【免费下载】maple学习
Maple学习
Maple是由加拿大Waterloo Maple公司推出的一款优秀的数学软件;Maple是加拿大一种枫树的名称。
Maple,提供了一套完善的程序设计语言,有多达2700多种命令和函数,它的图形式输入、输出界面,与通用的数学表达方式几乎一样,用户无需记忆许多语法规则就可以轻松的掌握它的使用。
它具有无与伦比的符号推理能力,能在符号推演方面发挥重要作用。
它也具有强大的数值功能。
它以其便捷的人机交互方式,成为众多数学软件中的佼佼者。
1、基本操作(1)基本运算符加、减、乘、除和乘方的符号分别为+、-、*、/和^;在运算过程中加注释,用符号“#”起始即可;(2)变量与函数Maple本身定义的函数的第一个字母小写,函数的变量用圆括号()(3)工具栏(Palettes)的使用;(4)帮助系统的使用;2、基本运算加法2+3;减法2-3;乘法2*3;除法2/3;次方2^3;注:每一行(每一道式子)都必须以分号作为结尾;这样Maple才会知道这是一个完整的指令;若不想用分号,也可以用冒号“:”但是如此一来Maple就不会把计算结果显示出来。
3、注意问题(1)一般输入Maple指令的情况下,得按下SHIFT和RETURN这两个键才能进入新的一行;(2)“#”:在“#”之后的部分表示批注,Maple不会执行;(3)如果需要以文字说明的话,Maple也有类似Word的功能,先按RETURN键建立一个新的区域(如果有需要的话),再点选窗口上方的T按钮(或是按F5键);接着就可以随意键入一些文字,例如名字等。
注意这时字体与字的颜色都与之前不同,而输入符号[>也不见了。
如果按下RETURN键,就会进入新的一行,可以另起一段文字;若再点选T按钮旁边的[>按钮,即可回到输入Maple指令的情况。
(4)“restart;”这个指令可以将Maple初始化;有时也可以用这个指令来除错,但别太常使用。
(5)几个注意点:是否忘写分号;或冒号:。
maple教程
读者对象有哪些?
本书适用于高等学校各专业本科生, 以及具有初步的高等数学知识和计算机知识的其他 读者、从事实际工作的工程技术人员、高等中等学校的教师和学生、从事各种理论工作(数 学、物理等)的科学工作者。该书对于从事数学、计算技术、计算机应用等方面的科技人员 及教学人员也是一本极好的参考工具书。
怎样使用本书?
I
目 录
第一篇 第1章 初步篇 Maple 6 起步 ········································································································· 2
1.1 什么是Maple··········································································································· 3 1.2 Maple的结构 ··········································································································· 5 1.3 Maple的功能 ··········································································································· 5 1.3.1 算术 ················································································································ 7 1.3.2 变量和多项式································································································· 9 1.3.3 解方程 ·········································································································· 10 1.3.4 绘图 ·············································································································· 11 1.3.5 表格 ·············································································································· 13 1.3.6 构造文档 ······································································································ 14 1.3.7 在线帮助系统······························································································· 17 1.4 Maple 6 的新特性 ································································································ 18 1.5 本章小结 ··············································································································· 18 第2章 2.1 2.2 2.3 安装与设置 ··········································································································· 19
maple入门
数的进制转换
convert 函数 binary二进制 decimal 十进制 octal 八进制 hex十六进制
小数划为分数运算
convert(x,rational) 将实数(有理数)x转换为 精确分数 convert(x,rational,n) 将实数(无理数)x转换 为分子与分母非零数码的个数和为n的分数
Maple入门 Maple入门
1.Maple概述 Maple概述
什么是Maple, 怎么学习Maple? Maple软件是加拿大Waterloo大学在1980年开始 开发,到现在最新的版本是Maple11, Maple具有强 大的数值计算能力,图形处理能力,特别是符号 计算能力. 常用的数学软件除Maple外,有Matlab等, 统计 软件: SAS,SPSS,运筹学软件:Lingo, WINQSB.
ifactor 求因子 iquo 求商 iquo(a,b,'r') irem 余数 irem(a,b,'q') isqrt 近似的平方跟整数
sqrt(x) 平方根函数 exp(x), ln(x) 指数函数和自然对数函数 log[b](x) 以b为底的对数函数 Abs(x) 绝对值函数 round(x) 最接近x的整数rand ()12位的随机数 Max(a,b,c,…),min(a,b,c,…) a, b, c, … 中的最 大(小)数 floor(x) 不大于x的最大整数 ceil(x) 不小于x的最小整数 trunc(x) x靠近0的整数部分 frac(x) x的分数部分(=x-trunc(x))signum(x)符号函数
1.5.1 fprintf
fprintf函数是用来输出到文件中,在使用该函数前,先用 fopen打开一个文件,再使用fprintf函数输出到fopen打开的文件 中,最后用fclose关闭文件. 格式:fopen(filename,mode); 其中,mode分为:WRITE和APPEND fprintf(fd,format,vars); 其中fd,为fopen打开的文件,format输出的格式,vars为变量组 fclose(fd); 演示
Maple学习笔记—1
★ 界面:Maple启动之后,会自动新建一个新的工作表(叫worksheet,类似Excel中的sheet),如下图:保存的名称最好不要用中文,好像双击打不开,必须拖到Maple程序界面才可以打开。
★ 结尾格式:Maple中每行语句结尾可以是冒号:或者是分号;也可以什么都不写,区别在于冒号:不会显示运算结果,而后两种则会。
★ 执行语句:回车即可执行本行语句。
另外在快捷按钮中也有执行命令:,三个叹号用于执行所有语句,单个叹号的功能相当于回车。
执行语句后,会在下一行显示执行的结果。
★ 赋值:Maple中给变量赋值的格式是 a:=1; 用惯了Matlab 的人会经常忽略冒号。
如果写成a=1。
Maple会将这个表达式看作一个整体。
为了避免出错,你可以在左边的变量栏中查找刚才定义的变量是不是被赋值了。
输入a:=1的情况 输入a=1 的情况★ 清空内存:Maple没有类似Matlab中clc清空内存的语句,但是有对应的功能,就是“重启”,点击快捷按钮中的即可。
单击后,Maple会清空当前worksheet中的所有变量。
★ 输入状态:就是worksheet左上角的位置:或是数学Math——输入的是可以运算的数学公式文字Text——输入的是文字类的注释你可以主动切换,对应的下拉菜单中又有详细分类,你的鼠标点中的地方就提示了当前位置的状态(Input还是Output)。
★ 注释:Maple中的注释用井号#。
注意,输入的时候注意中的状态。
必须切换到文字的Text状态。
如果是下图所示这样的状态则无法保存文字(可以试试看):★ 上一步:在Matlab中,你可以按上下方向键调出以前输入的语句,但是在Maple中,没有这样的语句。
倒是有一个保存上一步运算结果的功能,输入%即可查看和使用上一步的结果。
例如:★ 常数:Maple中圆周率 π 的输入格式是:Pi。
注意P必须是大写。
欧拉常数e的格式是:exp( )。
虚数是I,也是大写的。
maple 教程
maple 教程
Maple是一种数学建模和计算软件,用于进行高级数学运算和数据分析。
它被广泛应用于科学研究、工程设计和教育教学等领域。
在使用Maple进行数学建模时,我们首先需要了解变量的定义和使用。
可以使用等号将数值或表达式赋值给变量。
例如,我们可以使用以下语句定义一个变量x,并将其赋值为3:
x := 3;
接下来,我们可以使用已定义的变量进行数学计算。
Maple支持各种基本数学操作,如加减乘除和幂运算。
例如,我们可以使用以下语句计算x的平方:
x^2;
除了基本的数学运算,Maple还支持各种复杂的数学函数和操作。
例如,我们可以使用以下语句计算x的正弦值:
sin(x);
此外,Maple还提供了丰富的数学函数库,包括三角函数、对数函数、指数函数等等。
可以使用这些函数来进行更复杂的数学计算。
在进行数据分析时,Maple提供了强大的数据处理和可视化功能。
可以使用Maple的数据结构和函数来处理和分析数据,
并使用图表来可视化数据结果。
总之,Maple是一种功能强大的数学建模和计算软件,具有广泛的应用领域。
通过学习Maple的基本语法和功能,我们可以进行高级数学运算和数据分析,从而更好地理解和应用数学知识。
01-Maple基础和实践教程
Maple基础和实践教程Maple基础和实践教程Maple是应用最为广泛的科学计算软件之一,具有非常强大的符号计算和数值计算功能。
Maple 提供智能界面求解复杂数学问题和创建技术文件,用户可在易于使用的智能文件环境中完成科学计算、建模仿真、可视化、程序设计、技术文件生成、报告演示等,从简单的数字计算到高度复杂的系统,满足各个层次用户的需要。
与传统工程软件不同,甚至有别于旧版本的Maple,新版本Maple 为工程师提供了大量的专业计算功能,庞大的数学求解器可用于各种工程领域,如微分方程、矩阵、各种变换包括FFT、统计、小波、等等,超过5,000个计算命令让用户通常只需要一个函数就可以完成复杂的分析任务。
本章主要介绍Maple的基本功能,包括:数值和符号计算计算、求解方程、微积分计算、向量及矩阵计算、微分方程求解等。
Maple是一个全面的系统,提供多种方式完成同一个任务。
在本章中,我们将通过简单、易于重复的方式求解常见的问题,但它不是唯一的操作方式。
当用户熟悉本章中的各种操作方式后,用户可以通过帮助系统了解如何使用相似的技术完成各种任务。
Maple环境Maple的用户界面是一个典型的Windows或Mac风格的操作环境。
工作环境界面如图2-1所示。
图2-1:Maple工作界面在图2-1的工作界面中,窗体的主要部分包括:●主文档,即主工作区。
事实上,用户大可以把它想象成包含有各种数学和绘图工具的Microsoft Word。
●面板区。
汇集了数学工具和特殊的数学符号,用户可以将它们直接拖拽到工作区中使用。
面板区中最重要的面板当属Expressions,Matrix,Common Symbols和Greek。
Maple提供了总共约30个面板,用户可以在面板区空白处单击鼠标右键,并单击Arrange Palettes 来进行选择。
●工具条。
Maple提供了两个主要的工具条。
默认状态下,标准工具条含有保存、缩放等通用按钮和一些Maple特定用途的按钮。
Maple学习心得
例1 如图所示结构中,各杆质量不计,HB ∥EG ,CD ⊥AB α=30°,除AB ,CD 两杆外,各杆长均为l ,已知F 和m 的条件下,杆件系统处于平衡,求:AB 杆的内力。
解:先隔离B 图,求BC 杆的内了FBC ,然后已结点B 为研究对象,求出AB 杆的内力, Maple 程序: > restart:> eq1:=-F[BC]*2*l*cos(alpha)-M=0:> eq2:=-F[BC]*cos(alpha)+F[AB]*sin(alpha)=0: > SOL1:=solve({eq1,eq2},{F[BC],F[AB]}): > F[BC]:=subs(SOL1,F[BC]): > F[AB]:=subs(SOL1,F[AB]): > alpha:=Pi/6:> F[AB]:=evalf(F[AB],4);:= F AB -1.M l答:杆AB 的内力为 := F AB -1.Ml 。
例2,图示机构中,曲柄O2=r,角速度w 为常量,O1B=4r. 试求:φ=π/6时,O1B 杆的角速度和水平杆CD 的速度?解: Va1 = Ve1 + Vr1 , Va2 = Ve2 + Vr2 方向 √ √ √ √ √ √ 大小 √ ? ? √ ? ? Maple 程序:> restart:> O2A:=r:O1B:=4*r:phi:=Pi/6: > O1A:=O2A/sin(phi): > v[a1]:=r*omega: > v[e1]:=v[a1]*sin(phi): > omega[1]:=v[e1]/O1A;:= ω11ω> v[a2]:=O1B*omega[1];:= v a2r ω> v[e2]:=v[a2]*cos(phi);:= v e212r ω3例3:圆盘半径R=50mm ,以角速度w1绕水平轴CD 转动,同时框架和CD 轴一起以匀加速度w2绕通过圆盘中心O 的铅垂轴AB 转动,如图所示。
Maple软件使用教程 ppt课件
SUN
2.2.5 最优化问题
最值: >f:=x^3-x^2-x+1:plot(f,x=-2..2.7,color=plum); > maximize(f,x);x1:= minimize(f,x);x2:=maximize(f,x=-1..2); >fsolve(x^3-x^2-x+1=x1);fsolve(x^3-x^2-x+1=x2); #求最值点
maple几乎涉及高等数学的各个分支并提供了一套完善的程序设计语言有多达2700多种命令和函数它的图形式输入输出界面与通用的数学表达方式几乎一样用户无需记忆许多语法规则就可以轻松的掌握它的使用
A comprehensive computer system for advanced mathematics
SUN
2 Maple安装与调试
本节提要
2.1 Maple安装与启动 2.2 初试Maple 2.3 赋值与求值 >
SUN
2.1 Maple安装与启动
2.1.1 Maple安装与启动
目前市面上出售的Maple软件一般是与其它数学软件 在一张光盘上
➢ 安装时只要将光盘上Maple目录全部拷贝到硬盘上就可 以了。
数学实验就是以计算机为仪器,以软件为载体,通过实 验解决实际中的数学问题。
SUN
1.2 常用的数学软件
目前较流行的数学软件主要有:
Mathematica Matlab Maple
MathCAD
符号运算 数值计算 图形显示 高效编程
Maple13+入门教程
步骤
结果
列表
列表是有序单元,将对象用一对方括号[ ]括 起来。 例:输入列表 [a,b,c,a] 并赋值给变量名
.
使用方括号获取特定的元素。
例:取
中第三个元素。
(8.1)
c
(8.2)
集合
集合是用一对花括号括起的以逗号分隔的 一组Maple对象。Maple不保持集合元素的 顺序和重复次数,因此Maple 的集合与数学 的集合具有相同的性质。
* 本文件由Maple v13创建和输出,为了方便用户交互式学习Maple,读者可向西希安公司索取Maple工作表文 件。
介绍
欢迎参加“Maple 快速入门”的培训!
本文的理想读者是Maple的初学者。
本章内容:通过学习,您将熟悉Maple的使用环境,学习如何使用关联菜单、任务助手、 面板等工具完成分析和创建交互式的图形,完成这些工作您仅需很少的命令知识。另外, 您还将了解如何建立生动、交互式的技术文档、输入命令、和利用帮助系统。这章培训内 容将为您以后进一步的学习和使用打下结实的基础。
=9
为了求 在一个指定点上的值,调用含参
=
数的函数。
例: 求 F 在 3 上的值,F 在 y 上的值。
多参数函数
是一个包含 2 个参数的函数。
您可以求 G 在指定点上的值。 =
例: 求 G 在 (1,2) 和在 (1, y) 处的值。
=
注意:可以将这种用法延伸用于多参数的 函数。
9 9
(6.1) (6.2) (6.3) (6.4) (6.5)
的积分,打 开表达式面板 (点击文档左侧的 “表达式”),然后点
击“
现在您的工作表中,在占位符处填充(使
用 Tab 键移动到下一个占位符)。完成
maple教程
Maple教程Maple是一款强大的数学软件,它被广泛用于科学研究、工程设计、教育等领域。
本教程将为你介绍Maple的基本使用方法和一些常用功能,帮助你快速上手和利用Maple解决数学问题。
一、Maple的安装与启动1. 安装MapleMaple的安装非常简单,你只需要从官方网站下载Maple 的安装程序,然后按照提示进行安装即可。
2. 启动Maple安装完成后,你可以在桌面或开始菜单中找到Maple的启动图标,双击它即可启动Maple。
二、Maple的基本功能1. Maple的界面Maple的界面非常直观和友好,主要包括以下几个部分:•菜单栏:包含了各种功能和工具的菜单选项;•工具栏:提供了常用功能的快捷操作按钮;•输入框:可以输入和编辑Maple代码;•输出区:显示Maple执行代码的结果。
2. Maple的基本操作在Maple中,你可以通过输入和执行代码来完成各种数学运算和数据处理。
下面是一些常用的基本操作方法:•输入代码:在输入框中输入Maple代码,然后按下回车键执行;•注释代码:使用#符号可以在代码中添加注释,注释的内容将被忽略;•查看帮助:通过菜单栏的帮助选项或使用?键,可以查看Maple的帮助文档和函数说明。
3. Maple的数学计算Maple支持各种数学计算,包括基本运算、符号计算、数值计算等。
下面是一些常用的数学计算方法:•基本运算:Maple可以进行各种基本运算,如加减乘除、幂运算、取余等;•符号计算:Maple可以处理符号表达式,进行符号计算、方程求解、微分积分等;•数值计算:Maple可以进行数值计算,如数值积分、方程数值求解、函数拟合等。
三、Maple的扩展功能除了基本功能外,Maple还提供了许多强大的扩展功能,帮助用户进行更复杂的数学运算和数据处理。
1. 绘图功能Maple具有强大的绘图功能,可以绘制各种类型的图形,如曲线图、散点图、三维图等。
你可以使用Maple提供的绘图函数来创建自定义的图形,并对图形进行样式设置。
Maple基础学习知识教育教案(修订稿)
Maple 基础一Maple 的基本运算1 数值计算问题在应用Maple 做算术运算时, 只需将Maple 当作一个“计算器”使用, 所不同的是命令结束时需加“;”或“:”.在Maple 中, 主要的算术运算符有“+”(加)、“–”(减)、“*”(乘)、“/”(除)以及“^”(乘方或幂,或记为**),值得注意的是, “^”的表达式只能有两个操作数, 换言之, c b a ^^是错误的, 而“+”或“*”的任意表达式可以有两个或者两个以上的操作数.2.1.1 有理数运算作为一个符号代数系统, Maple 可以绝对避免算术运算的舍入误差.如果要求出两个整数运算的近似值时, 只需在任意一个整数后加“.”(或“.0”), 或者利用“evalf ”命令把表达式转换成浮点形式, 默认浮点数位是10 (即: Digits:=10, 据此可任意改变浮点数位, 如Digits:=20).> 123456789/987654321;13717421109739369> evalf(%); .1249999989> big_number:=3^(3^3);:= big_number 7625597484987> length(%);13函数“length ”作用在整数上时是整数的十进制位数即数字的长度. “%”是一个非常有用的简写形式, 表示最后一次执行结果1)整数的余(irem)/商(iquo)命令格式:irem(m,n); #求m 除以n 的余数irem(m,n,'q'); #求m 除以n 的余数, 并将商赋给qiquo(m,n); #求m 除以n 的商数iquo(m,n,'r'); #求m 除以n 的商数, 并将余数赋给r其中, m, n 是整数或整数函数, 也可以是代数值, 此时, irem 保留为未求值.2)素数判别(isprime)命令格式: isprime(n);如果判定n 可分解, 则返回false, 如果返回true, 则n “很可能”是素数.> isprime(2^(2^4)+1);true3) 确定第i 个素数(ithprime)若记第1个素数为2,判断第i 个素数的命令格式: ithprime(i);4) 一组数的最大值(max)/最小值(min)命令格式: max(x1,x2,…,xn); #求x 1,x 2,…,x n 中的最大值min(x1,x2,…,xn); #求x 1,x 2,…,x n 中的最小值5)随机数生成器(rand)命令格式:rand( ); #随机返回一个12位数字的非负整数rand(a..b); #调用rand(a..b)返回一个程序, 它在调用时生成一个在范围[a, b]内的随机数> rand();427419669081> myproc:=rand(1..2002):> myproc();1916> myproc();1204注意, rand(n)是rand(0..n-1)的简写形式.2.1.2 复数运算复数是Maple中的基本数据类型. 虚数单位i在Maple中用I表示可以用Re( )、Im( )、conjugate( )和argument( )等函数分别计算实数的实部、虚部、共轭复数和幅角主值等运算. 试作如下实验:> complex_number:=(1+2*I)*(3+4*I);-510Icomplex_number +:=> Re(%);Im(%%);conjugate(%%%);argument(complex_number);-510-510I-- +arctan2π()1) 绝对值函数命令格式: abs(expr);当expr为实数时,返回其绝对值,当expr为复数时,返回复数的模.2)复数的幅角函数命令格式: argument(x); #返回复数x的幅角的主值3)共轭复数命令格式: conjugate(x); #返回x的共轭复数2.2 初等数学2.2.1 常用函数1) 确定乘积和不确定乘积命令格式: product(f,k);product(f,k=m..n);product(f,k=alpha);product(f,k=expr);其中, f—任意表达式, k—乘积指数名称, m,n—整数或任意表达式, alpha—代数数RootOf, expr—包含k的任意表达式.> product(k^2,k=1..10); #计算2k关于1..10的连乘13168189440000> product(k^2,k); #计算2k的不确定乘积()Γk 2> product(a[k],k=0..5); #计算a i (i=0..5)的连乘a 0a 1a 2a 3a 4a 5> Product(n+k,k=0..m)=product(n+k,k=0..m); #计算(n+k)的连乘, 并写出其惰性表达式= ∏ = k 0m() + n k ()Γ + + n m 1()Γn> product(k,k=RootOf(x^3-2)); #计算23-x 的三个根的乘积22)指数函数计算指数函数exp 关于x 的表达式的命令格式为: exp(x);3)确定求和与不确定求和sum命令格式: sum(f,k);sum(f,k=m..n);sum(f,k=alpha);sum(f,k=expr);其中, f —任意表达式, k —乘积指数名称, m,n —整数或任意表达式, alpha —代数数RootOf,expr —不含k 的表达式.> Sum(k^2,k=1..n)=sum(k^2,k=1..n);= ∑ = k 1nk 2 - + + 13() + n 1312() + n 1216n 16> Sum(1/k!,k=0..infinity)=sum(1/k!,k=0..infinity);= ∑ = k 0∞1!k e> sum(a[k]*x[k],k=0..n);∑ = k 0n a k x k> sum(k/(k+1),k=RootOf(x^2-3));33)三角函数/双曲函数命令格式: sin(x); cos(x); tan(x); cot(x); sec(x); csc(x);sinh(x); cosh(x); tanh(x); coth(x); sech(x); csch(x);其中, x 为任意表达式.> Sin(Pi)=sin(Pi);= ()Sin π04)反三角函数/反双曲函数命令格式: arcsin(x); arccos(x); arctan(x); arccot(x); arcsec(x); arccsc(x);arcsinh(x); arccosh(x); arctanh(x); arccoth(x); arcsech(x); arccsch(x);arctan(y,x);其中, x, y 为表达式. 反三角函数/反双曲函数的参数必须按弧度计算.> arcsinh(1);()ln + 12> cos(arcsin(x));- 1x 25)对数函数命令格式: ln(x); #自然对数log[a](x); #一般对数log10(x); #常用对数一般地, 在ln(x)中要求x>0. 但对于复数型表达式x, 有:)(argument *))(abs ln()ln(x I x x += (其中, ππ≤<-)(argument x )> log10(1000000);()ln 1000000()ln 10 > simplify(%); #化简上式62.2.2 函数的定义试看下面一个例子:> f(x):=a*x^2+b*x+c;---并不是函数,而是一个表达式:= ()f x + + a x 2b x c> f(x),f(0),f(1/a);,, + + a x 2b x c ()f 0⎛⎝ ⎫⎭⎪⎪f 1a 由上述结果可以看出, 用赋值方法定义的f(x)是一个表达式而不是一个函数在Maple 中, 要真正完成一个函数的定义, 需要用算子(也称箭头操作符):> f:=x->a*x^2+b*x+c;:= f → x + + a x 2b x c> f(x),f(0),f(1/a);,,+ + a x 2b x c c + + 1a b ac > f:=(x,y)->x^2+y^2; := f → (),x y + x 2y 2> f(1,2);5> f:=(x,y)->a*x*y*exp(x^2+y^2);:= f → (),x y a x y e () + x 2y 2另一个定义函数的命令是unapply,其作用是从一个表达式建立一个算子或函数.命令格式为: f:=unapply(expr, x);命令格式为: f:=unapply(expr, x, y, …);> f:=unapply(x^4+x^3+x^2+x+1,x);:= f → x + + + + x 4x 3x 2x 1借助函数piecewise 可以生成简单分段函数:> abs(x)=piecewise(x>0,x,x=0,0,x<0,-x); = x ⎧⎩⎪⎪⎪⎪⎪⎨x < 0x 0 = x 0-x < x 0清除函数的定义用命令unassign.> unassign(f);> f(1,1); ()f ,11定义了一个函数后, 就可以使用op 或nops 指令查看有关函数中操作数的信息. nops(expr), 函数op 的主要功能是,其命令格式为:op(expr); #获取表达式的操作数op(i, expr); #取出expr 里第i 个操作数,op(i .. j, expr); #expr 的第i 到第j 个操作数nops(expr); #返回操作数的个数> expr:=6+cos(x)+sin(x)*cos(x)^2;:= expr + + 6()cos x ()sin x ()cos x 2> op(expr);,,6()cos x ()sin x ()cos x 2> nops(expr);32.2.3 Maple 中的常量与变量名为了解决数学问题, 一些常用的数学常数是必要的. Maple 系统中已经存储了一些数学常数在表达式序列constants 中:> constants;,,,,,,false γ∞true Catalan FAIL π为了方便使用, 现将上述常数的具体含义列示如下:2.2.4 函数类型转换实现函数类型转换的命令是convert . 命令格式:convert(expr, form); #把数学式expr 转换成form 的形式convert(expr, form, x); #指定变量x, 此时form 只适于exp 、sin 、cosconvert 指令所提供的三角函数、指数与函数的转换共有exp 等7种:(1) exp : 将三角函数转换成指数(2) expln : 把数学式转换成指数与对数(3) expsincos : 分别把三角函数与双曲函数转换成sin 、cos 与指数的形式(4) ln : 将反三角函数转换成对数(5) sincos : 将三角函数转换成sin 与cos 的形式, 而把双曲函数转换成sinh 与cosh 的形式(6) tan : 将三角函数转换成tan 的形式(7) trig : 将指数函数转换成三角函数与对数函数> convert(sinh(x),exp); #将sinh(x)转换成exp 类型 - 12e x 121e x2.2.5 函数的映射—map 指令在符号运算的世界里, 映射指令map 可以说是相当重要的一个指令, 它可以把函数或指令映射到这些结构里的元素, 而不破坏整个结构的完整性. 命令格式为:map(f, expr); #将函数f 映射到expr 的每个操作数map(f, expr, a); #将函数f 映射到expr 的每个操作数, 并取出a 为f 的第2个自变量map(f, expr, a1, a2,…, an); #将函数f 映射到expr 的每个操作数, 并取a1~an 为f 的第2~n+1个自变量map2(f, a1, expr, a2, …, an); #以a1为第1个自变量, expr 的操作数为第2个自变量, a2为第3个自变量…, an 为第n+1个自变量来映射函数f> f:=x->sqrt(x)+x^2;:= f → x + x x 2> map(f,[a,b,c]); [],, + a a 2 + b b 2 + c c 2> map(h, [a,b,c],x,y);[],,()h ,,a x y ()h ,,b x y ()h ,,c x y3 求 值3.1 赋值在Maple 中, 不需要申明变量的类型, 甚至在使用变量前不需要将它赋值, 这是Maple 与其它高级程序设计语言不同的一点, 也正是Maple 符号演算的魅力所在, 这个特性是由Maple 与众不同的赋值方法决定的. 为了理解其赋值机制, 先看下面的例子.> p:=9*x^3-37*x^2+47*x-19;:= p - + - 9x 337x 247x 19> roots(p);⎡⎣⎢⎢⎤⎦⎥⎥,[],12⎡⎣⎢⎢⎤⎦⎥⎥,1991> subs(x=19/9,p);3.2 变量代换subs ( var = repacedment , expression );调用的结果是将表达式expression 中所有变量var 出现的地方替换成 replacement.> f:=x^2+exp(x^3)-8;:= f + - x 2e()x 38> subs(x=1,f); - + 7e如果需要计算, 必须调用求值函数evalf . 如:> evalf(%);5.> subs(x=y,y=z,x^2*y); (顺序替换)z 3> subs({x=y,y=z},x^2*y); (同步替换)y 2z> subs((a=b,b=c,c=a),a+2*b+3*c); (顺序替换)6a> subs({a=b,b=c,c=a},a+2*b+3*c); (轮 换)+ + b 2c 3a> subs({p=q,q=p},f(p,q)); (互 换)()f ,q p3.3 求值规则1) 对表达式求值命令格式: eval(e, x=a); #求表达式e 在x=a 处的值eval(e, eqns); #对方程或方程组eqns 求值eval(e); #表达式e 求值到上面两层eval(x,n); #给出求值名称的第n 层求值> p:=x^5+x^4+x^3+x^2+x+73;:= p + + + + + x 5x 4x 3x 2x 73> eval(p,x=7);19680当表达式在异常点处求值时, eval 会给一个错误消息. 如下:> eval(sin(x)/x,x=0);Error, numeric exception: division by zero2) 在代数数(或者函数)域求值命令格式: evala(expr); # 对表达式或者未求值函数求值evala(expr,opts); #求值时可加选项(opts)在Maple 中, 代数数用函数RootOf ()来表示. 如3作为一个代数数, 可以表示为:> alpha:=RootOf(x^2-3,x);:= α()RootOf - _Z 23> simplify(alpha^2);3在Maple 内部, 代数数α不再表示为根式, 而在化简时, 仅仅利用到32=α这样的事实. 这里, Maple 用到一个内部变量_Z. 再看下面一个例子,其中alias 是缩写的定义函数,而参数lenstra 指lenstra 椭圆曲线方法:> alias(alpha=RootOf(x^2-2)):> evala(factor(x^2-2,alpha),lenstra); () + x α() - x α> evala(quo(x^2-x+3,x-alpha,x,'r'));- + + 1αx> r;- + 3αα2> simplify(%);- 5α3) 在复数域上符号求值操纵复数型表达式并将其分离给出expr 的实部和虚部的函数为evalc, 命令格式为:evalc(expr);evalc 假定所有变量表示数值, 且实数变量的函数是实数类型. 其输出规范形式为: expr1+I*expr2. > evalc(sin(6+8*I));+ ()sin 6()cosh 8I ()cos 6()sinh 8> evalc(f(exp(alpha+x*I)));()f + e α()cos x I e α()sin x4) 使用浮点算法求值命令格式为: evalf(expr, n);> evalf(Pi,50);3.1415926535897932384626433832795028841971693993751> evalf(sin(3+4*I));- 3.853********.01681326I5) 对惰性函数求值把只用表达式表示而暂不求值的函数称为惰性函数,对任意代数表达式f 求值的命令格式为: value(f); > F:=Int(exp(x),x);:= F d ⎛⎠⎜e x x > value(%);e x> f:=Limit(sin(x)/x,x=0);:= f lim→ x 0()sin x x> value(%); 1另外, 将惰性函数的大写字母改为小写字母亦即可求值. 如下例:> Limit(sin(x)/x,x=0)=limit(sin(x)/x,x=0);= lim → x 0()sin x x1 4 数据结构Maple 中有许多内建的与FORTRAN 、C 或Pascal 不同的数据结构. 主要的数据结构有序列(sequence)、列表(list)、集合(set)、代数数( algebraic number)、未求值或惰性函数调用、表(table)、级数(series)、串(string)、索引名(index)、关系(relation)、过程体(process)以及整数(integer)、分数(fraction)、浮点数(float)、复数(complex number)等数据结构, 而矩阵(matrix)在Maple 中表示为阵列, 是一种特殊的表.4.1 数据类型查询在Maple 中, 用whattype 指令来查询某个变量的数据类型或特定类型, 命令格式为:whattype(expr) # 查询expr 的数据类型type(expr, t) # 查询expr 是否为t 类型, 若是则返回true, 否则返回false4.2 序列, 列表和集合4.2.1 序列所谓序列(Sequence), 就是一组用逗号隔开的表达式列. 如:> s:=1,4,9,16,25;:= s ,,,,1491625> t:=sin,com,tan,cot;:= t ,,,sin com tan cot一个序列也可以由若干个序列复合而成, 如:> s:=1,(4,9,16),25;:= s ,,,,1491625> s,s;,,,,,,,,,14916251491625而符号NULL 表示一个空序列. 序列有很多用途, 如构成列表、集合等. 事实上, 有些函数命令也是由序列构成. 例如:> max(s);25> min(s,0,s);函数seq 是最有用的生成序列的命令, 通常用于写出具有一定规律的序列的通项, 命令格式为: seq(f(i), i=m..n); # 生成序列f(m), f(m+1), …, f(n) (m,n 为任意有理数)seq(f(i), i=expr); # 生成一个f 映射expr 操作数的序列seq(f(op(i,expr)), i=1..nops(expr)); # 生成nops(expr)个元素组成的序列> seq(i^2,i=1..10);149162536496481100,,,,,,,,,> seq(i^3,i=x+y+z);x3y3z3,,获得一个序列中的特定元素选用操作符[ ], 如:> seq(ithprime(i),i=1..20);235711131719232931374143475359616771,,,,,,,,,,,,,,,,,,,> %[6],%[17];1359,4.2.2 列表列表(list), 就是把对象(元素)放在一起的一种数据结构, 一般地, 用方括号[ ]表示列表. 如下例: > l:=[x,1,1-z,x];x1 -1z x,,,:=l[]> whattype(%);list4.2.3 集合集合(set)也是把对象(元素)放在一起的数据结构,一般地, 用花括号表示集合.> s:={x,1,1-z,x};1z1x -,,s{}:=> whattype(%);set空集定义为{ }.Maple中集合的基本运算有交(intersect)、并(union)、差(minus):> A:={seq(i^3,i=1..10)};B:={seq(i^2,i=1..10)};,,,,,,,,,1827641252163435127291000A{}:=149162536496481100,,,,,,,,,B{}:=> A intersect B;,164{}4.3 数组和表在Maple中, 数组(array)由命令array产生, 其下标变量(index)可以自由指定. 下标由1开始的一维数组称为向量(vector), 二维以上的数组称为矩阵(matrix). 数组的元素按顺序排列, 任意存取一数组的元素要比列表或序列快的多. 区分一个数据结构是数组还是列表要用“type”命令.表(table)在建立时使用圆括号, 变量能对一个表赋值, 但一个在存取在算子中的未赋值变量会被自动地假定是表, 表的索引可以成为任意Maple表达式. 表中元素的次序不是固定的.5 Maple 高级输入与输出操作生成LATEXMaple 可以把它的表达式转换成LATEX, 使用latex 命令即可: > latex(x^2+y^2=z^2);{x}^{2}+{y}^{2}={z}^{2}还可以将转换结果存为一个文件(LatexFile):> latex(x^2 + y^2 = z^2, LatexFile);再如下例:> latex(Int(1/(x^2+1),x)=int(1/(x^2+1),x));\int \! \left( {x}^{2}+1 \right) ^{-1}{dx}=\arctan\left( x \right)二 微积分运算1 函数的极限和连续1.1 函数和表达式的极限)(lim x f ax →命令格式为: limit(f,x=a);求)(lim x f ax +→时的命令格式为limit(f, x=a, right); 求)(lim x f ax -→时的命令格式为limit(f, x=a, left); 请看下述例子:> Limit((1+1/x)^x,x=infinity)=limit((1+1/x)^x,x=infinity);= lim → x ∞⎛⎝ ⎫⎭⎪⎪ + 11x xe > Limit((x^n-1)/(x-1),x=1)=limit((x^n-1)/(x-1),x=1);= lim → x 1 - x n 1 - x 1n > Limit(x^x,x=0,right)=limit(x^x,x=0,right);= lim→ +x 0x x 1> limit(a*x*y-b/(x*y),{x=1,y=1});- a b> limit(x^2*(1+x)-y^2*((1-y))/(x^2+y^2),{x=0,y=0});undefined下例就是化二重极限为二次极限而得正确结果:> limit((sin(x+y)/(sin(x)*sin(y)),{x=Pi/4,y=Pi/4}));⎛⎝ ⎫⎭⎪⎪lim it ,()sin + x y ()sin x ()sin y {}, = x 14π = y 14π > limit(limit(sin(x+y)/(sin(x)*sin(y)),x=Pi/4),y=Pi/4);21.2 函数的连续性1.2.1 连续在Maple 中可以用函数iscont 来判断一个函数或者表达式在区间上的连续性. 命令格式为: iscont(expr, x=a..b, 'colsed '/'opened');其中, closed 表示闭区间, 而opened 表示开区间(此为系统默认状态).如果表达式在区间上连续, iscont 返回true, 否则返回false, 当iscont 无法确定连续性时返回FAIL. 另外, iscont 函数假定表达式中的所有符号都是实数型. 颇为有趣的是, 当给定区间[a,b ] (a >b )时, iscont 会自动按[b,a ]处理.> iscont(1/x,x=1..2);true> iscont(1/x,x=-1..1,closed);false> iscont(1/(x+a),x=0..1);FAIL> iscont(ln(x),x=10..1);true1.2.2 间断函数discont 可以寻找函数或表达式在实数域的间断点, 当间断点周期或成对出现时, Maple 会利用一些辅助变量予以表达, 比如, _Zn ~(任意整数)、_NZn ~(任意自然数)和Bn ~(一个二进制数, 0或者1), 其中n 是序号. 判定f(x)间断点的命令为:discont(f, x);> discont(ln(x^2-4),x);{},-22> discont(arctan(1/2*tan(2*x))/(x^2-1),x);{},,-11 + 12π_Z1~14π> discont(round(3*x-1/2),x);{} + 1313_Z1 函数round 为“四舍五入”函数,上例并非一目了然,对其进一步理解可借助于函数plot 或下面给出的fdiscont 例子。
Maple软件的介绍使用方法
Maple软件可以绘制各种类型的 函数图像,包括曲线图、散点图、 极坐标图等。
Maple软件支持绘制三维图像, 可以展示函数的立体形状和表面 等。
绘制等值线图
Maple软件可以绘制等值线图, 用于表示函数在二维平面上的等 高线。
Maple软件的数据分析功能
数据导入
Maple软件可以导入各种数据格 式,包括文本文件、Excel文件 等。
Maple软件的功能特点
1 强大的计算能力
Maple软件具有高精度的计算能力,可以进 行符号计和数值计算,并能处理复杂的数 学运算。
2 丰富的数学函数
Maple软件内置了丰富的数学函数,可以用 于求解方程、绘制函数图像、进行数学推理 等。
3 友好的用户界面
Maple软件采用直观的界面设计,使用户能 够轻松使用各种功能,同时提供了丰富的学 习资源和帮助文档。
编辑结果
在输出区域对计算结果进行编 辑、调整格式和导出。
Maple软件的数学运算功能
1
代数运算
Maple软件可以进行代数运算,包括多项
微积分运算
2
式运算、方程求解、矩阵运算等。
Maple软件支持微积分运算,可以进行导
数计算、积分计算、微分方程求解等。
3
概率统计运算
Maple软件具有强大的概率统计功能,可 以进行随机数生成、概率分布计算、统计 分析等。
Maple软件的介绍使用方 法
Maple软件是一款功能强大的数学软件,被广泛应用于科学研究、工程领域、 教育教学以及金融等领域。本文将介绍Maple软件的各种功能和应用,帮助您 更好地理解和使用Maple软件。
Maple软件简介
Maple软件是一种先进的数学软件,通过其强大的计算和分析功能,可以解决各种数学问题,包括代数、微积 分、差分方程等。
maple教程
maple教程1. 介绍Maple:Maple是一款广泛应用于数学、科学和工程领域的计算软件。
它可以进行数值计算、符号计算、可视化和建模等功能,被广泛用于教育、研究和工程设计等领域。
2. 安装Maple:首先,下载Maple的安装文件并运行。
按照安装向导的指示完成安装过程。
安装完成后,可以打开Maple并开始使用。
3. Maple基础:Maple中的基本对象是表达式(expression)。
可以输入表达式并进行计算,也可以定义变量、函数和方程等。
Maple的语法与一般数学符号相似,所以非常易于学习和使用。
4. 数值计算:Maple可以进行各种数值计算,例如求解方程、数值积分、数值微分等。
可以使用内置的函数或编写自定义的函数来实现不同的数值计算任务。
使用数值计算可以快速得到数学问题的近似解。
5. 符号计算:Maple的强大之处在于符号计算。
可以进行代数运算、求解方程、化简表达式等。
Maple能够处理复杂的代数表达式,并给出精确的结果。
对于数学研究、理论推导和数学建模等领域非常有用。
6. 绘图功能:Maple提供了丰富的绘图功能,可以创建二维和三维图形来可视化数学和科学问题。
可以绘制函数图像、数据图表、散点图、曲线图等。
通过调整参数,可以自定义图形的外观和样式。
7. 建模与仿真:Maple还提供了建模和仿真功能,可以通过输入方程或条件来建立模型,并进行仿真和分析。
可以用于工程设计、物理模拟、控制系统设计等领域。
Maple可以帮助用户更好地理解和解决实际问题。
8. 扩展功能:Maple具有丰富的扩展功能,可以使用包(package)来扩展Maple的功能。
可以通过安装和加载包来添加新的函数、命令和工具。
这些包可以提供额外的数学、统计、优化、图论等功能。
9. Maple应用领域:Maple广泛应用于数学教育、科学研究和工程设计等领域。
在教育方面,它可以帮助学生理解和掌握数学概念,同时也是教师教学和练习的重要工具。
maple学习笔记
目录一.maple基础 (6)1.输入和输出 (6)希腊字母拼写 (6)2.Maple的基本运算 (6)2.1数值计算问题:加减乘除幂,有理数运算,复数运算 (6)2.2初等数学 (8)3.求值 (11)3.1赋值 (11)3.2变量代换 (11)3.3假设机制 (12)3.4求值规则 (13)4.数据结构 (14)4.1数据类型查询 (14)4.2序列、列表和集合 (15)4.3数组和表 (17)4.4其他数据结构 (18)4.5数据类型转换和合并 (18)5.maple高级输入与输出操作 (19)5.1写入文件 (19)5.2读取文件 (21)5.3与其它程序语言的链接 (22)二.微积分运算 (22)1.函数的极限和连续 (22)1.1函数和表达式的极限 (22)1.2函数的连续性 (23)2.导数和微分 (23)2.1符号表达式求导 (23)2.2隐函数求导 (26)2.3函数的极值 (27)3.积分运算 (30)3.1不定积分 (30)3.2定积分 (31)3.3其它积分方法 (32)3.4重积分和线积分 (35)3.5利用辅助手段积分 (35)4.级数 (36)4.1数值级数和函数项级数求和以及审敛法 (36)4.2幂级数 (37)4.3泰勒级数和劳朗级数(略) (38)5积分变换 (38)5.1拉普拉斯变换 (39)5.2傅里叶变换 (39)5.3其他积分变换 (39)三.线性代数 (39)1.多项式 (39)1.1多项式生成及类型测试 (39)1.2提取多项式系数 (40)1.3多项式的约数和根 (40)1.4多项式转换及整理 (42)1.5多项式运算 (44)1.6有理式 (47)2.矩阵基本运算 (49)2.1数组和向量 (49)2.2矩阵的建立 (51)2.3矩阵的基本运算 (54)2.4矩阵的求值 (55)2.5矩阵分解decompose (55)3.矩阵的初等变换和线性方程组求解 (57)3.1矩阵的初等变换 (57)3.2线性方程组的解 (57)3.3最小二乘法求解线性方程解 (59)3.4正定矩阵 (60)4.特征值、特征向量和矩阵的相似 (60)4.1矩阵的相似 (60)4.2特征值和特征向量 (62)5线性空间基本理论 (63)5.1基本子空间 (63)5.2正交基和Schmidt正交化 (64)四.方程求解 (65)1.代数方程组求解 (65)1.1常用求解工具—solve (65)1.2其他求解工具 (65)2常微分方程求解 (68)2.1常微分方程的解析解 (68)2.2利用积分变换求解微分方程 (69)2.3常微分方程组的求解 (69)2.4常微分方程的级数解法 (70)2.5常微分方程的数值解法 (70)2.6摄动法求解常微分方程 (70)3.偏微分方程求解初步 (71)五.maple图形绘制 (71)1.二维图形绘制 (71)1.1基本微微绘图指令 (71)1.2二维参数绘图 (72)1.3数据点绘图 (73)1.4其他坐标系绘图 (74)2.三维绘图 (75)2.1基本三维绘图指令 (75)2.2三维参数绘图 (76)3.特殊绘图 (76)3.1图形的显示与合并 (76)3.2不等式作图 (77)3.3空间曲线作图 (77)3.4隐函数作图 (77)3.5等高线与密度图 (78)3.6对数作图 (79)3.7高级作图指令 (80)4.动画 (83)六.maple程序设计 (84)1.编程基础 (84)1.1算子 (84)1.2编程初体验 (84)1.3局部变量和全局变量 (84)1.4变量nargs,args与procname (84)2.基本程序结构 (84)2.1for循环 (84)2.2分支结构(条件语句) (84)2.3while循环 (84)2.4递归子程序 (84)3.子程序求值 (85)3.1参数 (85)3.2局部变量和全局变量 (85)3.3环境变量 (85)4.嵌套子程序和记忆表 (85)4.1嵌套子程序 (85)4.2记忆表 (85)5返回子程序的子程序 (85)5.1牛顿迭代法 (85)5.2函数的平移 (85)6局部变量的进一步探讨 (85)7扩展maple命令 (85)8程序调试 (86)一.maple基础1.输入和输出输入用maple语言或者标准数学记法(standard math notation)4种输出方式: Maple语言、格式化文本(Character Notation)、固定格式记法(Typeset notation),标准数学记法(Standard Math Notation). 通常采用标准数学记法.希腊字母拼写2.Maple的基本运算2.1数值计算问题:加减乘除幂,有理数运算,复数运算有理数运算:赋值:=整数的余数(remainder)和商数(quotient)素数(prime)判别确定第i个素数(ithprime)确定下一个较大(nextprime)/较小(prevprime)素数一组数的最大值和最小值模(Module)运算随机(random)数生成器复数运算:实部(real part)、虚部(imaginary part)、同源词,结合、性交、使成对,共轭的(conjugate),论证、论据、争吵、内容提要(argument)数的进制转换:2.2初等数学常用函数函数的定义赋值(不是函数)定义函数,要用算子(箭头操作符)多变量函数定义箭头操作符定义函数的方式一般为:用unapply定义函数借助piecewise生成分段函数清除函数的定义命令用unassignMaple中的常量与变量名Maple中最简单的变量名是字符串,变量名由字母、数字和下划线组成的序列,第一个字符必须是字母或下划线,定义变量名时常用‘.’将两个字符串连接成一个名。
Maple教程
数学实验数学软件Maple使用教程序言一.什么是数学实验?我们都熟悉物理实验和化学实验,就是利用仪器设备,通过实验来了解物理现象、化学物质等的特性。
同样,数学实验也是要通过实验来了解数学问题的特性并解决对应的数学问题。
过去,因为实验设备和实验手段的问题,无法解决数学上的实验问题,所以,一直没有听说过数学实验这个词。
随着计算机的飞速发展,计算速度越来越快,软件功能也越来越强,许多数学问题都可以由计算机代替完成,也为我们用实验解决数学问题提供了可能。
数学实验就是以计算机为仪器,以软件为载体,通过实验解决实际中的数学问题。
二.常用的数学软件目前较流行的数学软件主要有四种:1.MathACD其优点是许多数学符号键盘化,通过键盘可以直接输入数学符号,在教学方面使用起来非常方便。
缺点是目前仅能作数值运算,符号运算功能较弱,输出界面不好。
2.Matlab优点是大型矩阵运算功能非常强,构造个人适用函数方便很方便,因此,非常适合大型工程技术中使用。
缺点是输出界面稍差,符号运算功能也显得弱一些。
不过,在这个公司购买了Maple公司的内核以后,符号运算功能已经得到了大大的加强。
再一个缺点就是这个软件太大,按现在流行的版本5.2,自身有400多兆,占硬盘空间近1个G,一般稍早些的计算机都安装部下。
我们这次没用它主要就是这个原因。
3.Mathematica其优点是结构严谨,输出界面好,计算功能强,是专业科学技术人员所喜爱的数学软件。
缺点是软件本身较大,目前流行的3.0版本有200兆;另一个缺点就是命令太长,每一个命令都要输入英文全名,因此,需要英语水平较高。
4.Maple优点是输出界面很好,与我们平常书写几乎一致;还有一个最大的优点就是它的符号运算功能特别强,这对于既要作数值运算,又要作符号运算时就显得非常方便了。
除此之外,其软件只有30兆,安装也很方便(直接拷贝就可以用)。
所以,我们把它放到学校网上直接调用。
缺点就是目前市面上买不到教材,帮助系统又是英语,为学习带来了不便。
Maple基础学习知识教学教育资料汇总
1 初识计算机代数系统Maple1.1 Maple简说1980年9月, 加拿大Waterloo大学的符号计算机研究小组成立, 开始了符号计算在计算机上实现的研究项目, 数学软件Maple是这个项目的产品. 目前, 这仍是一个正在研究的项目.Maple的第一个商业版本是1985年出版的. 随后几经更新, 到1992年, Windows系统下的Maple 2面世后, Maple被广泛地使用, 得到越来越多的用户. 特别是1994年, Maple 3出版后, 兴起了Maple热. 1996年初, Maple 4问世, 1998年初, Maple 5正式发行. 目前广泛流行的是Maple 7以及2002年5月面市的Maple 8.Maple是一个具有强大符号运算能力、数值计算能力、图形处理能力的交互式计算机代数系统(Computer Algebra System). 它可以借助键盘和显示器代替原来的笔和纸进行各种科学计算、数学推理、猜想的证明以及智能化文字处理.Maple这个超强数学工具不仅适合数学家、物理学家、工程师, 还适合化学家、生物学家和社会学家, 总之, 它适合于所有需要科学计算的人.1.2 Maple结构Maple软件主要由三个部分组成: 用户界面(Iris)、代数运算器(Kernel)、外部函数库(External library). 用户界面和代数运算器是用C语言写成的, 只占整个软件的一小部分, 当系统启动时, 即被装入, 主要负责输入命令和算式的初步处理、显示结果、函数图象的显示等. 代数运算器负责输入的编译、基本的代数运算(如有理数运算、初等代数运算等)以及内存的管理. Maple的大部分数学函数和过程是用Maple 自身的语言写成的, 存于外部函数库中. 当一个函数被调用时, 在多数情况下, Maple会自动将该函数的过程调入内存, 一些不常用的函数才需要用户自己调入, 如线性代数包、统计包等, 这使得Maple在资源的利用上具有很大的优势, 只有最有用的东西才留驻Maple可以在较小内存的计算机上正常运行. 用户可以查看Maple的非内存函数的源程序, 也可以将自己编的函数、过程加到Maple的程序库中, 或建立自己的函数库.1.3 Maple输入输出方式为了满足不同用户的需要, Maple可以更换输入输出格式: 从菜单“Options | Input Display和Out Display下可以选择所需的输入输出格式.Maple 7有2种输入方式: Maple语言(Maple Notation)和标准数学记法(Standard Math Notation). Maple语言是一种结构良好、方便实用的内建高级语言, 它的语法和Pascal或C有一定程度的相似, 但有很大差别. 它支持多种数据操作命令, 如函数、序列、集合、列表、数组、表, 还包含许多数据操作命令, 如类型检验、选择、组合等. 标准数学记法就是我们常用的数学语言.启动Maple, 会出现新建文档中的“[>”提示符, 这是Maple中可执行块的标志, 在“>”后即可输入命令, 结束用“;”(显示输出结果)或者“:”(不显示输出结果). 但是, 值得注意的是, 并不是说Maple的每一行只能执行一句命令, 而是在一个完整的可执行块中健入回车之后, Maple会执行当前执行块中所有命令(可以是若干条命令或者是一段程序). 如果要输入的命令很长, 不能在一行输完, 可以换行输入, 此时换行命令用“shift+Enter”组合键, 而在最后一行加入结束标志“;”或“:”, 也可在非末行尾加符号“\”完成.Maple 7有4种输出方式: Maple语言、格式化文本(Character Notation)、固定格式记法(Typeset Notation)、标准数学记法(Standard Math Notation). 通常采用标准数学记法.Maple会认识一些输入的变量名称, 如希腊字母等. 为了使用方便, 现将希腊字母表罗列如下,输入时只需录入相应的英文,要输入大写希腊字母, 只需把英文首字母大写:的函数或程序设计方式控制其输出方式,如下例:> for i to 10 doprintf("i=%+2d and i^(1/2)=%+6.3f", i, eval(sqrt(i)));od;+2d的含义是带符号的十进位整数,域宽为2. 显然,这种输出方式不是我们想要的,为了得到更美观> for i to 10 doprintf("i=%+2d and i^(1/2)=%+6.3f\n", i, eval(sqrt(i)));od;再看下例:将输入的两个数字用特殊形式打印:> niceP:=proc(x,y)printf("value of x=%6.4f, value of y=%6.4f",x,y);end proc;> niceP(2.4,2002.204); 1.4 Maple 联机帮助学会寻求联机帮助是掌握一个软件的钥匙. Maple 有一个非常好的联机帮助系统, 它包含了90%以上命令的使用说明. 要了解Maple 的功能可用菜单帮助“Help ”, 它给出Maple 内容的浏览表, 这是一种树结构的目录表, 跟有…的词条说明其后还有子目录, 点击这样的词条后子目录就会出现(也可以用Tab 键和up, down 选定). 可以从底栏中看到函数命令全称, 例如, 我们选graphics …, 出现该条的子目录, 从中选2D …, 再选plot 就可得到作函数图象的命令plot 的完整帮助信息. 一般帮助信息都有实例, 我们可以将实例中的命令部分拷贝到作业面进行计算、演示, 由此可了解该命令的作用.在使用过程中, 如果对一个命令把握不准, 可用键盘命令对某个命令进行查询. 例如, 在命令区输入命令“?plot ”(或help(plot);), 然后回车将给出plot 命令的帮助信息, 或者将鼠标放在选定的要查询的命令的任何位置再点击菜单中的“Help ”即可. 2 Maple 的基本运算 2.1 数值计算问题算术是数学中最古老、最基础和最初等的一个分支, 它研究数的性质及其运算, 主要包括自然数、分数、小数的性质以及他们的加、减、乘、除四则运算. 在应用Maple 做算术运算时, 只需将Maple 当作一个“计算器”使用, 所不同的是命令结束时需加“;”或“:”.在Maple 中, 主要的算术运算符有“+”(加)、“–”(减)、“*”(乘)、“/”(除)以及“^”(乘方或幂,或记为**), 算术运算符与数字或字母一起组成任意表达式, 但其中“+”、“*”是最基本的运算, 其余运算均可归诸于求和或乘积形式. 算述表达式运算的次序为: 从左到右, 圆括号最先, 幂运算优先, 其次是乘除,最后是加减. 值得注意的是, “^”的表达式只能有两个操作数, 换言之, c b a ^^是错误的, 而“+”或“*”的任意表达式可以有两个或者两个以上的操作数.Maple 有能力精确计算任意位的整数、有理数或者实数、复数的四则运算, 以及模算术、硬件浮点数和任意精度的浮点数甚至于矩阵的计算等等. 总之, Maple 可以进行任意数值计算.但是, 任何软件或程序毕竟只是人们进行科学研究的一种必要的辅助, 即便它有很多优点, 但也有它的局限性, 为了客观地认识数学软件、认识Maple, 下面通过两个简单例子予以说明.第一个简单的数值计算实例想说明Maple 数值计算的答案的正确性: > 3!!!;上述运算结果在IBM PC 机(1G , 128M)上计算只需要0.01秒, 得到如此复杂的结果(1747位), 一个自然的问题是: 答案正确吗?为了回答这个问题, 我们借助于数值分析方法, 由Stiring 公式)ex p(2!n n n n n -⋅⋅≈π可得: 17461060091.2!720⨯≈, 前三位数字与Maple 输出结果相同, 且两者结果均为1747位. 另外, 在720!的计算中, 5的因子的个数为:1785720572057205720432=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡这些5与足够多的2相乘将得到178个0, 而Maple 的输出结果中最后178位数为零. 由此, 可以相信Maple 结果的正确性.另一个例子则想说明Maple 计算的局限性:()()?8 ?86/23/1=-=- Maple 在处理问题时, 为了避免失根, 从不求算术式的近似值, 分数则化简为既约分数. 因此, 在Maple 中很容易得到:()()6/23/18 8-=-显然这是错误的. 这一点可以从代数的角度予以分析.不妨设()x =-3/18, 则083=+x , 即0)42)(2(2=+-+x x x , 显然()3/18-有3个结果, -2是其实数结果.另一方面, 设()x=-6/28, 则0)8(26=-+x , 即:)(42)(2)(2()8)(8(2233+--+=-+x x x x x x x 显然()6/28-有6个结果, -2、2是其实数结果.这个简单的例子说明了Maple 在数值计算方面绝对不是万能的, 其计算结果也不是完全正确的, 但是, 通过更多的实验可以发现: Maple 只可能丢失部分结果, 而不会增加或很少给出完全错误的结果(如上例中Maple 的浮点数结果皆为 + 1.000000000 1.732050807I ). 这一点提醒我们, 在利用Maple 或其他任何数学软件或应用程序进行科学计算时, 必须运用相关数学基础知识校验结果的正确性.尽管Maple 存在缺陷(实际上, 任何一个数学软件或程序都存在缺陷), 但无数的事实说明Maple 仍然不失为一个具有强大科学计算功能的计算机代数系统. 事实上, Maple 同其他数学软件或程序一样只是科学计算的一个辅助工具, 数学基础才是数学科学中最重要的.2.1.1 有理数运算作为一个符号代数系统, Maple 可以绝对避免算术运算的舍入误差. 与计算器不同, Maple 从来不自作主张把算术式近似成浮点数, 而只是把两个有公因数的整数的商作化简处理. 如果要求出两个整数运算的近似值时, 只需在任意一个整数后加“.”(或“.0”), 或者利用“evalf ”命令把表达式转换成浮点形式, 默认浮点数位是10 (即: Digits:=10, 据此可任意改变浮点数位, 如Digits:=20).> 12!+(7*8^2)-12345/125; > 123456789/987654321; > evalf(%); > 10!; 100*100+1000+10+1; (100+100)*100-9; > big_number:=3^(3^3); > length(%);上述实验中使用了一个变量“big_number ”并用“:=”对其赋值, 与Pascal 语言一样为一个变量赋值用的是“:=”. 而另一个函数“length ”作用在整数上时是整数的十进制位数即数字的长度. “%”是一个非常有用的简写形式, 表示最后一次执行结果, 在本例中是上一行输出结果. 再看下面数值计算例子: 1)整数的余(irem)/商(iquo)命令格式:irem(m,n); #求m 除以n 的余数irem(m,n,'q'); #求m 除以n 的余数, 并将商赋给qiquo(m,n); #求m 除以n 的商数iquo(m,n,'r'); #求m 除以n 的商数, 并将余数赋给r其中, m, n 是整数或整数函数, 也可以是代数值, 此时, irem 保留为未求值.> irem(2002,101,'q'); # 求2002除以101的余数, 将商赋给q > q; #显示q> iquo(2002,101,'r'); # 求2002除以101的商, 将余数赋给r > r; #显示r > irem(x,3);2)素数判别(isprime)素数判别一直是初等数论的一个难点, 也是整数分解问题的基础. Maple 提供的isprime 命令可以判定一个整数n 是否为素数. 命令格式: isprime(n); 如果判定n 可分解, 则返回false, 如果返回true, 则n “很可能”是素数. > isprime(2^(2^4)+1); > isprime(2^(2^5)+1);上述两个例子是一个有趣的数论难题。
Maple8基础教程
赋值语句
变量名 :=表达式
读文件语句
read(文件名)
存文件语句
save(文件名)
条件语句
if 条件 then 语句组 fi if 条件 then 语句组 else语句组 fi if 条件then 语句组 elif 条件 then 语句组 fi if 条件 then 语句组 elif 条件 then 语,输入时需要 按照规定的格式输入,虽然与一般常见的 数学格式不同,但灵活方便,也很容易理 解。输出则可以选择字符方式和图形方式, 产生的图形结果可以很方便地剪贴到 Windows应用程序内。
例子:
简单的数值计算 >8*4^2-9; 初等和高等数学的运算能力 >(3*x^2-5*x+3+6y)*(-
Maple教程
Maple简介 Maple基础 数值计算 符号运算 方程求解 图形可视化 程序设计
Maple简介
Maple的历史 Maple的结构 Maple的基本功能 Maple的帮助系统
Maple的历史
Maple[枫叶,加拿大国旗图标],于1980 年由加拿大教授Keith Geddes和Gaston Gnnot在Waterloo大学开发出来,回来 Waterloo Maple公司开发了用于商业目 的的Maple软件,包含了近3000个函数的 数学函数库(简称函数库)和程序包,可以 胜任十分广泛的符号和数值分析任务,是 开发最早,应用最广泛的计算机代数软件 系统之一。
Maple的数据类型
简单的数值类型 序列(Sequence) 集合(Set) 列表(List) 系表(Series) 表(Table)
简单的数值类型
整数(integer) 分数(fraction) 浮点数(float) 常数(constant) 函数(function) 复数(complex) 代数数(algebraic number)
Maple入门手册(1)
函数
7
本稿由 哈尔滨工程大学船舶工程学院 张崇伟 制作,免费学术共享,禁止用于商业目的。
定义单变量函数: 对于一个函数,给出一系列变量值,只能返回一个值。在 Maple 里,我们使用箭头符号“->”, 一个连字符跟着一个右角括号,定义函数。可通过“:=”给函数指定一个函数名,用同样的 方式,你可以定义一个表达式。在下面例子中,函数被命名为 f,并且只有一个变量 x。在 函数 f 中,f(x)=x^5+6x
怎样处理错误 如果你不小心在命令行中输入了一个错误的符号,并按了回车键,Maple 会回复“syntax error”。有两种方法改正你的错误。你可以返回这一行修改 Maple 命令,然后重新执行这行 命令;当 Maple 重新执行这行命令后,结果会随之更改。你也可以输入“restart”来清除所 有旧的信息,然后重新输入正确的 Maple 命令。
我们会得到与前面例子相同的结果。 绘制数据
9
本稿由 哈尔滨工程大学船舶工程学院 张崇伟 制作,免费学术共享,禁止用于商业目的。
Plot()函数也可被用来绘制数据系列:首先将数据定义一个数列,然后绘制数列。 在下面的例子中,我们定义一个名为 list 的数列,数列通过表达式组来定义 [3,4],[5,6],[7,8],[9,10]。表达式组中的每一项也是一个数列,对应于点的坐标。我们然后用 plot 命令绘制这列数据。如果你想指定点的形式,你也可以增加一个选项变量。Plot()函数有三 种形式:点、线、面。默认的形式是线。在这个例子中,我们制定图形的形式是点。
或者,你可以把浮点数包含在表达式中,这样它会自动是 Maple 计算得到一个近似浮点型解 。
整数计算 Maple 可以处理任意大的整数。如果一个数太大,导致它一行的长度比屏幕还要长,Maple 会在一行结束处使用一个“\”符号表示数字还要院 张崇伟 制作,免费学术共享,禁止用于商业目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一. Maple 的安装启动 1.目前市面上出售的 Maple 软件一般是与其它数学软件在一张光盘上,
安装时只要将光盘上 Maple 目录全部拷贝到硬盘上就可以了。 2.在学校网络主页通过文件下载 ftp 内的 17cai 目录,找到 maple 点击,
将其下载到计算机上并解压,即安装完毕。 启动 Maple,首先进入 Maple 目录下的子目录 BIN,找到枫叶图标(下面有
第二章 基本命令
命令的执行:1.每条命令必须用“:”(执行后不显示)或“;”(执行并显示)结
束,否则被认为命令没输完。2.命令区中“#”号以后为命令注释(不执行)。3.
光标在命令区的任何位置回车,都会依次执行该命令区所有命令。
> 2+3 #没有结束符,执行后会显示警告:语句没输完
Warning, incomplete statement or missing semicolon
。不过,在这个公司购买了 Maple 公司的内核以后,符号运算功能已经得到了 大大的加强。再一个缺点就是这个软件太大,按现在流行的版本 5.2,自身有 4 00 多兆,占硬盘空间近 1 个 G,一般稍早些的计算机都安装部下。我们这次没 用它主要就是这个原因。
3. Mathematica 其优点学软件。缺点是软件本身较大,目前流行的 3.0 版本有 200 兆;另一个 缺点就是命令太长,每一个命令都要输入英文全名,因此,需要英语水平较高 。 4. Maple 优点是输出界面很好,与我们平常书写几乎一致;还有一个最大的优点就 是它的符号运算功能特别强,这对于既要作数值运算,又要作符号运算时就显 得非常方便了。除此之外,其软件只有 30 兆,安装也很方便(直接拷贝就可以 用)。所以,我们把它放到学校网上直接调用。缺点就是目前市面上买不到教材 ,帮助系统又是英语,为学习带来了不便。因为条件的限制,其它几个软件不 便于介绍,所以我们把我们对该软件的了解编写成讲义发给同学们作参考。
应的字号字体选择框;常用工具栏中(从左到右)有新建、打开、保存、打印、 剪切、复制、粘贴、撤消、Maple 输入转换、文体输入转换、增加命令区、撤 消分组、建立分组、停止运行及三个显示比例选择 x 按钮。点击提示符按钮将 增加一个命令区;当将几个命令区及文本输入抹黑,点击建立分组,就会将抹 黑部分分在一组,并出现一个分组标志,点击标志可以打开、关闭该组;点击 并排的三个 x 按钮控制显示比例。 三.退出工作面并保存文件 1.点击文件菜单 exit 或键盘 alt+F4 或点击窗口右上角×,这时系统要提示: 是否存盘?点击‘是’,则自动存盘。如果是第一次使用这个文件,则要出现 一个对话框,选择存盘目录并输入文件名称。 2.命令 quit done stop 也可退出 maple。注意!这三个退出命令不保存文 件,不要随便用。 3.作业中存盘,可以用文件菜单的保存,也可以用工具栏的软盘图标保存。最 好在操作一段后就保存一次,避免意外情况产生损失。
数学实验就是以计算机为仪器,以软件为载体,通过实验解决实际中的数 学问题。
二.常用的数学软件 目前较流行的数学软件主要有四种: 1. MathACD 其优点是许多数学符号键盘化,通过键盘可以直接输入数学符号,在教学
方面使用起来非常方便。缺点是目前仅能作数值运算,符号运算功能较弱,输 出界面不好。
2. Matlab 优点是大型矩阵运算功能非常强,构造个人适用函数方便很方便,因此,非常 适合大型工程技术中使用。缺点是输出界面稍差,符号运算功能也显得弱一些
3
3. 查找命令内容
info(命令);查找函数作用
example(命令);查找命令使用例子 related(命令);查找命令相关条目
> example(plot);
4.索引查找 ?index[索引类];
索引类:library 标准函数库 packages 专用软件包
库
型
> ?index[function]
statements 命令
tables 表与数组
expressions 表示类
procedures 过程函数
文件操作:Maple 作业面文件以 .m, .ms, .wms(windows 下)后缀,这种文件只
数学实验
数学软件 Maple 使用教程
序言
一.什么是数学实验? 我们都熟悉物理实验和化学实验,就是利用仪器设备,通过实验来了解物
理现象、化学物质等的特性。 同样,数学实验也是要通过实验来了解数学问题的特性并解决对应的数学
问题。过去,因为实验设备和实验手段的问题,无法解决数学上的实验问题, 所以,一直没有听说过数学实验这个词。随着计算机的飞速发展,计算速度越 来越快,软件功能也越来越强,许多数学问题都可以由计算机代替完成,也为 我们用实验解决数学问题提供了可能。
1
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
Wmaple),点击图标就可启动。也可以将该图标拷贝到桌面点击启动。 二.Maple 工作面
maple 工作面提示符用来输入 maple 命令。提示符[>左边的[号表示所要一 起执行的命令区,该区的命令将按先后次序连续一次执行完。若点击工具栏中 T 按钮,则提示符箭头消失,变为[号,表示当前为文本输入,工具栏也出现相
2
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
> 2+3; 会输出执行结果
> 2+3: 不会输出执行结果,但结果可用作以后计算使用
寻求帮助:
1.从 Help(帮助)菜单按类查找。
2.?后接命令(可以是命令的前几个字母)或 help(命令)查找。
> ?plot
>?plo
>help(plot);
#查找作图命令的帮助
#plot 的前三个字母
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。