内蒙古包头市201X年中考数学总复习题型突破06几何图形中的动态图形变换问题课件
内蒙古自治区包头市2024届中考数学考试模拟冲刺卷含解析

内蒙古自治区包头市2024学年中考数学考试模拟冲刺卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)1.若正比例函数y=kx的图象上一点(除原点外)到x轴的距离与到y轴的距离之比为3,且y值随着x值的增大而减小,则k的值为()A.﹣13B.﹣3 C.13D.32.在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )A.最高分90 B.众数是5 C.中位数是90 D.平均分为87.53.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.45B.35C.25D.154.下列运算正确的是()A.﹣(a﹣1)=﹣a﹣1 B.(2a3)2=4a6C.(a﹣b)2=a2﹣b2D.a3+a2=2a55.在△ABC中,∠C=90°,AC=9,sinB=35,则AB=( )A.15 B.12 C.9 D.66.如图,已知点A在反比例函数y=kx上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y=4xB.y=2xC.y=8xD.y=﹣8x7.下列安全标志图中,是中心对称图形的是()A.B.C.D.8.下列计算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6﹣a2=a4D.a5+a5=a109.下列解方程去分母正确的是( )A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2y-15=3yD.由,得3(y+1)=2y+610.我国古代数学著作《九章算术》卷七“盈不足”中有这样一个问题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:几个人合伙买一件物品,每人出8元,则余3元;若每人出7元,则少4元,问几人合买?这件物品多少钱?若设有x人合买,这件物品y元,则根据题意列出的二元一次方程组为()A.8374x yx y=-⎧⎨=+⎩B.8+473x yx y=⎧⎨=-⎩C.3+847x yx y=⎧⎨=-⎩D.8+374x yx y=⎧⎨=-⎩二、填空题(本大题共6个小题,每小题3分,共18分)11.当﹣4≤x≤2时,函数y=﹣(x+3)2+2的取值范围为_____________.12.如图,在四边形ABCD中,AB//CD,AC、BD相交于点E,若AB1CD4=,则AEAC=______.13.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD 面积为_____.14.为了节约用水,某市改进居民用水设施,在2017年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为________.15.点A (1,2),B (n ,2)都在抛物线y=x 2﹣4x+m 上,则n=_____.16.已知边长为2的正六边形ABCDEF 在平面直角坐标系中的位置如图所示,点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过2018次翻转之后,点B 的坐标是______.三、解答题(共8题,共72分)17.(8分)某电器商场销售甲、乙两种品牌空调,已知每台乙种品牌空调的进价比每台甲种品牌空调的进价高20%,用7200元购进的乙种品牌空调数量比用3000元购进的甲种品牌空调数量多2台. 求甲、乙两种品牌空调的进货价; 该商场拟用不超过16000元购进甲、乙两种品牌空调共10台进行销售,其中甲种品牌空调的售价为2500元/台,乙种品牌空调的售价为3500元/台.请您帮该商场设计一种进货方案,使得在售完这10台空调后获利最大,并求出最大利润.18.(8分)已知关于x 的一元二次方程x 2﹣(m+3)x+m+2=1.(1)求证:无论实数m 取何值,方程总有两个实数根;(2)若方程两个根均为正整数,求负整数m 的值.19.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC 与支架AC 所成的角∠ACB=75°,支架AF 的长为2.50米米,篮板顶端F 点到篮框D 的距离FD=1.35米,篮板底部支架HF 与支架AF 所成的角∠FHE=60°,求篮框D 到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.7323 1.732≈2 1.414≈)20.(8分)(1)化简:221m2m1 1m2m4++⎛⎫-÷⎪+-⎝⎭(2)解不等式组31234(1)9 xxx+⎧>+⎪⎨⎪+->-⎩.21.(8分)如图,已知AB是⊙O的弦,C是AB的中点,AB=8,AC= 25,求⊙O半径的长.22.(10分)在一个不透明的口袋里装有四个球,这四个球上分别标记数字﹣3、﹣1、0、2,除数字不同外,这四个球没有任何区别.从中任取一球,求该球上标记的数字为正数的概率;从中任取两球,将两球上标记的数字分别记为x、y,求点(x,y)位于第二象限的概率.23.(12分)如图①,一次函数y=12x﹣2的图象交x轴于点A,交y轴于点B,二次函数y=12-x2+bx+c的图象经过A、B两点,与x轴交于另一点C.(1)求二次函数的关系式及点C的坐标;(2)如图②,若点P是直线AB上方的抛物线上一点,过点P作PD∥x轴交AB于点D,PE∥y轴交AB于点E,求PD+PE的最大值;(3)如图③,若点M在抛物线的对称轴上,且∠AMB=∠ACB,求出所有满足条件的点M的坐标.24.当x取哪些整数值时,不等式21222xx-≤-+与4﹣7x<﹣3都成立?参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解题分析】设该点的坐标为(a,b),则|b|=1|a|,利用一次函数图象上的点的坐标特征可得出k=±1,再利用正比例函数的性质可得出k=-1,此题得解.【题目详解】设该点的坐标为(a,b),则|b|=1|a|,∵点(a,b)在正比例函数y=kx的图象上,∴k=±1.又∵y值随着x值的增大而减小,∴k=﹣1.故选:B.【题目点拨】本题考查了一次函数图象上点的坐标特征以及正比例函数的性质,利用一次函数图象上点的坐标特征,找出k=±1是解题的关键.2、C【解题分析】试题分析:根据折线统计图可得:最高分为95,众数为90;中位数90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.3、B【解题分析】试题解析:列表如下:∴共有20种等可能的结果,P(一男一女)=123= 205.故选B.4、B【解题分析】根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.【题目详解】解:A、因为﹣(a﹣1)=﹣a+1,故本选项错误;B、(﹣2a3)2=4a6,正确;C、因为(a﹣b)2=a2﹣2ab+b2,故本选项错误;D、因为a3与a2不是同类项,而且是加法,不能运算,故本选项错误.故选B.【题目点拨】本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键.5、A【解题分析】根据三角函数的定义直接求解.【题目详解】在Rt△ABC中,∠C=90°,AC=9,∵sinACBAB =,∴935 AB=,解得AB=1.故选A6、C【解题分析】由双曲线中k的几何意义可知12AOCS k,据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k的正负,至此本题即可解答. 【题目详解】∵S△AOC=4,∴k=2S△AOC=8;∴y=8x;故选C.【题目点拨】本题是关于反比例函数的题目,需结合反比例函数中系数k的几何意义解答;7、B【解题分析】试题分析:A.不是中心对称图形,故此选项不合题意;B.是中心对称图形,故此选项符合题意;C.不是中心对称图形,故此选项不符合题意;D.不是中心对称图形,故此选项不合题意;故选B.考点:中心对称图形.8、B【解题分析】根据同底数幂乘法、幂的乘方的运算性质计算后利用排除法求解.【题目详解】A、a2•a3=a5,错误;B、(a2)3=a6,正确;C、不是同类项,不能合并,错误;D、a5+a5=2a5,错误;故选B.【题目点拨】本题综合考查了整式运算的多个考点,包括同底数幂的乘法、幂的乘方、合并同类项,需熟练掌握且区分清楚,才不容易出错.9、D【解题分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【题目详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【题目点拨】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.10、D【解题分析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题.【题目详解】由题意可得:8+3 74x yx y=⎧⎨=-⎩,故选D.【题目点拨】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.二、填空题(本大题共6个小题,每小题3分,共18分)11、-23≤y≤2【解题分析】先根据a=-1判断出抛物线的开口向下,故有最大值,可知对称轴x=-3,再根据-4≤x≤2,可知当x=-3时y最大,把x=2时y最小代入即可得出结论.【题目详解】解:∵a=-1,∴抛物线的开口向下,故有最大值,∵对称轴x=-3,∴当x=-3时y最大为2,当x=2时y最小为-23,∴函数y的取值范围为-23≤y≤2,故答案为:-23≤y≤2.【题目点拨】本题考查二次函数的性质,掌握抛物线的开口方向、对称轴以及增减性是解题关键.12、1 5【解题分析】利用相似三角形的性质即可求解;【题目详解】解:∵ AB∥CD,∴△AEB∽△CED,∴AE AB1==EC CD4,∴AE1=AC5,故答案为15.【题目点拨】本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质.13、1【解题分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是1时经过B,则AB=1-4=4,当直线经过D点,设其交AB与E,则,作DF⊥AB于点F.利用三角函数即可求得DF即平行四边形的高,然后利用平行四边形的面积公式即可求解【题目详解】解:由图象可知,当移动距离为4时,直线经过点A,当移动距离为7时,直线经过点D,移动距离为1时,直线经过点B,则AB =1﹣4=4,当直线经过点D ,设其交AB 于点E ,则DE =22 ,作DF ⊥AB 于点F ,∵y =﹣x 于x 轴负方向成45°角,且AB ∥x 轴,∴∠DEF =45°,∴DF =EF ,∴在直角三角形DFE 中,DF 2+EF 2=DE 2,∴2DF 2=1∴DF =2,那么ABCD 面积为:AB•DF =4×2=1, 故答案为1.【题目点拨】此题主要考查平行四边形的性质和一次函数图象与几何变换,解题关键在于利用好辅助线 14、53.0510⨯【解题分析】试题解析:305000用科学记数法表示为:53.0510.⨯故答案为53.0510.⨯15、1【解题分析】根据题意可以求得m 的值和n 的值,由A 的坐标,可确定B 的坐标,进而可以得到n 的值.【题目详解】:∵点A (1,2),B (n ,2)都在抛物线y=x 2-4x+m 上,∴, 解得 或 ,∴点B 为(1,2)或(1,2),∵点A(1,2),∴点B只能为(1,2),故n的值为1,故答案为:1.【题目点拨】本题考查了二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质求解.16、(4033【解题分析】根据正六边形的特点,每6次翻转为一个循环组循环,用2018除以6,根据商和余数的情况确定出点B的位置,经过第2017次翻转之后,点B的位置不变,仍在x轴上,由A(﹣2,0),可得AB=2,即可求得点B离原点的距离为4032,所以经过2017次翻转之后,点B的坐标是(4032,0),经过2018次翻转之后,点B在B′位置(如图所示),则△BB′C为等边三角形,可求得BN=NC=1,,由此即可求得经过2018次翻转之后点B的坐标.然后求出翻转前进的距离,过点C作CG⊥x于G,求出∠CBG=60°,然后求出CG、BG,再求出OG,然后写出点C的坐标即可.【题目详解】设2018次翻转之后,在B′点位置,∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组,∵2018÷6=336余2,∴经过2016次翻转为第336个循环,点B在初始状态时的位置,而第2017次翻转之后,点B的位置不变,仍在x轴上,∵A(﹣2,0),∴AB=2,∴点B离原点的距离=2×2016=4032,∴经过2017次翻转之后,点B的坐标是(4032,0),经过2018次翻转之后,点B在B′位置,则△BB′C为等边三角形,此时BN=NC=1,故经过2018次翻转之后,点B的坐标是:(4033.故答案为(4033.【题目点拨】本题考查的是正多边形和圆,涉及到坐标与图形变化-旋转,正六边形的性质,确定出最后点B 所在的位置是解题的关键.三、解答题(共8题,共72分)17、(1)甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元【解题分析】(1)设甲种品牌空调的进货价为x 元/台,则乙种品牌空调的进货价为1.2x 元/台,根据数量=总价÷单价可得出关于x 的分式方程,解之并检验后即可得出结论;(2)设购进甲种品牌空调a 台,所获得的利润为y 元,则购进乙种品牌空调(10-a )台,根据总价=单价×数量结合总价不超过16000 元,即可得出关于a 的一元一次不等式,解之即可得出a 的取值范围,再由总利润=单台利润×购进数量即可得出y 关于a 的函数关系式,利用一次函数的性质即可解决最值问题.【题目详解】(1)由(1)设甲种品牌的进价为x 元,则乙种品牌空调的进价为(1+20%)x 元,由题意,得 ()720030002120%x x =++, 解得x=1500,经检验,x=1500是原分式方程的解,乙种品牌空调的进价为(1+20%)×1500=1800(元). 答:甲种品牌的进价为1500元,乙种品牌空调的进价为1800元;(2)设购进甲种品牌空调a 台,则购进乙种品牌空调(10-a )台,由题意,得1500a+1800(10-a )≤16000,解得 203≤a , 设利润为w ,则w=(2500-1500)a+(3500-1800)(10-a )=-700a+17000,因为-700<0,则w 随a 的增大而减少,当a=7时,w最大,最大为12100元.答:当购进甲种品牌空调7台,乙种品牌空调3台时,售完后利润最大,最大为12100元.【题目点拨】本题考查了一次函数的应用、分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价列出关于x的分式方程;(2)根据总利润=单台利润×购进数量找出y关于a的函数关系式.18、(1)见解析;(2) m=-1.【解题分析】(1)根据方程的系数结合根的判别式,即可得出△=1>1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论.【题目详解】(1)∵△=(m+3)2﹣4(m+2)=(m+1)2∴无论m取何值,(m+1)2恒大于等于1∴原方程总有两个实数根(2)原方程可化为:(x-1)(x-m-2)=1∴x1=1, x2=m+2∵方程两个根均为正整数,且m为负整数∴m=-1.【题目点拨】本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程. 19、3.05米.【解题分析】延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【题目详解】延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=AB BC,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt △AGF 中,∵∠FAG=∠FHD=60°,sin ∠FAG=FG AF , ∴sin60°=32.52FG =, ∴FG=2.165,∴DM=FG+GM ﹣DF≈3.05米.答:篮框D 到地面的距离是3.05米. 考点:解直角三角形的应用.20、(1)21m m -+;(2)﹣2<x <1 【解题分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果; (2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【题目详解】(1)原式=21(2)(2)2m 2(1)1m m m m m m ++--⋅=+++; (2)不等式组整理得:12x x <⎧⎨>-⎩, 则不等式组的解集为﹣2<x <1.【题目点拨】此题考查计算能力,(1)考查分式的化简,正确将分子与分母分解因式及按照正确运算顺序进行计算是解题的关键;(2)是解不等式组,注意系数化为1时乘或除以的是负数时要变号.21、5【解题分析】试题分析:连接OC 交AB 于D ,连接OA ,由垂径定理得OD 垂直平分AB ,设⊙O 的半径为r ,在△ACD 中,利用勾股定理求得CD=2,在△OAD 中,由OA 2=OD 2+AD 2,代入相关数量求解即可得.试题解析:连接OC 交AB 于D ,连接OA ,由垂径定理得OD 垂直平分AB ,设⊙O 的半径为r ,在△ACD 中,CD 2+AD 2=AC 2,CD=2,在△OAD 中,OA 2=OD 2+AD 2,r 2=(r-2)2+16,解得r=5,∴☉O 的半径为5.22、(1)14;(2)16. 【解题分析】(1)直接根据概率公式求解;(2)先利用树状图展示所有12种等可能的结果数,再找出第二象限内的点的个数,然后根据概率公式计算点(x ,y )位于第二象限的概率.【题目详解】(1)正数为2,所以该球上标记的数字为正数的概率为14; (2)画树状图为:共有12种等可能的结果数,它们是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的点有2个,所以点(x ,y )位于第二象限的概率=212=16. 【题目点拨】本题考查列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.23、(1)二次函数的关系式为y =215222x x -+-;C (1,0);(2)当m =2时,PD +PE 有最大值3;(3)点M 的坐标为(52,12)或(52,). 【解题分析】(1)先求出A 、B 的坐标,然后把A 、B 的坐标分别代入二次函数的解析式,解方程组即可得到结论;(2)先证明△PDE ∽△OAB ,得到PD =2PE .设P (m ,215222m m -+-),则E (m ,122m -),PD +PE =3PE ,然后配方即可得到结论.(3)分两种情况讨论:①当点M 在在直线AB 上方时,则点M 在△ABC 的外接圆上,如图1.求出圆心O 1的坐标和半径,利用MO 1=半径即可得到结论.②当点M 在在直线AB 下方时,作O 1关于AB 的对称点O 2,如图2.求出点O 2的坐标,算出DM 的长,即可得到结论.【题目详解】解:(1)令y =122x -=0,得:x =4,∴A (4,0). 令x =0,得:y =-2,∴B (0,-2).∵二次函数y =212x bx c -++的图像经过A 、B 两点, ∴8402b c c -++⎧⎨-⎩==,解得:522b c ⎧⎪⎨⎪-⎩==, ∴二次函数的关系式为y =215222x x -+-. 令y =215222x x -+-=0,解得:x =1或x =4,∴C (1,0). (2)∵PD ∥x 轴,PE ∥y 轴,∴∠PDE =∠OAB ,∠PED =∠OBA ,∴△PDE ∽△OAB .∴PD PE =OA OB =42=2, ∴PD =2PE .设P (m ,215222m m -+-), 则E (m ,122m -). ∴PD +PE =3PE =3×[(215222m m -+-)-(122m -)]=2362m m -+=()23262m --+. ∵0<m <4,∴当m =2时,PD +PE 有最大值3.(3)①当点M 在在直线AB 上方时,则点M 在△ABC 的外接圆上,如图1.∵△ABC 的外接圆O 1的圆心在对称轴上,设圆心O 1的坐标为(52,-t ). ∴()22522t ⎛⎫+- ⎪⎝⎭=22512t ⎛⎫-+ ⎪⎝⎭,解得:t =2, ∴圆心O 1的坐标为(52,-2),∴半径为52. 设M (52,y ).∵MO 1=52,∴522y +=, 解得:y =12,∴点M 的坐标为(5122,). ②当点M 在在直线AB 下方时,作O 1关于AB 的对称点O 2,如图2.∵AO 1=O 1B =52,∴∠O 1AB =∠O 1BA .∵O 1B ∥x 轴,∴∠O 1BA =∠OAB , ∴∠O 1AB =∠OAB ,O 2在x 轴上,∴点O 2的坐标为 (32,0),∴O 2D =1, ∴DM =225()12-=212,∴点M 的坐标为(52,212-). 综上所述:点M 的坐标为(52,12)或(52,212-).点睛:本题是二次函数的综合题.考查了求二次函数的解析式,求二次函数的最值,圆的有关性质.难度比较大,解答第(3)问的关键是求出△ABC 外接圆的圆心坐标.24、2,1【解题分析】根据题意得出不等式组,解不等式组求得其解集即可.【题目详解】根据题意得21222473xxx-⎧≤-+⎪⎨⎪-<-⎩①②,解不等式①,得:x≤1,解不等式②,得:x>1,则不等式组的解集为1<x≤1,∴x可取的整数值是2,1.【题目点拨】本题考查了解不等式组的能力,根据题意得出不等式组是解题的关键.。
中考数学专题复习——动态变化问题(经典题型)

中考数学专题复习——动态变化问题(经典题型)【专题点拨】动态型问题一般是指以几何知识和图形为背景,渗透运动变化观点的一类试题,常见的运动对象有点动、线动和面动;其运动形式而言就是平移、旋转、翻折和滚动等。
动态型试题其特点是集几何、代数知识于一体,数形结合,有较强的综合性,题目灵活,多变,动中有静,动静结合,能够在运动变化中发展同学们的空间想象能力。
解答动态型试题的策略是:(1)动中求静,即在运动变化中探索问题中的不变性;(2)动静互化,抓住静的瞬间。
找到导致图形或者变化规律发生改变的特殊时刻,同时在运动变化的过程中寻找不变性及其变化规律。
【典例赏析】【例题1】(2017黑龙江佳木斯)如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点G,连接AG 交BE于点H,连接DH,下列结论正确的个数是()①△ABG∽△FDG ②HD平分∠EHG ③AG⊥BE ④S△HDG :S△HBG=tan∠DAG ⑤线段DH的最小值是2﹣2.A.2 B.3 C.4 D.5【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质;T7:解直角三角形.【分析】首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【解答】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠ABE=∠DCF,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠DAG=∠DCF,∴∠ABE=∠DAG,∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同法可证:△AGB≌△CGB,∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确,∵S△HDG :S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,又∵∠DAG=∠FCD,∴S△HDG :S△HBG=tan∠FCD,tan∠DAG,故④正确取AB的中点O,连接OD、OH,∵正方形的边长为4,∴AO=OH=×4=2,由勾股定理得,OD==2,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=2﹣2.无法证明DH平分∠EHG,故②错误,故①③④⑤正确,故选C.【例题2】(2017黑龙江佳木斯)已知:△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°.连接AD,BC,点H为BC中点,连接OH.(1)如图1所示,易证:OH=AD且OH⊥AD(不需证明)(2)将△COD绕点O旋转到图2,图3所示位置时,线段OH与AD又有怎样的关系,并选择一个图形证明你的结论.【考点】R2:旋转的性质;KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)只要证明△AOD≌△BOC,即可解决问题;(2)①如图2中,结论:OH=AD,OH⊥AD.延长OH到E,使得HE=OH,连接BE,由△BEO≌△ODA即可解决问题;②如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD于G.由△BEO≌△ODA即可解决问题;【解答】(1)证明:如图1中,∵△OAB与△OCD为等腰直角三角形,∠AOB=∠COD=90°,∴OC=OD,OA=OB,∵在△AOD与△BOC中,,∴△AOD≌△BOC(SAS),∴∠ADO=∠BCO,∠OAD=∠OBC,∵点H为线段BC的中点,∴OH=HB,∴∠OBH=∠HOB=∠OAD,又因为∠OAD+∠ADO=90°,所以∠ADO+∠BOH=90°,所以OH⊥AD(2)解:①结论:OH=AD,OH⊥AD,如图2中,延长OH到E,使得HE=OH,连接BE,易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOH=∠EOB+∠AOH=90°,∴OH⊥AD.②如图3中,结论不变.延长OH到E,使得HE=OH,连接BE,延长EO交AD于G.易证△BEO≌△ODA∴OE=AD∴OH=OE=AD由△BEO≌△ODA,知∠EOB=∠DAO∴∠DAO+∠AOF=∠EOB+∠AOG=90°,∴∠AGO=90°∴OH⊥AD.【例题3】(2017湖北江汉)如图,在平面直角坐标系中,四边形ABCD的边AD 在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B 两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC 交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为20 ;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】FI:一次函数综合题.【分析】(1)根据函数解析式得到OA=5,求得AC=7,得到OC=4,于是得到结论;(2)①当0≤t≤3时,根据已知条件得到四边形ABFE是平行四边形,于是得到S=AE•OC=4t;②当3≤t<7时,如图1,求得直线CD的解析式为:y=2x﹣4,直线E′F′的解析式为:y=﹣2x+2t﹣10,解方程组得到G(,t﹣7),于是得到S=S四边形ABCD ﹣S△DE′G=20﹣×(7﹣t)×(7﹣t)=﹣t2+7t﹣,③当t≥7时,S=S四边形ABCD=20,(3)当t=2时,点E,F的坐标分别为(﹣3,0),(﹣1,﹣4),此时直线EF 的解析式为:y=﹣2x﹣6,设动点P的直线为(m,﹣2m﹣6),求得PM=|(﹣2m ﹣6)﹣(﹣4)|=2|m+1|,PN=(﹣2m﹣6|=2(m+3|,FM=|m﹣(﹣1)|=|m+1,①假设直线EF上存在点P,使点T恰好落在x轴上,如图2,连接PT,FT,②假设直线EF上存在点P,使点T恰好落在y轴上,如图3,连接PT,FT,根据全等三角形的判定性质和相似三角形的判定和性质即可得到结论.【解答】解:(1)在y=﹣2x﹣10中,当y=0时,x=﹣5,∴A(﹣5,0),∴OA=5,∴AC=7,把x=﹣3代入y=﹣2x﹣10得,y=﹣4∴OC=4,∴四边形ABCD的面积=(3+7)×4=20;故答案为:20;(2)①当0≤t≤3时,∵BC∥AD,AB∥EF,∴四边形ABFE是平行四边形,∴S=AE•OC=4t;②当3≤t<7时,如图1,∵C(0,﹣4),D(2,0),∴直线CD的解析式为:y=2x﹣4,∵E′F′∥AB,BF′∥AE′∴BF′=AE=t,∴F′(t﹣3,﹣4),直线E′F′的解析式为:y=﹣2x+2t﹣10,解得,∴G(,t﹣7),∴S=S四边形ABCD ﹣S△DE′G=20﹣×(7﹣t)×(7﹣t)=﹣t2+7t﹣,③当t≥7时,S=S四边形ABCD=20,综上所述:S关于t的函数解析式为:S=;(3)当t=2时,点E,F的坐标分别为(﹣3,0),(﹣1,﹣4),此时直线EF的解析式为:y=﹣2x﹣6,设动点P的直线为(m,﹣2m﹣6),∵PM⊥直线BC于M,交x轴于n,∴M(m,﹣4),N(m,0),∴PM=|(﹣2m﹣6)﹣(﹣4)|=2|m+1|,PN=(﹣2m﹣6|=2(m+3|,FM=|m﹣(﹣1)|=|m+1,①假设直线EF上存在点P,使点T恰好落在x轴上,如图2,连接PT,FT,则△PFM≌△PFT,∴PT=PM=2|m+1|,FT=FM=|m+1|,∴=2,作FK⊥x轴于K,则KF=4,由△TKF∽△PNT得, =2,∴NT=2KF=8,∵PN2+NT2=PT2,∴4(m+3)2+82=4(m+1)2,解得:m=﹣6,∴﹣2m﹣6=﹣6,此时,P(﹣6,6);②假设直线EF上存在点P,使点T恰好落在y轴上,如图3,连接PT,FT,则△PFM≌△PFT,∴PT=PM=2|m+1|,FT=FM=|m+1|,∴=2,作PH⊥y轴于H,则PH=|m|,由△TFC∽△PTH得,,∴HT=2CF=2,∵HT2+PH2=PT2,即22+m2=4(m+1)2,解得:m=﹣,m=0(不合题意,舍去),∴m=﹣时,﹣2m﹣6=﹣,∴P(﹣,﹣),综上所述:直线EF上存在点P(﹣6,6)或P(﹣,﹣)使点T恰好落在y轴上.【能力检测】1.(2017乌鲁木齐)如图,在矩形ABCD中,点F在AD上,点E在BC上,把这个矩形沿EF折叠后,使点D恰好落在BC边上的G点处,若矩形面积为4且∠AF G=60°,GE=2BG,则折痕EF的长为()A.1 B.C.2 D.【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】由折叠的性质可知,DF=GF、HE=CE、GH=DC、∠DFE=∠GFE,结合∠AFG=60°即可得出∠GFE=60°,进而可得出△GEF为等边三角形,在Rt△GHE中,通过解含30度角的直角三角形及勾股定理即可得出GE=2EC、DC=EC,再由GE=2BG 结合矩形面积为4,即可求出EC的长度,根据EF=GE=2EC即可求出结论.【解答】解:由折叠的性质可知,DF=GF,HE=CE,GH=DC,∠DFE=∠GFE.∵∠GFE+∠DFE=180°﹣∠AFG=120°,∴∠GFE=60°.∵AF∥GE,∠AFG=60°,∴∠FGE=∠AFG=60°,∴△GEF为等边三角形,∴EF=GE.∵∠FGE=60°,∠FGE+∠HGE=90°,∴∠HGE=30°.在Rt△GHE中,∠HGE=30°,∴GE=2HE=CE,∴GH==HE=CE.∵GE=2BG,∴BC=BG+GE+EC=4EC.∵矩形ABCD的面积为4,∴4EC•EC=4,∴EC=1,EF=GE=2.故选C.2.(2017乌鲁木齐)如图,点A(a,3),B(b,1)都在双曲线y=上,点C,D,分别是x轴,y轴上的动点,则四边形ABCD周长的最小值为()A.B.C.D.【考点】G6:反比例函数图象上点的坐标特征;PA:轴对称﹣最短路线问题.【分析】先把A点和B点的坐标代入反比例函数解析式中,求出a与b的值,确定出A与B坐标,再作A点关于y轴的对称点P,B点关于x轴的对称点Q,根据对称的性质得到P点坐标为(﹣1,3),Q点坐标为(3,﹣1),PQ分别交x 轴、y轴于C点、D点,根据两点之间线段最短得此时四边形PABQ的周长最小,然后利用两点间的距离公式求解可得.【解答】解:分别把点A(a,3)、B(b,1)代入双曲线y=得:a=1,b=3,则点A的坐标为(1,3)、B点坐标为(3,1),作A点关于y轴的对称点P,B点关于x轴的对称点Q,所以点P坐标为(﹣1,3),Q点坐标为(3,﹣1),连结PQ分别交x轴、y轴于C点、D点,此时四边形ABCD的周长最小,四边形ABCD周长=DA+DC+CB+AB=DP+DC+CQ+AB=PQ+AB=+=4+2=6,故选:B.3.(2017黑龙江鹤岗)如图,边长为4的正方形ABCD,点P是对角线BD上一动点,点E在边CD上,EC=1,则PC+PE的最小值是 5 .【考点】PA:轴对称﹣最短路线问题;LE:正方形的性质.【分析】连接AC、AE,由正方形的性质可知A、C关于直线BD对称,则AE的长即为PC+PE的最小值,再根据勾股定理求出AE的长即可.【解答】解:连接AC、AE,∵四边形ABCD是正方形,∴A、C关于直线BD对称,∴AE的长即为PC+PE的最小值,∵CD=4,CE=1,∴DE=3,在Rt△ADE中,∵AE===5,∴PC+PE的最小值为5.故答案为:5.4.(2017黑龙江鹤岗)在四边形ABCD中,对角线AC、BD交于点O.若四边形ABCD是正方形如图1:则有AC=BD,AC⊥BD.旋转图1中的Rt△COD到图2所示的位置,AC′与BD′有什么关系?(直接写出)若四边形ABCD是菱形,∠ABC=60°,旋转Rt△COD至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;L8:菱形的性质;R2:旋转的性质.【分析】图2:根据四边形ABCD是正方形,得到AO=OC,BO=OD,AC⊥BD,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,等量代换得到AO=BO,OC′=OD′,∠AOC′=∠BOD′,根据全等三角形的性质得到AC′=BD′,∠OAC′=∠OBD′,于是得到结论;图3:根据四边形ABCD是菱形,得到AC⊥BD,AO=CO,BO=DO,求得OB=OA,OD=OC,根据旋转的性质得到OD′=OD,OC′=OC,∠D′OD=∠C′OC,求得OD′=OC′,∠AOC′=∠BOD′,根据相似三角形的性质得到BD′=AC′,于是得到结论.【解答】解:图2结论:AC′=BD′,AC′⊥BD′,理由:∵四边形ABCD是正方形,∴AO=OC,BO=OD,AC⊥BD,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴AO=BO,OC′=OD′,∠AOC′=∠BOD′,在△AOC′与△BOD′中,,∴△AOC′≌△BOD′,∴AC′=BD′,∠OAC′=∠OBD′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′;图3结论:BD′=AC′,AC′⊥BD’理由:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO,∵∠ABC=60°,∴∠ABO=30°,∴OB=OA,OD=OC,∵将Rt△COD旋转得到Rt△C′OD′,∴OD′=OD,OC′=OC,∠D′OD=∠C′OC,∴OD′=OC′,∠AOC′=∠BOD′,∴=,∴△AOC′∽△BOD′,∴==,∠OAC′=∠OBD′,∴BD′=AC′,∵∠AO′D′=∠BO′O,∠O′BO+∠BO′O=90°,∴∠O′AC′+∠AO′D′=90°,∴AC′⊥BD′.5.如图,矩形AOCB的顶点A、C分别位于x轴和y轴的正半轴上,线段OA、OC 的长度满足方程|x﹣15|+=0(OA>OC),直线y=kx+b分别与x轴、y轴交于M、N两点,将△BCN沿直线BN折叠,点C恰好落在直线MN上的点D处,且tan∠CBD=(1)求点B的坐标;(2)求直线BN的解析式;(3)将直线BN以每秒1个单位长度的速度沿y轴向下平移,求直线BN扫过矩形AOCB的面积S关于运动的时间t(0<t≤13)的函数关系式.【考点】FI:一次函数综合题.【分析】(1)由非负数的性质可求得x、y的值,则可求得B点坐标;(2)过D作EF⊥OA于点E,交CB于点F,由条件可求得D点坐标,且可求得=,结合DE∥ON,利用平行线分线段成比例可求得OM和ON的长,则可求得N 点坐标,利用待定系数法可求得直线BN的解析式;(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方时,可知S即为▱BNN′B′的面积,当N′在y轴的负半轴上时,可用t表示出直线B′N′的解析式,设交x轴于点G,可用t表示出G点坐标,由S=S﹣S四边形BNN′B′,可分别得到S与t的函数关系式.△OGN′【解答】解:(1)∵|x﹣15|+=0,∴x=15,y=13,∴OA=BC=15,AB=OC=13,∴B(15,13);(2)如图1,过D作EF⊥OA于点E,交CB于点F,由折叠的性质可知BD=BC=15,∠BDN=∠BCN=90°,∵tan∠CBD=,∴=,且BF2+DF2=BD2=152,解得BF=12,DF=9,∴CF=OE=15﹣12=3,DE=EF﹣DF=13﹣9=4,∵∠CND+∠CBD=360°﹣90°﹣90°=180°,且∠ONM+∠CND=180°,∴∠ONM=∠CBD,∴=,∵DE∥ON,∴==,且OE=3,∴=,解得OM=6,∴ON=8,即N(0,8),把N、B的坐标代入y=kx+b可得,解得,∴直线BN的解析式为y=x+8;(3)设直线BN平移后交y轴于点N′,交AB于点B′,当点N′在x轴上方,即0<t≤8时,如图2,由题意可知四边形BN N′B′为平行四边形,且NN′=t,∴S=NN′•OA=15t;当点N′在y轴负半轴上,即8<t≤13时,设直线B′N′交x轴于点G,如图3,∵NN′=t,∴可设直线B′N′解析式为y=x+8﹣t,令y=0,可得x=3t﹣24,∴OG=24,∵ON=8,NN′=t,∴ON′=t﹣8,∴S=S四边形BNN′B′﹣S△OGN′=15t﹣(t﹣8)(3t﹣24)=﹣t2+39t﹣96;综上可知S与t的函数关系式为S=.。
中考几何-动态试题解法(解析版)

中考几何动态试题解法专题知识点概述一、动态问题概述1.就运动类型而言,有函数中的动点问题有图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。
2.就运动对象而言,几何图形中的动点问题有点动、线动、面动三大类。
3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。
4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。
另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。
所以说,动态问题是中考数学当中的重中之重,属于初中数学难点,综合性强,只有完全掌握才能拿高分。
二、动点与函数图象问题常见的四种类型1.三角形中的动点问题:动点沿三角形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
2.四边形中的动点问题:动点沿四边形的边运动,根据问题中的常量与变量之间的关系,判断函数图象。
3.圆中的动点问题:动点沿圆周运动,根据问题中的常量与变量之间的关系,判断函数图象。
4.直线、双曲线、抛物线中的动点问题:动点沿直线、双曲线、抛物线运动,根据问题中的常量与变量之间的关系,判断函数图象。
三、图形运动与函数图象问题常见的三种类型1.线段与多边形的运动图形问题:把一条线段沿一定方向运动经过三角形或四边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
2.多边形与多边形的运动图形问题:把一个三角形或四边形沿一定方向运动经过另一个多边形,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
3.多边形与圆的运动图形问题:把一个圆沿一定方向运动经过一个三角形或四边形,或把一个三角形或四边形沿一定方向运动经过一个圆,根据问题中的常量与变量之间的关系,进行分段,判断函数图象。
四、动点问题常见的四种类型解题思路1.三角形中的动点问题:动点沿三角形的边运动,通过全等或相似,探究构成的新图形与原图形的边或角的关系。
内蒙古包头市中考数学总复习函数及其图像练习题

2019年内蒙古包头市中考数学总复习:函数及其图像练习题一、选择题(每小题3分,共30分)中自变量x的取值范围是()1.函数y=-A.x≥-1且x≠1B.x≥-1C.x≠1D.-1≤x<12.已知点P(0,m)在y轴的负半轴上,则点M(-m,-m+1)在()A.第一象限B.第二象限C.第三象限D.第四象限3.抛物线y=(x-1)2-3的对称轴是()A.y轴B.直线x=-1C.直线x=1D.直线x=-34.如图J3-1,在平面直角坐标系中,把△ABC绕原点O旋转 80°得到△CDA.点A,B,C的坐标分别为(-5,2),(-2,-2),(5,-2),则点D的坐标为()图J3-1A.(2,2)B.(2,-2)C.(2,5)D.(-2,5)5.将抛物线y=3x2先向右平移3个单位长度,再向下平移4个单位长度,得到的新抛物线的解析式为()A.y=3(x-3)2+4B.y=3(x+3)2+4C.y=3(x+3)2-4D.y=3(x-3)2-46.抛物线y=kx2-7x-7和x轴有交点,则k的取值范围是()A.k≥-B.k≥-且k≠0C.k>-D.k>-且k≠07.如图J3-2,反比例函数y1=和正比例函数y2=k2x的图象都经过点A(-1,2),若y1>y2,则x的取值范围是()图J3-2A.-1<x<0B.-1<x<1C.x<-1或x>1D.-1<x<0或x>18.已知a≠0,则函数y=与y=-ax2+a在同一直角坐标系中的大致图象可能是()图J3-39.如图J3-4,已知反比例函数y=的图象与一次函数y=x+2的图象交于A,B两点,那么△AOB的面积是 ()图J3-4A.2B.3C.4D.610.如图J3-5,二次函数y=ax2+bx+c(a>0)的图象的顶点为D,其与x轴的交点A,B的横坐标分别为-1和3,则下列结论正确的是()图J3-5A.2a-b=0B.a+b+c>0C.3a-c=0D.当a=时,△ABD是等腰直角三角形二、填空题(每小题3分,共24分)11.点A(3,-3)关于x轴对称的点的坐标是.12.将点A(1,-3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A'的坐标为.的解为坐标的点(x,y)在第象限.13.以方程组-14.若正比例函数y=-2x与反比例函数y=图象的一个交点坐标为(-1,2),则另一个交点的坐标为.15.如图J3-6,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数y=(x>0)的图象上,则矩形ABCD的周长为.图J3-616.如图J3-7,已知双曲线y=与直线y=-x+6相交于A,B两点,过点A作x轴的垂线,过点B作y轴的垂线,两线相交于点C,若△ABC的面积为8,则k的值为.图J3-717.若二次函数y=-x2+2x+k的部分图象如图J3-8所示,关于x的一元二次方程-x2+2x+k=0的一个根为x1=3,则另一个根为x2= .图J3-818.如图J3-9是二次函数y=ax2+bx+c(a≠0)在平面直角坐标系中的图象,根据图象判断:①c>0;②a+b+c<0;③2a-b<0;④b2+8a>4ac.其中正确的是.(填写序号)图J3-9三、解答题(共46分)19.(6分)如图J3-10,直线y=kx与双曲线y=-交于A,B两点,点C为第三象限内一点.(1)若点A的坐标为(a,3),求a的值;(2)如图①,当k=-,且CA=CB,∠ACB=90°时,求点C的坐标;(3)如图②,当△ABC为等边三角形时,点C的坐标为(m,n),试求m,n之间的关系式.图J3-1020.(6分)如图J3-11,二次函数的图象与x轴交于A(-3,0)和B(1,0)两点,交y轴于点C(0,3),点C,D是二次函数图象上的一对对称点,一次函数的图象过点B,D.(1)请直接写出点D的坐标;(2)求二次函数的解析式;(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.图J3-1121.(9分)某苹果基地销售一种优质苹果,该基地对需要送货且购买量在2000 kg~5000 kg(含2000 kg和5000 kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货;方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数解析式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元选用这两种方案中的一种购买尽可能多的这种苹果,请直接写出他应选择哪种方案.22.(8分)初三毕业生小张利用暑假50天在一超市勤工俭学,他被安排销售一款成本为40元/件的新型商品,此新型商品在第x天的销售量p(件)与销售的天数x的关系如下表:销售单价q(元/件)与x满足:当1≤x<25时,q=x+60;当25≤x≤50时,q=40+.(1)请猜想表格中销售量p与x的关系,求出销售量p与x的函数关系式;(2)求该超市销售该新型商品第x天获得的利润y(元)关于x的函数关系式;(3)这50天中,该超市第几天获得的利润最大?最大利润为多少?23.(8分)已知二次函数y=-x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图J3-12,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.图J3-1224.(9分)如图J3-13,已知抛物线y=-x2-x+2与x轴交于A,B两点,与y轴交于点C.(1)求点A,B,C的坐标.(2)E是该抛物线上一点,F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积.(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.图J3-13参考答案1.A2.A3.C4.A[解析] 在平面直角坐标系中,把△ABC绕原点O旋转 80°得到△CDA,则点B与点D关于原点对称,所以D(2,2).故选A.5.D6.B7.D8.D[解析] 由下表可知,选项D符合题意.9.C10.D11.(3,3)12.(-2,2)13.一14.(1,-2)15.12[解析] ∵四边形ABCD是矩形,顶点A的坐标为(2,1),∴设B,D两点的坐标分别为(x,1),(2,y).∵点B与点D都在反比例函数y=(x>0)的图象上,∴x=6,y=3,∴B,D两点的坐标分别为(6,1),(2,3),∴AB=6-2=4,AD=3-1=2,∴矩形ABCD的周长为12.16.517.-118.②④19.解:(1)a=-2.(2)连接CO,过点A作AD⊥y轴于点D,过点C作CE⊥y轴于点E,当CA=CB,∠ACB=90°时,可证得△ADO≌△OEC.又k=-,解--得-或-所以点A的坐标为(-2,3).由△ADO≌△OEC得CE=OD=3,EO=DA=2,所以C(-3,-2).(3)连接CO,过点A作AD⊥y轴于点D,过点C作CE⊥y轴于点E,由△ABC为等边三角形,可得△ADO∽△OEC,且相似比为1∶.因为点C的坐标为(m,n),所以CE=-m,OE=-n,进而求得AD=-n,OD=-m, 所以A(n,-m).把点A的坐标代入y=-中,得mn=18.20.解:(1)D(-2,3).(2)设二次函数的解析式为y=ax2+bx+c(a≠0,a,b,c为常数),根据题意,得9-0解得--所以二次函数的解析式为y=-x2-2x+3.(3)x<-2或x>1.21.解:(1)方案A:函数解析式为y=5.8x(2000≤x≤5000).方案B:函数解析式为y=5x+2000(2000≤x≤5000).(2)由题意,得5.8x<5x+2000,解不等式,得x<2500,∴当购买量x的取值范围为2000≤x<2500时,选用方案A比方案B付款少.(3)他应选择方案B.22.解:(1)猜想:销售量p与x是一次函数关系,p=120-2x(1≤x≤50). (2)由题意,得y=p·(q-40),当1≤x<25时,y=(120-2x)(60+x-40)=-2x2+80x+2400;当25≤x≤50时,y=(120-2x)(40+-40)= 000-2250.综上所述,y=-80 00000- 0 0(3)当1≤x<25时,y=-2(x-20)2+3200,∴当x=20时,y取最大值,为3200.当25≤x≤50时,y= 000-2250,∴x=25时,y取最大值,为3150.∵3200>3150,∴这50天中,该超市第20天获得的利润最大,最大利润为3200元.23.解:(1)∵二次函数的图象与x轴有两个交点,∴22+4m>0,∴m>-1.(2)∵二次函数的图象过点A(3,0),∴-9+6+m=0,∴m=3,∴二次函数的解析式为y=-x2+2x+3.令x=0,则y=3,∴B(0,3).设直线AB的函数解析式为y=kx+b,∴0解得-∴直线AB的函数解析式为y=-x+3.∵抛物线y=-x2+2x+3的对称轴为直线x=1,∴把x=1代入y=-x+3,得y=-1+3=2,∴点P的坐标为(1,2).24.解:(1)当x=0时,y=2,∴C(0,2).当y=0时,-x2-x+2=0,解得x=-4或x=2,∴B(-4,0),A(2,0).(2)抛物线的对称轴为直线x=-1,由(1)得AB=6.当AB为对角线时,如图①,∵点F的横坐标为-1,∴点E的横坐标也是-1,∴E(-1,9),∴平行四边形AEBF的面积为AB×9××2=6×9=; 当AB为边时,如图②,∵AB=6,∴EF=6,∴点E的坐标为5,-或-7,-,∴平行四边形ABEF(或ABFE)的面积=AB×=6×=8 .综上,以A,B,E,F为顶点的平行四边形的面积为或8 .(3)假设存在.当AC=CM时,∵A(2,0),C(0,2),设M(-1,y1),∴AC=2,CM=-,∴(2)2=1+4-4y1+,整理得-4y1-3=0,解得y1=2±∴M(-1,2+)或M(-1,2-).当AC=AM时,设M(-1,y2),∵AC=2,AM=,∴(2)2=32+,解得=-1(舍去).当CM=AM时,设M(-1,y3),则12+(2-y3)2=32+,解得y3=-1,∴M(-1,-1).综上,在抛物线的对称轴上存在点M,使得△ACM是等腰三角形,点M的坐标为(-1,-1)或(-1,2+或(-1,2-.。
中考压轴题动态几何之多形式变化问题

中考压轴题动态几何之多形式变化问题数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射.在中考中,动态几何多形式变化问题命题形式主要为解答题,包括点动和线动问题的综合,点动和面动问题的综合,线动和面动问题的综合等.在中考压轴题中,动态几何多形式变化问题的难点在于准确应用适当的定理和方法进行探究.原创模拟预测题1.如图,在Rt△AOB中,∠AOB=90°,AO=3,BO=1,AB的垂直平分线交AB于点E,交射线BO于点F.点P从点A出发沿射线AO以每秒23个单位的速度运动,同时点Q从点O出发沿OB方向以每秒1个单位的速度运动,当点Q到达点B时,点P、Q 同时停止运动.设运动的时间为t秒.(1)当t= 时,PQ∥EF;(2)若P、Q关于点O的对称点分别为P′、Q′,当线段P′Q′与线段EF有公共点时,t的取值范围是.【答案】(1)35;(2)0<t≤1且35t≠.【解析】试题分析:(1)如图1,当PQ∥EF时,则∠Q PO=∠ENA,又∵∠AEN=∠QOP=90°,∴△AEN∽△QOP,∵∠AOB=90°,AO=3,BO=1,∴tanA=333BOAO==,∴∠A=∠PQO=30°,∴3233PO tQO-==,解得:t=35,故当t=35时,PQ∥EF;故答案为:35;考点:几何变换综合题;动点型;分类讨论;综合题.原创模拟预测题2.如图,四边形ABCD是矩形纸片,AB=2.对折矩形纸片ABCD,使AD与BC重合,折痕为EF;展平后再过点B折叠矩形纸片,使点A落在EF上的点N,折痕BM与EF相交于点Q;再次展平,连接BN,MN,延长MN交BC于点G.有如下结论:①∠ABN=60°;②AM=1;③QN=33;④△BMG是等边三角形;⑤P为线段BM上一动点,H是BN的中点,则PN+PH的最小值是3.其中正确结论的序号是.【答案】①④⑤.【解析】试题分析:如图1,连接AN,∵EF垂直平分AB,∴AN=BN,根据折叠的性质,可得:AB=BN,∴AN=AB=BN ,∴△ABN 为等边三角形,∴∠ABN=60°,∠PBN=60°÷2=30°,即结论①正确;∵∠ABN=60°,∠ABM=∠NBM ,∴∠ABM=∠NBM=60°÷2=30°,∴AM=AB •tan30°=323⨯=233,即结论②不正确; ∵EF ∥BC ,QN 是△MBG 的中位线,∴QN=12BG ,∵BG=BM=AB ÷cos ∠ABM=32÷=43,∴QN=1432⨯=23,即结论③不正确; ∵∠ABM=∠MBN=30°,∠BNM=∠BAM=90°,∴∠BMG=∠BNM ﹣∠MBN=90°﹣30°=60°,∴∠MBG=∠ABG ﹣∠ABM=90°﹣30°=60°,∴∠BGM=180°﹣60°﹣60°=60°,∴∠MBG=∠BMG=∠BGM=60°,∴△BMG 为等边三角形,即结论④正确;∵△BMG 是等边三角形,点N 是MG 的中点,∴BN ⊥MG ,∴BN=BG•sin60°=43332⨯=2,P 与Q 重合时,PN+PH 的值最小,∵P 是BM 的中点,H 是BN 的中点,∴PH ∥MG ,∵MG ⊥BN ,∴PH ⊥BN ,又∵PE ⊥AB ,∴PH=PE ,∴PN+PH=PN+PE=EN ,∵EN=22BN BE -=2221-=3,∴PN+PH=3,∴PN+PH 的最小值是3,即结论⑤正确.故答案为:①④⑤.考点:几何变换综合题;翻折变换(折叠问题);动点型;最值问题;和差倍分;综合题;压轴题.原创模拟预测题3.如图,在矩形ABCD 中,AD=acm ,AB=bcm (a >b >4),半径为2cm 的⊙O 在矩形内且与AB 、AD 均相切,现有动点P 从A 点出发,在矩形边上沿着A→B→C→D 的方向匀速移动,当点P 到达D 点时停止移动.⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动,已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A→B→C→D,全程共移动了 cm (用含a 、b 的代数式表示);(2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点,若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a=20,b=10,是否存在如下情形:当⊙O 到达⊙O1的位置时(此时圆心O1在矩形对角线BD 上),DP 与⊙O1恰好相切?请说明理由.【答案】(1)()2a b +;(2)20;(3)54. 【解析】 试题分析:(1)根据点P 走过的是线段AB+BC+CD ,因此可直接求出;(2)由(1)知P 移动的距离为(a+2b )cm ,圆心O 移动的距离为2(a-4)cm ,因此可得a+2b=2(a-4),再由P 的移动情况可知1223a b =,联立方程组可求得a=24cm ,b=8cm ,因此可求出它们的速度为2b=4cm/s ,然后求出O 点5s 的路程;(3)存在,设点P 移动的速度为v1cm/s ,⊙O 移动的速度为v2cm/s ,可根据它们的路程求出1254v v =,如图,设直线OO1与AB 交于点E ,与CD 交于点F ,⊙O1与AD 相切于点G .根据相切可得证△DO1G ≌△DO1H ,再进一步得到BP=DP ,设BP=DP=x ,然后根据勾股定理求出x ,再根据相似三角形可求得结果.但是在移动中圆O 有两次可能到达合适的位置,应分两种情况讨论.试题解析:(1)a+2b ;若PD 与⊙O1相切,切点为H ,则O1G=O1H .易得△DO1G ≌△DO1H ,∴∠ADB=∠BDP ,∵BC ∥AD ,∴∠ADB=∠CBD ,∴∠BDP=∠CBD .∴BP=DP .设BP=xcm ,则DP=xcm ,PC=(20-x )cm ,在Rt △PCD 中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =,∴此时点P 移动的距离为25451022+=(cm ).∵EF ∥AD ,∴△BEO1∽△BAD .∴1EO BE AD BA =,即182010EO =,∴EO1=16cm .∴OO1=14cm . ①当⊙O 首次到达⊙O1的位置时,⊙O 移动的距离为14cm ,∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠,∴此时PD 与⊙O1不可能相切; ②当⊙O 在返回途中到达⊙O1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ),∴此时点P 与⊙O 移动的速度比为45455218364==.∴此时PD 与⊙O1恰好相切.考点:圆的综合题;分类讨论;动点型;存在型;综合题;压轴题.原创模拟预测题4.如图,在矩形OABC 中,OA=5,AB=4,点D 为边AB 上一点,将△BCD 沿直线CD 折叠,使点B 恰好落在OA 边上的点E 处,分别以OC ,OA 所在的直线为x 轴,y 轴建立平面直角坐标系.(1)求OE 的长;(2)求经过O ,D ,C 三点的抛物线的解析式;(3)一动点P 从点C 出发,沿CB 以每秒2 个单位长的速度向点B 运动,同时动点Q 从E 点出发,沿EC 以每秒1 个单位长的速度向点C 运动,当点P 到达点B 时,两点同时停止运动.设运动时间为t 秒,当t 为何值时,DP=DQ ;(4) 若点N 在(2)中的抛物线的对称轴上,点M 在抛物线上,是否存在这样的点M 与点N ,使得以M ,N ,C ,E 为顶点的四边形是平行四边形?若存在,请求出M 点的坐标;若不存在,请说明理由.【答案】(1)3;(2)241633y x x =+;(3)53t =;(4)M (-6,16)或(2,16)或(-2,163-).【解析】试题分析:(1)由CE=CB=5,CO=AB=4和勾股定理,可得OE=3;(2)设AD=m ,则DE=BD=4-m ,由OE=3, AE=5-3=2,以及勾股定理,得到2222(4)m m +=-,进一步解得32m =,故D (32-,5-),设过O 、D 、C 三点的抛物线为(4)y ax x =+,把O 、D 、C 三点的坐标代入即可得到抛物线的解析式;(3)由CP=2t ,得到BP=52t -,由Rt △DBP ≌Rt △DEQ ,得到BP=EQ ,从而得到t 的值;(4)因为抛物线的对称轴为直线2x =-,可设N (-2,n ),由题意知C (-4,0),E (0,3),然后分三种情况讨论:①若四边形ECMN 是平行四边形;②若四边形ECNM 是平行四边形;③若四边形EMCN 是平行四边形.(4)∵抛物线的对称轴为直线2x =-,∴设N (-2,n ),由题意知C (-4,0),E (0,3),①若四边形ECMN 是平行四边形,则M (-6,n+3),∴24163(6)(6)1633n +=⨯-+⨯-=,∴M(-6,16);②若四边形ECNM 是平行四边形,则M (2,3n -),∴24163221633n -=⨯+⨯=,∴M (2,16);③若四边形EMCN 是平行四边形,则M (-2,3n --),∴2416163(2)(2)333n --=⨯-+⨯-=-,∴M (-2,163-); 综上所述,M 点的坐标为:M (-6,16)或M (2,16)或M (-2,163-). 考点:二次函数综合题;动点型;存在型;分类讨论;压轴题.原创模拟预测题5.如图,在矩形纸片ABCD 中,AB=4,AD=12,将矩形纸片折叠,使点C 落在AD 边上的点M 处,折痕为PE ,此时PD=3.(1)求MP 的值;(2)在AB 边上有一个动点F ,且不与点A ,B 重合.当AF 等于多少时,△MEF 的周长最小?(3)若点G ,Q 是AB 边上的两个动点,且不与点A ,B 重合,GQ=2.当四边形MEQG 的周长最小时,求最小周长值.(计算结果保留根号)【答案】(1)5;(2)1611;(3)755+.【解析】试题分析:(1)由折叠的性质和矩形性质以得PD=PH=3,CD=MH=4,∠H=∠D=90°,利用勾股定理可计算出MP 的长;(2)如图1,作点M 关于AB 的对称点M′,连接M′E 交AB 于点F ,利用两点之间线段最短可得点F 即为所求,过点E 作EN ⊥AD ,垂足为N ,则AM=AD ﹣MP ﹣PD=4,所以AM=AM′=4,再证明ME=MP=5,利用勾股定理计算出MN=3, NM′=11,得出△AFM′∽△NEM′,利用相似比即可计算出AF ;(3)如图2,由(2)知点M′是点M 关于AB 的对称点,在EN 上截取ER=2,连接M′R 交AB 于点G ,再过点E 作EQ ∥RG ,交AB 于点Q ,易得QE=GR ,而GM=GM′,于是MG+QE=M′R,利用两点之间线段最短可得此时MG+EQ 最小,于是四边形MEQG 的周长最小,在Rt △M′RN 中,利用勾股定理计算出M′R 得出,从而得到四边形MEQG 的最小周长值.(3)如图2,由(2)知点M′是点M 关于AB 的对称点,在EN 上截取ER=2,连接M′R 交AB 于点G ,再过点E 作EQ ∥RG ,交AB 于点Q ,∵ER=GQ ,ER ∥GQ ,∴四边形ERGQ 是平行四边形,∴QE=GR ,∵GM=GM′,∴MG+QE=GM′+GR=M′R,此时MG+EQ 最小,四边形MEQG的周长最小,在Rt △M′RN 中,NR =4﹣2=2,M′R=22112+=55,∵ME=5,GQ=2,∴四边形MEQG 的最小周长值是755+.考点:几何变换综合题;动点型;最值问题;翻折变换(折叠问题);综合题;压轴题. 原创模拟预测题6.如图,抛物线212y x mx n =++与直线132y x =-+交于A ,B 两点,交x 轴与D ,C 两点,连接AC ,BC ,已知A (0,3),C (3,0).(Ⅰ)求抛物线的解析式和tan∠BAC 的值;(Ⅱ)在(Ⅰ)条件下:(1)P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ⊥PA 交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为顶点的三角形与△ACB 相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.(2)设E 为线段AC 上一点(不含端点),连接DE ,一动点M 从点D 出发,沿线段DE 以每秒一个单位速度运动到E 点,再沿线段EA 2个单位的速度运动到A 后停止,当点E 的坐标是多少时,点M 在整个运动中用时最少?【答案】(Ⅰ)2153 22y x x=-+,13;(Ⅱ)(1)(11,36)、(133,149)、(173,449);(2)E(2,1).【解析】试题分析:(Ⅰ)只需把A、C两点的坐标代入212y x mx n=++,就可得到抛物线的解析式,然后求出直线AB与抛物线的交点B的坐标,过点B作BH⊥x轴于H,如图1.易得∠BCH=∠ACO=45°,BC=2,AC=32,从而得到∠ACB=90°,然后根据三角函数的定义就可求出tan∠BAC的值;(Ⅱ)(1)过点P作PG⊥y轴于G,则∠PGA=90°.设点P的横坐标为x,由P在y轴右侧可得x>0,则PG=x,易得∠APQ=∠ACB=90°.若点G在点A的下方,①当∠PAQ=∠CAB时,△PAQ∽△CAB.此时可证得△PGA∽△BCA,根据相似三角形的性质可得AG=3PG=3x.则有P(x,3﹣3x),然后把P(x,3﹣3x)代入抛物线的解析式,就可求出点P的坐标;②当∠PAQ=∠CBA时,△PAQ∽△CBA,同理,可求出点P的坐标;若点G在点A的上方,同理,可求出点P的坐标;试题解析:(Ⅰ)把A(0,3),C(3,0)代入212y x mx n=++,得:319302nm n=⎧⎪⎨⨯++=⎪⎩,解得:523mn⎧=-⎪⎨⎪=⎩.∴抛物线的解析式为215322y x x=-+;联立213215322y xy x x⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得:03x y =⎧⎨=⎩或41x y =⎧⎨=⎩,∴点B 的坐标为(4,1).过点B 作BH ⊥x 轴于H ,如图1,∵C (3,0),B (4,1),∴BH=1,OC=3,OH=4,CH=4﹣3=1,∴BH=CH=1.∵∠BH C=90°,∴∠BCH=45°,同理:∠ACO=45°,AC=,∴∠ACB=180°﹣45°﹣45°=90°,∴tan ∠BAC=BCAC=13;(Ⅱ)(1)存在点P ,使得以A ,P ,Q 为顶点的三角形与△ACB 相似.过点P 作PG ⊥y 轴于G ,则∠PGA=90°.设点P 的横坐标为x ,由P 在y 轴右侧可得x >0,则PG=x ,∵PQ ⊥PA ,∠ACB=90°,∴∠APQ=∠ACB=90°.若点G 在点A 的下方,①如图2①,当∠PAQ=∠CAB 时,则△PAQ ∽△CAB .∵∠PGA=∠ACB=90°,∠PAQ=∠CAB ,∴△PGA ∽△BCA ,∴PG BC AG AC ==13,∴AG=3PG=3x ,则P (x ,3﹣3x ).把P (x ,3﹣3x )代入215322y x x =-+,得:21533322x x x -+=-,整理得:20x x +=,解得:10x =(舍去),21x =-(舍去).②如图2②,当∠PAQ=∠CBA 时,则△PAQ ∽△CBA ,同理可得:AG=13PG=13x ,则P (x ,133x -),把P (x ,133x -)代入215322y x x =-+,得:215133223x x x -+=-,整理得:21303x x -=,解得:10x =(舍去),2133x =,∴P (133,149);若点G 在点A 的上方,①当∠PAQ=∠CAB 时,则△PAQ ∽△CAB ,同理可得:点P 的坐标为(11,36).②当∠PAQ=∠CBA 时,则△PAQ ∽△CBA ,同理可得:点P 的坐标为P (173,449).综上所述:满足条件的点P 的坐标为(11,36)、(133,149)、(173,449);考点:二次函数综合题;相似三角形的判定与性质;动点型;存在型;分类讨论;综合题;压轴题.原创模拟预测题7.如图1,点A(8,1)、B(n,8)都在反比例函数myx=(0x>)的图象上,过点A作AC⊥x轴于C,过点B作BD⊥y轴于D.(1)求m的值和直线AB的函数关系式;(2)动点P从O点出发,以每秒2个单位长度的速度沿折线OD﹣DB向B点运动,同时动点Q从O点出发,以每秒1个单位长度的速度沿折线OC向C点运动,当动点P运动到D 时,点Q也停止运动,设运动的时间为t秒.①设△OPQ的面积为S,写出S与t的函数关系式;②如图2,当的P 在线段OD 上运动时,如果作△OPQ 关于直线PQ 的对称图形△O ′PQ ,是否存在某时刻t ,使得点Q ′恰好落在反比例函数的图象上?若存在,求Q ′的坐标和t 的值;若不存在,请说明理由.【答案】(1)m=8,9y x =-+;(2)①2 (04)4 (4 4.5)t t S t t ⎧<≤=⎨<≤⎩;②52t =. 【解析】 试题分析:(1)由于点A (8,1)、B (n ,8)都在反比例函数my x =的图象上,根据反比例函数的意义求出m ,n ,再由待定系数法求出直线AB 的解析式;(2)①由题意知:OP=2t ,OQ=t ,由三角形的面积公式可求出解析式;②通过三角形相似,用t 的代数式表示出O ′的坐标,根据反比例函数的意义可求出t 值. 试题解析:(1)∵点A (8,1)、B (n ,8)都在反比例函数m y x =的图象上,∴m=8×1=8,∴8y x =,∴88n =,即n=1,设AB 的解析式为y kx b =+,把(8,1)、B (1,8)代入上式得:818k b k b +=⎧⎨+=⎩,解得:19k b =-⎧⎨=⎩,∴直线AB 的解析式为9y x =-+;(2)①由题意知:OP=2t ,OQ=t ,当P 在OD 上运动时,S=12OP ·OQ=122t t ⨯⨯=2t (0<t≤4),当P 在DB 上运动时,S=12OQ ·OD==182t ⨯=4t (4<t≤4.5);∴2 (04)4 (4 4.5)t t S t t ⎧<≤=⎨<≤⎩; ②存在,作PE ⊥y 轴,O′F⊥x 轴于F ,交PE 于E ,则∠E=90°,PO′=PO=2t ,QO′=QO=t,由题意知:∠PO′Q=∠POQ=90°﹣∠PO′E,∠EPO′=90′﹣∠PO′E,∴△PEO′∽△O′FQ,∴''''PE EO PO O F QF QO ==,设QF=b ,O′F=a,则PE=OF=t+b ,OE=2t ﹣a ,∴22t b t a a b +-==,解得:a=45t ,b=35t ,∴O′(85t ,45t ),当Q′在反比例函数的图象上时,84855t t ⋅=,解得:t=52±,∵反比例函数的图形在第一象限,∴t >0,∴t=52.当t=52个长度单位时,Q′恰好落在反比例函数的图象上.考点:反比例函数综合题;分段函数;分类讨论;动点型;存在型;综合题.原创模拟预测题8.如图1,将矩形ABCD 沿DE 折叠,使顶点A 落在DC 上的点A′处,然后将矩形展平,沿EF 折叠,使顶点A 落在折痕DE 上的点G 处.再将矩形ABCD 沿CE 折叠,此时顶点B 恰好落在DE 上的点H 处.如图2.(1)求证:EG=CH ;(2)已知AF=2,求AD 和AB 的长.【答案】(1)证明见试题解析;(2)AD=22+,AB=222+.【解析】试题分析:(1)由折叠的性质及矩形的性质可知AE=AD=EG ,BC=CH ,再由四边形ABCD 是矩形,可得AD=BC ,等量代换即可证明EG=CH ;(2)由折叠的性质可知∠ADE=45°,∠FGE=∠A=90°,AF=2,那么DG=2,利用勾股定理求出DF=2,于是可得22;再利用AAS 证明△AEF ≌△BCE ,得到AF=BE ,于是由AB=AE+BE ,即可得到结论.考点:翻折变换(折叠问题);全等三角形的判定与性质;勾股定理;矩形的性质.。
中考数学-几何图形的动态问题(含答案)

中考数学-几何图形的动态问题(含答案)一、单选题1.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()A. ①B. ④C. ①或③D. ②或④2.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s 的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B. C. D.3.如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B,C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN 所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD 与△PMN重叠部分的面积为y,则y与x的大致图象是()A. B. C. D.4.如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP 交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A. B. C. 1 D. 25.如图,菱形的边长是4厘米, ,动点以1厘米/秒的速度自点出发沿方向运动至点停止,动点以2厘米/秒的速度自点出发沿折线运动至点停止若点同时出发运动了秒,记的面积为,下面图象中能表示与之间的函数关系的是( )A. B.C. D.二、填空题6.如图,长方形ABCD中,AB=4cm,BC=3cm,点E是CD的中点,动点P从A点出发,以每秒1cm的速度沿A→B→C→E 运动,最终到达点E.若点P运动的时间为x秒,那么当x= ________时,△APE的面积等于5 .7.如图,在矩形中,点同时从点出发,分别在,上运动,若点的运动速度是每秒2个单位长度,且是点运动速度的2倍,当其中一个点到达终点时,停止一切运动.以为对称轴作的对称图形.点恰好在上的时间为________秒.在整个运动过程中,与矩形重叠部分面积的最大值为________.8.如图,平面直角坐标系中,点A、B分别是x、y轴上的动点,以AB为边作边长为2的正方形ABCD,则OC的最大值为________9.在Rt△ABC中,AB=1,∠A=60°,∠ABC=90°,如图所示将Rt△ABC沿直线l无滑动地滚动至Rt△DEF,则点B所经过的路径与直线l所围成的封闭图形的面积为________.(结果不取近似值)10.如图,周长为a的圆上有且仅有一点A在数轴上,点A所表示的数为1,若该圆沿着数轴向右滚动两周后点A对应的点为B,此时,A、B两点之间恰好有三个表示正整数的点(不包括点A、B),则该圆的周长a的取值范围为________三、综合题11.如图,在△ABC中,已知AB=AC=10cm,BC=16cm,AD⊥BC于D,点E、F分别从B、C 两点同时出发,其中点E沿BC向终点C运动,速度为4cm/s;点F沿CA、AB向终点B运动,速度为5cm/s,设它们运动的时间为x(s).(1)求x为何值时,△EFC和△ACD相似;(2)是否存在某一时刻,使得△EFD被AD分得的两部分面积之比为3:5,若存在,求出x 的值,若不存在,请说明理由;(3)若以EF为直径的圆与线段AC只有一个公共点,求出相应x的取值范围.12.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:AG∶BE的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG 与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2 ,则BC=________.13.如图,在平面直角坐标系中,已知A(-3,0),B(0,),点D与点A关于y轴对称,C在第一象限内且四边形ABCD是平行四边形.(1)求点C、点D的坐标并用尺规作图确定两点位置(保留作图痕迹)(2)若半径为1的⊙P从点A出发,沿A—D—B—C以每秒4个单位长的速度匀速移动,同时⊙P的半径以每秒0.5个单位长的速度增加,运动到点C时运动停止,当运动时间为t秒时①t为何值时,⊙P与y轴相切?②在整个运动过程中⊙P与y轴有公共点的时间共有几秒?简述过程.(3)若线段AB绕点O顺时针旋转90°,线段AB扫过的面积是多少?14.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO= ,点P从原点O出发,以每秒一个单位长度的速度沿x 轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.15.如图,已知A,B,C,D为矩形的四个顶点,AB=16 cm,AD=6 cm,动点P,Q分别从点A,C同时出发,点P以3 cm/s的速度向点B移动,一直到点B为止,点Q以2 cm/s的速度向点D移动,当点P停止运动时,点Q也停止运动.问:(1)P,Q两点从开始出发多长时间时,四边形PBCQ的面积是33 cm2?(2)P,Q两点从开始出发多长时间时,点P与点Q之间的距离是10 cm?16.有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE= .将这副直角三角板按如图1所示位置摆放,点B与点F重合,直角边BA 与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F 运动到点A时停止运动.(1)如图2,当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=________度;(2)如图3,在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出对应的x取值范围.17.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.点P从点A开始沿AB边向B以1cm/s 的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,(1)如果P、Q同时出发,几秒后,可使△PBQ的面积为8平方厘米?(2)线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.18.如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF 为等腰三角形时,求AP的长.19.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.20.如图,在Rt△ABC中,AC=24cm,BC=7cm,P点在BC上,从B点到C点运动(不包括C 点),点P运动的速度为2cm/s;Q点在AC上从C点运动到A点(不包括A点),速度为5cm/s.若点P、Q分别从B、C同时运动,且运动时间记为t秒,请解答下面的问题,并写出探索的主要过程.(1)当t为何值时,P、Q两点的距离为5 cm?(2)当t为何值时,△PCQ的面积为15cm2?(3)请用配方法说明,点P运动多少时间时,四边形BPQA的面积最小?最小面积是多少?答案解析部分一、单选题1.如图甲,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位的速度匀速运动,回到点A运动结束.设运动时间为x,弦BP的长度为y,那么如图乙图象中可能表示y与x的函数关系的是()A. ①B. ④C. ①或③D. ②或④【答案】C【考点】分段函数,圆的认识,几何图形的动态问题,动点问题的函数图像【解析】【解答】当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,故答案为①③.故答案为:C.【分析】由题意知PB的最短距离为0,最长距离是圆的直径;而点P从A点沿顺时针旋转和逆时针旋转后与点B的距离有区别,当点P从A点沿顺时针旋转时,弦BP的长度y的变化是:从AB的长度增大到直径的长,然后渐次较小至点B为0,再从点B运动到点A,则弦BP的长度y由0增大到AB的长;当点P从A点沿逆时针旋转时,弦BP的长度y的变化是:从AB的长度减小到0,再由0增大到直径的长,最后由直径的长减小到AB的长。
2024年内蒙古包头市中考数学试题版,含答案

2024年内蒙古包头市中考数学试题版,含答案(考试时间:90分钟,满分:100分)一、选择题(每题2分,共30分)1. 若 a > b,则下列哪个选项一定成立?A. a c > b cB. a + c > b + cC. ac > bcD. a/c > b/c (其中c ≠ 0)2. 下列哪个数是二次根式?A. √5B. √5C. √(5^2)D. 5^(1/2)3. 若 x = 1 是方程 x^2 + kx + 1 = 0 的一个根,则 k 的值为多少?A. 2B. 0C. 2D. 无法确定4. 下列哪个函数是增函数?A. y = 2x + 3B. y = x^2C. y = 1/xD. y = x^25. 若 a、b 是实数,且a ≠ b,则下列哪个选项一定成立?A. a^2 = b^2B. a^3 = b^3C. a^2 + b^2 = 0D. a^3 + b^3 = 06. 若一组数据的平均数为 10,则这组数据的和为多少?A. 5B. 10C. 20D. 无法确定7. 若平行四边形的对角线互相垂直,则这个平行四边形是?A. 矩形B. 菱形C. 正方形D. 无法确定二、判断题(每题1分,共20分)1. 若 a > b,则 a c > b c。
()2. 任何实数的平方都是非负数。
()3. 方程 x^2 = 1 在实数范围内无解。
()4. 一次函数 y = kx + b(k ≠ 0)的图像是一条直线。
()5. 若 a、b 是实数,且a ≠ b,则a^2 ≠ b^2。
()6. 一组数据的平均数等于这组数据的和除以数据的个数。
()7. 平行四边形的对角线互相平分。
()8. 矩形的对角线相等。
()9. 菱形的对角线互相垂直。
()10. 正方形的对角线互相垂直且相等。
()三、填空题(每空1分,共10分)1. 若 a = 3,b = 2,则 a + b = ___________,a b =___________。
中考数学经典总复习专题动线、动形问题完美全文

学 (2)点P 、 Q在运动的过程中,△PCQ面积S有最 大值吗?若有,请求出最大值;若没有,请说明理 由。
动点与函数相结合
抛 与物y轴线交y于= 点 x122C+,m抛x+n物与线x轴的交对于称A轴、交Bx两轴点于,
合 点D,已知A(﹣1,0),C(0,2). 作 (1)求抛物线的表达式;
学 存在,请说明理由;
y
解析:
C
AO
DB
x
动点与函数相结合
抛 与物y轴线交y于= 点 x122C+,m抛x+n物与线x轴的交对于称A轴、交Bx两轴点于,
合 点D,已知A(﹣1,0),C(0,2).
作 互
( 3)点E 是 线 段 BC上的一个动点,过点E 作x轴的垂线与抛物线相交于点F,当点E 运动到什么位置时,四边形CDBF的面积
8
1 2
3
x2+ 2
;
x+2;
∴抛物线的对称轴是x= ∴OD= .3
32.
∵C(0,2 2),
∴OC=2.
5
在Rt△OCD中,由勾股定理,得CD= .2
∵△CDP是以CD为腰的等腰三角形,
∴CP1=CP2=CP3=CD. 作CH⊥x轴于H,
∴HP1=HD=2,
∴∴DP1P(1=4.,32 4),P2(
中考数学---动线、动形问题
• 数学因运动而充满活力,数学因变化而精彩纷呈。动态题是中考 中必考的内容。
• 本节课重点来探究动态几何中的动线、动形问题。
• 一、关于动线、动形问题的解题方法:
• 1.“以静制动”,把动态问题转化成静态问题;
• 2.图形的运动主要有翻折、平移、旋转,在运动过程中,分清哪 些量不变,哪些量发生了变化,以不变的量作为解题基础,以变 化中的规律和特点作为解题的关键。
中考数学解题方法及提分突破训练:几何变换法专题(含解析)

解题方法及提分突破训练:几何变换法专题在几何题或代数几何综合题的解证过程中,经常会使用几何变换的观点来解决问题。
从图形的特点出发,利用几何变换,可将图形的全部或一部分移动到一个新的位置,构成一个新的关系,从而使问题获得解决。
这种几何变换不改变被移动部分图形的形状和大小,而只是它的位置发生了变化,这种移动有利于找出图形之间的关系,从而使解题更为简捷。
移动图形一般有三种方法:(1)平移法。
(2)旋转法:利用旋转变换。
(3)对称:可利用中心对称和轴对称。
一真题链接1.(2012中考)如图,在Rt△ABC中,∠B=90°,沿AD折叠,使点B落在斜边AC上,若AB=3,BC=4,则BD= .2.(2012泰安)将抛物线23y x=向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A.23(2)3y x=++B.23(2)3y x=-+C.23(2)3y x=+-D.23(2)3y x=--3.(2012绍兴)如图,在矩形ABCD中,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.则BC:AB的值为。
4.(2012张家界)如图,在方格纸中,以格点连线为边的三角形叫格点三角形,请按要求完成下列操作:先将格点△ABC向右平移4个单位得到△A1B1C1,再将△A1B1C1绕点C1点旋转180°得到△A2B2C2.考点:作图-旋转变换;作图-平移变换。
.二名词释义在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。
所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。
中学数学中所涉及的变换主要是初等变换。
有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。
另一方面,也可将变换的观点渗透到中学数学教学中。
将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
(全国通用)中考数学难点攻克:动态题型分类解析(动点、动线、动面)

中考数学重难考点突破—动态题型分类解析解决动态几何间题的关键是要善于运用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住变化中的不变,以不变应万变从结论入手,分析结论要成立需具备的典型特征条件是什么?然后利用函数与方程的思想和方法将这个需具备的典型特征条件(或所求图形面积)直接转化为函数或方程。
类型一点动型动态题1.如图1,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开始沿边AB向B以2 mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向C以4 mm/s 的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,那么经过___3__秒,四边形APQC的面积最小.图1解:设经过x秒四边形APQCD面积最小由题意得:AP=2x,BQ=4x,则PB=12—2x,△PBQ的面积=1/2×BQ×PB=1/2×4x×(12—2x)=—4(x—3)2+36当x=3时,△PBQ的面积的最大值是36mm2,此时四边形APQC的面积最小。
点评:本题中由于四边形APQC在动点运动中,无法确定其形态,也就无法应用面积公式。
而P、B、Q三点,根据题意始终组成一个直角三角形△PBQ,故从求直角三角形面积入手便可解决问题。
2.如图2,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA 上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD 与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在哪条边上相遇?图2解:(1)①∵t=1秒,∴BP=CQ=3×1=3(厘米).∵AB=10厘米,点D为AB的中点,∴BD=5厘米.又∵PC=BC-BP,BC=8厘米,∴PC=8-3=5(厘米),∴PC=BD.又∵AB =AC ,∴∠B =∠C ,∴△BPD ≌△CQP . ②∵v P ≠v Q ,∴BP ≠CQ .又∵△BPD 与△CQP 全等,∠B =∠C ,则BP =PC =4,CQ =BD =5, ∴点P ,点Q 运动的时间t =BP 3=43(秒), ∴v Q =CQ t =543=154(厘米/秒).(2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得154x =3x +2×10,解得x =803(秒). ∴点P 共运动了803×3=80(厘米).∵80=2×28+24,∴点P 、Q 在AB 边上相遇, ∴经过803 秒点P 与点Q 第一次在边AB 上相遇. 类型二 线动型动态题3.已知二次函数y =x 2-(2m +2)x +(m 2+4m -3)中,m 为不小于0的整数,它的图象与x 轴交于点A 和点B ,点A 在原点左边,点B 在原点右边.(1)求这个二次函数的解析式;(2)点C 是抛物线与y 轴的交点,已知AD =AC (D 在线段AB 上),有一动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度移动,同时,另一动点Q 从点C 出发,以某一速度沿线段CB 移动,经过t 秒的移动,线段PQ 被CD 垂直平分,求t 的值.图3解:(1)∵二次函数的图象与x轴有两个交点,∴Δ=[]-2m+22-4(m2+4m-3)=-8m+16>0,∴m<2.∵m为不小于0的整数,∴m取0、1.当m=1时,y=x2-4x+2,图象与x轴的两个交点在原点的同侧,不合题意,舍去;当m=0时,y=x2-2x-3,符合题意.∴二次函数的解析式为y=x2-2x-3.(2)∵AC=AD,∴∠ADC=∠ACD.∵CD垂直平分PQ,∴DP=DQ,∴∠ADC=∠CDQ.∴∠ACD=∠CDQ,∴DQ∥AC,∴△BDQ∽△BAC,∴DQAC=BDAB.∵AC=10,BD=4-10,AB=4.∴DQ=10-52,∴PD=10-52.∴AP=AD-PD=52,∴t=52÷1=52.类型三面动型动态题4.如图4,四边形ABCD是边长为1的正方形,四边形EFGH是边长为2的正方形,点D 与点F重合,点B,D(F),H在同一条直线上,将正方形ABCD沿F→H方向平移至点B与点H 重合时停止,设点D、F之间的距离为x,正方形ABCD与正方形EFGH重叠部分的面积为y,则能大致反映y与x之间函数关系的图象是( B)图4解析:正方形ABCD与正方形EFGH重叠部分主要分为3个部分,是个分段函数,分别对应三种情况中的对应函数求出来即可得到正确答案。
中考数学专题:《动态动点几何问题》带答案

《动态几何问题》专题突破训练(附答案)1.如图,在直角三角形ABC 中,∠ACB =90°,AB =5cm ,BC =4cm .动点P 从点A 出发,沿线段AB 向终点B 以5cm /s 的速度运动,同时动点Q 从点A 出发沿射线AC 以5cm /s 的速度运动,当点P 到达终点时,点Q 也随之停止运动;连接PQ ,设∠APQ 与∠ABC 重叠部分图形的面积为S (cm 2),点P 运动的时间为t (s )(t >0).(1)直接写出AC = cm ;(2)当点A 关于直线PQ 的对称点A '落在线段BC 上时,求t 的值;(3)求S 与t 之间的函数关系式;(4)若M 是PQ 的中点,N 是AB 的中点,当MN 与BC 平行时,t = ;当MN 与AB 垂直时,t = .2.如图,矩形ABCD 中,P 是边AD 上的一动点,联结BP 、CP ,过点B 作射线交线段CP 的延长线于点E ,交边AD 于点M ,且使得ABE CBP =∠∠,如果2AB =,5BC =,AP x =,PM y =(1)求y 关于x 的函数解析式,并写出它的定义域;(2)当4AP =时,求 tan EBP ∠;(3)如果EBC ∆是以EBC ∠为底角的等腰三角形,求AP 的长A-,点3.如图,平行四边形ABCO位于直角坐标系中,O为坐标原点,点(8,0)()C BC交y轴于点.D动点E从点D出发,沿DB方向以每秒1个单位长度的速度3,4终点B运动,同时动点F从点O出发,沿射线OA的方向以每秒2个单位长度的速度运动,当点E运动到点B时,点F随之停止运动,运动时间为t(秒).(1)用t的代数式表示:BE=________,OF=________(2)若以A,B,E,F为顶点的四边形是平行四边形时,求t的值.(3)当BEF恰好是等腰三角形时,求t的值.4.在∠ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作∠ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE为多少?说明理由;(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动,则α,β之间有怎样的数量关系?请说明理由;②当点D在直线BC上移动,则α,β之间有怎样的数量关系?请直接写出你的结论,不需证明.5.问题情境:如图1,已知正方形ABCD与正方形CEFG,B、C、G在一条直线上,M是AF的中点,连接DM,EM.探究DM,EM的数量关系与位置关系.小明的思路是:小明发现AD//EF,所以通过延长ME交AD于点H,构造∠EFM和∠HAM全等,进而可得∠DEH是等腰直角三角形,从而使问题得到解决,请你参考小明同学的思路,探究并解决下列问题:(1)猜想图1中DM、EM的数量关系,位置关系.(2)如图2,把图1中的正方形CEFG绕点C旋转180°,此时点E在线段DC的延长线上,点G落在线段BC上,其他条件不变,(1)中结论是否成立?请说明理由;(3)我们可以猜想,把图1中的正方形CEFG绕点C旋转任意角度,如图3,(1)中的结论(“成立”或“不成立”)拓展应用:将图1中的正方形CEFG绕点C旋转,使D,E,F三点在一条直线上,若AB=13,CE=5,请画出图形,并直接写出MF的长.6.如图,已知抛物线y=﹣x2+bx+c经过点A(﹣1,0),B(3,0),与y轴交于点C,点P 是抛物线上一动点,连接PB,PC.(1)求抛物线的解析式;(2)如图1,当点P在直线BC上方时,过点P作PD上x轴于点D,交直线BC于点E.若PE=2ED,求∠PBC的面积;(3)抛物线上存在一点P,使∠PBC是以BC为直角边的直角三角形,求点P的坐标.7.如图,已知ABC 和ADE 均为等腰三角形,AC =BC ,DE =AE ,将这两个三角形放置在一起.(1)问题发现:如图①,当60ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,则CEB ∠= °,线段BD 、CE 之间的数量关系是 ;(2)拓展探究:如图②,当90ACB AED ∠∠︒==时,点B 、D 、E 在同一直线上,连接CE ,请判断CEB ∠的度数及线段BD 、CE 之间的数量关系,并说明理由;(3)解决问题:如图③,90ACB AED ∠∠︒==,AC =AE =2,连接CE 、BD ,在AED 绕点A 旋转的过程中,当DE BD ⊥时,请直接写出EC 的长.8.如图,∠O 的半径为5,弦BC =6,A 为BC 所对优弧上一动点,∠ABC 的外角平分线AP 交∠O 于点P ,直线AP 与直线BC 交于点E .(1)如图1,①求证:点P 为BAC 的中点;②求sin∠BAC 的值;(2)如图2,若点A 为PC 的中点,求CE 的长;(3)若∠ABC 为非锐角三角形,求PA •AE 的最大值.9.如图1,已知∠ABC 中,∠ACB =90°,AC =BC =6,点D 在AB 边的延长线上,且CD =AB .(1)求BD 的长度;(2)如图2,将∠ACD 绕点C 逆时针旋转α(0°<α<360°)得到∠A'CD'.①若α=30°,A'D'与CD 相交于点E ,求DE 的长度;②连接A'D 、BD',若旋转过程中A'D =BD'时,求满足条件的α的度数.(3)如图3,将∠ACD 绕点C 逆时针旋转α(0°<α<360°)得到∠A'CD',若点M 为AC 的中点,点N 为线段A'D'上任意一点,直接写出旋转过程中线段MN 长度的取值范围.10.如图,P 是等边ABC 内的一点,且5PA =,4PB =,3PC =,将APB △绕点B 逆时针旋转,得到CQB △.(1)求点P 与点Q 之间的距离;(2)求BPC ∠的度数;(3)求ABC 的面积ABC S.11.如图,在矩形ABCD 中,6AB cm =,8BC cm =,如果点E 由点B 出发沿BC 方向向点C 匀速运动,同时点F 由点D 出发沿DA 方向向点A 匀速运动,它们的速度分别为2/cm s 和1/cm s ,FQ BC ⊥,分别交AC ,BC 于点P 和Q ,设运动时间为()04ts t <<.(1)连接EF ,若运动时间t =_______s 时,EF =;(2)连接EP ,当EPC 的面积为23cm 时,求t 的值;(3)若EQP ADC ∽△△,求t 的值.12.如图,边长为ABCD 中,P 是对角线AC 上的一个动点(点P 与A 、C 不重合),连接BP ,将BP 绕点B 顺时针旋转90°得到BQ ,连接QP ,QP 与BC 交于点E ,其延长线与AD (或AD 延长线)交于点F .(1)连接CQ ,证明:CQ AP =;(2)设AP x =,CE y =,试写出y 关于x 的函数关系式,并写出自变量x 的取值范围; (3)试问当P 点运动到何处时,PB PE +的值最小,并求出此时CE 的长.(画出图形,直接写出答案即可)13.已知:O 是ABC ∆的外接圆,且,60,AB BC ABC D =∠=︒为O 上一动点. (1)如图1,若点D 是AB 的中点,求DBA ∠的度数.(2)过点B 作直线AD 的垂线,垂足为点E .①如图2,若点D 在AB 上.求证CD DE AE =+.②若点D 在AC 上,当它从点A 向点C 运动且满足CD DE AE =+时,求ABD ∠的最大值.14.抛物线239344y x x =--与x 轴交于点A ,与y 轴交于点B .线段OA 上有一动点P (不与O A 、重合),过点P 作y 轴的平行线交直线AB 于点C ,交抛物线于点M (1)求直线AB 的解析式;(2)点N 为线段AB 下方抛物线上一动点,点D 是线段AB 上一动点;①若四边形CMND 是平行四边形,证明:点M N 、横坐标之和为定值;②在点P N D 、、运动过程中,平行四边形CMND 的周长是否存在最大值?若存在,求出此时点D 的坐标,若不存在,说明理由15.如图,在平面直角坐标系中,点C 在x 轴上,90,10cm,6cm OCD D AO OC CD ︒∠=∠====.(1)请求出点A 的坐标.(2)如图(2),动点P Q 、以每秒1cm 的速度分别从点O 和点C 同时出发,点P 沿OA AD DC 、、运动到点C 停止,点Q 沿CO 运动到点O 停止,设P Q 、同时出发t 秒. ①是否存在某个时间t (秒),使得OPQ △为直角三角形?若存在,请求出值;若不存在,请说明理由.②若记POQ △的面积为()2cm y ,求()2cm y 关于t (秒)的函数关系式. 16.已知,点O 是等边ABC 内的任一点,连接OA ,OB ,OC .(∠)如图1所示,已知150AOB ∠=︒,120BOC ∠=︒,将BOC 绕点C 按顺时针方向旋转60︒得ADC .①求DAO ∠的度数:②用等式表示线段OA ,OB ,OC 之间的数量关系,并证明;(∠)设AOB α∠=,BOC β∠=.①当α,β满足什么关系时,OA OB OC ++有最小值?并说明理由;②若等边ABC 的边长为1,请你直接写出OA OB OC ++的最小值.17.如图,在正方形ABCD 中,AB =4,动点P 从点A 出发,以每秒2个单位的速度,沿线段AB 方向匀速运动,到达点B 停止.连接DP 交AC 于点E ,以DP 为直径作∠O 交AC 于点F ,连接DF 、PF .(1)则∠DPF 是 三角形;(2)若点P 的运动时间t 秒.①当t 为何值时,点E 恰好为AC 的一个三等分点;②将∠EFP 沿PF 翻折,得到∠QFP ,当点Q 恰好落在BC 上时,求t 的值.18.已知四边形ABCD 为矩形,对角线AC 、BD 相交于点O ,AD AO =.点E 、F 为矩形边上的两个动点,且60EOF ∠=︒.(1)如图1,当点E 、F 分别位于AB 、AD 边上时,若75OEB ∠=︒,求证:AD BE =;(2)如图2,当点E 、F 同时位于AB 边上时,若75OFB ∠=︒,试说明AF 与BE 的数量关系;(3)如图3,当点E 、F 同时在AB 边上运动时,将OEF 沿OE 所在直线翻折至OEP ,取线段CB 的中点Q .连接PQ ,若()20AD a a =>,则当PQ 最短时,求PF 之长.19.如图,在∠ABC中,AB=BC=AC=12cm,点D为AB上的点,且BD=34AB,如果点P在线段BC上以3cm/s的速度由B点向终点C运动,同时,点Q在线段CA上由C点向终点A运动.当一点到达终点时,另一点也随之停止运动.(1)如(图一)若点Q的运动速度与点P的运动速度相等,经过1s后,∠BPD与∠CQP是否全等,请说明理由.(2)如(图二)若点Q的运动速度与点P的运动速度相等(点P不与点B和点C重合),连接点A与点P,连接点B与点Q,并且线段AP,BQ相交于点F,求∠AFQ的度数.(3)若点Q的运动速度为6cm/s,当点Q运动几秒后,可得到等边∠CQP?20.如图,Rt∠ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若∠BPQ与∠ABC相似,求t的值;(2)试探究t为何值时,∠BPQ是等腰三角形;(3)试探究t为何值时,CP=CQ;(4)连接AQ,CP,若AQ∠CP,求t的值.21.如图1,在正方形ABCD 中,4AB m =,点P 从点D 出发,沿DA 向点A 匀速运动,速度是1/cm s ,同时,点Q 从点A 出发,沿AB 方向,向点B 匀速运动,速度是2/cm s ,连接PQ 、CP 、CQ ,设运动时间为()(02)t s t <<.()1是否存在某一时刻,使得//PQ BD 若存在,求出t 的值;若不存在,说明理由; ()2设PQC △的面积为()2S cm ,求S 与t 之间的函数关系式;()3如图2,连接AC ,与线段PQ 相交于点M ,是否存在某一时刻t ,使QCM S :4PCM S =:5?若存在,直接写t 的值;若不存在,说明理由.22.如图,在 RtΔABC 中,∠C=90°,BC=5cm ,tanA 512=.点 M 在边 AB 上,以 2 cm/s 的速度 由点B 出发沿BA 向点A 匀速运动;同时点N 在边AC 上,以1 cm/s 的速度由A 出发沿AC 向点C 匀速运动.当点M 到达A 点时,点M ,N 同时停止运动.连接MN ,设点M 运动的时间为t (单位:s).(1)求AB 的长;(2)当t 为何值时,ΔAMN 的面积为∠ABC 面积的326; (3)是否存在时间t ,使得以A ,M ,N 为顶点的三角形与ΔABC 相似?若存在,求出时间t 的值;若不存在,请说明理由.23.如图,抛物线y =ax 2+bx+3与x 轴交于A ,B 两点,且点B 的坐标为(2,0),与y 轴交于点C ,抛物线对称轴为直线x 12=-.连接AC ,BC ,点P 是抛物线上在第二象限内的一个动点.过点P 作x 轴的垂线PH ,垂足为点H ,交AC 于点Q .过点P 作PG∠AC 于点G . (1)求抛物线的解析式.(2)求PQG 周长的最大值及此时点P 的坐标.(3)在点P 运动的过程中,是否存在这样的点Q ,使得以B ,C ,Q 为顶点的三角形是等腰三角形?若存在,请写出此时点Q 的坐标;若不存在,请说明理由.24.如图,直线1:1l y kx =+与x 轴交于点D ,直线2:l y x b =-+与x 轴交于点A ,且经过定点(1,5)B -,直线1l 与2l 交于点(2,)C m .(1)求k 、b 和m 的值;(2)求ADC ∆的面积;(3)在x 轴上是否存在一点E ,使BCE ∆的周长最短?若存在,请求出点E 的坐标;若不存在,请说明理由;(4)若动点P 在线段DA 上从点D 开始以每秒1个单位的速度向点A 运动,设点P 的运动时间为t 秒.是否存在t 的值,使ACP ∆为等腰三角形?若存在,直接写出t 的值;若不存在,清说明理由.25.如图,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使CMP ∆为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由; (3)作直线BC ,若点(,0)D d 是线段BM 上的一个动点(不与B 、M 重合),过点D 作x 轴的垂线交抛物线于点F ,交BC 于点E ,当BDE CEF S S ∆∆=时,求d 的值.26.正方形ABCD 和等腰Rt DEF △共顶点D ,90DEF ∠=︒,DE EF =,将DEF 绕点D 逆时针旋转一周.(1)如图1,当点F 与点C 重合时,若2AD =,求AE 的长;(2)如图2,M 为BF 中点,连接AM 、ME ,探究AM 、ME 的关系,并说明理由; (3)如图3,在(2)条件下,连接DM 并延长交BC 于点Q ,若22AD DE ==,在旋转过程中,CQ 的最小值为_________.27.综合与探究 如图,抛物线245y x bx c =++经过点()0,4A ,()10B ,,与x 轴交于另一点C (点C 在点B 的右侧),点()P m n ,是第四象限内抛物线上的动点.(1)求抛物线的函数解析式及点C 的坐标;(2)若APC △的面积为S ,请直接写出S 关于m 的函数关系表达式,并求出当m 的值为多少时,S 的值最大?最大值为多少?(3)是否存在点P ,使得PCO ACB ∠=∠?若存在,求出点P 的坐标;若不存在,请说明理由.28.某学校活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程: 操作发现:(1)如图1,分别以AB 和AC 为边向∠ABC 外侧作等边∠ABD 和等边∠ACE ,连接BE 、CD ,请你完成作图并证明BE =CD .(要求:尺规作图,不写作法但保留作图痕迹)类比探究:(2)如图2,分别以AB 和AC 为边向∠ABC 外侧作正方形ABDE 和正方形ACFG ,连接CE 、BG ,则线段CE 、BG 有什么关系?说明理由.灵活运用:(3)如图3,在四边形ABCD 中,AC 、BD 是对角线,AB =BC ,∠ABC =60°,∠ADC =30°,AD =3,BD =5,求CD 的长.参考答案1.(1)3;(2)38t =;(3)当305t <≤时,210S t =;当315t <≤时,215309S t t =-+-;(4)38;58.2.(1)4y x x =-.定义域为25x <≤;(2)34;(3)4或53+ 3.(1)5-t ,2t ;(2)3t =或133t =;(3)53t =或910t = 4.(1)90°;(2)①α+β=180°;②点D 在直线BC 上移动,α+β=180°或α=β.5.(1)DM∠EM ,DM =ME ;(2)结论成立;(3)成立;拓展应用: 6.(1)y =﹣x 2+2x +3;(2)3;(3)点P 的坐标为(1,4)或(﹣2,﹣5)7.(1)60BD CE ,=;(2)45CEB BD ∠︒=,;(3)CE 的长为或48.(1)①证明;②3sin 5BAC ∠=;(2)CE =;(3)80.9.(1)﹣(2);②45°或225°;(3)﹣+310.(1)4PQ =;(2)150BPC ∠=︒;(3)9ABC S =. 11.(1)23;(2)2;(3)212.(1)见解析;(2)2(06)y x x =+<<;(3)P 位置如图所示,此时PB PE +的值最小,6CE =-13.(1)30DBA ∠=;(2)①;②当点D 运动到点I 时ABI ∠取得最大值,此时30ABD ∠=.14.(1)334y x =-;(2)①证明;②存在;点D 的坐标为111111,,3434⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭;. 15.(1)(8,6)A .(2)①存在,40 s 9t =或者50 s 9t =.②233(010)10S t t t =-+<<. 16.(1)①90°;②线段OA ,OB ,OC 之间的数量关系是OA 2+OB 2=OC 2,证明;(2)①当α=β=120°时,OA+OB+OC 有最小值.证明;②线段OA+OB+OC17.(1)等腰直角;(2)①当t 为1时,点E 恰好为AC 的一个三等分点;.18.(1)证明;(2)2AF BE =;(3).2FP a =19.(1)BPD CQP ≌;(2)60︒(3)4320.(1)1或3241;(2)23或89或6457;(3)329-;(4)78. 21.()1存在,43t =;()2228(02)S t t t =-+<<;()3存在,1t = 22.(1)13cm ;(2)t=2或92s ;(3)存在,15637t =或16938t =s23.(1)y 12=-x 212-x+3;(2))9108,P(32-,218);(3)存在,Q 1(,+3),Q 2(﹣1,2)24.(1)12k =,4b =,2m =;(2)6;(3存在,8(7E ,0);(4)存在,6-4或2.25.(1)223y x x =--+;(2)存在,P (-或(1,-或(1,6)-或5(1,)3-;(3)d =26.(1)AE =(2)AM ME =,AM ME ⊥;(3)227.(1)2424455x x y -+=;点C 的坐标为(5,0);(2)当m =52时,S 的值最大,最大值为252;(3)存在点P ,使得使得∠PCO =∠ACB .点P 的坐标为(2,-125). 28.(1);(2)CE=BG ;(3)CD=4。
202X包头市中考数学规律问题算式变化类专题

202X 包头市中考数学规律问题算式变化类专题一、规律问题算式变化类1.已知有理数a ≠1,我们把11a-称为a 的差倒数,如:2的差倒数是112=--1,﹣1的差倒数是()11112=--.如果a 1=﹣2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数…依此类推,那么a 1+a 2+…+a 109的值是( )A .8B .﹣8C .6D .﹣62.观察等式:1+2+22=23-1;1+2+22+23=24-1;1+2+22+23+24=25-1;若 1+2+22+…+29=210-1=m ,则用含 m 的式子表示 211+212+ …+218+219的结果是( ) A .m 2+ m B .m 2+m -2 C .m 2-1 D .m 2+ 2m 3.一只跳蚤在数轴上从原点开始,第1次向右跳2个单位长度,第2次向左跳4个单位长度,第3次向右跳6个单位长度,第4次向左跳8个单位长度,⋯依此规律跳下去,当它第2019次落下时,落点表示的数是( )A .2019B .2020C .-2020D .1010 4.2020减去它的12,再减去余下的13,再减去余下的14,….依此类推,一直减到余下的12020,则最后剩下的数是( ) A .20202019 B .1 C .20192020 D .05.a 是不为1的有理数,我们把11a -称为a 的差倒数....如:3的差倒数是11132=--,1-的差倒数是111(1)2=--.已知12a =,2a 是1a 的整倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,…,依此类推,则2020a 为( )A .2B .1C .1-D .126.“数形结合”是一种重要的数学思维,观察下面的图形和算式:2111==21312+==213593++==21357164+++==213579255++++==解答下列问题:请用上面得到的规律计算:1357...89+++++=( )A.2010 B.2015 C.2020 D.20257.将2019加上它本身的12的相反数,再将这个结果加上其13的相反数,再将上述结果加上,其14的相反数,…,如此继续,操作2019次后所得的结果是()A.1 B.-1 C.20192020D.20208.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是103,则m的值是() A.9 B.10 C.11 D.129.观察下列各式:,,,…计算:3×(1×2+2×3+3×4+…+99×100)=()A.97×98×99 B.98×99×100 C.99×100×101 D.100×101×10210.对于正数x,规定f(x)=1xx+,例如f(3)=34,f(13)=14,计算f(12015)+f(12014)+f(12013)+…+f(13)+f(12)+f(1)+f(2)+f(3)+…+f(2013)+f(2014)+f(2015)的结果是()A.2014 B.2014.5 C.2015 D.2015.5B11.当x分别取-2019、-2018、-2017、…、-2、-1、0、1、12、13、…、12017、12018、1 2019时,分别计算分式2211xx-+的值,再将所得结果相加,其和等于( )A.-1 B.1 C.0 D.201912.观察下列等式:①23﹣13=32﹣2;②33﹣23=52﹣6;③43﹣33=72﹣12;④53﹣43=92﹣20…请根据上述规律,请判断下列等式错误的是()A .20163﹣20153=40312﹣2016×2015B .20173﹣20163﹣40332=2017×2016C .40352﹣20183+20173=2018×2017D .2018×2019﹣20183+20193=40372 13.(问题背景)“整体替换法”是数学里的一种常用计算方法.利用式子的特征进行整体代换,往往能解决许多看似复杂的问题. (迁移运用)计算111211211212++++++++的值 解:设原式x =,则可分析得:112x x=++ 根据上述方程解得:13132x -+=,23132x --= 而原式0>,故:原式13132x -+==(联系拓展)23456202222222+++++++=___________ A .2121- B .2122-C .2221-D .2222-14.如图是一个按某种规律排列的数阵:根据数阵排列的规律,第n (n 是整数,且n≥4)行从左向右数第(n-3)个数是(用含n 的代数式表示)( ).A 21n -B 22n -C 23n -D 24n - 15.下面是按一定规律排列的一列数:第 1 个数:11122-⎛⎫-+ ⎪⎝⎭; 第 2 个数:()()2311111113234⎡⎤⎡⎤---⎛⎫-+++⎢⎥⎢⎥ ⎪⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦; 第 3 个数:()()2311111114234⎡⎤⎡⎤---⎛⎫-+++⎢⎥⎢⎥ ⎪⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦; ⋯⋯;第 n 个数:()()()232n-111111111...1n 12342n ⎡⎤⎡⎤⎡⎤----⎛⎫-++++⎢⎥⎢⎥⎢⎥ ⎪+⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦; 那么在第 10 个数、第 11 个数、第 12 个数、第 13 个数中,最大的数是 ( )A .第 10 个数B .第 11 个数C .第 12 个数D .第 13 个数16.已知2131=+a ,2262=+a ,23103=+a ,24154=+a ……n a ,则20202010-=a a ( )A .2020B .4039C .6060D .8079 17.计算111111122334455667-----⨯⨯⨯⨯⨯⨯的结果为( ). A .67 B .67- C .17- D .17 18.观察下列各式及其展开式:()2222a b a ab b +=++;()3322333a b a a b ab b +=+++;()4432234464a b a a b a b ab b +=++++;()544322345510105a b a a b a b a b ab b +=+++++…,请你猜想()11a b +的展开式第三项的系数是( )A .36B .45C .55D .6619.已知11a x =-(1x ≠且2x ≠),2111a a =-,3211a a =-,…,111n n a a -=-,则2019a 等于( )A .21x x --B .1x +C .1x -D .12x- 20.已知2221114834441004A ⎛⎫=⨯++⋯+ ⎪---⎝⎭,根据()21111n 3n 44n 2n 2⎛⎫=-≥ ⎪--+⎝⎭,则与A 最接近的正整数是( ). A .18 B .20 C .24 D .2521.求23201312222+++++的值,可令220131222S =++++,则23201422222S =++++,因此2014221S S -=-.仿照以上推理,计算出23201315555+++++的值为( ) A .201451- B .201351- C .2014514- D .2013514- 22.探索:2(1)(1)1x x x -+=-23(1)(1)1x x x x -++=-324(1)(1)1x x x x x -+++=-4325(1)(1)1x x x x x x -++++=-……判断22020+22019+22018+…+22+2+1的值的个位数是几?( )A .1B .3C .5D .7 23.已知T 1=22119311242++==,T 2=2211497123366++==,T 3=22111=34++21313()1212=,⋯,T n=22111(1)n n +++,其中n 为正整数.设S n =T 1+T 2+T 3+⋯+T n ,则S 2021值是( ) A .202120212022 B .202120222022 C .120212021 D .120222021 24.方程13153520052007x x x x ++++=⨯的解是x =( ) A .20062007 B .20072006 C .20071003 D .1003200725.在明代的《算法统宗》中记载了利用方格进行两数相乘的一种方法,叫做“铺地锦”,如图1,计算4751⨯,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397,图2用“铺地锦”法表示两个两位数相乘,则a 的值为( )A .7B .5C .3D .2【参考答案】***试卷处理标记,请不要删除一、规律问题算式变化类1.B【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】解:由题意可得,a1=-2,,,a4=-2,…,则,∴a1+a2+…+解析:B【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】解:由题意可得,a1=-2,211 1(2)3a==--,31312 13a==-,a4=-2,…,则123131 2326a a a++=-++=-,∴a1+a2+…+a109=(a1+a2+a3)+(a4+a5+a6)+…+(a106+a107+a108)+a109=136(2) 6⎛⎫-⨯+- ⎪⎝⎭=-6+(-2)-8,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.2.C【分析】根据题意,先用m表示出2,然后将所求式子加上2,再减去2,然后利用乘法分配律即可求出结论.【详解】解:∵1+2+2+…+2=2-1=m∴2=m+1∴2+2+ …+2+2=2+解析:C【分析】根据题意,先用m表示出210,然后将所求式子加上210,再减去210,然后利用乘法分配律即可求出结论.【详解】解:∵1+2+22+…+29=210-1=m∴210=m+1∴211+212+ …+218+219=210+211+212+ …+218+219-210=210×(1+2+22+…+29)-210=m(m+1)-(m+1)= m2-1故选C.【点睛】此题考查的是有理数的乘方运算,掌握有理数乘方的意义是解决此题的关键.3.B【分析】设向右跳动为正,向左跳动为负,根据题意把所有的数字相加即可得到结果;【详解】解:设向右跳动为正,向左跳动为负,由题意可得,故选:B.【点睛】本题主要考查了有理数解析:B【分析】设向右跳动为正,向左跳动为负,根据题意把所有的数字相加即可得到结果;【详解】解:设向右跳动为正,向左跳动为负,由题意可得()()()()()2468403440364038++-+++-+⋯+-+()()()()246810122403440364038-+-+-+⋯+-+═20184038=-+2020=,故选:B .【点睛】本题主要考查了有理数的加减混合运算,准确计算是解题的关键.4.B【分析】根据题意,可列式2020×(1−)×(1−)×(1−)×…×(1−),先算括号里的减法,再约分即可.【详解】解:2020×(1−)×(1−)×(1−)×…×(1−)=2020×××解析:B【分析】根据题意,可列式2020×(1−12)×(1−13)×(1−14)×…×(1−12020),先算括号里的减法,再约分即可.【详解】解:2020×(1−12)×(1−13)×(1−14)×…×(1−12020)=2020×12×23×34…×20192020=1.故选:B .【点睛】此题考查有理数的混合运算,首先要根据题意列式,总结规律是解题的关键. 5.A【分析】可根据差倒数的定义依次计算出a2、a3、a4,即可发现每3个数为一个循环,然后用2020除以3,即可得出答案.【详解】解:已知,a1的差倒数;a2的差倒数;a3的差倒数;…解析:A可根据差倒数的定义依次计算出a2、a3、a4,即可发现每3个数为一个循环,然后用2020除以3,即可得出答案.【详解】解:已知12a=,a1的差倒数211 12a==--;a2的差倒数311 1(1)2a==--;a3的差倒数412112a==-;…依此类推,2020被3除,结果为2020=3×673+1,被3除余1,所以,a2020=a1=2.故选:A.【点睛】本题考查用代数式表示的新定义下,规律探索问题,关键是通过部分的有理数运算后,发现规律.6.D【分析】观察图形和算式的变化发现规律,进而根据得到的规律计算即可.【详解】解:观察以下算式:发现规律:,∵2n-1=89解得n=45,∴,故选D.【点睛】本题考查了解析:D观察图形和算式的变化发现规律,进而根据得到的规律计算即可.【详解】解:观察以下算式:2111==21312+==213593++==21357164+++==213579255++++==发现规律:()21321n n +++-=,∵2n-1=89解得n=45,∴21357...89452025+++++==,故选D .【点睛】本题考查了规律型——图形的变化类,有理数的乘方.解题的关键是根据图形和算式的变化寻找规律. 7.C【分析】根据题意易得第一次运算的结果为,第二次运算的结果为,第三次运算的结果为,第四次运算的结果为,….由此规律可进行求解.【详解】解:2019加上它本身的的相反数为:,再将这个结果加上其解析:C【分析】 根据题意易得第一次运算的结果为120192⨯,第二次运算的结果为120193⨯,第三次运算的结果为120194⨯,第四次运算的结果为201951⨯,….由此规律可进行求解. 【详解】解:2019加上它本身的12的相反数为:1120192019201922-⨯=⨯,再将这个结果加上其13的相反数为11112019201920192233⨯-⨯⨯=⨯,再将上述结果加上,其14的相反数为11112019201920193344⨯-⨯⨯=⨯,….由此规律可得第n 次的运算结果为112019n +⨯, ∴第2019次后所得结果是120192019202020191⨯=+; 故选C .【点睛】本题主要考查有理数的混合运算,熟练掌握有理数的混合运算是解题的关键. 8.B【详解】试题分析:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3有m 个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=,∵2n+1=313,n=1解析:B【详解】试题分析:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3有m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m =(1)(2)2m m -+,∵2n+1=313,n=156,∴奇数103是从3开始的第52个奇数,∵(91)(92)442-+=,(101)(102)542-+=,∴第52个奇数是底数为10的数的立方分裂的奇数的其中一个,即m=10.故选B .考点:规律型.9.C【详解】试题分析:根据给出的式子得出一般性的规律,从而得到答案.考点:规律题解析:C【详解】试题分析:根据给出的式子得出一般性的规律,从而得到答案.考点:规律题10.B【解析】试题分析:根据题意可得:f(n)+f()=1,则原式=1×2014+=2014.5考点:规律题解析:B【解析】试题分析:根据题意可得:f(n)+f(1n)=1,则原式=1×2014+12=2014.5考点:规律题11.A【分析】设a为负整数,将x=a代入得:,将x=-代入得:,故此可知当x互为负倒数时,两分式的和为0,然后求得分式的值即可.【详解】∵将x=a代入得:,将x=-代入得:,∴,当x=0时,解析:A【分析】设a为负整数,将x=a代入得:2211aa-+,将x=-1a代入得:2211aa-+,故此可知当x互为负倒数时,两分式的和为0,然后求得分式的值即可.【详解】∵将x=a代入得:221 1a a -+,将x=-1a代入得:2222222211111111aaa aa aaa⎛⎫---⎪-⎝⎭==++⎛⎫-+⎪⎝⎭,∴22221111a aa a--+=++,当x=0时,2211xx-+=-1,故当x取-2019,-2018,-2017,……,-2,-1,0,1,12,13,……,12017,12018,1 2019时,得出分式2211xx-+的值,再将所得结果相加,其和等于:-1.故选A.【点睛】本题主要考查的是数字的变化规律和分式的加减,发现当x的值互为负倒数时,两分式的和为0是解题的关键.12.B【分析】根据题意找出数字的变化规律,根据规律计算,判断即可.【详解】解:观察等式可以得到规律:(n+1)3﹣n3=(2n+1)2﹣n (n+1), 20163﹣20153=40312﹣201解析:B【分析】根据题意找出数字的变化规律,根据规律计算,判断即可.【详解】解:观察等式可以得到规律:(n+1)3﹣n 3=(2n+1)2﹣n (n+1),20163﹣20153=40312﹣2016×2015A 正确,不符合题意;20173﹣20163=40332﹣2017×2016∴20173﹣20163﹣40332=﹣2017×2016B 错误,符合题意;40352﹣20183+20173=2018×2017C 正确,不符合题意;2018×2019﹣20183+20193=40372D 正确,不符合题意;,故选B .【点睛】本题考查的是有理数的混合运算、数字的变化规律,掌握有理数的混合运算法则、正确找出数字的变化规律是解题的关键.13.B【分析】根据题目呈现的“整体替换法”,令,,作差即可求解.【详解】解:设,,则,故选:B .【点睛】本题为新定义类型问题的考查,解题的关键是读懂题目中“整体替换法”的概念,应用到解题解析:B【分析】根据题目呈现的“整体替换法”,令220222S =+++,23212222S =+++,作差即可求解.【详解】解:设220222S =+++,23212222S =+++, 则21222S S S =-=-,故选:B .【点睛】本题为新定义类型问题的考查,解题的关键是读懂题目中“整体替换法”的概念,应用到解题当中.14.C【分析】观察数阵排列,可发现各数的被开方数是从1开始的连续自然数,行数中的数字个数是行数的2倍,求出n-1行的数字个数,再加上从左向右的第n-3个数,就得到所求数的被开方数,再写成算术平方根的解析:C【分析】观察数阵排列,可发现各数的被开方数是从1开始的连续自然数,行数中的数字个数是行数的2倍,求出n-1行的数字个数,再加上从左向右的第n-3个数,就得到所求数的被开方数,再写成算术平方根的形式即可.【详解】由图中规律知,前(n-1)行的数据个数为2+4+6+…+2(n-1)=n(n-1),∴第n(n是整数,且n≥4)行从左向右数第(n-3)个数的被开方数是:n(n-1)+n-3=n2-3,∴第n(n是整数,且n≥4)行从左向右数第(n-3故选:C.【点睛】本题考查了数字规律的知识;解题的关键是熟练掌握数字规律、二次根式的性质,从而完成求解.15.A【分析】根据有理数的计算,计算第1个数、第2个数、第3个数等,总结第n个数的规律即可得出答案.【详解】解:第个数:;第个数:;第个数:;;第个数:;n越大,第n个解析:A【分析】根据有理数的计算,计算第1个数、第2个数、第3个数等,总结第n个数的规律即可得出答案.【详解】解:第1个数:1110 22-⎛⎫-+=⎪⎝⎭;第2个数:()()2311111 11132346⎡⎤⎡⎤---⎛⎫-+++=-⎢⎥⎢⎥⎪⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦;第3个数:()()2311111 11142344⎡⎤⎡⎤---⎛⎫-+++=-⎢⎥⎢⎥⎪⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦;⋯⋯;第n个数:()()()232n-11111111 111 (1)n12342n12n⎡⎤⎡⎤⎡⎤----⎛⎫-++++=-⎢⎥⎢⎥⎢⎥⎪++⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦;∴n越大,第n个数越小故选:A.【点睛】本题考查有理数的计算,掌握数的规律是解题的关键.16.C【分析】先由已知等式,得出规律:,则,将代入,即可求出结果.【详解】解:..时,.故选:C.【点睛】此题主要考查了规律型:数字的变化类及有理数的混合运算,解题解析:C【分析】先由已知等式,得出规律:()2121n a n n n =++++++23322n n ++=,则133n n a a n +-=+,将2019n =代入,即可求出结果.【详解】解:()2121n a n n n =++++++()()21112n n n +++⎡⎤⎣⎦=+ ()()2212n n n ++=+ 223222n n n +++= 23322n n ++=. ()()2213131233222n n n n n n a a +++++++-=- ()()223131332n n n n +++--= 2236333332n n n n n ++++--= 662n += 33n =+.2019n =时,()20202019320191a a -=+32020=⨯6060=.故选:C .【点睛】此题主要考查了规律型:数字的变化类及有理数的混合运算,解题时首先观察,分析归纳出题目中隐含的规律,然后利用规律把题目变形,从而使计算变得比较简便.17.D【分析】将式子进行变形,然后计算即可.【详解】解:==【点睛】本题考查有理数的计算,关键在于进行变形.解析:D【分析】将式子进行变形,然后计算即可.【详解】 解:111111122334455667-----⨯⨯⨯⨯⨯⨯ =111111111111()()()()()22334455667----------- =17【点睛】本题考查有理数的计算,关键在于进行变形.18.C【分析】利用所给展开式探求各项系数的关系,特别是上面的展开式与下面的展开式中的各项系数的关系,可推出的展开式第三项的系数.【详解】解:依据规律可得到:第三项的系数为1,第三项解析:C【分析】利用所给展开式探求各项系数的关系,特别是上面的展开式与下面的展开式中的各项系数的关系,可推出11()a b +的展开式第三项的系数.【详解】解:222()2a b a ab b +=+++=+++33223()33a b a a b ab b4322344()464a b a a b a b ab b +=++++554322345()510105a b a a b a b a b ab b +=+++++⋯⋯∴依据规律可得到:2()a b +第三项的系数为1,3()a b +第三项的系数为312=+,4()a b +第三项的系数为6123=++,⋯11()a b +第三项的系数为:10(101)123910552⨯++++⋯++==. 故选:C .【点睛】本题考查了数字规律型,理解题意,找到系数的规律是解题的关键. 19.A【分析】根据题中所给已知等式先求出前4个数,发现每3个数是一个循环,进而可得的值.【详解】解:∵(且),∴⋯⋯∵2019÷3=673∴==故选:A【点睛】本题考查了数字的解析:A【分析】根据题中所给已知等式先求出前4个数,发现每3个数是一个循环,进而可得2019a 的值.【详解】解:∵11a x =-(1x ≠且2x ≠), ∴2111111(1)2a a x x===----3211211112x a a x x-===----431112111a x x a x===----- ⋯⋯ ∵2019÷3=673∴2019a =3a =21x x-- 故选:A【点睛】本题考查了数字的变化规律,解决本题的关键是观察数字的变化寻找规律. 20.D【分析】根据公式的特点把A 进行变形化简,故可求解.【详解】∵∴=≈12×2.0435=24.522≈25故选:D .【点睛】此题主要考查数的规律计算,解题的关键是运用已知解析:D【分析】根据公式的特点把A 进行变形化简,故可求解.【详解】 ∵()21111n 3n 44n 2n 2⎛⎫=-≥ ⎪--+⎝⎭∴2221114834441004A ⎛⎫=⨯++⋯+ ⎪---⎝⎭=111111111484323244242410021002⎡⎤⎛⎫⎛⎫⎛⎫⨯-+-+⋯+- ⎪ ⎪ ⎪⎢⎥-+-+-+⎝⎭⎝⎭⎝⎭⎣⎦ 1111111148145426498102⎡⎤⎛⎫⎛⎫⎛⎫=⨯-+-+⋯+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 111111111121......234598567102⎛⎫=⨯++++++----- ⎪⎝⎭ 111111112123499100101102⎛⎫=⨯+++---- ⎪⎝⎭≈12×2.0435=24.522≈25 故选:D .【点睛】此题主要考查数的规律计算,解题的关键是运用已知的运算公式变形求解.21.C【分析】类比题目中所给的解题方法解答即可.【详解】解:设a=1+5+52+53+ (52013)则5a=5(1+5+52+53+…+52013)=5+52+53+…+52013+5201解析:C【分析】类比题目中所给的解题方法解答即可.【详解】解:设a =1+5+52+53+ (52013)则5a =5(1+5+52+53+…+52013)=5+52+53+…+52013+52014,∴5a -a =(5+52+53+…+52013+52014)-(1+5+52+53+…+52013)=52014-1,即a =2014514-. 故选:C .【点睛】本题是阅读理解题,类比题目中所给的解题方法是解决问题的基本思路.22.A【分析】仔细观察,探索规律可知:22020+22019+22018+…+2+1=(22021-1)÷(2-1),依此计算即可求解.【详解】解:观察所给等式得出如下规律:变形得令其x=解析:A【分析】仔细观察,探索规律可知:22020+22019+22018+…+2+1=(22021-1)÷(2-1),依此计算即可求解.【详解】解:观察所给等式得出如下规律:211(1)(1)1n n n n x x x x x x --+-++++=-…… 变形得121111n n n n x x x x x x +---++++=-…… 令其x =2,n =2020得22020+22019+22018+…+2+1==(22021-1)÷(2-1)=22021-1,∵2n 的个位数字分别为2,4,8,6,即4次一循环,且2020÷4=505,∴22020的个位数字是6,∴22021的个位数字为2,∴22021-1的个位数字是1,∴22020+22019+22018+…+2+1的个位数字是1.故选:A .【点睛】此题考查了多项式的乘法,乘方的末位数字的规律,注意从简单情形入手,发现规律,是解决问题的关键.23.A【分析】根据数字间的规律探索列式计算【详解】解:由题意可得:T1=,T2=,T3=∴Tn=∴T2021=∴S2021=T1+T2+T3++T2021=======解析:A【分析】根据数字间的规律探索列式计算【详解】解:由题意可得:T 1312+1=212⨯⨯,T 2723+1=623⨯⨯,T 31334+1=1234⨯=⨯∴T ()()1+11n n n n ++ ∴T 2021=20212022+120212022⨯⨯ ∴S 2021=T 1+T 2+T 3+⋯+T 2021 =371320212022+1+++ (261220212022)⨯+⨯ =11111++1++1++...1+261220212022+⨯ =11112021++++...+261220212022⨯ =11112021++++...+12233420212022⨯⨯⨯⨯ =11111112021+1++...+2233420212022⎛⎫-+--- ⎪⎝⎭ =12021+12022⎛⎫-⎪⎝⎭ =202120212022故选:A .【点睛】本题考查实数数字类的规律探索,探索规律,准确计算是解题关键.24.C【解析】∵ ,∴提取公因式,得,将方程变形,得,提取公因式,得,移项,合并同类项,得,系数化为1,得x=.故选C.解析:C【解析】 ∵13153520052007x x x x ++⋯+⨯= , ∴提取公因式,得 1111()13153520052007x ++⋯+⨯=, 将方程变形,得11111111[(1)()...()]123235220052007x -+-++-= , 提取公因式,得11111(1)1233520052007x -+-⋯+-=, 移项,合并同类项,得1(1)122007x -=, 系数化为1,得 x=20071003. 故选C. 25.A【分析】设4a 的十位数字是m ,个位数字是n ,根据“铺地锦”的计算方法,把方格填完整,再列出三元一次方程组,即可求解.【详解】设4a的十位数字是m,个位数字是n,由题意可知,方格里的数字,解析:A【分析】设4a的十位数字是m,个位数字是n,根据“铺地锦”的计算方法,把方格填完整,再列出三元一次方程组,即可求解.【详解】设4a的十位数字是m,个位数字是n,由题意可知,方格里的数字,如图所示,∴2116410m a an aa m n+=+⎧⎪+=-+⎨⎪=+⎩,解得:287mna=⎧⎪=⎨⎪=⎩,∴a的值为:7.故选A.【点睛】本题主要考查三元一次方程组的应用,根据等量关系,列出方程组,是解题的关键.。
内蒙古包头市2019年中考数学总复习-题型突破06 几何图形中的动态、图形变换问题课件

且 0≤t≤2.
(2)t 为何值时,△APQ 是直角三角形?
(2)若△APQ 为直角三角形,则需分情况讨论.
10
①若∠AQP=90°,由(1)知 t= .
7
②若∠APQ=90°,则△APQ∽△ACB,
且 0≤t≤2.
(5)是否存在某一时刻 t,使线段 PQ 恰好把△ABC 的周长平分?若存在,求出 t 的值;若不存在,说明理由.
(5)存在.如图④所示,
图 Z6-1⑤
若 PQ 把△ABC 的周长平分,
1
则 AP+AQ= (AB+AC+BC),∴5-t+2t=6,∴t=1.
2
类型1 几何图形中的动态问题
2
2
2
,t1=
∴当 t=
5- 5
2
(舍),t2=
1
.
时,S△APQ=2 S△ABC.
类型1 几何图形中的动态问题
例 1 已知:如图 Z6-1,在 Rt△ABC 中,∠C=90°,AC=4 cm,BC=3 cm,点 P 从点 B 出发沿 BA 方向向点 A 匀速运动,
速度为 1 cm/s,同时点 Q 从点 A 出发沿 AC 方向向点 C 匀速运动,速度为 2 cm/s,连接 PQ,若运动时间为 t(s),
点 Q 从点 A 出发沿 AC 向点 C 匀速运动,它们的速度均为 1 cm/s,连接 PQ.设运动时间为 t(单位:s)(0≤t≤4).
(2)当 t=2 时,求△APQ 的面积.
(2)当 t=2 时,
如图①,过点 P 作 PR⊥AC 于点 R,
中考数学专题动态几何变化问题

中考数学专题动态几何变化问题中考数学专题复习七动态几何变化问题动态几何题已成为中考试题的一大热点题型。
在近几年各地的中考试卷中,以动点问题、平面图形的平移、翻折、旋转、剪拼问题等为代表的动态几何题频频出现在填空、选择、解答等各种题型中,考查同学们对图形的直觉能力以及从变化中看到不变实质的数学洞察力。
解决动态几何题的策略是:把握运动规律,寻求运动中的特殊位置;在“动”中求“静”,在“静”中探求“动”的一般规律。
通过探索、归纳、猜想,获得图形在运动过程中是否保留或具有某种性质。
下面就动点型、动线型、动面型等几何题作一简要分析。
一. 动点型1. 单动点型例1. 如图1,在矩形ABCD 中,AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E ,F 分别是垂足,求PE+PF 的长。
分析与略解:P 是AD 边上任意一点,不妨考虑特殊点的情况,即在“动”中求“静”。
当P 点在D (或A )处时,过D 作DG ⊥AC ,垂足为G ,则PE=0,PF=DG ,故PE+PF=DG ,在Rt △ADC 中,13512DC AD AC 2222=+=+= 由面积公式有:1360AC DC AD DG =?=,再有“静”寻求“动”的一般规律,得到PE+PF=DG=1360。
图12. 双动点型例2. (2003年吉林省)如图2,在矩形ABCD 中,AB=10cm ,BC=8cm ,点P 从A 出发,沿A →B →C →D 路线运动,到D 点停止;点Q 从D 点出发,沿D →C →B →A 路线运动,到A 停止。
若点P 、Q 同时出发,点P 的速度为每秒1cm ,点Q 的速度为每秒2cm ,a 秒时点P 、点Q 同时改变速度,点P 的速度变为每秒bcm ,点Q 的速度为每秒dcm 。
图3是点P 出发x 秒后△APD 的面积)cm (S 21与x (秒)的函数关系图象,图4是点Q 出发x 秒后△AQD 的面积)cm (S 22与x (秒)的函数关系图象。
中考数学专题复习卷几何图形的动态问题精编(含解析)

几何图形的动态问题精编1.如图,平行四边形ABCD中,AB= cm,BC=2cm,∠ABC=45°,点P从点B出发,以1cm/s的速度沿折线BC→CD→DA运动,到达点A为止,设运动时间为t(s),△ABP的面积为S(cm2),则S与t的大致图象是()A. B.C. D.【答案】A【解析】:分三种情况讨论:①当0≤t≤2时,过A作AE⊥BC于E.∵∠B=45°,∴△ABE是等腰直角三角形.∵AB= ,∴AE=1,∴S= BP×AE= ×t×1= t;②当2<t≤ 时,S= = ×2×1=1;③当<t≤ 时,S= AP×AE= ×(-t)×1= (-t).故答案为:A.【分析】根据题意分三种情况讨论:①当0≤t≤2时,过A作AE⊥BC于E;②当2<t≤ 2 +时;③当 2 + <t≤ 4 +时,分别求出S与t的函数解析式,再根据各选项作出判断,即可得出答案。
2.如图,边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D两点的动点,F是CD上的动点,满足AE+CF=a,△BEF的周长最小值是( )A. B.C.D.【答案】B【解析】:连接BD∵四边形ABCD是菱形,∴AB=AD,∵∠DAB=60°,∴△ABD是等边三角形,∴AB=DB,∠BDF=60°∴∠A=∠BDF又∵AE+CF=a,∴AE=DF,在△ABE和△DBF中,∴△ABE≌△DBF(SAS),∴BE=BF,∠ABE=∠DBF,∴∠EBF=∠ABD=60°,∴△BEF是等边三角形.∵E是异于A、D两点的动点,F是CD上的动点,要使△BEF的周长最小,就是要使它的边长最短∴当BE⊥AD时,BE最短在Rt△ABE中,BE==∴△BEF的周长为【分析】根据等边三角形的性质及菱形的性质,证明∠A=∠BDF,AE=DF,AB=AD,就可证明△ABE≌△DBF,根据全等三角形的性质,可证得BE=BF,∠ABE=∠DBF,再证明△BEF是等边三角形,然后根据垂线段最短,可得出当BE⊥AD时,BE最短,利用勾股定理求出BE的长,即可求出△BEF的周长。
2024年内蒙古包头市中考数学试卷及答案解析

2024年内蒙古包头市中考数学试卷一、选择题:本大题共有10小题,每小题3分,共30分。
每小题只有一个正确选项,请将答题卡上对应题目的答案标号涂黑。
1.(3分)计算所得结果是()A.3B.C.3D.±32.(3分)若m,n互为倒数,且满足m+mn=3,则n的值为()A.B.C.2D.43.(3分)如图,正方形ABCD边长为2,以AB所在直线为轴,将正方形ABCD旋转一周,所得圆柱的主视图的面积为()A.8B.4C.8πD.4π4.(3分)如图,直线AB∥CD,点E在直线AB上,射线EF交直线CD于点G,则图中与∠AEF互补的角有()A.1个B.2个C.3个D.4个5.(3分)为发展学生的阅读素养,某校开设了《西游记》《三国演义》《水浒传》和《红楼梦》4个整本书阅读项目,甲、乙两名同学都通过抽签的方式从这四个阅读项目中随机抽取1个,则他们恰好抽到同一个阅读项目的概率是()A.B.C.D.6.(3分)将抛物线y=x2+2x向下平移2个单位后,所得新抛物线的顶点式为()A.y=(x+1)2﹣3B.y=(x+1)2﹣2C.y=(x﹣1)2﹣3D.y=(x﹣1)2﹣27.(3分)若2m﹣1,m,4﹣m这三个实数在数轴上所对应的点从左到右依次排列,则m的取值范围是()A.m<2B.m<1C.1<m<2D.1<m<8.(3分)如图,在扇形AOB中,∠AOB=80°,半径OA=3,C是上一点,连接OC,D是OC上一点,且OD=DC,连接BD.若BD⊥OC,则的长为()A .B .C .D .π9.(3分)如图,在平面直角坐标系中,四边形OABC 各顶点的坐标分别是O (0,0),A (1,2),B (3,3),C (5,0),则四边形OABC 的面积为()A .14B .11C .10D .910.(3分)如图,在矩形ABCD 中,E ,F 是边BC 上两点,且BE =EF =FC ,连接DE ,AF ,DE 与AF 相交于点G ,连接BG .若AB =4,BC =6,则sin ∠GBF 的值为()A .B .C .D .二、填空题:本大题共有6小题,每小题3分,共18分。