阶段性测试题9
九年级(上)数学期中阶段性测试-初中三年级数学试题练习、期中期末试卷-初中数学试卷
九年级(上)数学期中阶段性测试-初中三年级数学试题练习、期中期末试卷、测验题、复习资料-初中数学试卷-试卷下载九年级(上)数学期中阶段性测试命题人:毛夏美审核人:邵小瑶一选择题(每题3分,共12题)1、下列函数中,图象经过点的反比例函数解析式是()A.B.C.D.2如图,已知是⊙O的圆周角,,则圆心角是()A. B. C. D.3如图,在⊙ABC中,DE⊙BC,DE分别与AB、AC相交于点D、E,若AD=4,DB=2,则DE⊙BC 的值为()A.B.C.D.4二次函数与x轴的交点个数是()A.0B.1C.2D.35如图,这是中央电视台“曲苑杂谈”中的一副图案,它是一扇形图形,其中为,长为8cm,长为12cm,则阴影部分的面积为()A.B C.D.6如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为x=-1.给出四个结论:①b2>4ac;②2a+b=0;③a-b+c=0;④5a<b.其中正确结论是().(A)②④(B)①④(C)②③(D)①③7反比例函数与二次函数在同一平面直角坐标系中的大致图象如图所示,它们的解析式可能分别是().(A)y=,y=kx2-x(B)y=,y=kx2+x(C)y=-,y=kx2+x(D)y=-,y=-kx2-x8抛物线y=3(x-2)2+1先向上平移2个单位,再向左平移2个单位所得的解析式为()A.y=3x2+3B. y=3x2-1C. y=3(x-4)2+3D. y=3(x-4)2-19在相同时刻阳光下的物高与影长成比例,如果高为1.5m的测杆的影长为2.5m,那么影长为30m的旗杆的高是()(A)、20m(B)、16m(C)、18m(D)、15m10一个圆锥的高为3,侧面展开图是半圆,则圆锥的侧面积是()(A)9(B)18(C)27(D)3911如图,⊙APD=90°,AP=PB=BC=CD,则下列结论成立的是()A .ΔPAB⊙ΔPCAB.ΔPAB⊙ΔPDAC .ΔABC⊙ΔDBA D.ΔABC⊙ΔDCA12如图,AB是半圆O的直径,⊙BAC=200 , D是弧AC上的点,则⊙D是()A.1200B.1100C.1000D.900二填空题13、如果点P是线段AB的黄金分割点,且AP>PB,则下列说法正确的是______(仅填序号)。
2013走向高考,贾凤山,高中总复习,地理,阶段性测试题九
阶段性测试题九(必修二第三章农业地域的形成和发展)本卷分为第Ⅰ卷(选择题)和第Ⅱ卷(综合题),满分100分,时间90分钟。
第Ⅰ卷(选择题共50分)一、单项选择题(每小题2.5分,共50分)(2012·舟山中学)下图为某地人类活动示意图,据图回答1~2题。
1.影响该地农业生产的主要区位因素是()A.气候和地形B.科技和资金C.政策和劳动力D.市场和交通答案:A解析:该地区为亚热带季风气候的山地丘陵地区,以立体农业为特点,主要区位因素为气候地形。
2.图中地理事物布局最不合理的是()A.游览道B.温室大棚C.养猪场D.接待中心答案:C解析:图中养猪场可能污染水源,离“游览道”太近,影响旅游业。
养猪场应与大棚生产布局在一起,便于形成综合利用的生态农业模式。
读下图,完成3~4题。
3.图中甲、乙两地发展种植业生产的主要制约因素分别是() A.土壤、水源B.光热、降水C.风向、地势D.地形、河流4.乙地由于不合理灌溉而引发的主要环境问题是()A.水土流失B.沙尘暴C.土地盐碱化D.洪涝灾害答案:3.B 4.C解析:第3题,甲地位于西欧地区,属温带海洋性气候,光热不足是制约该地种植业发展的主要因素。
第4题,乙地位于中亚地区,属于干旱的沙漠气候,不合理灌溉容易引发土地盐碱化。
(2012·山西太原)宁夏平原自古被称作“塞上明珠”,“其地饶五谷,尤宜稻麦,所产大米,清朝居贡米之列……,岁无旱涝之虞”。
读图回答5~6题。
5.宁夏平原生产“贡米”等优质农产品,最优越的自然条件是()A.夏季高温多雨,热量充足B.内陆晴天多,昼夜温差大C.黄河水质好,营养丰富D.纬度较高,生长期较长答案:B解析:宁夏平原位于我国内陆干旱地区,晴天多,光照强,昼夜温差大,是农产品质量好的自然原因。
6.宁夏平原“地饶五谷,岁无旱涝之虞”,主要原因是() A.地处贺兰山山麓,冰雪融水丰富B.地处贺兰山迎风坡,夏季降水丰沛C.自古有黄河流经,灌溉水源充足稳定D.自古有长城贯穿,抗灾减灾设施齐全答案:C解析:宁夏平原有黄河水灌溉,使农业生产无“旱涝之虞”。
九年级上学期第一次阶段性测试物理试题
初三年级第一学期物理学科第一次阶段性检测试卷一、填空题(每空1分,共25分)1、物理学中,我们把物体内所有分子做无规则运动的能和能的总和叫做物体的内能。
物体温度升高,其必定增加。
2、汽车沿着盘山公路可以驶上高耸入云的山峰,盘山公路修得弯弯曲曲主要目的是为了。
载重货车下山时,其重力势能(选填“增大”、“减小”或“不变”)3、优秀运动员短时间内的功率可达1kW,它的物理意义是__________ ;两台机器的实际功率之比为5:1,则做同样的功所需的时间之比是_______ 。
4、“神舟”六号飞船的成功发射,标志着我国载人航天的新突破.“神舟”六号飞船在加速升空的过程中,其动能 ,势能 .(选填“增大”、“减小”、“不变”)5、小婷跳绳时所穿鞋的总质量为0.4㎏,她1min跳绳180次,假定每次双脚抬离地面的最大高度均为5㎝,则每上升一次,她对鞋所做的功为________J.跳跃时若上升所用的时间占每次跳跃时间的0.3倍,则每上升一次,她对鞋做功的平均功率为________W (g=10N/㎏)6、如图2所示,用甲、乙两个不同的滑轮把同一货物提到同一高度, 使用滑轮能够省力,使用滑轮机械效率较高。
(选填“甲”或“乙”)第6题第7题第8题第9题7、某工人用如图所示的装置把重240N的物体提高1m,所用的拉力为150N,则该工人克服重力所做的有用功为J,总功为J,该滑轮组的机械效率是.8、如图所示,滑轮组的机械效率为80%.在自由端拉力F作用下,重1600N的物体以0.2m/s的速度匀速上升,则10s内对物体做的有用功为______J,拉力的大小为______N,拉力做功的功率为 W。
9、如图所示,物体重G=500N,滑轮重10N,当物体G匀速上升时,则挂钩B承受拉力为__________N,挂钩A承受_______N的拉力,拉力F为_________N,若绳子自由端向上拉动0.5m,则物体向上移动________m。
河南省平顶山市宝丰县名校联盟2024-2025学年九年级上学期9月月考数学试题(含答案)
2024-2025学年度第一学期阶段性测试卷九年级数学(BS )测试范围:1-2.6注意事项:1.本试卷共6页,三大题,满分120分,测试时间100分钟。
2.请用蓝、黑色钢笔或圆珠笔写在试卷或答题卡上。
3.答卷前请将密封线内的项日填写清楚。
一、选择题(每小题3分,共30分.下列各小题均有四个选项,其中只有一个是正确的)1.下列方程是一元二次方程的是( )A .B.C .D .2.若关于的一元二次方程的常数项为0,则的值为( )A .3B .C .D .3.如图,在中,,点为斜边上的中点,则为()A .10B .3C .5D .44.顺次连接菱形四边中点得到的四边形是( )A .矩形B .菱形C .平行四边形D .正方形5.下列说法中,不正确的是()A .有三个角是直角的四边形是矩形B .对角线相等的四边形是矩形C .对角线互相垂直的矩形是正方形D .对角线互相垂直的平行四边形是菱形6.用配方法解方程时,原方程应变形为( )A .B .C .D .7.如图,矩形的对角线,则的长为()220x -=252x x=+2ax bx c ++=()210x x -=x 22290x x m ++-=m 3-3±9±ABC △90,8,6ACB AC BC ∠=︒==D AB CD 2450x x --=2(2)1x -=2(2)9x -=2(4)21x -=2(4)11x -=ABCD 8cm,120AC AOD =∠=︒ABAB .2cmC.D .4cm8.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,若设参加酒会的人数为人,则可列出方程()A .B .C .D .9.如图,在菱形中,,则()A .B .C .D .10.如图,在正方形内有一点,连接,有,若的角平分线交于点,若为中点,,则的长为( )A .B .4C .D .2.5二、填空题(每小题3分,共15分)11.方程,化成一般形式是______.12.已知菱形的两条对角线长分别为,则它的面积是______.13.若关于的一元二次方程没有实数根,则实数的取值范围为______.14.如图,矩形中,是边上的中点,是边上的一动点,分别是的中点,则线段的长为______.x ()155x x +=()155x x -=()1552x x -=()1552x x +=ABCD 80,ABC BA BE ∠=︒=AED ∠=95︒105︒100︒110︒ABCD F ,AF CF AF AB =BAF ∠BC E E BC 2CF =AD ()()5726x x +-=-2cm,3cm 2cm x 230x x m -+=m ABCD 6,8,AB AD E ==AD P AB M N 、PE PC 、MN15.如图,在正方形中,,点分别为上一点,且,连接,则的最小值是______.三、解答题(共8题,共75分)16.(10分)解下列方程:(1);(2).17.(9分)如图,四边形为矩形,对角线交于点交延长线于点.(1)求证:;(2)若,求的度数.18.(9分)已知关于的一元二次方程.(1)求证:方程总有两个实数根;(2)若方程有一个实数根为负数,求正整数的值.19.(9分)在中,是的中点,是的中点,过点作交的延长线于点.ABCD 5AB =E F 、AD AB 、AE AF =BE CF 、BE CF +2340x x +-=22410x x --=ABCD ,O DE AC ∥BC E BC CE =30E ∠=︒BOC ∠x 2240x mx m -+-=m Rt ABC △90,BAC D ∠=︒BC E AD A AF BC ∥CE F(1)求证:四边形是菱形;(2)若,菱形的面积为40.求的长.20.(9分)阅读材料:若,求的值.解:,....根据你的观察,探究下面的问题:(1)已知,求的值;(2)已知三边长都是正整数,且满足,求的周长.21.(9分)公安部交管局部署“一盔一带”安全守护行动,带动了市场头盔的销量.某头盔经销商5至7月份统计,某品牌头盔5月份销售2250个,7月份销售3240个,且从5月份到7月份销售量的月增长率相同.请解决下列问题.(1)求该品牌头盔销售量的月增长率;(2)为了达到市场需求,某工厂建了一条头盔生产线生产头盔,经过一段时间后,发现一条生产线最大产能是900个/天,但如果每增加一条生产线,每条生产线的最大产能将减少30个/天,现该厂要保证每天生产头盔3900个,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?22.(10分)如图,在中,.点从点出发沿方向以每秒2个单位长的速度向点匀速运动,同时点从点出发沿方向以每秒1个单位长的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点运动的时间是秒.过点作于点,连接.ADBF 8AB =ADBF AC 22228160m mn n n -+-+=m n 、22228160m mn n n -+-+= ()()22228160m mn n n n ∴-++-+=22()(4)0m n n ∴-+-=22()0,(4)0m n n ∴-=-=4,4n m ∴==22610210a ab b b ++++=ba ABC △abc 、、2226100a b a b +--+=ABC △Rt ABC △90,5cm,30B AB C ∠=︒=∠=︒D C CA A E A AB B D E 、t (0)t >D DF BC ⊥F DE EF 、(1)求证:.(2)四边形能够成为菱形吗?如果能,求出相应的值;如果不能,请说明理由.(3)当______时,为直角三角形.23.(10分)在边长为5的正方形中,点在边所在直线上,连接,以为边,在的下方作正方形,并连接.(1)如图1,当点与点重合时,______;(2)如图2,当点在线段上时,,求的长;(3)若的长.AE DF =AEFD t t =DEF △ABCD E CD BE BE BE BEFG AG E D AG =E CD 2DE =AG AG =DE2024-2025学年度第一学期阶段性测试卷(1/4)参考答案九年级数学(BS )一、选择题(每小题3分,共30分)1.A 2.C 3.C 4.A 5.B 6.B 7.D 8.C 9.D 10.C二、填空题(每小题3分,共15分)11. 12.3 13. 1415.三、解答题(共8题,共75分)16.解:(1),则,则或,解得;(2),,,即,,.17.(1)证明:四边形为矩形,,,四边形为平行四边形,;(2)解:四边形为平行四边形,,,2290x x --=94m >2340x x +-=()()140x x -+=10x -=40x +=121,4x x ==-22410x x --=2122x x -=212112x x ∴-+=+23(1)2x -=1x ∴-=1x ∴=±1211x x ∴==- ABCD ,AD BE AD BC ∴=∥DE AC ∥∴ACED ,AD CE BC CE ∴=∴= ACED AC DE ∴∥30ACB E ∴∠=∠=︒四边形为矩形,,即是等腰三角形,,.18.解:(1)证明:.方程总有两个实数根.(2)解:用因式分解法解此方程,可得,解得,若方程有一个根为负数,则,故正整数.19.(1)证明:,,点是的中点,,点是的中点,,四边形是平行四边形,是的中点,,四边形是菱形;(2)解:四边形是菱形,菱形的面积的面积,点是的中点,的面积的面积,菱形的面积的面积,,的长为10.20.解:(1)已知等式变形得:,,,解得:,ABCD OC OB ∴=BOC △30OBC OCB ∴∠=∠=︒120BOC ∴∠=︒()222Δ()424816(4)m m m m m =--⨯-=-+=- 2(4)0m -≥ ∴2240x mx m -+-=()()220x x m --+=122,2x x m ==-20m -<2,m <∴1m =AF BC ∥,AFC FCD FAE CDE ∴∠=∠∠=∠ E AD (),AAS ,AE DE FAE CDE AF CD ∴=∴∴=△≌△ D BC ,BD CD AF BD ∴=∴=∴AFBD 90,BAC D ∠=︒ BC 12AD BD BC ∴==∴ADBF ADBF ∴ADBF 2ABD =△ D BC ABC ∴△2ABD =△∴ADBF ABC =△1140,40,84022AB AC AC =∴⋅=∴⨯⋅=10AC ∴=AC ∴()()22269210a ab bbb +++++=22(3)(1)0a b b ∴+++=30,10a b b ∴+=+=3,1a b ==-则原式;(2)已知等式变形得:,,,解得:,三边长都是正整数,,即,则三角形周长为.21.解:(1)设该品牌头盔销售量的月增长率为.依题意,得,解得(不合题意,舍去).答:该品牌头盔销售量的月增长率为;(2)设增加条生产线,则.解得(不符合题意,舍去)答:在增加产能同时又要节省投入的条件下,增加4条生产线.22.(1)证明:在中,,.,又,;(2)解:四边形能够成为菱形.理由如下:,,又,四边形为平行四边形,,,,若使平行四边形为菱形,则需,即,1133-==()()2221690a a b b -++-+=22(1)(3)0a b ∴-+-=10,30a b ∴-=-=1,3a b ==ABC △a b c 、、24c ∴<<3c =1337++=x 22250(1)3240x +=120.220%, 2.2x x ===-20%y ()()9003013900y y -+=124,25y y ==DFC △90DFC ∠=︒30,2C DC t ∠=︒=11222DF DC t t ∴==⨯=1AE t t =⨯= AE DF ∴=AEFD ,AB BC DF BC ⊥⊥ AE DF ∴∥AE DF = ∴AEFD 5cm AB = 210cm AC AB ∴==()102cm AD AC DC t ∴=-=-AEFD AE AD =102t t =-解得:.即当时,四边形为菱形;(3)或4【提示】①当时,,即,;②时,,即,;(3)时,此种情况不存在.故当或4时,为直角三角形,故答案为:或4.23.解:(1);(2)如图2,过点作,交的延长线于,,,,,,,,,103t =103t =AEFD 5290EDF ∠=︒2AD AE =1022t t -=52t ∴=90DEF ∠=︒12AD AE =11022t t -=4t ∴=90EFD ∠=︒52t =DEF △52G GK AB ⊥AB K 2,5DE DC == 3CE ∴=90,90EBG EBC CBG CBG GBK ∠=∠+∠=︒∠+∠=︒ EBC GBK ∴∠=∠,90BE BG K BCE =∠=∠=︒ ()AAS BCE BKG ∴△≌△3,5CE KG BC BK ∴====10AK ∴=由勾股定理得:;(3)的长是或.【提示】分三种情况:①当点在的延长线上时,如图3,同理知,,,由勾股定理得:,,此种情况不成立;②当点在边上时,如图,同理得:;③当点在的延长线上时,如图,AG ==DE 52152E CD ()AAS BCE BKG △≌△5BC BK ∴==10AK = 52KG ==52CE KG ∴==E CD 52DE =E DC同理得,,综上,的长是或.52CE GK ==515522DE ∴=+=DE 52152。
九年级数学上学期阶段性学业水平测试试题苏科版
2015—2016学年度第一学期阶段性学业水平测试九年级数学试卷(本卷满分150分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号写在答题纸相应位置.......上)1.下列图形中不一定是相似图形的是【▲】A.两个等边三角形B.两个等腰直角三角形 C.两个长方形D.两个正方形2.反比例函数1yx=的图象是【▲】A.线段 B.直线C.抛物线 D.双曲线3.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是【▲】A.2:3 B.: C.4:9 D.8:274.在反比例函数1kyx-=的每一条曲线上,y都随着x的增大而减小,则k的值可以是【▲】A.﹣1 B.1 C.2 D.35.如图,已知AB∥CD,AD与BC相交于点O,AO:DO=1:2,那么下列式子正确的是【▲】A.BO:BC=1:2 B.CD:AB=2:1 C.CO:BC=1:2 D.AD:DO=3:1(第5题图) (第7题图)(第8题图)6.已知反比例函数2yx=-,下列结论不正确的是【▲】A.图象必经过点(﹣1,2) B.y随x的增大而增大C.图象分布在第二、四象限内 D.若x>1,则﹣2<y<0 7.如图,下列条件不能判定△ADB∽△ABC的是【▲】A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.AD AB AB BC=8.如图,A、B两点在双曲线4yx=上,分别经过A、B两点向x轴,y轴作垂线段,若图中阴影部分的面积为1,则S1+S2=【▲】A.3 B.4 C.5 D.69.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,2BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是【▲】A.124xyx=--B.21xyx=--C.31xyx=--D.84xyx=--(第9题图) (第10题图)(第12题图)10.如图,点A在双曲线3yx=上,点B在双曲线kyx=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为【▲】A.6 B.9 C.10 D.12二、填空题:(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答.题纸相应位置......上)11.已知反比例函数kyx=经过点(1,5),则k= ▲ .12.如图,△ABC∽△ACP,若∠A=75°,∠APC=65°,则∠B的大小为▲ 度.13.点(﹣1,1y),(2,2y),(3,3y)均在函数6yx=的图象上,则1y,2y,3y的大小关系是▲ .14.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则AODO等于▲ .(第14题图)(第16题图)(第17题图)15.若函数4y x=与1yx=的图象有一个交点是(,2),则另一个交点坐标是▲ .16.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是▲ 米.17.如图,已知A(,1y),B(2,2y)为反比例函数1yx=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是▲ .18.如图,矩形ABCD的顶点A,B的坐标分别是A(﹣1,0),B(0,﹣2),反比例函数kyx=的图象经过顶点C,AD边交y轴于点E,若四边形BCDE的面积等于△ABE面积的5倍,则k的值等于▲ .(第18题图)三、解答题:(本大题共10小题,共96分,请在答题纸指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分10分)如图所示,四边形ABCD∽四边形A′B′C′D′,求未知边x的长度和α的大小.20.(本小题满分10分)如图,已知反比例函数kyx的图象经过点A(﹣3,﹣2).(1)求反比例函数的解析式;(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.21.(本小题满分10分)如图,△ABC中,CD是边AB上的高,且AD CD CD BD=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.22.(本小题满分8分)去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y与等待时间x(分)之间存在如下的关系:100yx=,求:(1)若等待时间x=5分钟时,求舒适度y的值;(2)舒适度指数不低于10时,同学才会感到舒适.函数100yx=的图象如图(x>0),请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?23.(本小题满分8分)在平面直角坐标系中△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.24.(本小题满分10分)如图,已知A(﹣4,n),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数myx的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式kx+b﹣mx<0的解集(请直接写出答案).25.(本小题满分8分)如图,互相垂直的两条公路AM、AN旁有一矩形花园ABCD,其中AB=30米,AD=20米.现欲将其扩建成一个三角形花园APQ,要求P在射线AM上,Q在射线AN上,且PQ经过点C.(1)DQ=10米时,求△APQ的面积.(2)当DQ的长为多少米时,△APQ的面积为1600平方米.26.(本小题满分8分)阅读理解:对于任意正实数a,b,∵(2(a b≥0,∴a﹣ab+b≥0,∴a+b ab,只有当a=b时,等号成立.结论:在a+b ab(a,b均为正实数)中,若ab为定值P,则a+b P当a=b,a+b有最小值P根据上述内容,回答下列问题:(1)若x>0,4xx+的最小值为▲ .(2)探索应用:如图,已知A(﹣2,0),B(0,﹣3),点P为双曲线6yx=(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD 的形状.27.(本小题满分12分)在平面直角坐标系中,函数1y =12x(x >0),2y =3x-(x <0)的图象如图所示,点A ,B 分别是1y =12x(x >0),2y =3x-(x <0)图象上的点,连接OA ,OB .(1)若OA 与x 轴所成的角为45°,求点A 的坐标; (2)如图1,当∠AOB =90°,求OA OB的值;(3)设函数3k y x=(x >0)的图象与1y =12x(x >0)的图象关于x 轴对称,点B 的横坐标为﹣2,过点B 作BE ⊥x 轴,点F 是y 轴负半轴上的一个动点,函数3k y x=(x >0)的图象上是否存在一点G ,使以点O 、F 、G 为顶点的三角形与△OBE 相似?如果存在,求出点F 的坐标,如果不存在,请说明理由.28.(本小题满分12分)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C 时,点P与直线m同时停止运动,设运动时间为t秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.初三数学阶段性测试参考答案与试题解析一.选择题(共10小题)1.下列图形中不一定是相似图形的是()A.两个等边三角形B.两个等腰直角三角形C.两个长方形D.两个正方形【考点】相似图形.【分析】根据相似图形的定义对各选项分析判断后利用排除法求解.【解答】解:A、两个等边三角形对应边成比例,对应角相等,一定相似,故本选项错误;B、两个等腰直角三角形,顶角都是直角相等,夹边成比例,一定相似,故本选项错误;C、两个长方形,四个角都是直角相等,但对应边不一定成比例,不一定相似,故本选项正确;D、两个正方形对应边成比例,对应角相等,一定相似,故本选项错误.故选C.【点评】本题考查了相似图形的概念,注意从对应边成比例,对应角相等两个方面考虑.2.反比例函数y=的图象是()A.线段 B.直线 C.抛物线D.双曲线【考点】反比例函数的性质.【分析】根据反比例函数的性质可直接得到答案.【解答】解:∵y=是反比例函数,∴图象是双曲线.故选:D.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.3.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:27【考点】相似三角形的性质.【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【解答】解:两个相似三角形面积的比是(2:3)2=4:9.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.4.在反比例函数的每一条曲线上,y都随着x的增大而减小,则k的值可以是()A.﹣1 B.1 C.2 D.3【考点】反比例函数的性质.【分析】利用反比例函数的增减性,y随x的增大而减小,则求解不等式1﹣k>0即可.【解答】解:∵反比例函数图象的每一条曲线上,y随x的增大而减小,∴1﹣k>0,解得k<1.故选A.【点评】本题主要考查反比例函数的性质的知识点,当k>0时,在每一个象限内,y随x的增大而减小;当k<0时,在每一个象限,y随x的增大而增大.5.如图,已知AB∥CD,AD与BC相交于点O,AO:DO=1:2,那么下列式子正确的是()A.BO:BC=1:2 B.CD:AB=2:1 C.CO:BC=1:2 D.AD:DO=3:1【考点】平行线分线段成比例.【分析】证明△AOB∽△DOC,得到AB:CD=AO:DO=1:2,即可解决问题.【解答】解:∵AB∥CD,∴△AOB∽△DOC,∴AB:CD=AO:DO=1:2,∴CD:AB=2:1,故选B.【点评】该题主要考查了平行线分线段成比例定理及其应用问题;解题的关键是判断出△AOB∽△DOC.6.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,2)B.y随x的增大而增大C.图象分布在第二、四象限内 D.若x>1,则﹣2<y<0【考点】反比例函数的性质.【分析】根据反比例函数y=的性质,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大,即可作出判断.【解答】解:A、(﹣1,2)满足函数的解析式,则图象必经过点(﹣1,2);B、在每个象限内y随x的增大而增大,在自变量取值范围内不成立,则命题错误;C、命题正确;D、命题正确.故选B.【点评】本题考查了反比例函数的性质,对于反比例函数(k≠0),(1)k>0,反比例函数图象在一、三象限;(2)k<0,反比例函数图象在第二、四象限内.7.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=【考点】相似三角形的判定.【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.【点评】本题考查了相似三角形的判定,利用了有两个角对应相等的三角形相似,两边对应成比例且夹角相等的两个三角形相似.8.如图,A、B两点在双曲线y=上,分别经过A、B两点向x轴,y轴作垂线段,若图中阴影部分的面积为1,则S1+S2=()A.3 B.4 C.5 D.6【考点】反比例函数系数k的几何意义.【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.【解答】解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选D.【点评】本题考查了反比例函数系数k的几何意义,以及反比例函数的图象和性质及任一点坐标的意义,有一定的难度.9.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,2BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【考点】相似三角形的判定与性质;函数关系式;全等三角形的判定与性质.【分析】作FG⊥BC于G,依据已知条件求得△DBE≌△EGF,得出FG=BE=x,EG=DB=2x,然后根据平行线的性质即可求得.【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠DBE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中,,∴△DBE≌△EGF(AAS),∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选A.【点评】本题考查了三角形全等的判定和性质,以及平行线的性质,辅助线的做法是解题的关键.10.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k的值为()A.6 B.9 C.10 D.12【考点】反比例函数图象上点的坐标特征.【分析】过点B作BE⊥x轴于E,延长线段BA,交y轴于F,得出四边形AFOD是矩形,四边形OEBF 是矩形,得出S矩形AFOD=3,S矩形OEBF=k,根据平行线分线段成比例定理证得AB=2OD,即OE=3OD,即可求得矩形OEBF的面积,根据反比例函数系数k的几何意义即可求得k的值.【解答】解:过点B作BE⊥x轴于E,延长线段BA,交y轴于F,∵AB∥x轴,∴AF⊥y轴,∴四边形AFOD是矩形,四边形OEBF是矩形,∴AF=OD,BF=OE,∴AB=DE,∵点A在双曲线y=上,∴S矩形AFOD=3,同理S矩形OEBF=k,∵AB∥OD,∴==,∴AB=2OD,∴DE=2OD,∴S矩形OEBF=3S矩形AFOD=9,∴k=9,故选B.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数系数k的几何意义,矩形的判定和性质,平行线分线段成比例定理,作出辅助线,构建矩形是解题的关键.二.填空题(共8小题)11.已知反比例函数y=经过点(1,5),则k= 5 .【考点】反比例函数图象上点的坐标特征.【分析】把点(1,5)代入反比例函数y=中,可直接求k的值.【解答】解:依题意,得x=1时,y=5,所以,k=xy=5.故答案为:5【点评】本题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特点.关键是设函数关系式,根据已知条件求函数关系式.12.如图,△ABC∽△ACP,若∠A=75°,∠APC=65°,则∠B的大小为40 度.【考点】相似三角形的性质.【分析】根据三角形的内角和得到∠ACP=40,然后根据相似三角形的性质即可得到结论.【解答】解:∵∠A=75°,∠APC=65°,∴∠ACP=40,∵△ABC∽△ACP,∴∠B=∠ACP=40°,故答案为:40.【点评】本题考查了相似三角形三角形的内角和,熟记相似三角形的性质是解题的关键.13.点(﹣1,y1),(2,y2),(3,y3)均在函数y=的图象上,则y1,y2,y3的大小关系是y1<y3<y2.【考点】反比例函数图象上点的坐标特征.【分析】直接把点(﹣1,y1),(2,y2),(3,y3)代入函数y=,求出y1,y2,y3的值,并比较出其大小即可.【解答】解:∵点(﹣1,y1),(2,y2),(3,y3)均在函数y=的图象上,∴y1==﹣6,y2==3,y3==2,∵﹣6<2<3,∴y1<y3<y2.故答案为:y1<y3<y2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,正方形ABCD中,E为AB的中点,AF⊥DE于点O,则等于.【考点】相似三角形的判定与性质;正方形的性质.【专题】数形结合.【分析】利用两角对应相等易得△AOD∽△EAD,那么=.【解答】解:∵∠ADO=∠ADO,∠DOA=∠DAE=90°,∴△AOD∽△EAD,∴==.故答案为:.【点评】本题考查了相似三角形的判定与应用;把所求的线段的比进行相应的转移是解决本题的关键.15.若函数y=4x与y=的图象有一个交点是(,2),则另一个交点坐标是(﹣,﹣2).【考点】反比例函数图象的对称性.【专题】计算题.【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:正比例函数y=4x与反比例函数y=的图象均关于原点对称,则其交点也关于原点对称,那么(,2)关于原点的对称点为:(﹣,﹣2).故答案为:(﹣,﹣2).【点评】本题考查反比例函数图象的中心对称性,较为简单,容易掌握.16.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是8 米.【考点】相似三角形的应用.【分析】首先证明△ABP∽△CDP,可得=,再代入相应数据可得答案.【解答】解:由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=12米,∴=,CD=8米,故答案为:8.【点评】此题主要考查了相似三角形的应用,关键是掌握相似三角形对应边成比例.17.如图,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是(,0).【考点】反比例函数图象上点的坐标特征.【分析】先求出A、B的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP﹣BP|<AB,延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【解答】解:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,).在△ABP中,由三角形的三边关系定理得:|AP﹣BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA﹣PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=ax+b(a≠0)把A、B的坐标代入得:,解得:,∴直线AB的解析式是y=﹣x+,当y=0时,x=,即P(,0);故答案为:(,0).【点评】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度18.如图,矩形ABCD的顶点A,B的坐标分别是A(﹣1,0),B(0,﹣2),反比例函数y=的图象经过顶点C,AD边交y轴于点E,若四边形BCDE的面积等于△ABE面积的5倍,则k的值等于﹣.【考点】反比例函数系数k的几何意义.【分析】首先得出△AEB≌△GBE,再利用四边形BCDE的面积等于△ABE面积的5倍,进而得出AE与BC之间的关系,由△BCF∽△EAO,得出C点坐标,进而求出k的值.【解答】解:如图,作CF⊥y轴于F,作EG⊥BC于G,∵∠EGB=∠EAB=∠ABG=90°,∴四边形ABGE是矩形,在△AEB和△GBE中,,∴△AEB≌△GBE(SSS),∵A、B的坐标分别是A(﹣1,0)、B(0,﹣2),∴AB直线解析式为:y=kx+b,故将两点代入得出:,解得:,故直线AB解析式为:y=﹣2x﹣2,∵AD⊥AB,AO⊥BE,∴OA2=OE•OB,即12=OE×2,∴OE=,∴E(0,)∵S四边形BCDE=5S△AEB∴S四边形BCDE=5S△GBE∴S四边形CDEG=4S△GBE∴CG=2BG=2AE=2=,∴BG=,∵∠AEO=∠CBF,∠EOA=∠CFB=90°,∴△BCF∽△EAO,∴==,∵AE=BG=,BC=BG+CG=+=∴∴===3,∴BF=3EO=,CF=3AO=3,∴OF=OB﹣BF=2﹣=,设C的坐标为(x,y)则x=3,y=﹣.故k=xy=3×(﹣)=﹣.故答案为:﹣.【点评】本题考查了反比例函数的综合运用,通过作辅助线,将图形分割,寻找全等三角形,利用边的关系设双曲线上点的坐标是解题关键.三.解答题(共10小题)19.如图所示,四边形ABCD∽四边形A′B′C′D′,求未知边x的长度和α的大小.【考点】相似多边形的性质.【专题】计算题.【分析】由相似多边形的性质可得,AD:AB=A′D′:A′B′,∠C=∠C′,根据图中表明的数字求解即可.【解答】解:由题意得:,∴x=18,∵∠C′=360°﹣(63°+129°+78°)=90°,四边形ABCD∽四边形A′B′C′D′,∴∠C=∠C′=90°,即α=90°.【点评】本题考查相似多边形的性质:相似多边形的对应角相等,对应边成比例.20.如图,已知反比例函数y=的图象经过点A(﹣3,﹣2).(1)求反比例函数的解析式;(2)若点B(1,m),C(3,n)在该函数的图象上,试比较m与n的大小.【考点】待定系数法求反比例函数解析式;反比例函数图象上点的坐标特征.【分析】(1)根据待定系数法即可求得;(2)根据反比例函数的性质先判定图象在一、三象限,y随x的增大而减小,根据0<1<3,可以确定B(1,m)、C(3,n)两个点在第一象限,从而判定m,n的大小关系.【解答】解:(1)因为反比例函数y=的图象经过点A(﹣3,﹣2),把x=﹣3,y=﹣2代入解析式可得:k=6,所以解析式为:y=;(2)∵k=6>0,∴图象在一、三象限,y随x的增大而减小,又∵0<1<3,∴B(1,m)、C(3,n)两个点在第一象限,∴m>n.【点评】本题考查了待定系数法求解析式,反比例函数的性质等,熟练掌握反比例函数的性质是解题的关键.21.如图,△ABC中,CD是边AB上的高,且=.(1)求证:△ACD∽△CBD;(2)求∠ACB的大小.【考点】相似三角形的判定与性质.【分析】(1)由两边对应成比例且夹角相等的两个三角形相似,即可证明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根据相似三角形的对应角相等可得:∠A=∠BCD,然后由∠A+∠ACD=90°,可得:∠BCD+∠ACD=90°,即∠ACB=90°.【解答】(1)证明:∵CD是边AB上的高,∴∠ADC=∠CDB=90°,∵=.∴△ACD∽△CBD;(2)解:∵△ACD∽△CBD,∴∠A=∠BCD,在△ACD中,∠ADC=90°,∴∠A+∠ACD=90°,∴∠BCD+∠ACD=90°,即∠ACB=90°.【点评】此题考查了相似三角形的判定与性质,解题的关键是:熟记相似三角形的判定定理与性质定理.22.去学校食堂就餐,经常会在一个买菜窗口前等待.经调查发现,同学的舒适度指数y与等待时间x(分)之间存在如下的关系:y=,求:(1)若等待时间x=5分钟时,求舒适度y的值;(2)舒适度指数不低于10时,同学才会感到舒适.函数y=的图象如图(x>0),请根据图象说明,作为食堂的管理员,让每个在窗口买菜的同学最多等待多少时间?【考点】反比例函数的应用.【专题】应用题.【分析】函数关系式y=中,y代表舒适度指数,x(分)代表等待时间.(1)是已知x=5,代入函数解析式求得y.(2)是已知y≥10,就可以得到关于x的不等式求的x的范围.【解答】解:(1)当x=5时,舒适度y===20;(2)舒适度指数不低于10时,由图象y≥10时,0<x≤10所以作为食堂的管理员,让每个在窗口买菜的同学最多等待10分钟.【点评】现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是根据函数关系及题目的已知条件,分别求解,要注意自变量和函数代表的实际意义.23.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.【考点】作图-位似变换;作图-轴对称变换.【专题】作图题.【分析】(1)利用轴对称图形的性质进而得出对应点位置进而画出图形即可;(2)利用位似图形的性质得出对应点位置进而画出图形即可.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.【点评】此题主要考查了轴对称变换以及位似变换,根据题意得出对应点位置是解题关键.24.如图,已知A(﹣4,n),B(1,﹣4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式kx+b﹣<0的解集(请直接写出答案).【考点】反比例函数与一次函数的交点问题.【专题】数形结合.【分析】(1)将B坐标代入反比例解析式中求出m的值,即可确定出反比例解析式;将A坐标代入反比例解析式求出n的值,确定出A的坐标,将A与B坐标代入一次函数解析式中求出k与b的值,即可确定出一次函数解析式;(2)对于直线AB,令y=0求出x的值,即可确定出C坐标,三角形AOB面积=三角形AOC面积+三角形BOC面积,求出即可;(3)由两函数交点A与B的横坐标,利用图象即可求出所求不等式的解集.【解答】解:(1)∵反比例函数y=(m≠0)过点B(1,﹣4),∴m=1×(﹣4)=﹣4,∴y=﹣,将x=﹣4,y=n代入反比例解析式得:n=1,∴A(﹣4,1),∴将A与B坐标代入一次函数解析式得:,解得:,∴y=﹣x﹣3;(2)在直线y=﹣x﹣3中,当y=0时,x=﹣3,∴C(﹣3,0),即OC=3,∴S△AOB=S△AOC+S△COB=(3×1+3×4)=;(3)不等式kx+b﹣<0的解集是﹣4<x<0或x>1.【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,一次函数与坐标轴的交点,坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.25.如图,互相垂直的两条公路AM、AN旁有一矩形花园ABCD,其中AB=30米,AD=20米.现欲将其扩建成一个三角形花园APQ,要求P在射线AM上,Q在射线AN上,且PQ经过点C.(1)DQ=10米时,求△APQ的面积.(2)当DQ的长为多少米时,△APQ的面积为1600平方米.【考点】平行线分线段成比例;一元二次方程的应用.【分析】(1)由DC∥AP,得到=,代入数据求得AP=90,于是得到结论;(2)设DQ=x米,则AQ=x+20,根据平行线分线段成比例定理得到=,得到方程=,求出AP=,解一元二次方程即可得到结论.【解答】解:(1)∵DC∥AP,∴=,∴=,∴AP=90,∴S△APQ=AQ•AP=1350米2;(2)设DQ=x米,则AQ=x+20,∵DC∥AP,∴=,∴=,∴AP=,由题意得××(x+20)=1600,化简得3x2﹣200 x+1200=0,解x=60或.经检验:x=60或是原方程的根,∴DQ的长应设计为60或米.【点评】本题考查了平行线分线段成比例,求三角形的面积,一元二次方程的应用,熟练掌握平行线分线段成比例定理是解题的关键.26.阅读理解:对于任意正实数a,b,∵(﹣)2≥0,∴a﹣2+b≥0,∴a+b≥2,只有当a=b时,等号成立.结论:在a+b≥2(a,b均为正实数)中,若ab为定值P,则a+b≥2,当a=b,a+b有最小值2.根据上述内容,回答下列问题:(1)若x>0,x+的最小值为 4 .(2)探索应用:如图,已知A(﹣2,0),B(0,﹣3),点P为双曲线y=(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD 的形状.【考点】反比例函数综合题.【专题】综合题.【分析】(1)利用在a+b≥2得到x+≥2,即可得到x+的最小值;(2)设p(x,),则C(x,0),D(0,),则可表示出四边形ABCD面积S=AC•DB=(x+2)(+3),变形得S=(x+)+6,利用前面的结论可得四边形ABCD面积的最小值为12.此时x=,则x=2,得到OA=OC=2,OD=OB=3,利用平行四边形的判定定理可得四边形ABCD是平行四边形,而AC⊥BD,再根据菱形的判定定理得到四边形ABCD是菱形.【解答】解:(1)4;(2)设P(x,),则C(x,0),D(0,),∴四边形ABCD面积S=AC•DB=(x+2)(+3)=(x+)+6,由(1)得若x>0,x+的最小值为4,∴四边形ABCD面积S≥×4+6=12,∴四边形ABCD面积的最小值为12.此时x=,则x=2,∴C(2,0),D(0,3),∴OA=OC=2,OD=OB=3,∴四边形ABCD是平行四边形.又AC⊥BD,∴四边形ABCD是菱形.【点评】本题考查了阅读理解题的解题方法:利用题目中给的方法或结论解决问题.也考查了利用坐标表示线段长以及平行四边形和菱形的判定方法.27.在平面直角坐标系中,函数y1=(x>0),y2=(x<0)的图象如图所示,点A,B分别是y1=(x>0),y2=(x<0)图象上的点,连接OA,OB.(1)若OA与x轴所成的角为45°,求点A的坐标;(2)如图1,当∠AO B=90°,求的值;(3)设函数y3=(x>0)的图象与y1=(x>0)的图象关于x轴对称,点B的横坐标为﹣2,过点B作BE⊥x轴,点F是y轴负半轴上的一个动点,函数y3=(x>0)的图象上是否存在一点G,使以点O、F、G为顶点的三角形与△OBE相似?如果存在,求出点F的坐标,如果不存在,请说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)设A(a,b),根据反比例函数图象上点的坐标特征,得出ab=12,进而得出a=b=2,就可求得A的坐标;(2)过A、B分别作y轴的垂线,垂足为C、D,通过证得△AOC∽△OBD,然后根据相似三角形的性质即可求得;(3)分四种情况分别讨论求得.【解答】解:(1)设A(a,b),∵OA与x轴所成的角为45°,∴a=b,∵点A在y1=(x>0)图象上,∴ab=12,。
2016届高三数学一轮阶段性测试题9《立体几何》(含解析)新人教A版
阶段性测试题九(立体几何)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(文)(2014·辽宁师大附中期中)已知两个不同的平面α、β和两条不重合的直线m、n,有下列四个命题①若m∥n,m⊥α,则n⊥α②若m⊥α,m⊥β,则α∥β③若m⊥α,m∥n,n⊂β,则α⊥β④若m∥α,α∩β=n,则m∥n其中正确命题的个数是()A.0个B.1个C.2个D.3个[答案] D[解析]由线面垂直的性质知①正确;垂直于同一条直线的两个平面平行,∴②正确;由m⊥α,m∥n知n⊥α,又n⊂β,∴α⊥β,∴③正确;如图,正方体ABCD-A1B1C1D1中,平面ABCD与平面ADD1A1分别为α、β,CC1为m,则m∥α,α∩β=n,但m与n不平行,∴④错,故选D.(理)(2014·浙江台州中学期中)设a、b是两条不同的直线,α、β是两个不同的平面,则下列四个命题①若a⊥b,a⊥α,则b∥α②若a∥α,α⊥β,则a⊥β③a⊥β,α⊥β,则a∥α④若a⊥b,a⊥α,b⊥β,则α⊥β其中正确的命题的个数是()A.0个B.1个C.2个D.3个[答案] B[解析]①中可能有b⊂α;②中a⊂β,或a∥β,a与β斜交,a⊥β,都有可能;③中可能有a⊂α;若a⊥b,a⊥α,则b∥α或b⊂α,又b⊥β,∴α⊥β,∴④正确,故选B.2.(2014·山东省博兴二中质检)设m、n是两条不同直线,α、β是两个不同的平面,下列命题正确的是()A.m∥α,n∥β且α∥β,则m∥nB.m⊥α,n⊥β且α⊥β,则m⊥nC.m⊥α,n⊂β,m⊥n,则α⊥βD .m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β[答案] B[解析] 设m 与n 相交,m 、n 都在平面γ内,γ∥α,γ∥β时,满足A 的条件,∴A 错;若m ⊥α,α⊥β,则m ⊂β或m ∥β,又n ⊥β,∴n ⊥m ,∴B 正确;若m ⊥α,m ⊥n ,则n ∥α或n ⊂α,结合n ⊂β得不出α⊥β,故C 错;当m ∥n 且满足D 的条件时,得不出α∥β,故D 错.3.(2015·河南八校联考)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A .16π3B .8π3C .43D .23π[答案] A [解析] 由三视图知该几何体为三棱锥,底面是等腰三角形,其底长为2,高为1,棱锥高为3,顶点在底面射影为等腰直角三角形底边的中点D ,直观图如图,BD ⊥AC ,PD ⊥平面ABC ,DA=DB =DC =1,故球心O 在PD 上,设OP =R ,则(3-R)2+12=R2,∴R =233.∴S 球=4πR2=16π3.4.(文)(2014·吉林市摸底)下图是某四棱锥的三视图,则该几何体的表面积等于( )A .17+65B .34+6 5C .6+65+43D .6+63+413[答案] B[解析] 由三视图知,这是一个底面是矩形的四棱锥,矩形的长和宽分别是6,2,四棱锥的高是4,其直观图如图,作PE ⊥平面ABCD ,则垂足E 为AD 的中点,PE =4,作EF ⊥BC ,垂足为F ,则PF ⊥BC ,∵EF =2,∴PF =25,∵AB ⊥AD ,∴AB ⊥PA ,PA =PE2+AE2=5,∴S =6×2+12×6×4+12×6×25+2×(12×2×5)=34+65,故选B .(理)(2015·豫南九校联考)已知四棱锥的三视图如图所示,则四棱锥的四个侧面中面积最大的是( )A .3B .25C .6D .8 [答案]C [解析] 由三视图知,该几何体是四棱锥,其直观图如图,其四个侧面中面积最大的是△PBC ,由图中数据知AB =2,BC =4,PA =PD =3,∴PE =5,取BC 中点F ,则EF ⊥BC ,∴PF ⊥BC ,PF =PE2+EF2=3,∴S △PBC =12BC·PF =6.5.(2014·云南景洪市一中期末)一个几何体的三视图如图所示,其中俯视图与左视图均为半径是1的圆,则这个几何体的体积是( )A .4π3B .πC .2π3D .π3[答案] B[解析] 由三视图知,这是一个半径为1的球,截去14,故其体积为V =34·(4π3·13)=π.6.(2015·江西三县联考)平面α与平面β平行的条件可以是( )A .α内有无穷多条直线与β平行B .直线a ∥α,a ∥βC .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥αD .α内的任何直线都与β平行[答案] D[解析] 当α∩β=l 时,α内与l 平行的直线都与β平行,故A 错;当α∩β=l ,a ∥l ,a ⊄α,a ⊄β时,满足B 的条件,∴B 错;当α∩β=l ,a ⊂α,a ∥l ,b ⊂β,b ∥l 时,有a ∥β,b ∥α,∴C 错,故选D .7.(2014·长春市一调)某几何体的三视图如图(其中俯视图中的圆弧是半圆),则该几何体的表面积为( )A .92+14πB .82+14πC .92+24πD .82+24π[答案] A[解析] 由三视图知,该几何体是一个组合体,下部是长宽分别为5、4,高为4的长方体,上部为底半径为2,高为5的半圆柱,故其表面积S =5×4+(5+4)×2×4+π·22+12(2π×2×5)=92+14π,故选A .8.(2015·许昌、平顶山、新乡调研)一个几何体的三视图如图所示,则该几何体的体积为( )A .103B .10C .30D .24+2 5[答案] B[解析] 由三视图可知,该几何体为直四棱柱,底面为直角梯形,S 底=12×(2+3)×2=5,棱柱高为2,V =5×2=10.9.(2015·广东揭阳一中期中)下列命题中,错误的是( )A .一条直线与两个平行平面中的一个相交,则必与另一个平面相交B .平行于同一平面的两个不同平面平行C .如果平面α不垂直平面β,那么平面α内一定不存在直线垂直于平面βD .若直线l 不平行平面α,则在平面α内不存在与l 平行的直线[答案] D[解析] 当直线l 在平面α内时可知D 错误.10.(文)(2015·广东执信中学期中)将正方体(如图1所示)截去两个三棱锥,得到如图2所示的几何体,则该几何体的左视图为( )[答案] B[解析] 其左视图可考虑在原正方体中,将该几何体投射到平面BCC1B1上,则A 点射影为B ,D 点射影为C ,D1点射影为C1,AD1的射影为BC1,应为实线,DD1的射影CC1为实线,B1C 应为虚线(左下到右上),故应选B .(理)(2015·甘肃天水一中段测)在正方体ABCD -A1B1C1D1中,点E1,F1分别是线段A1B1,A1C1的中点,则直线BE1与AF1所成角的余弦值是( )A .3010B .12C .3015D .1510[答案] A[解析] 以A 为原点,直线AB 、AD 、AA1分别为x 轴、y 轴、z 轴建立空间直角坐标系A -xyz ,设棱长为1,则B(1,0,0),E1(12,0,1),F1(12,12,1),∴AF1→=(12,12,1),BE1→=(-12,0,1).cos 〈AF1→,BE1→〉=AF1→·BE1→|AF1→||BE1→|=3452×62=3010,故选A . 11.(2015·深圳市五校联考)一个多面体的三视图如图所示,则该多面体的体积为( )A .233B .223C .6D .7[答案] A[解析] 由三视图可知,该多面体是由正方体截去两个正三棱锥所成的几何体,如图,正方体棱长为2,正三棱锥侧棱互相垂直,侧棱长为1,故几何体的体积为:V =V 正方体-2V 三棱锥=2×2×2-2×(13×12×1×1×1)=233.12.(2014·长沙市重点中学月考)某几何体的三视图如图所示,则它的表面积为( )A .2+1+52πB .2+1+252πC .2+(1+5)πD .2+2+52π[答案] A[解析] 由三视图知,该几何体是倒立的半个圆锥,圆锥的底半径为1,高为2,故其表面积为S =12π·12+12×2×2+12π·1·22+12=2+1+52π,故选A .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上.)13.(2015·甘肃天水一中段测)若某几何体的三视图如下,该几何体的体积为2,则俯视图中的x =________.[答案] 2[解析] 由三视图可知,该几何体为四棱锥,高为2,底面为直角梯形,面积S =12(1+x)×2=1+x ,因此V =13Sh =13·(1+x)·2=2,解得x =2.14.(2014·成都七中模拟)已知正方体ABCD -A1B1C1D1的棱长为1,点M 是BC1的中点,P 是BB1一动点,则(AP +MP)2的最小值为________.[答案] 52[解析] 将平面ABB1A1展开到与平面CBB1C1共面,如下图,易知当A 、P 、M 三点共线时(AP +MP)2最小.AM2=AB2+BM2-2AB×BMcos135°=12+(22)2-2×1×22×(-22)=52.15.(2014·海南省文昌市检测)边长是22的正三角形ABC 内接于体积是43π的球O ,则球面上的点到平面ABC 的最大距离为________.[答案] 433[解析] 设球半径为R ,则由条件知43πR3=43π,∴R =3,正三角形ABC 所在平面截球得截面如图,OO1⊥平面ABC(O1为△ABC 的中心),OA =3,O1A =23×32×22=263,∴OO1=OA2-O1A2=33,∴球面上的点到平面ABC 的最大距离为PO1=PO +OO1=433.16.一个几何体的三视图如图所示,则这个几何体的体积为________.[答案] 9[解析] 由三视图可得该几何体是一个三棱锥,底面是等腰三角形,底边长为6,高为3,三棱锥的高为3,所以V =13×(12×6×3)×3=9.三、解答题(本大题共6个小题,共74分,解答应写出文字说明,证明过程或演算步骤.)17.(本小题满分12分)(2015·石光中学月考)如图所示,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且PA =PD =22AD ,若E ,F 分别为PC ,BD 的中点.(1)求证:EF ∥平面PAD ;(2)求证:平面PDC ⊥平面PAD ;(3)求四棱锥P -ABCD 的体积.[解析] (1)连接EF ,AC ,∵四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形且点F 为对角线BD 的中点, ∴对角线AC 经过F 点,又点E 为PC 的中点,∴EF 为△PAC 的中位线,∴EF ∥PA .又PA ⊂平面PAD ,EF ⊄平面PAD ,∴EF ∥平面PAD .(2)∵底面ABCD 是边长为a 的正方形,∴CD ⊥AD ,又侧面PAD ⊥底面ABCD ,侧面PAD ∩底面ABCD =AD ,∴CD ⊥平面PAD .又CD ⊂平面PCD ,∴平面PDC ⊥平面PAD .(3)过点P 作AD 的垂线PG ,垂足为点G ,∵侧面PAD ⊥底面ABCD ,PG ⊂平面PAD ,侧面PAD ∩底面ABCD =AD ,∴PG ⊥平面ABCD ,即PG 为四棱锥P -ABCD 的高,又PA =PD =22AD 且AD =a ,∴PG =a 2.∴V 四棱锥P -ABCD =13S 正方形ABCD·PG =13×a2×a 2=16a3.18.(本小题满分12分)(文)(2014·合肥市质检)如图,在多面体ABCDFE中,底面ABCD 是梯形,且AD =DC =CB =12AB .直角梯形ACEF 中,EF 綊12AC ,∠ECA 是直角,且平面ACEF ⊥平面ABCD .(1)求证:BC ⊥AF ;(2)试判断直线DF 与平面BCE 的位置关系,并证明你的结论.[解析] (1)证明:取AB 的中点H ,连接CH ,∵底面ABCD 是梯形,且AD =DC =CB =12AB ,易证四边形AHCD 为菱形,∴AD =HC =12AB ,∴∠ACB =90°,∴BC ⊥AC .∵平面ACEF ⊥平面ABCD ,且平面ACEF ∩平面ABCD =AC ,∴BC ⊥平面ACEF ,而AF ⊂平面ACEF ,故BC ⊥AF.(2)DF ∥平面BCE.证明如下:连接DH 交AC 于点M ,易知M 为AC 的中点,连接FM.在菱形AHCD 中,DM ⊥AC ,由第一问知BC ⊥AC ,故DM ∥BC .在直角梯形ACEF 中,EF 綊CM ,四边形EFMC 是平行四边形,故FM ∥EC .而BC ,CE ⊂平面BCE ,BC ∩CE =C ,而DM ,MF ⊂平面DMF ,DM ∩MF =M ,故平面BCE ∥平面DMF ,DF ⊂平面DMF ,从而,DF ∥平面BCE.(理)(2014·天津南开中学月考)如图,三棱柱ABC -A1B1C1的底面为边长为2的等边三角形,侧棱长为3,且侧棱与底面垂直,D 为B1C1的中点.(1)求证AC1∥平面A1BD ;(2)求异面直线AC1与BD 所成角的余弦值;(3)求二面角B1-A1B -D 的平面角的正弦值.[解析] 因为三棱柱的侧棱垂直于底面,所以平面BB1C1C ⊥平面A1B1C1.在等腰三角形A1B1C1中,D 为B1C1中点,∴A1D ⊥B1C1,∴A1D ⊥平面BB1C1C .取BC 的中点E ,连接DE ,则直线ED ,B1C1,A1D 两两垂直.如图,以D 为坐标原点建立空间直角坐标系,在等边三角形A1B1C1中,边长为2,所以A1D =3,所以D(0,0,0),B1(1,0,0),C1(-1,0,0),A1(0,0,3),B(1,-3,0),C(-1,-3,0),A(0,-3,3).(1)证明:DA1→=(0,0,3),DB →=(1,-3,0).设平面A1BD 的一个法向量为m =(x1,y1,z1),则⎩⎨⎧ 3z =0,x1-3y1=0.令y1=3,则x1=3,z1=0. 所以m =(3,3,0).又AC1→=(-1,3,-3),AC1→·m =0,∴AC1→⊥m ,又∵AC1⊄平面BDA1,∴AC1∥平面BDA1.(2)AC1→=(-1,3,-3),DB →=(1,-3,0),cos 〈AC1→,DB →〉=AC1→·DB →|AC1→|·|DB →|=-1-37·2=-277. 异面直线AC1与BD 所成角的余弦值为277.(3)B1B →=(0,-3,0),B1A1→=(-1,0,3),设平面B1BA1的一个法向量为n =(x2,y2,z2),则⎩⎨⎧ -3y2=0,-x2+3z2=0.令z2=3,则x2=3. 所以n =(3,0,3).cos 〈m ,n 〉=m·n |m|·|n|=912=34.∴二面角B1-A1B -D 的平面角的正弦值为74.19.(本小题满分12分)(文)(2015·江西三县联考)如图,四边形ABEF 是等腰梯形,AB ∥EF ,AF =BE =2,EF =42,AB =22,ABCD 是矩形.AD ⊥平面ABEF ,其中Q ,M 分别是AC ,EF 的中点,P 是BM 中点.(1)求证:PQ ∥平面BCE ;(2)求证:AM ⊥平面BCM ;(3)求点F 到平面BCE 的距离.[解析] (1)因为AB ∥EM ,且AB =EM ,所以四边形ABEM 为平行四边形.连接AE ,则AE 过点P ,且P 为AE 中点,又Q 为AC 中点,所以PQ 是△ACE 的中位线,于是PQ ∥CE.∵CE ⊂平面BCE ,PQ ⊄平面BCE ,∴PQ ∥平面BCE.(2)AD ⊥平面ABEF ⇒BC ⊥平面ABEF ⇒BC ⊥AM.在等腰梯形ABEF 中,由AF =BE =2,EF =42,AB =22,可得∠BEF =45°,BM =AM =2,∴AB2=AM2+BM2,∴AM ⊥BM.又BC ∩BM =B ,∴AM ⊥平面BCM.(3)解法一:点F 到平面BCE 的距离是M 到平面BCE 的距离的2倍,∵EM2=BE2+BM2,∴MB ⊥BE ,∵MB ⊥BC ,BC ∩BE =B ,∴MB ⊥平面BCE ,∴d =2MB =4.解法二:VC -BEF =13S △BEF·BC =43BC ,VF -BCE =13S △BCE·d =d 3BC .∵VC -BEF =VF -BCE ,∴d =4.(理)(2014·成都七中模拟)如图,四棱锥P -ABCD 中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上且AG =13GD ,GB ⊥GC ,GB =GC =2,E 是BC 的中点,四面体P -BCG 的体积为83.(1)求过P 、C 、B 、G 四点的球的表面积;(2)求直线DP 与平面PBG 所成角的正弦值;(3)在棱PC 上是否存在一点F ,使DF ⊥GC ,若存在,确定点F 的位置,若不存在,说明理由.[解析] (1)∵四面体P -BCG 的体积为83,GB ⊥GC ,GB =GC =2,PG ⊥平面ABCD ,∴PG =4,以GP ,GB ,GC 为棱构造长方体,外接球的直径为长方体的对角线.∴(2R)2=16+4+4,∴R =6,∴S =4π×6=24π.(2)∵GB =GC =2,∠BGC =π2,E 为BC 的中点,∴GE =2,BGsin ∠AGB =2,∴∠AGB =π4,作DK ⊥BG 交BG 的延长线于K ,∴DK ⊥平面BPG ,∵BC =BG2+CG2=22,∴DG =34BC =322,∴DK =GK =32,PD =412. 设直线DP 与平面PBG 所成角为α,∴sinα=DK DP =38282.(3)假设F 存在,过F 作FF ′⊥GC 交GC 于F ′,则必有DF ′⊥GC .因为AG =13GD ,且AD =22,所以GD =322,又∠DGF ′=45°,∴GF ′=32=34GC ,∴PF =34PC .∴当CF CP =14时满足条件.20.(本小题满分12分)(2015·大连市二十中期中)如图,四边形ABCD 中,AB ⊥AD ,AD ∥BC ,AD =6,BC =4,AB =2,E 、F 分别在BC 、AD 上,EF ∥AB .现将四边形ABEF 沿EF 折起,使得平面ABEF ⊥平面EFDC .(1)当BE =1时,是否在折叠后的AD 上存在一点P ,使得CP ∥平面ABEF ?若存在,指出P 点位置,若不存在,说明理由;(2)设BE =x ,问当x 为何值时,三棱锥A -CDF 的体积有最大值?并求出这个最大值.[解析] (1)存在点P 使得满足条件CP ∥平面ABEF ,且此时AP AD =35.证明如下:AP AD =35,过点P 作MP ∥FD ,与AF 交于点M ,则有MP FD =35,又FD =5,故MP =3,又因为EC =3,MP ∥FD ∥EC ,故有MP 綊EC ,故四边形MPCE 为平行四边形,所以PC ∥ME ,又CP ⊄平面ABEF ,ME ⊂平面ABEF ,故有CP ∥平面ABEF 成立.(2)因为平面ABEF ⊥平面EFDC ,平面ABEF ∩平面EFDC =EF ,又AF ⊥EF ,所以AF ⊥平面EFDC . 由已知BE =x ,所以AF =x(0<x<4),FD =6-x.故VA -CDF =13·(12DF·EF)·AF =13·12·2·(6-x)·x =13(6x -x2)=13[-(x -3)2+9]=-13(x -3)2+3.所以,当x =3时,VA -CDF 有最大值,最大值为3.21.(本小题满分12分)(文)如图,在直三棱柱ABC -A1B1C1中,BC =2,AB =AC =AA1=1,D 是棱CC1上的一点,P 是AD 的延长线与A1C1的延长线的交点,且PB1∥平面BDA1.(2)求证:CD =C1D ;(2)求点C 到平面B1DP 的距离.[解析] (1)证明:连接B1A 交BA1于O ,∵PB1∥平面BDA1,B1P ⊂平面AB1P ,平面AB1P ∩平面BA1D =OD ,∴B1P ∥OD .又∵O 为B1A 的中点,∴D 为AP 的中点,∴C1为A1P 的中点,∴△ACD ≌△PC1D ,∴CD =C1D ;(2)因为VC -B1PD =VB1-PCD所以13h·S △B1PD =13A1B1·S △PCD ,∵A1B1=1,S △PCD =12CD·PC1=14,在△B1PD 中,B1D =32,B1P =5,PD =52,∴cos ∠DB1P =255,sin ∠DB1P =55.∴S △B1PD =12×32×5×55=34,∴h =13.(理) (2014·康杰中学、临汾一中、忻州一中、长治二中四校联考)如图,四边形ABCD 与BDEF 均为菱形,设AC 与BD 相交于点O ,若∠DAB =∠DBF =60°,且FA =FC .(1)求证:FC ∥平面EAD ;(2)求二面角A -FC -B 的余弦值.[解析] (1)证明:∵四边形ABCD 与BDEF 均为菱形,∴AD ∥BC ,DE ∥BF.∵AD ⊄平面FBC ,DE ⊄平面FBC ,∴AD ∥平面FBC ,DE ∥平面FBC ,又AD ∩DE =D ,AD ⊂平面EAD ,DE ⊂平面EAD ,∴平面FBC ∥平面EAD ,又FC ⊂平面FBC ,∴FC ∥平面EAD .(2)连接FO 、FD ,∵四边形BDEF 为菱形,且∠DBF =60°,∴△DBF 为等边三角形, ∵O 为BD 中点.所以FO ⊥BD ,O 为AC 中点,且FA =FC ,∴AC ⊥FO ,又AC ∩BD =O ,∴FO ⊥平面ABCD ,∴OA 、OB 、OF 两两垂直,建立如图所示的空间直角坐标系O -xyz ,设AB =2,因为四边形ABCD 为菱形,∠DAB =60°,则BD =2,OB =1,OA =OF =3,∴O(0,0,0),A(3,0,0),B(0,1,0),C(-3,0,0),F(0,0,3),∴CF →=(3,0,3),CB →=(3,1,0),设平面BFC 的一个法向量为n =(x ,y ,z),则有⎩⎪⎨⎪⎧ n·CF →=0,n·CB →=0,∴⎩⎨⎧3x +3z =0,3x +y =0, 令x =1,则n =(1,-3,-1),∵BD ⊥平面AFC ,∴平面AFC 的一个法向量为OB →=(0,1,0).∵二面角A -FC -B 为锐二面角,设二面角的平面角为θ,∴cosθ=|cos 〈n ,OB →〉|=|n·OB →||n|·|OB →|=⎪⎪⎪⎪⎪⎪-35=155, ∴二面角A -FC -B 的余弦值为155.22.(本小题满分14分)(文)(2014·黄石二中检测)如图,在直三棱柱ABC -A1B1C1中,AA1=AC =2AB =2,且BC1⊥A1C .(1)求证:平面ABC1⊥平面A1ACC1;(2)设D 是A1C1的中点,判断并证明在线段BB1上是否存在点E ,使DE ∥平面ABC1;若存在,求三棱锥E -ABC1的体积.[解析] (1)证明:在直三棱柱ABC -A1B1C1中,有A1A ⊥平面ABC .∴A1A ⊥AC ,又A1A =AC ,∴A1C ⊥AC1.又BC1⊥A1C ,∴A1C ⊥平面ABC1,∵A1C ⊂平面A1ACC1,∴平面ABC1⊥平面A1CC1.(2)存在,E 为BB1的中点.取A1A 的中点F ,连EF ,FD ,当E 为B1B 的中点时,EF ∥AB ,DF ∥AC1,∴平面EFD ∥平面ABC1,则有ED ∥平面ABC1.当E 为BB1的中点时,VE -ABC1=VC1-ABE =13×2×12×1×1=13.(理)(2014·浙北名校联盟联考)已知在长方体ABCD -A ′B ′C ′D ′中,点E 为棱CC ′上任意一点,AB =BC =2,CC ′=1.(1)求证:平面ACC ′A ′⊥平面BDE ;(2)若点P 为棱C ′D ′的中点,点E 为棱CC ′的中点,求二面角P -BD -E 的余弦值.[解析] (1)∵ABCD 为正方形,∴AC ⊥BD ,∵CC ′⊥平面ABCD ,∴BD ⊥CC ′,又CC ′∩AC =C ,∴BD ⊥平面ACC ′A ′,∴平面BDE ⊥平面ACC ′A ′.(2)以DA 为x 轴,以DC 为y 轴,以DD ′为z 轴建立空间直角坐标系,则D(0,0,0),B(2,2,0),E(0,2,12),P(0,1,1),设平面BDE 的法向量为m =(x ,y ,z),∵DB →=(2,2,0),DE →=(0,2,12),∴⎩⎪⎨⎪⎧ m·DB →=2x +2y =0,m·DE →=2y +12z =0, 令x =1,则y =-1,z =4,∴m =(1,-1,4),设平面PBD 的法向量为n =(x ,y ,z), ∵DP →=(0,1,1),∴⎩⎪⎨⎪⎧ n·DB →=2x +2y =0,n·DP →=y +z =0, 令x =1,则y =-1,z =1,∴n =(1,-1,1),∴cos 〈m ,n 〉=m·n |m|·|n|=63,∴二面角P -BD -E 的余弦值为63.。
天一中学2022-2023学年九年级上学期阶段性测试英语试题(含答案)
天一中学2022-2023学年九年级上学期阶段性测试英语试题【考试时间为120分钟,试卷满分为130分】第I卷(客观题共75分)一、听力测试:20分第一部分听对话回答问题(10分)本部分共有10道小题,每小题你将听到一段对话,每段对话听两遍。
在听每段对话前,你将有5秒钟的时间阅读题目;听完后,你将有5秒钟的时间选择你认为最合适的备选答案。
在听到"嘀"的信号后,进入下一小题。
1. What is Daniel's animal sign?A. B. C.2. When will the two speakers leave the bank?A B C3. Where has the woman been?A. B. C.4. What did the man's family do last night?A. B. C.5. What does the man mean?A. He hates Japanese food.B. He wants to pay this time.C. He doesn't want to go to the restaurant with the man.6. How does the man feel about his job?A. He doesn't like it very much.B. He wants to do his work well.C. He hates working late.7. How much is the toy ship worth?A. 300 yuanB. 100 yuanC. 200 yuan8. Where are the two speakers probably talking?A. At the airport.B. In a hotel.C. At home9. Who does the woman think is the best actor?A. Simon.B. Tom.C. Peter.10. How does the woman feel?A. Angry.B. Happy.C. Surprised.第二部分听对话和短文回答问题(10分)你将听到两段对话和一篇短文,各听两遍。
2022-2023学年度第一学期第一次阶段性测试九年级物理试题
2022-2023学年度第一学期第一次阶段性测试九年级物理试题(试卷总分90 测试时间90分钟)一、单选题(本大题共10小题,共20分)1、如图,当人手握铅球向上运动时,肌肉产生的力使前臂骨骼绕肘关节转动。
下列所示的杠杆中,与人的前臂属于同种杠杆的是()A.(1)(2)B.(2)(3)C.(3)(4)D.(2)(4)2、某人将一箱书搬上楼,可以有两种方法:一是把所有的书一起搬上楼;二是先搬一部分上楼,再搬剩下的部分。
假设他上楼的速度相同,第一种方法搬书的功率为P1,效率为η1,第二种方法搬书的功率为P2,效率为η2,则()A.P1=P2η1=η2 B.P1>P2 η1>η2C.P1<P2 η1<η2 D.P1>P2η1=η23、如图所示,重800N的物体在100N水平拉力F的作用下,以0.1m/s的速度沿水平地面向左直线运动了20s,滑轮组的机械效率为60%。
在此过程中,下列说法正确的是()A.拉力F做的功为200JB.物体与地面间的滑动摩擦力为180NC.拉力F做功的功率为20WD.若物体的重力和运动速度不变,只减小水平地面的粗糙程度,则滑轮组的机械效率会升高4、下列关于说法,正确的是()A.热量总是从内能多的物体传到内能少的物体B.使用滑轮组的好处在于不仅仅能省力而且还能省功C.机械效率越高,机械做功一定越快D.物体的内能增加,物体的温度可能升高5、如图所示,甲、乙两个质量相同的小球从相同高度静止释放,下落起点到地面之间距离用虚线划分,相邻虚线间距相等.甲球下落过程中经过M、N两点,乙球经过P、Q两点.忽略空气阻力,下列说法正确的是()A.甲球在M点的动能比它在N点的动能大B.乙球到Q点减少的重力势能比它增加的动能大C.甲球在N点时与乙球在P点时的机械能相等D.甲球在N点时的速度比乙球在Q点的速度小6、如图所示,甲、乙两杠杆的质量和长度均相同,乙图O点在杠杆的中点,机械摩擦不计,分别使用甲、乙杠杆将物体A提升相同的高度,则在工作过程中,甲、乙两杠杆的机械效率相比()A. 甲的大B. 乙的大C. 一样大D. 无法确定7、乒乓球发球机在同一高度朝不同方向分别发出甲、乙、丙三个相同的小球,三个小球落地时的速度大小均相等。
江苏省江阴市文林中学2023-2024学年九年级上学期10月阶段性测试数学试卷(含解析)
初三数学阶段性测评卷班级姓名学号一、选择题(本大题共4个小题,每小题5分,共20分)1.下列方程是一元二次方程的是 A.B.C.D.2.下列方程中,没有实数根的是 A.B.C.D.3.若,相似比为,则与的周长比为 A.B.C.D.4.如图,对角线与交于点,且,,在延长线上取一点,使,连接交于,则的长为 A.B.C.D.1二、填空题(本大题共5小题,每小题4分,共20分)5.若,则 .6.若、是方程的两实根,则的值等于 .7.已知、是方程的两个实数根,则的值为 .8.如图,在中,为上一点,在下列四个条件中:①;②;③;④,能满足与相似的条件是 (只填序号).第4题图第8题图第9题图9.如图,中,点、分别是边、的中点,、分别交对角线于点、,则 .三、解答题(本大题共6小题,共60分)()20x x+=320x x-=10xy-=212xx+=()220x x-=2210x x--=2210x x-+=2220x x-+=ABC DEF∆∆∽1:2ABC∆DEF∆()2:11:24:11:4ABCDY AC BD O3AD=5AB=AB E 25BE AB=OE BC F BF()233456234x y z==≠3x yz+=1x2x2330x x+-=1221x xx x+αβ2210x x+-=23ααβ++ABC∆P AB ACP B∠=∠APC ACB∠=∠2AC AP AB=⋅AB CP AP CB⋅=⋅APC∆ACB∆ABCDY E F AD CD EC EF BD H G ::DG GH HB=10.(12分)用指定方法解下列一元二次方程(1)(直接开平方法) (2)(配方法)(3)(公式法) (4)(因式分解法)11.(8分)已知线段a 、b 、c,且.(1)求的值;(2)若线段a 、b 、c 满足a +b +c =60,求a 、b 、c 的值.12.(8分)某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为、、、、五个组,表示测试成绩,组:;组:;组:;组:;组:,通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有 人,请将两幅统计图补充完整;(2)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?13.(10分)如图,在矩形ABCD 中,点E 、F 分别在边AD 、DC 上,BE ⊥EF .求证:23(21)120x --=22470x x --=210x x +-=22(21)0x x --=543c b a ==bb a +A B C D E x A 10090≤≤x B 9080<≤x C 8070<≤x D 7060<≤x E 60)x <(1)△ABE∽△DEF;(2)若AB=6,AE=9,DE=2,求EF的长.14.(10分)某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?15.(12分)【教材呈现】下面是华师版教材九年级上册52页的部分内容:我们可以发现,当两条直线与一组平行践相交时,所截得的线段存在一定的比例关系:.这就是如下的基本事实:两条直线被一组平行线所截,所傅的对应线段成比例,(简称“平行钱分线段成比例“【问题原型】如图①,中,点为边上的点,过点作交为边于点,点在边上,直线交于点,交于点.若,,,则 .【结论应用】(1)如图②,中,点在的延长线上,直线交于点交于点.求证:;(2)如图③,中,,,,若、分别是边、的中点,连接,点是边上任意一点,连结、分别交于点、,则周长的最小值是 .AD FE AB EC=)ABCD Y E AB E //EF AD CD F G AD GH BC H EF O 2AE =3EB = 1.8GO =OH =ABCD Y G DA GC AB E BD O GO CO CO EO=ABCD Y 4AB =6BC =60ABC ∠=︒E F AB CD EF G AD GB GC EF M N GMN ∆参考答案与试题解析一.选择题(共4小题)1.下列方程是一元二次方程的是 A .B .C .D .【分析】利用一元二次方程的定义,逐一分析各选项中的方程,即可得出结论.【解答】解:.方程是一元二次方程,选项符合题意;.方程是一元三次方程,选项不符合题意;.方程是二元二次方程,选项不符合题意;.方程是分式方程,选项不符合题意.故选:.【点评】本题考查了一元二次方程的定义,牢记“只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程”是解题的关键.2.下列方程中,没有实数根的是 A .B .C .D .【分析】分别计算各方程的根的判别式的值,然后根据判别式的意义判定方程根的情况即可.【解答】解:、△,方程有两个不相等的实数根,所以选项错误;、△,方程有两个不相等的实数根,所以选项错误;、△,方程有两个相等的实数根,所以选项错误;、△,方程没有实数根,所以选项正确.故选:.【点评】本题考查了根的判别式:一元二次方程的根与△有如下关系:当△时,方程有两个不相等的实数根;当△时,方程有两个相等的实数根;当△时,方程无实数根.3.若,相似比为,则与的周长比为 A .B .C .D .【分析】根据相似三角形的周长的比等于相似比得出.()20x x +=320x x -=10xy -=212x x +=A 20x x +=A B 320x x -=B C 10xy -=C D 212x x +=D A ()220x x -=2210x x --=2210x x -+=2220x x -+=A 2(2)41040=--⨯⨯=>A B 2(2)41(1)80=--⨯⨯-=>B C 2(2)4110=--⨯⨯=C D 2(2)41240=--⨯⨯=-<D D 20(0)ax bx c a ++=≠24b ac =-0>0=0<ABC DEF ∆∆∽1:2ABC ∆DEF ∆()2:11:24:11:4【解答】解:,与的相似比为,与的周长比为.故选:.【点评】本题主要考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比.4.如图,对角线与交于点,且,,在延长线上取一点,使,连接交于,则的长为 A.B .C .D .1【分析】首先作辅助线:取的中点,连接,由平行四边形的性质与三角形中位线的性质,即可求得:与的值,利用相似三角形的对应边成比例即可求得的值.【解答】解:取的中点,连接,四边形是平行四边形,,,,,,,,,,,,,,故选:.ABC DEF ∆∆Q ∽ABC ∆DEF ∆1:2ABC ∴∆DEF ∆1:2B ABCD Y AC BD O 3AD =5AB =AB E 25BE AB =OE BC F BF ()233456AB M OM EFB EOM ∆∆∽OM BF AB M OM Q ABCD //AD BC ∴OB OD =////OM AD BC ∴1133222OM AD ==⨯=EFB EOM ∴∆∆∽∴BF BE OM EM=5AB =Q 25BE AB =2BE ∴=52BM =59222EM ∴=+=∴23922BF =23BF ∴=A【点评】此题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.二.填空题(共5小题)5.若,则 .【分析】设,则,,,再代入即可解答.【解答】解:设,则,,,.故答案为:.【点评】本题考查了比例的性质,解决本题的关键是设,求出,,.6.若、是方程的两实根,则的值等于 .【分析】根据一元二次方程的根与系数的关系得到,,然后变形原代数式为原式,再代值计算即可.【解答】解:、是方程的两实根,,.原式.故答案为:.【点评】本题考查了一元二次方程的根与系数的关系:若方程两根为,,则,.7.已知、是方程的两个实数根,则的值为 .0234x y z ==≠3x y z +=114234x y z a ===2x a =3y a =4z a =234x y z a ===2x a =3y a =4z a =3291111444x y a a a z a ++===114234x y z a ===2x a =3y a =4z a =1x 2x 2330x x +-=1221x x x x +5-20ax bx c ++=123x x +=-123x x =-g 2221212121212()2x x x x x x x x x x ++-==g g 1x Q 2x 2330x x +-=123x x ∴+=-123x x =-g ∴2221212121212()29653x x x x x x x x x x ++-+====--g g 5-20ax bx c ++=1x 2x 12b x x a +=-12c x x a=g αβ2210x x +-=23ααβ++1-【分析】根据方程的根的定义,以及根与系数之间的关系,即可得到,,根据即可求解.【解答】解:,是方程的两个实数根,,..故答案为:.【点评】本题考查了根与系数的关系:若,是一元二次方程的两根时,,.也考查了一元二次方程根的定义.8.如图,在中,为上一点,在下列四个条件中:①;②;③;④,能满足与相似的条件是 ①,②,③ (只填序号).【分析】本题主要应用两三角形相似的判定定理,做题即可.【解答】解:前三项正确,因为他们分别符合有两组角对应相等的两个三角形相似;两组对应边的比相等且相应的夹角相等的两个三角形相似.故相似的条件是①,②,③.【点评】考查对相似三角形的判定方法的掌握情况.9.如图,中,点、分别是边、的中点,、分别交对角线于点、,则 .【分析】连接交于,根据相似三角形的判定与性质以及三角形中位线定理进行解答即可.【解答】解:连接交于,如图所示:2210αα+-=2αβ+=-2232ααβαααβ++=+++αQ β2210x x +-=2210αα∴+-=2αβ+=-221αα∴+=2232121ααβαααβ∴++=+++=-=-1-1x 2x 20(0)ax bx c a ++=≠12b x x a +=-12c x x a=ABC ∆P AB ACP B ∠=∠APC ACB ∠=∠2AC AP AB =⋅AB CP AP CB ⋅=⋅APC ∆ACB ∆ABCD Y E F AD CD EC EF BD H G ::DG GH HB =3:1:8AC BD O AC BD O四边形是平行四边形,,,,,,,点、分别是边、的中点,,是的中位线,,,,,是的中位线,,,,,,,,;故答案为:.【点评】本题考查了相似三角形的判定与性质、三角形中位线定理、平行四边形的性质等知识;熟练掌握平行四边形的性质和三角形中位线定理,证明三角形相似是解题的关键.三.解答题(共6小题)10.用指定方法解下列一元二次方程(1)(直接开平方法)(2)(配方法)(3)(公式法)(4)(因式分解法)【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用配方法求出解即可;Q ABCD OA OC ∴=OB OD =AD BC =//AD BC BCH DEH ∴∆∆∽∴DH DE HB BC=Q E F AD CD 2BC AD DE ∴==EF ACD ∆∴12DH DE HB BC ==//EF AC 12EF AC OA OC ===DG OG ∴=EG AOD ∆EGH COH ∆∆∽1122EG OA OC ∴==12GH EG OH OC ==2OH GH ∴=3DG OG GH ==6OB OD GH ==8HB GH ∴=::3:1:8DG GH HB ∴=3:1:823(21)120x --=22470x x --=210x x +-=22(21)0x x --=(3)方程利用公式法求出解即可;(4)方程利用因式分解法求出解即可.【解答】解:(1),移项,得,两边都除以3,得,两边开平方,得,移项,得,解得:,;(2),两边都除以2,得,移项,得,配方,得,即,解得:,即(3),这里,,,,,解得:;(4),方程左边因式分解,得,即,解得:,.【点评】此题考查了解一元二次方程因式分解法,公式法与直接开平方法,熟练掌握各种解法是解本题的关键.23(21)120x --=23(21)12x -=2(21)4x -=212x -=±212x =±132x =212x =-22470x x --=27202x x --=2722x x -=29212x x -+=29(1)2x -=1x -=11x =21x =210x x +-=1a =1b =1c =-224141(1)5b ac -=-⨯⨯-=Q x ∴=1x =2x =22(21)0x x --=(21)(21)0x x x x -+--=(31)(1)0x x --=113x =21x =-11.已知线段a 、b 、c ,且.(1)求的值;(2)若线段a 、b 、c 满足a +b +c =60,求a 、b 、c 的值.【分析】设a =3k ,b =4k ,c =5k .(1)代入计算即可;(2)构建方程求出k 即可.【解答】解:设===k ,则a =3k ,b =4k ,c =5k ,(1)==;(2)∵a +b +c =60,∴3k +4k +5k =60,∴k =5,∴a =15,b =20,c =25.【点评】此题主要考查了比例的性质,根据已知得出a =3k ,b =4k ,c =5k 进而得出k 的值是解题关键.12.某校为了深入学习社会主义核心价值观,对本校学生进行了一次相关知识的测试,随机抽取了部分学生的测试成绩进行统计(根据成绩分为、、、、五个组,表示测试成绩,组:;组:;组:;组:;组:,通过对测试成绩的分析,得到如图所示的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)抽取的学生共有 400 人,请将两幅统计图补充完整;(2)抽取的测试成绩的中位数落在 组内;(3)本次测试成绩在80分以上(含80分)为优秀,若该校初三学生共有1200人,请估计该校初三测试成绩为优秀的学生有多少人?A B C D E x A 90100x ……B 8090x <…C 7080x <…D 6070x <…E 60)x <【分析】(1)根据组的人数和所占的百分比可以求得本次调查的人数,再根据条形统计图中的数据可以求得组和组所占的百分比.根据本次调查的总人数和组所占的百分比可以求得组的人数;(2)根据扇形统计图中的数据可以得到中位数落在哪一组;(3)根据统计图中的数据可以计算出该校初三测试成绩为优秀的学生有多少人.【解答】解:(1)本次抽取的学生共有:(人,故答案为:400;所占的百分比为:,所占的百分比为:,组的人数为:,补全的统计图如图所示;(2)由扇形统计图可知,抽取的测试成绩的中位数落在组内,故答案为:;(3)(人,答:估计该校初三测试成绩为优秀的学生有660人.【点评】本题考查频数分布直方图、扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.13.如图,在矩形ABCD 中,点E 、F 分别在边AD 、DC 上,BE ⊥EF .求证:(1)△ABE ∽△DEF ;(2)若AB =6,AE =9,DE =2,求EF的长.E B C B B 4010%400÷=)A 100400100%25%÷⨯=C 80400100%20%÷⨯=B 40030%120⨯=B B 1200(25%30%)660⨯+=)【分析】(1)先判断出∠A=∠D=90°,进而得出∠ABE+∠AEB=90°,再判断出∠AEB+∠DEF=90°,得出∠ABE=∠DEF,即可得出结论;(2)先根据相似三角形的性质求出DF的长,再由勾股定理即可得出结论.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,∴∠ABE+∠AEB=90°,∵BE⊥EF∴∠BEF=90°,∴∠AEB+∠DEF=90°,∴∠ABE=∠DEF,∵∠A=∠D,∴△ABE∽△DEF;(2)解:∵△ABE∽△DEF,AB=6,AE=9,DE=2,∴=,即=,解得DF=3,∵四边形ABCD为矩形,∴∠D=90°,由勾股定理得:EF===.【点评】本题考查的是相似三角形的性质,熟知相似三角形的对应边成比例是解答此题的关键.14.某水果商场经销一种高档水果,原价每千克50元.(1)连续两次降价后每千克32元,若每次下降的百分率相同.求每次下降的百分率;(2)若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,那么每千克应涨价多少元?【分析】(1)设每次下降的百分率为,根据相等关系列出方程,可求每次下降的百分率;x(2)设涨价元,根据总盈余每千克盈余数量,可列方程,可求解.【解答】解:(1)设每次下降的百分率为根据题意得:解得:,(不合题意舍去)答:每次下降(2)设涨价元解得:,(不合题意舍去)答:每千克应涨价5元.【点评】本题考查了一元二次方程的应用,找到题目中的相等关系,列出方程是本题的关键.15.【教材呈现】下面是华师版教材九年级上册52页的部分内容:我们可以发现,当两条直线与一组平行践相交时,所截得的线段存在一定的比例关系:.这就是如下的基本事实:两条直线被一组平行线所截,所傅的对应线段成比例,(简称“平行钱分线段成比例“【问题原型】如图①,中,点为边上的点,过点作交为边于点,点在边上,直线交于点,交于点.若,,,则 2.7 .【结论应用】(1)如图②,中,点在的延长线上,直线交于点交于点.求证:;(2)如图③,中,,,,若、分别是边、的中点,连接,点是边上任意一点,连结、分别交于点、,则周长的最小值y (08)y <…=⨯x250(1)32x -=10.2x =2 1.8x =20%y (08)y <…6000(10)(50020)y y =+-15y =210y =AD FE AB EC=)ABCD Y E AB E //EF AD CD F G AD GH BC H EF O 2AE =3EB = 1.8GO =OH =ABCD Y G DA GC AB E BD O GO CO CO EO=ABCD Y 4AB =6BC =60ABC ∠=︒E F AB CD EF G AD GB GC EF M N GMN ∆是 .【分析】(1),,,,,即可求得;(2),,,,同理,,即可证明;(3)过点作以所在直线为对称轴的对称点,交于点,易得,,且、分别是边,的中点,为的中位线,,连接,此时与的交点,此时周长最小,根据勾股定理即可求出进而求出作答.【解答】(1)解:,,又,,,即,,故答案为:2.7;(2)证明:,,,,,,同理,,ABCD Y //AD BC //EF AD ////AD EF BC AE GO EB OH =OH ABCD Y //AD BC ODG OBC ∆∆∽OD GO OB CO =OBE ODC ∆∆∽OD OC OB OE=GO OC CO OE =C AD C 'AD M GC GC '=//EF BC E F AB CD MN GBC ∆12MNG BCG C C ∆∆=BC 'AD G BCG ∆BCC '∆MNG C ∆ABCD QY //AD BC ∴//EF AD Q ////AD EF BC ∴∴AE GO EB OH=2 1.83OH = 2.7OH ∴=ABCD QY //AD BC ∴ADB CBD ∴∠=∠DGO OCB ∠=∠ODG OBC ∴∆∆∽∴OD GO OB CO=OBE ODC ∆∆∽∴OD OC OB OE=;(3)解:过点作以所在直线为对称轴的对称点,交于点,易得,如图,,且、分别是边,的中点,为的中位线,,连接,此时与的交点,此时周长最小,,,,,,在中,,,.【点评】本题考查平行四边形的性质,中位线,平行线的性质,三角形等综合问题,解题的关键是对将军饮马问题的灵活运用.∴GO OC CO OE=C AD C 'AD M GC GC '=//EF BC Q E F AB CD MN ∴GBC ∆11()22MNG BCG C MN MG GN BC BG GC C ∆∆∴=++=++=BC 'AD G BCG ∆60ABC ∠=︒Q 90BCC '∠=︒30DCM ∴∠=︒cos304CM CD =⋅︒==2CC CM '∴==Rt BCC '∆BC '===111()6)3222MNG BCG C C BC BC ∆∆'∴==+=+=+3+。
九年级科学上册 阶段性测试 试题
九年级〔上〕科学阶段性测试卷一、选择题(每一小题2分,一共60分):1、以下物质的性质与另外三种有根本区别的是〔〕2、电解质在水中发生电离的原因是〔〕3、实验室中的药品常按物质的性质、类别等不同而有规律地放置。
在做“酸的性质〞实验时,实验桌上局部药品的摆放如以下图所示。
某同学取用KOH溶液后应把它放回位置〔〕4、将36.5克稀盐酸和40克氢氧化钠溶液混合,充分反响,那么所得溶液的pH值〔〕A. 一定等于7B. 可能等于7C. 一定大于7D. 一定小于75、面上出售的“水壶一次净〞能较好地除去水壶中的水垢,为确定它的成分和使用范围,某同学通过以下实验进展探究:〔1〕取少量样品参加锌粒后,有气泡产生,生成的气体可燃烧并产生淡蓝色火焰。
〔2〕另取少量样品滴加硝酸银后,出现白色沉淀,再滴加稀硝酸沉淀不消失。
经实验,该同学关于“水壶一次净〞的以下结论与推断中合理的是( )A、主要成分是盐酸,实验〔1〕多余B.主要成分是盐酸,实验〔2〕多余C.主要成分是盐酸,对金属无腐蚀作用,可放心使用D.主要成分是盐酸,对金属有腐蚀作用,应适量使用6、在实验室里,氢氧化钠固体需要密封保存的原因是 ( )A.有腐蚀性 B.易风化 C.易吸收氧气 D.易潮解、易吸收空气中的二氧化碳7、久盛石灰水的试剂瓶内壁常附有一层白膜,要洗去这层白膜最好的方法是 ( )A.用水洗 B.用氢氧化钠溶液洗 C.用盐酸洗 D.先用盐酸再用水洗8、以下各溶液中能跟石灰水反响,但没有明显现象的是 ( )B.氯化铁溶液 C.硫酸铜溶液 D.酚酞试液9、要除去氯化钠溶液中少量的碳酸钠,可参加适量的 ( )A.石灰水B.氯化钾溶液 C.硝10、一位遇难的水手,随木排在海洋上漂流,他用完了淡水,仍感到异常口渴,虽然周围的海水非常清澈,但他不喝海水,因为他知道喝海水会致命,主要理由是〔〕A.海水有苦涩味,根本喝不下去B.海水中有各种盐类,能使肠胃腐烂致人死亡C.海水中有许多微生物,有些微生物能致人死亡D.海水会造成水分从血液和组织中脱离出来进入肠胃中,致使人脱水死亡11、松花皮蛋外面料灰的配料中有纯碱、食盐、生石灰、草木灰〔含K2CO3〕,当用水将其调和包在蛋壳外面时,这个过程中发生的复分解反响有〔〕12、要配制含有Na+、H+、K+、Cl-、SO42-五种离子的溶液,所需要的盐至少有〔〕A.5种 B.4种 C.3种 D.2种13、在①N H4Cl、②NH4NO3、③CO(NH2)2三种化肥中,按氮元素的质量分数由高到低的顺序排列正确的选项是〔〕A.①、②、③B.③、②、①C.③、①、②D.②、③、①14、将铁片分别投入以下溶液中,经过一段时间是,溶液的质量减小的是〔〕A.盐酸 B.CuSO4溶液 C.稀硫酸 D.氯化钠溶液15、1克氢气的一组混合物是 ( )A.铁和铜B.铁和锌C.锌和铜D.铁和镁16、以下各图示中的铁最容易生锈的是〔〕17、为改善驻守在南沙某岛礁边防战士的工作、生活条件,今年在岛上安装了太阳能电池板.白天,太阳能电池板给蓄电池充电;晚上,蓄电池为探照灯供电.这样白天与晚上的能量转化形式是〔〕A.白天:太阳能→内能→电能 B.白天:太阳能→电能→化学能C.晚上:化学能→电能→太阳能 D.晚上:化学能→电能→化学能18、某人用如图定滑轮将重为G的重物匀速提起,假设作用在绳的自由端的力分别为F1、F2、F3,那么〔〕A、F1>F2>F3B、 F1=F2=F3C、F1<F2<F3D、F1=F3<F219、以下说法中错误的选项是〔〕A、杠杆一定要有支点B、杠杆可以是直的,也可以是弯的C、杠杆的力臂可以不在杠杆上D、杠杆的长度等于动力臂与阻力臂之和20、甲、乙两台机器的功率相等,在一样的时间是内通过的路程之比为3∶1,那么甲、乙两台机器的( )A. 做功之比为1∶1,受到的牵引力之比为3∶1B. 做功之比为1∶1,受到的牵引力之比为1∶1C. 做功之比为1∶1,受到的牵引力之比为1∶3D. 做功之比为1∶3,受到的牵引力之比为3∶121、电工上水泥杆用的脚扣构造如图,它由一根钢条做成约3 / 5 的弧状,在前后A、B 处绑上橡皮,踏脚板D 上有一个固定脚的皮带C , A 、B 不在一个程度面上,在竖直方向有一个高度差。
阶段性测试题
阶段性测试题1. 简介阶段性测试是教学过程中的重要环节,旨在评估学生所掌握的知识和技能,并为后续的教学提供参考。
本文将围绕阶段性测试的目的、步骤、评估方法以及对教学的意义进行探讨。
2. 目的阶段性测试的目的在于检验学生对所学知识的理解程度和掌握情况,从而帮助教师了解教学效果、及时调整教学策略。
通过阶段性测试,学生可以对自己的学习情况有一个清晰的认识,进一步激发学习动力。
同时,阶段性测试也有助于发现课程设计和教学内容的不足,为教师提供改进的方向。
3. 步骤阶段性测试通常包括以下步骤:1)准备阶段:教师需在课程进行至一定阶段时,提前准备测试内容和形式。
测试内容应该覆盖该阶段所学的重点知识和技能。
根据教学特点和教学目标,测试形式可以是笔试、口试或实际操作等。
2)实施阶段:教师应在适当的时间安排测试,并提前告知学生测试的内容和形式。
测试时间可以是课堂中的小测验,也可以是统一的考试。
在测试过程中,教师应保证环境安静有序,避免作弊行为的发生。
3)评分阶段:教师需按照事先制定好的评分标准和方式对学生的作答进行评分。
评分可以根据答案的准确性、完整性以及表达的清晰程度进行。
评分结果应公平、客观,并及时向学生反馈。
4)反馈阶段:教师在完成评分后,应及时向学生反馈测试结果。
对于表现优异的学生,可以给予肯定和鼓励;对于表现欠佳的学生,需要进行指导和补救措施,帮助他们提高学习水平。
4. 评估方法阶段性测试的评估方法可以采用定性和定量相结合的方式。
定性评估可以通过观察和记录学生的学习情况,例如学生对问题的回答方式、语言表达能力等。
定量评估可以通过成绩、得分等指标来衡量学生的学习成果。
同时,教师还可以通过问卷调查、小组讨论等方式听取学生的意见和建议,为进一步的教学改进提供参考。
5. 对教学的意义阶段性测试对教学的意义在于:1)调整教学策略:通过了解学生的学习情况和掌握程度,教师可以根据实际情况及时调整教学策略,针对性地进行复习、强化,提高学生的学习效果。
阶段性测试题(财政学部分)
阶段性测试题(财政学部分)一、单项选择题1.下列属于纯公共产品的是( )A 国防B 花园C 教育D 桥梁2.三元经济系统的基本决策单位包括:家庭政府和( )A 要素市场B 企业C 商品市场D 社会3.用来满足社会公共需要的产品和服务称为( )A 公共商品B 公共产品C 公共服务D 社会产品4.认识财政职能以政府与( )的关系为基本立足点。
A 居民B 市场C 社会D 税收5.判断资源配置优劣的标准是( )A 福利最大化B 利润最大化C 帕累托最优D GDP最大化6.下列属于转移性支出的是______。
A.国防支出B.科教文卫支出C.社会集团购买D.财政补贴7.为改善铁路运输修建铁轨属于()A 政府消费型支出B 政府投资型支出C 政府转移支出D 政府公益性支出8.出口补贴在性质上属于()A 政府投资型支出B 政府转移性支出C 政府消费型支出D 为弥补企业亏损的支出9.我国公检法司机构的支出属于()。
A 行政管理支出B 国防支出C 政府投资性支出D 补贴支出10.下列各项中不能作为政府投资性支出的是()A 城市供水供气B 通信企业投资C 桥梁修建D 公路修建11.财政收入的主体是()。
A 政府收费B 公债收入C 税收收入D 预算外资金12按收入来源的部门结构为标准,可将财政收入分为工业部门收入和()。
A 农业部门收入B 轻工业部门C 重工业部门收入D 生产部门收入13.按管理级次,可将财政收入分为中央财政收入和()。
A 地方财政收入B 预算收入C 预算外收入D 税收收入14 最优财政收入规模()。
A 是最小化的财政收入规模B 是合乎制度约束规范的财政收入规模C 是使社会福利最大化的规模D 是最大化的财政收入规模15 经济发展水平是决定一个国家财政收入规模的()因素。
A 基础性B 直接性C 重要性D 关键性16.一般认为,( )是税收转嫁的最典型和最普遍的形式。
A 前转B 后转C 消转D 税收资本化17.以下几种类型的增值税税基最大的是( )A 生产型增值税B 收入型增值税C消费型增值税 D 交换型增值税18.一种税区别另一种税的最主要标志是 ( )A 纳税人B 征税对象C 纳税环节D 税率19.增值税是以商品价值中的增值额为课税对象的一个税种,所谓增值额,是指()A C B V+MC C+MD C+V+M20.以下哪种减除国际重复征税的方法为世界上大多数国家所采用()A 扣除法B 低税法C 免税法D 抵免法21.在衡量国债相对规模的指标中,国债依存度是指()占当年财政支出总额的比例A 国债余额B 当年国债还本付息总额C 当年国债发行总额D 当年国债利息支出总额21.国债的最基本的功能是()。
浙江省绍兴市城东初级中学2023-2024学年七年级上学期9月阶段性测试语文试题(含答案)
城东初中2023学年第一学期九月阶段性测试七年级语文试题卷新阶段,在语文学习上你培养了哪些习惯呢?学校开展了习惯分享会,请你参与。
【多积累】(15分)一、美的积累(4分)春风夏雨,秋霜冬雪,大自然生生不息,四时景物美不胜收,在七上第一单元的学习中,我们读朱自清的《春》,仿佛在春风中听到了(1)liáo______亮的短笛声;读老舍的《济南的冬天》,雪后初晴时,山尖的全白,仿佛给蓝天(2)xiāng______上了一道银边;读刘湛秋的《雨的四季》,体悟到了春雨的清新,夏雨的粗犷.,秋雨的(3)静mì______,冬雨的平静。
1.根据拼音写出汉字。
(3分)(1)liáo______亮(2)xiāng______ (3)静mì______2.为加点字选出正确的读音( )。
(1分)粗犷. A.guǎng B.kuàng二、方法积累(7分)3.三、文学常识积累(4分)4.中华民族素来是礼仪之邦,来往称呼接洽往往要用到敬谦词。
请运用你的敬谦词知识,将正确的选项填入以下对话中。
(4分)小语:许久不见,(1)可好?小文:多谢挂念,她非常好。
对了,最近社区在组织活动,我是负责人,正愁活动主题呢,想请教(2)。
小语:依我的(3),环保主题非常契合当下的现状,可以试一试。
小文:感谢意见!(4)经常说你特别有想法,果然如此。
A.愚见B.令堂C.家父D.高见【勤阅读】一、名著阅读5.小语在阅读《朝花夕拾》后,以“迅哥儿”为网名,为童年鲁迅做了一个朋友圈。
(7分)迅哥儿那是我最为心爱的宝书,看起来,确是人面的兽;九头的蛇;一脚的牛;袋子似的帝江;……父亲:迅哥儿,《三哼经》给你买来了,还不错吧!寿镜吾先生:这书可不好,什么“刑天”“帝江”,不就是“怪哉”之流么?!长妈妈:还是回去背《鉴略》吧!(1)你发现,小语做朋友圈的时候,把两个人物的评论给弄错了。
请给小语写一段话,把错误指出来,并结合《朝花夕拾》原文里的人物形象说明理由。
四川省成都市树德中学2022-2023学年高一上学期11月阶段性测试物理试题
a.如图甲所示,将橡皮筋的一端固定在木板上的A点,另一端拴上两根绳套,每根绳套分别连着一个弹簧测力计;
b.沿着两个方向拉弹簧测力计,将橡皮筋的活动端拉到某一位置,将此位置标记为O点,读取此时弹簧测力计的示数,分别记录两个拉力 、 的大小。用笔在两绳的拉力方向上分别标记a、b两点,并分别将其与O点连接,表示两力的方向:
(1)小车由静止开始运动,则纸带的______(填“左”或“右”)端与小车相连
(2)用刻度尺量得OA=1.20cm,OB=2.80cm,OC=4.80cm,OD=7.20cm,纸带运动的加速度大小为______ (结果保留两位有效数字)
(3)如果当时电网中交变电流 频率变大,而做实验的同学并不知道,那么加速度的测量值比实际值______(填“偏大”或“偏小”)
A.F1=F3B.F1>F3C.F1<F2D.F2>F3
6.某同学骑自行车上学,某段时间内沿平直公路运动的v-t图像如图所示。该同学与自行车整体可视为质点,由图像可知( )
A.在0~8s时间内,自行车骑行的加速度逐渐变大
B.在0~8s时间内,自行车骑行的平均速度大小为2m/s
C.在15s~17s时间内,自行车刹车时的加速度大小为4m/s2
A.增大N的读数,增大 角B.减小N的读数,增大 角
C.减小N的读数,减小 角D.增大N的读数,减小 角
三、计算题(17题8分,18题10分,19题10分,20题12分,共40分)
17.一位质量为M的魔术表演者将一小块强磁铁隐藏在自己上衣左手柚口中的某处,他将左手臂伸直指向前上方(如图所示),这时用细线悬挂的质量为m的小铁球被吸引过来,假设小球平衡时细线与竖直方向的夹角为 ,小球与磁铁的连线与竖直方向的夹角为 ,重力加速度为g。求:
微积分线性代数阶段性测试卷参考答案
翔英微积分线性代数阶段性测试卷参考答案一、选择题:. 1. B; 2. C; 3. A; 4. A; 5. C;二、填空题6. 7. 1; 9. ; 10. 1;三、解答题14解:15.求极限)1sin 212sin 1sin (lim 0n n n n n n x ++++++→πππ . 解:∑==+++<++++++n i n i n n n n n n n n n n 1sin 1)sin 2sin (sin 11sin 212sin 1sin πππππππ , 而πππ2sin sin 1lim 101==⎰∑=∞→dx x n i n n i n 另一方面,∑=⋅+=++++>++++++n i n i n n n n n n n n n n n n 1sin 11)sin 2sin (sin 111sin 212sin1sin πππππππ而πππ2sin sin 11lim 101==⋅+⎰∑=∞→dx x n i n n n n i n 2π=⇒原式.16.设线性方程组 , 问、取何值时,方程组无解,有唯一解,有无限多组解。
解:时,方程组有唯一解;时,方程组无解;时,方程组无解; 时,无穷多解,解为 ,.17.计算行列式(1) ; (2)解:。
18. 设A = ,且AB =A +2B ,求B 。
解:B=19. 若n 阶矩阵、满足,证明。
解: =A+B+AB三、应用题:20.求由摆线x = a( t - sin t ), y = a( 1 – cos t )的一拱(0≤t ≤2π)与x 轴所围图形绕直线y = 2a 旋转而成的旋转体的体积。
327a π .72)2(法二:.7)(.20;)cos 1()cos 1(而),sin (曲线方程为.,2轴作平移:法一:对3220223220212221a dx y a a V a dx y y V a y y t a y t a y t t a x x x a y y y aaππππππππ⎰⎰=-⋅==-=∴-=⇒=+-=⇒-=-=∴=-=四、扩展题:21.已知1998,2196,2394,1800都能被18整除,求证 也 能被18整除。
初三年级语文学科阶段性练习答案
初三年级语文学科阶段性练习参考答案1.略⑤春蚕到死丝方尽,蜡炬成灰泪始干⑥溪云初起日沉阁,山雨欲来风满楼2.(1)chēn (2)袤曳(3)C (4)B3. C4.(1)顽强、拼搏、自尊、自信、自强、自立的进取精神;团结、友爱、互帮、互助、和谐、包容的精神。
追求梦想、超越自我、挑战自我(2)楷书刚正强健、顶天立地,是正直刚毅的自强精神。
(3)A5. (1)(3分)拳打镇关西;大闹五台山;火烧瓦罐寺;单打二龙山;征田虎时,杀死钮文忠;征方腊时,杀死夏侯成等。
(写三个即可)(2)(3分)解释鲁智深杀人放火是为行侠仗义或忠君报国(2分);同时为自己开脱洗白:手段虽然暴力,但目的是忠于朝廷(1分)。
(3)(4分)同意。
他为了维护自己忠义的名节,不惜毒害李逵;意欲洗荡祝家庄;为了救卢俊义,让李逵杀害无辜百姓。
或不同意,宋江行侠仗义,救人于危难:曾私放晁天王,资助阎婆买棺材,送银子给李逵还债等。
(写出两个情节各1分,人物评价分析2分)6. D7. 至常州无锡 /侨梅里之祗陀/爱其地胜俗淳/遂定居焉8. (1)(他)对于宗族中的亲朋旧友,惠爱有恩,特别喜欢周济别人的困急。
(3分)(2)(倪瓒)不作谄媚之事来取悦(侍奉)上官,足迹从来不到贵人之门。
(3分)9.例:即使有多余的钱财,也从来不做粗俗奢华之事;倪瓒见义则为,尊官显人,都乐意与之交往,侧面烘托其品德高尚;对亲友惠爱有恩,喜欢周人之急;雅好名琴书画,松桂兰竹香菊之属,侧面烘托品性高洁;晚年更加追慕恬淡退隐的生活,散尽家财,浮游于湖山之间;不愿结交达官显贵,不为谄媚之事等。
(3分,围绕有德、有才、品性高洁淡泊来谈倪瓒的表现,每点1分,答出3点得全分。
)10. (1)一语双关,表面上指园子中的梅花落在地上,像雪一样的杂乱,实际上是指诗人因弟弟被扣而心中慌乱,担忧思念。
(2)“离恨恰如春草,更行更远还生。
”运用了比喻将离别的愁苦比作春草,借助生命力顽强的春草,生动形象地写出作者无尽的思念和愁苦之情(离恨的无边无际和难以消除。
九年级化学阶段性评估测试题及答案
九年级化学阶段性评估测试题(时间:60分钟满分:100分)可能用到的相对原子质量:H -1 C–12 N–14 O–16 Cl-35.5 Ca- 40一、我会选择(每小题只有一个选项符合题意,每小题2分,共36分)1.下图所示变化属于化学变化的是()2.用右图的简易净水器处理河水,下面对该净水器分析正确的是()A.能杀菌消毒B.能把硬水变为软水C.能得到纯净水D.活性炭主要起吸附杂质的作用3.最近“纸火锅”(如右图)逐渐流行起来。
“纸火锅”是用纸张代替金属材料做容器盛放汤料,当酒精燃烧时纸张不会燃烧。
对此现象,下列解释合理的是( )A.纸张不是可燃物,不能燃烧B.纸张被水浸湿,导致着火点降低C.水蒸发时吸收热量,温度达不到纸张的着火点D.空气不充足,纸张不会燃烧4.下面是某化学反应的微观模型示意图,据此分析错误的是( )A.反应前后原子数目没有变化B.示意图中的各物质均属于化合物C.分子是由原子构成的D.反应的本质是原子的重新组合过程5.下列基本实验操作的图示正确的是()A.检查气密性B.读液体体积C.过滤液体D.熄灭酒精灯6.北京时间20XX年12月6日17时47分,嫦娥三号探测器成功实施近月制动,顺利进入环月轨道。
将对月球进行全球性、整体性和综合性探测,月球上的“氦-3”蕴藏量巨大,探月的目的之一是获取核聚变燃料──氦-3,以解决地球能源危机。
氦-3原子核里有2个质子,1个中子,相对原子质量为3,下列表示氦-3原子的结构示意图中正确的是( )7.化学用语是学习化学的工具,是国际通用的化学语言。
下列说法错误的是( )A. H 2S 中的“2”表示一个硫化氢分子中含有2个氢原子B.2Ar: 表示2个氩分子或2个氩原子C.Fe 2+中的“2”表示每个亚铁离子带有2个单位的正电荷D .:“+2”表示镁离子带有两个单位正电荷8.火星是地球的近邻。
去年1月美国“勇气”号和“机遇”号火星车相继在火星表面登陆,使人类对火星的探索取得了重大突破。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阶段性测试题九(平面解析几何)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2011·昆明模拟)设直线ax +by +c =0的倾斜角为α,且sin α+cos α=0,则a ,b 满足( )A .a +b =1B .a -b =1C .a +b =0D .a -b =0[答案] D[解析] 由sin α+cos α=0,得tan α=-1. ∴α=135°,即a =b ,a -b =0.2.(2011·福州模拟)若ab <0,bc <0,则直线ax +by +c =0所经过的象限是( ) A .一、二、三 B .一、二、四 C .一、三、四 D .二、三、四 [答案] A[解析] 直线方程化为y =-a b x -c b ,其斜率k =-a b ,在y 轴上截距为-cb.∵ab <0,bc <0,∴k =-a b >0,-cb >0,∴此直线经过第一、二、三象限.3.(2011·广东惠州模拟)函数f (x )=(x -2012)·(x +2011)的图像与x 轴,y 轴有三个交点,有一个圆恰经过这三个点,则此圆与坐标轴另一个交点是( )A.⎝⎛⎭⎫0,12 B .(0,1) C.⎝⎛⎭⎫0,20112012 D.⎝⎛⎭⎫0,20122011 [答案] B[解析] f (x )与x 轴的交点为A (2012,0),B (-2011,0),与y 轴的交点为C (0,-2011×2012). 设过A ,B ,C 三点的圆与y 轴的另一交点为D (0,y )(y >0),得|OD |=1,即y =1. ∴D (0,1).4.(2011·河南洛阳模拟)若点P (1,1)为圆(x -3)2+y 2=9的弦MN 的中点,则弦MN 所在直线方程为( )A .2x +y -3=0B .x -2y +1=0C .x +2y -3=0D .2x -y -1=0[答案] D[解析] 圆心C (3,0),k CP =-12,由k CP ·k MN =-1,得k MN =2,所以MN 所在直线方程是2x -y -1=0.故选D.5.(2010·天津卷)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程是y =3x ,它的一个焦点在抛物线y 2=24x 的准线上.则双曲线的方程为( )A.x 236-y 2108=1 B.x 29-y 227=1 C.x 2108-y 236=1 D.x 227-y 29=1 [答案] B[解析] 由题易知ba =3①且双曲线焦点为(6,0)、(-6,0), 则有a 2+b 2=36②由①②知:a =3,b =33, ∴双曲线方程为x 29-y 227=1,故选B.6.(2011·江西南昌模拟)已知椭圆x 216+y 29=1的左、右焦点分别为F 1、F 2,点P 在椭圆上.若P 、F 1、F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为( )A.95 B .3 C.977D.94[答案] D[解析] 设椭圆短轴的一个端点为M . 由于a =4,b =3,∴c =7<b . ∴∠F 1MF 2<90°,∴只能∠PF 1F 2=90°或∠PF 2F 1=90°. 令x =±7,得y 2=⎝⎛⎭⎫1-716×9=9216, ∴|y |=94.即P 到x 的距离为94.7.(2011·西安调研)若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的离心率为( )A.54 B.52 C.32 D.54[答案] B[解析] 因为椭圆离心率e =32,即c a =32,也即a 2-b 2a 2=34,所以b 2a 2=14,则1+b 2a 2=54,即a 2+b 2a 2=54,双曲线离心率e ′=c ′a ′=52,故选B.8.(2010·华阴模拟)若椭圆x 2a 2+y 2b 2=1(a >0b >0)的左、右焦点分别为F 1,F 2,抛物线y 2=2bx 的焦点为F .若F 1F →=3FF 2→,则此椭圆的离心率为( )A.12B.22C.13D.33 [答案] B[解析] ∵F ⎝⎛⎭⎫b 2,0,F 1(-c,0),F 2(c,0),且F 1F →=3FF 2→, ∴F 1F →=⎝⎛⎭⎫b 2+c ,0,FF 2→=⎝⎛⎭⎫c -b 2,0, ∴b 2+c =3c -3b2,即b =c . ∴a 2=b 2+c 2=2c 2, ∴c a =e =22. 9.(2010·新课标卷)已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1 B.x 24-y 25=1 C.x 26-y 23=1 D.x 25-y 24=1 [答案] B[解析] 本题考查双曲线标准方程的求法,可以利用“点差法”进行求解,也可以利用根与系数的关系进行解答,但运算量较大.设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2)则有:⎩⎨⎧x 21a 2-y 21b2=1x 22a 2-y22b 2=1,两式作差得:y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2)=-12b 2-15a 2=4b 25a2,又AB 的斜率是-15-0-12-3=1,所以将4b 2=5a 2代入a 2+b 2=9得a 2=4,b 2=5,所以双曲线标准方程是x 24-y 25=1,故选B. 10.(2011.4·潍坊二模)如图,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于两点A 、B ,交其准线于C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )A .y 2=32xB .y 2=9xC .y 2=92xD .y 2=3x[答案] D[解析] 如题图所示,分别过点A 、B 作AA 1、BB 1与准线垂直,且垂足分别为A 1、B 1, 由已知条件|BC |=2|BF |得|BC |=2|BB 1|,∴∠BCB 1=30°,于是可得直线AB 的倾斜角为60°. 又由|AF |=3得|AF |=|AA 1|=3=12|AC |,于是可得|CF |=|AC |-|AF |=6-3=3, ∴|BF |=13|CF |=1.∴|AB |=|AF |+|BF |=3+1=4.设直线AB 的方程为y =3(x -p2),代入y 2=2px 得3x 2-5px +34p 2=0,∵|AB |=|AF |+|BF |=|AA 1|+|BB 1|=x A +p 2+x B +p 2=x A +x B +p =53p +p =83p =4,∴p =32,即得抛物线方程为y 2=3x .故选D.第Ⅱ卷(非选择题 共100分)二、填空题(本大题共5个小题,每小题5分,共25分,把正确答案填在题中横线上) 11.(文)(2010·湖南卷)若不同两点P ,Q 的坐标分别为(a ,b ),(3-b,3-a ),则线段PQ 的垂直平分线l 的斜率为________;圆(x -2)2+(y -3)2=1关于直线l 对称的圆的方程为________.[答案] -1 x 2+(y -1)2=1[解析] 本题考查直线的斜率公式、两直线垂直的充要条件、两圆关于某直线对称问题. 过P 、Q 两点的直线的斜率k PQ =b -(3-a )a -(3-b )=a +b -3a +b -3=1,∴线段PQ 的垂直平分线l 的斜率为-1,线段PQ 的中点坐标为⎝⎛⎫a -b +32,b -a +32,∴PQ 的垂直平分线l 的方程为y -b -a +32=-⎝⎛⎭⎫x -a -b +32,即y =-x +3,设圆心(2,3)关于直线l :y =-x +3的对称点为(m ,n ),则⎩⎪⎨⎪⎧n +32=-m +22+3n -3m -2=1,解得⎩⎪⎨⎪⎧m =0n =1,故所求的圆的方程为x 2+(y -1)2=1.(理)(2010·四川卷)直线x -2y +5=0与圆x 2+y 2=8相交于A 、B 两点,则|AB |=________. [答案] 2 3[解析] 圆心到直线x -2y +5=0的距离d =5,又圆的半径为22,则|AB |=2(22)2-(5)2=2 3.12.(文)(2011·郑州一模)已知点A (1,0),B (2,0).若动点M 满足AB →·BM →+2|AM →|=0,则点M 的轨迹方程为________.[答案] x 22+y 2=1[解析] (1)设M (x ,y ),则AB →=(1,0),BM →=(x -2,y ),AM →=(x -1,y ), 由AB →·BM →+2|AM →|=0得,(x -2)+2·(x -1)2+y 2=0.整理得x 22+y 2=1.(理)(2011·郑州一模)已知点F 是双曲线x 24-y 212=1的左焦点,定点A 的坐标为(1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________.[答案] 9[分析] 根据双曲线定义,建立点A 、P 与两焦点之间的关系,利用两点之间线段最短求解.[解析] 如图所示,根据双曲线定义知,|PF |-|PF ′|=4,即|PF |-4=|PF ′|.又|P A |+|PF ′|≥|AF ′|=5,将|PF |-4=|PF ′|代入得,|P A |+|PF |-4≥5,即|P A |+|PF |≥9,当且仅当A 、P 、F ′三点共线,即P 为图中的点P 0时等号成立,故|PF |+|P A |的最小值为9.13.(2011·安康质检)过点M (-2,0)的直线m 与椭圆x22+y 2=1交于P 1、P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为______.[答案] -12[解析] 令P 1(x 1,y 1)、B 2(x 1,y 2),则k 1k 2=y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=y 21-y 22x 21-x 22=⎝⎛⎭⎫1-x 212-⎝⎛⎭⎫1-x 222x 21-x 22=-12. 14.(2011·安阳二模)过双曲线x 2a 2-y 2b 2=1的右焦点F (c,0)的直线交双曲线于M 、N 两点,交y 轴于P 点,则有PM MF -PN NF 的定值为2a 2b 2.类比双曲线这一结论,在椭圆x 2a 2+y 2b 2=1(a >b >0)中,PM MF -PNNF的定值为________. [答案] -2a 2b2[解析] 对双曲线利用特殊位置法,即当直线过原点时,PM MF -PN NF =a c -a -a c +a =2a 2c 2-a 2=2a 2b 2. 同理,对椭圆也利用同样的办法可得PM MF -PN NF =a c -a -a c +a =2a 2c 2-a 2=-2a 2b2.15.(2011·杭州二模)过抛物线x 2=2py (p >0)的焦点作斜率为1的直线与该抛物线交于A ,B 两点,A ,B 在x 轴上的正射影分别为D ,C .若梯形ABCD 的面积为122,则p =________.[答案] 2[解析] 抛物线的焦点坐标为F (0,p 2),则过焦点斜率为1的直线方程为y =x +p2,设A (x 1,y 1),B (x 2,y 2)(x 2>x 1)由题意可知y 1>0,y 2>0.由⎩⎪⎨⎪⎧y =x +p 2x 2=2py ,消去y 得x 2-2px -p 2=0.由韦达定理得:x 1+x 2=2p ,x 1x 2=-p 2. 所以梯形ABCD 的面积为S =12(y 1+y 2)(x 2-x 1)=12(x 1+x 2+p )(x 2-x 1)=12×3p (x 1+x 2)2-4x 1x 2=12×3p 4p 2+4p 2=32p 2.所以32p 2=122,又p >0.所以p =2.三、解答题(本大题共6个小题,共75分,解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分12分)(2010·河南商丘调研)设直线l 的方程为(a +1)x +y -2-a =0(a ∈R ). (1)若直线l 在两坐标轴上的截距相等,求直线l 的方程;(2)若a >-1,直线l 与x 、y 轴分别交于M 、N 两点,求△OMN 面积取最小值时,直线l 的方程.[解析] (1)当直线l 经过坐标原点时,该直线在两坐标轴上的截距都为0,此时2+a =0,解得a =-2,此时直线l 的方程为x -y =0;当直线l 不经过坐标原点,即a ≠-2时,由直线在两坐标轴上的截距相等可得2+a a +1=2+a ,解得a =0,此时直线l 的方程为x +y -2=0.所以,直线l 的方程为x -y =0或x +y -2=0. (2)由直线方程可求得M ⎝⎛⎭⎪⎫2+a a +1,0、N (0,2+a ),又因为a >-1,故S△OMN=12×2+a a +1×(2+a )=12×(a +1)2+2(a +1)+1a +1=12×[(a +1)+1a +1+2]≥12×⎝ ⎛⎭⎪⎫2(a +1)×1a +1+2=2,当且仅当a +1=1a +1,即a =0或a =-2(舍去)时等号成立.此时直线l 的方程为x +y -2=0.[点评](1)截距相等,包括过原点的情形.(2)应用基本不等式求最值一定要注意条件的验证. 17.(本小题满分12分)(2011·山东潍坊模拟)已知方程x 2+y 2-2x -4y +m =0. (1)若此方程表示圆,求m 的取值范围;(2)若(1)中的圆与直线x +2y -4=0相交于M ,N 两点,且OM ⊥ON (O 为坐原点),求m ; (3)在(2)的条件下,求以MN 为直径的圆的方程. [解析] (1)(x -1)2+(y -2)2=5-m , ∴m <5.(2)设M (x 1,y 1),N (x 2,y 2),则x 1=4-2y 1,x 2=4-2y 2, 则x 1x 2=16-8(y 1+y 2)+4y 1y 2 ∵OM ⊥ON ,∴x 1x 2+y 1y 2=0 ∴16-8(y 1+y 2)+5y 1y 2=0①由⎩⎪⎨⎪⎧x =4-2y x 2+y 2-2x -4y +m =0得5y 2-16y +m +8=0∴y 1+y 2=165,y 1y 2=8+m 5,代入①得,m =85.(3)以MN 为直径的圆的方程为 (x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0, 即x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0, ∴所求圆的方程为x 2+y 2-85x -165y =0.18.(本小题满分12分)(2011·江西景德镇模拟)已知两点A (2,0)、B (-2,0).动点P 在y 轴上的射影为Q ,P A →·PB →=2PQ →2.(1)求动点P 的轨迹E 的方程;(2)设直线l 过点A ,斜率为k .当0<k <1时,曲线E 的上支上有且仅有一点C 到直线l 的距离为2,试求k 的值及此时点C 的坐标.[解析] (1)设动点P 的坐标为(x ,y ),则点Q 的坐标为(0,y ),PQ →=(-x,0),P A →=(2-x ,-y ),PB →=(-2-x ,-y ),P A →·PB →=x 2-2+y 2.由题意P A →·PB →=2PQ →2,得x 2-2+y 2=2x 2. ∴所求动点P 的轨迹方程为y 2-x 2=2. (2)设直线l :y =k (x -2) (0<k <1).由题意,点C 在与直线l 平行且与l 之间的距离为2的直线l ′上. 设直线l ′:y =kx +b ,则得|2k +b |k 2+1=2, 即b 2+22kb =2. ①把y =kx +b 代入y 2-x 2=2,且整理得(k 2-1)x 2+2kbx +(b 2-2)=0, 则由题意知Δ=4k 2b 2-4(k 2-1)(b 2-2)=0, 即b 2+2k 2=2.②①-②得2k (2b -k )=0,k =2b .由方程组⎩⎨⎧k =2b ,b 2+2k 2=2,得k =255,b =105. 此时,由方程组⎩⎪⎨⎪⎧y =255x +105,y 2-x 2=2,得点C 的坐标为(22,10). 19.(本小题满分12分)(2011·辽宁师大附中月考)已知矩形ABCD 的两条对角线交于点M (12,0),AB 边所在直线的方程为3x -4y -4=0.点N (-1,13)在AD 所在直线上.(1)求AD 所在直线的方程及矩形ABCD 的外接圆C 1的方程;(2)已知点E (-12,0),点F 是圆C 1上的动点,线段EF 的垂直平分线交FM 于点P ,求动点P 的轨迹方程.[解析] (1)∵AB 所在直线的方程为3x -4y -4=0, 且AD 与AB 垂直, ∴直线AD 的斜率为-43.又点N 在直线AD 上.∴直线AD 的方程为y -13=-43(x +1),即4x +3y +3=0.由⎩⎪⎨⎪⎧3x -4y -4=04x +3y +3=0,解得点A 的坐标为(0,-1). 又两条对角线交于点M ,∴M 为矩形ABCD 的外接圆的圆心. 而|MA |=(0-12)2+(-1-0)2=52.∴外接圆的方程为(x -12)2+y 2=54.(2)由题意得,|PE |+|PM |=|PF |+|PM |=|FM |=52,又|FM |>|EM |, ∴P 的轨迹是以E 、M 为焦点,长半轴长为54的椭圆,设方程为x 2a 2+y 2b 2=1(a >b >0),∵c =12,a =54,∴b 2=a 2-c 2=516-14=116.故动点P 的轨迹方程是x 2516+y 2116=1.20.(本小题满分13分)(理)(2010·安徽卷)椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率e =12.(1)求椭圆E 的方程;(2)求∠F 1AF 2的角平分线所在直线l 的方程;(3)在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出;若不存在,说明理由.[解析] 本题考查椭圆的定义及标准方程,椭圆的简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式.点关于直线的对称等基础知识;考查解析几何的基本思想、综合运算能力、探究意识与创新意识.解题思路是:(1)利用待定系数法求标准方程.(2)利用向量法或角平分线的性质求直线方程.(3)利用平方差法或代数法判定是否存在这样一点.(1)设椭圆E 的方程为x 2a 2+y 2b 2=1,(a >b >0)由e =12,即c a =12,∴a =2c ,∴b 2=a 2-c 2=3c 2.∴椭圆的方程化为x 24c 2+y 23c2=1.将A (2,3)代入上式,得1c 2+3c 2=1,解得c =2,∴椭圆E 的方程为x 216+y 212=1.(2)解法1:由(1)知F 1(-2,0),F 2(2,0),所以 直线AF 1的方程为:y =34(x +2),即3x -4y +6=0.直线AF 2的方程为:x =2.由点A 的椭圆E 上的位置知,直线l 的斜率为正数. 设P (x ,y )为l 上任一点,则 |3x -4y +6|5=|x -2|. 若3x -4y +6=5x -10,得x +2y -8=0(因其斜率为负,舍去). 于是,由3x -4y +6=-5x +10得2x -y -1=0, 所以直线l 的方程为:2x -y -1=0. 解法2:∵A (2,3),F 1(-2,0),F 2(2,0), ∴AF 1→=(-4,-3),AF 2→=(0,-3). ∴AF 1→|AF 1→|+AF 2→|AF 2→|=15(-4,-3)+13(0,-3)=-45(1,2).∴k 1=2,∴l :y -3=2(x -1),即2x -y -1=0.(3)解法1:假设存在这样的两个不同的点B (x 1,y 1)和C (x 2,y 2),∵BC ⊥l ,∴k BC =y 2-y 1x 2-x 1=-12. 设BC 的中点为M (x 0,y 0),则x 0=x 1+x 22,y 0=y 1+y 22, 由于M 在l 上,故2x 0-y 0-1=0.①又B ,C 在椭圆上,所以有x 2116+y 2112=1与x 2216+y 2212=1. 两式相减,得x 22-x 2116+y 22-y 2112=0, 即(x 1+x 2)(x 2-x 1)16+(y 1+y 2)(y 2-y 1)12=0. 将该式写为18·x 1+x 22+y 2-y 1x 2-x 1·16·y 1+y 22=0,并将直线BC 斜率k BC 和线段BC 的中点表示代入该表达式中,得18x 0-112y 0=0,即3x 0-2y 0=0.② ①×2-②得x 0=2,y 0=3,即BC 的中点为点A ,而这是不可能的.∴不存在满足题设条件的点B 和C .解法2:假设存在B (x 1,y 1),C (x 2,y 2)两点关于直线l 对称,则l ⊥BC ,∴k BC =-12. 设直线BC 的方程为y =-12x +m ,将其代入椭圆方程x 216+y 212=1,得一元二次方程3x 2+4(-12x +m )2=48, 即x 2-mx +m 2-12=0.则x 1与x 2是该方程的两个根.由韦达定理得x 1+x 2=m ,于是y 1+y 2=-12(x 1+x 2)+2m =3m 2, ∴B ,C 的中点坐标为(m 2,3m 4). 又线段BC 的中点在直线y =2x -1上,∴3m 4=m -1,得m =4. 即B ,C 的中点坐标为(2,3),与点A 重合,矛盾.∴不存在满足题设条件的相异两点.(文)如图,已知抛物线C 1:x 2+by =b 2经过椭圆C 2:x 2a 2+y 2b 2=1(a >b >0)的两个焦点.(1)求椭圆C 2的离心率;(2)设点Q (3,b ),又M ,N 为C 1与C 2不在y 轴上的两个交点,若△QMN 的重心在抛物线C 1上,求C 1和C 2 的方程.[解析] 本题主要考查了抛物线及椭圆的方程和性质,并涉及求离心率问题,重心坐标公式,曲线与曲线的交点等内容,注重运算变形能力的考查,综合性较强.(1)椭圆的焦点为(±a 2-b 2,0),代入抛物线方程a 2-b 2+b ·0=b 2⇒b 2a 2=12,∴e =1-(b a)2=22. (2)由(1)问a 2=2b 2,∴椭圆方程为x 22b 2+y 2b 2=1, 即x 2+2y 2=2b 2.设N (x 0,y 0),M (-x 0,y 0),Q (3,b ),则重心(1,2y 0+b 3),代入抛物线方程, ⎩⎪⎨⎪⎧ 1+2by 0+b 23=b 2x 20+by 0=b 2x 20+2y 20=2b 2⇒⎩⎪⎨⎪⎧ b 2=1,y 0=-b 2或y 0=b (舍) ∴抛物线方程为y =1-x 2,椭圆方程为:x 22+y 2=1. 21.(本小题满分14分)(2010·陕西卷)如图,椭圆C :x 2a 2+y 2b2=1的顶点为A 1,A 2,B 1,B 2,焦点为F 1,F 2,| A 1B 1|=7,S ▱A 1B 1A 2B 2=2S ▱B 1F 1B 2F 2.(1)求椭圆C 的方程;(2)设n 是过原点的直线,l 是与n 垂直相交于P 点、与椭圆相交于A 、B 两点的直线,|OP→|=1,是否存在上述直线l 使AP →·PB →=1成立?若存在,求出直线l 的方程;若不存在,请说明理由.[解析] 本题主要考查待定系数法求椭圆方程、直线与椭圆的位置关系.第一问直接将条件转化为关于a ,b 的方程组求解,第二问将向量AP →·PB →=1与|OP →|=1结合得出坐标之间的关系,又将l 与椭圆联立得根与系数的关系,从而确定等式求解. 要注意对斜率存在和不存在两种情况的讨论.解:(1)由|A 1B 1|=7知a 2+b 2=7①由S ▱A 1B 1A 2B 2=2S ▱B 1F 1B 2F 2知a =2c ,②又b 2=a 2-c 2,③由①,②,③解得a 2=4,b 2=3,故椭圆C 的方程为x 24+y 23=1. (2)设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),假设使AP →·PB →=1成立的直线l 存在,①当l 不垂直于x 轴时,设l 的方程为y =kx +m ,由l 与n 垂直相交于P 点且|OP →|=1得 |m |1+k2=1,即m 2=k 2+1, ∵AP →·PB →=1,|OP →|=1,∴OA →·OB →=(OP →+P A →)·(OP →+PB →)=OP 2→+OP →·PB →+P A →·OP →+P A →·PB →=1+0+0-1=0,即x 1x 2+y 1y 2=0.将y =kx +m 代入椭圆方程得,(3+4k 2)x 2+8kmx +(4m 2-12)=0,由根与系数的关系可得x 1+x 2=-8km 3+4k 2,④ x 1x 2=4m 2-123+4k 2.⑤ 0=x 1x 2+y 1y 2=x 1x 2+(kx 1+m )(kx 2+m )=x 1x 2+k 2x 1x 2+km (x 1+x 2)+m 2=(1+k 2)x 1x 2+km (x 1+x 2)+m 2,将④,⑤代入上式得(1+k 2)(4m 2-12)-8k 2m 2+m 2(3+4k 2)=0,⑥将m 2=1+k 2代入⑥并化简得-5(k 2+1)=0,矛盾.即此时直线l 不存在.②当l 垂直于x 轴时,满足|OP →|=1的直线l 的方程为x =1或x =-1,当x =1时,A ,B ,P 的坐标分别为(1,32),(1,-32),(1,0), ∴AP →=(0,-32),PB →=(0,-32),∴AP →·PB →=94≠1.当x =-1时,同理可得AP →·PB →≠1,矛盾.即此时直线l 也不存在.综上可知,使AP →·PB →=1成立的直线l 不存在.点评:(1)求椭圆方程的最常用方法是待定函数法,结合条件及椭圆性质建立关于a ,b 的方程式,注意隐含条件a 2=b 2+c 2的应用.(2)有关椭圆中的存在性问题,处理方式是先假设存在,设出相关方程,联立后利用韦达定理找到根与系数的联系,建立有关参数的方程,求解,注意判别式Δ的限制作用.。