2013年江苏省苏州市中考数学模拟试卷(二)

合集下载

2013年中考数学第二次模拟考试卷(有答案苏州市)

2013年中考数学第二次模拟考试卷(有答案苏州市)

2013年中考数学第二次模拟考试卷(有答案苏州市)苏州立达中学2013年初三第二次模拟考试试卷数学(本试卷共三大题,29小题,满分130,考试时间120分钟)注意事项:1.答卷前,考生务必将自己的班级、姓名、考试号用0.5毫米黑色签字笔写在答题卷的相应位置上.2.除作图可使用2B铅笔作答外,其余各题请按题号用0.5毫米黑色签字笔在各题目规定的答题区域内作答,不能超出横线或方格,超出答题区域的答案无效.3.考试结束,只需交答题卷.一、选择题(本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应位置上)1.下列四个数中,最小的数是(▲)A.B.C.D.2.下列运算正确的是(▲)A.B.C.D.3.函数的自变量x的取值范围在数轴上可表示为(▲)4.某校有名同学参加百米竞赛,预赛成绩各不相同,要取前名参加决赛,小张已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这名同学成绩的(▲)A.平均数B.众数C.中位数D.极差5.由四个大小相同的正方体组成的几何体如图所示,它的左视图是(▲)6.函数与函数在同一坐标系中的大致图象是(▲)7.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽,最深处水深,则此输水管道的直径是(▲).A.B.C.D.第7题第8题第10题第12题8.如图,已知菱形的对角线、的长分别为、,于点,则的长是(▲)A.B.C.D.9.下列命题中,其中真命题有(▲)①若分式的值为,则或;②两圆的半径、分别是方程的两根,且圆心距,则两圆外切;③对角线互相垂直的四边形是菱形;④将抛物线向左平移个单位,再向上平移个单位可得到抛物.A.个B.个C.个D.个10.如图,中,.一电子跳蚤开始时在边的处,.跳蚤第一步从跳到边的(第次落点)处,且;第二步从跳到边的(第次落点)处,且;第三步从跳到边的(第次落点)处,且;……;跳蚤按照上述规则一直跳下去,第次落点为(为正整数),则点与点之间的距离为(▲)A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分,把答案填在答题卷相应横线上)11.某校学生在“爱心传递”活动中,共筹得捐款元,请你将数字用科学计数法并保留两个有效数字表示为▲.12.把一块直尺与一块三角板如图放置,若,则的度数为▲.13.分解因式:▲.14.若两个等边三角形的边长分别为与,则它们的面积之比为▲.15.若某个圆锥的侧面积为,其侧面展开图的圆心角为,则该圆锥的底面半径为▲cm.16.如图,点、在反比例函数的图像上,过点、作轴的垂线,垂足分别为、,延长线段交轴于点,若,则的面积为▲.17.将矩形纸片按如图所示的方式折叠,得到菱形.若,则的长为▲.第16题第17题第18题18.如图,点、、、在上,点在的内部,四边形为平行四边形,则▲°.三、解答题(本大题共有11小题,共76分,解答过程请写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明)19.(本题满分8分)(1)计算:(2)解方程:20.(本题满分4分)先化简,再求值:,其中.21.(本题满分5分)如图,在平行四边形中,、是、的中点,、的延长线分别交、的延长线于、;(1)求证:;(2)若四边形为菱形,试判断与的大小,并证明你的结论.22.(本题满分6分)为了解我市九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分段(:40分;:39-35分;:34-30分;:29-20分;:19-0分)统计如下:根据上面提供的信息,回答下列问题:(1)在统计表中,的值为▲,的值为▲;(2)甲同学说:“我的体育成绩是此次抽样调查所得数据的中位数”.请问:甲同学的体育成绩应在什么分数段内?▲.(填相应分数段的字母)(3)若把成绩在分以上(含分)定为优秀,则我市今年名九年级学生中体育成绩为优秀的学生人数约有多少名?23.(本题满分6分)有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.(1)列表或画树状图表示所有取牌的可能性;(2)甲、乙两人做游戏,现有两种方案:方案:若两次抽得相同花色则甲胜,否则乙胜;方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案获胜概率更高?24.(本题满分6分)如图,某校综合实践活动小组的同学欲测量公园内一棵树的高度,他们在这棵树正前方一座楼亭前的台阶上点处测得树顶端的仰角为,朝着这棵树的方向走到台阶下的点处,测得树顶端的仰角为.已知点的高度为,台阶的坡度为,且、、三点在同一条直线上.请根据以上条件求出树的高度(测倾器的高度忽略不计).25.(本题满分7分)某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中某月获得的利润(万元)和月份之间满足函数关系式:.(1)若一年中某月的利润为21万元,求n的值;(2)哪一个月能够获得最大利润,最大利润是多少?(3)当产品无利润时,企业会自动停产,企业停产是哪几个月份?26.(本题满分7分)如图,在平面直角坐标系中,四边形为菱形,点(,),(,).(1)求经过点的反比例函数的解析式;(2)设是(1)中所求函数图象上一点,以、、为顶点的三角形的面积与的面积相等,求点的坐标.27.(本题满分8分)如图,在平面直角坐标系中,点坐标是(,),点坐标是(,).是射线上一点,轴,垂足为,设.(1)▲;(2)如图,以为直径作圆,圆心为点.若与轴相切,求的值;(3)是正半轴上一点,连接、.若∽,试探究满足条件的点的个数(直接写出点的个数及相应的取值范围,不必说明理由).28.(本题满分9分)如图,在平面直角坐标系内,正方形的顶点的坐标为(,),过点的直线与平行,的延长线交于点,点是直线上的一个动点,∥交于点.(1)求直线的函数解析式;(2)当点在轴的上方时,求证:≌;猜想:若点运动到轴的下方时,与是否依然全等?直接填“是”或“否”(3)当四边形为菱形时,试求出点的坐标.29.(本题满分10分)如图1,抛物线的顶点为,与轴交于(,)、(,)两点,与轴交于点.(1)求抛物线的解析式及其顶点的坐标;(2)在该抛物线的对称轴上求一点,使得的周长最小.请在图中画出点的位置,并求点的坐标;(3)如图2,若点是第一象限抛物线上的一个动点,过作轴,垂足为.①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点与轴相距最远,所以当点运动至点时,折线——的长度最长”.这个同学的说法正确吗?请说明理由.②若与直线交于点.试探究:四边形能否为平行四边形?若能,请直接写出点的坐标;若不能,请简要说明理由.数学参考答案一.选择题:1-10BBCCAABDBD二.填空题:11.、3.7×10412.、13、14、1:915、116、617、18、60三.解答题:19、(1)3(2),经检验是原方程的解20、,121、(1)∵四边形ABCD是平行四边形∴DC=AB,DC∥AB,∴∠C=∠EBH,∠CDE=∠H又∵E是CB的中点,∴CE=BE∴△CDE≌△BHE,∴BH=DC∴BH=AB(2)∵四边形ABCD是平行四边形,∴AD∥CB,∴∠ADF=∠G ∵四边形ABCD是菱形,∴AD=DC=CB=AB,∠A=∠C∵E、F分别是CB、AB的中点,∴AF=CE∴△ADF≌△CDE,∴∠CDE=∠ADF∴∠H=∠G22、(1)a=32,b=10(2)B(3)904023、(1)略(2)A方案:P(甲胜)=B方案:P(甲胜)=选择A方案24、6米25、(1)5月或9月(2)7月,25万(3)1月、2月、12月26、(1)(2)或27、(1)10(2)28、(1)y=x-1(2)略(ASA)(3)是(4)P()或()29、解:(1)将A(-1,0)、B(5,0)分别代入中,得,得∴.………………2分∵,∴Q(2,9).……3分(2)如图1,连接BC,交对称轴于点P,连接AP、AC.……4分∵AC长为定值,∴要使△PAC的周长最小,只需PA+PC最小.∵点A关于对称轴=1的对称点是点B(5,0),抛物线与y轴交点C的坐标为(0,5).∴由几何知识可知,PA+PC=PB+PC为最小.………………5分设直线BC的解析式为y=k+5,将B(5,0)代入5k+5=0,得k=-1,∴=-+5,∴当=2时,y=3,∴点P的坐标为(2,3).….6分(3)①这个同学的说法不正确.……………7分∵设,设折线D-E-O的长度为L,则,∵,∴当时,.而当点D与Q重合时,,∴该该同学的说法不正确.…9分②四边形不能为平行四边形.……………10分如图2,若四边形为平行四边形,则EF=DF,CF=BF.∵DE∥轴,∴,即OE=BE=2.5.当=2.5时,,即;当=2.5时,,即.∴>2.5.即>,这与EF=DF相矛盾,。

江苏省苏州市2013年中考数学试卷(解析版)

江苏省苏州市2013年中考数学试卷(解析版)

2013年苏州中考数学试卷解析一、选择题(本题共10个小题,每小题3分,共30分)D.A.﹣2 B.2C.﹣考点:相反数。

专题:常规题型。

分析:根据相反数的定义即可求解.解答:解:2的相反数等于﹣2.故选A.点评:本题考查了相反数的知识,属于基础题,注意熟练掌握相反数的概念是关键.2.若式子在实数范围内有意义,则x的取值范围是()A.x<2 B.x≤2C.x>2 D.x≥2考点:二次根式有意义的条件。

分析:根据二次根式中的被开方数必须是非负数,即可求解.解答:解:根据题意得:x﹣2≥0,解得:x≥2.故选D.点评:本题考查的知识点为:二次根式的被开方数是非负数.A.2B.4C.5D.6考点:众数。

分析:根据众数的定义解答即可.解答:解:在2,4,5,5,6中,5出现了两次,次数最多,故众数为5.故选C.点评:此题考查了众数的概念﹣﹣﹣﹣一组数据中,出现次数最多的数位众数,众数可以有多个.4.如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是()A.B.C.D.考点:几何概率。

分析:确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率.解答:解:如图:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是=;故选B.点评:本题考查了几何概率.用到的知识点为:概率=相应的面积与总面积之比.5.如图,已知BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,则∠BDC的度数是()A.20°B.25°C.30°D.40°考点:圆周角定理;圆心角、弧、弦的关系。

分析:由BD是⊙O的直径,点A、C在⊙O上,=,∠AOB=60°,利用在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BDC的度数.解答:解:∵=,∠AOB=60°,∴∠BDC=∠AOB=30°.故选C.点评:此题考查了圆周角定理.此题比较简单,注意数形结合思想的应用,注意在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.6.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形CODE的周长()A.4B.6C.8D.10考点:菱形的判定与性质;矩形的性质。

江苏省苏州市2013届初中数学毕业暨升学模拟考试试题

江苏省苏州市2013届初中数学毕业暨升学模拟考试试题

某某市2013年初中毕业暨升学考试模拟数学试卷本试卷由选择题、填空题和解答题三大题组成,共29小题,考试时间为120分钟,试卷满分130分. 注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的某某、某某号填写在答题卷的相应位置上.2.答选择题必须用2B 铅笔将答题卷上对应题目中的选项标号指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3.考生答题必须答在答题卷上,保持卷面清洁,答在试卷和草稿纸上一律无效。

一、选择题(本大题共l0小题.每小题3分.共30分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将选择题的答案用2B 铅笔涂在答题卡相对应的位置上) 1.2的倒数是( ▲ )A .2B .-2C .12D .-122.下列运算中,结果正确的是( ▲ )A .844a a a =+ B .325a a a ⋅= C .428a a a =÷ D .()63262a a -=-3.下列图形中,既是轴对称图形,又是中心对称图形的是( ▲ )4.抛物线2)8(2+--=x y 的顶点坐标是 ( ▲ )A .(—8,2)B .(—8,—2)C .(2,8)D .(8,2) 5.一组数据1.2,1.3,,的众数是( ▲ ) A .B . C .D .1.86.2012年一季度全国城镇新增就业人数3320000人,用科学记数法表示( ▲ )ABCDEFOA .410332⨯B .710332.0⨯C .61032.3⨯D .71032.3⨯7.若m 、n 是一元二次方程2x 5x 20--=的两个实数根,则m n mn +-的值是( ▲ ) A . 7 B .-7 C .3 D . -3 8.如图,△ABC 内接于⊙O ,连接OA ,OB ,∠OBA=40°,则∠C 的度数是( ▲ ) A .60° B.50° C.45° D.40°9.如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,AB=2,BC=3,则图中阴影部分的面积为( ▲ ) A .6 B .3C .2 D . 1(第8题) (第9题) (第10题)10.如图,平面直角坐标系中,在边长为1的菱形ABCD 的边上有一动点P 从点A 出发沿A B C D A →→→→匀速运动一周,则点P 的纵坐标y 与点P 走过的路程S 之间的函数关系用图象表示大致是 ( ▲ )A B CD二、填空题(本大题共8小题,每小题3分,共24分.把答案直接填在答题卡上相应的位置上) 11.函数3-=x y 中,自变量x 取值X 围是 ▲ .12.因式分解:822-x = ▲ .OCBA13.如图,在△ABC 中,D ,E 分别是边AC 、BC 的中点,若DE =3,则AB= ▲ . 14.某学校有80名学生,参加音乐、美术、体育三个课外小组(每人只参加一项),这80人中若40%的人参加体育小组,35%的人参加美术小组,则参加音乐小组的有 ▲ 人. 15.半径为2,圆心角为120°的扇形的面积为 ▲ (结果保留π).(第13题) (第16题)16.如图,直线y =43-x +4与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 按顺时针方向旋转90°后得到△AO 1B 1,则点B 1的坐标是 ▲ .17.如图所示的折线ABC 为甲地向乙地打长途需付的费y (元)与通话时间t (分钟)之间的函数关系,则通话8分钟应付费 ▲ 元. 18.已知点A 、B 分别在反比例函数y=x 2(x>0), y=x8-(x>0)的图像上,且OA⊥OB,则tanB 为 ▲ .(第17题)(第18题)三、解答题(本大题共11小题.共76分.把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔) 19.(本题满分5分)计算:9)3(20+---π20.(本题满分5分)解不等式组31422x x x ->-⎧⎨<+⎩,并把它的解集表示在数轴上OBA21.(本题满分5分)先化简,再求值:a a a a a a 4424222++÷⎪⎪⎭⎫ ⎝⎛-+-,其中a=23-22.(本题满分6分)解分式方程:011112=---x x 23.(本题满分6分)已知:如图,在等腰梯形ABCD 中,AB//CD ,点E 、F 分别在AD 、BC 上,且DE =CF .求证:AF =BE(第23题)24.(本题满分6分)如图,A 信封中装有两X 卡片,卡片上分别写着7cm 、3cm ;B 信封中装有三X 卡片,卡片上分别写着2cm 、4cm 、6cm ;信封外有一X 写着5cm 的卡片.所有卡片的形状、大小都完全相同.现随机从两个信封中各取出一X 卡片,与信封外的卡片放在一起,用卡片上标明的数量分别作三条线段的长度. (1)求这三条线段能组成三角形的概率(画出树状图); (2)求这三条线段能组成直角三角形的概率.(第24题)25.(本题满分8分)某工程队承包了某段过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.求甲、乙两个班组平均每天各掘进多少米?AB C DFE AB5cm26.(本题满分8分) 城市规划期间,欲拆除一电线杆AB ,已知距电线杆AB 水平距离14m的D 处有一大坝,背水坡CD 的坡度i=1:2,坝高CF 为2m ,在坝顶C 处测得杆顶A 的仰角为30°,D 、E 之间是宽为2m 的人行道. (1)求BF 的长;(2)在拆除电线杆AB 时,为确保行人安全,是否需要将此人行道封上?请说明理由.(在地面上,以点B 为圆心,以AB•≈1.732,(第26题)27.(本题满分8分)如图,AB 是⊙O 的直径,CD 是⊙O 的切线,切点为C .延长AB 交CD 于点E .连接AC ,作∠DAC=∠ACD,作AF⊥ED 于点F ,交⊙O 于点G . (1)求证:AD 是⊙O 的切线;(2)如果⊙O 的半径是6cm ,EC =8cm ,求GF 的长.(第27题)28.(本题满分9分)如图,现有一X 边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的DC EF道行人1:230EFDCGBA一点(不与点A 、点D 重合)将正方形纸片折叠,使点B 落在点P 处,点C 落在点G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH . (1)求证:∠APB=∠BPH;(2)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?并证明你的结论; (3)设AP 为x ,四边形EFGP 的面积为S ,求出S 与x 的函数关系式,试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.(第28题)29.(本题满分10分) 如图1,已知直线y=kx 与抛物线y=3222742+-x 交于点A (3,6). (1)求直线y=kx 的解析式和线段OA 的长度;(2)点P 为抛物线第一象限内的动点,过点P 作直线PM ,交x 轴于点M (点M 、O 不重合),交直线OA 于点Q ,再过点Q 作直线PM 的垂线,交y 轴于点N .试探究:线段QM 与线段QN 的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由; (3)如图2,若点B 为抛物线上对称轴右侧的点,点E 在线段OA 上(与点O 、A 不重合),点D (m ,0)是x 轴正半轴上的动点,且满足∠BAE=∠BED=∠AOD.继续探究:m 在什么X 围时,符合条件的E 点的个数分别是1个、2个?(第29题)ABCDEF GH PABCDEFGH P(备用图)参考答案一.选择题(每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 选项CBBDCCABBA二.填空题(每小题3分,共24分)11、3≥x 12、)2)(2(2-+x x 13、6 14、20 15、π34 16、(7,3) 17、 18、21 三.解答题(本大题共11题,共76分) 19、解:原式=2-1+3 …………3分 =4 …………5分20、解:由①得x >-1 …………1分由②得x <2 …………2分∴原不等式组的解集为-1<x <2 ……3分数轴略 …………5分 21、解:原式= ……1分 ……2分……3分当23-=a 时,原式= ……4分3323-=……5分 22、解:0)1)(1(111=-+--x x x ……1分 011=-+x ……3分0=x ……4分经检验,x=0是原方程的解 ……6分 23、解:∵四边形ABCD 是等腰梯形∴AD=BC,∠DAB=∠CBA………2分 ∵DE=CF∴AE=BF…………3分 又∵AB=BA∴△ABE≌△BAF………5分 ∴AF=BE………6分24、解:(1) 5A 信封 7 3B 信封 2 4 6 2 4 6 ………2分 P (能组成三角形)=32………4分 ()()()()222222242222+=+⋅--+=+÷⎪⎪⎭⎫ ⎝⎛---a a a a a a a a a a a a 323-(2)P (能组成直角三角形)=61………6分 25、解:设甲、乙班组平均每天掘进x 米,y 米,………1分根据题意,得0.65()45x y x y -=⎧⎨+=⎩………5分解得 4.84.2x y =⎧⎨=⎩………7分答:甲班组平均每天掘进,乙班组平均每天掘进.………8分 26、解:(1)∵Rt△CFD 中,CF=2,坡度i=1:2 ∴DF=4 ………1分 ∴BF=BD+DF =14+4=18 ………2分 (2)需要将此人行道封上………3分∵BF=18∴CG=18又∵Rt△CGA 中,∠ACG=30°∴AG=18×tan30°=18×………5分∴A B=AG+GB=AG+CF=≈6×1.732+2≈12.392………6分又∵BE=BD -ED=14-2=12………7分 ∴AB>BE因此,需要将此人行道封上………8分 27、解:(1)连接OC∵CD 是⊙O 的切线 ∴∠OCD=90°………1分 ∵OA=OC∴∠OCA=∠OAC………2分 又∵∠DAC=∠ACD ∴∠OAD=∠OCD=90°道行人1:230EFD CGBA 3633=236+∴AD 是⊙O 的切线………3分 (2)连接BG ∵OC=6cm,EC=8cm∴在Rt△CEO 中,OE =OC 2+EC 2=10………4分 ∴AE=OE+OA=16 ∵AF⊥ED∴∠AFE=∠OCE=90°,∠E=∠E ∴Rt△AEF∽Rt△OEC………5分 ∴10166AF ==即OE AE OC AF ………6分 ∵AB 是⊙O 的直径 ∴∠AGB=90° ∴∠AGB=∠AFE ∵∠BAG=∠EAF∴Rt△ABG∽Rt△AEF………7分 ∴16126.9AG ==即AE AB AF AG∴GF=AF﹣AG=9.6﹣7.2=2.4(cm )………8分28、解:(1)∵折叠∴PE=BE∴∠EBP=∠EPB……………1分 又∵∠EPH=∠EB C=90° ∴∠PBC=∠BPH……………2分 又∵AD∥BC ∴∠APB=∠PBC∴∠APB=∠BPH……………3分ADP(2)△PH D的周长不变,为定值 8过B作BQ⊥PH,垂足为Q由(1)知∠APB=∠BPH又∵∠A=∠BQP=90°,BP=BP∴△ABP≌△QBP∴AP=QP, AB=BQ…………4分又∵ AB=BC∴BC = BQ又∵∠C=∠BQH=90°,BH=BH∴△BCH≌△BQH∴CH=QH……………5分∴△PHD的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.…………6分(3)过F作FM⊥AB,垂足为M,则FM=BC=AB又EF为折痕,∴EF⊥BP∴∠EFM+∠MEF=∠ABP+∠BEF=90°∴∠EFM=∠ABP又∵∠A=∠EMF=90°∴△EFM≌△BPA∴EM=AP=x………………7分∴在Rt△APE中,222(4)BE x BE-+=解得228xBE=+∴228xCF BE EM x=-=+-………………8分又四边形PEFG与四边形BEFC全等∴211()(4)4224xS BE CF BC x=+=+-⨯()62212+-=x∴当x=2时,S有最小值6……………9分AB CD EFGHPM29、解:(1)把点A (3,6)代入y=kx 得∵6=3k∴k=2 ∴y=2x ……………1分 OA=536322=+……………2分(2)QNQM 是一个定值,理由如下: 如答图1,过点Q 作QG⊥y 轴于点G ,QH⊥x 轴于点H①当Q H 与QM 重合时,显然QG 与QN 重合 此时2tan =∠===AOM OHQH QG QH QN QM ②当QH 与QM 不重合时∵QN⊥QM,QG⊥QH不妨设点H ,G 分别在x 、y 轴的正半轴上∴∠MQH=∠GQN又∵∠QHM=∠Q GN=90°∴△QHM∽△QGN∴2tan =∠===AOM OHQH QG QH QN QM当点P 、Q 在抛物线和直线上不同位置时,同理可得2=QNQM ……………6分 (3)如答图2,延长AB 交x 轴于点F ,过点F 作FC⊥OA 于点C ,过点A 作AR⊥x轴于点R∵∠AOD=∠BAE∴AF=OF∴OC=AC= ∵∠ARO=∠FCO=90°,∠AOR=∠FOC∴△AOR∽△FOC∴5353===OR AO OC OF ∴OF=2155253=⨯∴点F (215,0) 25321=OA设直线AF 为y=kx+b (k≠0)把A (3,6),F (215,0)代入得 k=34-,b=10, 即1034+-=x y ∴⎪⎪⎩⎪⎪⎨⎧+-=+-=32227410342x y x y∴⎩⎨⎧==⎩⎨⎧==26(63y x y x 舍去), ∴B(6,2)∴AB=5…………7分(其它方法求出AB 的长酌情给分)在△ABE 与△OED 中∵∠BAE=∠BED∴∠ABE+∠AEB=∠DEO+∠AEB,∴∠ABE=∠DEO∵∠BAE=∠EOD∴△ABE∽△OED设OE=x ,则AE=x -53(0<x <53)由△ABE∽△OED 得xx OE AB OD AE 5m -53==即 ∴49)253(51)53(512+--=-=x x x m …………8分 ∴顶点为)49,253(∴如答图3,当49=m 时,OE=x=253,此时E 点有1个……………9分 当0<m <49时,任取一个m 的值都对应着两个x 值,此时E 点有2个…10分。

2013江苏省苏州市中考数学试题及标准答案(详细解析版)

2013江苏省苏州市中考数学试题及标准答案(详细解析版)

江苏省苏州市2013年中考数学试卷一、选择题(本大共10小题,每小题3分,满分30分)1.(3分)(2013•苏州)|﹣2|等于()A. 2B.﹣2 C. D.考点: 绝对值.分析:根据绝对值的性质可直接求出答案.解答:解:根据绝对值的性质可知:|﹣2|=2.故选A.点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2013•苏州)计算﹣2x2+3x2的结果为()A. ﹣5x2B. 5x2C.﹣x2D.x2考点: 合并同类项.分析:根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变即可求解.解答:解:原式=(﹣2+3)x2=x2,故选D.点评:本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.3.(3分)(2013•苏州)若式子在实数范围内有意义,则x的取值范围是( )A.x>1 B. x<1 C. x≥1 D.x≤1考点:二次根式有意义的条件.分析:根据二次根式有意义的条件可得x﹣1≥0,再解不等式即可.解答:解:由题意得:x﹣1≥0,解得:x≥1,故选:C.点评:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.4.(3分)(2013•苏州)一组数据:0,1,2,3,3,5,5,10的中位数是()A.2.5 B.3C.3.5 D. 5考点: 中位数.分析:根据中位数的定义先把这组数据从小到大排列,再求出最中间两个数的平均数即可.解答:解:将这组数据从小到大排列为:0,1,2,3,3,5,5,10,最中间两个数的平均数是:(3+3)÷2=3,则中位数是3;故选B.点评:此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).5.(3分)(2013•苏州)世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为( )A.5B. 6C.7D. 8考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6700000用科学记数法表示为6.7×106,故n=6.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(3分)(2013•苏州)已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A. x1=1,x2=﹣1B. x1=1,x2=2 C.x1=1,x2=0 D.x1=1,x2=3考点:抛物线与x轴的交点.分析:关于x的一元二次方程x2﹣3x+m=0的两实数根就是二次函数y=x2﹣3x+m(m为常数)的图象与x轴的两个交点的横坐标.解答:解:∵二次函数的解析式是y=x2﹣3x+m(m为常数),∴该抛物线的对称轴是:x=.又∵二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),∴根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0),∴关于x的一元二次方程x2﹣3x+m=0的两实数根分别是:x1=1,x2=2.故选B.点评:本题考查了抛物线与x轴的交点.解答该题时,也可以利用代入法求得m的值,然后来求关于x的一元二次方程x2﹣3x+m=0的两实数根.7.(3分)(2013•苏州)如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB等于()A.55° B. 60°C.65°D. 70°考点: 圆周角定理;圆心角、弧、弦的关系.专题:计算题.分析:连结BD,由于点D是AC弧的中点,即弧CD=弧AD,根据圆周角定理得∠ABD=∠CBD,则∠ABD=25°,再根据直径所对的圆周角为直角得到∠ADB=90°,然后利用三角形内角和定理可计算出∠DAB的度数.解答:解:连结BD,如图,∵点D是AC弧的中点,即弧CD=弧AD,。

2013年江苏中考数学模拟试卷2(附答案)

2013年江苏中考数学模拟试卷2(附答案)

A .C .D .B .2013年江苏中考数学模拟试卷二第Ⅰ卷 (选择题共24分一.选择题(本大题共8题,每题3分,共24分。

下列四个选项中,只有一个选项是符合题意的1.3-的倒数是(A .13B .13-C .3D .3-2.下列图形:其中是中心对称图形的个数为A.4B.3C.2D.13.淮安市“十二五”规划纲要指出,力争到2015年,全市农民人均年纯收入超过13000元,数13000用科学记数法可以表示为A. 41.310⨯B. 31310⨯C. 50.1310⨯D.213010⨯ 4.如图所示的几何体的主视图是5.已知一个菱形的周长是20cm ,两条对角线的比是4∶3,则这个菱形的面积是A .12cm 2B .96cm 2C .48cm 2D .24cm 26.某车间5名工人日加工零件数分别为6,10,4,5,4,则这组数据的中位数是 A.4B.6C.5D.107.已知a ,b 为实数,则解可以为– 2 < x < 2的不等式组是A.⎩⎨⎧>>11bx axB. ⎩⎨⎧<>11bx axC. ⎩⎨⎧><11bx axD. ⎩⎨⎧<<11bx ax8.如图,直线0(<=k kx y 与双曲线xy 2-=交于,(,,(2211y x B y x A 两点,则122183y x y x -的值为[来源:学科网ZXXK]A.-5B.-10C.5D.10[来源:学§科§网Z§X§X§K]第Ⅱ卷 (非选择题共126分二、填空题(本大题共有10小题,每小题3分,共30分.不需要写出解答过程,请把答案直接写在答题卡相应位置上........ 9.计算a 3·a 4的结果▲10.如图(十九,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整。

2013苏州中考数学

2013苏州中考数学

江苏省苏州市2013年中考数学试卷一、选择题(本大共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一个符合题目要求的,请将选择题的答案用2B铅笔涂在答案卡相应的位置上)223.(3分)(2013•苏州)若式子在实数范围内有意义,则x的取值范围是()5.(3分)(2013•苏州)世界文化遗产长城总长约为6700000m,若将6700000用科学记数n6.(3分)(2013•苏州)已知二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点27.(3分)(2013•苏州)如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB 等于()8.(3分)(2013•苏州)如图,菱形OABC的顶点C的坐标为(3,4).顶点A在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为()9.(3分)(2013•苏州)已知x﹣=3,则4﹣x2+x的值为()10.(3分)(2013•苏州)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一个动点,则PA+PC的最小值为()B二、填空题:本大题共8个小题,每小题3分,共24分。

把答案直接填在答案卡相对应位置上。

11.(3分)(2013•苏州)计算:a4÷a2=a2.12.(3分)(2013•苏州)分解因式:a2+2a+1=(a+1)2.13.(3分)(2013•苏州)方程=的解为x=2.14.(3分)(2013•苏州)任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数大于4的概率为.15.(3分)(2013•苏州)按照如图所示的操作步骤,若输入x的值为2,则输出的值为20.16.(3分)(2013•苏州)如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧的弧长为π.(结果保留π)17.(3分)(2013•苏州)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为(2,4﹣2).18.(3分)(2013•苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若=,则=用含k的代数式表示).三、解答题(本大题共11小题,共76分.把解答过程写在答案卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明。

江苏省苏州市2013年中考数学模拟试卷(解析版) 苏科版

江苏省苏州市2013年中考数学模拟试卷(解析版) 苏科版

某某省某某市2013年中考数学模拟试卷一、选择题:(本大题共10小题,每小题3分,共30分)1.(3分)5的倒数是()A.B.﹣C.5D.﹣5考点:倒数分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:5的倒数是.故选A.点评:本题主要考查了倒数的定义.注意一个数与它的倒数符号相同.2.(3分)在函数y=﹣中,自变量x的取值X围是()A.x≠2B.x≤﹣2 C.x≠﹣2 D.x≥﹣2 考点:函数自变量的取值X围;分式有意义的条件专题:计算题;压轴题.分析:求函数自变量的取值X围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.解答:解:根据题意得:x+2≠0解得:x≠﹣2;故选C.点评:当函数表达式是分式时,要注意考虑分式的分母不能为0.3.(3分)(2007•某某)解集在数轴上表示为如图所示的不等式组是()A.B.C.D.考点:在数轴上表示不等式的解集分析:由数轴可以看出不等式的解集在﹣3到2之间,且不能取到﹣3,能取到2,即﹣3<x≤2.解答:解:根据数轴得到不等式的解集是:﹣3<x≤2.A、不等式组的解集是x≥2.B、不等式组的解集是x<﹣3.C、不等式组无解.D、不等式组的解集是﹣3<x≤2.故选D.点评:在数轴上表示不等式组解集时,实心圆点表示“≥”或“≤”,空心圆圈表示“>”或“<”.4.(3分)等腰梯形ABCD中,E、F、G、H分别是各边的中点,则四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形考点:等腰梯形的性质;三角形中位线定理;菱形的判定分析:根据等腰梯形的性质,三角形的中位线的定理及菱形的判定可得到该四边形是菱形.解答:解:因为等腰梯形ABCD对角线相等,四边形EFGH各边平行且相等于对角线长的一半,故四边形EFGH的各边相等且对边平行,即菱形,故选C.点评:本题考查了等腰梯形的性质,三角形中位线定理和菱形的判定定理的理解及运用.5.(3分)下列运算中,结果正确的是()A.a4+a4=a8B.a3•a2=a5C.a8÷a2=a4D.(﹣2a2)3=﹣6a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方分析:根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.解答:解:A、应为a4+a4=2a4,故本选项错误;B、a3•a2=a3+2=a5,正确;C、应为a8÷a2=a8﹣2=a6,故本选项错误;D、应为(﹣2a2)3=(﹣2)3•(a2)3=﹣8a6,故本选项错误.故选B.点评:本题考查同底数幂的乘法法则,同底数幂的除法法则,积的乘方的性质,熟练掌握运算法则是解题的关键.6.(3分)(2004•潍坊)如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲乙B.甲丙C.乙丙D.乙考点:全等三角形的判定分析:甲不符合三角形全等的判断方法,乙可运用SAS判定全等,丙可运用AAS证明两个三角形全等.解答:解:由图形可知,甲有一边一角,不能判断两三角形全等,乙有两边及其夹角,能判断两三角形全等,丙得出两角及其一角对边,能判断两三角形全等,根据全等三角形的判定得,乙丙正确.故选C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(3分)为建设生态某某,我市某中学在植树节那天,组织初三年级八个班的学生到西城新区植树,各班植树情况如下表:班级一二三四五六七八合计棵数15 18 22 25 29 14 18 19 160下列说法错误的是()A.这组数据的众数是18 B.C.这组数据的平均数是20 D.这组数据的极差是13考点:极差;算术平均数;中位数;众数专题:图表型.分找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均析:数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.极差是最大的数与最小的数的差.解答:解:根据众数,中位数,平均数的定义可以知道A、B、C是正确的;极差是最大值与最小值的差,最大值是29,最小值是14,则极差是29﹣14=15,故该选项错误.故选D.点评:本题为统计题,考查极差、众数与中位数的意义.8.(3分)已知二次函数y=x2﹣4x+a,下列说法错误的是()A.当x<1时,y随x的增大而减小B.若图象与x轴有交点,则a≤4C.当a=3时,不等式x2﹣4x+a>0的解集是1<x<3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a=﹣3 考点:二次函数的性质分析:现根据函数解析式,画出草图.A、此函数在对称轴的左边是随着x的增大而减小,在右边是随x增大而增大,据此作答;B、和x轴有交点,就说明△≥0,易求a的取值;C、解一元二次不等式即可;D、根据左加右减,上加下减作答即可.解答:解:∵y=x2﹣4x+a,∴对称轴x=2,此二次函数的草图如图:A、当x<1时,y随x的增大而减小,此说法正确;B、当△=b2﹣4ac=16﹣4a≥0,即a≥4时,二次函数和x轴有交点,此说法正确;C、当a=3时,不等式x2﹣4x+a>0的解集是x<1或x>3,此说法错误;D、y=x2﹣4x+a配方后是y=(x﹣2)2+a﹣4,向上平移1个单位,再向左平移3个单位后,函数解析式是y=(x+1)2+a﹣3,把(1,﹣2)代入函数解析式,易求a=﹣3,此说法正确.故选C.点评:本题考查暗恋二次函数的性质,解题的关键是掌握有关二次函数的增减性、与x轴交点的条件、与一元二次不等式的关系、上下左右平移的规律.9.(3分)如图,是一个工件的三视图,则此工件的全面积是()A.85πcm2B.90πcm2C.155πcm2D.165πcm2考点:由三视图判断几何体专压轴题.题:分析:如图,首先得知这个几何体为一个圆锥,然后根据题意得出它的半径,高以及母线长,继而球出它的表面积.解答:解:由图可知这个几何体是个圆锥,且它的底面圆的半径是5cm,高12cm,母线长=13cm,它的表面积=侧面积+底面积=π×5×13+π×5×5=90πcm2.故选B.点评:可先根据三视图确定这个几何体的形状,然后根据其表面积计算方法进行计算.10.(3分)把2010个边长为1的正方形排成如图所示的图形,则这个图形的周长是()A.4020 B.4022 C.4024 D.4026考点:规律型:图形的变化类专题:压轴题.分析:本题可依次解出n=1,2,3,…,对应的图形的周长.再根据规律以此类推,可得出n=2010时,图形的周长.解答:解:∵n=1时,周长为4,即4+0×2;n=2时,周长为6,即4+1×2;n=3时,周长为8,即4+2×2;n=4时,周长为10,即4+3×2;…;∴n=2010时,周长为4+2009×2=4022.故选B .点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题:(本大题共8小题,每小题3分,共24分)11.(3分)当1<x<2时,化简|1﹣x|+的结果是 1 .考点:二次根式的性质与化简分析:首先根据x的X围确定1﹣x与2﹣x的符号,然后根据算术平方根的定义即可化简求解.解答:解:∵1<x<2,∴1﹣x<0,2﹣x>0,∴|1﹣x|+=|1﹣x|+=x﹣1+2﹣x=1.故答案是:1.点评:本题考查了二次根式的化简,正确理解算术平方根的定义是关键.12.(3分)某种花粉直径为0.00004098m,这个长度用科学记数法表示为 4.10×10﹣5m(保留3个有效数字)考点:科学记数法与有效数字分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关解解:0.00004098=4.098×10﹣5≈4.10×10﹣5.答:故答案为:4.10×10﹣5.点评:此题主要考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.13.(3分)如图,在一段坡度为1:2的山坡上种树,要求株距(即相邻两株树之间的水平距离)为6米,那么斜坡上相邻两株树之间的坡面距离为米.考点:解直角三角形的应用-坡度坡角问题分析:利用垂直距离:水平宽度得到水平距离与斜坡的比,把相应的数值代入即可.解答:解:∵坡度为1:2,=,且株距为6米,∴株距:坡面距离=2:.∴坡面距离=株距×=3(米).另解:∵CB:AB=1:2,设CB=x,AB=2x,∴AC==x,∴=,∵AB=6,∴AC=×6=3.点本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角评:形中,进行解决.要注意坡度是坡角的正切函数.14.(3分)如图,DE是△ABC的中位线,M、N分别是BD、CE的中点,MN=6,则BC= 8 .考点:梯形中位线定理;三角形中位线定理专题:计算题.分析:利用三角形的中位线求得DE与BC 的关系,利用梯形的中位线的性质求得BC 的长即可.解答:解:∵DE是△ABC的中位线,∴DE=BC,DE∥BC∵M、N分别是BD、CE的中点,∴由梯形的中位线定理得:MN=(DE+BC)=×BC=6,∴BC=8.故答案为:8.点评:本题考查的知识比较全面,需要用到梯形和三角形中位线定理以及平行四边形的性质.15.(3分)某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,则此人买甲股票的钱比买乙股票的钱多6000 元.考一元一次方程的应用点:专题:方程思想.分析:本题包含两个等量关系是:甲股票的价钱+乙股票的价钱=24000;甲股票赚的钱﹣乙股票赔的钱=1350.解答:解:设买了甲股票x元,乙股票y元.则,整理,得,①×2+②得5x=75000,解得x=15000,y=24000﹣15000=9000,即.15000﹣9000=6000,故答案为:6000.点评:此题考查的知识点是二元一次方程组的应用,关键要明确本题中的第二个等量关系是最简单的等量关系.甲股票赚的钱﹣乙股票赔的钱=1350.在此类题中应找到最简单的等量关系,以防出错.16.(3分)如图:AB为⊙O的直径,则∠1+∠2=90°.考点:圆周角定理分析:因为AB是直径,那么∠ADB=∠2+∠ADE=90°,而∠ADE=∠1,那么∠ADE+∠2=∠1+∠2,即∠1+∠2=90°.解答:解:∵AB是直径,∴∠ADE=90°,∴∠2+∠ADE=90°,又∵∠1=∠ADE,∴∠1+∠2=∠ADE+∠2,∴∠1+∠2=90°.点评:本题利用了同圆中同弧所对的圆周角相等,直径所对的圆周角等于90°、等式性质.17.(3分)已知关于x的函数y=ax2+x+1(a为常数),它的图象是抛物线,且顶点始终在x 轴上方,则a的取值X围是a>或a<0 .考点:抛物线与x轴的交点.分析:根据抛物线的纵坐标的顶点公式列出关于a不等式则可解.解答:解:依题意有:>0,当4a>0,4a﹣1>0,解得a>;当4a<0,4a﹣1<0,解得a<0.∴a>或a<0.故答案是:a>或a<0.点评:本题考查了抛物线与x轴的交点.当顶点在x轴上方时,那么顶点纵坐标大于0.18.(3分)如图1,正六边形ABCDEF的面积为1,把它的各边延长一倍得到新正六边形A1B1C1D1E1F1(如图2),称为第一次扩展;把正六边形A1B1C1D1E1F1边长按原法延长一倍得到正六边形A2B2C2D2E2F 2(如图3),称为第二次扩展;如此下去…,第n次扩展得到正六边形A n B n D n E n F n 的面积为3n.考点:正多边形和圆;三角形的面积专题:压轴题;规律型.分析:本题建立在正六边形背景上,进行逐渐的图形“拓展”变化,进而从特殊到一般进行归纳总结拓展后正六边形面积与原正六边形面积之间的规律,复杂图形中含有基本图形(2),为学生研究提供的基本图形,进而得出从特殊归纳出一般性规律.解答:解:∵拓展前后正六边形是彼此相似的,∴可以利用相似图形的性质求出相似比,从而求出拓展后六边形的面积,∵正六边形ABCDEF的面积为1,把它的各边延长一倍得到新正六边形A1B1C1D1E1F1(如图2),∴=,∴正六边形A1B1C1D1E1F1面积为:3,∴正六边形A2B2C2D2E2F2面积为:9,以此类推得出,第n次扩展得到正六边形A n B n D n E n F n的面积为:3n.故答案为:3n.点评:此题主要考查了正多边形的性质与相似图形的性质,本题解决的关键是寻找到拓展的正六边形的面积于被拓展的正六边形面积之间的关系.三、解答题:(本大题共11小题,共76分)19.(4分)计算:4cos30°﹣|﹣2|+()0﹣+(﹣)﹣2.考点:特殊角的三角函数值;绝对值;零指数幂;负整数指数幂;二次根式的性质与化简专题:计算题.分析:按照实数的运算法则依次计算:cos30°=,|﹣2|=,()0=1,=3,(﹣)﹣2=9.解答:解:4co s30°﹣|﹣2|+()0﹣+(﹣)﹣2 =(3分)=(5分)=8.(6分)点评:本题重点考查了实数的基本运算能力.涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.20.(4分)化简求值:,其中x=2.考点:分式的化简求值专题:计算题.分析:本题的关键是正确进行分式的通分、约分,并准确代值计算.解答:解:原式=,当x=2时,原式=﹣2.点评:本题主要考查分式的化简求值,式子化到最简是解题的关键.21.(6分)解方程:.考点:解分式方程分析:观察可得最简公分母是(x+2)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:原方程即:.(1分)方程两边同时乘以(x+2)(x﹣2),得x(x+2)﹣(x+2)(x﹣2)=8.(4分)化简,得 2x+4=8.解得:x=2.(7分)检验:x=2时,(x+2)(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程无解.(8分)点此题考查了分式方程的求解方法.此题比较简单,注意转化思想的应用,注意解分评:式方程一定要验根.22.(6分)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.考点:一次函数综合题;线段垂直平分线的性质;作图—应用与设计作图;轴对称-最短路线问题专题:综合题.分析:(1)连接AB,作出线段AB的垂直平分线,与x 轴的交点即为所求的点;(2)找到点A关于x轴的对称点,连接对称点与点B与x轴交点即为所求作的点.解答:解:(1)存在满足条件的点C;作出图形,如图所示.(2)作点A关于x轴对称的点A′(2,﹣2),连接A′B,与x轴的交点即为所求的点P.设A′B所在直线的解析式为:y=kx+b,把(2,﹣2)和(7,3)代入得:,解得:,∴y=x﹣4,当y=0时,x=4,所以交点P为(4,0).点评:本题是一道典型的一次函数综合题,题目中还涉及到了线段的垂直平分线的性质及轴对称的问题.23.(6分)已知二次函数y=ax2+bx+c(a,b,c是常数),x与y的部分对应值如下表:x ﹣2 ﹣1 0 1 2 3y ﹣16 ﹣6 0 2 0 ﹣6(1)请写出这个二次函数的对称轴方程;(2)判断点A(,1)是否在该二次函数的图象上,并说明理由.考点:二次函数的性质;二次函数图象上点的坐标特征专题:图表型.分析:(1)用待定系数法求出二次函数的解析式;(2)把点A(,1)代入二次函数的解析式,看是否符合即可.解答:解:(1)由题意可得,解得故该二次函数的解析式为y=﹣2x2+4x这个二次函数的对称轴方程为x=﹣=﹣=1 (2)当x=时,y=﹣2×+4×=≠1∴A(,1)不在该二次函数的图象上.(6分)点评:本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法等知识,难度不大.(利用点的对称性解答更简单x==1)24.(7分)如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?考点:解直角三角形的应用-仰角俯角问题专题:压轴题.分析:根据已知角的度数,易求得∠BAC=∠BCA=30°,由此得BC=AB=3米;可在Rt△CBF 中,根据BC的长和∠CBF的余弦值求出BF的长,进而由x=BF﹣EF求得汽车车头与斑马线的距离.解答:解:如图:延长AB.∵CD∥AB,∴∠CAB=30°,∠CBF=60°;∴∠BCA=60°﹣30°=30°,即∠BAC=∠BCA;∴BC=AB=3米;Rt△BCF 中,BC=3米,∠CBF=60°;∴BF=BC=1.5米;故x=BF﹣EF=1.5﹣0.8=0.7米.答:这时汽车车头与斑马线的距离x是0.7米.点评:本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.25.(7分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打笫一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.考点:列表法与树状图法专题:计算题;压轴题.分析:(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单,求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率;(2)由一共有3种等可能性的结果,其中恰好选中乙同学的有1种,即可求得答案.解答:解:(1)方法一画树状图得:方法二列表得:甲乙丙丁甲/ 甲、乙甲、丙甲、丁乙乙、甲/乙、丙乙、丁丙丙、甲丙、乙/丙、丁丁丁、甲丁、乙丁、丙/∴所有等可能性的结果有12种,其中恰好选中甲、乙两位同学的结果有2种,∴恰好选中甲、乙两位同学的概率为:=;(2)∵一共有3种等可能性的结果,其中恰好选中乙同学的有1种,∴恰好选中乙同学的概率为:.点评:本题考查的是用列表法或画树状图法求概率与古典概率的求解方法.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.26.(8分)如图,把一X长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.考点:一元二次方程的应用分析:(1)等量关系为:(原来长方形的长﹣2正方形的边长)×(原来长方形的宽﹣2正方形的边长)=48,把相关数值代入即可求解;(2)同(1)先用x表示出不同侧面的长,然后根据矩形的面积将4个侧面的面积相加,得出关于侧面积和正方形边长的函数式,然后根据函数的性质和自变量的取值X 围来得出侧面积的最大值.解答:解:(1)设正方形的边长为xcm.则(10﹣2x)(8﹣2x)=48,即x2﹣9x+8=0,解得x1=8(不合题意,舍去),x2=1.答:剪去的正方形的边长为1cm.(2)有侧面积最大的情况.设正方形的边长为xcm,盒子的侧面积为ycm2,则y与x的函数关系式为:y=2(10﹣2x)x+2(8﹣2x)x,即y=﹣8x2+36x.(0<x<4)改写为y=﹣8(x ﹣)2+,∴当x=2.25时,y最大=40.5.2.点评:此题主要考查了矩形的面积的求法,二次函数的应用等知识点,根据面积的计算方法正确的表示出二次函数是解题的关键.27.(8分)将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.考点:全等三角形的判定与性质专题:证明题;压轴题;探究型.分析:(1)我们已知了三角形BED和CAB全等,那么DE=AF+CF,因此只要求出EF=CF就能得出本题所求的结论,可通过全等三角形来实现,连接BF,那么证明三角形BEF和BCF全等就是解题的关键,这两三角形中已知的条件有BE=BC,一条公共边,根据斜边直角边定理,这两个直角三角形就全等了,也就得出EF=CF,也就能证得本题的结论了;(2)解题思路和辅助线的作法与(1)完全一样;(3)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.解(1)证明:连接BF(如图①),答:∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.∵BF=BF,∴Rt△BFC≌Rt△BFE.∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图②∴(1)中的结论AF+EF=DE仍然成立;(3)不成立.证明:连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,,∴△BCF≌△BEF,∴CF=EF;∵△ABC≌△DBE,∴AC=DE,∴AF=AC+FC=DE+EF.点评:本题考查了全等三角形的判定和性质,通过构建全等三角形来得出简单的线段相等是解题的关键.28.(10分)如图,⊙O的半径为1,等腰直角三角形ABC的顶点B的坐标为(0,),∠CAB=90°,AC=AB,顶点A在⊙O上运动.(1)当点A在y轴上时,求点C的坐标;(2)当点A运动到y轴的负半轴上时,试判断直线BC与⊙O位置关系,并说明理由;(3)当点A在y轴右侧运动时,设点A的纵坐标为x,△ABC的面积为S,求S与x之间的函数关系式,并写出S的取值X围;(4)当直线AB与⊙O在第一象限内相切时,在坐标轴上是否存在一点P,使得以P、A、B、C为顶点的四边形是梯形?若存在,请直接写出点P的坐标;若不存在,请说明理由.考点:圆的综合题专题:代数几何综合题.分析:(1)分点A在y轴正半轴和负半轴两种情况先求出AB的长,再根据等腰直角三角形的性质可得AC=AB,然后写出点C的坐标即可;(2)根据切线的定义判断即可;(3)过点A作AD⊥y轴于D,连接OA,利用勾股定理列式表示出AD2,再求出BD,利用勾股定理列式表示出AB2,然后根据等腰直角三角形的面积等于直角边平方的一半列式整理即可得解,然后根据一次函数的增减性求出S的取值X围;(4)连接OA,利用勾股定理列式求出AB,从而得到△ABO是等腰直角三角形,再求出点A、C的坐标,然后利用待定系数法求出直线AB、AC的解析式,再分①PC∥AB,②PA∥BC,③PB∥AC三种情况分别求出直线PC的解析式,求出与坐标轴的交点,即为点P的坐标.解答:解:(1)当点A在y轴正半轴时,坐标为(0,1)时,AB=AC=﹣1,点C的坐标为(﹣1,1);当点A在y轴负半轴时,坐标为(0,﹣1)时,AB=AC=+1,点C的坐标为(+1,﹣1);(2)∵∠CAB=90°,∴AB⊥AC,又∵点A在y轴负半轴,且点A在⊙O上,∴直线BC与⊙O相切;(3)如图,过点A作AD⊥y轴于D,连接OA,根据勾股定理,AD2=OA2﹣OD2=12﹣x2=1﹣x2,∵BD=﹣x,∴在Rt△ABD中,AB2=BD2+AD2,=(﹣x)2+(1﹣x2),=2﹣2x+x2+1﹣x2,=﹣2x+3,∴等腰直角△ABC的面积为S=AB2=(﹣2x+3)=﹣x+,即S=﹣x+,∵﹣<0,∴S随x的增大而减小,又∵⊙O上的点A在y轴右侧运动,点A的纵坐标为x,∴﹣1<x<1,∴﹣+<S<+;(4)存在.如图,连接OA,∵直线AB与⊙O在第一象限内相切,∴OA⊥AB,∴AB===1,∴OA=AB,∴△AOB是等腰直角三角形,∴点A(,),∵△ABC是等腰直角三角形,∴BC=AB=,∴点C的坐标为(,),易求直线AB的解析式为y=﹣x+,直线AC的解析式为y=x,①PC∥AB时,设直线PC的解析式为y=﹣x+b1,把C(,)代入得,﹣+b1=,解得b1=2,所以,直线PC的解析式为y=﹣x+2,令y=0,则﹣x+2=0,解得x=2,此时,点P的坐标为P1(2,0),令x=0,则y=2,此时,点P的坐标为P2(0,2),②PA∥BC时,点P的坐标为P3(0,);③PB∥AC时,设直线PC的解析式为y=x+b2,把点B(0,)代入求得b2=,所以,直线PB的解析式为y=x+,令y=0,则x+=0,解得x=﹣,此时,点P的坐标为P4(﹣,0),综上所述,存在点P1(2,0),P2(0,2),P3(0,),P4(﹣,0)使得以P、A、B、C为顶点的四边形是梯形.点评:本题是圆的综合题型,主要考查了等腰直角三角形的性质,圆的切线的判定,勾股定理,三角形的面积,一次函数的增减性,梯形的判定,综合性较强,难度较大,特别是(4)要分情况讨论.29.(10分)(1)问题探究如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.(2)拓展延伸①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N 是否仍成立?若成立,给出证明;若不成立,说明理由.②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)考点:全等三角形的判定与性质;等边三角形的性质;正方形的性质;正多边形和圆专题:几何综合题;压轴题.分析:(1)根据正方形的每一个角都是90°可以证明∠AHK=90°,然后利用平角等于180°以及直角三角形的两锐角互余证明∠D1CK=∠HAC,再利用“角角边”证明△ACH和△CD1M全等,根据全等三角形对应边相等可得D1M=CH,同理可证D2N=CH,从而得证;(2)①过点C作CG⊥AB,垂足为点G,根据三角形的内角和等于180°和平角等于180°证明得到∠H1AC=∠D1CM,然后利用“角角边”证明△ACG和△CD1M全等,根据全等三角形对应边相等可得CG=D1M,同理可证CG=D2N,从而得证;②结论仍然成立,与①的证明方法相同.解答:(1)D1M=D2N.证明:∵∠ACD1=90°,∴∠ACH+∠D 1CK=180°﹣90°=90°,∵∠AHK=∠ACD1=90°,∴∠ACH+∠HAC=90°,∴∠D1CK=∠HAC,在△ACH和△CD1M中,,∴△ACH≌△CD1M(AAS),∴D1M=CH,同理可证D2N=CH,∴D1M=D2N;(2)①证明:D1M=D2N成立.过点C作CG⊥AB,垂足为点G,∵∠H1AC+∠ACH1+∠AH1C=180°,∠D1CM+∠ACH1+∠ACD1=180°,∠AH1C=∠ACD1,∴∠H1AC=∠D1CM,在△ACG和△CD1M中,,∴△ACG≌△CD1M(AAS),∴CG=D1M,同理可证CG=D2N,∴D1M=D2N;②作图正确.D1M=D2N还成立.点评:本题考查了全等三角形的判定与性质,等边三角形的性质,正方形的性质,正多边形的性质,读懂题意,证明得到∠D1CK=∠HAC(或∠H1AC=∠D1CM)是证明三角形全等。

2013年江苏省苏州市中考数学试题及答案

2013年江苏省苏州市中考数学试题及答案

D. x1= 1, x2= 3
7.如图, AB是半圆的直径,点 D 是 AC的中点,∠ ABC= 50°,则∠ DAB等于(

A. 55°
B. 60°
C. 65°
D. 70°
8.如图,菱形 OABC的顶点 C 的坐标为 (3 , 4) ,顶点 A 在 x 轴的正半轴上.反比例函数 y
= k (x>0) 的图象经过顶点 B,则 k 的值为( x
) A .12 B. 20 C.24 D.32
9.已知 x- 1 = 3,则 4- 1 x 2+ 3 x 的值为(
x
22
) A .1 B . 3 2
C. 5 D . 7
2
2
10.如图,在平面直角坐标系中, Rt △ OAB的顶点 A 在 x 轴的正半轴上,顶点 B( 1 , 0),点 P 为斜边 OB上的一动点,则 PA+ PC的最小值为 2

2
B. x<1
C. x≥1
D. x≤1
4.一组数据: 0, 1, 2, 3,3, 5, 5,10 的中位数是(

A . 2.5
B. 3
C. 3.5
D. 5
5.世界文化遗产长城总长约为 6700000m,若将 6700000 用科学记数法表示为 6.7 × 10n( n
是正整数),则 n 的值为(
) A .5
(2) 小船从点 P 处沿射线 AP 的方向航行一段时间后,到达点 C 处.此时,从 B 测得小 船在北偏西 15°的方向.求点 C 与点 B 之间的距离. (上述 2 小题的结果都保留根号)
26.如图,点 P 是菱形 ABCD对角线 AC上的一点,连接 BP并延长 BP交边 AD于点 F,交 CD的延长线于点 G. (1) 求证:△ APB≌△ APD; (2) 已知 DF: FA=1: 2,设线段 DP 的长为 x, 线段 PF 的长为 y.①求 y 与 x 的函数关系式; ②当 x= 6 时,求线段 FG的长.

2013年江苏省苏州中考数学模拟组卷(带解析)

2013年江苏省苏州中考数学模拟组卷(带解析)

第1页共24页第2页共24页2013年江苏省苏州中考数学模拟组卷 考试范围:xxx ;考试时间:100分钟;命题人:xxx1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释 一、单选题(注释)1、如图所示,电路图上有A 、B 、C 三个开关和一个小灯泡,闭合开关C 或者同时闭合开关A 、B ,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于A .B .C .D .2、(2011?衢州)5月19日为中国旅游日,衢州推出“读万卷书,行万里路,游衢州景”的主题系列旅游惠民活动,市民王先生准备在优惠日当天上午从孔氏南宗家庙、烂柯山、龙游石窟中随机选择一个地点;下午从江郎山、三衢石林、开化根博园中随机选择一个地点游玩,则王先生恰好上午选中孔氏南宗家庙,下午选中江郎山这两个地的概率是( ) A .B .C .D .3、计算的结果为A .﹣1B .1C .D .74、下列二次根式中,最简二次根式是( ). A .;B .;C .;D ..5、(2011?湛江)数据1,2,4,4,3的众数是( ) A .1 B .2 C .3 D .46、已知某商品销售利润y(元)与该商品销售单价x(元)之间满足y=-20x2+1400x-20000,则获利最多为( ) A 4500 B 5500 C 450 D 20000第3页共24页第4页共24页7、本卷第17~25题的9道题中,每道题所赋分数的众数和中位数分别是( ) A .7,7 B .8,8 C .8,9 D .8,78、已知二次函数,为常数,当y 达到最小值时,x 的值为( ) A .;B .;C .;D .9、有一组数据:10,30,50,50,70.它们的中位数是 A .30 B .45 C .50 D .7010、武汉素有“首义之区”的美名,2011年9月9日,武汉与台湾将共同纪念辛亥革命一百周年.某校为了了解全校学生对辛亥革命的了解程度,随机抽取了部分学生进行问卷调查,并根据收集的信息进行了统计,绘制了下面尚不完整的统计图.根据以上的信息,下列判断:①参加问卷调查的学生有50名;②参加进行问卷调查的学生中,“基本了解”的有10人;③扇形图中“基本了解”部分的扇形的圆心角的度数是108°;④在参加进行问卷调查的学生中,“了解”的学生占10%.其中结论正确的序号是 A .①②③ B .①②④C .①③④D .②③④11、 一学生推铅球,铅球行进的高度y(m)与水平距离x(m)之间的关系式为y=-x2+x+,则铅球落地水平距离为( )mAB 3C 10D 1212、(2011?黑河)已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,现有下列结论:①b 2﹣4ac >0 ②a >0 ③b >0 ④c >0 ⑤9a+3b+c <0,则其中结论正确的个数是( )A .2个B .3个C .4个D .5个13、二次函数(≠0)的图像如图所示,其对称轴为=1,有如下结论:①<1 ②2+=0 ③<4④若方程的两个根为,,则+=2.则结论正确的是【 】第5页共24页第6页共24页A . ①②B .①③C .②④D .③④14、若二次函数.当≤ 3时,随的增大而减小,则的取值范围是 ( ) A .= 3 B .>3 C .≥ 3 D .≤ 3 15、(2011广西崇左,18,3分)已知:二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列结论中:①abc >0;②2a +b <0;③a +b <m (am +b )(m ≠1的实数);④(a +c )2<b 2;⑤a >1.其中正确的项是( ) A .①⑤ B .①②⑤ C .②⑤ D .①③④16、(2011广西崇左,14,3分)我市某中学八年级一班准备在“七一”组织参加红色旅游,班长把全班48名同学对旅游地点的意向绘制成了扇形统计图,其中“想去我市龙州县红八军纪念馆参加的学生数”的扇形圆心角为60°,则下列说法中正确的是( )A .想去龙州县红八军纪念馆参加的学生占全班学生的60%B .想去龙州县红八军纪念馆参观的学生有12人C .想去龙州县红八军纪念馆参观的学生肯定最多D .想去龙州县红八军纪念馆参观的学生占全班学生的17、某工厂为了选拔1名车工参加直径为5㎜精密零件的加工技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,平均数依次为、,方差依次为、,则下列关系中完全正确的是 ( )A < , <B = , < C=,>D>,>18、对于一组数据:75,73,75,71,76,下列说法正确的是( )A .这组数据的平均数是75B .这组数据的方差是3.2C .这组数据的中位数是74D .这组数据的众数是7619、(2011?湛江)甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45,则射箭成绩最稳定的是( ) A .甲 B .乙 C .丙 D .丁第7页共24页第8页共24页20、两班学生参加一个测试,20名学生的一班,平均分是80分;30名学生的一班平均分是70分,两班所有学生的平均分是 A .75分; B .74分; C .72分; D .77分. 21、(11·天水)将二次函数y =x 2-2x +3化为y =(x -h)2+k 的形式,结果为 A .y =(x +1)2+4 B .y =(x -1)2+4 C .y =(x +1)2+2 D .y =(x -1)2+222、已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,则正比例函数y =(b +c)x的图象与反比例函数的图象在同一坐标系中大致是【 】23、某校合唱团共有40名学生,他们的年龄如下表所示:年龄/岁11 12 13 14 人数/人8 12 17 3则合唱团成员年龄的众数和中位数分别是【 】A .13,12.5B .13,12C .12,13D .12,12.524、抛物线y =-(x +2)2-3的顶点坐标是( ). A .(2,-3); B .(-2,3); C .(2,3); D .(-2,-3). 25、(11·贺州)函数y =ax -2 (a≠0)与y =ax 2(a≠0)在同一平面直角坐标系中的图象可能是更多功能介绍/zt/第9页共24页第10页共24页分卷II分卷II 注释二、填空题(注释)26、(9分)某中学学生为了解该校学生喜欢球类活动的情况,随机抽取了若干名学生进行问卷调查(要求每位学生只能填写一种自己喜欢的球类),并将调查的结果绘制成如下的两幅不完整的统计图.请根据图中提供的信息,解答下面的问题:(1)参加调查的学生共有 人,在扇形图中,表示“其他球类”的扇形的圆心角为 度;(2)将条形图补充完整;(3)若该校有2000名学生,则估计喜欢“篮球”的学生共有 人.27、小明和小兵两人参加学校组织的理化实验操作测试,近期的5次测试成绩如图 所示,则小明5次成绩的方差S 与小兵5次成绩的方差S 之间的大小关系为S ______ S (填“>”、“<”或“=”).28、(2011?德州)若x 1,x 2是方程x 2+x ﹣1=0的两个根,则x 12+x 22= .29、(11·贺州)小王五次射击命中的环数分别是:7,9,8,9,10,这组数据的众数为:_ ▲ .30、一只不透明的袋子中有1个白球、1个红球和2个黄球,这些球除颜色不同外其它都相同,搅均后从中任意摸出1个球,摸出黄球可能性是 . 三、计算题(注释)31、(2011?湛江)计算:.32、计算:第11页共24页第12页共24页33、(本小题满分12分) (1)(2)34、 .计算: (1)(2)(3) (4)(6)35、(12分)计算: (1)(2)(3) (4)四、解答题(注释)36、“勤劳”是中华民族的传统美德,学校要求同学们在家里帮助父母做些力所能及的家务. 王刚同学在本学期开学初对部分同学寒假在家做家务的时间进行了抽样调查(时间取整数小时),所得数据统计如下表:(1)抽取样本的容量是 .(2)根据表中数据补全图中的频数分布直方图(3)样本的中位数所在时间段的范围是 . (4)若该学校有学生1260人,那么大约有多少学生在寒假做家务的时间在40.5~100.5小时之间?37、解方程 【小题1】【小题2】2x 2―3x―5=0 【小题3】38、某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考.请你回第13页共24页第14页共24页(1)根据上表提供的数据填写下表: (2)根据以上信息,你认为应该把冠军奖状发给哪一个班级? 简述理由.39、(本题满分12分,每小题满分各4分)已知平面直角坐标系xOy (如图1),一次函数的图像与y 轴交于点A ,点M 在正比例函数的图像上,且MO =MA .二次函数y =x 2+bx +c 的图像经过点A 、M . (1)求线段AM 的长;(2)求这个二次函数的解析式; (3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图像上,点D 在一次函数的图像上,且四边形ABCD 是菱形,求点C 的坐标.40、如图,正方形ABCD 的四个顶点分别在四条平行线、、、上,这四条直线中相邻两条之间的距离依次为、、(>0,>0,>0). (1)求证:=;(2)设正方形ABCD 的面积为S ,求证:S=;(3)若,当变化时,说明正方形ABCD 的面积S 随的变化情况.41、已知抛物线与x 轴交于不同的两点和,与y 轴交于点C ,且是方程的两个根().(1)求抛物线的解析式;(2)过点A 作AD ∥CB 交抛物线于点D ,求四边形ACBD 的面积;第15页共24页第16页共24页(3)如果P 是线段AC 上的一个动点(不与点A 、C 重合),过点P 作平行于x 轴的直线l 交BC 于点Q ,那么在x 轴上是否存在点R ,使得△PQR 为等腰直角三角形?若存在,求出点R 的坐标;若不存在,请说明理由.第17页共24页第18页共24页试卷答案1.B2.A3.【解析】分析:针对二次根式化简,立方根化简2个考点分别进行计算,然后根据实数的运算法则求得计算结果:。

苏州市中考数学模拟试卷及答案(word解析版)

苏州市中考数学模拟试卷及答案(word解析版)

江苏省苏州市2013年中考数学模拟试卷一、选择题:(本大题共10小题,每小题3分,共30分)1.(3分)5的倒数是()C.5D.﹣5A.B.﹣考点:倒数分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:5的倒数是.故选A.点评:本题主要考查了倒数的定义.注意一个数与它的倒数符号相同.2.(3分)在函数y=﹣中,自变量x的取值范围是()A.x≠2 B.x≤﹣2 C.x≠﹣2 D.x≥﹣2考点:函数自变量的取值范围;分式有意义的条件专题:计算题;压轴题.分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.解答:解:根据题意得:x+2≠0解得:x≠﹣2;故选C.点评:当函数表达式是分式时,要注意考虑分式的分母不能为0.3.(3分)(2007•福州)解集在数轴上表示为如图所示的不等式组是()A.B.C.D.考点:在数轴上表示不等式的解集分析:由数轴可以看出不等式的解集在﹣3到2之间,且不能取到﹣3,能取到2,即﹣3<x≤2.解答:解:根据数轴得到不等式的解集是:﹣3<x≤2.A、不等式组的解集是x≥2.B、不等式组的解集是x<﹣3.C、不等式组无解.D、不等式组的解集是﹣3<x≤2.故选D.点评:在数轴上表示不等式组解集时,实心圆点表示“≥”或“≤”,空心圆圈表示“>”或“<”.4.(3分)等腰梯形ABCD中,E、F、G、H分别是各边的中点,则四边形EFGH的形状是()A.平行四边形B.矩形C.菱形D.正方形考点:等腰梯形的性质;三角形中位线定理;菱形的判定分析:根据等腰梯形的性质,三角形的中位线的定理及菱形的判定可得到该四边形是菱形.解答:解:因为等腰梯形ABCD对角线相等,四边形EFGH各边平行且相等于对角线长的一半,故四边形EFGH的各边相等且对边平行,即菱形,故选C.点评:本题考查了等腰梯形的性质,三角形中位线定理和菱形的判定定理的理解及运用.5.(3分)下列运算中,结果正确的是()A.a4+a4=a8B.a3•a2=a5C.a8÷a2=a4D.(﹣2a2)3=﹣6a6考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方分析:根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,对各选项分析判断后利用排除法求解.解答:解:A、应为a4+a4=2a4,故本选项错误;B、a3•a2=a3+2=a5,正确;C、应为a8÷a2=a8﹣2=a6,故本选项错误;D、应为(﹣2a2)3=(﹣2)3•(a2)3=﹣8a6,故本选项错误.故选B.点评:本题考查同底数幂的乘法法则,同底数幂的除法法则,积的乘方的性质,熟练掌握运算法则是解题的关键.6.(3分)(2004•潍坊)如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲乙B.甲丙C.乙丙D.乙考点:全等三角形的判定分析:甲不符合三角形全等的判断方法,乙可运用SAS判定全等,丙可运用AAS证明两个三角形全等.解答:解:由图形可知,甲有一边一角,不能判断两三角形全等,乙有两边及其夹角,能判断两三角形全等,丙得出两角及其一角对边,能判断两三角形全等,根据全等三角形的判定得,乙丙正确.故选C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.(3分)为建设生态温州,我市某中学在植树节那天,组织初三年级八个班的学生到西城新区植树,各班植树情况如下表:班级一二三四五六七八合计棵数15 18 22 25 29 14 18 19 160下列说法错误的是()A.这组数据的众数是18 B.这组数据的中位数是18.5C.这组数据的平均数是20 D.这组数据的极差是13考点:极差;算术平均数;中位数;众数专题:图表型.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.极差是最大的数与最小的数的差.解答:解:根据众数,中位数,平均数的定义可以知道A、B、C是正确的;极差是最大值与最小值的差,最大值是29,最小值是14,则极差是29﹣14=15,故该选项错误.故选D.点评:本题为统计题,考查极差、众数与中位数的意义.8.(3分)已知二次函数y=x2﹣4x+a,下列说法错误的是()A.当x<1时,y随x的增大而减小B.若图象与x轴有交点,则a≤4C.当a=3时,不等式x2﹣4x+a>0的解集是1<x<3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,﹣2),则a=﹣3考点:二次函数的性质分析:现根据函数解析式,画出草图.A、此函数在对称轴的左边是随着x的增大而减小,在右边是随x增大而增大,据此作答;B、和x轴有交点,就说明△≥0,易求a的取值;C、解一元二次不等式即可;D、根据左加右减,上加下减作答即可.解答:解:∵y=x2﹣4x+a,∴对称轴x=2,此二次函数的草图如图:A、当x<1时,y随x的增大而减小,此说法正确;B、当△=b2﹣4ac=16﹣4a≥0,即a≥4时,二次函数和x轴有交点,此说法正确;C、当a=3时,不等式x2﹣4x+a>0的解集是x<1或x>3,此说法错误;D、y=x2﹣4x+a配方后是y=(x﹣2)2+a﹣4,向上平移1个单位,再向左平移3个单位后,函数解析式是y=(x+1)2+a﹣3,把(1,﹣2)代入函数解析式,易求a=﹣3,故选C.点评:本题考查暗恋二次函数的性质,解题的关键是掌握有关二次函数的增减性、与x轴交点的条件、与一元二次不等式的关系、上下左右平移的规律.9.(3分)如图,是一个工件的三视图,则此工件的全面积是()A.85πcm2B.90πcm2C.155πcm2D.165πcm2考点:由三视图判断几何体专题:压轴题.分析:如图,首先得知这个几何体为一个圆锥,然后根据题意得出它的半径,高以及母线长,继而球出它的表面积.解答:解:由图可知这个几何体是个圆锥,且它的底面圆的半径是5cm,高12cm,母线长=13cm,它的表面积=侧面积+底面积=π×5×13+π×5×5=90πcm2.故选B.点评:可先根据三视图确定这个几何体的形状,然后根据其表面积计算方法进行计算.10.(3分)把2010个边长为1的正方形排成如图所示的图形,则这个图形的周长是()A.4020 B.4022 C.4024 D.4026考点:规律型:图形的变化类专题:压轴题.分析:本题可依次解出n=1,2,3,…,对应的图形的周长.再根据规律以此类推,可得出n=2010时,图形的周长.解答:解:∵n=1时,周长为4,即4+0×2;n=2时,周长为6,即4+1×2;n=3时,周长为8,即4+2×2;n=4时,周长为10,即4+3×2;…;∴n=2010时,周长为4+2009×2=4022.故选B.点评:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.二、填空题:(本大题共8小题,每小题3分,共24分)11.(3分)当1<x<2时,化简|1﹣x|+的结果是1.考点:二次根式的性质与化简分析:首先根据x的范围确定1﹣x与2﹣x的符号,然后根据算术平方根的定义即可化简求解.解答:解:∵1<x<2,∴1﹣x<0,2﹣x>0,∴|1﹣x|+=|1﹣x|+=x﹣1+2﹣x=1.故答案是:1.点评:本题考查了二次根式的化简,正确理解算术平方根的定义是关键.12.(3分)某种花粉直径为0.00004098m,这个长度用科学记数法表示为 4.10×10﹣5m (保留3个有效数字)考点:科学记数法与有效数字分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关解答:解:0.00004098=4.098×10﹣5≈4.10×10﹣5.故答案为:4.10×10﹣5.点评:此题主要考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.13.(3分)如图,在一段坡度为1:2的山坡上种树,要求株距(即相邻两株树之间的水平距离)为6米,那么斜坡上相邻两株树之间的坡面距离为米.考点:解直角三角形的应用-坡度坡角问题分析:利用垂直距离:水平宽度得到水平距离与斜坡的比,把相应的数值代入即可.解答:解:∵坡度为1:2,=,且株距为6米,∴株距:坡面距离=2:.∴坡面距离=株距×=3(米).另解:∵CB:AB=1:2,设CB=x,AB=2x,∴AC==x,∴=,∵AB=6,∴AC=×6=3.点评:本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.要注意坡度是坡角的正切函数.14.(3分)如图,DE是△ABC的中位线,M、N分别是BD、CE的中点,MN=6,则BC= 8.考点:梯形中位线定理;三角形中位线定理专题:计算题.分析:利用三角形的中位线求得DE与BC的关系,利用梯形的中位线的性质求得BC的长即可.解答:解:∵DE是△ABC的中位线,∴DE=BC,DE∥BC∵M、N分别是BD、CE的中点,∴由梯形的中位线定理得:MN=(DE+BC)=×BC=6,∴BC=8.故答案为:8.点评:本题考查的知识比较全面,需要用到梯形和三角形中位线定理以及平行四边形的性质.15.(3分)某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,则此人买甲股票的钱比买乙股票的钱多6000元.考点:一元一次方程的应用专题:方程思想.分析:本题包含两个等量关系是:甲股票的价钱+乙股票的价钱=24000;甲股票赚的钱﹣乙股票赔的钱=1350.解答:解:设买了甲股票x元,乙股票y元.则,整理,得,①×2+②得5x=75000,解得x=15000,y=24000﹣15000=9000,即.15000﹣9000=6000,故答案为:6000.点评:此题考查的知识点是二元一次方程组的应用,关键要明确本题中的第二个等量关系是最简单的等量关系.甲股票赚的钱﹣乙股票赔的钱=1350.在此类题中应找到最简单的等量关系,以防出错.16.(3分)如图:AB为⊙O的直径,则∠1+∠2=90°.考点:圆周角定理分析:因为AB是直径,那么∠ADB=∠2+∠ADE=90°,而∠ADE=∠1,那么∠ADE+∠2=∠1+∠2,即∠1+∠2=90°.解答:解:∵AB是直径,∴∠ADE=90°,∴∠2+∠ADE=90°,又∵∠1=∠ADE,∴∠1+∠2=∠ADE+∠2,∴∠1+∠2=90°.点评:本题利用了同圆中同弧所对的圆周角相等,直径所对的圆周角等于90°、等式性质.17.(3分)已知关于x的函数y=ax2+x+1(a为常数),它的图象是抛物线,且顶点始终在x 轴上方,则a的取值范围是a>或a<0.考点:抛物线与x轴的交点.分析:根据抛物线的纵坐标的顶点公式列出关于a不等式则可解.解答:解:依题意有:>0,当4a>0,4a﹣1>0,解得a>;当4a<0,4a﹣1<0,解得a<0.∴a>或a<0.故答案是:a>或a<0.点评:本题考查了抛物线与x轴的交点.当顶点在x轴上方时,那么顶点纵坐标大于0.18.(3分)如图1,正六边形ABCDEF的面积为1,把它的各边延长一倍得到新正六边形A1B1C1D1E1F1(如图2),称为第一次扩展;把正六边形A1B1C1D1E1F1边长按原法延长一倍得到正六边形A2B2C2D2E2F2(如图3),称为第二次扩展;如此下去…,第n次扩展得到正六边形A n B n C n D n E n F n的面积为3n.考点:正多边形和圆;三角形的面积专题:压轴题;规律型.分析:本题建立在正六边形背景上,进行逐渐的图形“拓展”变化,进而从特殊到一般进行归纳总结拓展后正六边形面积与原正六边形面积之间的规律,复杂图形中含有基本图形(2),为学生研究提供的基本图形,进而得出从特殊归纳出一般性规律.解答:解:∵拓展前后正六边形是彼此相似的,∴可以利用相似图形的性质求出相似比,从而求出拓展后六边形的面积,∵正六边形ABCDEF的面积为1,把它的各边延长一倍得到新正六边形A1B1C1D1E1F1(如图2),∴=,∴正六边形A1B1C1D1E1F1面积为:3,∴正六边形A2B2C2D2E2F2面积为:9,以此类推得出,第n次扩展得到正六边形A n B n C n D n E n F n的面积为:3n.故答案为:3n.点评:此题主要考查了正多边形的性质与相似图形的性质,本题解决的关键是寻找到拓展的正六边形的面积于被拓展的正六边形面积之间的关系.三、解答题:(本大题共11小题,共76分)19.(4分)计算:4cos30°﹣|﹣2|+()0﹣+(﹣)﹣2.考点:特殊角的三角函数值;绝对值;零指数幂;负整数指数幂;二次根式的性质与化简专题:计算题.分析:按照实数的运算法则依次计算:cos30°=,|﹣2|=,()0=1,=3,(﹣)﹣2=9.解答:解:4cos30°﹣|﹣2|+()0﹣+(﹣)﹣2=(3分)=(5分)=8.(6分)点评:本题重点考查了实数的基本运算能力.涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.20.(4分)化简求值:,其中x=2.考点:分式的化简求值专题:计算题.分析:本题的关键是正确进行分式的通分、约分,并准确代值计算.解答:解:原式=,当x=2时,原式=﹣2.点评:本题主要考查分式的化简求值,式子化到最简是解题的关键.21.(6分)解方程:.考点:解分式方程分析:观察可得最简公分母是(x+2)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:原方程即:.(1分)方程两边同时乘以(x+2)(x﹣2),得x(x+2)﹣(x+2)(x﹣2)=8.(4分)化简,得2x+4=8.解得:x=2.(7分)检验:x=2时,(x+2)(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程无解.(8分)点评:此题考查了分式方程的求解方法.此题比较简单,注意转化思想的应用,注意解分式方程一定要验根.22.(6分)A、B两所学校在一条东西走向公路的同旁,以公路所在直线为x轴建立如图所示的平面直角坐标系,且点A的坐标是(2,2),点B的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C,使C点到A、B两校的距离相等,如果有?请用尺规作图找出该点,保留作图痕迹,不求该点坐标.(2)若在公路边建一游乐场P,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场P的位置,并求出它的坐标.考点:一次函数综合题;线段垂直平分线的性质;作图—应用与设计作图;轴对称-最短路线问题专题:综合题.分析:(1)连接AB,作出线段AB的垂直平分线,与x轴的交点即为所求的点;(2)找到点A关于x轴的对称点,连接对称点与点B与x轴交点即为所求作的点.解答:解:(1)存在满足条件的点C;作出图形,如图所示.(2)作点A关于x轴对称的点A′(2,﹣2),连接A′B,与x轴的交点即为所求的点P.设A′B所在直线的解析式为:y=kx+b,把(2,﹣2)和(7,3)代入得:,解得:,∴y=x﹣4,当y=0时,x=4,所以交点P为(4,0).点评:本题是一道典型的一次函数综合题,题目中还涉及到了线段的垂直平分线的性质及轴对称的问题.23.(6分)已知二次函数y=ax2+bx+c(a,b,c是常数),x与y的部分对应值如下表:x ﹣2 ﹣1 0 1 2 3y ﹣16 ﹣6 0 2 0 ﹣6(1)请写出这个二次函数的对称轴方程;(2)判断点A(,1)是否在该二次函数的图象上,并说明理由.考点:二次函数的性质;二次函数图象上点的坐标特征专题:图表型.分析:(1)用待定系数法求出二次函数的解析式;(2)把点A(,1)代入二次函数的解析式,看是否符合即可.解答:解:(1)由题意可得,解得故该二次函数的解析式为y=﹣2x2+4x这个二次函数的对称轴方程为x=﹣=﹣=1(2)当x=时,y=﹣2×+4×=≠1∴A(,1)不在该二次函数的图象上.(6分)点评:本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法等知识,难度不大.(利用点的对称性解答更简单x==1)24.(7分)如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?考点:解直角三角形的应用-仰角俯角问题专题:压轴题.分析:根据已知角的度数,易求得∠BAC=∠BCA=30°,由此得BC=AB=3米;可在Rt△CBF 中,根据BC的长和∠CBF的余弦值求出BF的长,进而由x=BF﹣EF求得汽车车头与斑马线的距离.解答:解:如图:延长AB.∵CD∥AB,∴∠CAB=30°,∠CBF=60°;∴∠BCA=60°﹣30°=30°,即∠BAC=∠BCA;∴BC=AB=3米;Rt△BCF中,BC=3米,∠CBF=60°;∴BF=BC=1.5米;故x=BF﹣EF=1.5﹣0.8=0.7米.答:这时汽车车头与斑马线的距离x是0.7米.点评:本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.25.(7分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打笫一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.考点:列表法与树状图法专题:计算题;压轴题.分析:(1)此题需要两步完成,所以采用树状图法或者采用列表法都比较简单,求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率;(2)由一共有3种等可能性的结果,其中恰好选中乙同学的有1种,即可求得答案.解答:解:(1)方法一画树状图得:方法二列表得:甲乙丙丁/ 甲、乙甲、丙甲、丁甲乙乙、甲/乙、丙乙、丁丙丙、甲丙、乙/丙、丁丁丁、甲丁、乙丁、丙/∴所有等可能性的结果有12种,其中恰好选中甲、乙两位同学的结果有2种,∴恰好选中甲、乙两位同学的概率为:=;(2)∵一共有3种等可能性的结果,其中恰好选中乙同学的有1种,∴恰好选中乙同学的概率为:.点评:本题考查的是用列表法或画树状图法求概率与古典概率的求解方法.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.26.(8分)如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.考点:一元二次方程的应用分析:(1)等量关系为:(原来长方形的长﹣2正方形的边长)×(原来长方形的宽﹣2正方形的边长)=48,把相关数值代入即可求解;(2)同(1)先用x表示出不同侧面的长,然后根据矩形的面积将4个侧面的面积相加,得出关于侧面积和正方形边长的函数式,然后根据函数的性质和自变量的取值范围来得出侧面积的最大值.解答:解:(1)设正方形的边长为xcm.则(10﹣2x)(8﹣2x)=48,即x2﹣9x+8=0,解得x1=8(不合题意,舍去),x2=1.答:剪去的正方形的边长为1cm.(2)有侧面积最大的情况.设正方形的边长为xcm,盒子的侧面积为ycm2,则y与x的函数关系式为:y=2(10﹣2x)x+2(8﹣2x)x,即y=﹣8x2+36x.(0<x<4)改写为y=﹣8(x﹣)2+,∴当x=2.25时,y最大=40.5.即当剪去的正方形的边长为2.25cm时,长方体盒子的侧面积最大为40.5cm2.点评:此题主要考查了矩形的面积的求法,二次函数的应用等知识点,根据面积的计算方法正确的表示出二次函数是解题的关键.27.(8分)将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.考点:全等三角形的判定与性质专题:证明题;压轴题;探究型.分析:(1)我们已知了三角形BED和CAB全等,那么DE=AF+CF,因此只要求出EF=CF 就能得出本题所求的结论,可通过全等三角形来实现,连接BF,那么证明三角形BEF 和BCF全等就是解题的关键,这两三角形中已知的条件有BE=BC,一条公共边,根据斜边直角边定理,这两个直角三角形就全等了,也就得出EF=CF,也就能证得本题的结论了;(2)解题思路和辅助线的作法与(1)完全一样;(3)同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.解答:(1)证明:连接BF(如图①),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.∵BF=BF,∴Rt△BFC≌Rt△BFE.∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图②∴(1)中的结论AF+EF=DE仍然成立;(3)不成立.证明:连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,,∴△BCF≌△BEF,∴CF=EF;∵△ABC≌△DBE,∴AC=DE,∴AF=AC+FC=DE+EF.点评:本题考查了全等三角形的判定和性质,通过构建全等三角形来得出简单的线段相等是解题的关键.28.(10分)如图,⊙O的半径为1,等腰直角三角形ABC的顶点B的坐标为(0,),∠CAB=90°,AC=AB,顶点A在⊙O上运动.(1)当点A在y轴上时,求点C的坐标;(2)当点A运动到y轴的负半轴上时,试判断直线BC与⊙O位置关系,并说明理由;(3)当点A在y轴右侧运动时,设点A的纵坐标为x,△ABC的面积为S,求S与x之间的函数关系式,并写出S的取值范围;(4)当直线AB与⊙O在第一象限内相切时,在坐标轴上是否存在一点P,使得以P、A、B、C为顶点的四边形是梯形?若存在,请直接写出点P的坐标;若不存在,请说明理由.考点:圆的综合题专题:代数几何综合题.分析:(1)分点A在y轴正半轴和负半轴两种情况先求出AB的长,再根据等腰直角三角形的性质可得AC=AB,然后写出点C的坐标即可;(2)根据切线的定义判断即可;(3)过点A作AD⊥y轴于D,连接OA,利用勾股定理列式表示出AD2,再求出BD,利用勾股定理列式表示出AB2,然后根据等腰直角三角形的面积等于直角边平方的一半列式整理即可得解,然后根据一次函数的增减性求出S的取值范围;(4)连接OA,利用勾股定理列式求出AB,从而得到△ABO是等腰直角三角形,再求出点A、C的坐标,然后利用待定系数法求出直线AB、AC的解析式,再分①PC∥AB,②PA∥BC,③PB∥AC三种情况分别求出直线PC的解析式,求出与坐标轴的交点,即为点P的坐标.解答:解:(1)当点A在y轴正半轴时,坐标为(0,1)时,AB=AC=﹣1,点C的坐标为(﹣1,1);当点A在y轴负半轴时,坐标为(0,﹣1)时,AB=AC=+1,点C的坐标为(+1,﹣1);(2)∵∠CAB=90°,∴AB⊥AC,又∵点A在y轴负半轴,且点A在⊙O上,∴直线BC与⊙O相切;(3)如图,过点A作AD⊥y轴于D,连接OA,根据勾股定理,AD2=OA2﹣OD2=12﹣x2=1﹣x2,∵BD=﹣x,∴在Rt△ABD中,AB2=BD2+AD2,=(﹣x)2+(1﹣x2),=2﹣2x+x2+1﹣x2,=﹣2x+3,∴等腰直角△ABC的面积为S=AB2=(﹣2x+3)=﹣x+,即S=﹣x+,∵﹣<0,∴S随x的增大而减小,又∵⊙O上的点A在y轴右侧运动,点A的纵坐标为x,∴﹣1<x<1,∴﹣+<S<+;(4)存在.如图,连接OA,∵直线AB与⊙O在第一象限内相切,∴OA⊥AB,∴AB===1,∴OA=AB,∴△AOB是等腰直角三角形,∴点A(,),∵△ABC是等腰直角三角形,∴BC=AB=,∴点C的坐标为(,),易求直线AB的解析式为y=﹣x+,直线AC的解析式为y=x,①PC∥AB时,设直线PC的解析式为y=﹣x+b1,把C(,)代入得,﹣+b1=,解得b1=2,所以,直线PC的解析式为y=﹣x+2,令y=0,则﹣x+2=0,解得x=2,此时,点P的坐标为P1(2,0),令x=0,则y=2,此时,点P的坐标为P2(0,2),②PA∥BC时,点P的坐标为P3(0,);③PB∥AC时,设直线PC的解析式为y=x+b2,把点B(0,)代入求得b2=,所以,直线PB的解析式为y=x+,令y=0,则x+=0,解得x=﹣,此时,点P的坐标为P4(﹣,0),综上所述,存在点P1(2,0),P2(0,2),P3(0,),P4(﹣,0)使得以P、A、B、C为顶点的四边形是梯形.点评:本题是圆的综合题型,主要考查了等腰直角三角形的性质,圆的切线的判定,勾股定理,三角形的面积,一次函数的增减性,梯形的判定,综合性较强,难度较大,特别是(4)要分情况讨论.29.(10分)(1)问题探究如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.(2)拓展延伸①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)考点:全等三角形的判定与性质;等边三角形的性质;正方形的性质;正多边形和圆专题:几何综合题;压轴题.分析:(1)根据正方形的每一个角都是90°可以证明∠AHK=90°,然后利用平角等于180°以及直角三角形的两锐角互余证明∠D1CK=∠HAC,再利用“角角边”证明△ACH和△CD1M全等,根据全等三角形对应边相等可得D1M=CH,同理可证D2N=CH,从而得证;(2)①过点C作CG⊥AB,垂足为点G,根据三角形的内角和等于180°和平角等于180°证明得到∠H1AC=∠D1CM,然后利用“角角边”证明△ACG和△CD1M全等,根据全等三角形对应边相等可得CG=D1M,同理可证CG=D2N,从而得证;②结论仍然成立,与①的证明方法相同.解答:(1)D1M=D2N.证明:∵∠ACD1=90°,∴∠ACH+∠D1CK=180°﹣90°=90°,∵∠AHK=∠ACD1=90°,∴∠ACH+∠HAC=90°,∴∠D1CK=∠HAC,在△ACH和△CD1M中,,∴△ACH≌△CD1M(AAS),∴D1M=CH,同理可证D2N=CH,∴D1M=D2N;(2)①证明:D1M=D2N成立.过点C作CG⊥AB,垂足为点G,∵∠H1AC+∠ACH1+∠AH1C=180°,∠D1CM+∠ACH1+∠ACD1=180°,∠AH1C=∠ACD1,∴∠H1AC=∠D1CM,在△ACG和△CD1M中,,∴△ACG≌△CD1M(AAS),∴CG=D1M,同理可证CG=D2N,∴D1M=D2N;②作图正确.D1M=D2N还成立.点评:本题考查了全等三角形的判定与性质,等边三角形的性质,正方形的性质,正多边形的性质,读懂题意,证明得到∠D1CK=∠HAC(或∠H1AC=∠D1CM)是证明三角形全等的关键,也是解决本题的难点与突破口.。

2013年江苏省苏州市中考数学试卷加解析

2013年江苏省苏州市中考数学试卷加解析

2013年江苏省苏州市中考数学试卷加解析一、选择题(共10小题,每小题3分,满分30分)1、(2013•苏州)2×(﹣错误!未找到引用源。

)的结果是()A、﹣4B、﹣1C、错误!未找到引用源。

D、错误!未找到引用源。

考点:有理数的乘法。

专题:计算题。

分析:根据有理数乘法法则:异号得负,并把绝对值相乘来计算.解答:解:2×(﹣错误!未找到引用源。

)=﹣(2×错误!未找到引用源。

)=﹣1.故选B.点评:考查了有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.2、(2013•苏州)△ABC的内角和为()A、180°B、360°C、540°D、720°考点:三角形内角和定理。

分析:根据三角形的内角和定理直接得出答案.解答:解:三角形的内角和定理直接得出:△ABC的内角和为180°.故选A.点评:此题主要考查了三角形的内角和定理,此题比较简单注意正确记忆三角形内角和定理.3、(2010•清远)地球上的海洋面积约为361000000千米2,将361000000这个数用科学记数法表示为()A、3.61×108B、3.61×107C、361×107D、0.361×109考点:科学记数法—表示较大的数。

专题:应用题。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:将361 000 000用科学记数法表示为3.61×108.故选A.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、(2013•苏州)若m•23=26,则m等于()A、2B、4C、6D、8考点:同底数幂的除法。

江苏省苏州市2013年中考数学试卷(解析版)(含解析)

江苏省苏州市2013年中考数学试卷(解析版)(含解析)

江苏省苏州市2013年中考数学试卷一、选择题(本大共10小题,每小题3分,满分30分。

在每小题给出的四个选项中,只有一个符合题目要求的,请将选择题的答案用2B铅笔涂在答案卡相应的位置上)1.(3分)(2013•苏州)|﹣2|等于()A.2B.﹣2C.D.考点:绝对值.分析:根据绝对值的性质可直接求出答案.解答:解:根据绝对值的性质可知:|﹣2|=2.故选A.点评:此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际运算当中.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2013•苏州)计算﹣2x2+3x2的结果为()A.﹣5x2B.5x2C.﹣x2D.x2考点:合并同类项.分析:根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变即可求解.解答:解:原式=(﹣2+3)x2=x2,故选D.点评:本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.3.(3分)(2013•苏州)若式子在实数范围内有意义,则x的取值范围是()A.x>1B.x<1C.x≥1D.x≤1考点:二次根式有意义的条件.分析:根据二次根式有意义的条件可得x﹣1≥0,再解不等式即可.解答:解:由题意得:x﹣1≥0,解得:x≥1,故选:C.点评:此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.4.(3分)(2013•苏州)一组数据:0,1,2,3,3,5,5,10的中位数是()A.2.5B.3C.3.5D.5考点:中位数.分析:根据中位数的定义先把这组数据从小到大排列,再求出最中间两个数的平均数即可.解答:解:将这组数据从小到大排列为:0,1,2,3,3,5,5,10,最中间两个数的平均数是:(3+3)÷2=3,则中位数是3;故选B.点评:此题考查了中位数,掌握中位数的概念是解题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).5.(3分)(2013•苏州)世界文化遗产长城总长约为6700000m,若将6700000用科学记数法表示为6.7×10n(n是正整数),则n的值为()A.5B.6C.7D.8考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6700000用科学记数法表示为6.7×106,故n=6.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(3分)(2013•苏州)已知二次函数y=x2﹣3x+m(m为常数)的图象与x 轴的一个交点为(1,0),则关于x的一元二次方程x2﹣3x+m=0的两实数根是()A.x1=1,x2=﹣1B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=3考点:抛物线与x轴的交点.分析:关于x的一元二次方程x2﹣3x+m=0的两实数根就是二次函数y=x2﹣3x+m(m为常数)的图象与x轴的两个交点的横坐标.解答:解:∵二次函数的解析式是y=x2﹣3x+m(m为常数),∴该抛物线的对称轴是:x=.又∵二次函数y=x2﹣3x+m(m为常数)的图象与x轴的一个交点为(1,0),∴根据抛物线的对称性质知,该抛物线与x轴的另一个交点的坐标是(2,0),∴关于x的一元二次方程x2﹣3x+m=0的两实数根分别是:x1=1,x2=2.故选B.点评:本题考查了抛物线与x轴的交点.解答该题时,也可以利用代入法求得m的值,然后来求关于x的一元二次方程x2﹣3x+m=0的两实数根.7.(3分)(2013•苏州)如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB等于()A.55°B.60°C.65°D.70°考点:圆周角定理;圆心角、弧、弦的关系.专题:计算题.分析:连结BD,由于点D是AC弧的中点,即弧CD=弧AD,根据圆周角定理得∠ABD=∠CBD,则∠ABD=25°,再根据直径所对的圆周角为直角得到∠ADB=90°,然后利用三角形内角和定理可计算出∠DAB的度数.解答:解:连结BD,如图,∵点D是AC弧的中点,即弧CD=弧AD,∴∠ABD=∠CBD,而∠ABC=50°,∴∠ABD=×50°=25°,∵AB是半圆的直径,∴∠ADB=90°,∴∠DAB=90°﹣25°=65°.故选C.点评:本题考查了圆周角定理及其推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角为直角.8.(3分)(2013•苏州)如图,菱形OABC的顶点C的坐标为(3,4).顶点A 在x轴的正半轴上,反比例函数y=(x>0)的图象经过顶点B,则k的值为()A.12B.20C.24D.32考点:反比例函数综合题.分析:过C点作CD⊥x轴,垂足为D,根据点C坐标求出OD、CD、BC的值,进而求出B点的坐标,即可求出k的值.解答:解:过C点作CD⊥x轴,垂足为D,∵点C的坐标为(3,4),∴OD=3,CD=4,∴OC===5,∴OC=BC=5,∴点B坐标为(8,4),∵反比例函数y=(x>0)的图象经过顶点B,∴k=32,故选D.点评:本题主要考查反比例函数的综合题的知识点,解答本题的关键是求出点B的坐标,此题难度不大,是一道不错的习题.9.(3分)(2013•苏州)已知x﹣=3,则4﹣x2+x的值为()A.1B.C.D.考点:代数式求值;分式的混合运算.专题:计算题.分析:所求式子后两项提取公因式变形后,将已知等式去分母变形后代入计算即可求出值.解答:解:∵x﹣=3,即x2﹣3x=1,∴原式=4﹣(x2﹣3x)=4﹣=.故选D.点评:此题考查了代数式求值,将已知与所求式子进行适当的变形是解本题的关键.10.(3分)(2013•苏州)如图,在平面直角坐标系中,Rt△OAB的顶点A在x 轴的正半轴上.顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一个动点,则PA+PC的最小值为()A.B.C.D.2考点:轴对称-最短路线问题;坐标与图形性质.分析:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA 于N,则此时PA+PC的值最小,求出AM,求出AD,求出DN、CN,根据勾股定理求出CD,即可得出答案.解答:解:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA 于N,则此时PA+PC的值最小,∵DP=PA,∴PA+PC=PD+PC=CD,∵B(3,),∴AB=,OA=3,∠B=60°,由勾股定理得:OB=2,由三角形面积公式得:×OA×AB=×OB×AM,∴AM=,∴AD=2×=3,∵∠AMB=90°,∠B=60°,∴∠BAM=30°,∵∠BAO=90°,∴∠OAM=60°,∵DN⊥OA,∴∠NDA=30°,∴AN=AD=,由勾股定理得:DN=,∵C(,0),∴CN=3﹣﹣=1,在Rt△DNC中,由勾股定理得:DC==,即PA+PC的最小值是,故选B.点评:本题考查了三角形的内角和定理,轴对称﹣最短路线问题,勾股定理,含30度角的直角三角形性质的应用,关键是求出P点的位置,题目比较好,难度适中.二、填空题:本大题共8个小题,每小题3分,共24分。

苏州市中考数学模拟试卷(三)含答案 (2)

苏州市中考数学模拟试卷(三)含答案 (2)

2013年苏州市中考数学模拟试卷(三)(考试时间:120分钟总分:130分)一、选择题(本题共10小题,每小题3分,共30分)1.2cos45°的值等于( )A.22B.2C.24D.222.计算(-12a2b)3的结果是()A.14a4b2B.18a6b3C.-18a6b3 D.-18a5b33.如图所示,BD为⊙O的直径,∠A=30°,则∠CBD的度数为( )A.30°B.45°C.60°D.90°4.抛物线y=ax2+bx-3经过点(2,4),则代数式8a+4b+1的值为( )A.3 B.9C.15 D.-155.根据第六次全国人口普查的统计,截止到2010年11月1日零时,我国总人口约为1370000000人,将1370000000用科学记数法表示应为( )A.0.137×1010B.1.37×109C.13.7×108D.137×1076.下列调查,比较适用普查而不适用抽样调查方式的是( )A.调查全省食品市场上某种食品的色素含量是否符合国家标准B.调查一批灯泡的使用寿命C.调查你所在班级全体学生的身高D.调查全国初中生每人每周的零花钱数7.如图所示,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有A.1组B.2组C.3组D.4组8.由6个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是( ) A.正视图的面积最大B.左视图的面积最大C.俯视图的面积最大D.三个视图的面积一样大9.如图所示,小红同学要用纸板制作一个高4cm、底面周长是6π cm的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是( )A.12πcm2B.15πcm2C.18πcm2D.24πcm210.如图所示,直角三角板ABC的斜边AB=12cm,∠A=30°,将三角板ABC绕点C 顺时针旋转90°至三角板A'B'C'的位置后,再沿CB方向向左平移,使点B'落在原三角板ABC的斜边AB上,则三角板A'B'C'平移的距离为( )A.6cm B.4cmC.(6-23)cm D.(43-6)cm二、填空题(本题共8小题;每小题3分,共24分)请把最后结果填在题中横线上.11.若A=3-tan60°,则2269111a aa a-+⎛⎫-÷⎪--⎝⎭=_______.12.已知x=1是关于x的一元二次方程2x2+kx-1=0的一个根,则实数k的值是_______.13.如图所示,一条公路的转弯处是一段圆弧(图中的»AB),点O是这段弧的圆心,C是»AB上一点,OC⊥AB,垂足为D,AB=300m,CD=50m,则这段弯路的半径是_______m.14.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是_______.15.已知一次函数y=2x+1,则y随x的增大而_______(填“增大”或“减小”).16.如图所示,点A、B是双曲线y=3x上的点,分别经过A、B两点向x轴、y轴作垂线段,若S阴影=1,则S1+S2=_______.17.如图所示,在平面直角坐标系中,△ABC经过平移后点A的对应点为点A',则平移后点B的对应点B'的坐标为_______..18.如图所示,点E、F、G、H分别为菱形A1B1C1D1各边的中点,连接A1F、B1G、C1H、D1E得四边形A2B2C2D2,以此类推得四边形A3B3C3D3……若菱形A1B1C1D1的面积为S,则四边形A n B n C n D n的面积为_______.三、解答题(本题共11小题;共76分.解答应写出文字说明、证明过程或演算步骤)19.(本小题5分)计算:())21223216-----.20.(本小题5分)解不等式组:2153112x x x -<⎧⎪⎨-+≥⎪⎩21.(本小题5分)先化简,再求值:35222x x x x -⎛⎫÷+- ⎪--⎝⎭,其中x =-4.22.(本小题6分)阅读材料,解答问题.例用图像法解一元二次不等式:x 2-2x -3>0. 解:设y =x 2-2x -3,则y 是x 的二次函数, ∵a =1>0,∴抛物线开口向上.又∵当y =0时,x 2-2x -3=0,解得x 1=-1,x 2=3. ∴由此得抛物线y =x 2-2x -3的大致图像如图所示. 观察函数图像可知:当x<-1或x>3时,y>0. ∴x 2-2x -3>0的解集是:x<-1或x>3.(1)观察图像,直接写出一元二次不等式:x 2-2x -3<0的解集是_______;(2)仿照上例,用图像法解一元二次不等式:x 2-1>0.23.(本小题6分)如图所示,ABCD为平行四边形,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E点.(1)求证:DF=FE.(2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE的长,(3)在(2)的条件下,求四边形ABED的面积.24.(本小题8分)封门街道改建工程指挥部要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做10天,剩下的工程再由甲、乙两队合作30天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,工程预算的施工费用为50万元.为缩短工期以减少对住户的影响,拟安排甲、乙两队合作完成这项工程,则工程预算的施工费用是否够用?若不够用,需追加预算多少万元?请给出你的判断,并说明理由.25.(本小题8分)观前某大型超市为缓解停车难的问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图所示,试求汽车通过坡道口的限高DF的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).26.(本小题8分)为迎接建党90周年,我市某中学拟组织学生开展唱红歌比赛活动,为此,校团委对九年级一班会唱红歌的学生进行了统计(甲:会唱1首,乙:会唱2首,丙:会唱3首,丁:会唱4首以上),并绘制了如图所示的两幅不完整的统计图.请你根据图中提供的信息解答以下问题:(1)在条形统计图中,将会唱4首以上红歌的部分补充完整.(2)求该班会唱1首红歌的学生人数占全班人数的百分比.(3)在扇形统计图中,计算出会唱3首红歌的部分所对应的圆心角的度数.(4)若该校九年级共有350人,请你估计会唱3首红歌的学生约有多少人?27.(本小题8分)某经销商销售台湾的水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:设当单价从38元/kg下调了x元时,销售量为y kg.(1)写出y与x间的函数关系式.(2)如果凤梨的进价是20元/kg,某天的销售价定为30元/kg,问这天的销售利润是多少?(3)目前两岸还未直接通航,运输要绕行,需耗时一周(7天),凤梨最长的保存期为一个月(30天),若每天售价不低于30元/kg,问一次进货最多只能是多少千克?28.(本小题9分)如图a所示,在矩形ABCD中,把∠B、∠D分别翻折,使点B、D分别落在对角线BC上的点E、F处,折痕分别为CM、AN.(1)求证:△AND≌△CBM.(2)请连接MF、NE,证明四边形MFNE是平行四边形,四边形MFNE是菱形吗?请说明理由?(3)P、Q是矩形的边CD、AB上的两点,连接PQ、CQ、MN,如图b所示,若PQ=CQ,PQ∥MN,且AB=4,BC=3,求PC的长度.29.(本小题10分)如图所示,在平面直角坐标系中,将一块等腰直角三角板ABC斜靠在两坐标轴上放在第二象限,点C的坐标为(-1,0).B点在抛物线y=12x2+12x-2的图像上,过点B作BD⊥x轴,垂足为D,且B点的横坐标为-3.(1)求证:△BDC≌△COA.(2)求BC所在直线的函数关系式.(3)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.参考答案一、选择题1.B 2.C 3.C 4.C 5.B 6.C 7.C 8.C 9.B 10.C二、填空题 11.-312.-1 13.250 14.18号 15.增大 16.4 17.(-2,1) 18.115n S -⎛⎫⎪⎝⎭三、解答题 19.原式=1 20.13x -≤<21.原式=13x +,原式=-1. 22.(1)-1<x<3. (2)x<-1或x>1.23.(1)略 (2)BE =3a . (3)2538a 24.(1)甲、乙两队单独完成这项工程分别需要60天和90天. (2)工程预算的施工费用不够用,需追加预算0.4万元. 25.坡道口的限高DF 是3.8m .26.(1)12(人) 如图所示. (2)10% (3)144° (4)140(人)27.(1)y =50+2x (2)660元 (3)1518kg . 28.(1)略 (2)略 (3)2 29.(1)略 (2)y =-12x -12 (3)存在 满足条件的点P 有两个,分别为P 1(-12,-14)、P 2(-12,94)。

苏州市吴江区2013届九年级5月中考模拟考试数学试题及答案

苏州市吴江区2013届九年级5月中考模拟考试数学试题及答案

2013届初三中考模拟考试数学2013.5注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡的相应位置上,并认真核对条形码上的准考号、姓名是否与本人相符合;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题须用0.5毫米黑色墨水签字笔填写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.1.-35的倒数是A.35B.53C.-35D.-532.下列计算正确的是A.a2+a2=a4B.(a2)3=a5C.a5·a2=a7D.2a2-a2=2 3.已知一组数据10,8,9,2,5,那么这组数据的极差是A.1 B.2 C.5 D.84.下面与5是同类二次根式的是A.50B.20C.8D.251-5.化简211aaa---的结果是A.11a-B.-11a-C.211aa+-D.211a aa---6.相切两圆的半径分别为2cm和3cm,则两圆的圆心距是A.11cm B.2cm C.5cm D.1cm或5cm7.二次函数y=x2+bx+c,若b+c=0,则它的图象一定过点A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1)8.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到吴江儿童福利院看望孤儿.如果分给每位儿童4盒牛奶,那么剩下28盒牛奶;如果分给每位儿童5盒牛奶,那么最后一位儿童分不到5盒,但至少能有2盒.则这个儿童福利院的儿童最少有A.28人B.29人C.30人D.31人9.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图l中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的l,4,9,16,…,这样的数为正方形数,观察下列四个数中既是三角形数又是正方形数的是A.289 B.1024 C.1225 D.137810.如图,已知直线l1∥l2∥l3∥l4∥l5,相邻两条平行直线间的距离相等且为1,如果四边形ABCD的四个顶点在平行直线上,∠BAD=90°且AB=3AD,DC⊥l4,则四边形ABCD的面积是A.9 B.14 C.213D.516二、填空题:本大题共8小题,每小题3分,共24分,把答案填在答题卡相对应的位置上11.函数y =3x -的自变量x 的取值范围是 ▲ .12.16的平方根是 ▲ .13.因式分解:x 2-2xy +y 2= ▲ .14.一个扇形的半径为30 cm ,圆心角为120°,用它做成一个圆锥的侧面,则这个圆锥的底面圆的半径为 ▲ cm .15.3+3的整数部分是a ,3-3的小数部分是b ,则a +b 等于 ▲16.如图,已知二次函数y 1=ax 2+bx +c 与一次函数y 2=kx +m 的图象相交于A (-1,2)、B(4,1)两点,则关于x 的不等式ax 2+bx +c>kx +m 的解集是 ▲ .17.如图,射线OA 、BA 分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s 、t 分别表示行驶距离和时间,则这两人骑自行车的速度相差 ▲ km/h .18.如图,抛物线y =ax 2+bx +c 与x 轴相交于点B(-3,0),C(1,0),与y 轴相交于点4(0,-3),O 为坐标原点.点M 为y 轴上的动点,当点M 运动到使∠OMC +∠OAC =∠ABC 时,AM 的长度为 ▲ .三、解答题:本大题共11小题,共76分,把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔19.计算(本题满分5分)()()022220122013------.20.解方程(本题满分5分)()2223022x x x x --=--.21.(本题满分5分)先化简,再求值:(a +b )(a -b )-(a -b)2,其中a =3,b =2.22.(本题满分6分)关于x 的一元二次方程(k -2)x 2-2(k -1)x +k +1=0有两个不同的实数根是x l 和x 2.(1)求k 的取值范围;(2)当k =-2时,求4x 12+6x 2的值.23.(本题满分6分)如图,△ABC 中,CD 平分∠ACB 交AB 于D ,DE ∥BC 交AC 于E ,若AD : DB=4:5.AC =9.(1)求DE 的长.(2)若∠ADE =∠EDC ,求AD 的长.24.(本题满分6分)在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3,现从中任意摸出一个小球,将其上面的数字作为点M 的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M 的纵坐标.(1)用画树状图或列表法写出点M 坐标的所有可能的结果;(2)求点M 在直线y =x 上的概率.25.(本题满分8分)冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光照射,所以冬至是选房买房时确定阳光照射的最好时机.吴江某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高为5米的小区超市,超市以上是居民住房,现计划在该楼前面24米处盖一栋新楼,已知吴江地区冬至正午的阳光与水平线夹角大约为30°.(参考数据在2≈1.414,3≈1.732)(1)中午时,若要使得超市采光不受影响,则新楼的高度不能超过多少米?(结果保留整数)(2)若新建的大楼高18米,则中午时,超市以上的居民住房采光是否受影响,为什么?26.(本题满分8分)如图,已知在△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与A,C 重合),延长BD至E.(1)求证:AD的延长线平分∠CDE;(2)若∠BAC=30°,且△ABC底边BC边上高为1,求△ABC外接圆的周长.27.(本题满分8分)某班级到毕业时共结余经费1350元,班委会决定拿出不少于285元但不超过300元的资金布置毕业晚会会场,其余资金用于在毕业晚会上给43位同学每人购买一件纪念品,纪念品为文化衫或相册.已知每件文化衫比每本相册贵6元,用202元恰好可以买到3件文化衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元;(2)有几种购买文化衫和相册的方案?哪种方案用于布置毕业晚会会场的资金更充足?28.(本题满分9分)如图所示,点B坐标为(18,0),点A坐标为(18,6),动点P从点D开始沿OB以每秒3个单位长度的速度向点B移动,动点Q从点B开始沿BA以每秒1个单位长度的速度向点A移动.如果P、Q分别从O、B同时出发,用t(秒)表示移动的时间(0<t≤6),那么,(1)当t=▲时,以点P、B、Q为顶点的三角形与△AOB相似;(2)若设四边形OPQA的面积为y,试写出y与t的函数关系式,并求出t取何值时,四边形OPQA的面积最小?(3)在y轴上是否存在点E,使点P、Q在移动过程中,以B、Q、E、P为顶点的四边形的面积是一个常数,请求出点E的坐标;若不存在,请说明理由。

江苏省苏州市新区二中2013年中考数学二模测试试卷

江苏省苏州市新区二中2013年中考数学二模测试试卷

某某市新区二中2013年中考二模测试数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题纸相应位置上)1.-3的倒数是A .13 B .-13 C . 3 D .-32.下列各式计算正确的是A .()101132-⎛⎫--=- ⎪⎝⎭B .235+=C .2a 2+4a 2=6a 4D .()326a a =3.某某市高度重视科技创新工作,全市科技投入从“十一五”初期的 3.01亿元,增加到2011年的7.48亿元.请将7.48亿用科学记数法(保留两个有效数字)记为A .7.48×108B .7.4×108C .7.5×108D .7.5×1094.如图,AB//CD ,E 是AB 上一点,EF 平分∠BEC 交CD 于点F ,若∠BEF =70°,则∠C 的度数是A .70°B .55°C .45°D .40°5.下列说法正确的是A 、一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖B 、为了解某品牌灯管的使用寿命,可以采用普查的方式C 、一组数据6、8、7、8、9、10的众数和平均数都是8D 、若甲组数据的方差S 甲2=0.05,乙组数据的方差S 乙2=0.1,则乙组数据比甲组数据稳定6.抛物线y =ax 2+bx -3过点(2,4),则代数式8a +4b +1的值为A .-2B .2C .15D .-15 7.下列命题中,正确命题的序号是①一组对边平行且相等的四边形是平行四边形②一组邻边相等的平行四边形是正方形③对角线互相垂直且相等的四边形是菱形④任何三角形都有外接圆,但不是所有的四边形都有外接圆A.①②B.②③C.③④D.①④8.如图,是一个工件的三视图,则此工件的全面积是A.85πcm2B.90πcm2C.155πcm2D.165πcm29.如图,直径为10的⊙A经过点C和点O,点B是y轴右侧⊙A优弧上一点,∠OBC=30°,则点C的坐标为(▲)A.(0,5) B.(0,53) C.(0,532) D.(0,533)10.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P,Q两点同时停止运动,设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是二、填空题(共24分)11.分解因式:4x2-xy▲.12.在四X完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一X,卡片上的图形是中心对称图形的概率是▲.13.函数y3x中,自变量x的取值X围是▲.14.抛物线y=-x2-4x的顶点坐标是▲.15.如图所示,AB 为⊙O 的直径,P 点为其半圆上一点,∠POA =40°,C 为另一半圆上任意一点 (不合A 、B),则∠PCB =▲度.16.在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为▲.17.函数y 1=x(x ≥0),y 2=4x(x>0)的图象如图所示,则结论:①两函数图象的交点A 的坐标为(2,2);②当x>2时,y 2>y 1;③当x =1时,BC =3;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小,其中正确结论的序号是▲;18.如图,在平面直角坐标系中,一颗,棋子从点P 处开始依次关于点A ,B ,C 作循环对称跳动,即第一次跳到点P 关于点A 的对称点M 处,接着跳到点M 关于点B 的对称点N 处,第三次再跳到点N 关于点C 的对称点处,…,如此下去.则经过第2013次跳动之后,棋子落点的坐标为▲.三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分5分)计算:()10201214cos452π--+--︒+;20.(本题满分5分)求不等式组()1205121123x x x ⎧-->⎪⎨+-+≥⎪⎩的正整数解. 21.(本题满分5分)化简求值:2321121x x x x x -⎛⎫--÷ ⎪--+⎝⎭,其中2x =-22.(本题满分6分)解方程:()3222x x x x-=+-23.(本题满分6分)某校将举办“心怀感恩·孝敬父母”的活动,为此,校学生会就全校1000名同学暑假期间平均每天做家务活的时间,随机抽取部分同学进行调查,并绘制成如下条形统计图.(1)本次调查抽取的人数为_______,估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数为_______ :(2)校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率.24.(本题6分)如图,在直角梯形ABCD中,AD∥BC,AB⊥AD,BC=CD,BE⊥CD,垂足为E,点F在BD上,连接AF、EF.(1)求证:DA=DE;(2)如果AF∥CD,求证:四边形ADEF是菱形.25.(本题满分8分)如图,矩形ABCD中,AB=1,BC=2,BC在x轴上,一次函数y=kx-2的图象经过点A、C,并与y轴交于点E.反比例函数myx的图象经过点A,并且与一次函数y=kx-2的图象交于另一点F.(1)点C的坐标是▲;(2)求一次函数和反比例函数的解析式;(3)求出点F的坐标,并根据图象写出一次函数的值大于反比例函数的值的x的取值X围.26.(本题满分8分)为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图,车架档AC与CD的长分别为45cm、60cm,且它们互相垂直,座杆CE 的长为20cm,点A、C、E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.7321)27.(本小题满分8分)“五一”期间,甲、乙两个家庭到300 km外的风景区“自驾游”,乙家庭由于要携带一些旅游用品,比甲家庭迟出发0.5 h(从甲家庭出发时开始计时),甲家庭开始出发时以60 km/h的速度行驶.途中的折线、线段分别表示甲、乙两个家庭所走的路程y甲(km)、y 乙(km)与时间x(h)之间的函数关系对应图象,请根据图象所提供的信息解决下列问题:(1)由于汽车发生故障,甲家庭在途中停留了_______h;(2)甲家庭到达风景区共花了多少时间?(3)为了能互相照顾,甲、乙两个家庭在第一次相遇后约定两车之间的路程不超过15 km,请通过计算说明,按图所表示的走法是否符合约定.28.(本小题满分9分)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB子点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连结并延交BD于点F,直线CF交AB的延长线于G.(1)求证:AE·FD=AF·EC;(2)求证:FC=FB;(3)若FB=FE=2,求⊙O的半径r的长.29.(本小题10分)在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0).(1)请直接写出点B、C的坐标:B_______、C_______;并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于点M.①设AE=x,当x为何值时,△OCE∽△OBC;②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由.。

江苏省昆山市2013年中考数学二模试卷(解析版) 苏科版

江苏省昆山市2013年中考数学二模试卷(解析版) 苏科版

某某省某某市2013年中考数学二模试卷一、选择题(每小题3分,共30分)把下列各题的正确答案前的英文字母填涂在答题纸相应的位置上.1.(3分)(2013•某某市二模)计算的结果是()A.±3B.3C.±3D.3考点:立方根专题:探究型.分析:根据立方根的定义进行解答即可.解答:解:∵33=27,∴=3.故选D.点评:本题考查的是立方根的定义,即如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a 的立方根.记作:.2.(3分)(2013•某某市二模)﹣的相反数是()A.B.﹣C.D.﹣考点:实数的性质分析:根据相反数的定义解答即可.解答:解:﹣的相反数是.故选A.点评:本题考查了实数的性质,主要利用了相反数的定义,熟记概念是解题的关键.3.(3分)(2013•某某市二模)数据5,7,5,8,6,13,5的中位数是()A.5B.6C.7D.8考点:中位数专题:计算题.分析:将该组数据按从小到大排列,找到位于中间位置的数即可.解答:解:将数据5,7,5,8,6,13,5按从小到大依次排列为:5,5,5,6,7,8,13,位于中间位置的数为6.故中位数为6.故选B.点评:本题考查了中位数的定义,知道中数的定义是解题的关键.4.(3分)(2013•某某市二模)在四X完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一X,卡片上的图形恰好是中心对称图形的概率是()A.B.C.D.1考点:概率公式;中心对称图形分析:确定既是中心对称的有几个图形,除以4即可求解.解答:解:∵是中心对称图形的有圆、菱形,所以从中随机抽取一X,卡片上的图形恰好是中心对称图形的概率是=;故选B.点评:此题考查了概率公式,概率等于所求情况数与总情况数之比,关键是能够找出中心对称图形.5.(3分)(2013•某某市二模)如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD 的度数是()A.40°B.45°C.50°D.60°考点:圆周角定理;垂径定理专题:压轴题.分析:首先连接OB,由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数,又由OB=OC,根据等边对等角的性质,即可求得∠OCD的度数.解答:解:连接OB,∵∠A=50°,∴∠BOC=2∠A=100°,∵OB=OC,∴∠OCD=∠OBC==40°.故选A.点评:此题考查了圆周角定理与等腰三角形的性质.此题难度不大,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用,注意掌握辅助线的作法,注意数形结合思想的应用.6.(3分)(2013•某某市二模)将一X平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.则这样的折纸方法共有()A.1种B.2种C.4种D.无数种考点:平行四边形的性质专题:操作型.分析:根据平行四边形的中心对称性,可知这样的折纸方法有无数种.解答:解:因为平行四边形是中心对称图形,任意一条过平行四边形对角线交点的直线都平分四边形的面积,则这样的折纸方法共有无数种.故选D.点评:此题主要考查平行四边形是中心对称图形的性质.平行四边形的两条对角线交于一点,这个点是平行四边形的中心,也是两条对角线的中点,经过中心的任意一条直线可将平行四边形分成完全重合的两个图形.7.(3分)(2013•某某市二模)已知反比例函数y=(b为常数),当x>0时,y随x的增大而增大,则一次函数y=x+b的图象不经过第几象限.()A.一B.二C.三D.四考点:一次函数图象与系数的关系;反比例函数的性质专题:探究型.分析:先根据反比例函数的增减性判断出b的符号,再根据一次函数的图象与系数的关系判断出次函数y=x+b的图象经过的象限即可.解答:解:∵反比例函数y=(b为常数),当x>0时,y随x的增大而增大,故函数位于二、四象限,∴b<0,∵一次函数y=x+b中k=1>0,b<0,∴此函数的图象经过一、三、四限,∴此函数的图象不经过第二象限.故选B.点评:本题考查的是一次函数的图象与系数的关系及反比例函数的性质,熟知一次函数y=kx+b(k≠0)中,当k>0,b<0时函数的图象在一、三、四象限是解答此题的关键.8.(3分)(2013•某某市二模)把抛物线y=x2+bx+4的图象向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2﹣2x+3,则b的值为()A.2B.4C.6D.8考点:二次函数图象与几何变换分析:首先根据点的坐标平移规律是上加下减,左减右加,利用这个规律即可得到所求抛物线的顶点坐标,然后就可以求出抛物线的解析式.解解:∵y=x2﹣2x+3=x2﹣2x+1+2=(x﹣1)2+2,答:∴顶点坐标为(1,2),∴向左平移3个单位,再向下平移2个单位,得(﹣2,0),则原抛物线y=x2+bx+4的顶点坐标为(﹣2,0),∴原抛物线y=x2+bx+4=(x+2)2=x2+4x+4,∴b=4.故选:B.点评:此题主要考查了平移规律,首先根据平移规律求出已知抛物线的顶点坐标,然后求出所求抛物线的顶点坐标,最后就可以求出原抛物线的解析式.9.(3分)(2013•某某市二模)如图,在直角三角形ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,则x的值为()A.5B.6C.7D.12考点:相似三角形的判定与性质;正方形的性质专题:压轴题.分析:根据已知条件可以推出△CEF∽△OME∽△PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.解答:解:∵在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∴△CEF∽△OME∽△PFN,∴OE:PN=OM:PF,∵EF=x,MO=3,PN=4,∴OE=x﹣3,PF=x﹣4,∴(x﹣3):4=3:(x﹣4),∴(x﹣3)(x﹣4)=12,∴x=0(不符合题意,舍去),x=7.故选C.点评:本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x的表达式表示出对应边.10.(3分)(2013•某某市二模)如图,AB为半圆O的直径,AD、BC分别切⊙O于A、B两点,CD切⊙O于点E ,AD与CD相交于D ,BC与CD相交于C,连接OD、OC,对于下列结论:①OD2=DE•CD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CD•OA;⑤∠DOC=90°,其中正确的是()A.①②⑤B.②③④C.③④⑤D.①④⑤考点:切线的性质;切线长定理;相似三角形的判定与性质.专题:计算题;压轴题.分析:连接OE,由AD,DC,BC都为圆的切线,根据切线的性质得到三个角为直角,且利用切线长定理得到DE=DA,CE=CB,由CD=DE+EC,等量代换可得出CD=AD+BC,选项②正确;由AD=ED,OD为公共边,利用HL可得出直角三角形ADO与直角三角形EDO全等,可得出∠AOD=∠EOD,同理得到∠EOC=∠BOC,而这四个角之和为平角,可得出∠DOC 为直角,选项⑤正确;由∠DOC与∠DEO都为直角,再由一对公共角相等,利用两对对应角相等的两三角形相似,可得出三角形DEO与三角形DOC相似,由相似得比例可得出OD2=DE•CD,选项①正确;又ABCD为直角梯形,利用梯形的面积计算后得到梯形ABCD的面积为AB (AD+BC),将AD+BC化为CD,可得出梯形面积为AB•CD,选项④错误,而OD不一定等于OC,选项③错误,即可得到正确的选项.解:连接OE,如图所示:解答:∵AD与圆O相切,DC与圆O相切,BC与圆O相切,∴∠DAO=∠DEO=∠OBC=90°,∴DA=DE,CE=CB,AD∥BC,∴CD=DE+EC=AD+BC,选项②正确;在Rt△AD O和Rt△EDO中,,∴Rt△ADO≌Rt△EDO(HL),∴∠AOD=∠EOD,同理Rt△CEO≌Rt△CBO,∴∠EOC=∠BOC,又∠AOD+∠DOE+∠EOC+∠COB=180°,∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,选项⑤正确;∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,∴△EDO∽△ODC,∴=,即OD2=DC•DE,选项①正确;而S梯形ABCD=AB•(AD+BC)=AB•CD,选项④错误;由OD不一定等于OC,选项③错误,则正确的选项有①②⑤.故选A点此题考查了切线的性质,切线长定理,相似三角形的判定与性质,全等三角形的判评:定与性质,以及梯形面积的求法,利用了转化的数学思想,熟练掌握定理及性质是解本题的关键.二、填空题(本大题共8小题,每小题3分,共24分)把正确答案直接填在答题纸相应的位置内.11.(3分)(2013•某某市二模)若a与﹣5互为倒数,则a=.考点:倒数分析:根据倒数的定义,a的倒数是(a≠0),据此即可求解.解答:解:﹣5的倒数是﹣,故答案是:﹣.点评:本题考查了倒数的定义,理解定义是关键.12.(2013•某某市二模)(3分)(2012•某某)已知1纳米=10﹣9米,某种微粒的直径为158纳米,用科学记数法表示该微粒的直径为 1.58×10﹣7米.考点:科学记数法—表示较小的数分析:根据158纳米×10﹣9=0.000 000158米,再利用绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:158纳米×10﹣9=0.000 000158米=1.58×10﹣7米;故答案为:1.58×10﹣7.点本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n评:为由原数左边起第一个不为零的数字前面的0的个数所决定.13.(3分)(2013•某某市二模)已知a+b=2,ab=﹣1,则3a+ab+3b= 5 ;a2+b2= 6 .考点:完全平方公式专题:压轴题.分析:由3a+ab+3b=3(a+b)+ab与a2+b2=(a+b)2﹣2ab,将a+b=2,ab=﹣1代入即可求得答案.解答:解:∵a+b=2,ab=﹣1,∴3a+ab+3b=3a+3b+ab=3(a+b)+ab=3×2+(﹣1)=5;a2+b2=(a+b)2﹣2ab=22﹣2×(﹣1)=6.故答案为:5,6.点评:此题考查了完全平方公式的应用.此题难度不大,注意掌握公式变形是解此题的关键.14.(3分)(2013•某某市二模)如图,把一个斜边长为2且含有30°角的直角三角形ABC 绕直角顶点C顺时针旋转90°到△A1B1C,则在旋转过程中这个三角板扫过的图形的面积为.考点:旋转的性质;扇形面积的计算分根据直角三角形的性质求出BC、AC的长度,设点B扫过的路线与AB的交点为D,连析:接CD,可以证明△BCD是等边三角形,然后求出点D是AB的中点,所以△ACD的面积等于△ABC 的面积的一半,然后根据△ABC扫过的面积=S扇形ACA1+S扇形BCD+S△ACD,然后根据扇形的面积公式与三角形的面积公式列式计算即可得解.解答:解:在△ABC中,∠ACB=90°,∠BAC=30°,AB=2,∴BC=AB=1,∠B=90°﹣∠BAC=60°,∴AC==,∴S△A BC=BC•AC=设点B扫过的路线与AB的交点为D,连接CD,∵BC=DC,∴△BCD 是等边三角形,∴BD=CD=1,∴点D是AB 的中点,∴S△ACD =S△ABC =,∴△ABC 扫过的面积=S扇形ACA1+S扇形BCD+S△ACD,=×π×()2+×π×12+,=π+π+,=.故答案是:点评:此题考查了旋转的性质、直角三角形的性质以及等边三角形的性质,注意掌握旋转前后图形的对应关系,利用数形结合思想把扫过的面积分成两个扇形的面积与一个三角形面积是解题的关键,也是本题的难点.15.(3分)(2013•某某市二模)某校为了丰富学生的课外体育活动,欲增购一批体育器材,为此该校对一部分学生进行了一次题为“你喜欢的体育活动”的问卷调查(每人限选一项)根据收集到的数据,绘制成如图的统计图(不完整):根据图中提供的信息得出“跳绳”部分学生共有50 人.考点:条形统计图;扇形统计图分析:先求得总人数,然后用总人数减去其他各个小组的频数即可.解答:解:∵从条形统计图知喜欢球类的有80人,占40% ∴总人数为80÷40%=200人∴喜欢跳绳的有200﹣80﹣30﹣40=50人,故答案为50.点评:本题考查了条形统计图及扇形统计图的知识,解题的关键是从两种统计图中整理出进一步解题的有关信息.16.(3分)(2013•某某市二模)如图,正方形纸片ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE=1,则EF的长为.考点:正方形的性质;全等三角形的判定与性质;翻折变换(折叠问题)分析:由正方形纸片ABCD的边长为3,可得∠C=90°,BC=CD=3,由根据折叠的性质得:EG=BE=1,GF=DF,然后设DF=x,在Rt△EFC中,由勾股定理EF2=EC2+FC2,即可得方程,解方程即可求得答案.解答:解:∵正方形纸片ABCD的边长为3,∴∠C=90°,BC=CD=3,根据折叠的性质得:EG=BE=1,GF=DF,设DF=x,则EF=EG+GF=1+x,FC=DC﹣DF=3﹣x,EC=BC﹣BE=3﹣1=2,在Rt△EFC中,EF2=EC2+FC2,即(x+1)2=22+(3﹣x)2,解得:x=,∴DF=,EF=1+=.故答案为.点评:此题考查了正方形的性质、翻折变换以及勾股定理.此题难度适中,注意掌握数形结合思想与方程思想的应用.17.(3分)(2013•某某市二模)读一读,式子“1+2+3+4+…+100”表示从1开始的100个自然数的和,由于式子比较长,书写不方便,为了简便,我们将其表示为,这里“”是求和符号,通过对上述材料的阅读,计算=.考点:分式的加减法专题:新定义.分析:根据题意将所求式子写出普通加法运算,拆项后合并即可得到结果.解答:解:=++…+=1﹣+﹣+﹣=1﹣=.故答案为:点评:此题考查了分式的加减法,利用了拆项的方法,弄清题意是解本题的关键.18.(3分)(2013•某某市二模)在平面直角坐标系中,⊙P 的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是.考点:垂径定理;坐标与图形性质专题:计算题;压轴题.分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.分别求出PD、DC,相加即可.解解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PA.答:∵AB=2,∴AE=,PA=2,∴PE=1.∵点D在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=.∵⊙P的圆心是(2,a),∴点D的横坐标为2,∴OC=2,∴DC=OC=2,∴a=PD+DC=2+.故答案为2+.点评:本题综合考查了一次函数与几何知识的应用,题中运用圆与直线的关系以及直角三角形等知识求出线段的长是解题的关键.注意函数y=x与x轴的夹角是45°.三、解答题(本大题共11小题,共76分.把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明,作图时用2B 铅笔或黑色墨水签字笔)19.(5分)(2013•某某市二模)计算:.考点:实数的运算分析:本题涉及零指数幂、负指数幂、绝对值的化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=5﹣3+3﹣1=4.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、绝对值的化简等考点的运算.20.(5分)(2013•某某市二模)解不等式组,并写出不等式组的整数解.考点:解一元一次不等式组;一元一次不等式组的整数解专题:压轴题;探究型.分析:分别求出各不等式的解集,再求出其公共解集,在x的取值X围内找出符合条件的x 的整数值即可.解答:解:由①得,x≥﹣;由②得,x<4,故此不等式组的解集为:﹣≤x<4 整数解有:0,1,2,3.点评:本题考查的是解一元一次不等式组及一元一次不等式组的整数解,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(5分)(2013•某某市二模)解方程:.考解分式方程点:专题:方程思想.分析:观察可得最简公分母是x(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:x2+x(x+1)=(2x+1)(x+1)(2分)x2+x2+x=2x2+3x+1,解这个整式方程得:,(4分)经检验:把代入x(x+1)≠0.∴原方程的解为.(5分)点评:考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.22.(6分)(2013•某某市二模)先化简,再求值:,其中x=﹣2.考点:分式的化简求值专题:计算题.分析:这道求代数式值的题目,通常做法是先把代数式化简,然后再代入求值.解答:解:原式=,=,=;将x=﹣2代入,得:原式=.点评:这是个分式混合运算题,运算顺序是先乘除后加减,加减法时要注意把各分母先因式分解,确定最简公分母进行通分.23.(6分)(2011•江津区)在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E 在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF的度数.考点:全等三角形的判定与性质专题:几何图形问题;证明题;数形结合.分析:(1)由AB=CB,∠ABC=90°,AE=CF,即可利用HL证得Rt△ABE≌Rt△CBF;(2)由AB=CB,∠ABC=90°,即可求得∠CAB与∠ACB的度数,即可得∠BAE的度数,又由Rt△ABE≌Rt△CBF,即可求得∠BCF的度数,则由∠ACF=∠BCF+∠ACB即可求得答案.解答:(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL);(2)解:∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°,又∵∠BAE=∠CAB﹣∠CAE=45°﹣30°=15°,由(1)知:Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=45°+15°=60°.点评:此题考查了直角三角形全等的判定与性质.此题难度不大,解题的关键是注意数形结合思想的应用.24.(6分)(2013•某某市二模)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1米,参考数据:=1.73,=1.41);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.考点:解直角三角形的应用分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD==36.33(米),…2分在Rt△BDC中,BD==12.11(米),…4分则AB=AD﹣BD=36.33﹣12.11=24.22≈24.2(米)…6分(2)超速.理由:∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1×3600=43560(米/时),∴该车速度为43.56千米/小时,…9分∵大于40千米/小时,∴此校车在AB路段超速.…10分点评:此题考查了解直角三角形的应用问题.此题难度适中,解题的关键是把实际问题转化为数学问题求解,注意数形结合思想的应用.25.(8分)(2013•某某市二模)某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?考点:一次函数的应用;一元一次方程的应用;一元一次不等式组的应用分析:(1)根据购买一套A型课桌凳比购买一套B型课桌凳少用40元,以及购买4套A型和5套B型课桌凳共需1820元,得出等式方程求出即可;(2)利用要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,得出不等式组,求出a的值即可,再利用一次函数的增减性得出答案即可.解答:解:(1)设A型每套x元,则B型每套(x+40)元.由题意得:4x+5(x+40)=1820.解得:x=180,x+40=220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元;(2)设购买A型课桌凳a套,则购买B型课桌凳(200﹣a)套.由题意得:,解得:78≤a≤80.∵a为整数,∴a=78、79、80.∴共有3种方案,设购买课桌凳总费用为y元,则y=180a+220(200﹣a)=﹣40a+44000.∵﹣40<0,y随a的增大而减小,∴当a=80时,总费用最低,此时200﹣a=120,即总费用最低的方案是:购买A型80套,购买B型120套.点评:此题主要考查了二元一次方程组的应用和不等式组的应用以及一次函数的增减性,根据已知得出不等式组,求出a的值是解题关键.26.(8分)(2013•某某市二模)已知甲同学手中藏有三X分别标有数字,,1的卡片,乙同学手中藏有三X分别标有1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一X卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的a ,b能使得ax 2+bx+1=0有两个不相等的实数根,则称甲获胜;否则称乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释.考点:游戏公平性;根的判别式;列表法与树状图法分析:(1)首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果;(2)利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得甲、乙获胜的概率,比较概率大小,即可确定这样的游戏规是否公平.解答:解:(1)画树状图得:∵(a,b)的可能结果有(,1)、(,3)、(,2)、(,1)、(,3)、(,2)、(1,1)、(1,3)及(1,2),∴(a,b)取值结果共有9种;…(4分)(2)∵当a=,b=1时,△=b2﹣4a=﹣1<0,此时ax2+bx+1=0无实数根,当a=,b=3时,△=b2﹣4a=7>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=2时,△=b2﹣4a=2>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=1时,△=b2﹣4a=0,此时ax2+bx+1=0有两个相等的实数根,当a=,b=3时,△=b2﹣4a=8>0,此时ax2+bx+1=0有两个不相等的实数根,当a=,b=2时,△=b2﹣4a=3>0,此时ax2+bx+1=0有两个不相等的实数根,当a=1,b=1时,△=b2﹣4a=﹣3<0,此时ax2+bx+1=0无实数根,当a=1,b=3时,△=b2﹣4a=5>0,此时ax2+bx+1=0有两个不相等的实数根,当a=1,b=2时,△=b2﹣4a=0,此时ax2+bx+1=0有两个相等的实数根,…(2分)∴P(甲获胜)=P(△>0)=>P(乙获胜)=,…(1分)∴这样的游戏规则对甲有利,不公平.…(1分)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.27.(8分)(2013•某某市二模)如图,AB是⊙O的直径,动弦CD垂直AB于点E,过点B 作直线BF∥CD交AD的延长线于点F,若AB=10cm.(1)求证:BF是⊙O的切线.(2)若AD=8cm,求BE的长.(3)若四边形CBFD 为平行四边形,则四边形ACBD为何种四边形?并说明理由.考点:切线的判定;勾股定理;垂径定理;圆周角定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)欲证明BF是⊙O的切线,只需证明AB⊥BF即可;(2)连接BD,在直角三角形ABD中,利用射影定理可以求得AE的长度,最后结合图形知BE=AB﹣AE;(3)连接BC.四边形CBFD为平行四边形,则四边形ACBD是正方形.根据平行四边形的对边平行、平行线的性质、圆周角定理以及同弧所对的圆周角相等可以推知∠CAD=∠BDA=90°,即CD是⊙O的直径,然后由全等三角形的判定与性质推知AC=BD;根据正方形的判定定理证得四边形ACBD是正方形.解答:解:(1)∵AB是⊙O的直径,CD⊥AB,BF∥CD,∴BF⊥AB,∵点B在圆上,∴BF是⊙O的切线;(2)如图1,连接BD.∵AB是⊙O的直径,∴∠ADB=90°(直径所对的圆周角是直角);又∵DE⊥AB∴AD2=AE•AB;∵AD=8cm,AB=10cm,AE=6.4cm,∴BE=AB﹣AE=3.6cm;(3)连接BC.四边形CBFD为平行四边形,则四边形ACBD是正方形.理由如下:∵四边形CBFD为平行四边形,∴BC∥FD,即BC∥AD;∴∠BCD=∠ADC(两直线平行,内错角相等),∵∠BCD=∠BAD,∠CAB=∠CDB,(同弧所对的圆周角相等),∴∠CAB+∠BAD=∠CDB+∠ADC,即∠CAD=∠BDA;又∵∠BDA=90°(直径所对的圆周角是直角),∴∠CAD=∠BDA=90°,∴CD是⊙O的直径,即点E与点O重合(或线段CD过圆心O),如图2,在△OBC和△ODA中,∵,∴△OBC≌△ODA(SAS),∴BC=DA(全等三角形的对应边相等),∴四边形ACBD是平行四边形(对边平行且相等的四边形是平行四边形);∵∠ACB=90°(直径所对的圆周角是直角),AC=AD ,∴四边形ACBD是正方形.点评:本题综合考查了切线的判定、全等三角形的判定与性质、圆周角定理、垂径定理等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.28.(9分)(2013•某某市二模)如图,A(﹣5,0),B(﹣3,0),点C在y轴的正半轴上,∠CBO=45°,CD∥AB.∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长度的速度运动,运动时时间t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.考点:切线的性质;坐标与图形性质;勾股定理;解直角三角形专题:几何综合题;压轴题.分析:(1)由∠CBO=45°,∠BOC为直角,得到△BOC为等腰直角三角形,又OB=3,利用等腰直角三角形AOB的性质知OC=OB=3,然后由点C在y轴的正半轴可以确定点C的坐标;(2)需要对点P的位置进行分类讨论:①当点P在点B右侧时,如图2所示,由∠BCO=45°,用∠BCO﹣∠BCP求出∠PCO为30°,又OC=3,在Rt△POC中,利用锐角三角函数定义及特殊角的三角函数值求出OP的长,由PQ=OQ+OP求出运动的总路程,由速度为1个单位/秒,即可求出此时的时间t;②当点P在点B左侧时,如图3所示,用∠BCO+∠BCP求出∠PCO为60°,又OC=3,在Rt△POC中,利用锐角三角函数定义及特殊角的三角函数值求出OP的长,由PQ=OQ+OP求出运动的总路程,由速度为1个单位/秒,即可求出此时的时间t;(3)当⊙P与四边形ABCD的边(或边所在的直线)相切时,分三种情况考虑:①当⊙P与BC边相切时,利用切线的性质得到BC垂直于CP,可得出∠BCP=90°,由∠BCO=45°,得到∠OCP=45°,即此时△COP为等腰直角三角形,可得出OP=OC,由OC=3,得到OP=3,用OQ﹣OP求出P运动的路程,即可得出此时的时间t;②当⊙P与CD相切于点C时,P与O重合,可得出P运动的路程为OQ的长,求出此时的时间t;③当⊙P与CD相切时,利用切线的性质得到∠DAO=90°,得到此时A为切点,由PC=PA,且PA=9﹣t,PO=t﹣4,在Rt△OCP中,利用勾股定理列出关于t的方程,求出方程的解得到此时的时间t.综上,得到所有满足题意的时间t的值.解答:解:(1)∵∠BCO=∠CBO=45°,∴OC=OB=3,又∵点C在y轴的正半轴上,∴点C的坐标为(0,3);(2)分两种情况考虑:①当点P在点B右侧时,如图2,若∠BCP=15°,得∠PCO=30°,故PO=CO•tan30°=,此时t=4+;②当点P在点B左侧时,如图3,由∠BCP=15°,得∠PCO=60°,故OP=COtan60°=3,此时,t=4+3,∴t的值为4+或4+3;(3)由题意知,若⊙P与四边形ABCD的边相切时,有以下三种情况:①当⊙P与BC相切于点C时,有∠BCP=90°,从而∠OCP=45°,得到OP=3,此时t=1;②当⊙P与CD相切于点C时,有PC⊥CD,即点P与点O重合,此时t=4;③当⊙P与AD相切时,由题意,得∠DAO=90°,∴点A为切点,如图4,PC2=PA2=(9﹣t)2,PO2=(t﹣4)2,于是(9﹣t)2=(t﹣4)2+32,即81﹣18t+t2=t2﹣8t+16+9,解得:t=5.6,∴t的值为1或4或5.6.点评:此题考查了切线的性质,坐标与图形性质,勾股定理,等腰直角三角形的判定与性质,锐角三角函数定义,利用了数形结合及分类讨论的思想,熟练掌握切线的性质是解本题的关键.29.(10分)(2013•某某市二模)如图1,已知菱形ABCD的边长为2,点A在x轴负半轴上,点B在坐标原点.点D的坐标为(﹣,3),抛物线y=ax2+b(a≠0)经过AB、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD以每秒1个单位长度的速度沿x轴正方向匀速平移(如图2),过点B作BE⊥CD于点E,交抛物线于点F,连接DF、AF.设菱形ABCD平移的时间为t秒(0<t<)①是否存在这样的t,使△ADF与△DEF相似?若存在,求出t的值;若不存在,请说明理由;②连接FC,以点F为旋转中心,将△FEC按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x轴与抛物线在x轴上方的部分围成的图形中(包括边界)时,求t的取值X围.(写出答案即可)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年江苏省苏州市中考数学模拟试卷(二)(考试时间:120分钟总分:130分)一、选择题:(本大题共10小题,每小题3分,共30分)1.5的倒数是( )A.15B.-15C.-5 D.52.在函数12yx=-+中,自变量x的取值范围是( )A.x≥-2 B.x≤-2 C.x≠-2 D.x≠2 3.解集在数轴上表示为如图所示的不等式组是( )A.32xx>-⎧⎨≥⎩B.32xx<-⎧⎨≤⎩C.32xx<-⎧⎨≥⎩D.32xx>-⎧⎨≤⎩4.在等腰梯形ABCD中,E、F、G、H分别是各边的中点,则四边形EFGH的形状是( ) A.平行四边形B.矩形C.菱形D.正方形5.下列运算中,结果正确的是( )A.a4+a4=a4B.(a3 )a2=a5C.a8÷a2=a4D.(-2a2)3=-6a66.如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲乙B.甲丙C.乙丙D.乙7.为建设生态温州,我市某中学在植树节那天,组织初三年级八个班的学生到西城新区植树,各班植树情况如下表:下列说法错误的是( )A.这组数据的众数是18 B.这组数据的中位数是18.5C.这组数据的平均数是20 D.这组数据的极差是138.已知:二次函数y=x2-4x+a,下列说法错误..的是( )A.当x<1时,y随x的增大而减小B.若图象与x轴有交点,则a≤4C.当a=3时,不等式x2-4x+a>0的解集是1<x<3D.若将图象向上平移1个单位,再向左平移3个单位后过点(1,-2),则a=-39.如图,是一个工件的三视图,则此工件的全面积是 ( )A .85π cm 2B .90π cm 2C .155π cm 2D .165π cm 210.把2013个边长为1的正方形排成如图所示的图形,则这个图形的周长是( ) A .4022 B .4024 C .4026 D .4028 二、填空题:(本大题共8小题,每小题3分,共24分)11.当1<x <2时,化简1x -_______.12.某种花粉直径为0.00004098 m ,这个长度用科学计数法表示为_______m(保留3个有效数字)13.在坡度为1:2的山坡上种树,要求株距(相邻两树间的水平距离)是6m ,斜坡上相邻两树间的坡面距离是多少________m . 14.如图,DE 是△ABC 的中位线,M 、N 分别是BD 、CE 的中点,MN =6,则BC =_______.15.某人用24000元买进甲、乙两种股票,在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,则此人买甲股票的钱比买乙股票的钱多_______元. 16.如图,AB 为⊙O 的直径,则∠1+∠2=_______. 17.已知关于x 的函数y =a 2+x +1(a 为常数),它的图象是抛物线,且顶点始终在x 轴上方,则a 的取值范围是_______.18.如图1,正六边形ABCDEF 的面积为1,把它的各边延长一倍得到新正六边形111111A B C D E F (如图2),称为第一次扩展;把正六边形111111A B C D E F 边长按原法延长一倍得到正六边形222222A B C D E F (如图3),称为第二次扩展;如此下去···,第n 次扩展得到正六边形n n n n n n A B C D E F 的面积为__________。

.........图3图2图1222A11B A 1三、解答题:(本大题共11小题,共76分) 19.(4分)计算:0214cos3023-⎛⎫︒+-- ⎪⎝⎭⎝⎭.20.(4分)化简求值2111x x x x-÷--,其中x =2.21.(6分)解方程:2124x xx x -=--.22.(6分)A 、B 两所学校在一条东西走向公路的同旁,以公路所在直线为x 轴建立如图7-8所示的平面直角坐标系,且点A 的坐标是(2,2),点B 的坐标是(7,3).(1)一辆汽车由西向东行驶,在行驶过程中是否存在一点C ,使C 点到A 、B 两校的距离相等,如果有,请用尺规作图找出该点,保留作图痕迹,不求该点坐标. (2)若在公路边建一游乐场P ,使游乐场到两校距离之和最小,通过作图在图中找出建游乐场的位置,并求出它的坐标.23.(6分)已知二次函数y =ax 2+bx +c(a ,b ,c 是常数).x 与y 的部分对应值如下表:那么,(1)请写出这个二次函数的对称轴方程.(2)判断点A(12,1)是否在该二次函数的图象上,并说明理由.24.(7分)如图,一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员到斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?25.(7分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.26.(8分)如图,把一张长10 cm,宽8 cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方形盒子的底面积为48 cm2,那么剪去的正方形的边长为多少?(2)长方体盒子的侧面积是否存在最大值?若存在,请求出最大值和此时剪去的正方形的边长;若不存在,请说明理由.27.(8分)将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB =90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角a,且0°<a<60°,其他条件不变,请在图②中画出变换后的图形,并直接写出(1)中的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图③.你认为(1)中的结论还成立吗?若成立,写出证明过程;若不成立,请写出此时AF、EF与DE之间的关系,并说明理由.28.(10分)如图,⊙O的半径为1,等腰直角三角形ABC的顶点B的坐标为(0),∠CAB=90°,AC=AB,顶点A在⊙O上运动.(1)当点A在y轴上时,求点C的坐标;(2)当点A运动到y轴的负半轴上时,试判断直线BC与⊙O位置关系,并说明理由;(3)当点A在y轴右侧运动时,设点A的纵坐标为x,△ABC的面积为S,求S与x之间的函数关系式,并写出S的取值范围;(4)当直线AB与⊙O在第一象限内相切时,在坐标轴上是否存在一点P,使得以P、A、B、C为顶点的四边形是梯形?若存在,请直接写出点P的坐标;若不存在,请说明理由.29.(10分)(1)问题探究如图1,分别以△ABC的边AC与边BC为边,向△ABC外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH交直线AB于点H,使∠AHK=∠ACD1作D1M⊥KH,D2N⊥KH,垂足分别为点M,N.试探究线段D1M与线段D2N的数量关系,并加以证明.(2)拓展延伸①如图2,若将“问题探究”中的正方形改为正三角形,过点C作直线K1H1,K2H2,分别交直线AB于点H1,H2,使∠AH1K1=∠BH2K2=∠ACD1.作D1M⊥K1H1,D2N⊥K2H2,垂足分别为点M,N.D1M=D2N是否仍成立?若成立,给出证明;若不成立,说明理由.②如图3,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M=D2N是否仍成立?(要求:在图3中补全图形,注明字母,直接写出结论,不需证明)图1 图2 图3参考答案一、选择题1~10 ACDCB DDCAD二、填空题11.1 12.4.10×10-513.14.8 15.6000 16.90°17.a>14或a<0 18.3n三、解答题19.原式=8.20.原式=-221.x=-4经检验是原方程的解.22.(1)存在满足条件的点C:作出图形,作图略;(AB的垂直平分线与x轴的交点)(2)作出点A关于x轴的对称点A'(2,-2),连接A'B与x轴的交点即为所求的点P.交点P为(4,0).23.(1)x=1(2)不在24.0.7米25.(1)16(2)1326.(1)1(2)当x=94,S侧最大27.(1)略(2)画出正确的图形如图②,(1)中结论AF +EF =DE仍然成立.(3)不成立.此时AF 、EF 与DE 之间的关系为AF -EF =DE .28.(1)当点A 的坐标为(0,1)时,AB =AC 1,点C 的坐标为-1,1);当点A 的坐标为(0,-1)时,AB =AC 1,点C +1,-1);(2)直线BC 与⊙O 相切(3)S =32 3232(4)存在,分别是P 1(,0),P 2(0,,P 3(0P 4,0) 29.(1)D 1M =D 2N .证明:∵∠ACD 1=90°, ∴∠ACH +∠D 1CK =90° ∵∠AHK =∠ACD 1=90°, ∴∠ACH +∠HAC =90° ∴∠D 1CK =∠HAC ∵AC =CD 1,∴△ACH ≌△CD 1M ∴D 1M=CH.同理可证D 2N =CH ∴D 1M =D 2N(2)①证明:D 1M =D 2N 成立 过点C 作CG ⊥AB ,垂足为点G . ∵∠H 1AC +∠ACH 1+∠AH 1C =180°, ∠D 1CM +∠ACH 1+∠ACD 1=180°, ∠AH 1C =∠ACD 1, ∴∠H 1AC =∠D 1CM .∵AC =CD 1,∠AGC =∠CMD 1=90°, ∴△ACG ≌△CD 1M . ∴CG =D 1M同理可证CG =D 2N . ∴D 1M =D 2N ②作图正确D 1M =D 2N 还成立.。

相关文档
最新文档