周角和圆心角的关系1

合集下载

圆周角和圆心角的关系

圆周角和圆心角的关系

A
●O
2
习题1.如图:OA、OB、OC都是⊙O的半径 ∠AOB=2∠BOC.
求证:∠ACB=2∠BAC.
分析:A⌒B所对圆周角是∠ACB, 圆心角是∠AOB. 则∠ACB=_1__∠AOB.
⌒BC所对圆周角是∠ BAC , 圆心角是∠BOC, 则∠ BAC=_1_2∠_ BOC
证明:∠ACB= 12∠AOB
• 如果圆心不在圆周角的一边上,结果会怎样
• 2.当圆心(O)在圆周角(∠ABC)的内部时,圆周角
∠ABC与圆心角∠AOC的大小关系会怎样 A D
老师提示:能否转化为1的情况
C
过点B作直径BD.由1可得:
●O
∠ABD
=
1∠AOD,∠CBD
2
=1
2
∠COD,
∴ ∠ABC = 1∠AOC.
2
B
一条弧所对的圆周角等于它所
你能写出这个命题吗 对的圆心角的一半.
议一议
圆周角和圆心角的关系
• 如果圆心不在圆周角的一边上,结果会怎样
• 3.当圆心(O)在圆周角(∠ABC)的外部时,圆周角 ∠ABC与圆心角∠AOC的大小关系会怎样 A
老师提示:能否也转化为1的情况
C
过点B作直径BD.由1可得:
●O B
∠ABD
=
∠1 AOD,∠CBD
∠ A的度数。
医学资料
• 仅供参考,用药方面谨遵医嘱
猜一猜
拓展 化心动为行动
• 1.如图(1),在⊙O中,∠BAC=50°,求∠C的大小.
A
C D
B
●O
B
D
EA ●O
●O
B
C (1)
A
C

3.4圆周角和圆心角的关系第1课时(课件)九年级数学下册(北师大版)

3.4圆周角和圆心角的关系第1课时(课件)九年级数学下册(北师大版)

即∠C= ∠AOB.

(1)
二、自主合作,探究新知
试一试:你能将图(2)、(3)转化成图(1)吗?与同伴交流,并尝
试证明.
二、自主合作,探究新知
想一想:(1)在足球射门的游戏中,球员在B、D、E三点射门时,所形
成的三个张角∠BAC,∠BAC,∠BAC大小有什么关系?你能用圆周角定
理证明你的结论吗?
?你是怎么发现的?与同伴进行交流.
(1)∠D=∠E= ∠F=40°
F
使用量角器进行测量可得弧AB所对的圆周角的度数都相等.
(2)∠D=∠E=

∠F= ∠AOB.

利用量角器得出弧AB所对的圆周角都等于40°,都等于弧AB所对的
圆心角80°的一半.
二、自主合作,探究新知
议一议:在图中,改变∠AOB的度数,你得到的结

它们都是AC所对的圆周角,根据圆周角定理,它们都等于∠AOC度
数的一半,所以这三个角相等.
二、自主合作,探究新知
(2)如图,在☉O中 A B = E F ,那么∠C和∠G的大小有什么关系?
为什么?
C
G
O
A
F
B
E
圆周角定理的推论1:同弧或等弧所对的圆周角相等.
二、自主合作,探究新知
典型例题
例1:如图,OA,OB,OC都是☉O的半径,∠AOB=50°,
∠BOC=70°.求∠ACB和∠BAC度数.
⌒ ,
解:∵圆心角∠AOB 与圆周角∠ACB所对的弧为 AB
1
∴∠ACB= ∠AOB=25°.
2
1
同理∠BAC= ∠BOC=35°.
2
O .
A
70°
C

圆周角等于圆心角的一半三种情况证明

圆周角等于圆心角的一半三种情况证明

圆周角等于圆心角的一半三种情况证明
圆周角和圆心角是数学中的重要概念,它们之间有着密切的关系。

本文将从三
个方面来证明圆周角等于圆心角的一半。

首先,从几何学的角度来看,圆心角是以圆心为起点,以两条射线为边,构成
的角,而圆周角是以圆心为起点,以圆弧为边,构成的角。

由于圆弧的长度是圆心角的两倍,因此圆周角等于圆心角的一半。

其次,从数学的角度来看,圆心角的度数是指以圆心为起点,以两条射线为边,构成的角的度数,而圆周角的度数是指以圆心为起点,以圆弧为边,构成的角的度数。

由于圆弧的长度是圆心角的两倍,因此圆周角的度数等于圆心角的一半。

最后,从实际应用的角度来看,圆周角和圆心角都可以用来衡量物体在圆周上
的运动距离。

例如,当物体在圆周上运动一周时,它的圆周角就等于圆心角的一半。

综上所述,圆周角等于圆心角的一半是一个有效的数学定理,它可以从几何学、数学和实际应用的角度得到证明。

九年级数学圆周角和圆心角的关系1

九年级数学圆周角和圆心角的关系1

AC AD AE AB
△ADC∽ △ABE
或△ACE∽ △ADB
B E
O D
C
思考题
已知顶角∠A=500的等腰三角形ABC内接于 O,D是O上一点, 则∠ADB的度数是( A. 500 C. 500或650 ) B. 650 D. 650或1150



1.课本P109习题3.5 1,2题

D C A O1 O B
1、本节课我们学习了哪些知识?
圆周角定理的两个推论
2、本节课我们学习了哪些方法?
引辅助线的方法: (1)构造直径上的圆周角。
(2)构造同弧所对的圆周角。
如图,AE⊙O的直径, △ABC的顶点都在 ⊙O上,AD是△ABC的高; 求证:AB · AC = AE · AD
分析:要证AB · AC = AE · AD A
A
∠DBC
D
.
B
C A
(2)如图所示,⊙O的直径AB=10cm, C为⊙O上一点,∠BAC=30°, 则BC= 5 cm

O C
B
3.如图,△ABC的顶点均在⊙O上, AB=4, ∠C=30°,求⊙O的直径.
B

A
O
C
E
如图,以⊙O的半径OA为直径作⊙O1, ⊙O的弦AD交⊙O1于C,则 OC垂直平分AD ; (1)OC与AD的位置关系是_____ 平 行 ; (2)OC与BD的位置关系是_____ 4 cm。 (3)若OC = 2cm,则BD = __
推论2
共同分析
1.如图,AB是⊙O的直径,BD是弦,延长BD 到C,使DC=BD,AC与AB的大小有什么关系? 为什么?
A

圆周角和圆心角的关系—知识讲解(基础)

圆周角和圆心角的关系—知识讲解(基础)

圆周角和圆心角的关系--知识讲解(基础)【学习目标】1.理解圆周角的概念,了解圆周角与圆心角之间的关系;2.理解圆周角定理及推论;3.熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.【要点梳理】要点一、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.3.圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周角的外部.(如下图)要点二、圆内接四边形1.圆内接四边形定义:四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆.ODCBA2.圆内接四边形性质:圆内接四边形的对角互补.如图,四边形ABCD 是⊙O 的内接四边形,则∠A+∠C=180°,∠B+∠D=180°.要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补.【典型例题】类型一、圆周角、圆心角、弧、弦之间的关系及应用1.如图,在⊙O 中,,求∠A 的度数.【答案与解析】.【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的 弦也相等. 举一反三:【变式】如图所示,正方形ABCD 内接于⊙O ,点E 在劣弧AD 上,则∠BEC 等于( )A .45°B .60°C .30°D .55° 【答案】A.∵ AB =BC =CD =DA ,∴ 90AB BC CD DA ====°, ∴ ∠BEC =45°.类型二、圆周角定理及应用2.观察下图中角的顶点与两边有何特征? 指出哪些角是圆周角?【思路点拨】根据圆周角的定义去判断,顶点在圆上,并且两边都和圆相交的角叫做圆周角. 【答案与解析】(a)∠1顶点在⊙O 内,两边与圆相交,所以∠1不是圆周角; (b)∠2顶点在圆外,两边与圆相交,所以∠2不是圆周角;(c)图中∠3、∠4、∠BAD 的顶点在圆周上,两边均与圆相交,所以∠3、∠4、∠BAD 是圆周角. (d)∠5顶点在圆上,一边与圆相交,另一边与圆不相交,所以∠5不是圆周角; (e)∠6顶点在圆上,两边与圆均不相交,由圆周角的定义知∠6不是圆周角. 【总结升华】 紧扣定义,抓住二要素,正确识别圆周角.3.(2015•台州)如图,四边形ABCD 内接于⊙O ,点E 在对角线AC 上,EC=BC=DC . (1)若∠CBD=39°,求∠BAD 的度数; (2)求证:∠1=∠2.【答案与解析】(1)解:∵BC=DC , ∴∠CBD=∠CDB=39°,∵∠BAC=∠CDB=39°,∠CAD=∠CBD=39°, ∴∠BAD=∠BAC+∠CAD=39°+39°=78°; (2)证明:∵EC=BC ,∴∠CEB=∠CBE,而∠CEB=∠2+∠BAE,∠CBE=∠1+∠CBD,∴∠2+∠BAE=∠1+∠CBD,∵∠BAE=∠CBD,∴∠1=∠2.【总结升华】本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键.4.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?【思路点拨】BD=CD,因为AB=AC,所以这个△ABC是等腰三角形,要证明D是BC的中点,只要连结AD,证明AD是高或是∠BAC的平分线即可.【答案与解析】BD=CD.理由是:如图,连接AD∵AB是⊙O的直径∴∠ADB=90°即AD⊥BC又∵AC=AB,∴BD=CD.【总结升华】解题的关键是正确作出辅助线.举一反三:【变式】(2015•安顺)如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()DABCOA .2B . 4C . 4D .8【答案】C.提示:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O 的直径AB 垂直于弦CD ,∴CE=DE,△OCE 为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4. 故选:C .类型三、圆内接四边形及应用5.圆内接四边形ABCD 的内角∠A :∠B :∠C=2:3:4,求∠D 的度数.【思路点拨】根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为360°,从而求得∠D 的度数. 【答案与解析】解:∵圆内接四边形的对角互补, ∴ ∠A :∠B :∠C :∠D=2:3:4:3 设∠A=2x ,则∠B=3x ,∠C=4x ,∠D=3x , ∴2x+3x+4x+3x=360°, ∴x=30°. ∴∠D=90°.【总结升华】本题考查圆内接四边形的性质和四边形的内角和为360°的运用.举一反三:【变式】如图,⊙O中,四边形ABCD是圆内接四边形,∠BOD=110°,则∠BCD的度数是().A.110°B.70°C.55°D.125°【答案】D.C。

圆心角与圆周角的关系证明

圆心角与圆周角的关系证明

圆心角与圆周角的关系证明要讨论圆心角与圆周角的关系,我们首先得了解这两个角的基本概念。

想象一下,我们站在一个圆的中心,眼前是一个大大的披萨(谁不喜欢披萨呢?),这个披萨的每一片都能代表一个圆心角。

圆心角就是从圆心出发,连接到圆的两边形成的那个角。

听起来是不是很简单?但别小看这个角,它可是有很多有趣的性质,尤其是与圆周角的关系。

接下来,我们聊聊圆周角。

圆周角就像是坐在披萨边缘的朋友,虽然离圆心远了一点,但它的工作同样重要。

简单来说,圆周角是圆周上某一段的端点与圆心之间形成的角。

这里面有个有趣的点:圆心角的度数和它对应的圆周角的度数是有关系的。

让我们用个小例子来说明吧:假设你有一个圆心角为60度的角,那么对应的圆周角就只有30度。

这是不是听起来很神奇?像是魔术一样,让人忍不住想要深入探讨。

在数学上,这种关系其实是有一定规律的。

我们可以用公式来简单地表示:圆周角= 1/2 × 圆心角。

也就是说,圆心角总是圆周角的两倍!如果你把这个关系想象成一对好朋友,那圆心角就像是个大嘴巴,总是说个不停,而圆周角则比较安静,时不时插一句。

这样的搭配,简直就是天生一对!要想彻底理解这个关系,我们可以借助几何图形来更直观地观察。

画个圆,标出圆心,接着在圆的边缘上找两个点。

用直线连接这两个点到圆心,再在这两个点之间的圆周上找一个点,看看你能形成什么样的角。

这时,你会发现无论你如何移动这些点,圆心角的度数永远是圆周角的两倍。

就像那句老话,“不怕慢,就怕站”,只要我们不停地探索,就总能找到答案。

当然,实际生活中,这个关系也会有很多应用,比如在建筑设计、机械工程等等领域。

想象一下,如果没有这个关系,建筑师们的设计图纸可能会变得乱七八糟,大家都搞不清楚哪个角应该怎么测量,最后建出来的房子可能会歪歪扭扭的,那可就闹笑话了。

可见,圆心角和圆周角的和谐关系在生活中是多么的重要!所以,朋友们,记住这段关系吧。

圆心角和圆周角就像是数学世界里的好搭档,无论走到哪里,它们都携手并进。

九年级数学圆周角和圆心角的关系1

九年级数学圆周角和圆心角的关系1

1 1 ∠ABD= ∠AOD,∠CBD= ∠COD, 2 2 1 ∴ ∠ABC= ∠AOC. 2
你能写出这个命题吗?
B
一条弧所对的圆周角等于 它所对的圆心角的一半.
演示
圆周角和圆心角的关系

3.当圆心(O)在圆周角(∠ABC)的外部时。

老师提示:能否也转化为1的情况? 过点B作直径BD.由1可得:
N
M A

B乙
1、足球赛场上,甲、乙两名队员互相配合向对方球 门MN进攻。当甲带球到A点时,乙随后冲到B点,如 图,此时甲是自己射门好,还是将球传给乙,让乙射 门好呢?为什么?(不考虑其他因素)
解:连接 NC ,由圆 N 周角性质 又由三角形外角性质 ∠MCN M ∠>∠ MBNA=∠MCN
∴∠MBN>∠A 因此,让乙射门好.
.
.
O C B
.
O
.
B
C
A
O B C
A O
B
C
A C
B
2.当甲带球到C点时,乙冲到了D点,如图,此时甲 是自己射门好,还是将球传给乙,让乙射门好呢? 为什么?(不考虑其他因素) N 解: 延 长 NC 交 圆 O 于
D M O
C
E
∴∠MCN>∠MDN 因此,让甲射门好 .
点 E , 连 接 ME , 又由三角形外角性质 由圆周角性质 ∠MCN>∠MEN ∠MDN=∠MEN
并且两边都和圆相交的角
叫圆周角.
B 特征:
O C
.
① 角的顶点在圆上. ② 角的两边都与圆相交.
抢答
1.判别下列各图形中的角是不是圆周角,并说明理由。
不是
图1

图3

圆周角和圆心角的关系ppt课件

圆周角和圆心角的关系ppt课件
50°,则∠EBC+∠ADC 的度数为 _______.
-18-
3.4 圆周角和圆心角的关系
解析:如解析图,连接 AB,DE,则∠ABE=∠ADE. ∵ 所对的圆心角的度数为 50°,∴∠ABE= ∠ADE =25°. ∵ 点 A,B,C,D 在 ⊙O 上 ,∴四边形 ABCD 是圆内接四边形, ∴∠ABC+∠ADC=180°, ∴∠ABE+∠EBC+∠ADC=180°, ∴∠EBC+∠ADC=180°-∠ABE=180°-25°=155°. 答案:155° 题型解法:本题考查了圆周角定理和圆内接四边形的 性质,作出辅助线构建圆内接四边形是解题的关键.
-10-
3.4 圆周角和圆心角的关系
■考点四 圆内接四边形
定义
四边形的四个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个 圆叫做四边形的外接圆
推论 圆内接四边形的对角互补
拓展 圆内接四边形的任何外角等于内对角
注意 并不是所有的四边形都存在外接圆,只有对角互补的四边形才存在外接圆
-11-
3.4 圆周角和圆心角的关系
A. 20° B. 40°
C. 50° D. 70°
-7-
3.4 圆周角和圆心角的关系
3. 如图,已知△ABC 的三个顶点都在同一圆上,且 AC=6,BC=8,AB=10, 则该圆的半径长是 ________.
(第 3 题图)
(第 4 题图)
4. 如图,AB=BC,∠ABC =120°,AD 为 ⊙O 的直径 ,AD=6,那么 AB 的
值为 ______.
-8-
3.4 圆周角和圆心角的关系
5. 如图,AB=AC,AB 是直径,求证:BC=2DE. (第 5 题图)

初中数学知识点精讲精析-圆周角和圆心角的关系

初中数学知识点精讲精析-圆周角和圆心角的关系

3·3圆周角和圆心角的关系要点精讲1.圆周角定义:圆周角(angle in a circular segment):顶点在圆上,并且角的两边和圆相交的角.两个特征:(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦.2.圆周角定理:同弧所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半.注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.(2)不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一半”.在同圆或等圆中,同弧或等弧所对的圆周角相等.注意:(1)“同弧”指“同一个圆”.(2)“等弧”指“在同圆或等圆中”.(3)“同弧或等弧”不能改为“同弦或等弦”.3.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.注意:这一推论应用非常广泛,一般地,如果题目的已知条件中有直径时,往往作出直径上的圆周角——直角:如果需要直角或证明垂直时,往往作出直径即可解决问题.4.反证法:注意:用反证法证明命题的一般步骤:(1)假设命题的结论不成立;(2)从这个假设出发,经过推理论证,得出矛盾.(3)山矛盾判定假设不正确,从而肯定命题的结论正确.5.圆内角与圆外角:我们把顶点在圆内(两边自然和圆相交)的角叫圆内角(如图1.顶点在圆外并且两边都和圆相交的角叫圆外角(如图2).定理:圆内角的度数,等于它所对弧的度数与它的对顶角所对弧的度数之和的一半.圆外角的度数,等于它的两边所夹两条弧的度数的差的一半.典型例题1.已知:⊙O中,所对的圆周角是∠ABC,圆心角是∠AOC.求证:∠ABC=12 AOC.【解析】证明:∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO.∵OA=OB,∴∠ABO=∠BAO.∴∠AOC=2∠ABO.即∠ABC=12∠AOC.如果∠ABC的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?如图(1),点O在∠ABC内部时,只要作出直径BD,将这个角转化为上述情况的两个角的和即可证出.由刚才的结论可知:∠ABD=12∠AOD,∠CBD=12∠COD,∴∠ABD+∠CBD=12(∠AOD+∠COD),即∠ABC=12∠AOC.在图(2)中,当点O在∠ABC外部时,仍然是作出直径BD,将这个角转化成上述情形的两个角的差即可.由前面的结果,有∠ABD=12∠AOD,∠CBD=12∠COD.∴∠ABD-∠CBD=12(∠AOD-∠COD),即∠ABC=12∠AOC.2.如图示,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?[分析]由于AB是⊙O的直径,故连接AD.由推论直径所对的圆周角是直角,便可得AD⊥BC,又因为△ABC中,AC=AB,所以由等腰三角形的二线合一,可证得BD=CD.【解析】BD=CD.理由是:连结AD.∵AB是⊙O的直径,∴∠ADB=90°.即AD⊥BC.又∵AC=AB,∴BD=CD.3.为什么有些电影院的坐位排列(横排)呈圆弧形?说一说这种设计的合理性.【解析】有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.4.如下图,哪个角与∠BAC相等?【解析】∠BDC=∠BAC.5. 如下图,⊙O的直径AB=10 cm,C为⊙O上的一点,∠ABC=30°,求AC的长.【解析】∵AB为⊙O的直径.∴ACB=90°.又∵∠ABC=30°, ∴AC=21AB=21×10=5(cm). 6.小明想用直角尺检查某些工件是否恰好为半圆形,根据下图,你能判断哪个是半圆形?为什么?【解析】图(2)是半圆形、理由是:90°的圆周角所对的弦是直径.7.船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁,如下图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形区域内,C 表示一个危险临界点,∠ACB 就是“危险角”.当船与两个灯塔的夹角大于“危险角”时,就有可能触礁;当船与两个灯塔的夹角小于“危险角”时,就能避免触礁.(1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么? (2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么? 分析:这是一个有实际背景的问题,由题意可知:“危险角” ∠ACB 实际上就是圆周角,船P 与两个灯塔的夹角为∠α,P 有可能在⊙O 外,P 有可能在⊙O 内,当∠α>∠C 时,船位于暗礁区域内;当∠α<∠C 时,船位于暗礁区域外,我们可采用反证法进行论证. 【解析】(1)当船与两个灯塔的夹角∠α大于“危险角” ∠C 时,船位于暗礁区域内(即⊙O 内),理由是:连结BE ,假设船在(⊙O 上,则有∠α=∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 上;假设船在⊙O 外,则有∠α<∠AEB ,即∠α<∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 外.因此.船只能位于⊙O 内.(2)当船与两个灯塔的夹角∠α小于“危险角”∠C时,船位于暗礁区域外(即⊙O 外).理由是:假设船在⊙O上,则有∠α=∠C,这与∠α<∠C矛盾,所以船不可能在⊙O上;假设船在⊙O内,则有∠α>∠AEB,即∠α>∠C.这与∠α<∠C矛盾,所以船不可能在⊙O内,因此,船只能位于⊙O外.8.如图,已知在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D.求BC、AD和BD的长.分析:由AB为直径,知∠ACB=90°,又AC、AB已知,可由勾股定理求BC.又∠ADB=90°,AD=DB,由勾股定理可求AD、BD.【解析】∵AB为直径,∴∠ACB=∠ADB=90°,又∵AB=10cm,AC=6cm,又∵CD是∠ACB的平分线,∠ACD=∠DCB,∴AD=DB.在 Rt∠ADB中,9.已知AB是⊙O的直径,AE是弦,C是的中点,CD⊥AB于D,交AE于F,CB交AE于G.求证:CF=FG.分析:如图7—107,要证CF=FG,只需证∠FCG=∠FGC.由已知,∠FCG与∠B互余.如果连结AC,∠ACB=90°.∠FGC与∠CAG互余.【解析】证明:连结AC,∵AB为直径,∴∠ACB=90°,∠FGC=90°-∠CAE.又∵CD⊥AB于D,∠FCG=90°-∠B,∴∠FGC=∠FCG.因此,CF=FG.10.如图,AB 是⊙O 的直径. ABCDO(1)若OD ∥AC ,与 的大小有什么关系?为什么?(2)把(1)中的条件和结论交换一下,还能成立吗?说明理由. 【解析】(1)=延长DO 交⊙O 于E . ∵AC ∥OD , ∴=. ∵∠1=∠2, ∴=. ∴=.(2)仍成立,延长DO 交⊙O 于点E ,连结AD . ∵=,=, ∴=. ∴∠3=∠D . ∴AC ∥OD .11.如图,⊙O 上三点A 、B 、C ,AB =AC ,∠ABC 的平分线交⊙O 于点E ,∠ACB 的平分线交⊙O 于点F ,BE 和CF 相交于点D ,四边形AFDE 是菱形吗?验证你的结论. AB CDEFO【解析】四边形AFDE 是菱形.证明:∵∠ABC=∠ACB, ∠ABE=∠EBC=∠ACF=∠FCB. 又∠FAB ,∠FCB 是同弧上的圆周角, ∴∠FAB=∠FCB ,同理∠EAC=∠EBC. 有∠FAB=∠ABE=∠EAC=∠ACF.∴AF ∥ED ,AE ∥FD 且AF=AE. ∴四边形AFDE 是菱形.12.如图是一大型圆形工件被埋在土里而露出地表的部分.为推测它的半径,小亮同学谈了他的做法:先量取弦AB 的长,再量中点到AB 的距离CD 的长,就能求出这个圆形工件的半径.你认为他的做法合理吗?如不合理,说明理由;如合理,请你给出具体的数值,求出半径,与同伴交流.BDCDEO1 23CABD【解析】小亮的做法合理.取AB=8 m ,CD=2 m, 设圆形工件半径为r, ∴r 2=(r -2)2+42. 得r=5(m).13.如图,现需测量一井盖(圆形)的直径,但只有一把角尺(尺的两边互相垂直,一边有刻度,且两边长度都长于井盖的半径),请配合图形,用文字说明测量方案,写出测量的步骤.(要求写出两种测量方案)【解析】方案1:使角尺顶点在圆上,角尺两边与圆两交点连接就是圆的直径,用刻度尺量出直径.方案2:任画圆的一条弦,用尺量出弦的中点,利用角尺过弦中点做弦的垂线,垂线与圆的两交点间的线段为圆的直径.14.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD . (1)P 是上一点(不与C 、D 重合),求证:∠CPD =∠COB .(2)点P ′在劣弧CD 上(不与C 、D 重合)时,∠CP ′D 与∠COB 有什么数量关系?请证明你的结论.BA CDOP【解析】(1)证明:连结OD, ∵AB 是直径,AB ⊥CD, ∴=.∴∠COB=∠DOB=21∠COD. 又∵∠CPD=21∠COD, ∴∠CPD=∠COB. (2)∠CP ′D 与∠COB 的数量关系是:∠CP ′D+∠COB=180°.证明:∵∠CPD+∠CP ′D=180°,∠COB=∠CPD, ∴∠CP ′D+∠COB=180°15.(9分)已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F,连接AF 与直线CD 交于点G.(1)求证:AC 2=AG ·AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.AB CD OEGF【解析】(1)证明:连接CB ,∵AB 是直径,CD ⊥AB , ∴∠ACB =∠ADC =90°. ∴Rt △CAD ∽Rt △BAC . ∴得∠ACD =∠ABC . ∵∠ABC =∠AFC , ∴∠ACD =∠AFC . ∴△ACG ∽△ACF . ∴ACAF AG AC. ∴AC 2=AG ·AF . (2)当点E 是AD (点A 除外)上任意一点,上述结论仍成立 ①当点E 与点D 重合时,F 与G 重合, 有AG =AF ,∵CD ⊥AB ,∴=, AC =AF . ∴AC 2=AG ·AF .②当点E 与点D 不重合时(不含点A )时,证明类似①.。

3.3_圆周角和圆心角的关系(1)

3.3_圆周角和圆心角的关系(1)
∵∠AOC是△ABO的外角, ∴∠AOC=∠B+∠A. ∵OA=OB, ∴∠A=∠B. ∴∠AOC=2∠B.

C
老师期望: 你可要理 解并掌握 这个模型.

O
B

1 ∠ABC = ∠AOC. 2
你能写出这个命题吗?
一条弧所对的圆周角等于 它所对的圆心角的一半.
圆周角和圆心角的关系

演示
如果圆心不在圆周角的一边上,结果会怎样? 2.当圆心(O)在圆周角(∠ABC)的内部时,圆周角 ∠ABC与圆心角∠AOC的大小关系会怎样?
B
C
D
B
演示
圆周角定理

演示
综上所述,圆周角∠ABC与圆心角∠AOC的大小 关系是:

圆周角定理 一条弧所对的圆周角等于它所 对的圆心角的一半. 1
即∠ABC=
C

A C

A
2
∠AOC.
A
C B

O
O
O
B

B
老师提示:圆周角定理是承上启下的知识点,要予以重视.
1.如图:OA、OB、OC都是⊙O的半径 ∠AOB=2∠BOC. 求证:∠ACB=2∠BAC. 1 ⌒ ___ 分析:AB所对圆周角是∠ACB, 圆心角是∠AOB. 则∠ACB= ∠AOB.
C
A
O
B
返回
D
演示
3.如图,AB是⊙O的直径,BD是弦,延长BD 到C,使DC=BD,AC与AB的大小有什么关系? 为什么?
A

O
C 返回
D
B
四、思考下列各题,并记住结论: 1.如图,⊙O的弦AC、BD相交于⊙O 内一点P. 求证:

圆周角和圆心角的关系

圆周角和圆心角的关系

圆周角和圆心角的关系
圆周角和圆心角的关系:一条弧所对圆周角等于它所对圆心角的一半,即圆周角定理。

圆周角是顶点在圆周上的角,圆心角是顶点在圆心上的角。

圆周角和圆心角的性质和定理
1、在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

2、在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。

3、圆周角的度数等于它所对的弧度数的一半。

4、直径所对的圆周角是直角;90度的圆周角所对的弦是直径。

5、圆心角计算公式:θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。

即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。

北师大版九年级数学下册第三章圆3.4《圆周角和圆心角的关系(1)》说课稿

北师大版九年级数学下册第三章圆3.4《圆周角和圆心角的关系(1)》说课稿

圆周角和圆心角的关系(1)(说课稿)3.3 圆周角和圆心角的关系一、教材分析(一)教学内容今天我说课的内容是义务教育课程标准北师大版实验教科书九年级(下)第三章《圆》第3节《圆周角和圆心角的关系》第一课时||。

(二)地位和作用本节课是学生在掌握圆心角的概念以及圆心角、弧、弦的关系的基础上进行学习的||,既是前面圆有关性质的延续||,又是下一节课证明圆周角定理推论的理论依据||。

本节课所渗透的学习内容和学习方法||,在学生今后的学习中应用广泛||,是本章重点内容之一||。

(三)教学目标根据新课程标准的要求以及九年级学生的认知结构与心理特征||,我从以下三方面确定教学目标:知识与技能——理解圆周角的概念和圆周角定理以及证明||。

过程与方法——经历探索圆周角与圆心角的关系的过程||,体会分类、归纳、转化的数学思想方法||。

情感态度与价值观——在推理证明的过程中获得正确的学习方法;在合作交流中培养团结协作的精神;在自主探究中体会成功的喜悦||。

(四)教学重点和难点根据新课程的理念||,经历过程带给学习的能力||,比具体的结果更重要||,结合本课内容||,我认为本节课的教学重点是:经历探索“圆周角与圆心角的关系”的过程||,理解掌握圆周角定理||,难点是:利用化归思想推导证明圆周角定理||。

二、教法学法分析(一)教学方法根据新课程理念的要求||,教师应该是数学学习的组织者、引导者与合作者||,结合本节课的内容及学生的实际情况||,在教法上我主要采用“探究合作||,启发引导”的方法||,同时以多媒体演示为辅助||,使学习的主要内容不是教师直接传授给学生||,而是以问题的形式不断呈现出来||,由学生自己去发现||,然后内化为自己知识结构的一部分||,这样既能唤起学生学习的欲望||,又调动学生学习的积极性和主动性||。

(二)学生学法在学法上||,学生主要采用动手实践、自主探索与合作交流相结合的学习方法||,在教师的引导下从直观感知上升到理性思考||,从自己的实践中获取知识||。

人教版数学九年级圆心角和圆周角关系定理的理解和解题运用

人教版数学九年级圆心角和圆周角关系定理的理解和解题运用

人教版数学九年级圆心角与圆周角关系定理的理解与解题运用一、知识解读1、圆周角与圆心角的关系:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对圆心角的一半。

在理解关系定理的内涵时,要理清如下几点:①定理的使用范围:必须在同圆中,这是一种情况;第二是必须在等圆中。

否则,不能乱用定理。

②理解好两种等量关系一是同弧所对的圆周角相等,二是等弧所对的圆周角相等。

这是寻找角相等的基本方向。

③确定准圆周角的度数大小一是同弧所对的圆周角相等,且等于这条弧所对圆心角的一半。

二是等弧所对的圆周角相等,且等于这条弧所对圆心角的一半。

④理解好“一半”的意义在这里,有两层意义:一是当同弧或等弧所对的圆周角与圆心角度数不知道时,满足如下等量关系: 设所对的圆周角是∠1,所对的圆心角是∠2,则∠1=21∠2,或∠2=2∠1, 二是当同弧或等弧所对的圆周角与圆心角度数知道时,满足如下等量关系: 设所对的圆周角是∠1=x °,所对的圆心角是∠2=y °,则x=21 y °,或y=2 x °, 2、推论在同圆或等圆中,半圆所对的圆周角是直角;直径所对的圆周角是直角;90°的圆周角所对的弦是直径。

二、考点剖析考点1、直接用定理例1、如图1所示,⊙O 中,弦AB DC ,的延长线相交于点P ,如果120AOD ∠=o ,25BDC ∠=o ,那么P ∠= .方法解读:∠AOD 、∠ABD 是同一条弧,AD 弧上的圆心角和圆周角,根据定理就能求∠ABD 的度数; ∠ABD 是三角形PBD 的一个外角,所以,∠ABD=∠BDC+∠P ;这样,就把所求与已知联系起来了。

解:因为,∠AOD 、∠ABD 是同一条弧,AD 弧上的圆心角和圆周角,所以,∠ABD=21∠AOD=21×120°=60°, 因为,∠ABD 是三角形PBD 的一个外角,所以,∠ABD=∠BDC+∠P ,因为,∠BDC=25°,所以,∠P=60°-25°=35°。

圆心角圆周角关系证明

圆心角圆周角关系证明

圆心角圆周角关系证明圆心角和圆周角是在几何学中经常出现的概念。

在圆周上,圆心角是指以圆心为顶点的角,而圆周角是指以圆周上的两点为顶点的角。

这两者之间存在着一定的关系,下面将通过证明来展示这种关系。

我们来看一个圆周角的例子。

假设有一个圆,圆心为O,圆周上有两点A和B,以这两点为顶点的角为∠AOB。

我们可以发现,当∠AOB < 180°时,这个角可以是锐角或直角;当∠AOB = 180°时,这个角为平角;当∠AOB > 180°时,这个角为钝角。

接下来,我们来看圆心角的例子。

假设有一个圆,圆心为O,圆周上有两点A和B,以O为顶点的角为∠AOB。

根据圆的定义,圆周上的任意一条弧所对应的圆心角都是不变的,即∠AOB 是一个固定值。

无论弧AB的长度是多少,∠AOB 都保持不变。

现在,我们来证明圆心角和圆周角之间的关系。

设在圆上有一条弧AB,对应的圆心角为∠AOB,圆周角为∠ACB。

我们可以发现,当弧AB等于整个圆周时,即AB是整个圆周,此时∠AOB = 360°,而∠ACB = 360°,两者相等。

这是因为整个圆周对应的圆心角和圆周角都是360°。

当弧AB的长度小于整个圆周时,即0 < AB < 360°,我们可以通过比较圆心角和圆周角来得出它们之间的关系。

在这种情况下,我们可以发现,圆周角∠ACB 是弧AB所对应的圆心角∠AOB 的一半。

也就是说,∠ACB = ∠AOB / 2。

这个结论可以通过几何推理来证明。

我们可以将圆周分割成n个相等的小弧,然后以圆心为顶点,连接每个小弧的两个端点,形成n个圆心角。

我们可以发现,这些圆心角的和等于一个完整的圆心角。

而每个小弧对应的圆周角都是相等的,根据圆周角的定义,它们都是∠ACB。

那么我们可以得出以下结论:n * ∠ACB = ∠AOB。

进一步推导,我们可以得到∠ACB = ∠AOB / n。

《圆周角和圆心角的关系1》教案 (公开课)2022年北师大版数学

《圆周角和圆心角的关系1》教案 (公开课)2022年北师大版数学

3.4 圆周角和圆心角的关系 第1课时 圆周角和圆心角的关系1.理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;(重点) 2.能运用圆周角定理及其推论进行简单的证明计算.(难点)一、情境导入在以下图中,当球员在B, D, E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC, ∠ADC ,∠AEC .这三个角的大小有什么关系?二、合作探究探究点:圆周角定理及其推论【类型一】 利用圆周角定理求角的度数如图,CD 是⊙O 的直径,过点D的弦DE 平行于半径OA ,假设∠D 的度数是50°,那么∠C 的度数是( )A .25°B .30°C .40°D .50°解析:∵OA ∥DE ,∠D =50°,∴∠AOD =50°.∵∠C =12∠AOD ,∴∠C =12×50°=25°.应选A.方法总结:解决问题的关键是熟练掌握圆周角定理. 变式训练:见《学练优》本课时练习“课堂达标训练〞第2题【类型二】 利用圆周角定理的推论求角的度数如图,在⊙O 中,AB ︵=AC ︵,∠A=30°,那么∠B =( )A .150°B .75°C .60°D .15°解析:因为AB ︵=AC ︵,根据“同弧或等弧所对的圆周角相等〞得到∠B =∠C ,因为∠A +∠B +∠C =180°,所以∠A +2∠B =180°,又因为∠A =30°,所以30°+2∠B =180°,解得∠B =75°.应选B.方法总结:解题的关键是掌握在同圆或等圆中,相等的两条弧所对的圆周角也相等.注意方程思想的应用.变式训练:见《学练优》本课时练习“课堂达标训练〞第8题【类型三】 圆周角定理与垂径定理的综合如以下图,AB 是⊙O 的一条弦,OD ⊥AB ,垂足为点C ,交⊙O 于点D ,E 在⊙O 上.(1)∠AOD =52°,求∠DEB 的度数; (2)假设AC =7,CD =1,求⊙O 的半径.解析:(1)由OD ⊥AB ,根据垂径定理的推论可求得AD ︵=BD ︵,再由圆周角定理及其推论求∠DEB 的度数;(2)首先设⊙O 的半径为x ,然后由勾股定理得到方程解答.解:(1)∵AB 是⊙O 的一条弦,OD ⊥AB ,∴AD ︵=BD ︵,∴∠DEB =12∠AOD =12×52°=26°;(2)设⊙O 的半径为x ,那么OC =OD -CD =x -1.∵OC 2+AC 2=OA 2,∴(x -1)2+(7)2=x 2,解得x =4,∴⊙O 的半径为4.方法总结:此题综合考查了圆周角定理及其推论、垂径定理以及勾股定理.注意掌握数形结合思想与方程思想的应用. 变式训练:见《学练优》本课时练习“课堂达标训练〞第3题【类型四】 圆周角定理的推论与圆心角、弧、弦之间的关系的综合如图,△ABC 内接于⊙O ,AB =AC ,点D 在弧AB 上,连接CD 交AB 于点E ,点B 是CD ︵的中点,求证:∠B =∠BEC .解析:由点B 是CD ︵的中点,得∠BCE =∠BAC ,即可得∠BEC =∠ACB ,然后由等腰三角形的性质,证得结论.证明:∵B 是CD ︵的中点,∴BC ︵=BD ︵,∴∠BCE =∠BAC .∵∠BEC =180°-∠B -∠BCE ,∠ACB =180°-∠BAC -∠B ,∴∠BEC =∠ACB .∵AB =AC ,∴∠B =∠ACB ,∴∠B =∠BEC .方法总结:此题考查了圆周角定理的推论以及等腰三角形的性质.解答时一定要结合图形.变式训练:见《学练优》本课时练习“课后稳固提升〞第7题【类型五】 圆周角定理的推论与三角形知识的综合如图,A 、P 、B 、C 是⊙O 上四点,且∠APC =∠CPB =60°.连接AB 、BC 、AC .(1)试判断△ABC 的形状,并给予证明;(2)求证:CP =BP +AP .解析:(1)利用圆周角定理可得∠BAC =∠CPB ,∠ABC =∠APC ,而∠APC =∠CPB =60°,所以∠BAC =∠ABC =60°,从而可判断△ABC 的形状;(2)在PC 上截取PD =AP ,那么△APD 是等边三角形,然后证明△APB ≌△ADC ,证明BP =CD ,即可证得.(1)解:△ABC 是等边三角形.证明如下:在⊙O 中,∵∠BAC 与∠CPB 是BC ︵所对的圆周角,∠ABC 与∠APC 是AC ︵所对的圆周角,∴∠BAC =∠CPB ,∠ABC =∠APC .又∵∠APC =∠CPB =60°,∴∠ABC =∠BAC =60°,∴△ABC 为等边三角形;(2)证明:在PC 上截取PD =AP ,连接AD .又∵∠APC =60°,∴△APD 是等边三角形,∴AD =AP =PD ,∠ADP =60°,即∠ADC =120°.又∵∠APB =∠APC +∠BPC =120°,∴∠ADC =∠APB .在△APB 和△ADC 中,⎩⎪⎨⎪⎧∠APB =∠ADC ,∠ABP =∠ACD ,AP =AD ,∴△APB≌△ADC (AAS),∴BP =CD .又∵PD =AP ,∴CP =BP +AP .方法总结:此题考查了圆周角定理的理论以及三角形的全等的判定与性质,正确作出辅助线是解决问题的关键. 【类型六】 圆周角定理的推论与相似三角形的综合如图,点E 是BC ︵的中点,点A 在⊙O 上,AE 交BC 于D .求证:BE 2=AE ·DE .解析:点E 是BC ︵的中点,根据圆周角定理的推论可得∠BAE =∠CBE ,可证得△BDE ∽△ABE ,然后由相似三角形的对应边成比例得结论.证明:∵点E 是BC ︵的中点,即BE ︵=CE ︵,∴∠BAE =∠角),∴△BDE ∽△DE ∶BE ,∴BE 2=AE 方法总结:角形的问题常常考虑此定理.三、板书设计圆周角和圆心角的关系1.圆周角的概念2.圆周角定理3.圆周角定理的推论本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等〞这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来那么相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.第2课 伟大的历史转折1 教学分析【教学目标】教学重点:中共十一届三中全会教学难点:中共十一届三中全会在政治上、思想上、组织上的转变以及历史意义2教学过程一、导入新课“文化大革命〞时期,我国教育遭到了很大破坏,高考中断了十年。

圆周角与圆心角的关系

圆周角与圆心角的关系

圆周角与圆心角的关系(1、2)一、弧与圆心角的关系当∠AOB= 1o 时, 则 1o= 360() ,而此时AB的度数=360()∴二、圆心角与圆周角的关系 1、圆周角的定义一个角的顶点在 ,角的两边 ,叫圆周角 练习:判断下列图形是否是圆周角2、圆周角与圆心角的关系圆周角与圆心角的关系:圆周角与弧的度数的关系:在等圆或同圆中,弧、圆周角、圆心角的关系:1、等弧所对的圆周角、圆心角 ;2、同弧所对的圆心角直径所对的圆周角是 ,90o 圆周角所对的弦是 1、已知圆中一条弧所对圆周角为75°,则这条弧的度数是 ________ 2、圆周角是24°,则它所对的弧是___________. 三、练习:1、在下列图形中找出相等的角D2、如图,已知圆心角∠BOC=100°,则圆周角∠BAC 的度数是2题 3题 4题3、如图,AB 是⊙O 的直径, BC=BD ,∠A=25°,则∠BOD= 。

4、如图,点A 、B 、C 、D 是圆O 上四点,且点D 是弧AB 的中点,CD 交OB 于E ,∠AOB=100°,∠OBC=55°,则∠OEC=__________度.5、如图,等边三角形ABC 的三个顶点都在⊙O 上,D 是 AC 上任一点(不与A 、C 重合),则∠ADC 的度数是________.5题7题8题6、在⊙O 中,∠AOB=72°则弦AB 所对的圆周角是 。

6.1已知⊙O 中的弦AB 长等于半径,求弦AB 所对的圆周角和圆心角的度数.7、如图AB 为直径,∠BED =40°则∠ACD =______.8、如图OA 、OB 是⊙O 的半径,∠AOB =40°,∠OBC =50°, 则∠ACB =______∠OAC =______. 9、如图,A 、B 、C 、D 四点都在⊙O 上,AD 是⊙O 的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC10、如图,AB 为半圆O 的直径,弦AD 、BC 相交于点P ,若CD=3,AB=4,求tan ∠BPD 的值.C11、如图,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,3),M 是第三象限内上一点,∠BMO=120°,则⊙C 的半径长为12、如图,已知AB 为⊙O 的直径,∠CAB=30°,则∠D 的度数为13、如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为13、1如图,O 为原点,点A 的坐标为(3,0),点B 的坐标为(0,4),⊙D 过A 、B 、O 三点,点C 为上一点(不与O 、A 两点重合),则cosC 的值为14、如图,已知⊙O 的半径为1,锐角△ABC 内接于⊙O ,BD ⊥AC 于点D ,OM ⊥AB 于点M ,则sin ∠CBD 的值等于OBABO。

圆周角和圆心角的关系—知识讲解(基础)

圆周角和圆心角的关系—知识讲解(基础)

圆周角和圆心角的关系--知识讲解(基础)【学习目标】1 •理解圆周角的概念,了解圆周角与圆心角之间的关系;2 •理解圆周角定理及推论;3 •熟练掌握圆周角的定理及其推理的灵活运用;通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.【要点梳理】要点一、圆周角1. 圆周角定义:像图中/ AEB / ADB / ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2. 圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半3. 圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;推论2:直径所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交(2)圆周角定理成立的前提条件是在同圆或等圆中(3)圆心与圆周角存在三种位置关系:圆心在圆周角的一边上;圆心在圆周角的内部;圆心在圆周要点二、圆内接四边形1.圆内接四边形定义:四边形的四个顶点都在同一个圆上,像这样的四边形叫做圆内接四边形,这个圆叫做四边形的外接圆2.圆内接四边形性质:圆内接四边形的对角互补•如图,四边形ABCD是O 0的内接四边形,则/ A+Z C=180°, / B+Z D=180°D要点诠释:当四边形的四个顶点不同时在一个圆上时,四边形的对角是不互补【典型例题】类型一、圆周角、圆心角、弧、弦之间的关系及应用C^1・如图,在O 0中 , _ ;i| ',求/ A的度数.【答案与解析】v AB =腮:.AB =腮•債养【总结升华】在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的圆周角相等,所对的弦也相等.举一反三:【变式】如图所示,正方形ABCD内接于O 0,点E在劣弧AD上,则/ BEC等于()A . 45°B . 60°C . 30°D . 55【答案】A.AB = BC= CD= DAAB =BC =CD 二DA =90°,/ BEC= 45°.类型二、圆周角定理及应用C"2.观察下图中角的顶点与两边有何特征?指出哪些角是圆周角?(C) (d)【思路点拨】根据圆周角的定义去判断,顶点在圆上,并且两边都和圆相交的角叫做圆周角•【答案与解析】⑻/1顶点在O O内,两边与圆相交,所以/ 1不是圆周角;(b) / 2顶点在圆外,两边与圆相交,所以/ 2不是圆周角;(c) 图中/ 3、/ 4、/ BAD的顶点在圆周上,两边均与圆相交,所以/ 3、/ 4、/ BAD是圆周角.(d) / 5顶点在圆上,一边与圆相交,另一边与圆不相交,所以/ 5不是圆周角;(e) / 6顶点在圆上,两边与圆均不相交,由圆周角的定义知/ 6不是圆周角.【总结升华】紧扣定义,抓住二要素,正确识别圆周角.3. (2015?台州)如图,四边形ABCD内接于O O,点E在对角线AC上,EC=BC=DC .(1)若/ CBD=39 °,求/ BAD 的度数;(2 )求证:/ 1 = / 2 .【答案与解析】(1)解:T BC=DC ,•••/ CBD= / CDB=39 °•••/ BAC= / CDB=39 ° / CAD= / CBD=39 °• / BAD= / BAC+ / CAD=39 °+39°=78 °(2)证明:T EC=BC ,:丄 CEB= / CBE ,而/ CEB= / 2+ / BAE ,/ CBE= / 1 + Z CBD ,•••/ 2+Z BAE= / 1 + / CBD ,•••/ BAE= / CBD ,•••/ 仁/2.【总结升华】 本题主要考查了圆周角定理和等腰三角形的性质,熟悉圆的有关性质是解决问题的关键.BD 是O 0的弦,延长BD 到C ,使AC=AB BD 与CD 的大小有什么关系?【思路点拨】BD=CD 因为AB=AC 所以这个厶ABC 是等腰三角形,要证明 D 是BC 的中点,只要连结 AD,证明AD 是高或是/ BAC 的平分线即可.【答案与解析】BD=CD.理由是:如图,连接 AD•/ AB 是O 0的直径•••/ ADB=90 即 ADL BC 又••• AC=AB • BD=CD.【总结升华】 解题的关键是正确作出辅助线 举一反三:【变式】(2015?安顺)如图,O O 的直径AB 垂直于弦CD ,垂足为E ,/ A=22.5 ° OC=4 , CD 的长为( ).如图,AB 是O 0的直径,为什么?【思路点拨】 根据圆内接四边形的性质可求得四个角的比值,再根据四边形的内角和为 得/ D 的度数.【答案与解析】 解:•••圆内接四边形的对角互补,••• / A: / B:/ C:/ D=2:3:4 : 3设/ A=2x ,则/ B=3x ,/ C=4x,/ D=3x,• 2x+3x+4x+3x=360 ° ,• x=30°• / D=90° .【总结升华】本题考查圆内接四边形的性质和四边形的内角和为提示:T/ A=22.5°,• / BOC=/A=45 ,TOO 的直径AB 垂直于弦CD• C E=DE △ OCE 为等腰直角三角形,• C E= :OC=2 匚,2• CD=2CE=4 匚.故选:C.类型三、圆内接四边形及应用5 •圆内接四边形 ABCD 勺内角/ A : / B:Z C=2:3:4,求/ D 的度数.360 °,从而求 360°的运用. B . 4【答案】C.举一反三:【变式】如图,O O中,四边形ABCD是圆内接四边形,/ BOD=110,则/ BCD的度数是()A.110 °B.70 °C.55 °D.125 °【答案】D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C B
迁移应用练2
• 2. 如图,AB是⊙O的直径,C⌒B=B⌒D,∠A=
15°,则∠BOD=
60。0
解理可:知分∠析A:=连接1O∠BCO,C由圆周角定 又由∠BOC=∠2BOD ∴∠BOD=60°
课堂作业
• 课本P112页 2 , 3
O.ห้องสมุดไป่ตู้
3. ∠BAC=___ ∠BOC.
4.由3你得出的结论是一_条__弧_所__对_的_圆__周_角__等_于_它__所_对__的_圆. 心角的一半
B
C
自学检测练
想一想:
当角的顶点发生变化时,这个角的位置有哪几种情况?
圆内
圆周角
A.
圆外A.
A.
O.
O.
O.
B
C
B
C
B
C
自学检测练 1.判别下列各图形中的角是不是圆周角。
自学检测练
A
O B
⌒ ⌒
有没有圆周角? 有没有圆心角? 它们有什么共同的特点?
C 它们都对着同一条弧
自学检测练
下列图形中,哪些图形中的圆心角∠BOC和
圆周角∠A是同对一条弧。
A
A
O B
A O
B
C
O
D
C
B
C
A
A
O
B
D C
O
B
C
要点归纳
圆周角定义: 顶点在圆上,
并且两边都和圆相交的角
A
叫圆周角.
特征:
D
1.求圆中角X的度数
C 120°
O
.O
C
70° x
O.
X BA
B
A
B
350
A 1200
C
2.如图,圆心角∠AOB=100°,则∠ACB=_1_3_0_0___.
迁移应用练1
如图:
OA,OB,OC都是 ⊙0的半径,
O
∠AOB=2∠BOC,
∠ACB与∠BAC的
大小有什么关系?
A 解:∵ ∠AOB=2∠ACB ∠BOC=2∠BAC ∠AOB=2∠BOC ∴2∠ACB=2×2∠BAC ∴∠ACB=2∠BAC
圆周角和圆心角的关 系(1)
学习目标
• 1.经历探索圆周角和圆心角的关系的过程. • 2.理解圆周角的概念及其相关性质. • 3.体会分类,归纳等数学思想.
自学检测练1
1.___顶__点__在__圆__心__的__角_____叫圆心角. A
2._顶_点_在_圆_上_,_并__且_两_边_都_和_圆_相__交_的_角_叫圆周角.
① 角的顶点在圆上.
② 角的两边都与圆相交. B
.
O C
补救强化练1
自己动手量一量同一条弧所对的圆心角和圆
周角分别是多少度?
A
A
A
O
O
O
E
B
CB
CB
C
E
一条弧所对的圆周角等于它所对的圆心角的_一__半_
补救强化练1
如图:在⊙o中 ∠BOC=500,则 ∠BAC=___2_5.0
A
O
B
C
补救强化练2
相关文档
最新文档