,0) ±单调 _____________________________ ,在(0,+oO)上单调而:/ =(丄)'=一一,因为兀工0,显然)0・x %•【总结】以上四个函数的单调性及其导数符号的关系说明,在区间(。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3.1利用导数判断函数的单调性(第一课时)
一、基础知识:
1、(回顾)增减函数的定义:一般地,设D 为函数()f x 定义域内的某个区间:若对任意的
12x x D ∈、,且12x x <,都有___________,则称函数()f
x 是区间D 上的增函数;
若对任意的12x x D ∈、,且12x x <,都有___________,则称函数()f x 是区间D 上的减函数; 2、利用导数的符号判断函数的单调性: 设函数()f x 在区间(),a b 内可导,
()()()()'1,___0,a b f x f x 、若在内,则在此区间是增函数
()()()()'2,___0,a b f x f x 、若在内,则在此区间是减函数()()()()'3,=0,a b f x f x 、若在内恒有则是____函数.
二、典型例题:
1、求函数的单调区间:
例1:求函数328136y x x x =-+-的单调区间
例2:求函数1y x x
=+的单调区间
小结:利用导数求函数单调区间的步骤:
2、证明可导函数的单调性:
例3:证明函数323310R y x x x =++-在上是增函数
小结:证明可导函数()f x 在(),a b 内的单调性步骤:
三、巩固练习
1、关于函数()3
2
267f x x x =-+,下列说法不正确的是( )
A 、在区间()-0∞,内,()f x 为增函数,
B 、在区间()02,内,()f x 为减函数,
C 、在区间()2+∞,
内,()f x 为增函数,D 、在区间()()-02+∞⋃∞,,内,()f x 为增函数 2、()()()()'
,0,0,,a b x f a a b >≥若在区间内有f 且则在内有( )
A 、()0f x >
B 、()0f x <
C 、 ()f x =0
D 、以上都不对 3、()()()()'
(),0,f x a b f
x f x a b >若连续函数在区间内有是在内单调递增的( )
A 、充分不必要条件,
B 、必要不充分条件,
C 、充要条件
D 、既不充分也不必要条件 4、函数3
2
125______________________.2
y x x x =-
-+的单调增区间是
5、函数()sin cos ,,y x x x x ππ=+∈-的单调增区间是_____________________________.
6: 讨论函数2
3()()2
x
f x x x e =-的单调性
7:证明函数2sin y x x =-+在实数范围内是减函数
1.3.1利用导数判断函数的单调性(第二课时)
一、典型例题:
3、根据单调性判断原函数的图像
例4.如图,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中, 请分别找出与各容器对应的水的高度h 与时间t 的函数关系图像.
例5、设)x (f y '=是函数)x (f y =的导数, )x (f y '=的 图象如图所示, 则)x (f y =的图象最有可能是( ) 4、已知函数单调性求参数取值范围
例6.已知函数 2
3
2()4()3
f x x ax x x R =+-∈在区间[]1,2上是增函数,求实数a 的取值范围.
小结:导数与函数单调性关系:即“若函数单调递增,则'
()0f x ≥;若函数单调递减,则'
()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解
二、巩固练习
1、若函数()y f x =的导函数...在区间[,]a b 上是增函数,则函数()y f x =在区间[,]a b 上的图象可能是
A B C D 2、若函数3
43
y x bx =-
+在R 上单调递减,则b 的取值范围是( )
A.b>0
B.b<0
C.b ≥0
D.b ≤0 3、若2
1()ln(2)2
f x x b x =-
++∞在(-1,+)上是减函数,则b 的取值范围是( )
A. [1,)-+∞
B. (1,)-+∞
C. (,1]-∞-
D. (,1)-∞-
4、已知函数y =f (x ),y =g (x )的导函数的图象如下图,那么y =f (x ),y =g (x )的图象可能是( )
5、设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )
6、函数2
()(1)2ln(1)f x x x =+-+,(1)求()f x 的单调区间; (2)当[]1,x e e ∈-时,不等式()f x m >恒成立,求实数m 的范围 。

a b a b a
221
x y
x =
-)
1,1x y --
=
x y +-
=
x +。

相关文档
最新文档