Maple的常用内部数学函数要点

合集下载

[vip专享]maple基本函数

[vip专享]maple基本函数

evalm - 对矩阵表达式求值 evaln - 求值到一个名称 evalr, shake - 用区间算法求表达式的值和计算范围 evalrC - 用复数区间算法对表达式求值 value - 求值的惰性函数第4章求根,解方程 4.1 数值解 fsolve - 利用浮点数算法求解 solve/floats - 包含浮点数的表达式 4.2 最优化 extrema - 寻找一个表达式的相对极值 minimize, maximize - 计算最小值/最大值 maxnorm - 一个多项式无穷大范数 4.3 求根 allvalues -计算含有RootOfs的表达式的所有可能值 isqrt, iroot - 整数的平方根/第n 次根 realroot - 一个多项式的实数根的隔离区间 root - 一个代数表达式的第n 阶根 RootOf - 方程根的表示 surd - 非主根函数 roots - 一个多项式对一个变量的精确根 turm, sturmseq - 多项式在区间上的实数根数和实根序列 4.4 解方程 eliminate - 消去一个方程组中的某些变量 isolve - 求解方程的整数解 solvefor - 求解一个方程组的一个或者多个变量 isolate - 隔离一个方程左边的一个子表达式 singular - 寻找一个表达式的极点 solve/identity - 求解包含属性的表达式 solve/ineqs - 求解不等式 solve/linear - 求解线性方程组 solve/radical - 求解含有未知量根式的方程 solve/scalar - 标量情况(单变量和方程) solve/series - 求解含有一般级数的方程 solve/system - 解方程组或不等式组第5章操作表达式 5.1 处理表达式 simplify/siderels - 使用关系式进行化简 simplify/sqrt - 根式化简 simplify/trig - 化简trig 函数表达式 simplify/zero - 化简含嵌入型实数和虚数的复数表达式 6.2 其它化简操作 Normal - normal 函数的惰性形式 convert - 将一个表达式转换成不同形式 radnormal - 标准化一个含有根号数的表达式 rationalize - 分母有理化第7章操作多项式 7.0 MAPLE 中的多项式简介 7.1 提取 coeff - 提取一个多项式的系数 coeffs - 提取多元的多项式的所有系数 coeftayl - 多元表达式的系数 lcoeff, tcoeff - 返回多元多项式的首项和末项系数 7.2 多项式约数和根 gcd, lcm - 多项式的最大公约数/最小公倍数 psqrt, proot - 多项式的平方根和第n次根 rem,quo - 多项式的余数/商 7.3 操纵多项式 convert/horner - 将一个多项式转换成Horner形式 collect - 象幂次一样合并系数 compoly - 确定一个多项式的可能合并的项数 convert/polynom - 将级数转换成多项式形式 convert/mathorner - 将多项式转换成Horner矩阵形式 convert/ratpoly - 将级数转换成有理多项式 sort - 将值的列表或者多项式排序 sqrfree - 不含平方项的因数分解函数 7.4 多项式运算 discrim - 多项式的判别式 fixdiv - 计算多项式的固定除数 norm - 多项式的标准型 resultant - 计算两个多项式的终结式 bernoulli - Bernoulli 数和多项式 bernstein - 用Bernstein多项式近似一个函数 content, primpart - 一个多元的多项式的内容和主部 degree, ldegree - 一个多项式的最高次方/最低次方 divide - 多项式的精确除法 euler - Euler 数和多项式 icontent - 多项式的整数部分 interp - 多项式的插值 prem, sprem - 多项式的pseudo 余数和稀疏pseudo 余数 randpoly - 随机多项式生成器 spline - 计算自然样条函数第8章有理表达式 8.0 有理表达式简介 8.1 操作有理多项式 numer,denom - 返回一个表达式的分子/分母 frontend - 将一般的表达式处理成一个有理表达式 normal - 标准化一个有理表达式 convert/parfrac - 转换为部分分数形式 convert/rational - 将浮点数转换为接近的有理数 ratrecon - 重建有理函数第9章微积分 9.1 取极限 Limit, limit - 计算极限 limit[dir] - 计算方向极限 limit[multi] - 多重方向极限 limit[return] - 极限的返回值 9.2 连续性测试 discont - 寻找一个函数在实数域上的间断点 fdiscont - 用数值法寻找函数在实数域上的间断点 iscont - 测试在一个区间上的连续性 9.3 微分计算 D - 微分算子 D, diff - 运算符D 和函数diff diff, Diff - 微分或者偏微分 convert/D - 将含导数表达式转换为D运算符表达式 convert/diff - 将D(f)(x)表达式转换为diff(f(x),x)的形式 implicitdiff - 由一个方程定义一个函数的微分 9.4 积分计算 Si, Ci … - 三角和双曲积分 Dirac, Heaviside - Dirac 函数/Heaviside阶梯函数 Ei - 指数积分具用于完成在 Z/m 稠密线性代数计算,整数模m。

Maple的内部常数

Maple的内部常数

Maple的内部常数Maple的常用内部数学函数)Maple中的数学运算符Maple的关系运算符函数的连续性四大数学软件(mathcad,mathematica,maple,matlab)中,只有Maple才有判断函数连续性的命令,其命令如下:如何用Maple求极限(1)极限:(2)单侧极限:左极限:右极限:如何用Maple求导数如何用Maple求高阶导数如何在Maple中求隐函数的导数在Maple中,没有直接求参数方程确定的函数的导数的命令,只能根据参数方程确定的函数的求导公式一步一步地进行推导;或者,干脆自己编一个小程序,应用起来会更加方便。

如何用Maple求不定积分求定积分、广义积分如何用Maple先加载student函数库,加载方法为:with(student);如何用Maple进行分部积分的计算先加载student函数库,加载方法为:with(student);在Maple中,如何用矩形法、梯形法和辛普森法求近似积分在计算之前,首先要加载student函数库,加载方法为:with(student);矩形法梯形法辛普森法如何用Maple对数列和级数进行求和如何用Maple进行连乘如何用Maple展开级数如何在Maple中进行积分变换在进行拉普拉斯变换及其逆变换、傅立叶变换及其逆变换、傅立叶正弦变换和傅立叶余弦变换时,必须要先加载积分变换函数库,加载方法为:with(inttrans),但在进行Z变换及其逆变换时,不用加载任何函数库。

如何用Maple解微分方程如何用Maple解微分方程组如何用maple求多变量函数的极限以两个变量为例说明,多于两个变量的函数极限可以依次类推。

计算极限如何用maple 求多元函数的偏导数求偏导数如何用maple 求多变量函数的泰勒展开式首先要加载mtaylor 链接库,加载方法为:readlib (mtaylor )(在maple7、maple8、maple9中不用加载)如何用maple 求重积分可以利用数个int ()指令的组合来完成。

maple求函数的积分

maple求函数的积分

maple求函数的积分函数的积分是微积分中的一个重要概念。

在数学中,积分是求函数曲线与x轴之间的面积或弧长的过程。

它是微积分中的一个基本运算符号,与求导运算(微分)相对应。

在Maple(枫软件)中,可以使用int(函数来计算函数的积分。

下面将介绍如何使用Maple来计算函数的积分,并给出一些例子进行说明。

首先,打开Maple软件,在输入框中输入一个函数,使用int(函数来计算其积分。

例如,我们要计算函数f(x) = x^2的积分。

在输入框中输入以下命令:```maplef:=x^2;int(f, x);```运行这段代码,Maple会返回函数f(x)的积分结果,即1/3 * x^3Maple还可以在指定区间上计算函数的定积分。

例如,我们要计算函数f(x) = x^2在区间[0, 1]上的定积分,可以使用以下命令:```maplef:=x^2;int(f, x = 0..1);```运行这段代码,Maple会返回函数f(x)在区间[0, 1]上的定积分结果,即1/3当积分计算遇到难题时,可以使用Maple的符号计算功能来辅助计算。

Maple提供了一些符号计算函数,如expand、factor等,可以对表达式进行展开、因式分解等操作。

下面我们来看一个更复杂的例子,计算函数f(x) = sin(x) * cos(x)的积分。

```maplef := sin(x) * cos(x);int(f, x);```Maple会返回该函数的积分结果,即1/2 * sin^2(x)。

除了计算函数的积分,Maple还可以绘制函数曲线与其积分曲线。

下面我们将使用Maple来绘制函数f(x) = x^2及其积分曲线在区间[-1, 1]上的图像。

首先,定义函数f(x)=x^2,并计算其积分:```maplef:=x^2;F := int(f, x);```然后,使用plot函数来绘制函数曲线及其积分曲线:```mapleplot({f, F}, x = -1..1);```运行这段代码,Maple会绘制函数曲线及其积分曲线的图像。

maple函数定义

maple函数定义

maple函数定义
Maple是一款非常强大的数学软件,它可以进行科学计算、数据分析、图像处理等操作。

在Maple中,函数是非常重要的概念,也是我们使用Maple进行数学计算和建模的基础。

函数是一种数学工具,它是一组对应关系,将自变量映射成函数值。

在Maple中,我们可以通过定义函数来进行数学计算。

下面我们来详细介绍Maple函数的定义方法。

Maple函数可以通过使用“=”进行定义。

例如我们要定义函数f(x)=x^2,我们可以使用如下命令:
>f:= x -> x^2;
在这里,我们使用了“f:= x -> x^2;”这个命令来定义函数f。

其中,f为函数名,x 为函数变量,x^2为函数表达式。

我们可以使用“f(2);”来计算函数f在x=2处的函数值。

类似的,我们可以使用
“f(3);”来计算函数f在x=3处的函数值。

在这里,我们通过“(x,y) ->”来定义函数的变量个数,第一个变量为x,第二个变量为y,后面的“x*y”为函数表达式。

>h:= proc(x) x^3; end;
总结:
通过上述三种方法,我们可以在Maple中定义函数。

其中,第一种方法是最简单的方法,也是最常用的方法。

但是,三种方法都可以为我们的数学计算和建模带来很大的方便性。

maple基本函数

maple基本函数

第1章章数1.1 复数Re,Im - 返回复数型表达式的实部/虚部abs - 绝对值函数argument - 复数的幅角函数conjugate - 返回共轭复数csgn - 实数和复数表达式的符号函数signum - 实数和复数表达式的sign 函数51.2 MAPLE 常数已知的变量名称指数常数(以自然对数为底)I - x^2 = -1 的根infinity 无穷大1.3 整数函数! - 阶乘函数irem, iquo - 整数的余数/商isprime - 素数测试isqrfree - 无整数平方的因数分解max, min - 数的最大值/最小值mod, modp, mods - 计算对 m 的整数模rand - 随机数生成器randomize - 重置随机数生成器1.4 素数Randpoly, Randprime - 有限域的随机多项式/首一素数多项式ithprime - 确定第 i 个素数nextprime, prevprime - 确定下一个最大/最小素数1.5 数的进制转换convert/base - 基数之间的转换convert/binary - 转换为二进制形式convert/decimal - 转换为 10 进制convert/double - 将双精度浮点数由一种形式转换为另一种形式convert/float - 转换为浮点数convert/hex - 转换为十六进制形式convert/metric - 转换为公制单位convert/octal - 转换为八进制形式1.6 数的类型检查type - 数的类型检查函数第2章初等数学2.1 初等函数product - 确定乘积求和不确定乘积exp - 指数函数sum - 确定求和不确定求和sqrt - 计算平方根算术运算符+, -, *, /, ^add, mul - 值序列的加法/乘法2.2 三角函数arcsin, arcsinh, . - 反三角函数/反双曲函数sin, sinh, . - 三角函数/双曲函数2.3 LOGARITHMS 函数dilog - Dilogarithm 函数ln, log, log10 - 自然对数/一般对数,常用对数2.4 类型转换convert/`+`,convert/`*` - 转换为求和/乘积convert/hypergeom - 将求和转换为超越函数convert/degrees - 将弧度转换为度convert/expsincos - 将trig 函数转换为exp, sin, cosconvert/Ei - 转换为指数积分convert/exp - 将trig 函数转换为指数函数convert/ln - 将arctrig 转换为对数函数polar - 转换为极坐标形式convert/radians - 将度转换为弧度convert/sincos - 将trig 函数转换为sin, cos, sinh, cosh convert/tan - 将trig 函数转换为tanconvert/trig - 将指数函数转换为三角函数和双曲函数第3章求值3.1 假设功能3.2 求值Eval - 对一个表达式求值eval - 求值evala - 在代数数(或者函数)域求值evalb - 按照一个布尔表达式求值evalc - 在复数域上符号求值evalf - 使用浮点算法求值evalhf - 用硬件浮点数算法对表达式求值evalm - 对矩阵表达式求值evaln - 求值到一个名称evalr, shake - 用区间算法求表达式的值和计算范围evalrC - 用复数区间算法对表达式求值value - 求值的惰性函数第4章求根,解方程4.1 数值解fsolve - 利用浮点数算法求解solve/floats - 包含浮点数的表达式4.2 最优化extrema - 寻找一个表达式的相对极值minimize, maximize - 计算最小值/最大值maxnorm - 一个多项式无穷大范数4.3 求根allvalues -计算含有RootOfs的表达式的所有可能值isqrt, iroot - 整数的平方根/第n 次根realroot - 一个多项式的实数根的隔离区间root - 一个代数表达式的第n 阶根RootOf - 方程根的表示surd - 非主根函数roots - 一个多项式对一个变量的精确根turm, sturmseq - 多项式在区间上的实数根数和实根序列4.4 解方程eliminate - 消去一个方程组中的某些变量isolve - 求解方程的整数解solvefor - 求解一个方程组的一个或者多个变量isolate - 隔离一个方程左边的一个子表达式singular - 寻找一个表达式的极点solve/identity - 求解包含属性的表达式solve/ineqs - 求解不等式solve/linear - 求解线性方程组solve/radical - 求解含有未知量根式的方程solve/scalar - 标量情况(单变量和方程)solve/series - 求解含有一般级数的方程solve/system - 解方程组或不等式组第5章操作表达式5.1 处理表达式Norm - 代数数 (或者函数) 的标准型Power - 惰性幂函数Powmod -带余数的惰性幂函数Primfield - 代数域的原始元素Trace - 求一个代数数或者函数的迹charfcn - 表达式和集合的特征函数Indets - 找一个表达式的变元invfunc - 函数表的逆powmod - 带余数的幂函数Risidue - 计算一个表达式的代数余combine - 表达式合并(对tan,cot不好用)expand - 表达式展开Expand - 展开表达式的惰性形式expandoff/expandon - 抑制/不抑制函数展开5.2 因式分解Afactor - 绝对因式分解的惰性形式Afactors - 绝对因式分解分解项列表的惰性形式Berlekamp - 因式分解的Berlekamp 显式度factor - 多元的多项式的因式分解factors - 多元多项式的因式分解列表Factor - 函数factor 的惰性形式Factors - 函数factors 的惰性形式polytools[splits] - 多项式的完全因式分解第6章化简6.1 表达式化简118simplify - 给一个表达式实施化简规则simplify/@ - 利用运算符化简表达式simplify/Ei - 利用指数积分化简表达式simplify/GAMMA - 利用GAMMA 函数进行化简simplify/RootOf - 用RootOf 函数化简表达式simplify/wronskian - 化简含wronskian 标识符的表达式simplify/hypergeom - 化简超越函数表达式simplify/ln - 化简含有对数的表达式simplify/piecewise - 化简分段函数表达式simplify/polar - 化简含有极坐标形式的复数型表达式simplify/power - 化简含幂次的表达式simplify/radical - 化简含有根式的表达式simplify/rtable - 化简rtable 表达式simplify/siderels - 使用关系式进行化简simplify/sqrt - 根式化简simplify/trig - 化简trig 函数表达式simplify/zero - 化简含嵌入型实数和虚数的复数表达式6.2 其它化简操作Normal - normal 函数的惰性形式convert - 将一个表达式转换成不同形式radnormal - 标准化一个含有根号数的表达式rationalize - 分母有理化第7章操作多项式7.0 MAPLE 中的多项式简介7.1 提取coeff - 提取一个多项式的系数coeffs - 提取多元的多项式的所有系数coeftayl - 多元表达式的系数lcoeff, tcoeff - 返回多元多项式的首项和末项系数7.2 多项式约数和根gcd, lcm - 多项式的最大公约数/最小公倍数psqrt, proot - 多项式的平方根和第n次根rem,quo - 多项式的余数/商7.3 操纵多项式convert/horner - 将一个多项式转换成Horner形式collect - 象幂次一样合并系数compoly - 确定一个多项式的可能合并的项数convert/polynom - 将级数转换成多项式形式convert/mathorner - 将多项式转换成Horner矩阵形式convert/ratpoly - 将级数转换成有理多项式sort - 将值的列表或者多项式排序sqrfree - 不含平方项的因数分解函数7.4 多项式运算discrim - 多项式的判别式fixdiv - 计算多项式的固定除数norm - 多项式的标准型resultant - 计算两个多项式的终结式bernoulli - Bernoulli 数和多项式bernstein - 用Bernstein多项式近似一个函数content, primpart - 一个多元的多项式的内容和主部degree, ldegree - 一个多项式的最高次方/最低次方divide - 多项式的精确除法euler - Euler 数和多项式icontent - 多项式的整数部分interp - 多项式的插值prem, sprem - 多项式的pseudo 余数和稀疏pseudo 余数randpoly - 随机多项式生成器spline - 计算自然样条函数第8章有理表达式8.0 有理表达式简介8.1 操作有理多项式numer,denom - 返回一个表达式的分子/分母frontend - 将一般的表达式处理成一个有理表达式normal - 标准化一个有理表达式convert/parfrac - 转换为部分分数形式convert/rational - 将浮点数转换为接近的有理数ratrecon - 重建有理函数第9章微积分9.1 取极限Limit, limit - 计算极限limit[dir] - 计算方向极限limit[multi] - 多重方向极限limit[return] - 极限的返回值9.2 连续性测试discont - 寻找一个函数在实数域上的间断点fdiscont - 用数值法寻找函数在实数域上的间断点iscont - 测试在一个区间上的连续性9.3 微分计算D - 微分算子D, diff - 运算符D 和函数diffdiff, Diff - 微分或者偏微分convert/D - 将含导数表达式转换为D运算符表达式convert/diff - 将D(f)(x)表达式转换为diff(f(x),x)的形式implicitdiff - 由一个方程定义一个函数的微分9.4 积分计算Si, Ci …- 三角和双曲积分Dirac, Heaviside - Dirac 函数/Heaviside阶梯函数Ei - 指数积分Elliptic - 椭圆积分FresnelC, … - Fresnel 正弦,余弦积分和辅助函数int, Int - 定积分和不定积分LegendreP, …- Legendre 函数及其第一和第二类函数Li - 对数积分student[changevar] - 变量代换dawson - Dawson 积分ellipsoid - 椭球体的表面积evalf(int) - 数值积分intat, Intat - 在一个点上积分求值第10章微分方程10.1 微分方程分类odeadvisor - ODE-求解分析器DESol - 表示微分方程解的数据结构pdetest - 测试pdsolve 能找到的偏微分方程(PDEs)解10.2 常微分方程求解dsolve - 求解常微方程(ODE)dsolve - 用给定的初始条件求解ODE 问题dsolve/inttrans - 用积分变换方法求解常微分方程dsolve/numeric - 常微方程数值解dsolve/piecewise - 带分段系数的常微方程求解dsolve - 寻找ODE 问题的级数解dsolve - 求解ODEs 方程组odetest - 从ODE 求解器中测试结果是显式或者隐式类型10.3 偏微分方程求解pdsolve - 寻找偏微分方程 (PDEs) 的解析解第11章数值计算11.1 MAPLE 中的数值计算环境IEEE 标准和Maple数值计算数据类型特殊值环境变量11.2 算法标准算法复数算法含有0,无穷和未定义数的算法11.3 数据构造器254complex - 复数和复数构造器Float, …- 浮点数及其构造器Fraction - 分数及其的构造器integer - 整数和整数构造器11.4 MATLAB 软件包简介11.5 “”区间类型表达式第12章级数12.1 幂级数的阶数Order - 阶数项函数order - 确定级数的截断阶数12.2 常见级数展开series - 一般的级数展开taylor - Taylor 级数展开mtaylor - 多元Taylor级数展开poisson - Poisson级数展开.26812.3 其它级数eulermac - Euler-Maclaurin求和piecewise - 分段连续函数asympt - 渐进展开第13章特殊函数AiryAi, AiryBi - Airy 波动函数AiryAiZeros, AiryBiZeros - Airy函数的实数零点AngerJ, WeberE - Anger函数和Weber函数BesselI, HankelH1, …- Bessel函数和Hankel函数BesselJZeros, … - Bessel函数实数零点Beta - Beta函数EllipticModulus - 模数函数k(q)GAMMA, lnGAMMA - 完全和不完全Gamma函数GaussAGM - Gauss 算术的几何平均数JacobiAM, ., - Jacobi 振幅函数和椭圆函数JacobiTheta1, JacobiTheta4 - Jacobi theta函数JacobiZeta - Jacobi 的Zeta函数KelvinBer, KelvinBei - Kelvin函数KummerM, - Kummer M函数和U函数LambertW - LambertW函数LerchPhi - 一般的Lerch Phi函数LommelS1, LommelS2 - Lommel函数MeijerG - 一个修正的Meijer G函数Psi - Digamma 和Polygamma函数StruveH, StruveL - Struve函数WeierstrassP - Weierstrass P函数及其导数WhittakerM - Whittaker 函数Zeta - Zeta 函数erf, … - 误差函数,补充的误差函数和虚数误差函数harmonic - 调和函数hypergeom - 广义的超越函数pochhammer - 一般的pochhammer函数polylog - 一般的polylogarithm函数第14章线性代数14.1 ALGEBRA(代数)中矩阵,矢量和数组14.2 LINALG 软件包简介14.3 数据结构矩阵matrices(小写)矢量vectors(矢量)convert/matrix - 将数组,列表,Matrix 转换成matrixconvert/vector - 将列表,数组或Vector 转换成矢量vectorlinalg[matrix] - 生成矩阵matrix(小写)linalg[vector] - 生成矢量vector(小写)14.4 惰性函数Det - 惰性行列式运算符Eigenvals - 数值型矩阵的特征值和特征向量Hermite, Smith - 矩阵的Hermite 和Smith 标准型14.5 LinearAlgebra函数Matrix 定义矩阵Add 加/减矩阵Adjoint 伴随矩阵BackwardSubstitute 求解 A . X = B,其中 A 为上三角型行阶梯矩阵BandMatrix 带状矩阵Basis 返回向量空间的一组基SumBasis 返回向量空间直和的一组基IntersectionBasis 返回向量空间交的一组基BezoutMatrix 构造两个多项式的Bezout 矩阵BidiagonalForm 将矩阵约化为双对角型CharacteristicMatrix 构造特征矩阵CharacteristicPolynomial 构造矩阵的特征多项式CompanionMatrix 构造一个首一(或非首一)多项式或矩阵多项式的友矩阵(束)ConditionNumber 计算矩阵关于某范数的条件数ConstantMatrix 构造常数矩阵ConstantVector 构造常数向量Copy 构造矩阵或向量的一份复制CreatePermutation 将一个 NAG 主元向量转换为一个置换向量或矩阵CrossProduct 向量的叉积`&x` 向量的叉积DeleteRow 删除矩阵的行DeleteColumn 删除矩阵的列Determinant 行列式Diagonal 返回从矩阵中得到的向量序列DiagonalMatrix 构造(分块)对角矩阵Dimension 行数和列数DotProduct 点积BilinearForm 向量的双线性形式EigenConditionNumbers 计算数值特征值制约问题的特征值或特征向量的条件数Eigenvalues 计算矩阵的特征值Eigenvectors 计算矩阵的特征向量Equal 比较两个向量或矩阵是否相等ForwardSubstitute 求解 A . X = B,其中 A 为下三角型行阶梯矩阵FrobeniusForm 将一个方阵约化为 Frobenius 型(有理标准型)GaussianElimination 对矩阵作高斯消元ReducedRowEchelonForm 对矩阵作高斯-约当消元GetResultDataType 返回矩阵或向量运算的结果数据类型GetResultShape 返回矩阵或向量运算的结果形状GivensRotationMatrix 构造Givens 旋转的矩阵GramSchmidt 计算一个正交向量集HankelMatrix 构造一个Hankel 矩阵HermiteForm 计算一个矩阵的 Hermite 正规型HessenbergForm 将一个方阵约化为上Hessenberg 型HilbertMatrix 构造广义 Hilbert 矩阵HouseholderMatrix 构造 Householder 反射矩阵IdentityMatrix 构造一个单位矩阵IsDefinite 检验矩阵的正定性,负定性或不定性IsOrthogonal 检验矩阵是否正交IsUnitary 检验矩阵是否为酉矩阵IsSimilar 确定两个矩阵是否相似JordanBlockMatrix 构造约当块矩阵JordanForm 将矩阵约化为约当型KroneckerProduct 构造两个矩阵的Kronecker 张量积LeastSquares 方程的最小二乘解LinearSolve 求解线性方程组 A . x = bLUDecomposition 计算矩阵的 Cholesky,PLU 或 PLU1R 分解Map 将一个程序映射到一个表达式上,对矩阵和向量在原位置上进行处理MatrixAdd 计算两个矩阵的线性组合VectorAdd 计算两个向量的线性组合MatrixExponential 确定一个矩阵 A 的矩阵指数 exp(A)MatrixFunction 确定方阵 A 的函数F(A)MatrixInverse 计算方阵的逆或矩阵的Moore-Penrose 伪逆MatrixMatrixMultiply 计算两个矩阵的乘积MatrixVectorMultiply 计算一个矩阵和一个列向量的乘积VectorMatrixMultiply 计算一个行向量和一个矩阵的乘积MatrixPower 矩阵的幂MinimalPolynomial 构造矩阵的最小多项式Minor 计算矩阵的子式Multiply 矩阵相乘Norm 计算矩阵或向量的p-范数MatrixNorm 计算矩阵的p-范数VectorNorm 计算向量的p-范数Normalize 向量正规化NullSpace 计算矩阵的零度零空间OuterProductMatrix 两个向量的外积Permanent 方阵的不变量Pivot 矩阵元素的主元消去法PopovForm Popov 正规型QRDecomposition QR 分解RandomMatrix 构造随机矩阵RandomVector 构造随机向量Rank 计算矩阵的秩Row 返回矩阵的一个行向量序列Column 返回矩阵的一个列向量序列RowOperation 对矩阵作初等行变换ColumnOperation 对矩阵作出等列变换RowSpace 返回矩阵行空间的一组基ColumnSpace 返回矩阵列空间的一组基ScalarMatrix 构造一个单位矩阵的数量倍数ScalarVector 构造一个单位向量的数量倍数ScalarMultiply 矩阵与数的乘积MatrixScalarMultiply 计算矩阵与数的乘积VectorScalarMultiply 计算向量与数的乘积SchurForm 将方阵约化为 Schur 型SingularValues 计算矩阵的奇异值SmithForm 将矩阵约化为 Smith 正规型StronglyConnectedBlocks 计算方阵的强连通块SubMatrix 构造矩阵的子矩阵SubVector 构造向量的子向量SylvesterMatrix 构造两个多项式的 Sylvester 矩阵ToeplitzMatrix 构造Toeplitz 矩阵Trace 计算方阵的迹Transpose 转置矩阵HermitianTranspose 共轭转置矩阵TridiagonalForm 将方阵约化为三对角型UnitVector 构造单位向量VandermondeMatrix 构造一个 Vandermonde 矩阵VectorAngle 计算两个向量的夹角ZeroMatrix 构造一个零矩阵ZeroVector 构造一个零向量Zip 将一个具有两个参数的程序作用到一对矩阵或向量上LinearAlgebra[Generic] 子函数包[Generic] 子函数包提供作用在场,欧几里得域,积分域和环上的线性代数算法。

Maple的常用内部数学函数

Maple的常用内部数学函数

吉林大学公共数学实验中心数学实验>> 首页> 微积分> 实验2Maple简介一、Maple操作界面介绍1、编辑功能:编辑功能中查找模块,可以帮助查找你所需要的关键字节.具体操作如图所示:按上述操作完成后,出现下图所示的对话框:在文本框中输入你要查找的字符或者符号,可以通过findprevious上下翻看,也可以通过replacewith 操作替代你所查找的字符或者符号.cancle表示取消操作.其他编辑操作包括分割或连接(splitorjoin)分为一个执行过程(快截键为f3、f4)和选定块(shift+f3、shift+f4)过程四个操作块运行操作(Execute):运行选定或者当前的maple中的语句;删除运行结果操作(Removeoutput):将选定或者当前的maple中运行结果从工作爷中删除或者不显示;2、示图操作(VIEW)文档在屏幕上的显示模式称为“示图”,maple示图菜单主要设置工作爷文档的一些视图属性,所包括菜单如上图所示。

工具条(toolbar)的功能和其他系统一样,主要包括打开文件、创建新文档、存盘、打印当前页面、复制、剪切、粘贴、撤消操作等。

内容工具条:“枫叶”表示设置工作页和标准公式和maple语言之间的转换“X”表示设置工作页和标准公式在活动和非活动方式之间的转换“(对号)”表示标准公式有效时自动检查输入表达式的正确性“!”表示运行当前表达式3、插入操作(INSERT)插入操作比较简单这里就不做详细介绍,主要功能分为:文本插入(textinput);标准maple数学表达式插入;运行单元executegroup插入其中包括在光标前插入和光标后插入图形插入plot,其中包括两维和三维图象的插入电子表格插入spreadsheet段落插入parigraph,其中包括光标前插入和光标后插入数学输入对象(image)插入插入超级连接hyperlink4、其他操作窗口的功能和其他软件基本相同,这里就不做详细介绍了。

(完整版)MATLAB常用函数总结,推荐文档

(完整版)MATLAB常用函数总结,推荐文档

MATLAB 常用函数总结Matlab 的内部常数pi 圆周率exp(1)自然对数的底数ei 或j虚数单位Inf 或 inf无穷大Matlab 的常用内部数学函数指数函数exp(x)以e 为底数log(x)自然对数,即以e 为底数的对数log10(x)常用对数,即以10为底数的对数对数函数log2(x)以2为底数的x 的对数开方函数sqrt(x)表示x 的算术平方根绝对值函数abs(x)表示实数的绝对值以及复数的模sin(x)正弦函数cos(x)余弦函数tan(x)正切函数cot(x)余切函数sec(x)正割函数三角函数(自变量的单位为弧度)csc(x)余割函数反三角函数asin(x)反正弦函数acos(x)反余弦函数atan(x)反正切函数acot(x)反余切函数asec(x)反正割函数acsc(x)反余割函数sinh(x)双曲正弦函数cosh(x)双曲余弦函数tanh(x)双曲正切函数coth(x)双曲余切函数sech(x)双曲正割函数双曲函数csch(x)双曲余割函数asinh(x)反双曲正弦函数acosh(x)反双曲余弦函数atanh(x)反双曲正切函数acoth(x)反双曲余切函数asech(x)反双曲正割函数反双曲函数acsch(x)反双曲余割函数求角度函数atan2(y,x)以坐标原点为顶点,x轴正半轴为始边,从原点到点(x,y)的射线为终边的角,其单位为弧度,范围为(,]gcd(a,b)两个整数的最大公约数数论函数lcm(a,b)两个整数的最小公倍数排列组合函数factorial(n)阶乘函数,表示n的阶乘real(z)实部函数imag(z)虚部函数复数函数abs(z)求复数z的模angle(z)求复数z 的辐角,其范围是( ,]conj(z)求复数z 的共轭复数ceil(x)表示大于或等于实数x 的最小整数floor(x)表示小于或等于实数x 的最大整数求整函数与截尾函数round(x)最接近x 的整数max([a ,b ,c ,...])求最大数最大、最小函数min([a ,b ,c ,..])求最小数符号函数sign(x)Matlab 中的数学运算符a+b 加法 a./b 数组右除a-b 减法 a.\b 数组左除a*b 矩阵乘法a^b 矩阵乘方a.*b 数组乘法 a.^b 数组乘方a/b 矩阵右除-a负号a\b矩阵左除' 共轭转置.'一般转置Matlab 的关系运算符 ==等于<小于>大于<=小于或等于>=大于或等于~=不等于如何用matlab求阶乘factorial(n) 求n的阶乘如何用matlab进行多项式运算(1)合并同类项 syms 表达式中包含的变量 collect(表达式,指定的变量)(2)因式分解 syms 表达式中包含的变量 factor(表达式)(3)展开syms 表达式中包含的变量 expand(表达式)(4)化简syms 表达式中包含的变量simplify(表达式)  如何用matlab进行复数运算 a+b*i 或 a +b*j表示复数a+bi 或 a+bjreal(z)求复数z的实部imag(z)求复数z的虚部abs(z)求复数z的模angle(z)求复数z的辐角,conj(z)求复数z的共轭复数exp(z)复数的指数函数,表示e^z如何用Matlab求集合的交集、并集、差集和补集 union(A,B)求集合A和B的并集intersect(A,B)求集合A和B的交集setdiff(A,B)求集合A和B的差集A-Bsetdiff(U,A)求集合A关于全集U的补集如何用matlab排序sort(v) 将向量v的元素从小到大排列(升序排列)sort(v,dim,’descend or ascend’)当dim=1时矩阵按列排序,descend or ascend用来控制升序还是降序当dim=2时矩阵按行排序,descend or ascend用来控制升序还是降序如何用Matlab求极限(1)极限:syms xlimit(f(x), x, a)求f(x)关于x趋于a时的极限(2)单侧极限:左极限:syms x limit(f(x), x, a,’left’)求f(x)关于x趋于a时的左极限右极限:syms x limit(f(x), x, a,’right’)求f(x)关于x趋于a时的右极限如何用Matlab求导数diff('f(x)') diff('f(x)','x') 求f(x)关于x的导数或者:syms x diff(f(x))syms x diff(f(x), x)如何用Matlab求高阶导数如何用Matlab求高阶导数diff('f(x)',n) diff('f(x)','x',n)求f(x)关于x的n阶导数syms x diff(f(x),n)syms x diff(f(x), x,n)如何用Matlab求不定积分int('f(x)') int ('f(x)','x')求f(x)关于x的积分syms x int(f(x))syms x int(f(x), x)如何用Matlab求定积分、广义积分int('f(x)',a,b) int ('f(x)','x',a,b)求f(x)关于x的积分,区间为a到b syms x int(f(x),a,b)syms x int(f(x), x,a,b)如何用Matlab展开级数syms x taylor(f(x), x, n,)a如何在Matlab中进行积分变换syms s tlaplace( f(t), t, s ) 拉普拉斯变换ilaplace( F(s), s, t ) 拉普拉斯变换的逆变换 syms t ωfourier( f(t), t, ω)傅立叶变换ifourier( F(ω), ω, t ) 傅立叶变换的逆变换 syms n zztrans( f(n), n, z) Z变换iztrans( F(z), z, n ) Z变换的逆变换 如何用Matlab解微分方程dsolve('微分方程','自变量')dsolve('微分方程','初始条件或边界条件','自变量') dsolve('D2x+2*x+x=sin(t)','x(0)=1','Dx(0)=1','t')如何用matlab求多变量函数的极限 以两个变量为例说明,多于两个变量的函数极限可以依次类推。

Maple常用计算命令

Maple常用计算命令

常用计算命令《Maple 指令》7.0版本第1xx xx数1.1 复数Re,Im - 返回复数型表达式的实部/虚部abs - 函数argument - 复数的幅角函数conjugate - 返回共轭复数csgn - 实数和复数表达式的符号函数signum - 实数和复数表达式的sign 函数5 1.2 MAPLE 常数已知的变量名称指数常数(以自然对数为底)I - x^2 = -1 的根infinity 无穷大1.3 整数函数! - 阶乘函数irem, iquo - 整数的余数/商isprime - 素数测试isqrfree - 无整数平方的因数分解max, min - 数的最大值/最小值mod, modp, mods - 计算对m 的整数模rand - 随机数生成器randomize - 重置随机数生成器1.4 素数Randpoly, Randprime - 有限域的随机多项式/首一素数多项式ithprime - 确定第i 个素数nextprime, prevprime - 确定下一个最大/最小素数1.5 数的进制转换convert/base - 基数之间的转换convert/binary - 转换为二进制形式convert/decimal - 转换为10 进制convert/double - 将双精度浮点数由一种形式转换为另一种形式convert/float - 转换为浮点数convert/hex - 转换为十六进制形式convert/metric - 转换为公制单位convert/octal - 转换为八进制形式1.6 数的类型检查type - 数的类型检查函数第2xx 初等数学2.1 初等函数product - 确定乘积求和不确定乘积exp - 指数函数sum - 确定求和不确定求和sqrt - 计算xx算术运算符+, -, *, /, ^add, mul - 值序列的加法/乘法2.2 三角函数arcsin, arcsinh, . - 反三角函数/反双曲函数sin, sinh, . - 三角函数/双曲函数2.3 LOGARITHMS 函数dilog - Dilogarithm 函数ln, log, log10 - 自然对数/一般对数,常用对数2.4 类型转换convert/`+`,convert/`*` - 转换为求和/乘积convert/hypergeom - 将求和转换为超越函数convert/degrees - 将弧度转换为度convert/expsincos - 将trig 函数转换为exp, sin, cos convert/Ei - 转换为指数积分convert/exp - 将trig 函数转换为指数函数convert/ln - 将arctrig 转换为对数函数polar - 转换为极坐标形式convert/radians - 将度转换为弧度convert/sincos - 将trig 函数转换为sin, cos, sinh, cosh convert/tan - 将trig 函数转换为tanconvert/trig - 将指数函数转换为三角函数和双曲函数第3xx 求值3.1 假设功能3.2 求值Eval - 对一个表达式求值eval - 求值evala - 在代数数(或者函数)域求值evalb - 按照一个求值evalc - 在复数域上符号求值evalf - 使用浮点算法求值evalhf - 用硬件浮点数算法对表达式求值evalm - 对矩阵表达式求值evaln - 求值到一个名称evalr, shake - 用区间算法求表达式的值和计算范围evalrC - 用复数区间算法对表达式求值value - 求值的惰性函数第4xx 求根,xx4.1 数值解fsolve - 利用浮点数算法求解solve/floats - 包含浮点数的表达式4.2 最优化extrema - 寻找一个表达式的相对极值minimize, maximize - 计算最小值/最大值maxnorm - 一个多项式无穷大范数4.3 求根allvalues -计算含有RootOfs的表达式的所有可能值isqrt, iroot - 整数的xx/第n 次根realroot - 一个多项式的实数根的隔离区间root - 一个代数表达式的第n 阶根RootOf - 方程根的表示surd - 非主根函数roots - 一个多项式对一个变量的精确根turm, sturmseq - 多项式在区间上的实数根数和实根序列4.4 xxeliminate - 消去一个方程组中的某些变量isolve - 求解方程的整数解solvefor - 求解一个方程组的一个或者多个变量isolate - 隔离一个方程左边的一个子表达式singular - 寻找一个表达式的极点solve/identity - 求解包含属性的表达式solve/ineqs - 求解不等式solve/linear - 求解线性方程组solve/radical - 求解含有未知量根式的方程solve/scalar - 标量情况(单变量和方程)solve/series - 求解含有一般级数的方程solve/system - 解方程组或不等式组第5xx 操作表达式5.1 处理表达式Norm - 代数数(或者函数) 的标准型Power - 惰性幂函数Powmod -带余数的惰性幂函数Primfield - 代数域的原始元素Trace - 求一个代数数或者函数的迹charfcn - 表达式和集合的特征函数Indets - 找一个表达式的变元invfunc - 函数表的逆powmod - 带余数的幂函数Risidue - 计算一个表达式的代数余expand - 表达式展开Expand - 展开表达式的惰性形式expandoff/expandon - 抑制/不抑制函数展开5.2 因式分解Afactor - 绝对因式分解的惰性形式Afactors - 绝对因式分解分解项列表的惰性形式Berlekamp - 因式分解的Berlekamp 显式度factor - 多元的多项式的因式分解factors - 多元多项式的因式分解列表Factor - 函数factor 的惰性形式Factors - 函数factors 的惰性形式polytools[splits] - 多项式的完全因式分解第6xx 化简6.1 表达式化简118simplify - 给一个表达式实施化简规则simplify/@ - 利用运算符化简表达式simplify/Ei - 利用指数积分化简表达式simplify/GAMMA - 利用GAMMA 函数进行化简simplify/RootOf - 用RootOf 函数化简表达式simplify/wronskian - 化简含wronskian 的表达式simplify/hypergeom - 化简超越函数表达式simplify/ln - 化简含有对数的表达式simplify/piecewise - 化简分段函数表达式simplify/polar - 化简含有极坐标形式的复数型表达式simplify/power - 化简含幂次的表达式simplify/radical - 化简含有根式的表达式simplify/rtable - 化简rtable 表达式simplify/siderels - 使用关系式进行化简simplify/sqrt - 根式化简simplify/trig - 化简trig 函数表达式simplify/zero - 化简含嵌入型实数和虚数的复数表达式6.2 其它化简操作Normal - normal 函数的惰性形式convert - 将一个表达式转换成不同形式radnormal - 标准化一个含有根号数的表达式rationalize - 分母有理化第7xx 操作多项式7.0 MAPLE 中的多项式简介7.1 提取coeff - 提取一个多项式的系数coeffs - 提取多元的多项式的所有系数coeftayl - 多元表达式的系数lcoeff, tcoeff - 返回多元多项式的首项和末项系数7.2 多项式约数和根gcd, lcm - 多项式的最大公约数/最小公倍数psqrt, proot - 多项式的xx和第n次根rem,quo - 多项式的余数/商7.3 操纵多项式convert/horner - 将一个多项式转换成Horner形式collect - 象幂次一样合并系数convert/polynom - 将级数转换成多项式形式convert/mathorner - 将多项式转换成Horner矩阵形式convert/ratpoly - 将级数转换成有理多项式sort - 将值的列表或者多项式排序sqrfree - 不含平方项的因数分解函数7.4 多项式运算discrim - 多项式的判别式fixdiv - 计算多项式的固定除数norm - 多项式的标准型resultant - 计算两个多项式的终结式bernoulli - Bernoulli 数和多项式bernstein - 用Bernstein多项式近似一个函数content, primpart - 一个多元的多项式的内容和主部degree, ldegree - 一个多项式的最高次方/最低次方divide - 多项式的精确除法euler - Euler 数和多项式icontent - 多项式的整数部分interp - 多项式的插值prem, sprem - 多项式的pseudo 余数和稀疏pseudo 余数randpoly - 随机多项式生成器spline - 计算自然样条函数第8xx 有理表达式8.0 有理表达式简介8.1 操作有理多项式numer,denom - 返回一个表达式的分子/分母frontend - 将一般的表达式处理成一个有理表达式normal - 标准化一个有理表达式convert/parfrac - 转换为部分分数形式convert/rational - 将浮点数转换为接近的有理数ratrecon - 重建有理函数第9xx 微积分9.1 取极限Limit, limit - 计算极限limit[dir] - 计算方向极限limit[multi] - 多重方向极限limit[return] - 极限的返回值9.2 连续性测试discont - 寻找一个函数在实数域上的间断点fdiscont - 用数值法寻找函数在实数域上的间断点iscont - 测试在一个区间上的连续性9.3 微分计算D - 微分算子D, diff - 运算符D 和函数diffdiff, Diff - 微分或者偏微分convert/D - 将含导数表达式转换为D运算符表达式convert/diff - 将D(f)(x)表达式转换为diff(f(x),x)的形式implicitdiff - 由一个方程定义一个函数的微分9.4 积分计算Si, Ci … - 三角和双曲积分Dirac, Heaviside - Dirac 函数/Heaviside阶梯函数Ei - 指数积分Elliptic -FresnelC, … - Fresnel 正弦,xx积分和辅助函数int, Int - 定积分和不定积分LegendreP, … - Legendre 函数及其第一和第二类函数Li - 对数积分student[changevar] - 变量代换dawson - Dawson 积分ellipsoid - 椭球体的表面积evalf(int) - 数值积分intat, Intat - 在一个点上积分求值第10xx 微分方程10.1 微分方程分类odeadvisor - ODE-求解分析器DESol - 表示微分方程解的pdetest - 测试pdsolve 能找到的偏微分方程(PDEs)解10.2 常微分方程求解dsolve - 求解常微方程(ODE)dsolve - 用给定的求解ODE 问题dsolve/inttrans - 用积分变换方法求解常微分方程dsolve/numeric - 常微方程数值解dsolve/piecewise - 带分段系数的常微方程求解dsolve - 寻找ODE 问题的级数解dsolve - 求解ODEs 方程组odetest - 从ODE 求解器中测试结果是显式或者隐式类型10.3 偏微分方程求解pdsolve - 寻找偏微分方程(PDEs) 的解析解第11xx 数值计算11.1 MAPLE 中的数值计算环境IEEE 标准和Maple数值计算数据类型特殊值环境变量11.2 算法标准算法复数算法含有0,无穷和未定义数的算法11.3 数据构造器254Float, … - 浮点数及其构造器Fraction - 分数及其的构造器integer - 整数和整数构造器11.4 MATLAB 简介11.5 “”区间类型表达式第12xx级数12.1 幂级数的阶数Order - 阶数项函数order - 确定级数的截断阶数12.2 常见级数展开series - 一般的级数展开taylor - Taylor 级数展开mtaylor - 多元Taylor级数展开poisson - Poisson级数展开.26812.3 其它级数eulermac - Euler-Maclaurin求和piecewise - 分段连续函数asympt - 渐进展开第13xx 特殊函数AiryAi, AiryBi - Airy 波动函数AiryAiZeros, AiryBiZeros - Airy函数的实数零点AngerJ, WeberE - Anger函数和Weber函数BesselI, HankelH1, … - Bessel函数和Hankel函数BesselJZeros, … - Bessel函数实数零点Beta - Beta函数EllipticModulus - 模数函数k(q)GAMMA, lnGAMMA - 完全和不完全Gamma函数GaussAGM - Gauss 算术的几何平均数JacobiAM, ., - Jacobi 振幅函数和JacobiTheta1, JacobiTheta4 - Jacobi theta函数JacobiZeta - Jacobi 的Zeta函数KelvinBer, KelvinBei - Kelvin函数KummerM, - Kummer M函数和U函数LambertW - LambertW函数LerchPhi - 一般的Lerch Phi函数LommelS1, LommelS2 - Lommel函数MeijerG - 一个xx的Meijer G函数Psi - Digamma 和Polygamma函数StruveH, StruveL - Struve函数WeierstrassP - Weierstrass P函数及其导数WhittakerM - Whittaker 函数Zeta - Zeta 函数erf, … - 误差函数,补充的误差函数和虚数误差函数harmonic - 调和函数hypergeom - xx的超越函数pochhammer - 一般的pochhammer函数polylog - 一般的polylogarithm函数第14xx 线性代数14.1 ALGEBRA(代数)中矩阵,矢量和14.2 LINALG 软件包简介14.3 数据结构矩阵matrices(小写)矢量vectors(矢量)convert/matrix - 将数组,列表,Matrix 转换成matrixconvert/vector - 将列表,数组或Vector 转换成矢量vectorlinalg[matrix] - 生成矩阵matrix(小写)linalg[vector] - 生成矢量vector(小写)14.4 惰性函数Det - 惰性行列式运算符Eigenvals - 数值型矩阵的特征值和特征向量Hermite, Smith - 矩阵的Hermite 和Smith 标准型14.5 LinearAlgebra函数Matrix 定义矩阵Add 加/减矩阵Adjoint 伴随矩阵BackwardSubstitute 求解A . X = B,其中A 为上三角型行阶梯矩阵BandMatrix 带状矩阵Basis 返回向量空间的一组基SumBasis 返回向量空间直和的一组基IntersectionBasis 返回向量空间交的一组基BezoutMatrix 构造两个多项式的Bezout 矩阵BidiagonalForm 将矩阵约化为双对角型CharacteristicMatrix 构造特征矩阵CharacteristicPolynomial 构造矩阵的特征多项式CompanionMatrix 构造一个首一(或非首一)多项式或矩阵多项式的xx (xx)ConditionNumber 计算矩阵关于某范数的条件数ConstantMatrix 构造常数矩阵ConstantVector 构造常数向量Copy 构造矩阵或向量的一份复制CreatePermutation 将一个NAG 主元向量转换为一个置换向量或矩阵CrossProduct 向量的叉积`&x` 向量的叉积DeleteRow 删除矩阵的行DeleteColumn 删除矩阵的列Determinant 行列式Diagonal 返回从矩阵中得到的向量序列DiagonalMatrix 构造(分块)Dimension 行数和列数DotProduct 点积BilinearForm 向量的双线性形式EigenConditionNumbers 计算数值特征值制约问题的特征值或特征向量的条件数Eigenvalues 计算矩阵的特征值Eigenvectors 计算矩阵的特征向量Equal 比较两个向量或矩阵是否相等ForwardSubstitute 求解A . X = B,其中A 为下三角型行阶梯矩阵FrobeniusForm 将一个方阵约化为Frobenius 型(有理标准型)GaussianElimination 对矩阵作消元ReducedRowEchelonForm 对矩阵作xx-约当消元GetResultDataType 返回矩阵或向量运算的结果数据类型GetResultShape 返回矩阵或向量运算的结果形状GivensRotationMatrix 构造Givens 旋转的矩阵GramSchmidt 计算一个正交向量集HankelMatrix 构造一个Hankel 矩阵HermiteForm 计算一个矩阵的Hermite 正规型HessenbergForm 将一个方阵约化为上Hessenberg 型HilbertMatrix 构造xx Hilbert 矩阵HouseholderMatrix 构造Householder 反射矩阵IdentityMatrix 构造一个单位矩阵IsDefinite 检验矩阵的正定性,负定性或不定性IsOrthogonal 检验矩阵是否正交IsUnitary 检验矩阵是否为酉矩阵IsSimilar 确定两个矩阵是否相似JordanBlockMatrix 构造约当块矩阵JordanForm 将矩阵约化为约当型KroneckerProduct 构造两个矩阵的Kronecker xxLeastSquares 方程的最小二乘解LinearSolve 求解线性方程组A . x = bMap 将一个程序映射到一个表达式上,对矩阵和向量在原位置上进行处理MatrixAdd 计算两个矩阵的线性组合VectorAdd 计算两个向量的线性组合MatrixExponential 确定一个矩阵A 的矩阵指数exp(A)MatrixFunction 确定方阵A 的函数F(A)MatrixInverse 计算方阵的逆或矩阵的Moore-Penrose 伪逆MatrixMatrixMultiply 计算两个矩阵的乘积MatrixVectorMultiply 计算一个矩阵和一个列向量的乘积VectorMatrixMultiply 计算一个行向量和一个矩阵的乘积MatrixPower 矩阵的幂MinimalPolynomial 构造矩阵的最小多项式Minor 计算矩阵的子式Multiply 矩阵相乘Norm 计算矩阵或向量的p-范数MatrixNorm 计算矩阵的p-范数VectorNorm 计算向量的p-范数Normalize 向量正规化NullSpace 计算矩阵的零度零空间OuterProductMatrix 两个向量的外积Permanent 方阵的不变量Pivot 矩阵元素的主元消去法PopovForm Popov 正规型RandomMatrix 构造RandomVector 构造随机向量Rank 计算Row 返回矩阵的一个行向量序列Column 返回矩阵的一个列向量序列RowOperation 对矩阵作初等行变换ColumnOperation 对矩阵作出等列变换RowSpace 返回矩阵行空间的一组基ColumnSpace 返回矩阵列空间的一组基ScalarMatrix 构造一个单位矩阵的数量倍数ScalarVector 构造一个单位向量的数量倍数ScalarMultiply 矩阵与数的乘积MatrixScalarMultiply 计算矩阵与数的乘积VectorScalarMultiply 计算向量与数的乘积SchurForm 将方阵约化为Schur 型SingularValues 计算矩阵的奇异值SmithForm 将矩阵约化为Smith 正规型StronglyConnectedBlocks 计算方阵的强连通块SubMatrix 构造矩阵的子矩阵SubVector 构造向量的子向量SylvesterMatrix 构造两个多项式的Sylvester 矩阵ToeplitzMatrix 构造Toeplitz 矩阵Trace 计算方阵的迹TransposeHermitianTranspose 共轭转置矩阵TridiagonalForm 将方阵约化为三对角型UnitVector 构造单位向量VandermondeMatrix 构造一个Vandermonde 矩阵VectorAngle 计算两个向量的夹角ZeroMatrix 构造一个零矩阵ZeroVector 构造一个零向量Zip 将一个具有两个参数的程序作用到一对矩阵或向量上LinearAlgebra[Generic] 子函数包[Generic] 子函数包提供作用在场,域,积分域和环上的线性代数算法。

【免费下载】Maple常用函数

【免费下载】Maple常用函数

制表示形式[2;2;1]。注意要用 base 关键字。
指数函数 对数函数
exp(x)
ln(x)或 log(x)
log[10](x) 或 log10(x)
log[a](x)
Maple 常用函数表
以 e 为底数
自然对数,即以 e 为底数的对数
常用对数,即以 10 为底数的对数 以 a 为底数的 x 的对数
表示 x 的算术平方根
表示 x 的绝对值
正弦函数 余弦函数 正切函数 余切函数 正割函数 余割函数 反正弦函数 反余弦函数 反正切函数 反余切函数 反正割函数 反余割函数 双曲正弦函数 双曲余弦函数 双曲正切函数 双曲余切函数 双曲正割函数 双曲余割函数 反双曲正弦函数 反双曲余弦函数
求角度函 数
整数的最小公倍数函数
求 a 除以 b 的余数
求 a 除以 b 的正余数
以对称的方式求 a 除以 b 的余数
求 a 除以 b 的余数
求 a 除以 b 的余数,并将商存放在 q 中
求 a 除以 b 的商 求 a 除以 b 的商,并将余数存放在 r 中
因数分解,即把整数 n 分解成质数的乘积
产生 12 位的随机整数
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

Maple常用计算命令

Maple常用计算命令

常用计算命令《Maple指令》7.0版本第1章章数1.1复数Re,lm -返回复数型表达式的实部/虚部abs - 绝对值函数argume nt - 复数的幅角函数conjugate - 返回共轭复数csgn -实数和复数表达式的符号函数sig num - 实数和复数表达式的sig n函数51.2 MAPLE 常数已知的变量名称指数常数(以自然对数为底)I - x A2 = -1 的根infinity 无穷大1.3整数函数阶乘函数irem, iquo - isprime - isqrfree- max, min -整数的余数/商素数测试无整数平方的因数分解数的最大值/最小值mod, modp, mods - 计算对m 的整数模rand - 随机数生成器ran domize -1.4素数重置随机数生成器Randpoly, Randprime - 有限域的随机多项式/首一素数多项式ithprime - 确定第i个素数n extprime, prevprime - 确定下一个最大/最小素数1.5数的进制转换conv ert/base - conv ert/b inary - conv ert/decimal - conv ert/double - conv ert/float - conv ert/hex - conv ert/metric - 基数之间的转换转换为一进制形式- 转换为10进制将双精度浮点数由一种形式转换为另一种形式转换为浮点数转换为十六进制形式转换为公制单位conv ert/octal - 转换为八进制形式1.6数的类型检查type - 数的类型检查函数第2章初等数学2.1初等函数product - 确定乘积求和不确定乘积exp - 指数函数sum -确定求和不确定求和sqrt - 计算平方根算术运算符+, -, *, /, Aadd, mul - 值序列的加法/乘法2.2三角函数arcs in, arcs in h,.- 反三角函数/反双曲函数sin, sinh,.- 三角函数/双曲函数2.3 LOGARITHMS 函数dilog - Dilogarithm 函数ln, log, log10 - 自然对数/ 一般对数,常用对数2.4类型转换convert/'+',convert/'*' - 转换为求和/ 乘积conv ert/hypergeom - 将求和转换为超越函数con vert/degrees - 将弧度转换为度conv ert/exps in cos - 将trig 函数转换为exp, si n, cos conv ert/Ei - 转换为指数积分convert/exp - 将trig 函数转换为指数函数convert/ln - 将arctrig 转换为对数函数polar - 转换为极坐标形式conv ert/radia ns - 将度转换为弧度conv ert/s in cos - 将trig 函数转换为sin, cos, sinh, cosh convert/tan - 将trig 函数转换为tancon vert/trig - 将指数函数转换为三角函数和双曲函数第3章求值3.1假设功能3.2求值Eval - 对一个表达式求值eval - 求值evala - 在代数数(或者函数)域求值evalb - 按照一个布尔表达式求值evalc - 在复数域上符号求值evalf - 使用浮点算法求值evalhf - 用硬件浮点数算法对表达式求值evalm - 对矩阵表达式求值eva In - 求值到一个名称evalr, shake - 用区间算法求表达式的值和计算范围evalrC - 用复数区间算法对表达式求值value - 求值的惰性函数第4章求根,解方程4.1数值解fsolve - 利用浮点数算法求解solve/floats - 包含浮点数的表达式4.2最优化extrema - 寻找一个表达式的相对极值minimize, maximize - 计算最小值/最大值max norm - 一个多项式无穷大范数4.3求根allvalues - 计算含有RootOfs的表达式的所有可能值isqrt, iroot - 整数的平方根/第n次根realroot - 一个多项式的实数根的隔离区间root - 一个代数表达式的第n阶根RootOf - 方程根的表示surd - 非主根函数roots - 一个多项式对一个变量的精确根turm, sturmseq - 多项式在区间上的实数根数和实根序列4.4解方程elimi nate - 消去一个方程组中的某些变量isolve - 求解方程的整数解solvefor - 求解一个方程组的一个或者多个变量isolate - 隔离一个方程左边的一个子表达式sin gular - 寻找一个表达式的极点solve/ide ntity - 求解包含属性的表达式solve/i neqs - 求解不等式solve/li near - 求解线性方程组solve/radical - 求解含有未知量根式的方程solve/scalar - 标量情况(单变量和方程)solve/series - 求解含有一般级数的方程solve/system - 解方程组或不等式组第5章操作表达式5.1处理表达式Norm -代数数(或者函数)的标准型Power - 惰性幕函数Powmod -带余数的惰性幕函数Primfield - 代数域的原始元素Trace - 求一个代数数或者函数的迹charfcn - 表达式和集合的特征函数In dets - 找一个表达式的变元invfunc - 函数表的逆powmod -带余数的幕函数Risidue - 计算一个表达式的代数余combine - 表达式合并(对tan,cot 不好用) expa nd - 表达式展开Expa nd -展开表达式的惰性形式expandoff/expandon - 抑制/不抑制函数展开5.2因式分解Afactor - 绝对因式分解的惰性形式Afactors - 绝对因式分解分解项列表的惰性形式Berlekamp - 因式分解的Berlekamp显式度factor - 多元的多项式的因式分解factors - 多元多项式的因式分解列表Factor - 函数factor 的惰性形式Factors - 函数factors 的惰性形式polytools[splits]- 多项式的完全因式分解第6章化简6.1表达式化简118simplify - 给一个表达式实施化简规则simplify/@ - 利用运算符化简表达式simplify/Ei - 利用指数积分化简表达式simplify/GAMMA - 利用GAMMA函数进行化简simplify/RootOf - 用RootOf函数化简表达式simplify/wronskian -化简含wronskian 标识符的表达式 simplify/hypergeom -化简超越函数表达式 simplify/ln - 化简含有对数的表达式simplify/piecewise - simplify/polar -simplify/power -simplify/radical -simplify/rtable -simplify/siderels -simplify/sqrt -simplify/trig -simplify/zero -6.2其它化简操作 Normal - no rmal convert - radno rmal- rati on alize -第7章操作多项式7.0 MAPLE 中的多项式简介7.1提取coeff -提取一个多项式的系数 coeffs -提取多元的多项式的所有系数 coeftayl - 多元表达式的系数lcoeff, tcoeff -返回多元多项式的首项和末项系数 7.2多项式约数和根gcd, lcm - 多项式的最大公约数/最小公倍数psqrt, proot -多项式的平方根和第 n 次根 rem,quo - 多项式的余数/商 7.3操纵多项式convert/horner -将一个多项式转换成 Horner 形式 collect -象幕次一样合并系数 compoly - 确定一个多项式的可能合并的项数con vert/poly nom - 将级数转换成多项式形式convert/mathorner -将多项式转换成 Horner 矩阵形式 化简分段函数表达式 化简含有极坐标形式的复数型表达式 化简含幕次的表达式 化简含有根式的表达式 化简rtable 表达式 使用关系式进行化简 根式化简 化简trig 函数表达式 化简含嵌入型实数和虚数的复数表达式 函数的惰性形式将一个表达式转换成不同形式标准化一个含有根号数的表达式分母有理化con vert/ratpoly - 将级数转换成有理多项式sort - 将值的列表或者多项式排序7.4多项式运算discrim - 多项式的判别式fixdiv - 计算多项式的固定除数n orm -多项式的标准型resulta nt - 计算两个多项式的终结式bernoulli - Bernoulli 数和多项式bernstein - 用Bernstein 多项式近似一个函数con te nt, primpart - 一个多元的多项式的内容和主部degree, ldegree - 一个多项式的最高次方/最低次方divide - 多项式的精确除法euler - Euler 数和多项式ico nte nt - 多项式的整数部分in terp - 多项式的插值prem, sprem - 多项式的pseudo 余数和稀疏pseudo 余数ran dpoly - 随机多项式生成器spli ne - 计算自然样条函数第8章有理表达式8.0有理表达式简介8.1操作有理多项式numer,denom - 返回一个表达式的分子/分母fron te nd - 将一般的表达式处理成一个有理表达式n ormal - 标准化一个有理表达式con vert/parfrac - 转换为部分分数形式conv ert/ratio nal - 将浮点数转换为接近的有理数ratrec on - 重建有理函数第9章微积分9.1取极限Limit, limit - 计算极限limit[dir]- 计算方向极限limit[multi]- 多重方向极限limit[return]- 极限的返回值9.2连续性测试disco nt - 寻找一个函数在实数域上的间断点fdisco nt - 用数值法寻找函数在实数域上的间断点isco nt - 测试在一个区间上的连续性9.3微分计算D -微分算子D, diff - 运算符D和函数diffdiff, Diff - 微分或者偏微分con vert/D - 将含导数表达式转换为D运算符表达式convert/diff - 将D(f)(x) 表达式转换为diff(f(x),x)的形式implicitdiff - 由一个方程定义一个函数的微分9.4积分计算Si, Ci…-三角和双曲积分Dirac, Heaviside - Dirac 函数/Heaviside 阶梯函数Ei - 指数积分Elliptic - 椭圆积分FresnelC,…-Fresnel 正弦,余弦积分和辅助函数int, I nt - 定积分和不定积分Legendr eP,…-Legendre 函数及其第一和第二类函数Li - 对数积分stude nt[cha ngevar]- 变量代换daws on - Daws on 积分ellipsoid - 椭球体的表面积evalf(i nt)- 数值积分in tat, I ntat - 在一个点上积分求值第10章微分方程10.1微分方程分类odeadvisor - ODE- 求解分析器DESol -表示微分方程解的数据结构pdetest - 测试pdsolve 能找到的偏微分方程(PDEs)解10.2常微分方程求解dsolve - 求解常微方程(ODE)dsolve - 用给定的初始条件求解ODE问题dsolve/i nttra ns - 用积分变换方法求解常微分方程dsolve/numeric - 常微方程数值解dsolve/piecewise - 带分段系数的常微方程求解dsolve - 寻找ODE问题的级数解dsolve - 求解ODEs方程组odetest - 从ODE求解器中测试结果是显式或者隐式类型10.3偏微分方程求解pdsolve - 寻找偏微分方程(PDEs)的解析解第11章数值计算11.1 MAPLE中的数值计算环境IEEE标准和Maple数值计算数据类型特殊值环境变量11.2算法标准算法复数算法含有0,无穷和未定义数的算法11.3数据构造器254 complex - 复数和复数构造器Float,…-浮点数及其构造器Fraction - 分数及其的构造器in teger - 整数和整数构造器11.4 MATLAB 软件包简介11.5 “”区间类型表达式第12章级数12.1幕级数的阶数Order - 阶数项函数order - 确定级数的截断阶数12.2常见级数展开series - 一般的级数展开taylor - Taylor 级数展开mtaylor - 多元Taylor级数展开poisson - Poisson 级数展开.268 12.3其它级数eulermac - Euler-Maclauri n 求和piecewise - 分段连续函数asympt - 渐进展开第13章特殊函数AiryAi, AiryBi - Airy 波动函数函数的实数零点AiryAiZeros, AiryBiZeros - AiryAn gerJ, WeberE - An ger 函数和Weber 函数Bessell, HankelHI, …-Bessel 函数和 Hankel 函数 BesselJZeros,… -Bessel函数实数零点 Beta - Beta 函数EllipticModulus -模数函数 k(q) GAMMA, I nGAMMA -完全和不完全 Gammag 数 GaussAGM - Gauss 算术的几何平均数JacobiAM, ., - Jacobi 振幅函数和 椭圆函数JacobiTheta1, JacobiTheta4 - Jacobi theta函数 JacobiZeta - Jacobi 的 Zeta 函数Kelvi nBer, Kelvi nBei - Kelvi n函数 KummerM, - Kummer M 函数和 U 函数LambertW - LambertW 函数LerchPhi - 一般的 Lerch Phi 函数 LommelS1, LommelS2 - Lommel 函数 MeijerG - 一个修正的 Meijer G 函数 Psi - Digamma 和 Polygamma 函数 StruveH, StruveL - Struve 函数 WeierstrassP - Weierstrass P函数及其导数WhittakerM - Whittaker 函数Zeta - Zeta 函数erf,…-误差函数,补充的误差函数和虚数误差函数harm onic - 调和函数hypergeom - 广义的超越函数pochhammer - 一般的 pochhammer 函数polylog - 一般的 polylogarithm 函数第14章线性代数14.1 ALGEBRA (代数)中矩阵,矢量和 数组14.2 LINALG 软件包简介14.3数据结构矩阵 matrices (小写) 矢量 vectors (矢量)将数组,列表, Matrix 转换成 matrix 将列表,数组或 Vector 转换成矢量vector 生成矩阵matrix (小写) 生成矢量 vector (小写) Det - conv ert/matrix - convert/vector -linalg[matrix]-lin alg[vector]-14.4惰性函数Eige nvals - 数值型矩阵的特征值和特征向量Hermite, Smith - 14.5 Lin earAlgebraMatrix 定义矩阵Add 加/减矩阵Adjoi nt 伴随矩阵BackwardSubstitute阵 Ban dMatrix 带状矩阵Basis 返回向量空间的一组基SumBasis 返回向量空间直和的一组基In tersectio nBasis 返回向量空间交的一组基BezoutMatrix 构造两个多项式的Bezout 矩阵 Bidiago nalForm 将矩阵约化为双对角型 CharacteristicMatrixCharacteristicPolyno mialCompa nion Matrix友矩阵(束)Con diti onNumberCo nsta ntMatrixCon sta ntVector Copy 构造矩阵或向量的一份复制CreatePermutation 将一个NAG 主元向量转换为一个置换向量或矩阵CrossProduct 向量的叉积'&x'向量的叉积DeleteRow 删除矩阵的行DeleteColum n 删除矩阵的列Determ inant 行歹U 式Diago nal 返回从矩阵中得到的向量序列Diago nalMatrix 构造(分块)对角矩阵Dime nsio n 行数和列数DotProduct 点积Bili nearForm 向量的双线性形式Eige nCon ditio nNumbers 计算数值特征值制约问题的特征值或特征向 量的条件数矩阵的Hermite 和Smith 标准型函数 求解A . X = B ,其中A 为上三角型行阶梯矩构造特征矩阵 构造矩阵的特征多项式 构造一个首一(或非首一)多项式或矩阵多项式的计算矩阵关于某范数的条件数 构造常数矩阵 构造常数向量Eige nvalues 计算矩阵的特征值Eige nvectors 计算矩阵的特征向量Equal比较两个向量或矩阵是否相等ForwardSubstitute 求解A . X = B ,其中A 为下三角型行阶梯矩阵Frobe niusForm 将一个方阵约化为Frobe nius 型(有理标准型)GaussianElimination 对矩阵作高斯消元ReducedRowEchelonForm对矩阵作高斯—约当消元GetResultDataType 返回矩阵或向量运算的结果数据类型GetResultSh ape 返回矩阵或向量运算的结果形状Give nsRotatio nM atrix 构造Give ns 旋转的矩阵GramSchmidt计算一个正交向量集HankelMatrix 构造一个Hankel 矩阵HermiteForm 计算一个矩阵的Hermite 正规型HessenbergForm将一个方阵约化为上Hessenberg 型HilbertMatrix 构造广义Hilbert 矩阵HouseholderMatrix 构造Householder 反射矩阵Ide ntityMatrix 构造一个单位矩阵IsDefi nite 检验矩阵的正定性,负定性或不定性IsOrthogo nal 检验矩阵是否正交IsUni tary 检验矩阵是否为酉矩阵IsSimilar 确定两个矩阵是否相似Jorda nBlockMatrix 构造约当块矩阵JordanForm将矩阵约化为约当型Kron eckerProduct 构造两个矩阵的Kron ecker 张量积LeastSquares 方程的最小二乘解Lin earSolve 求解线性方程组A . x = bLUDecomposition 计算矩阵的Cholesky , PLU 或PLU1R 分解Map将一个程序映射到一个表达式上,对矩阵和向量在原位置上进行处理MatrixAdd 计算两个矩阵的线性组合VectorAdd 计算两个向量的线性组合MatrixExponential 确定一个矩阵A 的矩阵指数exp(A)MatrixFunction 确定方阵A 的函数F(A)MatrixI nverse 计算方阵的逆或矩阵的Moore-Pe nrose 伪逆MatrixMatrixMultiply 计算两个矩阵的乘积MatrixVectorMultiply 计算一个矩阵和一个列向量的乘积VectorMatrixMultiply 计算一个行向量和一个矩阵的乘积MatrixPower 矩阵的幕Mi nimalPoly nomial 构造矩阵的最小多项式Min or计算矩阵的子式Multiply 矩阵相乘Norm计算矩阵或向量的p-范数MatrixNorm 计算矩阵的p-范数VectorNorm 计算向量的p-范数Normalize 向量正规化NullSpace 计算矩阵的零度零空间OuterProductMatrix 两个向量的外积Permanent方阵的不变量Pivot矩阵元素的主元消去法PopovForm Popov 正规型QRDecompositio n QR 分解RandomMatrix构造随机矩阵RandomVector构造随机向量Rank计算矩阵的秩Row返回矩阵的一个行向量序列Column返回矩阵的一个列向量序列RowOperati on 对矩阵作初等行变换Colu mn Operati on 对矩阵作出等列变换RowSpace返回矩阵行空间的一组基ColumnSpace返回矩阵列空间的一组基ScalarMatrix 构造一个单位矩阵的数量倍数ScalarVector 构造一个单位向量的数量倍数ScalarMultiply 矩阵与数的乘积MatrixScalarMultiply 计算矩阵与数的乘积VectorScalarMultiply 计算向量与数的乘积SchurForm将方阵约化为Schur 型Sin gularValues 计算矩阵的奇异值SmithForm将矩阵约化为Smith 正规型Stro nglyCo nn ectedBlocks 计算方阵的强连通块SubMatrix 构造矩阵的子矩阵SubVector 构造向量的子向量SylvesterMatrix 构造两个多项式的Sylvester矩阵ToeplitzMatrix 构造Toeplitz 矩阵Trace计算方阵的迹Tran spose 转置矩阵Hermitia nTran spose 共轭转置矩阵Tridiago nalForm 将方阵约化为三对角型Uni tVector 构造单位向量Van derm on deMatrix 构造一个Van derm onde 矩阵VectorA ngle 计算两个向量的夹角ZeroMatrix 构造一个零矩阵ZeroVector 构造一个零向量Zip将一个具有两个参数的程序作用到一对矩阵或向量上LinearAlgebra[Generic] 子函数包[Generic] 子函数包提供作用在场,欧几里得域,积分域和环上的线性代数算法。

Maple的常用内部数学函数要点

Maple的常用内部数学函数要点
>display(c,scaling=CONSTRAINED,title=`UnitCircle` );
5、3D图象
Maple可以生成由显函数、参数型、微分 方程的解给出的3D曲线和曲面。图像的外观如:字体、光照、着色等也可随便更改。
下例将生成二元函数: 的图 象。
>plot3d(x*exp(-x^2-y^2),x=-2..2,y=-2..2,axes=BOXED,
title=`ASurfacePlot`);
六、maple在微积分方面的运用
Maple提 供多种强力工具用以解决一元或多元微积分问题。Maple可被用于求解微分、积分、极 限、级数展开、级数求和、求、积分变换(如拉普拉斯变换、Z变换、梅林变换、傅利 叶变换等)、以及分段函数等诸多领域的问题。Maple不仅能够给出以上问题的数值解 ,他强大的引擎同样提供解析解(符号解)。
>solve({eqn1,eqn2,eqn3,eqn4},{a,b,c,d});
使用所得解验证:eqn1,eqn2
>eval({eqn1,eqn2},%);
5、解不等式
下例演示在Maple中解不等式如何方 便。
解不等式组: .
>solve({x^2<1,y^2<=1,x+y<1/2},{x,y});
>200!;
Maple使用百分号%代表对前面输出 的引用。(详情请参考在线帮助)下面的ifactor命令对前面的结果进行因数分解。
>ifactor(%);
下面的命令又将上式乘开,重新得到200!
>expand(%);
2、浮点运算
Maple的威力首先表现在它的精确运算能 力。无论是分数还是无理数,都不会在运预算过程中自动取近似的十进制小数。这样 避免了误差的叠加。当然如果需要,Maple将给出任意精度的近似小数。

maple计算泰勒展开式

maple计算泰勒展开式

maple计算泰勒展开式泰勒展开式是一种重要的数学工具,它能够将复杂的函数表达式近似为一系列简单的多项式。

在计算机科学和工程学领域中,泰勒展开式在函数逼近、数值计算和优化问题等方面具有广泛的应用。

在本文中,我将介绍一种名为maple的数学软件,它能够帮助我们计算和使用泰勒展开式。

Maple是一种强大的数学软件,它能够进行各种数学计算,包括泰勒展开式的计算。

在Maple中,我们可以使用内置的函数来计算函数的泰勒展开式。

下面我将介绍一下在Maple中计算泰勒展开式的方法。

首先,我们需要定义我们要展开的函数。

在Maple中,我们可以使用"proc"函数来定义函数。

例如,如果我们想要计算函数f(x)=sin(x)的泰勒展开式,我们可以使用以下命令:```f := proc(x) options operator, arrow; sin(x) end proc;```在这个例子中,我们定义了一个名为f的函数,它的参数是x,函数的表达式是sin(x)。

我们可以根据需要自行定义函数的参数和表达式。

接下来,我们可以使用内置的"series"函数来计算函数的泰勒展开式。

该函数的语法如下:```series(f(x), x = a, n);```其中,f(x)是我们要展开的函数,x是变量,a是展开点,n是展开的阶数。

例如,如果我们想要计算函数f(x)=sin(x)在x=0处的泰勒展开式,展开到3阶,我们可以使用以下命令:```series(f(x), x = 0, 3);```执行这个命令后,Maple会计算出函数f(x)=sin(x)在x=0处展开到3阶的泰勒展开式。

结果将以多项式的形式显示出来。

我们可以根据需要自行选择展开点和阶数。

除了计算泰勒展开式,Maple还提供了许多其他与泰勒展开式相关的函数。

例如,我们可以使用"coeff"函数来提取展开式中某个阶数的系数。

Maple的内部常数

Maple的内部常数

Maple的内部常数Maple的常用内部数学函数)Maple中的数学运算符Maple的关系运算符函数的连续性四大数学软件(mathcad,mathematica,maple,matlab)中,只有Maple才有判断函数连续性的命令,其命令如下:如何用Maple求极限(1)极限:(2)单侧极限:左极限:右极限:如何用Maple求导数如何用Maple求高阶导数如何在Maple中求隐函数的导数在Maple中,没有直接求参数方程确定的函数的导数的命令,只能根据参数方程确定的函数的求导公式一步一步地进行推导;或者,干脆自己编一个小程序,应用起来会更加方便。

如何用Maple求不定积分求定积分、广义积分如何用Maple先加载student函数库,加载方法为:with(student);如何用Maple进行分部积分的计算先加载student函数库,加载方法为:with(student);在Maple中,如何用矩形法、梯形法和辛普森法求近似积分在计算之前,首先要加载student函数库,加载方法为:with(student);矩形法梯形法辛普森法如何用Maple对数列和级数进行求和如何用Maple进行连乘如何用Maple展开级数如何在Maple中进行积分变换在进行拉普拉斯变换及其逆变换、傅立叶变换及其逆变换、傅立叶正弦变换和傅立叶余弦变换时,必须要先加载积分变换函数库,加载方法为:with(inttrans),但在进行Z变换及其逆变换时,不用加载任何函数库。

如何用Maple解微分方程如何用Maple解微分方程组如何用maple求多变量函数的极限以两个变量为例说明,多于两个变量的函数极限可以依次类推。

计算极限如何用maple 求多元函数的偏导数求偏导数如何用maple 求多变量函数的泰勒展开式首先要加载mtaylor 链接库,加载方法为:readlib (mtaylor )(在maple7、maple8、maple9中不用加载)如何用maple 求重积分可以利用数个int ()指令的组合来完成。

maple 牛顿-莱布尼茨公式

maple 牛顿-莱布尼茨公式

《探寻maple 牛顿-莱布尼茨公式》一、引言maple 牛顿-莱布尼茨公式,作为微积分中的经典公式,是描述求导和积分的关系的重要定理。

它由两位伟大的数学家牛顿和莱布尼茨分别独立发现,并且在实际应用和理论探讨中发挥着重要作用。

本文将从浅入深地探讨maple 牛顿-莱布尼茨公式,希望能为读者深入理解这一数学定理的内涵和应用。

二、maple 牛顿-莱布尼茨公式的基本概念1. maples 的概念在微积分中,maple 是代表一个函数的导数。

它描述了函数在某一点的瞬时变化率,是微积分中非常重要的概念之一。

2. 牛顿-莱布尼茨公式的表达maple 牛顿-莱布尼茨公式由以下表达式所描述:∫(a, b) f(x)dx = F(b) - F(a)其中,∫代表积分,f(x)是函数,F(x)是f(x)的不定积分函数,a和b是积分的上下限。

三、maple 牛顿-莱布尼茨公式的探讨1. 证明方法maple 牛顿-莱布尼茨公式的证明可以通过利用极限的性质,结合微分学和积分学的知识进行推导。

基于导数和积分的定义,可以清晰地展示maple 牛顿-莱布尼茨公式的成立过程。

2. 函数的连续性和可导性maple 牛顿-莱布尼茨公式适用于连续函数和可导函数。

在进行积分操作时,对函数连续性和可导性的要求是必不可少的。

3. 应用场景maple 牛顿-莱布尼茨公式在物理学、工程学、经济学等领域都有广泛的应用。

在物理学中,可以利用maple 牛顿-莱布尼茨公式求解曲线下的面积和质心等问题。

四、个人理解和观点作为一名数学爱好者,我深刻理解maple 牛顿-莱布尼茨公式的重要性和美妙之处。

它不仅揭示了导数和积分之间的奇妙关系,还为我们解决实际问题提供了强大的工具。

maple 牛顿-莱布尼茨公式的深入理解不仅有助于提高数学水平,还能拓展思维,对于培养逻辑思维和解决实际问题具有重要意义。

五、总结本文从maple 牛顿-莱布尼茨公式的基本概念出发,深入探讨了其证明方法、适用条件和应用场景,同时结合个人观点和理解进行了阐述。

maple推导公式

maple推导公式

maple推导公式
Maple是一款很强大的数学软件,它可以进行符号计算,求解方程、积分、微分等等。

在使用Maple进行数学推导时,我们可以用到一些常用的公式,这些公式可以帮助我们更快、更准确地进行推导。

下面是一些常用的Maple推导公式:
1. 求导公式:diff(f(x),x),其中f(x)为函数,x为自变量。

2. 偏导公式:diff(f(x,y),x),其中f(x,y)为函数,x为自变量,y为自变量。

3. 积分公式:int(f(x),x),其中f(x)为函数,x为积分变量。

4. 二次方程公式:solve(a*x^2+b*x+c=0,x),其中a、b、c为常数,x为未知数。

5. 三角函数公式:sin(x),cos(x),tan(x),其中x为角度。

6. 对数函数公式:log(x),其中x为底数。

7. 指数函数公式:exp(x),其中x为指数。

通过应用这些公式,我们可以更加高效地进行Maple数学推导,提高我们的数学研究效率。

- 1 -。

maple求函数的积分

maple求函数的积分

maple求函数的积分# maple求函数的积分在数学领域中,导数和积分是两个非常重要的概念。

导数可以衡量函数在某一点的变化率,而积分可以计算函数在给定区间上的面积或曲线长度。

Maple是一种强大的数学计算软件,能够帮助我们求解各种复杂的数学问题,包括函数的积分。

下面我们将介绍如何使用Maple来求解函数的积分。

## 1. 定义函数在使用Maple之前,我们首先需要定义我们要求解的函数。

在Maple中,我们可以通过以下方式来定义一个函数:```maplef := x -> x^2 + 2*x + 1;```上述代码定义了一个函数f,它可以计算x的平方加上2x加1的值。

## 2. 求函数的积分求函数的积分在Maple中非常简单。

我们可以使用Maple的内置函数`int`来实现。

下面是求解函数积分的示例代码:```mapleint(f(x), x);```上述代码中,`f(x)`是我们定义的函数,`x`是积分变量。

通过调用`int`函数并传入函数和积分变量,Maple将自动计算函数的积分结果。

## 3. 指定积分区间有时我们需要计算函数在某一给定区间上的积分,而不仅仅是在整个定义域上。

在Maple中,我们可以通过指定积分区间的上下限来进行计算。

下面是一个示例代码:```mapleint(f(x), x = a .. b);```上述代码中,`a`和`b`分别是积分区间的下限和上限。

通过在`int`函数中使用`x = a .. b`来指定积分区间,Maple将计算函数在该区间上的积分结果。

## 4. 解决复杂积分对于一些复杂的积分问题,Maple也提供了强大的功能来解决。

我们可以使用`int`函数的一些参数来指定积分的方法。

例如,我们可以使用参数`numeric`来进行数值积分,或者使用参数`symbolic`来进行符号积分。

下面是一个示例代码:```mapleint(f(x), x = a .. b, numeric);```上述代码中,`numeric`参数告诉Maple使用数值积分方法来计算函数的积分结果。

Maple函数用法

Maple函数用法

Maple函数用法一、基本命令重新开始:restart 命名:名字:= 引用前值:% 字符连接:|| 保护命名:protect 解除保护命名:unprotrct 变量类型:whattype 检验命名:assigned 别名:alias 宏:macro 帮助:?函数名map把命令作用到每一个元素,seq生成序列,add生成和,mul生成积二、基本运算1. 近似计算:evalf(表达式,小数位数),用Digits命令提前设定小数位数2. 取整运算:round四舍五入,trunc向0取整, ceil向-∝取整, floor向∝取整3. 范围限定:assume(限定变量范围)frac小数部分4. 绝对值(模):abs(表达式),复数求其模5. 同余:mod(数1,数2),或者:数1 mod 数26. 平方根:sqrt(表达式),平方根最接近整数:isqrt(表达式)7. 分解质因数:ifactor(数),分解质因数成组ifactors(数)8. 商与余数:商iquo(除数,被除数),余数irem(除数,被除数)9. 最大公约数:igcd(数1,数2),最小公倍数:ilcm(数1,数2)10.形如as+bt=(a,b)分解:igcdex(a,b,’s’,’t’)11.数组最大最小值:max(数1,数2,…),min(数1,数2,…)12.实部、虚部与幅角:实部Re(复数),虚部Im(复数),幅角argument13.共轭复数:conjugate(复数)14.形如a+bi整理:evalc(表达式)15.并集:集合1 union 集合2,交集:intersect,差集:minus16.元素个数:nops(集合),用op可把集合转化成表达式三、多项式1. 降幂排列:sort(多项式),字典排序plex(第三个参数)2. 次数:degree(多项式),系数:coeff(多项式,项),首项系数:lcoeff尾项系数:tcoeff,所有系数:coeffs(多项式,变量,‘power‘)3. 合并同类项:collect(多项式,合并参数)4. 商式:quo(除式,被除式,变量),余式:rem,整除检验:divide5. 最大公因式:gcd(多项式1,多项式2),最小公倍式lcm6. 因式分解:factor(多项式),可用第二个参数限定数域缺省代表有理数域7. 分母有理化:rationalize(多项式),有理分式化简:normal或者factor8. 化简表达式:simplify,带假设化简:simplify(表达式,assume=范围)附加关系化简:simplify(表达式,{条件})代换:subs(条件,表达式)9. 展开与合并:展开expand(表达式),合并combine(表达式)10.等价转换:convert(函数,转化成的函数)四、解方程1. 方程(组):solve({方程(组)},{未知量(缺省对所有变量求解})2. 数值解:fsolve(方程,变量范围(可缺省),数域(可缺省))3. 三角方程:添加_EnvAllSolutions:=ture以求得所有解4. 多项式方程解的区间:realroot(多项式)5. 不等式(组):solve({不等式(组)},{变量})6. 整数解:isolve(方程,变量)7. 模m的解:msolve(方程,模m)8. 递推关系的通项:rsolve({递推关系,初值},{通项})9. 函数方程:solve(函数方程,函数)10.系数匹配:match(式子1=式子2,变量,’sln’)11.Grobner基原理:先调用with(grobner),此命令将方程的解等价化简Gsolve({式子1,式子2,…},[变量1,变量2,…]12.微分方程:dsolve({方程,初值(可缺)},函数,’explicit’(可缺))13.微分方程组:dsolve({方程1、2,…,初值},{函数1,函数2,…})14.拉普拉斯变换法:dsolve({微分方程},函数,method=laplace)15.微分方程级数解:dsolve({微分方程},函数,type=series)16.微分方程数值解:dsolve({微分方程},函数,type=numeric)17.微分方程图形解:DEplot图形表示微分方程,dfielplot箭头表示向量场,phaseportrait向量场及积分曲线,DEplot3d三维空间图形表示微分方程18.偏微分方程:pdsolve(偏微分方程,求解函数)19.分离变量解偏微分方程:pdsolve(方程,函数,HINT=’*’,’build’)20.偏微分方程图形解:PDEplot(方程,函数,ini边界s,s范围)五、数据处理1. 统计软件包:先调用程序包with(stats) ,有7个子包:anova方差分析,describe描述数据分析,fit拟合回归分析,transform数据形式变换,random分布产生随机数,statevalf分布的数值计算,statplots统计绘图2. 基本命令:平均值mean,方差variance,标准差standarddeviation,中位数median,众数mode,数据求和sumdata,协方差covariance,相对标准差(标准差/平均值)coefficientofvariation,计数(非缺失)count,计缺失数countmissing,范围range,几何平均值geometricmean,线性相关数linearcorrelation3. 统计图形:直方图histogram,散点图scatter2d、quantile2(先从小到大排序再作图),箱式图boxplot4. 统计分布函数值:正态分布随机分布命令normald[期望,方差]先调用程序包with(statevalf)用法statevalf(分布函数,求解函数)连续分布:cdf累积密度函数,icdf逆累积密度函数,pdf概率密度函数离散分布:dcdf离散累积概率函数,idcdf逆离散累积函数,pf概率函数5. 插值:整体插值命令f:=interp(数据1,数据2,变量)分段插值命令f:=spline(数据1,数据2,变量,次数)6. 回归:leastsquare[[x,y],y=多项式,{多项式系数}]([数据1,数据2]) f:=fit(数据1,数据2,拟合函数,变量)六、微积分1.函数定义:函数名:=->表达式,复合函数:f(g(x)):=f@g2. 表达式转换成函数:unapply(表达式,函数变量)3. 极值:极大值maximize(函数,变量,范围,location=true(极值点))极小值 minimize(函数,变量,范围,location=true(极值点))条件极值:extreme(函数,约束条件,{变量},’s’(极值点))4. 极限:limit(函数,x=趋值,方向(省缺,left,right,complex))5. 连续性:判断iscont(函数,x=范围)第三个参数closed表示闭区间求解discont(函数,变量)6. 微分:显函数diff(函数,变量)对x多次求导用x&n 微分算子D隐函数implicitdiff(函数,依赖关系y(x),对象y,变量x)7. 切线作图:showtangent(函数,x=点,view=[x范围,y范围])8. 不定积分:int(函数,积分变量),定积分:int(函数,x=下限..上限)9. 复函数积分:先求奇点solve(denom(函数)),再用留数规则求解2*Pi*I(residue(f,z=奇点1)+ residue(f,z=奇点2)+…)10.定积分矩形:下矩形:作图leftbox(f,x=范围,块数)面积leftsum(f,x=范围,块数)。

Maple常用计算命令

Maple常用计算命令

Maple常用计算命令常用计算命令《Maple 指令》7.0版本第1章章数1.1 复数Re,Im - 返回复数型表达式的实部/虚部abs - 绝对值函数argument - 复数的幅角函数conjugate - 返回共轭复数csgn - 实数和复数表达式的符号函数signum - 实数和复数表达式的sign 函数51.2 MAPLE 常数已知的变量名称指数常数(以自然对数为底)I - x^2 = -1 的根infinity 无穷大1.3 整数函数! - 阶乘函数irem, iquo - 整数的余数/商isprime - 素数测试isqrfree - 无整数平方的因数分解max, min - 数的最大值/最小值mod, modp, mods - 计算对 m 的整数模rand - 随机数生成器randomize - 重置随机数生成器1.4 素数Randpoly, Randprime - 有限域的随机多项式/首一素数多项式ithprime - 确定第 i 个素数nextprime, prevprime - 确定下一个最大/最小素数1.5 数的进制转换convert/base - 基数之间的转换convert/binary - 转换为二进制形式convert/decimal - 转换为 10 进制convert/double - 将双精度浮点数由一种形式转换为另一种形式convert/float - 转换为浮点数convert/hex - 转换为十六进制形式solve/radical - 求解含有未知量根式的方程solve/scalar - 标量情况(单变量和方程)solve/series - 求解含有一般级数的方程solve/system - 解方程组或不等式组第5章操作表达式5.1 处理表达式Norm - 代数数 (或者函数) 的标准型Power - 惰性幂函数Powmod -带余数的惰性幂函数Primfield - 代数域的原始元素Trace - 求一个代数数或者函数的迹charfcn - 表达式和集合的特征函数Indets - 找一个表达式的变元invfunc - 函数表的逆powmod - 带余数的幂函数Risidue - 计算一个表达式的代数余combine - 表达式合并(对tan,cot不好用)expand - 表达式展开Expand - 展开表达式的惰性形式expandoff/expandon - 抑制/不抑制函数展开5.2 因式分解Afactor - 绝对因式分解的惰性形式Afactors - 绝对因式分解分解项列表的惰性形式Berlekamp - 因式分解的Berlekamp 显式度factor - 多元的多项式的因式分解factors - 多元多项式的因式分解列表Factor - 函数factor 的惰性形式Factors - 函数factors 的惰性形式polytools[splits] - 多项式的完全因式分解第6章化简6.1 表达式化简118simplify - 给一个表达式实施化简规则simplify/@ - 利用运算符化简表达式simplify/Ei - 利用指数积分化简表达式simplify/GAMMA - 利用GAMMA 函数进行化简simplify/RootOf - 用RootOf 函数化简表达式simplify/wronskian - 化简含wronskian 标识符的表达式simplify/hypergeom - 化简超越函数表达式simplify/ln - 化简含有对数的表达式simplify/piecewise - 化简分段函数表达式simplify/polar - 化简含有极坐标形式的复数型表达式simplify/power - 化简含幂次的表达式simplify/radical - 化简含有根式的表达式simplify/rtable - 化简rtable 表达式simplify/siderels - 使用关系式进行化简simplify/sqrt - 根式化简simplify/trig - 化简trig 函数表达式simplify/zero - 化简含嵌入型实数和虚数的复数表达式6.2 其它化简操作Normal - normal 函数的惰性形式convert - 将一个表达式转换成不同形式radnormal - 标准化一个含有根号数的表达式rationalize - 分母有理化第7章操作多项式7.0 MAPLE 中的多项式简介7.1 提取coeff - 提取一个多项式的系数coeffs - 提取多元的多项式的所有系数coeftayl - 多元表达式的系数lcoeff, tcoeff - 返回多元多项式的首项和末项系数7.2 多项式约数和根gcd, lcm - 多项式的最大公约数/最小公倍数psqrt, proot - 多项式的平方根和第n次根rem,quo - 多项式的余数/商7.3 操纵多项式convert/horner - 将一个多项式转换成Horner形式collect - 象幂次一样合并系数compoly - 确定一个多项式的可能合并的项数convert/polynom - 将级数转换成多项式形式convert/mathorner - 将多项式转换成Horner矩阵形式convert/ratpoly - 将级数转换成有理多项式sort - 将值的列表或者多项式排序sqrfree - 不含平方项的因数分解函数7.4 多项式运算discrim - 多项式的判别式fixdiv - 计算多项式的固定除数norm - 多项式的标准型resultant - 计算两个多项式的终结式bernoulli - Bernoulli 数和多项式bernstein - 用Bernstein多项式近似一个函数content, primpart - 一个多元的多项式的内容和主部degree, ldegree - 一个多项式的最高次方/最低次方divide - 多项式的精确除法euler - Euler 数和多项式icontent - 多项式的整数部分interp - 多项式的插值prem, sprem - 多项式的pseudo 余数和稀疏pseudo 余数randpoly - 随机多项式生成器spline - 计算自然样条函数第8章有理表达式8.0 有理表达式简介8.1 操作有理多项式numer,denom - 返回一个表达式的分子/分母frontend - 将一般的表达式处理成一个有理表达式normal - 标准化一个有理表达式convert/parfrac - 转换为部分分数形式convert/rational - 将浮点数转换为接近的有理数ratrecon - 重建有理函数第9章微积分9.1 取极限Limit, limit - 计算极限limit[dir] - 计算方向极限limit[multi] - 多重方向极限limit[return] - 极限的返回值9.2 连续性测试discont - 寻找一个函数在实数域上的间断点fdiscont - 用数值法寻找函数在实数域上的间断点iscont - 测试在一个区间上的连续性9.3 微分计算D - 微分算子D, diff - 运算符D 和函数diffdiff, Diff - 微分或者偏微分convert/D - 将含导数表达式转换为D运算符表达式convert/diff - 将D(f)(x)表达式转换为diff(f(x),x)的形式implicitdiff - 由一个方程定义一个函数的微分9.4 积分计算Si, Ci … - 三角和双曲积分Dirac, Heaviside - Dirac 函数/Heaviside阶梯函数Ei - 指数积分Elliptic - 椭圆积分FresnelC, … - Fresnel 正弦,余弦积分和辅助函数int, Int - 定积分和不定积分LegendreP, … - Legendre 函数及其第一和第二类函数Li - 对数积分student[changevar] - 变量代换dawson - Dawson 积分ellipsoid - 椭球体的表面积evalf(int) - 数值积分intat, Intat - 在一个点上积分求值第10章微分方程10.1 微分方程分类odeadvisor - ODE-求解分析器DESol - 表示微分方程解的数据结构pdetest - 测试pdsolve 能找到的偏微分方程(PDEs)解10.2 常微分方程求解dsolve - 求解常微方程 (ODE)dsolve - 用给定的初始条件求解ODE 问题dsolve/inttrans - 用积分变换方法求解常微分方程dsolve/numeric - 常微方程数值解dsolve/piecewise - 带分段系数的常微方程求解dsolve - 寻找ODE 问题的级数解dsolve - 求解ODEs 方程组odetest - 从ODE 求解器中测试结果是显式或者隐式类型10.3 偏微分方程求解pdsolve - 寻找偏微分方程 (PDEs) 的解析解第11章数值计算11.1 MAPLE 中的数值计算环境IEEE 标准和Maple数值计算数据类型特殊值环境变量11.2 算法标准算法复数算法含有0,无穷和未定义数的算法11.3 数据构造器254complex - 复数和复数构造器Float, … - 浮点数及其构造器Fraction - 分数及其的构造器integer - 整数和整数构造器11.4 MATLAB 软件包简介11.5 “”区间类型表达式第12章级数12.1 幂级数的阶数Order - 阶数项函数order - 确定级数的截断阶数12.2 常见级数展开series - 一般的级数展开taylor - Taylor 级数展开mtaylor - 多元Taylor级数展开poisson - Poisson级数展开.26812.3 其它级数eulermac - Euler-Maclaurin求和piecewise - 分段连续函数asympt - 渐进展开第13章特殊函数AiryAi, AiryBi - Airy 波动函数AiryAiZeros, AiryBiZeros - Airy函数的实数零点AngerJ, WeberE - Anger函数和Weber函数BesselI, HankelH1, … - Bessel函数和Hankel函数BesselJZeros, … - Bessel函数实数零点Beta - Beta函数EllipticModulus - 模数函数k(q)GAMMA, lnGAMMA - 完全和不完全Gamma函数GaussAGM - Gauss 算术的几何平均数JacobiAM, ., - Jacobi 振幅函数和椭圆函数JacobiTheta1, JacobiTheta4 - Jacobi theta函数JacobiZeta - Jacobi 的Zeta函数KelvinBer, KelvinBei - Kelvin函数KummerM, - Kummer M函数和U函数LambertW - LambertW函数LerchPhi - 一般的Lerch Phi函数LommelS1, LommelS2 - Lommel函数MeijerG - 一个修正的Meijer G函数Psi - Digamma 和Polygamma函数StruveH, StruveL - Struve函数WeierstrassP - Weierstrass P函数及其导数WhittakerM - Whittaker 函数Zeta - Zeta 函数erf, … - 误差函数,补充的误差函数和虚数误差函数harmonic - 调和函数hypergeom - 广义的超越函数pochhammer - 一般的pochhammer函数polylog - 一般的polylogarithm函数第14章线性代数14.1 ALGEBRA(代数)中矩阵,矢量和数组14.2 LINALG 软件包简介14.3 数据结构矩阵matrices(小写)矢量vectors(矢量)convert/matrix - 将数组,列表,Matrix 转换成matrixconvert/vector - 将列表,数组或Vector 转换成矢量vector linalg[matrix] - 生成矩阵matrix(小写)linalg[vector] - 生成矢量vector(小写)14.4 惰性函数Det - 惰性行列式运算符Eigenvals - 数值型矩阵的特征值和特征向量Hermite, Smith - 矩阵的Hermite 和Smith 标准型14.5 LinearAlgebra函数Matrix 定义矩阵Add 加/减矩阵Adjoint 伴随矩阵BackwardSubstitute 求解 A . X = B,其中 A 为上三角型行阶梯矩阵BandMatrix 带状矩阵Basis 返回向量空间的一组基SumBasis 返回向量空间直和的一组基IntersectionBasis 返回向量空间交的一组基BezoutMatrix 构造两个多项式的 Bezout 矩阵BidiagonalForm 将矩阵约化为双对角型CharacteristicMatrix 构造特征矩阵CharacteristicPolynomial 构造矩阵的特征多项式CompanionMatrix 构造一个首一(或非首一)多项式或矩阵多项式的友矩阵(束)ConditionNumber 计算矩阵关于某范数的条件数ConstantMatrix 构造常数矩阵ConstantVector 构造常数向量Copy 构造矩阵或向量的一份复制CreatePermutation 将一个 NAG 主元向量转换为一个置换向量或矩阵CrossProduct 向量的叉积`&x` 向量的叉积DeleteRow 删除矩阵的行DeleteColumn 删除矩阵的列Determinant 行列式Diagonal 返回从矩阵中得到的向量序列DiagonalMatrix 构造(分块)对角矩阵Dimension 行数和列数DotProduct 点积BilinearForm 向量的双线性形式EigenConditionNumbers 计算数值特征值制约问题的特征值或特征向量的条件数Eigenvalues 计算矩阵的特征值Eigenvectors 计算矩阵的特征向量Equal 比较两个向量或矩阵是否相等ForwardSubstitute 求解 A . X = B,其中 A 为下三角型行阶梯矩阵FrobeniusForm 将一个方阵约化为 Frobenius 型(有理标准型)GaussianElimination 对矩阵作高斯消元ReducedRowEchelonForm 对矩阵作高斯-约当消元GetResultDataType 返回矩阵或向量运算的结果数据类型GetResultShape 返回矩阵或向量运算的结果形状GivensRotationMatrix 构造 Givens 旋转的矩阵GramSchmidt 计算一个正交向量集HankelMatrix 构造一个 Hankel 矩阵HermiteForm 计算一个矩阵的 Hermite 正规型HessenbergForm 将一个方阵约化为上 Hessenberg 型HilbertMatrix 构造广义 Hilbert 矩阵HouseholderMatrix 构造 Householder 反射矩阵IdentityMatrix 构造一个单位矩阵IsDefinite 检验矩阵的正定性,负定性或不定性IsOrthogonal 检验矩阵是否正交IsUnitary 检验矩阵是否为酉矩阵IsSimilar 确定两个矩阵是否相似JordanBlockMatrix 构造约当块矩阵JordanForm 将矩阵约化为约当型KroneckerProduct 构造两个矩阵的 Kronecker 张量积LeastSquares 方程的最小二乘解LinearSolve 求解线性方程组 A . x = bLUDecomposition 计算矩阵的 Cholesky,PLU 或 PLU1R 分解Map 将一个程序映射到一个表达式上,对矩阵和向量在原位置上进行处理MatrixAdd 计算两个矩阵的线性组合VectorAdd 计算两个向量的线性组合MatrixExponential 确定一个矩阵 A 的矩阵指数 exp(A)MatrixFunction 确定方阵 A 的函数 F(A)MatrixInverse 计算方阵的逆或矩阵的 Moore-Penrose 伪逆MatrixMatrixMultiply 计算两个矩阵的乘积MatrixVectorMultiply 计算一个矩阵和一个列向量的乘积VectorMatrixMultiply 计算一个行向量和一个矩阵的乘积MatrixPower 矩阵的幂MinimalPolynomial 构造矩阵的最小多项式Minor 计算矩阵的子式Multiply 矩阵相乘Norm 计算矩阵或向量的p-范数MatrixNorm 计算矩阵的p-范数VectorNorm 计算向量的p-范数Normalize 向量正规化NullSpace 计算矩阵的零度零空间OuterProductMatrix 两个向量的外积Permanent 方阵的不变量Pivot 矩阵元素的主元消去法PopovForm Popov 正规型QRDecomposition QR 分解RandomMatrix 构造随机矩阵RandomVector 构造随机向量Rank 计算矩阵的秩Row 返回矩阵的一个行向量序列Column 返回矩阵的一个列向量序列RowOperation 对矩阵作初等行变换ColumnOperation 对矩阵作出等列变换RowSpace 返回矩阵行空间的一组基ColumnSpace 返回矩阵列空间的一组基ScalarMatrix 构造一个单位矩阵的数量倍数ScalarVector 构造一个单位向量的数量倍数ScalarMultiply 矩阵与数的乘积MatrixScalarMultiply 计算矩阵与数的乘积VectorScalarMultiply 计算向量与数的乘积SchurForm 将方阵约化为 Schur 型SingularValues 计算矩阵的奇异值SmithForm 将矩阵约化为 Smith 正规型StronglyConnectedBlocks 计算方阵的强连通块SubMatrix 构造矩阵的子矩阵SubVector 构造向量的子向量SylvesterMatrix 构造两个多项式的 Sylvester 矩阵ToeplitzMatrix 构造 Toeplitz 矩阵Trace 计算方阵的迹Transpose 转置矩阵HermitianTranspose 共轭转置矩阵TridiagonalForm 将方阵约化为三对角型UnitVector 构造单位向量VandermondeMatrix 构造一个 Vandermonde 矩阵VectorAngle 计算两个向量的夹角ZeroMatrix 构造一个零矩阵ZeroVector 构造一个零向量Zip 将一个具有两个参数的程序作用到一对矩阵或向量上LinearAlgebra[Generic] 子函数包 [Generic] 子函数包提供作用在场,欧几里得域,积分域和环上的线性代数算法。

Maple重点知识总结

Maple重点知识总结

Maple重点知识总结Maple中的evalf与evalhfevalf可作⽤于单值可作⽤于List可作⽤于Set可作⽤于Vector(<..>)可作⽤于Matrix(<..|..|..>)evalhf可作⽤于单值可作⽤于Vector(<..>)可作⽤于Matrix(<..|..|..>)不可作⽤于List不可作⽤于SetMaple编程中的经常使⽤的參数限定positive 正数negative 负数negzero 0或负0poszero 0或正0integer 整数nonnegint ⾮负整数nonposint ⾮正整数negint 负整数posint 正整数Maple中的嵌套编程Maple中也可嵌套编程。

求⼀个阶乘吧。

f := proc (k::nonposint)if 0 < k thenreturn f(k-1)*k;elif k = 0 thenreturn 1;end if;end proc;就可以。

Maple学习: 函数的⾼速定义函数与过程的定义通常是使⽤proc...end proc来定义,但在定义较为简单的函数时。

Maple提供了更为便捷的⽅式。

⽐如:⽆參数定义过程: f:=()->"这是⼀个⽆參数函数定义";调⽤过程: f();单參数定义过程: f:=(x)->x^2+x+1; 或 f:=x->x^2+x+1;调⽤过程: f(2);多參数定义过程: f:=(x,y,z)->x^2+y+z;调⽤过程: f(1,2,3);另外,"->"后⾯的表达式能够是if语句(在if语句中可嵌套其它的语句)。

⽐如:定义过程: f:=(x,y,z)->if x > 0 then x^2+y+z else x+y+z end if;调⽤过程: f(1,2,3);或 s:=1,2,3; f(s); # s为表达式序列參数表中也可指定參数的类型。

强大的数学计算——Maple内置函数包简介

强大的数学计算——Maple内置函数包简介

强大的数学计算——Maple内置函数包简介
Maple被称为数学家的软件,在工程计算软件中Maple的计算功能是无与伦比的,那么Maple 计算时所使用的内置函数有哪些呢?下面就对Maple函数作一些介绍。

更多Maple使用技巧与功能介绍请访问Maple中文版官网。

Maple内置了世界上最完整的数学函数库,100多个函数包,5,000多个计算命令,覆盖几乎所有的数学领域。

Maple的函数命令分为两类:顶层命令和函数库,Maple将数百个常用命令归类为顶层命令,用户可以直接使用这些函数,如limit,solve,int等。

此外,Maple 按照函数的应用领域,附加了100多个命令包,与专业工具箱使用方法相似,用户需要通过with(Package) 语句加载函数包到内存后,才能使用其中的命令。

以下是对Maple函数的一些简要介绍:
以上是对Maple函数的一些简单介绍,这些函数完美满足了工程计算的所需,具体的应用还需要大家的实践,在运用时总结出各个函数的特点,如需要了解更多Maple入门教程,可以参考Maple中文版服务中心的教程:Maple计算模式介绍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
· 变量不需要预先定义,严格区分字母的大小写。
· 在运算符和操作数之间可以插入空格或者其他空白字符,但在运算符和标识符内 部不能插入空格或其他空白字符。
·三个环境变量“%”、“%%”和“%%%”,分别代表当前工作空间最近三次的非空输出结果。
下面给出了Maplev运算的几个例子,内容涉及字符串、数的运算、方程的求解和图像的绘制,可使读者初步认识Map1ev的工作方式。在这些例子中,每行命令都以分号结尾,因此Maple v在输入的下一行即给出相应的输出,并把光标移到下一个程序段的
·MapleV的命令在提示符“>”的右边键入,每行命令要以分号“;”结尾。
·命令输入结束按回车键,maple就立即执行该命令
·如果命令以分号结尾,Maple将在下一行给出相应的输出结果,并把光标移到下—个程序段的开始行;如果命令以冒号结尾,Maple 执行命令但不显示输出结果,光标直按移到下一个程序段的开始。
吉林大学公共数学实验中心数学实验
>>首页>微积分>实验2
Maple简介
一、Maple操作界面介绍
1、编辑功能:
编辑功能中查找模块,可以帮助查找你所需要的关键字节.具体操作如图所示:
按上述操作完成后,出现下图所示的对话框:
在文本框中输入你要查找的字符或者符号,可以通过findprevious上下翻看,也可以通过replacewith操作替代你所查找的字符或者符号.cancle表示取消操作.
>200!;
Maple使用百分号%代表对前面输出 的引用。(详情请参考在线帮助)下面的ifactor命令对前面的结果进行因数分解。
>ifactor(%);
下面的命令又将上式乘开,重新得到200!
>expand(%);
2、浮点运算
Maple的威力首先表现在它的精确运算能 力。无论是分数还是无理数,都不会在运预算过程中自动取近似的十进制小数。这样 避免了误差的叠加。当然如果需要,Maple将给出任意精度的近似小数。
开始。
[>“Iam astring”; “Iamsstring”
[>(3+4)*12; 84
三、maple在数值计算方面的运用
1、整数计算
最基本的,Maple可视为功能强大的 计算器。
计算(32)( )只需键入:
>32*12^13;
Maple内置大量各类特殊运算如:阶乘; 最大公约数;最小公倍数;模m的同余运算等等。下面是一个阶乘的例子。
使用value命令求其值。
>value(%);
考察无限和 ,输入如下。
Sum(1/k^2,k=1..infinity);
>value(%);
4、复数和特殊函数
Maple一样可以进行复数运算。虚单位使 用大写I。
(3+5*I)/(7+4*I);
你还可以简单地使用convert函 数将复数的代数形式转化为极坐标表示:( ),r其中是模, 是幅 角主值。
2、示图操作( VIEW)
文档在屏幕上的显示模式称为“示图”,maple示图菜单主要设置工作爷文档的一些视图属性,所包括菜单如上图所示。
工具条(toolbar)的功能和其他系统一样,主要包括打开文件、创建新文档、存盘、打印当前页面、复制、剪切、粘贴、撤消操作等。
内容工具条:
“枫叶”表示设置工作页和标准公式和maple语言之间的转换
“X” 表示设置工作页和标准公式在活动和非活动方式之间的转换
“(对号)”表示标准公式有效时自动检查输入表达式的正确性
“!” 表示运行当前表达式
3、插入操作(INSERT)
插入操作比较简单这里就不做详细介绍,主要功能分为:
文本插入(textinput);
标准maple数学表达式插入;
运行单元executegroup插入其中包括在光标前插入和光标后插入
考察 ,在Maple中将作如下展开。
>(2^30/3^20)*sqrt(3);
Press[Enter]toseetheresultsof thisexpression
使用evalf命令,就得到近似的浮点数。
>evalf(%);
3、有限与无限的求和、求积
考察ቤተ መጻሕፍቲ ባይዱ限和 ,输入如下。
>Sum((1+i)/(1+i^4),i=1..10);
1、展开、分解、化 简表达式
Maple使用不同的方法让数学表达式跟便 于处理、使用。这种变通的特性允许我么进行诸如:多项式展开、因式分解、三角式 化简、用运算结果给变量赋值、恒等变换等操作。
展开、分解表达式
Maple可以展开诸如: 的多 项式。下面的命令创建并展开它。
·Maple中乘号为星号“*”,两项相乘时乘号不能省略。
· 对变量赋值时用赋值运算符“:=”,而不是通常的等号“;”。
· 除号为斜杠符号“/”a的输入格式为:a/(b+c)。
b+c
·乘方运算符为:“^”或“*’’,负指数必须包含在围括号中。
· 函数的参数必须用圆括号界定,数组或矩阵的下标用方括号界定。
图形插入plot,其中包括两维和三维图象的插入
电子表格插入spreadsheet
段落插入parigraph,其中包括光标前插入和光标后插入
数学输入对象(image)插入
插入超级连接hyperlink
4、其他操作窗口的功能和其他软件基本相同,这里就不做详细介绍了。
二、基本语法规则
MaPle的科学计算功能主要是以命令输入的方式来实现的。Map1e 的命令有自己的使用规则和语法。在使用Maple进行科学计算之前,首先要了解Map1ev命令使用的基本规则。下面给出了利用Maple进行科学计算时的—些基本语法规则
>convert(%,polar);
你也可以计算许多初等函数、特殊函数以及数学常数的数值。下例计算自然对数底 的40位 近似值。
>evalf(exp(1.0),40);
四、maple在代数运算方面的运用
Maple是 一种非常强大的代数运算工具。它可以用符号运算解析的解决和处理许多问题。变量 的定义与使用使得解决“如果……那么”类问题成为可能。
其他编辑操作包括分割或连接(splitorjoin)分为一个执行过程(快截键为f3、f4)和选定块(shift+f3、shift+f4)过程四个操作块
运行操作(Execute):运行选定或者当前的maple中的语句;
删除运行结果操作(Removeoutput):将选定或者当前的maple中运行结果从工作爷中删除或者不显示;
相关文档
最新文档