最新《高中数学课程标准导读》复习思考题答案优秀名师资料
高中数学《新课程标准》考试试题及答案(三)
高中数学《新课程标准》考试试题及答案(三)一、选择题(20个题,每题1.5分,共30分)1.高中数学课程的基础性是指(B)A. 只有必修课程是基础B.必修和选修课程是所有高中生的基础C.高中数学课程为全体高中学生提供必要的数学基础,高中数学课程为不同学生提供不同的基础D.必修课程是基础,选修课程不是基础2.培养学生的学习习惯对今后发展至关重要,下面说法中不正确的是( A )A.自学成才,无需培养B. 培养学生会提问题、勤于思考的习惯C.培养学生用图形描述、刻画和解决问题的习惯D.培养学生及时反思和总结的习惯3.对于函数的教学以下说法不正确的是( C )A.对函数的学习不能停留在抽象的讨论,要突出函数图形的地位B. 函数是最重要、最基本的数学模型,要加深对函数思想的理解与应用C.在学生头脑中留下几个具体的最基本的函数模型就可以了D. 结合具体的数学内容采用多种模式,让学生经历函数知识的形式与应用过程4.整体把握高中数学课程是理解高中数学课程的基点。
请根据培训内容说说看高中数学课程内容的主线可大致分为(A )A.函数思想、几何思想、算法思想、运算思想、随机思想与统计思想B. 数形结合思想、分类讨论思想、函数与方程思想、概率与统计思想C.函数与方程的思想、数形结合思想、向量和坐标思想D.函数思想、算法思想、数形结合思想、分类讨论思想5.高中课程改革追求基本的目标是由应试教育向素质教育的转轨,真正实施(C)A. 全民教育B.大众教育C. 素质教育D. 精英教育6.《普通高中数学课程标准》提出的新课程基本理念,下面各组选项中说法不正确的是(B)①构建共同基础,提供发展平台②提供针对课程,适应个性选择③倡导积极主动、勇于探索的学习方式④注重提高学生的数学思维能力⑤发展学生的数学思维能力⑥与时俱进地认识双基⑦强调本质,注意适度形式化⑧体现数学的文化价值;⑨注重信息技术与数学课程的整合;⑩建立合理、科学的评价体系;A.①③④⑦B.②④⑤⑧C.③⑤⑥⑨D.①⑤⑨⑩7.运算与推理的关系是( C )A.运算与推理无关B.运算与推理是不同的思维形式C.运算本身就是一种推理,推理是运算的一种D. 推理是运算8.任何新课程的研制,一般都要经过哪几个阶段进行( D )A.准备、研制、编写、推广B.研制、编写、实验、推广C.准备、研制、实验、推广D.准备、研制、编写、实验、推广9.从以下选项看,确定教学目标和教学要求的主要依据是( A )A. 课程标准B. 教科书C. 考试大纲D.教辅资料10.与社会、科技的进步紧密相连,体现时代精神的课程时代性的选择是指( B)A.课程安排B. 课程内容C.课程管理D. 课程评价二、填空题(15个题)1.算法是一个全新的课题,已经成为计算机科学的重要基础,它在科学技术和社会发展中起着越来起重要的作用。
高中数学《新课程标准》考试试题及答案(一)
高中数学《新课程标准》考试试题及答案(一)一、选择题(共10题)1.高中数学课程在情感、态度、价值观方面的要求下面说法不正确的是(D )A.提高学习数学的兴趣,树立学好数学的信心B.形成锲而不舍的钻研精神和科学态度C.开阔数学视野,体会数学的文化价值D.只需崇尚科学的理性精神2.《高中数学课程标准》在课程目标中提出的基本能力是(B )A.自主探究、数据处理、推理论证、熟练解题、空间想象B.运算求解、数据处理、推理论证、空间想象、抽象概括C.自主探究、推理论证、空间想象、合作交流、动手实践D.运算求解、熟练解题、数学建模、空间想象、抽象概括3.高中数学新课程习题设计需要( C)A.无需关注习题类型的多样性,只需关注习题功能的多样性B.只需关注习题类型的多样性,无需关注习题功能的多样性C.既要关注习题类型的多样性,也要关注习题功能的多样性D.无需关注习题类型的多样性,也无需关注习题功能的多样性4.下面关于高中数学课程结构的说法正确的是( D)A.高中数学课程中的必修课程和选修课程的各模块没有先后顺序的必要B.高中数学课程包括4个系列的课程C.高中数学课程的必修学分为16学分D.高中数学课程可分为必修与选修两类5.在教学中激发学生的学习积极性方法说法正确的是(B )A.让学生大量做题,挑战难题B.创设问题情境,让学生有兴趣、有挑战C.让学生合作交流讨论、动手操作、有机会板演讲解D.通过数学应用的教学使学生了解数学在现实生活中的作用和意义6.要实现数学课程改革的目标,关键是依靠( A)A.学生B.教师C.社会D.政府领导7.在新课程中教师的教学行为将发生变化中正确的是( A)A.在对待自我上,新课程强调反思B.在对待师生关系上,新课程强调权威、批评C.在对待教学关系上,新课程强调教导、答疑D.在对待与其他教育者的关系上,新课程强调独立自主精神8.在新课程改革中,受新的理念指导,教师在课堂中的地位、角色发生了较大的变化,这种变化主要体现在多方面,下面说法中不正确的选项是(A )①教师是数学知识的象征、代表;②教师是数学探究与创新的先锋③教师是数学活动的设计者;④教师是数学活动的组织者;⑤教师是学生活动的主体者;⑥教师是学生思维活动的调控者;⑦教师是学生学习动力的激励者;⑧教师是学生学习与选择的导师。
普通高中新数学课程标准题库(含答案)
普通高中新数学课程标准题库(含答案)普通高中新数学课程标准题库(含答案)1. 课程标准题库的目的和意义普通高中新数学课程标准题库的建设是为了帮助教师和学生更好地理解和掌握新数学课程标准中的知识和能力要求。
通过提供一系列符合课程标准的题目和答案,可以帮助学生进行针对性的练习和复习,提高数学学科的学习效果。
2. 题库的组成和结构普通高中新数学课程标准题库主要包括选择题、填空题、计算题和证明题等多种题型。
每个题型都根据课程标准中的知识点和能力要求设计,涵盖全面而有针对性。
题库的结构按照课程标准的章节和知识点进行划分,每个章节下包含若干相关的题目。
每个题目都标注了难度级别,以帮助学生有针对性地选择适合自己的练习题目。
同时,每个题目都有详细的答案和解析,方便学生进行自我评估和纠正。
3. 使用题库的建议- 学生可以根据自己的学习进度和需求选择相应章节和题目进行练习。
建议从易到难地进行练习,逐渐提升自己的解题能力和思维能力。
- 在做题过程中,可以参考题目的答案和解析,了解解题思路和方法。
如果遇到困难或疑惑,可以向老师或同学寻求帮助。
- 做完一套题后,可以进行自我评估,查漏补缺。
对于有错误的题目,可以重新理解和解答,直到完全掌握。
- 建议学生定期使用题库进行练习,巩固和提高数学知识和技能。
4. 题库的更新和维护为了保持题库的时效性和准确性,建议定期对题库进行更新和维护。
根据教育部发布的最新数学课程标准,对题库中的题目进行修订和调整,删除过时的内容,增加新的知识点。
同时,鼓励教师和学生积极参与题库的建设和完善,提供有针对性的题目和解析,共同促进数学教育的发展。
结论普通高中新数学课程标准题库的建设对于提高学生的数学学习效果和能力水平具有重要意义。
通过合理使用题库,学生可以有针对性地进行练习和复习,提高解题能力和思维能力。
同时,题库的更新和维护也需要教师和学生的共同努力,为数学教育的发展做出贡献。
参考资料:- 教育部. (年份). 《普通高级中学数学课程标准》. 中国教育出版社.。
(0773)《高中数学课程标准导读》网上作业题及答案
(0773)《高中数学课程标准导读》网上作业题及答案[0773]《高中数学课程标准导读》第1次[论述题]0773高中数学课程标准导读第1次作业1(简述数学在现代社会发展中的地位和作用。
2(试述教育部对于新课程建设的要求以及新课程建设的主要目标。
3(试述基础教育课程改革的具体目标是什么。
4(试述高中数学新课程的框架和内容结构的特点。
5(对第3讲3.1节中两个有关函数概念教学的案例进行对比分析,通过分析说明自己对于《高中数学课程标准》有关教学理念的理解。
参考答案:第1次作业答案第2次[论述题]0773高中数学课程标准导读第2次作业6(选择高中数学课程中的某一具体内容,以此内容完成一项探究性教学设计,并对你的教学设计进行简单的点评分析。
7(以实际的教学案例分析说明高中数学新课程的教学观。
8(你能否发现欧拉多面体定理是三角形内角和定理的自然推广,详细说明这样的推广方法,并由此了解初等数学与高等数学之间并不存在绝对的界限。
9(问:三角形边长定理与勾股定理有什么关系,从这样的关系中你了解到数学知识之间存在怎样的密切关系,10(从若干方面论述教师知识结构对于高中数学课程标准的适应性问题。
参考答案:第2次作业答案第3次[论述题]0773高中数学课程标准导读第3次作业- 1 -11(用教学实例说明直观几何在中学几何课程中的地位和作用。
12(你能否理解代数中的模式直观,以实例说明。
13(试述数学文化的含义。
14(下面列举5个长期困扰中小学学生和教师的数学问题,请选择其中1-2个加以分析研究,讨论如何在数学课程中更加恰当地解决此类问题,以教师教学中的探究引导学生进行数学问题的探究与思考。
1)为什么1.2+1.3=2.5而1/2+1/3?2/5 ?2)为什么"负负得正”,3)为什么0.999……<1不正确,4)算术运算中为什么"先做乘除而后做加减”,5)虚数单位i=?-1还是i=??-1,15(试列举两位在近代数学发展过程中发挥重要作用的数学家,并简述他们对人类数学发展的主要贡献。
普通高中新数学课程标准题库(含答案)
普通高中新数学课程标准题库(含答案)
普通高中新数学课程标准题库(含答案)
为了更好地适应新时代我国教育改革的发展,提高普通高中数
学教育的质量,我们依据《普通高中数学课程标准(2017年版)》的要求,编写了这份题库。
题库内容涵盖了高中数学的主要知识点,旨在帮助学生巩固课堂所学,提高解决问题的能力。
一、选择题
1. 下列选项中,既是奇函数,又是单调递增函数的是:
A. y = x^3
B. y = x^2
C. y = |x|
D. y = 2x
答案:A
二、填空题
2. 若矩阵 A 的行列式值为 3,则 A 的逆矩阵的元素 a_{ij} 等于______。
答案:3/a_{ji}
三、解答题
3. 已知函数 f(x) = x^2 - 4x + 3,求 f(x) 的最大值和最小值。
答案:
(1)将 f(x) 写成顶点式:f(x) = (x - 2)^2 - 1
(2)当 x = 2 时,f(x) 取得最小值 -1
(3)函数 f(x) 为开口向上的抛物线,无最大值
四、应用题
4. 一辆汽车从 A 地出发,以 60 km/h 的速度向 B 地行驶,行驶3 小时后,离 A 地还有 120 km。
求 A、B 两地之间的距离。
答案:240 km
解题过程:
(1)设 A、B 两地之间的距离为 x km
(2)根据题意,汽车行驶 3 小时后的路程为 3 × 60 = 180 km (3)所以,x - 180 = 120
(4)解得 x = 240
这份题库仅供参考,如有任何疑问,请随时与我们联系。
祝您学习进步!。
普通高级中学新数学课程标准试题(含答案)
普通高级中学新数学课程标准试题(含答案)第一部分:选择题1. 以下哪个是二次方程的解?A. x = 2B. x = -3C. x = 1D. x = 0答案:B2. 一条直线的斜率是2,过点(3, 4),则直线方程为:A. y = 2x - 6B. y = 2x + 2C. y = 4x + 1D. y = 2x + 4答案:D3. 若a = 3,b = 4,c = 5,则直角三角形的斜边长度为:A. 6B. 8C. 10D. 12答案:C4. 已知函数f(x) = x^2 + 3x + 2,求f(1)的值。
A. 2B. 4C. 6D. 8答案:65. 一辆汽车以每小时60公里的速度行驶,2小时后行驶的距离为:A. 30公里B. 60公里C. 90公里D. 120公里答案:120公里第二部分:填空题1. 一个等差数列的公差是3,首项是4,第5项是__。
答案:162. 一个等比数列的公比是2,首项是3,第4项是__。
答案:243. 设两个数的和是8,差是2,则这两个数分别为__和__。
答案:5和34. 已知直角三角形的直角边长分别为3和4,则斜边长为__。
答案:55. 若a = 3,b = 4,则a^2 + b^2 = __。
答案:25第三部分:解答题1. 解方程:2x + 5 = 15解答:2x + 5 = 152x = 15 - 52x = 10x = 10 / 2x = 52. 计算下列算式的值:(3 + 4) × 2 - 5解答:(3 + 4) × 2 - 57 × 2 - 514 - 593. 求直角三角形的斜边长。
已知直角边长分别为6和8。
解答:斜边长= √(6^2 + 8^2)斜边长= √(36 + 64)斜边长= √100斜边长 = 104. 若函数f(x) = 2x + 3,求f(4)的值。
解答:f(x) = 2x + 3f(4) = 2(4) + 3f(4) = 8 + 3f(4) = 115. 求一个等差数列的第10项,已知公差为3,首项为2。
高中数学新课标题解析
高中数学新课标题解析高中数学作为一门基础学科,对于培养学生的逻辑思维、抽象思维和解决问题的能力具有重要作用。
随着教育改革的不断深入,高中数学课程也在不断更新和完善。
新课标题的解析能够帮助学生和教师更好地理解课程内容,明确学习目标,从而提高教学和学习效率。
1. 函数与方程函数是高中数学的核心概念之一,它描述了两个变量之间的依赖关系。
本部分内容主要探讨函数的定义、性质、图像以及函数与方程之间的关系。
通过学习,学生能够理解函数的基本概念,掌握函数图像的绘制方法,并能够解决与函数相关的实际问题。
2. 几何与空间几何学是研究形状、大小和相对位置的学科。
在高中数学中,几何部分包括平面几何和立体几何。
学生将学习直线、圆、多边形等平面图形的性质,以及立体图形如多面体和旋转体的结构。
此外,空间几何学还将引入向量的概念,帮助学生在三维空间中进行更精确的测量和计算。
3. 概率与统计概率与统计是数学中与现实生活联系非常紧密的领域。
本部分内容将教授学生如何使用数学工具来描述和分析数据,包括数据的收集、整理、描述和推断。
学生将学习概率的基本概念,如随机事件、概率分布和期望值,以及统计分析的基本方法,如描述统计和推断统计。
4. 数列与级数数列与级数是数学中研究序列和无穷求和的重要分支。
在高中数学中,学生将学习数列的概念、性质以及数列的求和方法。
此外,还将探讨级数的概念,包括几何级数、等比级数和调和级数等,以及它们的收敛性和求和技巧。
5. 微积分初步微积分是研究变化率和积累量的数学工具。
在高中数学中,微积分初步部分将介绍导数和积分的基本概念。
学生将学习如何计算函数的导数,理解导数在物理和工程中的应用,如速度和加速度的计算。
同时,学生还将学习如何进行积分运算,掌握定积分和不定积分的计算方法。
6. 线性代数基础线性代数是研究向量空间和线性方程组的学科。
在高中数学中,线性代数基础部分将介绍矩阵的概念、性质以及矩阵的运算。
学生将学习如何使用矩阵来表示和解决线性方程组,以及如何进行矩阵的乘法、逆运算和特征值分析。
高中数学新课标测试题答案
高中数学新课标测试题答案1. 选择题(1)若函数f(x)=2x^2-4x+3,求其顶点坐标。
答案:顶点坐标为(1, 1)。
(2)已知等差数列{an}的首项a1=3,公差d=2,求其前10项的和。
答案:前10项的和为165。
(3)若直线y=3x+4与x轴相交于点A,与y轴相交于点B,求线段AB的长度。
答案:线段AB的长度为5。
2. 填空题(1)若二次函数f(x)=ax^2+bx+c的图像开口向上,且经过点(1, 0)和(-1, 0),则a的取值范围为____。
答案:a > 0。
(2)在三角形ABC中,若角A=60°,边长a=3,边长b=4,则边长c的长度为____。
答案:c = √7。
(3)若复数z满足|z-2i|=2,则z在复平面上对应的点到点(0, 2)的距离为____。
答案:2。
3. 解答题(1)证明:若a, b, c为正整数,且a^2+b^2=c^2,则a, b, c构成直角三角形的三边。
证明:由勾股定理可知,若a^2+b^2=c^2,则a, b, c构成直角三角形的三边。
(2)已知函数f(x)=x^3-3x^2+2,求其在区间[1, 3]上的最大值和最小值。
解答:首先求导数f'(x)=3x^2-6x,令f'(x)=0,解得x=0或x=2。
在区间[1, 3]上,f'(x)在x=2处由正变负,因此x=2为极值点。
计算f(1)=0,f(2)=-2,f(3)=6,可知最大值为6,最小值为-2。
(3)设集合A={1, 2, 3},集合B={2, 3, 4},求A∩B。
解答:A∩B={2, 3}。
请注意,以上内容为示例答案,实际测试题的答案可能会有所不同。
在实际考试或练习中,应根据具体题目要求进行解答。
高中数学新课程标准的标准测试题目(附解答)
高中数学新课程标准的标准测试题目(附解答)一、选择题1. 下列选项中,哪一个不是高中数学新课程标准中所要求的基本技能?A. 熟练掌握各种数学运算B. 能够运用数学知识解决实际问题C. 精通编程语言D. 具备良好的逻辑思维能力{答案:C}2. 在高中数学新课程标准中,哪个领域的内容是最重要的?A. 几何B. 代数C. 概率与统计D. 函数{答案:D}二、填空题3. 高中数学新课程标准中,数学学科的核心素养包括______、______、______和______。
{答案:逻辑推理、数学建模、数据分析、数学运算}4. 在高中数学新课程标准中,______是一个重要的数学概念,它表示两个变量之间的依赖关系。
{答案:函数}三、简答题5. 请简述高中数学新课程标准中的基本理念。
{答案:高中数学新课程标准的基本理念包括:培养学生的数学核心素养,提高学生的数学思维能力;强调数学知识的应用,解决实际问题;注重学生的个性化研究,发挥学生的主动性;强调数学知识的整体性,促进学生的全面发展。
}6. 请解释什么是数学建模。
{答案:数学建模是指利用数学知识和方法对现实世界中的问题进行简化、抽象和描述,建立数学模型,并通过数学模型的求解来分析和解决实际问题的过程。
}四、计算题7. 解方程:2x - 5 = 3{答案:x = 4}8. 计算积分:∫(从0到π) sin(x)d x{答案:-cos(x)|_0^π = 2}五、应用题9. 小明的身高是1.75米,小华的身高是1.60米。
请问小明比小华高多少百分比?{答案:小明比小华高15.38%。
}10. 一家工厂生产的产品,其质量服从正态分布,平均质量为50kg,标准差为5kg。
请问该工厂生产的产品质量在45kg到55kg 之间的概率是多少?{答案:产品质量在45kg到55kg之间的概率为68.27%。
}以上就是高中数学新课程标准的标准测试题目及解答。
希望这份文档能帮助您更好地理解和掌握高中数学新课程标准。
新课标人教A版高中数学(必修一)课后习题解答全册答案完整版
人教A版高中数学必修1课后习题答案目录第一章集合与函数概念 (1)1.1集合 (1)【P5】1.1.1集合的含义与表示【练习】 (1)【P7】1.1.2集合间的基本关系【练习】 (2)【P11】1.1.3集合的基本运算【练习】 (4)【P11】1.1集合【习题1.1 A组】 (5)【P12】1.1集合【习题1.1 B组】 (9)1.2函数及其表示 (10)【P19】1.2.1函数的概念【练习】 (10)【P23】1.2.2函数的表示法【练习】 (12)【P24】1.2函数及其表示【习题1.2 A组】 (13)【P25】1.2函数及其表示【习题1.2 B组】 (20)1.3函数的基本性质 (23)【P32】1.3.1单调性与最大(小)值【练习】 (23)I【P36】1.3.2单调性与最大(小)值【练习】 (26)【P44】复习参考题A组 (33)【P44】复习参考题B组 (37)第二章基本初等函数(I) (42)2.1 指数函数 (42)【P54】2.1.1指数与指数幂的运算练习 (42)【P58】2.1.2指数函数及其性质练习 (42)【P59】习题2.1 A组 (43)【P60】习题2.1 B组 (45)2.2 对数函数 (47)【P64】2.2.1对数与对数运算练习 (47)【P68】2.2.1对数的运算练习 (47)【P73】2.2.2对数函数及其性质练习 (48)【P74】习题2.2 A组 (48)【P74】习题2.2 B组 (50)2.3幂函数 (51)【P79】习题2.3 (51)II【P82】第二章复习参考题A组 (51)【P83】第二章复习参考题B组 (53)第三章函数的应用 (56)3.1函数与方程 (56)【P88】3.1.1方程的根与函数的零点练习 (56)【P91】3.1.2用二分法求方程的近似解练习 (58)【P92】习题3.1 A组 (59)【P93】习题3.1 B组 (61)3.2 函数模型及其应用 (63)【P98】3.2.1几类不同增长的函数模型练习 (63)【P101】3.2.1几类不同增长的函数模型练习 (64)【P104】3.2.2函数模型的应用实例练习 (64)【P106】3.2.2函数模型的应用实例练习 (65)【P107】习题3.2 A组 (65)【P107】习题3.2 B组 (66)【P112】第三章复习参考题A组 (66)【P113】第三章复习参考题B组 (68)IIIIV1第一章 集合与函数概念1.1集合【P5】1.1.1集合的含义与表示【练习】1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则中国_____A ,美国_____A ,印度____A ,英国____A ;(2)若2{|}A x x x ==,则1-_______A ;(3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 解答:1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===. (3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合;(2)由小于8的所有素数组成的集合;2(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(4)不等式453x -<的解集.解答:2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-;(2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩, 即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.【P7】1.1.2集合间的基本关系【练习】1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ;3取两个元素,得{,},{,},{,}a b a c b c ;取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=.2.(1){,,}a a b c ∈a 是集合{,,}abc 中的一个元素; (2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅;(4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;4(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈.3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以A B ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.【P11】1.1.3集合的基本运算【练习】1.设{3,5,6,8},{4,5,7,8}A B ==,求,AB A B . 1.解:{3,5,6,8}{4,5,7,8}{5,8}AB ==, {3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}A B ==.2.设22{|450},{|1}A x x x B x x =--===,求,A B A B . 2.解:方程2450x x --=的两根为121,5x x =-=,方程210x -=的两根为121,1x x =-=,得{1,5},{1,1}A B =-=-,即{1},{1,1,5}A B A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,AB A B . 3.解:{|}AB x x =是等腰直角三角形, {|}AB x x =是等腰三角形或直角三角形.54.已知全集U={1,2,3,4,5,6,7}, A={2,4,5}, B={1,3,5,7},求)(B C A U ,)()(B C A C U U . 4.解:显然,{1,3,6,7}=A C U ,}6,4,2{=B C U 则,}4,2{)(=B C A U ,}6{)()(=B C A C UU 【P11】1.1集合【习题1.1 A 组】1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ; (4R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数; (3)Q π∉ π是个无理数,不是有理数; (4R(5Z3=是个整数; (6)2N ∈25=是个自然数. 2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空:(1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-;3.用列举法表示下列给定的集合:(1)大于1且小于6的整数;(2){|(1)(2)0}A x x x =-+=;(3){|3213}B x Z x =∈-<-≤.6 3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求;(3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求.4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥. 5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ;(2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ;7(3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形.5.(1)4B -∉; 3A -∉; {2}B ; B A ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥;(2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-;(3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,A B A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥,则{|2}A B x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B , A C ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数,8则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}BC =,{3}B C =, 则(){1,2,3,4,5,6}A B C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C .8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项,即为()AB C =∅. (1){|}A B x x =是参加一百米跑或参加二百米跑的同学;(2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形{|}B x x =是菱形 {|}C x x =是矩形,求B C ,B C A 、A C s9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形,即B C A ={x |x 是领边不相等的平行四边形},A C s ={x |x 是梯形}。
高中数学新课标测试题及答案精选全文
可编辑修改精选全文完整版新课程标准考试数学试题一、填空题(本大题共10道小题,每小题3分,共30分)1、数学是研究(空间形式和数量关系)的科学,是刻画自然规律和社会规律的科学语言和有效工具。
2、数学教育要使学生掌握数学的基本知识、(基本技能)、基本思想。
3、高中数学课程应具有多样性和(选择性),使不同的学生在数学上得到不同的发展。
4、高中数学课程应注重提高学生的数学(思维)能力。
5、高中数学选修2-2的内容包括:导数及其应用、(推理与证明)、数系的扩充与复数的引入。
6、高中数学课程要求把数学探究、(数学建模)的思想以不同的形式渗透在各个模块和专题内容之中。
7、选修课程系列1是为希望在(人文、社会科学)等方面发展的学生设置的,系列2是为希望在理工、经济等方面发展的学生设置的。
8、新课程标准的目标要求包括三个方面:知识与技能,过程与方法,(情感、态度、价值观)。
9、向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与(三角函数)的一种工具。
10、数学探究即数学(探究性课题)学习,是指学生围绕某个数学问题,自主探究、学习的过程。
二、判断题(本大题共5道小题,每小题2分,共10分)1、高中数学课程每个模块1学分,每个专题2学分。
(错,改:高中数学课程每个模块2学分,每个专题1学分。
)2、函数关系和相关关系都是确定性关系。
(错,改:函数关系是一种确定性关系,而相关关系是一种非确定性关系。
)3、统计是研究如何合理收集、整理、分析数据的学科,它可以为人们制定决策提供依据。
(对)4、数学是人类文化的重要组成部分,为此,高中数学课程提倡体现数学的文化价值。
(对)5、教师应成为学生进行数学探究的领导者。
(错,改:教师应成为学生进行数学探究的组织者、指导者和合作者。
)三、简答题(本大题共4道小题,每小题7分,共28分)1、高中数学课程的总目标是什么?答:使学生在九年制义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。
新课标高中数学必修一全册导学案及答案
新课标高中数学必修一全册导学案及答案【导学案】导学目标:1. 了解高中数学必修一全册的内容安排和学习要求;2. 掌握每个单元的重点概念和基本知识;3. 学会自主学习的方法和技巧;4. 提高数学学习的效果和成绩。
导学步骤:一、概述随着教育改革的不断深化,我国高中数学教学也在不断调整和完善。
新课程标准下的高中数学必修一全册是高中数学学科的基础课程,培养学生扎实的数学基础和数学思维能力,为后续学习打下坚实的基础。
二、内容安排新课标高中数学必修一全册主要分为六个单元,分别是:1. 函数与导数2. 二次函数与图形3. 平面向量4. 概率与统计5. 三角函数6. 数列与数学归纳法三、学习要求在学习和掌握高中数学必修一全册的过程中,要注意以下几点:1. 注重基本概念的理解和掌握,建立起系统的数学知识体系;2. 理解数学概念和方法的本质,注重数学思想的培养;3. 做好充分的练习,提高解题能力和应用能力;4. 灵活运用各种工具和技巧,培养自主学习的能力。
四、学习方法与技巧1. 预习:在上课前预习新内容,了解基本概念和知识点;2. 讲解:全面准确理解老师的讲解和授课内容;3. 练习:做大量的练习题,加深对知识点的理解和记忆;4. 总结:及时总结归纳,掌握解题方法和技巧;5. 提问:有问题及时向老师请教或与同学讨论。
五、经典题解析下面是每个单元中的一个经典题目的解析,供参考:单元一:函数与导数题目:已知函数f(x) = x^3 - 3x^2 + 2x + 1,求f(x)的导函数。
解析:首先,我们知道函数f(x)的导函数是函数f'(x),表示函数f(x)在任意一点的斜率。
对于多项式函数来说,我们可以直接应用定理求导的方法。
根据定理,对于任意的幂函数x^n,其导函数是nx^(n-1)。
应用此定理,我们可以得到f(x)的导函数为f'(x) = 3x^2 - 6x + 2。
六、答案归纳在学习过程中,我们要时刻关注自己的学习效果和学习成果。
2019年西南大学春季[0773]《高中数学课程标准导读》辅导答案
1、
中学数学课程要把数学的学术形态转化为易于学生接受的:
1.教育形态
2.理论形态
2、
中学数学课程要讲逻辑推理,更要讲:
1.公理
2.道理
3、
现代数学发展表明,数学全面形式化是:
1.完全可能的
2.不可能的
4、
高中数学要强调对数学的本质的认识,否则会将什么淹没在形式化海洋里:
1.数学思维活动
2.解题训练活动
5、
数学教学中,学习形式化的表达是一项什么要求:
1.过高
2.基本
6、strong>哪种正多边形可以尺规作图?
1.正五边形
2.正十七边形
7、strong>《自然哲学的数学原理》是哪位数学家的著作?
1.牛顿
2.莱布尼兹
8、strong>等边三角形的几何对称群共包含多少元素?
1. 3
2. 6
9、strong>根据欧拉圆函数公式,根号-1开根号-1次方是一个什么数?
1.实数
2.虚数
10、strong>欧几里德《几何原本》包含多少个几何定理?
1. 265
2. 465
11、普通高中数学课程标准(实验版)中,选修课程包含几个系列()
1. 2
2. 4
12、普通高中数学课程标准(实验版)中,把高中数学课程分必修和选修。
必修课由几个模块组成()
1. 4
2. 5
13、
形式化是数学的基本特征之一,高中数学课程对形式推理的要求是:
1.建立严格的形式体系
2.适度形式化
3.以公理化形式呈现
14、
(4)为了培养学生的应用意识,高中数学课程设置了什么教学内容:。
最新人教版高一数学必修一各章知识点总结+测试题组全套(含答案)优秀名师资料
人教版高一数学必修一各章知识点总结+测试题组全套(含答案)高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性如:世界上最高的山(2) 元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3) 元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{ … } 如:{我校的篮球队员}~{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。
, 注意:常用数集及其记法:非负整数集,即自然数集, 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1, 列举法:{a,b,c……}2, 描述法:将集合中的元素的公共属性描述出来~写在大括号内表示集合的方法。
{xR| x-3>2} ,{x| x-3>2}3, 语言描述法:例:{不是直角三角形的三角形}4, Venn图:4、集合的分类:(1) 有限集含有有限个元素的集合(2) 无限集含有无限个元素的集合 2(3) 空集不含任何元素的集合例:{x|x=,5,二、集合间的基本关系1.‚包含?关系—子集注意:有两种可能,1,A是B的一部分~,,2,A与B是同A,B一集合。
,,反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或,,BA2(‚相等?关系:A=B (5?5~且5?5~则5=5) 2实例:设 A={x|x-1=0} B={-1,1} ‚元素相同则两集合相等? 即:? 任何一个集合是它本身的子集。
AA?真子集:如果AB,且A B那就说集合A是集合B的真子集~记作AB(或BA)?如果 AB, BC ,那么 AC? 如果AB 同时 BA 那么A=B3. 不含任何元素的集合叫做空集~记为Φ规定: 空集是任何集合的子集~空集是任何非空集合的真子集。
新课标高中数学题及答案
新课标高中数学题及答案新课标高中数学题目:1. 已知函数f(x) = 2x^2 - 4x + 3,求函数的顶点坐标。
答案:首先找到函数的对称轴,对称轴的x坐标为x = -b/2a =2/(2*2) = 1/2。
将x = 1/2代入函数得到顶点的y坐标:f(1/2) =2(1/2)^2 - 4(1/2) + 3 = 3/2。
所以顶点坐标为(1/2, 3/2)。
2. 已知数列{an}满足a1 = 1,an+1 = 2an + 1,求数列的前5项。
答案:根据递推关系,我们可以得到数列的前5项如下:a1 = 1a2 = 2a1 + 1 = 2*1 + 1 = 3a3 = 2a2 + 1 = 2*3 + 1 = 7a4 = 2a3 + 1 = 2*7 + 1 = 15a5 = 2a4 + 1 = 2*15 + 1 = 31所以数列的前5项为1, 3, 7, 15, 31。
3. 已知圆的方程为(x - 2)^2 + (y + 3)^2 = 16,求圆心坐标和半径。
答案:圆的标准方程为(x - h)^2 + (y - k)^2 = r^2,其中(h, k)是圆心坐标,r是半径。
对比给定的方程,我们可以得到圆心坐标为(2, -3),半径为4。
4. 已知三角形ABC的三个顶点坐标分别为A(1, 2),B(4, 6),C(7, 10),求三角形ABC的面积。
答案:首先计算向量AB和向量AC:向量AB = (4 - 1, 6 - 2) = (3, 4)向量AC = (7 - 1, 10 - 2) = (6, 8)使用向量叉乘公式计算三角形面积:面积 = (1/2) * |AB x AC| = (1/2) * |3*8 - 4*6| = (1/2) * |24- 24| = 0由于计算结果为0,说明三角形ABC的面积为0,这是不可能的。
因此,题目中给出的三个点可能不构成一个三角形。
5. 已知函数f(x) = x^3 - 3x^2 + 4,求函数的极值点。
高中数学新课标题解析大全
高中数学新课标题解析大全高中数学新课程标准在不断更新与完善中,旨在培养学生的数学素养,提高解决实际问题的能力。
本文将对高中数学新课标题进行解析,帮助学生和教师更好地理解和掌握课程内容。
1. 函数与方程函数是数学中的核心概念之一,它描述了两个变量之间的依赖关系。
在高中数学中,函数与方程的学习包括函数的定义、性质、图像,以及方程的求解。
重点在于理解函数的单调性、奇偶性、周期性等性质,以及如何通过图像来直观地理解函数的行为。
2. 数列与极限数列是一系列按照一定规律排列的数,而极限则是研究数列或函数趋向于某个值的性质。
在高中数学中,数列与极限的学习包括等差数列、等比数列、数列的求和问题,以及极限的概念和计算。
这部分内容要求学生能够运用极限思想解决实际问题,如无穷小量的比较和极限的运算。
3. 空间几何空间几何是研究三维空间中图形的性质和关系的数学分支。
在高中数学中,空间几何的学习包括平面、直线、多面体、旋转体等几何体的性质和计算。
重点在于培养学生的空间想象能力和解决几何问题的能力。
4. 解析几何解析几何通过坐标系将几何问题转化为代数问题,使得几何图形的性质可以通过代数方程来描述和研究。
在高中数学中,解析几何的学习包括直线、圆、椭圆、双曲线、抛物线等曲线的方程和性质。
这部分内容要求学生能够熟练运用代数方法解决几何问题。
5. 概率与统计概率与统计是研究随机现象的数学工具。
在高中数学中,概率与统计的学习包括随机事件的概率计算、统计数据的收集和处理、概率分布和统计推断。
这部分内容旨在培养学生的数据分析能力和解决实际问题的能力。
6. 微积分微积分是研究函数的微分和积分的数学分支,它在物理学、工程学等领域有着广泛的应用。
在高中数学中,微积分的学习包括导数的概念、导数的运算、定积分和不定积分、微分方程等。
这部分内容要求学生能够运用微积分方法解决实际问题,如物理运动的描述和优化问题。
7. 线性代数线性代数是研究向量空间和线性变换的数学分支。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高中数学课程标准导读》复习思考题答案(0773)《高中数学课程标准导读》复习思考题答案1(简述数学在现代社会发展中的地位和作用。
?纵观近代科学技术的发展,可以看到数学科学是使科学技术取得重大进展的一个重要因素,同时它提出了大量的富有创造性并卓有成效的思想。
本世纪的数学成就,可以归入数学史上最深刻的成就之列,它们已经成为我们这个工业技术时代发展的基础。
数学科学的这些发展,已经超出了它们许多实际应用的范围,而可载入人类伟大的智力成就的史册。
?数学科学是集严密性、逻辑性、精确性和创造力与想象力于一身的一门科学。
这个领域已被称作模式的科学。
其目的是要揭示人们从自然界和数学本身的抽象世界中所观察到的结构和对称性。
无论是探讨心脏中的血液流动这种实际的问题还是由于探讨数论中各种形态的抽象问题的推动,数学科学家都力图寻找各种模型来描述它们,把它们联系起来,并从它们作出各种推断。
部分地说,数学探讨的目的是追求简单性,力求从各种模型提炼出它们的本质。
2(试述教育部对于新课程建设的要求以及新课程建设的主要目标。
根据教育部副部长王湛《建立具有中国特色的基础教育体系》的报告,新课改立足与解决以下主要问题:1)明确区分义务教育与非义务教育,建立合理的课程结构,更新课程内容。
义务教育面向每一个学生,课程标准应是绝大多数学生都能够达到的教学目标。
课程内容应是基础性的,不应被任意扩大、拔高。
2)突出学生的发展,科学制定课程标准。
传统的教学大纲以学科的内容体系来表述课程的知识点和教学要求。
课程标准不但对于知识内容、技能和能力有具体要求,而且对于学生学习课程的情感态度、价值观、教学的过程方法等方面也都有明确要求。
3)加强学生思想品德教育的针对性和实效性。
课程中渗透德育,培养学生的爱国主义精神、对科学热爱和不断追求的精神。
4)以创新精神和实践能力的培养为重点,建立新的教学方式,促进新的学习方式的变革。
新课程强调教学过程中师生互动,正确处理知识传授与能力培养的关系。
注重培养学生自主性和独立性,引导学生质疑、调查、探究,采用自主1生动的学习方式。
5)建立促进学生发展、教师提高的课程评价体系。
评价功能从注重甄别与选拔转向激励、反馈与调整;评价内容从过分注重学业成绩转向注重多方面发展的潜能;评价主体从单一转向多元;评价角度从终结性转向过程性、发展性,更加关注学生的个别差异;探求新的评价方式,使得这些方式更具有可操作性、方法简明易行,第一线教师容易便于使用。
6)建立国家、地方、学校三级课程管理模式,提高课程的适应性,满足不同的地方、学校和学生的需要。
继续完善基础教育由地方负责、分级管理的体制。
3(试述基础教育课程改革的具体目标是什么。
根据教育部《国家基础教育课程改革指导纲要》基础教育课程改革的具体目标:改变课程过于注重知识传授的倾向,强调形成积极主动的学习态度,使获得基础知识与基本技能的过程同时成为学会学习和形成正确价值观的过程。
改变课程结构过于强调学科本位、科目过多和缺乏整合的现状,整体设置九年一贯的课程门类和课时比例,并设置综合课程,以适应不同地区和学生发展的需求,体现课程结构的均衡性、综合性和选择性。
改变课程内容“繁、难、偏、旧”和过于注重书本知识的现状,加强课程内容与学生生活以及现代社会和科技发展的联系,关注学生的学习兴趣和经验,精选终身学习必备的基础知识和技能。
改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力。
改变课程评价过分强调甄别与选拔的功能,发挥评价促进学生发展、教师提高和改进教学实践的功能。
改变课程管理过于集中的状况,实行国家、地方、学校三级课程管理,增强课程对地方、学校及学生的适应性。
4(试述高中数学新课程的框架和内容结构的特点。
?与以往的高中数学课程相比,新课标之下的数学课程突出课程内容的基础性与选择性。
《高中数学课程标准》要求,高中教育属于基础教育。
高中数学课2程应具有基础性,它包括两个方面的含义:第一,在义务教育阶段之后,为学生适应现代生活和未来发展提供更高水平的数学基础,使他们获得更高的数学素养;第二,为学生进一步学习提供必要的数学准备。
高中数学课程由必修系列课程和选修系列课程组成,必修系列课程是为了满足所有学生的共同数学需求;选修系列课程是为了满足学生的不同数学需求,它仍然是学生发展所需要的基础性数学课程。
高中数学课程应具有多样性与选择性,使不同的学生在数学上得到不同的发展。
高中数学课程应为学生提供选择和发展的空间,为学生提供多层次、多种类的选择,以促使学生的个性发展和对未来人生规划的思考。
学生可以在教师的指导下进行自主选择,必要时还可以进行适当的转换、调整。
同时,高中数学课程也应给学校和教师留有一定的选择空间,他们可以根据学生的基本需求和自身条件,制订课程发展计划,不断地丰富和完善供学生选择的课程。
?高中数学课程分必修课与选修课。
必修课程由5个模块组成。
选修课程分4个系列:系列1、2是必选课。
其中系列1是为那些希望在人文、社会科学等方面发展的学生设立的;系列2是为那些希望在理工、经济等方面发展的学生设立的。
系列3、4是任选课,是为对于数学兴趣高并希望进一步学习更多数学知识的学生而设立的,内容反映的某一方面重要的数学思想,有助于学生进一步打好数学基础、提高数学素养、提高应用意识,有利于扩展数学视野,更多地了解数学的价值。
?设置了数学探究、数学建摸、数学文化的内容。
此类内容不设专门章节,而是渗透到各章节、各模块内容中。
但是建议在高中阶段至少要安排学生进行一次比较完整的数学探究活动、一次数学建摸活动。
“数学文化”是一个抽象的概念,它通过具体的数学内容教学、通过解决数学问题的方法、途径,使学生在更加深入地理解数学本质的基础上逐渐地产生某些普遍性的数学观念、形成一种可以指导更广泛范围内的思想模式与行为规范。
这部分内容的教学,对于教师有更高的要求。
5(对下面两个有关函数概念教学的案例进行对比分析,通过分析说明自己对于《高中数学课程标准》有关教学理念的理解。
32案例1 1.已知f(x)=(m-1)x+[1-lg(m)]x+1是偶函数,求f(10)、f(-3.1)、2f(2)的大小顺序。
2(已知f(x)=ax+bx+c(a<0)对任意x都有f(2-x)= f(2+x), 22求解不等式f[lg (x+x+1/2)]<f[lg(2x-x+5/8)]。
(摘自一本高中数学竞赛辅导书《金牌之路》,2000年出版。
)案例2 一个圆台形物体的上底面积是下底面积的1/4,如果该物体放置在桌面上,下底面与桌面接触,则物体对桌面的压强是200帕。
若把物体翻转过来,上底面朝下与桌面接触,问物体对桌面的压强是多少,(案例2选自人教版2002年“九年义务制教育三年制初中教科书”《代数》第三册)图4 圆台形物体案例1分析: 案例1是典型的应试教育的成果,将简单的函数作反复的迭加、复合,制造人为的困难和障碍。
80年以来,数学课程在应试教育的社会氛围之下又增加了大量的偏、难、怪、异的训练内容和练习题。
这样的题形不符合新课标的目标要求。
案例2分析我们认为实例B作为函数概念教学的内容,这是一个构思很好的实例,它好在以下三个方面:1)函数概念存在于问题背景之中题目条件中没有明显地给出函数关系,但是要求学生首先判断所要求的变量“桌面压强y”应是“接触面积x”的函数。
2)体积—质量—压强;代数—几何—物理强调了不同学科知识的联系,这些联系是让学生在“做数学”的过程中所亲历和感受到的。
利用几何中求体积的知识,学生能够发现当物体的重量(此时的4重量实际上是由体积决定的)不变时,“桌面压强y”与“接触面积x”成反比,因此y是x的反比例函数。
3)问题可以进一步扩展本题可以进一步作扩充:问“桌面压强y”作为“接触面积x”的函数,与物体的形状是否相关,也就是说如果物体并不是规则的圆台时,本题的结论是否还成立。
这样的问题可以进一步启发学生对函数的本质有更加深入的认识。
4)把案例1与案例2对比不难看到:函数教学中两种理念、两种结果。
案例1中的函数都是一些人工制造出来的很不自然的函数,烦琐迭加使得形式非常困难,但是实质上没有丝毫的创造性,新课程摈弃这样“繁而不难、缺乏启发性”的练习题。
而案例2中的函数概念生动形象,与学生的实际生活有一定的关系,解题过程既要求一定的想象力,又要求对函数概念有正确的理解。
新课程要求这样贴近学生生活与知识面的学习内容。
函数教学的一个非常重要的方面是让学生体会函数能够作为反映现实世界客观规律的数学模型。
《高中数学课程标准》在函数的教学建议中要求:“在函数应用的教学中,教师要引导学生不断地体验函数是描述客观世界的变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用”。
6(选择高中数学课程中的某一具体内容,以此内容完成一项探究性教学设计,并对你的教学设计进行简单的点评分析。
教学设计:平方差公式“探究式”教学。
象整数的算术演算中存在某些“缩算法”一样,代数式的演算中同样存在“缩算法”,而这些“缩算法”依赖一些形式简便的乘法公式,这些乘法公式由来简单,但是灵活运用它们,可能会使复杂的代数式运算变得简单快捷。
通过直接的计算,同学们不难发现下面的等式:22 (a,b)(a,b),a,b222 (a,b),a,2ab,b33223 (a,b),a,3ab,3ab,b52233 (a,b)(a,ab,b),a,b根据全面所叙述的理由,我们把上面这些等式称为乘法公式。
如果要问:是否除了上面这些公式之外另外还存在其它更多的乘法公式呢,只要能够在实际中使用方便,我们并不排除还存在其它乘法公式的可能。
例如:222222 (a,b)(c,d),(ac,bd),(ad,bc)下面是一些应用举例(省略),其中既包括代数式乘法的应用,也包括数字乘法的应用。
例如:98×102 = 10000-1=9999数字乘法的应用说明“乘法公式的使用”的确与整数的缩算法有共同之处。
下面介绍一则有关“平方差公式”的故事:美国北卡罗莱纳大学教授Carl Pomerance是一位当代著名的计算数论家。
Pomerance回忆中学时代曾经参加一次普通的数学竞赛,其中有一道题是分解整数8051。
Pomerance没有采用常规的因数检验法,从小到大逐个验证,由2到的素数,哪些能够整除8051。
8051 其实这样做并不困难。
象所有爱动脑筋孩子一样,Pomerance力图寻找一个简便算法,更快捷地发现8051的因数,但是他没有能够在规定的时间之内完成任务,他失败了。