北师大版八年级上数学各章节试题

合集下载

北师大版数学八年级上册全册全套单元试题及答案

北师大版数学八年级上册全册全套单元试题及答案

北师大版数学八年级上册全册单元试卷第一章 勾股定理一、选择题1.以下列各组数据为三角形三边,能构成直角三角形的是( ) (A )4cm ,8cm ,7cm (B ) 2cm ,2cm ,2cm (C ) 2cm ,2cm ,4cm (D )13cm ,12 cm ,5 cm2.一个三角形的三边长分别为15cm ,20cm ,25cm ,则这个三角形最长边上的高为( ) (A )12cm (B )10cm (C )12.5cm (D )10.5cm3.Rt ∆ABC 的两边长分别为3和4,若一个正方形的边长是∆ABC 的第三边,则这个正方形的面积是( ) (A )25 (B )7 (C )12 (D )25或74.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,可搭成(首尾连接)直角三角形的个数为 ( ) (A )1个 (B )2个 (C )3个 (D )4个5.将直角三角形的三边长扩大相同的倍数后,得到的三角形是( ) (A )直角三角形 (B )锐角三角形 (C )钝角三角形 (D )以上结论都不对 6.在△ABC 中,AB =12cm , AC =9cm ,BC =15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对7.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m 远的水底,竹竿高出水面0.5m ,把竹竿的顶端拉向岸边,竿顶和岸边的水平刚好相齐,河水的深度为( )(A )2m (B )2.5cm (C )2.25m (D )3m 8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( )(A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对 9.一架250cm 的梯子斜靠在墙上,这时梯足与墙的终端距离为70cm ,如果梯子顶端沿墙下滑40cm ,那么梯足将向外滑动( ) (A )150cm(B )90cm(C )80cm(D )40cm10.三角形三边长分别为12+n 、n n 222+、1222++n n (n 为自然数),则此三角形是( ) (A )直角三角形 (B )等腰直角三角形 (C )等腰三角形 (D )以上结论都不对二、填空题11.写四组勾股数组.______,______,______,______.12.若一个直角三角形的三边为三个连续的偶数,则它的周长为____________。

北师大版八年级数学上册 第三章 位置与坐标单元综合检测(含答案)

北师大版八年级数学上册 第三章 位置与坐标单元综合检测(含答案)

第三章位置与坐标综合测试一、选择题1、如图所示,小颖从家到达莲花中学要穿过一个居民小区,若小区的道路均是正南或正东方向,小颖走下面哪条线路不能到达学校( )A.(0,4)→(0,0)→(4,0) B、(0,4)→(4,4)→(4,0)C.(0,4)→(1,4)→(1,1)→(4,1)→(4,0) D.(0,4)→(3,4)→(4,2)→(4,0)2、如图所示,有一种“怪兽吃豆豆”的游戏,怪兽从点O(0,0)出发,先向西走1cm,再向北走2cm,正好能吃到位于点A的豆豆,如果点A用(-1,2)表示,那么(1,-2)所表示的位置是( ) A.点A B.点B C.点C D.点D3、如果点P(a,b)在x轴上,那么点Q(ab,-1)在( )A、y轴的正半轴上B、y轴的负半轴上C、x轴的正半轴上D.x轴的负半轴上4、在平面直角坐标系中,一个多边形各个顶点的纵坐标保持不变,横坐标分别乘-1,则所得的多边形与原多边形相比( )A、多边形形状不变,整体向左平移了1个单位;B、多边形形状不变,整体向下平移了1个单位C、所得多边形与原多边形关于y轴成轴对称;D.所得多边形与原多边形关于x轴成轴对称5、如图所示,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得三角形ABP为直角三角形,则满足这样条件的点P共有( )A、2个B、4个C、6个D.7个6.若点M(x,y)的坐标满足关系式xy=0,则点M在( ).A、原点B、x轴上C、y轴上D、x轴上或y轴上7.若点N到x轴的距离是1,到y轴的距离是2,则点N的坐标是( ).A、(1,2)B、(2,1)C、(1,2),(1,-2),(-1,2),(-1,-2)D、(2,1),(2,-1),(-2,1),(-2,-1)8.已知点A(a,-b)在第二象限,则点B(3-a,2-b)在( ).A、第一象限B、第二象限C、第三象限D、第四象限9.已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,( )是平移得到的.A、(0,3),(0,1),(-1,-1)B、(-3,2),(3,2),(-4,0)C、(1,-2),(3,2),(-1,-3)D、(-1,3),(3,5),(-2,1)二、填空题10.若点P(m-3,m+1)在第二象限,则m的取值范围是______.11.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为______.12.△ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合.则B、C两点坐标分别为____________.13.平面直角坐标系中的一个图案的纵坐标不变,横坐标分别乘-1,那么所得的图案与原图案会关于______对称.14.在如下图所示的方格纸中,每个小正方形的边长为1,如果以MN所在直线为y轴,以小正方形的边长为单位长度建立平面直角坐标系,使A点与B点关于原点对称,则此时C点的坐标为______、15.观察如图所示的图形,若图中“鱼”上点P的坐标为(4,3、2),则点P的对应点P1的坐标应为____、16、在平面直角坐标系中,已知A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至CD,且点A的对应点C的坐标为(3,b),点B的对应点D的坐标为(a,3),则a+b=____、三、解答题17、某地区两条交通主干线l1与l2互相垂直,并交于点O,l1为南北方向,l2为东西方向.现以l2为x轴,l1为y轴,取100 km为1个单位长度建立平面直角坐标系,根据地震监测部门预报,该地区最近将有一次地震,震中位置在P(1,-2)处,影响区域的半径为300 km.(1)根据题意画出平面直角坐标系,并标出震中位置.(2)在平面直角坐标系内画出地震影响的范围,并判断下列城市是否受到地震影响、城市:O(0,0),A(-3,0),B(0,1),C(-1、5,-4),D(0,-4),E(2,-4).18.在如图所示的方格图中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”,根据图形回答下列问题.(1)图中格点三角形A'B'C'是由格点三角形ABC通过怎样的变换得到的?(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),请写出格点三角形DEF各顶点的坐标,并求出三角形DEF的面积.19、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点.整点P从原点O出发,速度为1 cm/s,且整点P做向上或向右运动,运动时间(s)与整点个数(个)的关系如下表:根据上表中的规律,回答下列问题:(1)当整点P从点O出发4s时,可以得到整点P的个数为____;(2)当整点P从点O出发8s时,在如图所示的直角坐标系中描出可以得到的所有整点;(3)当整点P从点O出发____s时,可以达到整点(16,4)的位置、20.如果点P(1-x,1-y)在第二象限,那么点Q(1-x,y-1)关于原点的对称点M在第几象限?21、如图,小虫A从点(0,10)处开始,以每秒3个单位长度的速度向下爬行,小虫B同时从点(8,0)处开始,以每秒2个单位长度的速度向左爬行,2秒钟后,它们分别到达点A'、B'.(1)写出点A'、B'的坐标;(2)求出四边形AA'B'B的面积.参考答案1、D解析因为小区道路均是正南或正东方向,所以由(3,4)不能直接到达(4,2)、2、D解析以点为原点,东西方向为横轴,南北方向为纵轴建立平面直角坐标系,则A(-1,2),B(1,2),C(2,1),D(1,-2)、3、B解析:∵点P(a,b)在x轴上,∴b=0,∴ab=0.∴点Q(ab,-1)在y轴的负半轴上.故选B、4、C5、C6.D7.D8.A9.D.10.-1<m<3.11.(-3,2).12.B'(-3,-6),(-4,-1).13.y轴.14.(2,-1).15、(4,2、2)解析:对比图中“鱼头”的坐标,图中“鱼头”O的坐标为(0,0),图中“鱼头”O1的坐标为(0,-1),可以看作“鱼头”O1是由“鱼头”O向下平移1个单位长度得到的,由平移的规律可得点P1的坐标为(4,2、2).16、3解析:∵两点A(2,0),B(0,1),把线段AB平移后点A的对应点C的坐标为(3,b),点B的对应点D的坐标为(a,3),∴线段是向右平移1个单位,再向上平移了2个单位,∴a=0+1=1,b=0+2=2.∴a+b=1+2=3.17、分析:地震影响区域是以震中为圆心,半径为300km的圆内部分(包括圆周),圆外部分为不受影响的地区、解:(1)图略.(2)图略,O,D,E会受到地震影响,而A,B,C不会受到地震影响.18、解:(1)图中格点三角形A'B'C'是由格点三角形ABC向右平移7个单位长度得到的.(2)如果以直线a,b为坐标轴建立平面直角坐标系后,点A的坐标为(-3,4),则格点三角形DEF各顶点的坐标分别为D(0,-2),E(-4,-4),F(3,3).如图所示,S三角形DEF=S三角形DGF+s三角形GEF=1151515 22⨯⨯+⨯⨯=.19、解:(1)根据表中所示的规律,点的个数比时间数多1,由此可计算出整点P从O点出发4s时整点P的个数为5、(2)由表中所示规律可知,横、纵坐标的和等于时间,则得到的整点为(0,8),(1,7),(2,6),(3,5),(4,4),(5,3),(6,2),(7,1),(8,0).所描各点如图所示:(3)由表中规律可知,横、纵坐标的和等于运动时间,因此可得16+4=20(s)、20、解:因为点P(1-x,1-y)在第二象限,所以1-x<0,1-y>0,即y-1<0,所以点Q(1-x ,y -1)在第三象限.又知点M 与点Q 关于原点对称,所以点M 在第一象限.21、解:(1)OA '=OA -AA '=10-3×2=4, ∴点A '的坐标为(0,4)、 ∵OB '=OB -BB '=8-2×2=4, ∴点B '的坐标为(4,0).(2)四边形AA 'B 'B 的面积=△AOB 的面积-△A 'OB '的面积 =1110844=408=3222⨯⨯-⨯⨯-、 www 、czsx 、com 、cn。

2020秋北师大版八年级数学上第一、二章检测题含答案

2020秋北师大版八年级数学上第一、二章检测题含答案

B A八年级数学上第一章《勾股定理》一、选择题1.在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为( ) A .26 B .18 C .20 D .212.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ) A . 可能是锐角三角形 B . 不可能是直角三角形 C . 仍然是直角三角形 D . 可能是钝角三角形3.△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,AB =8,BC =15,CA =17,则下列结论不正确的是( )A .△ABC 是直角三角形,且AC 为斜边B .△ABC 是直角三角形,且∠ABC =90° C .△ABC 的面积是60D .△ABC 是直角三角形,且∠A =60°4.等边三角形的边长为2,则该三角形的面积为( )A .4 3B . 3C .2 3D .3 5.已知a 、b 、c 是三角形的三边长,如果满足(a -6)2+|b -8|+c -10=0,则三角形的形状是( ) A .底与边不相等的等腰三角形 B .等边三角形 C .钝角三角形 D .直角三角形6.一艘轮船以16海里∕小时的速度从港口A 出发向东北方向航行,同时另一轮船以12海里∕小时从港口A 出发向东南方向航行,离开港口3小时后,则两船相距( ) A .36 海里 B .48 海里 C .60海里 D .84海里7.一直角三角形的斜边长比一直角边长大2,另一直角边长为6,则斜边长为( ) A .4 B .8 C .10 D .128.如图中字母A 所代表的正方形的面积为( ) A .4 B .8 C .16 D .649.一直角三角形的一条直角边长是7cm ,另一条直角边与斜边长的和是49cm ,则斜边的长( ) A .18cm B .20cm C .24cm D .25cm10.在△ABC 中,AB =12cm , BC =16cm , AC =20cm , 则△ABC 的面积是( ) A .96cm² B .120cm² C .160cm² D .200cm² 11.适合下列条件的△ABC 中, 直角三角形的个数为( )①a =13,b =14,c =15; ②a =6,∠A =45°; ③∠A =32°,∠B =58°;④a =7,b =24,c =25;⑤a =2,b =2,c =4.A .2个B .3个C .4个D .5个12.如图:有一圆柱,它的高等于8cm ,底面直径等于4cm(取π=3)在圆柱下底面的A 点有一只蚂蚁,它想吃到上底面与A 相对的B 点处的食物,需要爬行的最短路程大约.( ) A .10cm B .12cmC .19mD .20cmA289 225(8题图)3220BA13.若△ABC 中,AB =13,AC =15,高AD =12,则BC 的长为( ) A .14 B .4 C .14或4 D .以上都不对 二.填空题14.木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面(填“合格”或“不合格”) ;15.将长为10米的梯子斜靠在墙上,若梯子的上端到墙的底端的距离为8米,则梯子的底端到墙的底端的距离为 ;16.等腰△ABC 的底边BC 为16,底边上的高AD 为6,则腰长AB 的长为 ; 17.如图,∠C =∠ABD =90°,AC =4,BC =3,BD =12,,则AD = ;18.如图,小红欲横渡一条河,由于水流的影响,实际上岸地点C 偏离欲到达B 点200m ,结果他在水中实际游了520m ,则该河流的宽度为 。

北师大版八年级上数学各章节试题

北师大版八年级上数学各章节试题

A 、 关于 x 轴对称
B、 关于 y 轴对称
C、 关于原点对称
D、 重合
10、坐标平面内有一点 P( m, n),且 m n=0 ,则点 A 的位置在(

A 、 原点
B 、 x 轴上
C 、 y 轴上
D、 坐标轴上
二、填空题(每空 2 分,共 22 分)
1、如果点 P1( -1, 3)与 P2( 1, b)关于 y 轴对称,则 b=

2、在坐标平面上,横坐标为零的点一定在

优秀学习资料 欢迎下载
3、已知点 P( 5, -3),则 P 点关于 x 轴的对称点的坐标为

4、将点 A ( -3, 2)沿 x 轴正方向平移 3 个单位后得到点 A ,则 A 点的坐标为

5、点 A ( 2, -3)到 y 轴的距离是

6、点 P( 3, -4)与点 Q(-3, 4)关于
( B) a=b
3a 3b
优秀学习资料 欢迎下载
( C) a b a=b
( D) 3 a 3 b a=b
10、如图(一) ,在方格纸中,假设每个小正方形的面积为
2,
则图中的四条线段中长度是有理数的有(
)条。
( A) 1 (B) 2 (C) 3 ( D) 4
二、填空题(每空 2 分,共 20 分)
1、任意写一对和是有理数的无理数
你能推导出勾股定理吗? 写出你的推导过程。
三、( 10 分) 如图(八),一架长 25 米的云梯,斜靠在一面墙上,梯子底端离墙
端下滑 5 米,那么云梯的底端在水平方向将滑多少米?(保留一位小数)
7 米,如果梯子的顶
五、( 10 分 )如图(十),一段台阶,每级台阶的高度为 30cm,宽度为 60cm,A、B 两点间相距多远?

北师大版八年级数学上册第三章《位置与坐标》 测试题(含答案)

北师大版八年级数学上册第三章《位置与坐标》 测试题(含答案)

北师大版八年级数学上册第三章《位置与坐标》测试题(含答案)一、选择题1、共享单车提供了便捷、环保的出行方式.小白同学在北京植物园打开某共享单车APP,如图,“”为小白同学的位置,“★”为检索到的共享单车停放点.为了到达距离最近的共享单车停放点,下列四个区域中,小白同学应该前往的是(A)A.F6 B.E6 C.D5 D.F72、已知点A在第二象限,到x轴的距离是5,到y轴的距离是6,点A的坐标为(B)A.(-5,6) B.(-6,5) C.(5,-6) D.(6,-5)3、若点N在第一、三象限的角平分线上,且点N到y轴的距离为2,则点N的坐标是(C)A.(2,2) B.(-2,-2) C.(2,2)或(-2,-2) D.(-2,2)或(2,-2).4、如图,建立适当的平面直角坐标系后,正方形网格上的点M,N的坐标分别为(0,2),(1,1),则点P的坐标为(B)A.(-1,2) B.(2,-1) C.(-2,1) D.(1,-2)5、在平面直角坐标系中,点A的坐标为(-3,4),那么下列说法正确的是(C)A.点A与点B(3,-4)关于x轴对称 B.点A与点C(-4,-3)关于x轴对称C.点A与点D(3,4)关于y轴对称 D.点A与点E(4,3)关于y轴对称6、如图,在平面直角坐标系中,△ABC关于直线m(直线m上各点的横坐标都为1)对称,点C的坐标为(4,1),则点B的坐标为(A)A.(-2,1) B.(-3,1) C.(-2,-1) D.(-2,-1)7、过点A(-3,2)和点B(-3,5)作直线,则直线AB(A)A.平行于y轴 B.平行于x轴 C.与y轴相交 D.与y轴垂直8、在平面直角坐标系中,坐标是整数的点称作格点,第一象限的格点P(x,y)满足2x +3y=7,则满足条件的点有(A)A.1个 B.2个 C.3个 D.4个9、如图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么C的位置应表示为(D)A.(4,5) B.(5,4) C.(4,2) D.(4,3)10、如图,在平面直角坐标系中,点A的坐标为(3,-2),直线MN∥x轴且交y轴于点C(0,1),则点A关于直线MN的对称点的坐标为(C)A.(-2,3) B.(-3,-2) C.(3,4) D.(3,2)二、填空题11、如图,点A 的坐标是(3,3),横坐标和纵坐标都是负数的是点C ,坐标是(-2,2)的是点D .12、若点P(a +13,2a +23)在第二、四象限的角平分线上,则a =-13.13、如图是某校的平面示意图的一部分,若用(0,0)表示图书馆的位置,(0,-3)表示校门的位置,则教学楼的位置可表示为(5,0).14、若点M(x ,y)在第二象限,且|x|-2=0,y 2-4=0,则点M 15、在平面直角坐标系中,△ABC 的位置如图所示,已知点A 的坐标是(-4,3). (1)点B 的坐标为(3,0),点C 的坐标为(-2,5); (2)△ABC 的面积是10;(3)作点C 关于y 轴的对称点C ′,那么A ,C ′两点之间的距离是16、在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边“OA 1→A 1A 2→A 2A 3→A 3A 4→A 4A 5…”的路线运动,设第n 秒运动到点P n (n 为正整数),则点P 2 019的坐标是(2 0192,2).三、解答题17、如图,在一次海战演习中,红军和蓝军双方军舰在战前各自待命,从总指挥部看: (1)南偏西60°方向上有哪些目标?(2)红方战舰2和战舰3在总指挥部的什么方向上?(3)若蓝A 距总指挥部的实际距离200 km ,则红1距总指挥部的实际距离是多少?解:(1)蓝C ,蓝B. (2)北偏西45°. (3)600 km.18、如图,在平面直角坐标系内,已知点A(8,0),点B 的横坐标是2,△AOB 的面积为12.(1)求点B 的坐标;(2)如果P 是平面直角坐标系内的点,那么点P 的纵坐标为多少时,S △AOP =2S △AOB? 解:(1)设点B 的纵坐标为y. 因为A(8,0), 所以OA =8.则S △AOB =12OA ·|y|=12,解得y =±3.所以点B 的坐标为(2,3)或(2,-3). (2)设点P 的纵坐标为h. 因为S △AOP =2S △AOB =2×12=24, 所以12OA ·|h|=24,即12×8|h|=24,解得h =±6.所以点P 的纵坐标为6或-6. 19、在平面直角坐标系中:(1)已知点P(a -1,3a +6)在y 轴上,求点P 的坐标;(2)已知两点A(-3,m),B(n ,4),若AB ∥x 轴,点B 在第一象限,求m 的值,并确定n 的取值范围;(3)在(1)(2)的条件下,如果线段AB 的长度是5,求以P ,A ,B 为顶点的三角形的面积S.解:(1)因为点P(a -1,3a +6)在y 轴上, 所以a -1=0,解得a =1. 所以3a +6=3×1+6=9, 故P(0,9). (2)因为AB ∥x 轴, 所以m =4.因为点B 在第一象限, 所以n >0. 所以m =4,n >0.(3)因为AB =5,A ,B 的纵坐标都为4, 所以点P 到AB 的距离为9-4=5. 所以S △PAB =12×5×5=12.5.20、(1)在数轴上,点A 表示数3,点B 表示数-2,我们称A 的坐标为3,B 的坐标为-2.那么A ,B 的距离AB =5;一般地,在数轴上,点A 的坐标为x 1,点B 的坐标为x 2,则A ,B 的距离AB =|x 1-x 2|;(2)如图1,在平面直角坐标系中点P 1(x 1,y 1),点P 2(x 2,y 2),求P 1,P 2的距离P 1P 2; (3)如图2,在△ABC 中,AO 是BC 边上的中线,利用(2)的结论说明:AB 2+AC 2=2(AO 2+OC 2).解:(2)因为在平面直角坐标系中,点P1(x1,y1),点P2(x2,y2),所以P1P2=(x1-x2)2+(y1-y2)2.(3)设A(a,d),C(c,0),因为O是BC的中点,所以B(-c,0).所以AB2+AC2=(a+c)2+d2+(a-c)2+d2=2(a2+c2+d2),AO2+OC2=a2+d2+c2.所以AB2+AC2=2(AO2+OC2).21、在某河流的北岸有A,B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,B在A的右边,现以河北岸为x轴,A村在y轴正半轴上(单位:千米).(1)请建立平面直角坐标系,并描出A,B两村的位置,写出其坐标;(2)近几年,由于乱砍滥伐,生态环境受到破坏,A,B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置?在图中标出水泵站的位置,并求出所用水管的长度.解:(1)如图,点A(0,1),点B(4,4).(2)找A关于x轴的对称点A′,连接A′B交x轴于点P,则P点即为水泵站的位置,PA +PB =PA ′+PB =A ′B 且最短(如图). 因为A(0,1),B(4,4),所以A ′(0,-1). 所以A ′B =42+(4+1)2=41. 故所用水管的最短长度为41千米.22、如图,在平面直角坐标系中,AB ∥CD ,AB =CD ,CD 在x 轴上,B 点在y 轴上,若OB =OC ,点A 的坐标为(-3-1,3).求:(1)点B ,C ,D 的坐标; (2)S △ACD .解:(1)因为点A 的坐标为(-3-1,3).所以点A 到y 轴的距离是|-3-1|=3+1,到x 轴的距离是3, 所以AB =CD =3+1,OB =OC = 3. 所以OD =1.所以点B 的坐标为(0,3),点C 的坐标为(3,0),点D 的坐标为(-1,0). (2)S △ACD =12CD ·OB =12×(3+1)×3=3+32.23、如图,在长方形OABC 中,O 为平面直角坐标系的原点,A ,C 两点的坐标分别为(3,0),(0,5),点B 在第一象限内.(1)写出点B 的坐标;(2)若过点C 的直线CD 交AB 于点D ,且把AB 分为4∶1两部分,写出点D 的坐标; (3)在(2)的条件下,计算四边形OADC 的面积.解:(1)因为A ,C 两点的坐标分别为(3,0),(0,5). 所以点B 的横坐标为3,纵坐标为5. 所以点B 的坐标为(3,5).(2)若AD ∶BD =4∶1,则AD =5×41+4=4,此时点D 的坐标为(3,4).若AD ∶BD =1∶4,则AD =5×11+4=1,此时点D 的坐标为(3,1).综上所述,点D 的坐标为(3,4)或(3,1). (3)当AD =4时,S 四边形OADC =12×(4+5)×3=272,当AD =1时,S 四边形OADC =12×(1+5)×3=9.综上所述,四边形OADC 的面积为272或9.24、如图,在平面直角坐标系中,已知A(0,a),B(b ,0),C(b ,c)三点,其中a ,b ,c 满足关系式|a -2|+(b -3)2=0,(c -5)2≤0.(1)求a ,b ,c 的值;(2)如果在第二象限内有一点P(m ,53),请用含m 的式子表示四边形APOB 的面积;(3)在(2)的条件下,是否存在点P ,使四边形AOBC 的面积是四边形APOB 的面积的2倍?若存在,求出点P 的坐标,若不存在,请说明理由.解:(1)由已知|a -2|+(b -3)2=0,(c -5)2≤0可得: a -2=0,b -3=0,c -5=0, 解得a =2,b =3,c =5. (2)因为a =2,b =3,c =5, 所以A(0,2),B(3,0),C(3,5). 所以OA =2,OB =3.所以S 四边形ABOP =S △ABO +S △APO =12×2×3+12×(-m)×2=3-m.(3)存在.因为S 四边形AOBC =S △AOB +S △ABC =3+12×3×5=10.5,所以2(3-m)=10.5,解得m =-94.所以存在点P(-94,53),使四边形AOBC 的面积是四边形APOB 的面积的2倍.25、如图,在平面直角坐标系xOy 中,A ,B 两点分别在x 轴、y 轴的正半轴上,且OB =OA =3.(1)求点A ,B 的坐标;(2)若点C(-2,2),求△BOC 的面积;(3)点P 是第一,三象限角平分线上一点,若S △ABP =332,求点P 的坐标.解:(1)因为OB =OA =3,所以A ,B 两点分别在x 轴,y 轴的正半轴上.所以A(3,0),B(0,3).(2)S △BOC =12OB ·|x C |=12×3×2=3. (3)因为点P 在第一,三象限的角平分线上,所以设P(a ,a).因为S △AOB =12OA ·OB =92<332. 所以点P 在第一象限AB 的上方或在第三象限.当P 1在第一象限AB 的上方时,S △ABP 1=S △P 1AO +S △P 1BO -S △AOB =12OA ·yP 1+12OB ·xP 1-12OA ·OB , 所以12×3a +12×3a -12×3×3=332,解得a =7. 所以P 1(7,7).当P 2在第三象限时,S △ABP 2=S △P 2AO +S △P 2BO +S △AOB =12OA ·yP 2+12OB ·xP 2+12OA ·OB. 所以12×3×(-a)+12×3×(-a)+12×3×3=332,解得a =-4. 所以P 2(-4,-4).综上所述,点P 的坐标为(7,7)或(-4,-4).。

北师大版八年级数学上册各章复习题

北师大版八年级数学上册各章复习题

北南A 东第7题图八年级上册第一章《勾股定理》单元检测题一、选择题1、下列各组数中不能作为直角三角形的三边长的是 ( )A. 1.5, 2, 3;B. 7, 24, 25;C. 6 ,8, 10;D. 9, 12, 15. 2、直角三角形的两直角边分别为5厘米、12厘米,则斜边上的高是( ) A 、6厘米 B 、8厘米 C 、1380厘米 D 、1360厘米3、若等腰三角形腰长为10cm ,底边长为16 cm,那么它的面积为 ( )A. 48 cm 2B. 36 cm 2C. 24 cm 2D.12 cm 24、如图,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面 成30°夹角,这棵大树在折断前的高度为( )A .10米B .15米C .25米D .30米5、若一个直角三角形的一条直角边长是7cm ,另一条直角边比斜边短1cm ,则斜边长为 ( ) A.18 cm B.20 cm C.24 cm D.25 cm6、已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A 、25海里B 、30海里C 、35海里D 、40海里7.在△ABC 中,AB =12cm , AC =9cm ,BC=15cm ,下列关系成立的是( ) (A )B C A ∠+∠>∠ (B )B C A ∠+∠=∠ (C )B C A ∠+∠<∠ (D )以上都不对8.若一个三角形三边满足ab c b a 2)(22=-+,则这个三角形是( ) (A )直角三角形(B )等腰直角三角形(C )等腰三角形(D )以上结论都不对二、填空题9、在△ABC 中,∠C =90°,若 a =5,b =12,则 c = .10、如图,带阴影的正方形面积是 .11、如图,从电线杆离地面3米处向地面拉一条长为5米的拉线,这条拉线在地 面上距电线杆底端的距离是 。

北师大版八年级数学上册单元测试题全套含答案

北师大版八年级数学上册单元测试题全套含答案

北师大版八年级数学上册单元测试题全套含答案(含期中期末试题,共12套)第一章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,在边长为1个单位长度的小正方形组成的网格中,点A ,B 都是格点,则以AB 为边的正方形的面积为( A )A .10B .9C .100D .25,第3题图)2.在△ABC 中,AB =15,BC =12,AC =9,则△ABC 的面积为( C ) A .180 B .90 C .54 D .1083.如图,AB ⊥CD 于点B ,△ABD 和△BCE 都是等腰三角形,如果CD =17,BE =5,那么AC 的长为( D )A .12B .7C .5D .134.(荆门中考)如图,在△ABC 中,AB =AC ,AD 是∠BAC 的角平分线,已知AB =5,AD =3,则BC 的长为( C )A .5B .6C .8D .105.在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离为( A ) A .365 B .1225 C .94 D .3346.若一个三角形的三边长为a ,b ,c 且满足(a +b +c)(a 2-b 2-c 2)=0,则这个三角形是( B ) A .等腰三角形 B .直角三角形 C .锐角三角形 D .钝角三角形7.一架2.5米长的梯子,斜立在一竖直的墙上,这时梯子的底端离墙0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯子底端在水平方向上滑动( B )A .0.9米B .0.8米C .0.5米D .0.4米8.如图,圆柱高8 cm ,底面圆的半径为6πcm ,一只蚂蚁从点A 爬到点B 处吃蜂蜜,则要爬行的最短路程是( B )A .20 cmB .10 cmC .14 cmD .无法确定,第8题图) ,第10题图)9.在△ABC 中,AB =13,AC =15,高AD =12,则BC 的长为( B ) A .14 B .14或4 C .8 D .4或810.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D′处,若AB =3,AD =4,则ED 的长为( A )A .32B .3C .1D .43二、填空题(每小题3分,共18分)11.请写出两组你所熟悉的勾股数:__3,4,5__或__6,8,10__等.12.如图,两个正方形的面积分别为9和16,则直角三角形的斜边长为__5__.,第12题图) ,第13题图)13.如图,由四个全等的直角三角形拼成的“赵爽弦图”,在Rt △ABF 中,∠AFB =90°,AF =3,AB =5,则四边形EFGH 的面积是__1__.14.如图有一个棱长为9 cm 的正方体,一只蜜蜂要沿正方体的表面从顶点A 爬到C 点(C 点在一条棱上,距离顶点B 3 cm 处),则需爬行的最短路程是__15__cm .,第14题图) ,第15题图)15.(漳州中考)如图,在△ABC 中,AB =AC =5,BC =8.点D 是底边BC 上的一个动点,若线段AD 的长为整数,则满足条件的点D 共有__5__个.16.定义:如图,点M ,N 将线段AB 分割成线段AM ,MN ,NB ,且以AM ,MN ,NB 为边可组成一个直角三角形,点M ,N 是线段AB 的勾股分割点.若M ,N 是线段AB 的勾股分割点,且AM =3,BN =5,则MN 2的值为__16或34__.三、解答题(本大题9小题,共72分)17.(6分)如图,正方形网格中有△ABC ,若小方格边长为1,请你根据所学的知识解答下列问题: (1)求△ABC 的面积;(2)判断△ABC 是什么形状,并说明理由.解:(1)用正方形的面积减去三个小三角形的面积即可求出△ABC 的面积.S △ABC =4×4-1×2×12-4×3×12-2×4×12=16-1-6-4=5,所以△ABC 的面积为5(2)△ABC 是直角三角形.理由如下:因为AB 2=12+22=5,AC 2=22+42=20,BC 2=32+42=25,所以AC2+AB2=BC2,所以△ABC是直角三角形18.(6分)如图,AF⊥DE于F,且DF=15 cm,EF=6 cm,AE=10 cm.求正方形ABCD的面积.解:在Rt△AEF中,AF2=AE2-EF2=64,在Rt△AFD中,AD2=AF2+DF2=289,所以正方形ABCD的面积是289 cm219.(7分)有一只喜鹊在一棵高(AB)3米的小树的树梢上觅食,它的巢筑在距离该树24米(BC),高(EC)为14米的一棵大树上,且巢D离大树顶部E为1米,这时,它听到巢中幼鸟求助的叫声,立刻赶过去,如果它的飞行速度为每秒5米,那么它几秒能赶回巢中?解:由题意知AB=3,BC=24,CD=13,作AG⊥CD于点G,则在Rt△ADG中,AG=24,DG=10,∴AD=102+242=26(米),t=265=5.2(秒).答:它5.2秒能赶回巢中20.(7分)(达州期末)如图,甲轮船以16海里/小时的速度离开港口O向东南方向航行,乙轮船同时同地向西南方向航行,已知他们离开港口一个半小时后分别到达B,A两点,且知AB=30海里,问乙轮船每小时航行多少海里?解:甲轮船向东南方向航行,乙轮船向西南方向航行,所以AO⊥BO,因为甲轮船以16海里/小时的速度航行了一个半小时,所以OB=16×1.5=24(海里),又AB=30海里,所以在Rt△AOB中,AO=AB2-OB2=302-242=18,所以乙轮船每小时航行18÷1.5=12(海里)21.(8分)如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上的中点,过D点作DE ⊥DF,交AB于点E,交BC于点F,若AE=4,FC=3,求EF的长.解:连接BD,证△BDE≌△CDF,得BE=FC,所以AB=7,BF=4,在Rt△BEF中,EF2=BE2+BF2=25,即EF=522.(8分)如图,∠AOB=90°,OA=45 cm,OB=15 cm,一智能机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,智能机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与智能机器人行走的速度相等,那么智能机器人行走的路程BC是多少?解:小球滚动的速度与智能机器人行走的速度相同,时间相同,即BC=CA,设AC=x,则OC=45-x,在Rt△BOC中,OB2+OC2=BC2,即152+(45-x)2=x2,解得x=25.所以机器人行走的路程BC是25 cm23.(8分)如图,已知∠MBN=60°,在BM,BN上分别截取BA=BC,P是∠MBN内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA∶PB∶PC=3∶4∶5,连接PQ,求证:∠PQC=90°.解:(1)AP=CQ.因为∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,所以∠ABP=∠QBC,又因为AB=BC,BP=BQ,所以△ABP≌△CBQ,AP=CQ(2)设PA=3a,PB=4a,PC=5a,连接PQ,在△PBQ中,因为PB=BQ=4a,且∠PBQ=60°,所以△PBQ为等边三角形,所以PQ=4a,在△PQC中,因为PQ2+QC2=16a2+9a2=25a2=PC2,所以△PQC 为直角三角形,即∠PQC =90°24.(10分)如图,在长方形ABCD 中,AB =8,BC =6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP ,PE 与CD 相交于点O ,且OE =OD.(1)试证明DG =EP ; (2)求AP 的长.解:(1)因为四边形ABCD 是长方形,所以∠D =∠A =∠C =90°,AD =BC =6,CD =AB =8.由折叠的性质可知EP =AP ,BE =AB =8,∠E =∠A =90°,所以∠E =∠D.在△ODP 和△OEG 中,⎩⎨⎧∠D =∠E ,OD =OE ,∠DOP =∠EOG ,所以△ODP ≌△OEG ,所以OP =OG ,PD =GE ,所以DO +OG =PO +OE ,所以DG =EP(2)设AP =EP =DG =x ,则GE =PD =AD -AP =6-x ,所以CG =DC -DG =8-x ,BG =BE -GE =8-(6-x)=2+x.在Rt △CGB 中,由勾股定理得BC 2+CG 2=BG 2,即62+(8-x)2=(x +2)2,解得x =4.8,所以AP =4.825. (12分)如图,在△ABC 中,AC =BC ,∠ACB =90°,点D ,E 是线段AB 上两点.∠DCE =45°.(1)当CE ⊥AB 时,点D 与点A 重合,求证:DE 2=AD 2+BE 2; (2)当点D 不与点A 重合时,求证:DE 2=AD 2+BE 2;(3)当点D 在BA 的延长线上时,(2)中的结论是否成立?画出图形,说明理由.解:(1)因为CE ⊥AB ,所以AE =BE ,因为点D 与点A 重合,所以AD =0,所以DE 2=AD 2+BE 2 (2)如图①,过点A 作AF ⊥AB ,使AF =BE ,连接DF ,CF ,因为在△ABC 中,AC =BC ,∠ACB =90°,所以∠CAB =∠B =45°,所以∠FAC =45°,所以△CAF ≌△CBE(SAS ),所以CF =CE ,∠ACF =∠BCE ,因为∠ACB =90°,∠DCE =45°,所以∠ACD +∠BCE =∠ACB -∠DCE =90°-45°=45°,因为∠ACF =∠BCE ,所以∠ACD +∠ACF =45°,即∠DCF =45°,所以∠DCF =∠DCE ,又因为CD =CD ,所以△CDF ≌△CDE(SAS ),所以DF =DE ,因为AD 2+AF 2=DF 2,所以AD 2+BE 2=DE 2(3)结论仍然成立.理由:如图②,过点A 作AF ⊥AB ,使AF =BE ,连接DF ,CF ,因为在△ABC 中,AC =BC ,∠ACB =90°,所以∠CAB =∠B =45°,所以∠FAC =45°,所以△CAF ≌△CBE(SAS ),所以CF =CE ,∠ACF =∠BCE ,因为∠BCE +∠ACE =90°,所以∠ACF +∠ACE =90°,即∠FCE=90°,因为∠DCE =45°,所以∠DCF =45°,所以∠DCF =∠DCE ,又因为CD =CD ,所以△CDF ≌△CDE(SAS ),所以DF =DE ,因为AD 2+AF 2=DF 2,所以AD 2+BE 2=DE 2第二章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列四个实数中,不是无理数的是( B )A . 2B .38C .1.01001000100001……D .π22.121的平方根是( C )A .11B .-11C .±11D .±113.(铁岭中考)二次根式x -4有意义,则实数x 的取值范围是( D ) A .x>4 B .x<4 C .x =4 D .x ≥4 4.(达州期中)下面计算正确的是( B ) A .3+3=3 3 B .27÷3=3C .2·3= 5D .4=±25.实数a ,b 在数轴上的位置如图所示,且|a|>|b|,则化简a 2-|a +b|的结果为( C )A .2a +bB .-2a +bC .bD .2a -b6.已知k ,m ,n 为三个整数,若135=k 15,450=15m ,180=6n ,则下列关于k ,m ,n 的大小关系正确的是( D )A .k<m =nB .m =n<kC .m<n<kD .m<k<n7.下列说法:①5是25的算术平方根;②56是2536的一个平方根;③(-4)2的平方根是-4;④立方根和算术平方根都等于自身的数是0和1.其中正确的个数有( C )A .1个B .2个C .3个D .4个8.如图,下列各数中,数轴上点A 表示的可能是( C )A .4的算术平方根B .4的立方根C .8的算术平方根D .8的立方根 9.下列各式中,正确的是( C ) A .22+32=2+3B .32+53=(3+5)2+3C .152-122=15+12·15-12D .412=21210.(泸州中考)已知三角形的三边长分别为a ,b ,c ,求其面积问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦(Heron ,约公元50年)给出求其面积的海伦公式S =p (p -a )(p -b )(p -c ),其中p =a +b +c2;我国南宋时期数学家秦九韶(约1202-1261)曾提出利用三角形的三边求其面积的秦九韶公式S =12a 2b 2-(a 2+b 2-c 22)2,若一个三角形的三边长分别为2,3,4,则其面积是( B )A .3158B .3154C .3152D .152二、填空题(每小题3分,共18分) 11.(南京中考)计算:(-3)2=__3__.12.(陕西中考)在实数-5,-3,0,π,6中,最大的一个数是__π__. 13.(荆门中考)已知实数m ,n 满足|n -2|+m +1=0,则m +2n 的值为__3__. 14.(鄂州中考)若y =x -12+12-x -6,则xy =__-3__. 15.15-x 是有理数,则x 的最大整数值是__15__.16.若两个代数式M 与N ,满足M ·N =-1,则称这两个代数式为“互为友好因式”,则3+5的“互为友好因式”是2三、解答题(本大题9小题,共72分) 17.(8分)计算:(1)(达州中考)20170-|1-2|+(13)-1+2×22;解:5(2)1+(-12)-1-(3-2)2÷(13-3)0.解:-3+318.(8分)先化简,再求值:(1)(a -2b)(a +2b)+ab 3÷(-ab),其中a =2,b =3; 解:原式=a 2-5b 2=-13(2)(2x +3)(2x -3)-4x(x -1)+(x -2)2,其中x =- 3. 解:原式=x 2-5=-219.(9分)计算:(1)32+50+1345-18;解:62+5 (2)22÷52×1234; 解:35 (3)(6-412+38)÷2 2. 解:123+220.(6分)若31-2x 与33y -2互为相反数,求1+2x y的值.解:由题意得(1-2x)+(3y -2)=0,整理得1+2x =3y ,所以1+2x y =3yy=321.(8分)甲同学用如下图所示的方法作出了C 点,表示数13,在△OAB 中,∠OAB =90°,OA =2,AB =3,且点O ,A ,C 在同一数轴上,OB =OC.(1)请说明甲同学这样做的理由;(2)仿照甲同学的做法,在如下所给数轴上描出表示-29的点F.解:(1)在Rt △OAB 中,由勾股定理得OB 2=OA 2+AB 2,所以OC =OB =OA 2+AB 2=22+32=13,即点C表示数13(2)画图略.在△ODE中,∠EDO=90°,OD=5,DE=2,则OF=OE=29,即F点为-2922.(8分)如果正方形网格中的每一个小正方形的边长都是1,则每个小格的顶点叫做格点.(1)如图①,以格点为顶点的△ABC中,请判断AB,BC,AC三边的长度是有理数还是无理数?(2)在图②中,以格点为顶点画一个三角形,使三角形的三边长分别为3,5,2 2.解:(1)AB=4,AC=32+32=32,BC=12+32=10,所以AB的长度是有理数,AC和BC的长度是无理数(2)图略23.(6分)已知实数x,y满足x+y=-7,xy=12,求y xy+xyx的值.解:因为x+y=-7,xy=12,所以x<0,y<0,所以y xy+xyx=-xy-xy=-2xy=-212=-4324.(8分)小丽想用一块面积为400 cm2的正方形纸片沿着边的方向剪出一块面积为300 cm2的长方形,并使长方形纸片的长宽之比为3∶2,请问小丽能否剪出符合要求的长方形纸片,请说明理由.解:小丽不能剪出符合要求的长方形纸片.理由为:设长方形纸片的长为3x cm,宽为2x cm,由题意则有:3x·2x=300,6x2=300,x2=50,所以x=50,所以长方形纸片的长为3x=350,又因为50>49=7,所以3x=350>21(cm),而原正方形纸片的边长为20 cm,故小丽不能剪出符合要求的长方形纸片25.(11分)阅读下列材料,然后解答下列问题:在进行代数式化简时,我们有时会碰上如53,23+1这样的式子,其实我们还可以将其进一步化简:(一)53=5×33×3=533;(二)23+1=2×(3-1)(3+1)(3-1)=2(3-1)(3)2-1=3-1;(三)23+1=3-13+1=(3)2-123+1=(3+1)(3-1)3+1=3-1.以上这种化简的方法叫分母有理化.(1)请用不同的方法化简25+3:①参照(二)式化简25+3=;②参照(三)式化简25+3=(2)化简:13+1+15+3+17+5+…+199+97.解:(1)①2×(5-3)(5+3)(5-3)=2(5-3)(5)2-(3)2=5-3②5-35+3=(5)2-(3)25+3=(5+3)(5-3)5+3=5-3(2)原式=3-12+5-32+7-52+…+99-972=99-12=311-12第三章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.(聊城中考)在平面直角坐标系中,点M(-3,4)在( B )A.第一象限B.第二象限C.第三象限D.第四象限2.八(2)班有45人参加学校运动会的入场式,队伍共9排5列,如果用(2,4)表示第2排从左到右第4列站着的同学,那么站在队伍最中间的点表示为( D )A.(15,4) B.(2,3) C.(3,0) D.(5,3)3.若点A(m,n)在第三象限,则点B(-m,n)在( D )A.第一象限B.第二象限C.第三象限D.第四象限4.如果M(m+3,2m+4)在y轴上,那么点M的坐标是( B )A.(-2,0) B.(0,-2) C.(1,0) D.(0,1)5.如果P 点的坐标为(a ,b),它关于y 轴的对称点为P 1,P 1关于x 轴的对称点为P 2,已知P 2的坐标为(-2,3),则点P 的坐标为( B )A .(-2,-3)B .(2,-3)C .(-2,3)D .(2,3)6.(资阳期末)如图,小明从点O 出发,先向西走40米,再向南走30米到达点E ,如果点E 的位置用(-40,-30)表示,那么(10,20)表示的位置是( B )A .点AB .点BC .点CD .点D,第6题图) ,第7题图)7.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P.若点P 的坐标为(2a ,b +1),则a 与b 的数量关系为( B )A .a =bB .2a +b =-1C .2a -b =1D .2a +b =18.在平面直角坐标系中,A ,B ,C 三点的坐标分别为(0,0),(0,-5),(-2,-2),以这三点为平行四边形的三个顶点,则第四个顶点不可能在( A )A .第一象限B .第二象限C .第三象限D .第四象限9. 已知A(a ,0)和B 点(0,10)两点,且AB 与坐标轴围成的三角形的面积等于20,则a 的值为( D ) A .2 B .4C .0或4D .4或-410.如图,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,则点P 的坐标不可能是( B )A .(4,0)B .(1,0)C .(-22,0)D .(2,0) 二、填空题(每小题3分,共18分)11.点P(1,2)关于x 轴的对称点P 1的坐标是__(1,-2)__,点P(1,2)关于y 轴的对称点P 2的坐标是__(-1,2)__.12.如图,如果所在的位置坐标为(-1,-2),所在的位置坐标为(2,-2),则所在的位置坐标为__(-3,3)__.,第12题图) ,第14题图)13.已知点A(4,3),AB ∥y 轴,且AB =3,则B 点的坐标为__(4,0)或(4,6)__.14.如图,正方形A 1A 2A 3A 4,A 5A 6A 7A 8,A 9A 10A 11A 12,…(每个正方形从第三象限的顶点开始,按顺时针方向,依次记为A 1,A 2,A 3,A 4;A 5,A 6,A 7,A 8;A 9,A 10,A 11,A 12;…)的中心均在坐标原点O ,各边均与x 轴或y 轴平行,若它们的边长依次是2,4,6…,则顶点A 20的坐标为__(5,-5)__.15.(湘潭中考)阅读材料:设a →=(x 1,y 1),b →=(x 2,y 2),如果a →※b →,则x 1·y 2=x 2·y 1.根据该材料填空:已知a →=(2,3),b →=(4,m),且a →※b →,则m =__6__.16.如图,将正方形OABC 放在平面直角坐标系中,O 是原点,A 的坐标为(1,3),则点B 的坐标为3)__.三、解答题(本大题9小题,共72分)17.(6分)有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可见,而主要建筑C(3,2)破损,请通过建立直角坐标系找到图中建筑C 的位置.解:如图:18.(6分)图中标明了小强家附近的一些地方.(1)写出公园、游艺场和学校的坐标;(2)早晨,小强从家里出发,沿(-3,-1),(-1,-2),(0,-1),(2,-2),(1,0),(1,3),(-1,2)路线转了一下,又回到家里,写出他路上经过的地方.解:(1)公园(3,-1),游艺场(3,2),学校(1,3)(2)邮局——移动通讯——幼儿园——消防队——火车站——学校——糖果店19.(6分)一位老人制作的仿真郑和宝船尺寸如图,已知在某一直角坐标系中,点A坐标为(9,0).(1)请你直接在图中画出该坐标系;(2)写出其余5点的坐标.解:(1)画图略(2)B(5,2),C(-5,2),D(-9,0),E(-5,-2),F(5,-2)20.(6分)如图,分别说明:△ABC从(1)→(2),再从(2)→(3)…一直到(5),它的横、纵坐标依次是如何变化的?解:(1)→(2)纵坐标不变,横坐标都加1(2)→(3)横坐标不变,纵坐标都加1(3)→(4)横、纵坐标都乘以-1(4)→(5)横坐标不变,纵坐标都乘以-121.(9分)已知点A(a-3,a2-4),求分别满足下列条件的a及点A的坐标:(1)当点A在x轴上;(2)当点A在y轴上;(3)已知点B(2,5),且AB∥x轴.解:(1)因为点A(a-3,a2-4)在x轴上,所以a2-4=0,所以a=±2.点A的坐标为(-1,0)或(-5,0)(2)因为点A在y轴上,所以a-3=0,所以a=3,点A的坐标为(0,5)(3)因为AB∥x轴,所以a2-4=5,所以a=±3.当a=±3时,a-3≠2,故a=±3,点A的坐标为(0,5)或(-6,5)22.(10分)如图所示,在平面直角坐标系中有A,B,C三点.(1)写出A,B,C三点坐标;(2)画出△ABC关于x轴对称图形△A1B1C1,并写出A1,B1,C1的坐标;(3)在图中描出D(2,4),E(3,1),F(1,3),观察△DEF与△ABC有什么关系?(4)如果三角形ABC中任意一点M的坐标为(x,y),那么它关于y轴对称的点N的坐标是什么?解:(1)A(-2,4),B(-3,1),C(-1,3)(2)图略,A1(-2,-4),B1(-3,-1),C1(-1,-3)(3)△DEF与△ABC关于y轴对称(4)N(-x,y)23.(8分)如图所示,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.解:由题意可知,折痕AD是四边形OAED的对称轴,在Rt△ABE中,AE=AO=10,AB=8,BE=AE2-AB2=102-82=6,所以CE=4,所以E(4,8).在Rt△DCE中,DC2+CE2=DE2,又因为DE=OD,所以(8-OD)2+42=OD2,解得OD=5,所以D(0,5)24.(9分)如图,在平面直角坐标系中有三点A(-2,1),B(3,1),C(2,3).(1)在平面直角坐标系内描出点A,B,C的位置,并将点A,B,C,A用线段依次连接起来;(2)求出以A,B,C三点为顶点的三角形的面积;(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)图略(2)依题意,得AB∥x轴,且AB=3-(-2)=5,所以S△ABC=12×5×2=5(3)存在.因为AB=5,S△ABP=10,所以P点到AB的距离为4.又因为点P在y轴上,所以点P的坐标为(0,5)或(0,-3)25.(12分)如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.实验与探究:(1)由图观察可知点A(0,2)与点A1(2,0)关于直线l对称,请你在图中标明点B(3,5),C(3,-5),D(-3,-5),E(-5,0)关于直线l的对称点B1,C1,D1,E1的位置,并写出它们的坐标;归纳与发现:(2)结合图形并观察以上五组点的坐标,你会发现:坐标平面内任意一点P(a,b)关于直线l的对称点P1的坐标为__(b,a)__;拓展与应用:(3)若点M(4,2+5y)与点N(-3,3x+1)关于第一、三象限的角平分线对称,求点(x,y)的坐标.解:(1)B1(5,3),C1(-5,3),D1(-5,-3),E1(0,-5)(3)根据任意一点P(a,b)关于直线y=x的对称点P1的坐标为(b,a)可知,2+5y=-3,3x+1=4,解得x=1,y=-1,所以点(x,y)的坐标为(1,-1)第四章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列图象中,表示y是x的函数的个数有( B )A.1个B.2个C.3个D.4个2.(宜宾期末)一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为( A )A.y=10x+30 B.y=40xC.y=10+30x D.y=20x3.(白银中考)在平面直角坐标系中,一次函数y=kx+b的图象如图所示,观察图象可得( A ) A.k>0,b>0 B.k>0,b<0C.k<0,b>0 D.k<0,b<0,第3题图),第9题图),第10题图) 4.下列四个点中,不在同一个正比例函数上的点是( D )A.(-4,-8) B.(1,2)C.(-3,-6) D.(2,-4)5.P1(x1,y1),P2(x2,y2)是一次函数y=-2x+5图象上的两点,且x1<x2,则y1与y2的大小关系是( C )A.y1<y2B.y1=y2C.y1>y2D.y1>y2>06.对于函数y=-12x+3,下列说法错误的是( C )A.图象经过点(2,2)B.y随着x的增大而减小C.图象与y轴的交点是(6,0)D.图象与坐标轴围成的三角形面积是97.已知一次函数y=32x+m和y=-12x+n的图象都经过点A(-2,0),且与y轴分别交于B,C两点,那么△ABC的面积是( C )A.2 B.3C.4 D.68.已知一次函数y=kx+b的图象与y=x平行,且过点(1,2),那么它必过点( A )A.(-1,0) B.(2,-1)C.(2,1) D.(0,-1)9.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为( C )A.4 B.8C.16 D.8210.(成都期末)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500 m,先到终点的人原地休息.已知甲先出发2 s.在跑步过程中,甲、乙两人的距离(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是( A )A.①②③B.①②C.①③D.②③二、填空题(每小题3分,共18分)11.将直线y=2x向上平移1个单位长度后得到的直线是__y=2x+1__.12.(盐城中考)函数y=x-2x-4自变量x的取值范围是__x≥2且x≠4__.13.一次函数y=(m+2)x+1,若y随x的增大而增大,则m的取值范围是__m>-2__.14.已知某一次函数的图象经过点A(0,2),B(1,3),C(a ,1)三点,则a 的值是__-1__.15.某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务.播种亩数与天数之间的函数关系如图,那么乙播种机参与播种的天数是__4__.16.一次函数y =kx +b ,当0≤x ≤4时,-7≤y ≤-3,则k =__1或-1__. 三、解答题(本大题9小题,共72分)17.(7分)已知一次函数y =kx +b 的图象经过M(0,2),N(1,3)两点. (1)求k ,b 的值;(2)若一次函数y =kx +b 的图象与x 轴的交点为A(a ,0),求a 的值.解:(1)由题意得b =2,把⎩⎪⎨⎪⎧x =1,y =3代入y =kx +2中得k =1(2)由(1)得y =x +2,当y =0时,x =-2,即a =-218.(6分)一次函数y =-4x +b 与x 轴交于点A ,与y 轴交于点B ,△OAB 的面积是2,求一次函数的表达式.解:令y =0得-4x +b =0,x =b 4,所以S △AOB =12×|b4|×|b|=2,所以b =±4,所以一次函数的表达式为y =-4x +4或y =-4x -419.(8分)联通公司手机话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式; (2)月通话时间多长时,A ,B 两种套餐收费一样?(3)什么情况下A 套餐更省钱? 解:(1)y 1=0.1x +15,y 2=0.15x(2)由y 1=y 2得0.1x +15=0.15x ,解得x =300 (3)当通话时间多于300分钟时,A 套餐省钱20.(7分)设函数y =x +n 的图象与y 轴交于点A ,函数y =-3x -m 的图象与y 轴交于点B ,两个函数的图象交于点C(-3,1),D 为AB 的中点.(1)求m ,n 的值;(2)求直线DC 的一次函数表达式. 解:(1)m =8,n =4(2)由(1)得A(0,4),B(0,-8).因为D 是AB 的中点,所以D(0,-2),设直线CD 的表达式为y=kx +b ,则⎩⎨⎧b =-2,-3k +b =1,解得⎩⎨⎧k =-1,b =-2,即y =-x -221.(7分)某生物小组观察一植物生长,得到植物的高度(单位:厘米)与观察时间(单位:天)的关系,并画出如下的图象(AC 是线段,直线CD 平行于x 轴.)(1)该植物从观察时起,多少天以后停止长高?(2)求直线AC 的表达式,并求该植物最高长多少厘米?解:(1)50天后(2)设直线AC 的表达式为y =kx +6,将(30,12)代入,得12=30k +6,解得k =15,表达式为y =15x +6,最高长16厘米22.(8分)1号探测气球从海拔5 m 处出发,以1 m /min 的速度上升.与此同时,2号探测气球从海拔15 m 处出发,以0.5 m /min 的速度上升,两个气球都匀速上升了50 min .设气球上升时间为 x min (0≤x ≤50)(1)根据题意,填写下表:果不能,请说明理由;(3)当30≤x ≤50时,两个气球所在位置的海拔最多相差多少米?解:(2)能.由x +5=0.5x +15得x =20,所以x +5=25,即气球上升20 min 时位于海拔25 m 处 (3)当30≤x ≤50时,1号气球始终在2号气球上方,设两气球的海拔差为y ,则y =(x +5)-(0.5x +15)=0.5x -10,由函数的性质知y 随x 的增大而增大,所以当x =50时,y 的值最大,为15米23.(9分)如图,直线y =kx +6与x 轴、y 轴分别相交于点E ,F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0),点P(x ,y)是第二象限内的直线上的一个动点.(1)求k 的值;(2)在点P 的运动过程中,写出△OPA 的面积S 与x 的函数表达式,并写出自变量x 的取值范围;(3)探究:当P 运动到什么位置(求P 的坐标)时,△OPA 的面积为278解:(1)k =34(2)由(1)得y =34x +6,所以S =12×6×(34x +6),所以S =94x +18(-8<x<0)(3)由S =94x +18=278得x =-132,y =34×(-132)+6=98,所以P(-132,98),即P 运动到点(-132,98)时,△OPA 的面积为27824.(9分)(长春中考)甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件),甲车间加工的时间为x(时),y 与x 之间的函数图象如图所示.(1)甲车间每小时加工服装件数为__80__件;这批服装的总件数为__1140__件; (2)求乙车间维修设备后,乙车间加工服装数量y 与x 之间的函数关系式; (3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.解:(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9-(420-120)÷60=4(时),所以乙车间维修设备后,乙车间加工服装数量y 与x 之间的函数关系式为y =120+60(x -4)=60x -120(4≤x ≤9)(3)甲车间加工服装数量y 与x 之间的函数关系式为y =80x ,当80x +60x -120=1000时,x =8.答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时25.(11分)双11购物节期间,某电器商城推出了两种促销方式,且每次购买电器时只能使用其中一种方式:第一种是打折优惠,凡是在该商城购买家用电器的客户均可享受八折优惠;第二种方式是:赠送优惠券,凡在商城三天内购买家用电器的金额满400元且少于600元的,赠优惠券100元;不少于600元的,所赠优惠券是购买电器金额的14,另再送50元现金.(1)以上两种促销方式中第二种方式,可用如下形式表达:设购买电器的金额为x(x ≥400)元,优惠券金额为y 元,则:①当x =500时,y =__100__;②当x ≥600时,y =__14x__;(2)如果小张想一次性购买原价为x(400≤x <600)元的电器,可以使用优惠券,在上面 的两种促销方式中,试通过计算帮他确定一种比较合算的方式?(3)如果小张在促销期间内在此商城先后两次购买电器时都得到了优惠券(两次购买均未 使用优惠券),第一次购买金额在600元以内,第二次购买金额超过600元,所得优惠 券金额累计达800元,设他购买电器的金额为W 元,W 至少应为多少?(W =支付金额-所送现金金额)解:(2)设y 1=0.8x ,y 2=x -100,因为由0.8x =x -100得x =500,此时y 1=y 2;当400≤x <500时y 1>y 2;当500<x <600时y 1<y 2,所以当x =500时,两种方式一样合算;当400≤x <500时,选第二种方式合算;当500<x <600时,选第一种方式合算(3)设第一次购买花了m 元,第二次花了n 元,当400≤m <600,n ≥600时,100+14n =800,得n=2800,W =m +n -50=m +2750,因为400≤m <600,所以3150≤W <3350,即W 至少为3150元第五章检测题(时间:120分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列方程组中,是二元一次方程组的是( D ) A .⎩⎪⎨⎪⎧x +13=1y =x 2 B .⎩⎪⎨⎪⎧3x -y =52y -z =6C .⎩⎪⎨⎪⎧x 5+y 2=1xy =1D .⎩⎪⎨⎪⎧x 2=3y -2x =42.由方程组⎩⎪⎨⎪⎧2x +m =1,y -3=m可得出x 与y 的关系是( A )A .2x +y =4B .2x -y =4C .2x +y =-4D .2x -y =-43.已知3a 2x -1b 2y 与-3a -3y b 3x +6是同类项,则x +y 的值为( D ) A .113 B .3113 C .1513 D .-1134.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( C )A .⎩⎪⎨⎪⎧3x -4y =63x -2y =0 B .⎩⎪⎨⎪⎧3x -4y =63x +2y =0 C .⎩⎪⎨⎪⎧3x -4y =-63x -2y =0 D .⎩⎪⎨⎪⎧-3x +4y =63x +2y =05.(眉山中考)已知关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2ax +by =3,ax -by =1的解为⎩⎨⎧x =1,y =-1,则a -2b 的值是( B )A .-2B .2C .3D .-36.(随州中考)小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元,设每支铅笔x 元,每本笔记本y 元,则可列方程组( B )A .⎩⎪⎨⎪⎧20x +30y =11010x +5y =85B .⎩⎪⎨⎪⎧20x +10y =11030x +5y =85C .⎩⎪⎨⎪⎧20x +5y =11030x +10y =85D .⎩⎪⎨⎪⎧5x +20y =11010x +30y =85 7.一个两位数,个位上的数字与十位上的数字之和为7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调后组成的新两位数,则原来的两位数是( B )A .61B .16C .52D .258.已知等腰三角形的两边长为x ,y 满足方程组⎩⎪⎨⎪⎧2x -y =3,3x +2y =8.则此等腰三角形的周长为( A )A .5B .4C .3D .5或49.由方程组⎩⎨⎧2x +y =7,2y +z =8,2z +x =9,可得到x +y +z 的值为( A )A .8B .9C .10D .11.710.有一根长40 cm 的金属棒,欲将其截成x 根7 cm 长的小段和y 根的9 cm 长的小段,剩余部分作废料处理.若使废料最少,则正整数x ,y 应分别为( B )A .x =1,y =3B .x =3,y =2C .x =4,y =1D .x =2,y =3 二、填空题(每小题3分,共18分)11.写出一个解为⎩⎪⎨⎪⎧x =1,y =2的二元一次方程组是__⎩⎪⎨⎪⎧x +y =3x -y =-1__.12.(包头中考)若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧x +y =3,2x -ay =5的解是⎩⎨⎧x =b ,y =1,则a b的值为__1__.13.如果直线y =2x +3与直线y =3x -2b 的交点在x 轴上,那么b 的值为__-94__.14.八年级(1)班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花35元,则有__2__种购买方案.15.(乐山中考)二元一次方程组x +y 2=2x -y3=x +2的解是__⎩⎪⎨⎪⎧x =-5y =-1__.16.在同一直角坐标系内分别作出一次函数y =12x +1和y =2x -2的图象,则下面的说法:①函数⎪⎧2y -x =2,⎪⎧x =2,1=2x -2的图象交点的坐标为(-2,2);④两直线与y 轴所围成的三角形的面积为 3.其中正确的有__②④__.(填序号)三、解答题(本大题9小题,共72分) 17.(12分)解下列方程组:(1)⎩⎪⎨⎪⎧y +x =1,5x +2y =8; (2)⎩⎪⎨⎪⎧x 2+y 3=132,4x -3y =18;解:⎩⎪⎨⎪⎧x =2y =-1 解:⎩⎪⎨⎪⎧x =9y =6(3)⎩⎪⎨⎪⎧x -2y =-1,x -y =2-2y ; (4)⎩⎪⎨⎪⎧x +y =-1,2x -y +3z =1,x -2y -z =6.解:⎩⎪⎨⎪⎧x =1y =1 解:⎩⎪⎨⎪⎧x =1y =-2z =-118.(6分)直线a 与直线y =2x +1的交点的横坐标是2,与直线y =-x +2的交点的纵坐标是1,求直线a 对应的表达式.解:将x =2代入y =2x +1得y =5,将y =1代入y =-x +2得x =1,设直线a 的表达式为y =kx+b ,即⎩⎨⎧5=2k +b ,1=k +b ,解得⎩⎨⎧k =4,b =-3,所以直线a 的表达式为y =4x -319.(6分)已知关于x ,y 的方程组⎩⎪⎨⎪⎧ax +2by =4,x +y =1与⎩⎪⎨⎪⎧x -y =3,bx +(a -1)y =3的解相同,求a ,b 的值.解:解方程组⎩⎪⎨⎪⎧x +y =1,x -y =3得⎩⎨⎧x =2,y =-1,将⎩⎪⎨⎪⎧x =2,y =-1代入方程组⎩⎪⎨⎪⎧ax +2by =4,bx +(a -1)y =3得⎩⎪⎨⎪⎧a -b =2,2b -a =2解得⎩⎪⎨⎪⎧a =6b =420.(6分)如图,8块相同的长方形地砖拼成了一个长方形图形(地砖间的缝隙忽略不计),求每块地砖的长和宽.解:设每块地砖的长为x 厘米,宽为y 厘米,由题意得⎩⎨⎧x +y =60,3y +x =2x ,解得⎩⎪⎨⎪⎧x =45,y =15.答:每块地砖的长和宽分别为45厘米,15厘米21.(7分)如图,在东北大秧歌的踩高跷表演中,已知演员身高是高跷长度的2倍,高跷与腿重合部分的长度为28 cm ,演员踩在高跷上时,头顶距离地面的高度为224 cm .设演员的身高为x cm ,高跷的长度为y cm ,求x ,y 的值.解:依题意得⎩⎨⎧x =2y ,x +y -28=224,解得⎩⎪⎨⎪⎧x =168y =8422.(7分)学校组织学生乘汽车去自然保护区野营,前13路段为平路,其余路段为坡路,已知汽车在平路上行驶的速度为60 km /h ,在坡路上行驶的速度为30 km /h .汽车从学校到自然保护区一共行驶了6.5 h ,求汽车在平路和坡路上各行驶多少时间?解:设汽车在平路上行驶x h ,在坡路上行驶y h ,则依题意得⎩⎨⎧x +y =6.5,60x ×2=30y ,解得⎩⎪⎨⎪⎧x =1.3y =5.2。

全新北师大版八年级数学上册各单元测试卷(全册 共61页 附答案)

全新北师大版八年级数学上册各单元测试卷(全册 共61页 附答案)

全新北师大版八年级数学上册各单元测试卷(全册共61页附答案)目录第一章达标测试卷一、选择题(每题3分,共30分)1.把一个直角三角形的两直角边长同时扩大到原来的3倍,则斜边长扩大到原来的( ) A.2倍B.3倍C.4倍D.5倍2.下列各组线段能构成直角三角形的一组是( )A.30,40,50 B.7,12,13 C.5,9,12 D.3,4,63.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是( ) A.169 B.119 C.13 D.1444.如图,阴影部分是一个长方形,则长方形的面积是( )A.3 cm2B.4 cm2C.5 cm2D.6 cm2(第4题) (第7题) (第10题)5.满足下列条件的△ABC,不是直角三角形的为( )A.∠A=∠B-∠C B.∠A∶∠B∶∠C=1∶1∶2C.b2=a2-c2D.a∶b∶c=2∶3∶46.已知一轮船以18 n mile/h的速度从港口A出发向西南方向航行,另一轮船以24 n mile/h 的速度同时从港口A出发向东南方向航行,离开港口1.5 h后,两轮船相距( ) A.30 n mile B.35 n mile C.40 n mile D.45 n mile7.如图,在△ABC中,AB=AC=13,BC=10,点D为BC的中点,DE⊥AB,垂足为点E,则DE等于( )A.1013B.1513C.6013D.75138.若△ABC的三边长a,b,c满足(a-b)(a2+b2-c2)=0,则△ABC是( ) A.等腰三角形B.直角三角形C.等边三角形D.等腰三角形或直角三角形9.已知直角三角形的斜边长为5 cm,周长为12 cm,则这个三角形的面积是( ) A.12 cm2B.6 cm2C.8 cm2D.10 cm210.如图,分别以直角三角形的三条边为边向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是( )A.S1+S2>S3B.S1+S2=S3C.S1+S2<S3D.无法确定二、填空题(每题3分,共24分)11.如图,在等腰三角形ABC中,AB=AC,AD是底边上的高,若AB=5 cm,BC=6 cm,则AD=__________.(第11题) (第12题) (第13题)12.如图,某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B 300 m,结果他在水中实际游了500 m,则该河流的宽度为________.13.如图,在Rt△ABC中,∠B=90°,AB=3 cm,AC=5 cm,将△ABC折叠,使点C与点A 重合,得折痕DE,则△ABE的周长等于________.14.已知a,b,c是△ABC的三边长,且满足关系式(a2-c2-b2)2+||c-b=0,则△ABC的形状为_________________________________________.15.如图是一个长方体,则AB=________,阴影部分的面积为________.(第15题) (第16题)16.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,且AH∶AE=3∶4.那么AH等于________.17.红方侦察员小马的正前方400 m处有一条东西走向的公路,突然发现一辆蓝方汽车在公路上行驶,他拿出红外线测距仪测得汽车与他相距400 m,10 s后又测得汽车与他相距500 m,则蓝方汽车的速度是________m/s.18.在一根长90 cm的灯管上缠满了彩色丝带,已知可近似地将灯管看成圆柱体,且底面周长为4 cm,彩色丝带均匀地缠绕了30圈(如图为灯管的部分示意图),则彩色丝带的总长度为__________.(第18题)三、解答题(19~22题每题9分,其余每题10分,共66分)19.某消防部队进行消防演练.在模拟现场,有一建筑物发生了火灾,消防车到达后,发现离建筑物的水平距离最近为12 m,如图,即AD=BC=12 m,此时建筑物中距地面12.8 m高的P处有一被困人员需要救援.已知消防云梯车的车身高AB是3.8 m,问此消防车的云梯至少应伸长多少米?20.如图,在4³4的正方形网格中,每个小正方形的边长都是1.线段AB,AE分别是图中两个1³3的长方形的对角线,请你说明:AB⊥AE.21.如图,四边形ABCD是边长为a的正方形,点E在CD上,DE=b,AE=c,延长CB至点F,使BF=b,连接AF,试利用此图说明勾股定理.22.如图,一根12 m的电线杆AB用铁丝AC,AD固定,现已知用去的铁丝AC=15 m,AD=13 m,又测得地面上B,C两点之间的距离是9 m,B,D两点之间的距离是5 m,则电线杆和地面是否垂直,为什么?23.如图,∠AOB=90°,OA=9 cm,OB=3 cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球,如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?24.如图,在长方形ABCD中,DC=5 cm,在DC上存在一点E,沿直线AE把△AED折叠,使点D恰好落在BC边上,设落点为F,若△ABF的面积为30 cm2,求△ADE的面积.25.有一个如图所示的长方体透明玻璃水缸,其长AD=8 cm,高AB=6 cm,水深为AE=4 cm,在水面线EF上紧贴内壁G处有一粒食物,且EG=6 cm,一只小虫想从水缸外的A处沿水缸壁爬进水缸内的G处吃掉食物.(1)小虫应该沿怎样的路线爬才能使爬的路线最短呢?请你画出它爬行的最短路线,并用箭头标注.(2)求小虫爬行的最短路线长(不计缸壁厚度).答案一、1.B 2.A 3.A 4.C 5.D 6.D 7.C 8.D 9.B 10.B二、11.4 cm 12.400 m 13.7 cm 14.等腰直角三角形 15.13;30 16.6 17.3018.150 cm 点拨:因为灯管可近似看成圆柱,而圆柱的侧面展开图是一个长方形,所以假设把灯管的侧面展开后,得到一个由30个完全相同的小长方形组成的大长方形,且每个小长方形的长等于灯管的底面周长,小长方形的高等于灯管长度的130,则丝带的长度等于小长方形对角线长的30倍. 三、19.解:因为CD =AB =3.8 m ,所以PD =PC -CD =9 m. 在Rt △ADP 中,AP 2=AD 2+PD 2, 得AP =15 m.所以此消防车的云梯至少应伸长15 m.20.解:如图,连接BE .(第20题)因为AE 2=12+32=10,AB 2=12+32=10,BE 2=22+42=20,所以AE 2+AB 2=BE 2.所以△ABE 是直角三角形,且∠BAE =90°,即AB ⊥AE .21.解:在△ADE 和△ABF 中,⎩⎪⎨⎪⎧AD =AB =a ,∠D =∠ABF ,DE =BF =b ,所以△ADE ≌△ABF .所以AE =AF =c ,∠DAE =∠BAF ,S △ADE =S △ABF .所以∠EAF =∠EAB +∠BAF =∠EAB +∠DAE =∠DAB =90°,S 正方形ABCD =S 四边形AECF .连接EF ,易知S 四边形AECF =S △AEF +S △ECF =12[c 2+(a -b )(a +b )]=12(a 2+c 2-b 2),S 正方形ABCD=a 2,所以12(a 2+c 2-b 2)=a 2.所以a 2+b 2=c 2. 22.解:垂直.理由如下:因为AB =12 m ,AC =15 m ,BC =9 m , 所以AC 2=BC 2+AB 2. 所以∠CBA =90°. 又因为AD =13 m ,AB =12 m ,BD =5 m ,所以AD 2=BD 2+AB 2. 所以∠ABD =90°, 因此电线杆和地面垂直.点拨:要判定电线杆和地面垂直,只需说明AB ⊥BD 且AB ⊥BC 即可,利用勾股定理的逆定理即可判定△ABD 和△ABC 为直角三角形,从而得出电线杆和地面垂直. 23.解:根据题意,BC =AC =OA -OC =9-OC .因为∠AOB =90°,所以在Rt △BOC 中,根据勾股定理,得OB 2+OC 2=BC 2, 所以32+OC 2=(9-OC )2, 解得OC =4 cm. 所以BC =5 cm.24.解:由折叠可知AD =AF ,DE =EF .由S △ABF =12BF ²AB =30 cm 2,AB =DC =5 cm ,得BF =12 cm.在Rt △ABF 中,由勾股定理,得AF =13 cm ,所以BC =AD =AF =13 cm. 设DE =x cm ,则EC =(5-x )cm ,EF =x cm ,FC =13-12=1(cm).在Rt △ECF 中,由勾股定理,得EC 2+FC 2=EF 2,即(5-x )2+12=x 2,解得x =135.所以S △ADE =12AD ²DE =12³13³135=16.9 (cm 2).25.解:(1)如图,作点A 关于BC 的对称点A ′,连接A ′G 与BC 交于点Q ,则AQ +QG 为最短路线.(第25题)(2)因为AE =4 cm ,AA ′=12 cm ,所以A ′E =8 cm.在Rt △A ′EG 中,EG =6 cm ,A ′E =8 cm ,A ′G 2=A ′E 2+EG 2=102, 所以A ′G =10 cm ,所以AQ +QG =A ′Q +QG =A ′G =10 cm. 所以最短路线长为10 cm.第二章达标测试卷一、选择题(每题3分,共30分) 1.8的平方根是( )A .4B .±4C .2 2D .±2 2的立方根是( )A .-1B .0C .1D .±13.有下列各数:0.456,3π2,(-π)0,3.14,0.801 08,0.101 001 000 1…(相邻两个1之间0的个数逐次加1),4,12.其中是无理数的有( ) A .1个B .2个C .3个D .4个4.有下列各式:①2;②13;③8x >0).其中,最简二次根式有( )A .1个B .2个C .3个D .4个5.下列语句不正确的是( )A .数轴上的点表示的数,如果不是有理数,那么一定是无理数B .大小介于两个有理数之间的无理数有无数个C .-1的立方是-1,立方根也是-1D .两个实数,较大者的平方也较大 6.下列计算正确的是( )A.12=2 3B.32=32==x7.设n 为正整数,且n <65<n +1,则n 的值为( )A .5B .6C .7D .88.如图,在数轴上表示-5和19的两点之间表示整数的点有( )A .7个B .8个C .9个D .6个(第8题)(第10题)9(y +3)2=0,则x -y 的值为( )A .-1B .1C .-7D .710.按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是( )A .14B .16C .8+52D .14+2二、填空题(每题3分,共24分)11 ________ 5 (填“>”或“<”).12.利用计算器计算12³3-5时,正确的按键顺序是________________,显示器上显示的数是________.13.如图,数轴上表示数3的是点________.。

北师大八年级数学上册单元测试题全套及答案

北师大八年级数学上册单元测试题全套及答案

最新北师大版八年级数学上册单元测试题全套及答案第一章勾股定理综合测评时间: 满分:120分、精心选一选(每小题4分,共32 分)1. 在厶 ABC 中,/ B=90° ,若 BC=3 AC=5,贝U AB 等于( )A.3B.4C.5D.62. 下列几组数中,能组成直角三角形的是()4.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8 cm,另一只朝左挖,每分钟挖 6 cm,10分钟后,两只小鼹鼠相距( )6.图2中的小方格都是边长为 1的正方形,试判断厶 ABC 的形状为()、耐心填一填(每小题4分,共32 分)9. 写出两组勾股数: ________________ . _______________10. 在厶ABC 中,ZC = 90° , 若 BC : AC = 3 :4 , AB= 10,则 BC= ___ , AC = _____ .班级: ________ 姓名: _______ 得分: _______1 1 1A.—,B.3 ,4, 6C.5 ,12, 13D.0.8 , 1.2 , 1.53 4 ,53.如图 1, 正方形 ABCD 的面积为 100 cm 2, △ ABP 为直角三角形, / P=90 ° ,且PB=6 cm ,则AP 的长为 ( )A.10 cmB.6 cmC.8 cmD.无法确定A.50 cmB.80 cmC.100 cm D.140 cm5.已知a , b , cABC 的三边,且满足 a 2 b 2 a 2 b 2 c 2 = 0,则它的形状为( A.直角三角形C.等腰直角三角形B.等腰三角形D. 等腰三角形或直角三角形A .钝角三角形 B. 锐角三角形 C.直角三角形 D.以上都有可能[来源:学科网7. 如图3, 一圆柱高8 cm,底面半径为2 cm, —只蚂蚁从点 A 爬到点B 处吃食,要爬行的最短路程( 取3 )是()A. 20 cmB.10 cmC.14 cmD.无法确定8.已知 Rt △ ABC 中,/ C=90°, 若 BC + AC = 14 cm , AB= 10 cm ,则该三角形的面积是( 2A.24 cm2B.36 cmC.48 cm2D.60 cm11. 如图4,等腰三角形ABC的底边长为16,底边上的高AD长为6,则腰AB的长度为___________13. 一个三角形的三边长之比为 5 : 12 : 13,它的周长为60,则它的面积是 _______ . 14. 图6是一个三级台阶,它的每一级长、宽、高分别是2米,0.3米,0.2米,A ,B 是这个台阶上两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿台阶面 爬行到B 点的最短路程是 米.屋门只有242 cm 高,100 cm 宽.你认为小明能把床垫拿进屋吗?________________________________________________________________________ .(填"能”或"不能”)16.图7是一束太阳光线从仓库窗户射入的平面示意图,小强同学测得 米,AC = 4.5米,MC= 6米,则太阳光线 MA 的长度为 _______ 米.17. (10分)如图8,甲渔船以8海里/时的速度离开港口 O 向东北方向航行,乙渔船以5 4 BN ^ —米,NC=—米,BC = 133三、细心做一做(共56分)12.如图 5,/ OAB =Z OBC=Z OCD= 90°, AB= BC = CD= 1, OA= 2,贝U OD 2 = _____15. 一天,小明买了一张底面是边长为 260 cm 的正方形,厚30 cm 的床垫回家,至U 了家门口,才 发现6海里/时的10,在一棵树的10米高处有两只猴子,一只猴子爬下树后走到离树 20米处的池塘D 后直接跃到A 处,距离以直线计算,若两只猴子所经过的距离相等,试求该树的19. (12分)如图 A 处.另一只爬到树顶速度离开港口 O 向西北方向航行,它们同时出发 .一个半小时后,甲、乙两渔船相距多少海里?9,已知在厶 ABC 中,AB=13, AD=12 AC=15, CD=9 求厶 ABC 的面积.18. (10分)如图高度.20. (12分)如图11, 一块草坪的形状为四边形 ABCDr 其中/ B=90 , AB=8 m BC=6 m CD=24 mAD=26 m.求这块草坪的面积.来源:Z#xx#]21. (12分)对任意符合条件的直角三角形保持其锐角顶点 A 不动,改变BC 的位置,使 E , D ,且/ BAE = 90°,/ CAD = 90° (如图 12).【分析】所给数据如图中所示,且四边形 ACFD 是一个正方形,它的面积和四边形ABFE 的面积相等.第一章勾股定理综合测评一、 1.B 2.C 3.C 4.C 5.D 6.C 7.B 8.A二、 9.答案不唯一,如 3,4,5 ; 60,80,100 10.6 8 11.10 12.7 13.120 14.2.5 15.台匕冃匕16.7.533三、 17.解:由题意得 OA — 812 (海里),OB — 69 (海里), AOB 90,所以△ AOB22是直角三角形.由勾股定理,得 OA 2 OB 2 AB 2,即AB 2 =92+122=225,所以AB= 15 (海里).答略.18. 解:因为 AD=12 AC=15 CD=9所以AD+cD=144+8仁225= AC 2,所以△ ADC 为直角三角形,且/ ADC=90 .在 Rt △ ABD 中,AB=13, AD=12 由勾股定理得 BD 2 =AB 2 - AD 2 = 25,所以ED =5,所以 BC = BD+DC=5+9=1411所以 S AABC =• BC• AD=— X 14X 12=84 .2 219. 解:由题意知 AD+DB=BC+CA 且 CA=20米,BC=10米,设 BD=x 贝U AD=30-x .【解答】结合上面的分析过程验证勾股定理[来源:学科网]在Rt △ ACD中,CD+CA^AE2,即(30-x ) 2= ( 10+x) 2+202,解得x=5,故树高CD=10+x=15 (米).20. 解:如图,连接AC,因为/ B=90,所以在Rt△ ABC中,由勾股定理得AC2=AB2+BC2=82+62=100, 所以AC=10.又因为CD=24, AD=26所以在△ ACD中, AC+CD^A E J,所以△ ACD是直角三角形.1 1 1 1” *所以S 四边形ABC=S^ACD-S△ AB(= — AC?CD ——AB?BC —X 10X 24 -——X 8X6 =120-24=96 (m)."22 2 2 2/故该草坪的面积为96 m. '-一/21解:由分析可得S 正方形ACFD= S 四边形ABFE=S^ BAE+ S^ BFE・1 1即b2= c2+ (b+a) (b-a).2 2整理,得2b2= c2+ (b+ a) (b-a) .*源学一科网心所以a2+ b2= c2.第二章实数检测题【本检测题满分:100分,时间:90分钟】、选择题(每小题3分,共30分)1 .下列无理数中,在一2与1之间的是()A. —LB.—:;C.D .2. (2014 •南京中考)8的平方根是()A . 4B . ±4C .2 .刁D . ±皿3.若a,b为实数,且满足|a—2|+ . b2 =0, 则b —a的值为()A . 2B . 0C.—2 D . 以上都不对4.卜列说法错误的是()A. 5是25的算术平方根B.1是1的一个平方根C . (—4)2的平方根是一4D.0的平方根与算术平方根都是5.要使式子- x有意义,则x的取值范围是()A . x> 0 B. x>- 2 C. x> 2 D. x< 26.若a, b均为正整数,且a> .7 , b> 3 2,则a + b的最小值是( )A. 3B.4C.57.在实数-,。

北师大版八年级数学上册单元测试题全套及答案

北师大版八年级数学上册单元测试题全套及答案

最新北师大版八年级数学上册单元测试题全套及答案第一章勾股定理综合测评时间:满分:120分班级:姓名:得分:一、精心选一选(每小题4分,共32分)1. 在△ABC中,∠B=90°,若BC=3,AC=5,则AB等于().4 C2.下列几组数中,能组成直角三角形的是()A.13,14,15,4,6 C.5,12,13 ,,3.如图1,正方形ABCD的面积为100 cm2,△ABP为直角三角形,∠P=90°,且PB=6 cm,则AP的长为()A.10 cmB.6 cmC.8 cmD.无法确定4.两只小鼹鼠在地下打洞,一只朝前方挖,每分钟挖8 cm,另一只朝左挖,每分钟挖6 cm,10分钟后,两只小鼹鼠相距()A.50 cmB.80 cmC.100 c mD.140 cm5.已知a,b,c为△ABC的三边,且满足()()22222a b a b c-+-=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6. 图2中的小方格都是边长为1的正方形,试判断△ABC的形状为()A.钝角三角形 B. 锐角三角形 C. 直角三角形 D.以上都有可能7.如图3,一圆柱高8 cm,底面半径为2 cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(πPC BD A取3)是( )A.20 cmB.10 cmC.14 cmD.无法确定8.已知Rt △ABC 中,∠C=90°,若BC +AC =14 cm ,AB =10 cm ,则该三角形的面积是( ) A.24 cm 2B.36 cm 2C.48 cm 2D.60 cm 2二、耐心填一填(每小题4分,共32分)9.写出两组勾股数: .10.在△ABC 中,∠C=90°, 若BC ∶AC =3∶4,AB =10,则BC =_____,AC =_____. 11.如图4,等腰三角形ABC 的底边长为16,底边上的高AD 长为6,则腰AB 的长度为_____.12.如图5,∠OA B =∠OBC =∠OCD =90°,AB =BC =CD =1,OA =2,则2OD =____.13.一个三角形的三边长之比为5∶12∶13,它的周长为60,则它的面积是______.14.图6是一个三级台阶,它的每一级长、宽、高分别是2米,0.3米,0.2米,A ,B 是这个台阶上两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿台阶面爬行到B 点的最短路程是_____米.15.一天,小明买了一张底面是边长为260 cm 的正方形,厚30 cm 的床垫回家,到了家门口,才发现屋门只有242 cm 高,100 cm 宽.你认为小明能把床垫拿进屋吗 .(填“能”或“不能”)16.图7是一束太阳光线从仓库窗户射入的平面示意图,小强同学测得BN =35米,NC =34米,BC =1米,AC =4.5米,MC =6米,则太阳光线MA 的长度为_____米.三、细心做一做(共56分)17.(10分)如图8,甲渔船以8海里/时的速度离开港口O向东北方向航行,乙渔船以6海里/时的速度离开港口O向西北方向航行,它们同时出发.一个半小时后,甲、乙两渔船相距多少海里18.(10分)如图9,已知在△ABC中,AB=13,AD=12,AC=15,CD=9,求△ABC的面积.19.(12分)如图10,在一棵树的10米高处有两只猴子,一只猴子爬下树后走到离树20米处的池塘A处.另一只爬到树顶D后直接跃到A处,距离以直线计算,若两只猴子所经过的距离相等,试求该树的高度.20.(12分)如图11,一块草坪的形状为四边形ABCD,其中∠B=90°,AB=8 m,BC=6 m,CD=24 m,AD=26 m.求这块草坪的面积.21. (12分)对任意符合条件的直角三角形保持其锐角顶点A不动,改变BC的位置,使B→E,C→D,且∠BAE=90°,∠CAD=90°(如图12).【分析】所给数据如图中所示,且四边形ACFD是一个正方形,它的面积和四边形ABFE的面积相等.【解答】结合上面的分析过程验证勾股定理.第一章 勾股定理综合测评一、二、9. 答案不唯一,如3,4,5;60,80,100 8 15.能 16.7.5三、17.解:由题意得38122OA =⨯=(海里),3692OB =⨯=(海里),90AOB ∠=︒,所以△AOB 是直角三角形.由勾股定理,得222OA OB AB +=,即2AB =92+122=225,所以AB =15(海里).答略.18.解:因为AD=12,AC=15,CD=9,所以AD 2+CD 2=144+81=225= AC 2,所以△ADC 为直角三角形,且∠ADC=90°.在Rt △ABD 中,AB=13,AD=12,由勾股定理得BD 2=AB2-AD2=25,所以BD=5,所以BC =BD+DC=5+9=14.所以S △ABC =21·BC ·AD=21×14×12=84. 19.解:由题意知AD+DB=BC+CA ,且CA=20米,BC=10米,设BD=x ,则AD=30-x .在Rt △ACD 中,CD 2+CA 2=AD 2,即(30-x )2=(10+x )2+202,解得x=5,故树高CD=10+x=15(米). 20.解:如图,连接AC ,因为∠B=90°,所以在Rt △ABC 中,由勾股定理得AC 2=AB 2+BC 2=82+62=100,所以AC=10.又因为CD=24,AD=26,所以在△ACD 中,AC 2+CD 2=AD 2,所以△ACD 是直角三角形. 所以S 四边形ABCD =S △ACD -S △ABC =21AC •CD-21AB •BC=21×10×24-21×8×6=120-24=96(m 2). 故该草坪的面积为96 m 2.21.解:由分析可得S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE . 即b 2=12c 2+12(b +a )(b -a ).整理,得2b2=c2+(b+a)(b-a).所以a2+b2=c2.第二章实数检测题【本检测题满分:100分,时间:90分钟】一、选择题(每小题3分,共30分)1.下列无理数中,在-2与1之间的是()A.-B.-C. D.2.(2014·南京中考)8的平方根是()A.4 B.±4 C. 2D.3. 若a,b为实数,且满足|a-2|+2b-=0,则b-a的值为()A.2 B.0 C.-2 D.以上都不对4. 下列说法错误的是()A.5是25的算术平方根 B.1是1的一个平方根C.(-4)2的平方根是-4 D.0的平方根与算术平方根都是0 5. 要使式子有意义,则x的取值范围是()A.x>0 B.x≥-2 C.x≥2 D.x≤26. 若a,b均为正整数,且a>7,b>32,则a+b的最小值是().4 C7. 在实数,,,-,中,无理数有()个个个个8. 已知3a=-1,b=1,212c⎛⎫-⎪⎝⎭=0,则abc的值为()B.-1 C.-12D.129.若(m1)22n+0,则m+n的值是()A.-1 B.0 C.1 D.210. 有一个数值转换器,原理如图所示:当输入的x=64时,输出的y等于()A .2B .8C .32D .22二、填空题(每小题3分,共24分)11. 已知:若 3.65≈,36.5≈,则365000≈ ,±0.000365≈ . 12. 绝对值小于π的整数有 .13. 6的平方根是 ,81的算术平方根是 . 14. 已知|a -5|+3b +=0,那么a -b = .15. 已知a ,b 为两个连续的整数,且a >28>b ,则a +b = . 16.计算:(21)(21)=________.17.使式子1+x 有意义的x 的取值范围是________. 18.)计算:﹣=_________.三、解答题(共46分)19.(6分)已知,求的值.20.(6分)若5+7的小数部分是a ,5-7的小数部分是b ,求ab +5b 的值. 21.(6分)先阅读下面的解题过程,然后再解答:形如n m 2±的化简,只要我们找到两个数a ,b ,使m b a =+,n ab =,即m b a =+22)()(,n b a =⋅,那么便有:b a b a n m ±=±=±2)(2)(b a >.例如:化简:347+.解:首先把347+化为1227+,这里7=m ,12=n , 因为,,即7)3()4(22=+,1234=⨯, 所以347+1227+32)34(2+=+.根据上述方法化简:42213-.22.(6分)比较大小,并说明理由:(1)与6;(2)与.23.(6分)大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部写出来,于是小平用-1来表示的小数部分,你同意小平的表示方法吗事实上小平的表示方法是有道理的,因为的整数部分是1,用这个数减去其整数部分,差就是小数部分.请解答:已知:5+的小数部分是,5-的整数部分是b ,求+b 的值.24.(8分)计算:(1)862⨯-82734⨯+; (2))62)(31(-+-2)132(-. 25.(8分)阅读下面计算过程:12)12)(12()12(1121-=-+-⨯=+;();23)23)(23(231231-=-+-⨯=+()25)25)(25(251251-=-+-⨯=+.试求:(1)671+的值;(2)nn ++11(n 为正整数)的值.(3122334989999100++⋅⋅⋅++++++.第二章 实数检测题参考答案一、选择题解析:,即-32;,即-21;,即12<23,所以选B.解析:8=±点拨:注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.解析:∵ |a -2|0, ∴ a =2,b =0,∴b -a =0-2=-2.故选C .解析:A.,所以A 项正确;B.=±1,所以1是1的一个平方根说法正确;C.4,所以C 项错误;D.00,所以D 项正确. 故选C .解析:∵ 二次根式的被开方数为非负数,∴ 2-x ≥0,解得x ≤2.解析:∵a ,b 均为正整数,且a b a 的最小值是3,b 的最小值是2, 则a +b 的最小值是5.故选C .2,所以在实数23-,0,23-,0是无理数.=-11,212c ⎛⎫- ⎪⎝⎭=0,∴a =-1,b =1,c =12, ∴abc =- 12.故选C .解析:根据偶次方、算术平方根的非负性,由(m1)22n+=0,得m-1=0,n+2=0,解得m=1,n =-2,∴m+n=1+(-2)=-1.解析:由图得64的算术平方根是8,8的算术平方根是22.故选D.二、填空题± 1 解析:436500036.510=⨯≈;±0.000365=±43.6510-⨯≈± 1.12.±3,±2,±1,0 解析:π≈,大于-π的负整数有:-3,-2,-1,小于π的正整数有:3,2,1,0的绝对值也小于π.13.± 3 解析:0.0036=0.0681=9±±,,9的算术平方根是3,所以81的算术平方根是3.解析:由|a-5|+3b+=0,得a=5,b=-3,所以a-b=5-(-3) =8.解析:∵a>28>b, a,b为两个连续的整数,又25<28<36,∴a=6,b=5,∴a+b=11.解析:根据平方差公式进行计算,(2+1)(2-1)=()22-12=2-1=1.≥0 解析:根据二次根式的被开方数必须是非负数,要使1+x有意义,必须满足x≥0.18.332解析:12-343333=23.--==三、解答题19.解:因为,,即,所以.故,从而,所以,所以.20.解:∵ 2<7<3,∴ 7<5+7<8,∴ a=7-2.又可得2<5-7<3,∴ b=3-7.将a =7-2,b =3-7代入ab +5b 中,得ab +5b =(7-2)(3-7)+5(3-7)=37-7-6+27+15-57=2. 21.解:根据题意,可知,因为,所以.22. 分析:(1)可把6转化成带根号的形式,再比较它们的被开方数,即可比较大小; (2)可采用近似求值的方法来比较大小. 解:(1)∵ 6=36,35<36,∴35<6. (2)∵ -5+1≈-+1=-,-22≈-,>, ∴-5+1<-22. 23. 解:∵ 4<5<9,∴ 2<<3,∴ 7<5+<8,∴ =-2.又∵ -2>->-3,∴ 5-2>5->5-3,∴ 2<5-<3,∴ b =2,∴ +b =-2+2=.24. 解:(1)原式=62333223-+⨯ (2)原式=()266321343-+--- =623663-+ =432213--. =136233-.1(76)25.17 6.76(76)(76)⨯-==-++-解:()(2)1(1)11(1)(1)n n n n n n n n n n ⨯+-==+-+++++-.(3)122334989999100+++⋅⋅⋅+++++++=-11001+10=9.第三章位置与坐标检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2016•湖北荆门中考)在平面直角坐标系中,若点A(a,﹣b)在第一象限内,则点B(a,b)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.在如图所示的直角坐标系中,点M,N的坐标分别为()A. M(-1,2),N(2,1)(2,-1),N(2,1)(-1,2),N(1,2)(2,-1),N(1,2)第2题图第3题图3.如图,长方形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿长方形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位长度/秒匀速运动,物体乙按顺时针方向以2个单位长度/秒匀速运动,则两个物体运动后的第2012次相遇点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)4.已知点P的坐标为,且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)5.(2016•福州中考)平面直角坐标系中,已知平行四边形ABCD的三个顶点坐标分别是A(m,n),B(2,﹣1),C(﹣m,﹣n),则点D的坐标是()A.(﹣2,1)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣1,2)6.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数,那么所得的图案与原图案相比( )A.形状不变,大小扩大到原来的倍B.图案向右平移了个单位长度C.图案向上平移了个单位长度D.图案向右平移了个单位长度,并且向上平移了个单位长度7.(2016·武汉中考)已知点A (a ,1)与点A ′(5,b )关于坐标原点对称,则实数a 、b 的值是( ) A .a =5,b =1 B .a =-5,b =1C .a =5,b =-1D .a =-5,b =-18.如图,若将直角坐标系中“鱼”的每个“顶点”的横坐标保持不变,纵坐标分别变为原来的21,则点A 的对应点的坐标是( )A.(-4,3)B.(4,3)C.(-2,6)D.(-2,3)9.如果点),(n m A 在第二象限,那么点,(m B │n │)在( )A.第一象限B.第二象限C.第三象限D.第四象限 10.(湖南株洲中考)在平面直角坐标系中,孔明做走棋游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位……依次类推,第n 步的走法是:当n 能被3整除时,则向上走1个单位;当n 被3除,余数是1时,则向右走1个单位,当n 被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是( ) A.(66,34) B.(67,33) C.(100,33) D.(99,34)二、填空题(每小题3分,共24分)11.在平面直角坐标系中,点A (2,2m +1)一定在第 象限. 12点和点关于轴对称,而点与点C (2,3)关于轴对称,那么,,点和点的位置关系是 .13.一只蚂蚁由点(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是 .14.(2015·南京中考)在平面直角坐标系中,点A 的坐标是(2,3),作点A 关于x 轴的对称点,得到点A ′,再作点A ′关于y 轴的对称点,得到点A ″,则点A ″的坐标是(____,____).第8题图15.(2016·杭州中考)在平面直角坐标系中,已知A (2,3),B (0,1), C (3,1),若线段AC 与BD 互相平分,则点D 关于坐标原点的对称点的坐标为 . 16.如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x轴,则点C 的坐标为 _. 17.已知点(1)M a -,和(2)N b ,不重合.(1)当点M N ,关于 对称时,21a b ==,; (2)当点M N ,关于原点对称时,a = ,b = .18.(2015·山东青岛中考)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的31,那么点A 的对应点A'的坐标是_______.第18题图三、解答题(共46分)19.(6分)如图所示,三角形ABC 三个顶点A ,B ,C 的坐标分别为A (1,2),B (4,3),C (3,1).把三角形A 1B 1C 1向右平移4个单位长度,再向下平移3个单位长度,恰好得到三角形ABC ,试写出三角形A 1B 1C 1三个顶点的坐标.第19题图 第20题图20.(6分)如图,在平面网格中每个小正方形的边长为1个单位长度,(1)线段CD 是线段AB 经过怎样的平移后得到的第16题图(2)线段AC 是线段BD 经过怎样的平移后得到的 21.(6分)在直角坐标系中,用线段顺次连接点A (,0),B (0,3),C (3,3),D (4,0).(1)这是一个什么图形; (2)求出它的面积; (3)求出它的周长. 22.(6分)如图,点用表示,点用表示.若用→→→→表示由到的一种走法,并规定从到只能向上或向右走(一步可走多格),用上述表示法写出另两种走法,并判断这几种走法的路程是否相等.23.(6分)(湖南湘潭中考)在边长为1的小正方形网格中,△AOB 的顶点均在格点上, (1)B 点关于y 轴的对称点的坐标为;(2)将△AOB 向左平移3个单位长度得到△A 1O 1B 1,请画出△A 1O 1B 1; (3)在(2)的条件下,点A 1的坐标为 . 24.(8分)如图所示.(1)写出三角形③的顶点坐标.(2)通过平移由三角形③能得到三角形④吗(3)根据对称性由三角形③可得三角形①,②,它们的顶点坐标各是什么第22题图第23题图25.(8分)有一张图纸被损坏,但上面有如图所示的两个标志点A (-3,1),B (-3,-3)可见,而主要建筑C (3,2)破损,请通过建立直角坐标系找到图中C 点的 位置.第三章 位置与坐标检测题参考答案一、选择题解析:根据各象限内点的坐标特征解答即可. ∵ 点A (a ,﹣b )在第一象限内, ∴ a >0,﹣b >0,∴ b <0,∴ 点B (a ,b )所在的象限是第四象限.故选D .解析:本题利用了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).解析:长方形的边长为4和2,因为物体乙的速度是物体甲的速度的2倍,时间相同, 物体甲与物体乙的路程比为1︰2,由题意知:①第一次相遇物体甲与物体乙行的路程和为12×1,物体甲行的路程为12×31=4,物体乙 行的路程为12×32=8,在BC 边相遇; ②第二次相遇物体甲与物体乙行的路程和为12×2,物体甲行的路程为12×2×31=8,物 体乙行的路程为12×2×32=16,在DE 边相遇; ③第三次相遇物体甲与物体乙行的路程和为12×3,物体甲行的路程为12×3×31=12, 物体乙行的路程为12×3×32=24,在A 点相遇,此时甲、乙回到出发点,则每相遇三次, 两物体回到出发点. 因为2 012÷3=670……2,故两个物体运动后的第2012次相遇点与第二次相遇点为同一点,即物体甲行的路程为第24题图第25题图12×2×31=8,物体乙行的路程为12×2×32=16,在DE 边相遇,此时相遇点的坐标为: (-1,-1),故选D .解析:因为点P 到两坐标轴的距离相等,所以,所以a =-1或a =-4.当a =-1时,点P 的坐标为(3,3);当a =-4时,点P 的坐标为(6,-6). 解析:∵ A (m ,n ),C (﹣m ,﹣n ),∴ 点A 和点C 关于原点对称. ∵ 四边形ABCD 是平行四边形,∴ 点D 和B 关于原点对称. ∵ B (2,﹣1),∴ 点D 的坐标是(﹣2,1).故选A .解析:因为点A (a ,1)与点A ′(5,b )关于坐标原点对称,而点(a ,b )关于坐标原点的对称点的坐标是(-a ,-b ),所以a =-5,b =-1.故选D.解析:点A 变化前的坐标为(-4,6),将横坐标保持不变,纵坐标变为原来的21,则点A 的对应点的坐标是(-4,3),故选A .解析:因为点A 在第二象限,所以,0,0><n m 所以,0>-m ︱n ︱>0,因此点B 在第一象限. 解析:在1至100这100个数中:(1)能被3整除的为33个,故向上走了33个单位; (2)被3除,余数为1的数有34个,故向右走了34个单位; (3)被3除,余数为2的数有33个,故向右走了66个单位,故总共向右走了34+66=100(个)单位,向上走了33个单位.所以走完第100步时所处 位置的横坐标为100,纵坐标为33.故选C.二、填空题11.一 解析:因为2m ≥0,1>0,所以纵坐标2m +1>0.因为点A 的横坐标2>0,所以点A 一定在第一象限. 12.关于原点对称 解析:因为点A (a ,b )和点关于轴对称,所以点的坐标为(a ,-b );因为点与点C (2,3)关于轴对称,所以点的坐标为(-2,3),所以a =-2,b =-3,点和点关于原点对称.13.(3,2) 解析:一只蚂蚁由点(0,0)先向上爬4个单位长度,坐标变为(0,4),再向右爬3个单位长度,坐标变为(3,4),再向下爬2个单位长度,坐标变为(3,2),所以它所在位置的坐标为(3,2). 14. 3 解析:点A 关于x 轴的对称点A ′的坐标是(2,3),点A ′关于y 轴的对称点A ″的坐标是(2,3).15.(-5,-3) 解析:如图所示,∵ A (2,3),B (0,1),C (3,1),线段AC 与BD 互相平分,∴ D 点坐标为:(5,3),∴ 点D 关于坐标原点的对称点的坐标为(-5,-3).第15题答图16.(3,5) 解析:因为正方形ABCD 的边长为4,点A 的坐标为(-1,1),所以点C 的横坐标为4-1=3,点C 的纵坐标为4+1=5,所以点C 的坐标为(3,5).17.(1)x 轴 (2)-2 1 解析:两点关于x 轴对称时,横坐标相等,纵坐标互为相反数;两点关于原点对称时,横、纵坐标都互为相反数.18.(2,3) 解析:点A 的坐标是(6,3),它的纵坐标保持不变,把横坐标变为原来的31,得到它的对应点A '的坐标是16,33⎛⎫⨯ ⎪⎝⎭,即A '(2,3).三、解答题19.解:设△A 1B 1C 1的三个顶点的坐标分别为A 1(,将它的三个顶点分别向右平移4个单位长度,再向下平移3个单位长度,则此时三个顶点的坐标分别为(,由题意可得=2,2x +4=4,2y -3=3,3x +4=3,3y -3=1,所以A 1(-3,5),B 1(0,6),.20. 解:(1)将线段AB 向右平移3个单位长度(向下平移4个单位长度),再向下平移4个单位长度(向右平移3个单位长度),得线段CD .(2)将线段BD 向左平移3个单位长度(向下平移1个单位长度),再向下平移1个单位长度(向左平移3个单位长度),得到线段AC .21. 解:(1)因为点B (0,3)和点C (3,3)的纵坐标相同,点A 2,04,0D (-)和点()的纵坐标也相同,所以BC ∥AD . 因为AD BC , 所以四边形是梯形.作出图形如图所示. (2)因为,,高,故梯形的面积是21227. (3)在Rt △中,根据勾股定理,得,同理可得,因而梯形的周长是.22.解:走法一:; 走法二:.答案不唯一. 路程相等.23.分析:(1)根据关于y 轴对称的点的横坐标互为相反数,纵坐标相等解答;(2)根据网格结构找出点A ,O ,B 向左平移后的对应点A 1,O 1,B 1的位置,然后顺次连接即可; (3)根据平面直角坐标系写出坐标即可.解:(1)B 点关于y 轴的对称点的坐标为(-3,2); (2)△A 1O 1B 1如图所示; (3)点A 1的坐标为(-2,3).第21题答图第23题答图24.分析:(1)根据坐标的确定方法,读出各点的横、纵坐标,即可得出各个顶点的坐标;(2)根据平移过程中点的坐标的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,可得三角形④不能由三角形③通过平移得到;(3)根据对称性,即可得到三角形①,②顶点的坐标.解:(1)(-1,-1),(-4,-4),(-3,-5).(2)不能.(3)三角形②的顶点坐标分别为(-1,1),(-4,4),(-3,5)(三角形②与三角形③关于轴对称);三角形①的顶点坐标分别为(1,1),(4,4),(3,5)(由三角形③与三角形①关于原点对称可得三角形①的顶点坐标).25.分析:先根据点A(-3,1),B(-3,-3)的坐标,确定出x轴和y轴,再根据C点的坐标(3,2),即可确定C点的位置.解:点C的位置如图所示.第四章 一次函数检测题(本检测题满分:100分,时间:90分钟)一、选择题(每小题3分,共30分)1.(2015•上海中考)下列y 关于x 的函数中,是正比例函数的为( ) A.2y x = B.2y x =C.2x y =D.12x y +=2.(2016•南宁中考)已知正比例函数y =3x 的图象经过点(1,m ),则m 的值为( ) A .B .3 C.﹣D.﹣33.(2016•陕西中考)设点A (a ,b )是正比例函数y =﹣x 图象上的任意一点,则下列等式一定成立的是( )A .2a +3b =0B .2a ﹣3b =0C .3a ﹣2b =0D .3a +2b =04.(2016·湖南邵阳中考)一次函数y =﹣x +2的图象不经过的象限是( ) A.第一象限B.第二象限C.第三象限D.第四象限5.已知一次函数y =kx +b 中y 随x 的增大而减小,且kb <0,则在直角坐标系内它的大致图象是( )6.已知直线y =kx -4(k <0)与两坐标轴所围成的三角形面积等于4,则直线的表达式 为( )A .y =-x -4B .y =-2x -4C .y =-3x +4D .y =-3x -47.小敏从A 地出发向B 地行走,同时小聪从B 地出发向A 地行走,如图所示,相交于点P 的两条线段l 1、l 2分别表示小敏、小聪离B 地的距离y km 与已用时间x h 之间的关系,则小敏、小聪行走的速度分别是( )A .3 km/h 和4 km/hB .3 km/h 和3 km/hC .4 km/h 和4 km/hD .4 km/h 和3 km/h第7题图yx O yx O yx O y x O A B C D8.若甲、乙两弹簧的长度y cm与所挂物体质量x kg之间的函数表达式分别为y=k1x+b1和y=k2x+b2,如图所示,所挂物体质量均为2 kg时,甲弹簧长为y1,乙弹簧长为y2,则y1与y2的大小关系为()>y2=y2<y2 D.不能确定9.如图所示,已知直线l:y =33x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为()A.(0,64) B.(0,128)C.(0,256) D.(0,512)10.如图所示,在平面直角坐标系中,直线y=23x-23与矩形ABCO的边OC、BC分别交于点E、F,已知OA=3,OC=4,则△CEF的面积是()A.6 B.3 C.12 D.43二、填空题(每小题3分,共24分)11. 已知函数y=(m-1)2m x+1是一次函数,则m= .12.(2015·天津中考)若一次函数y=2x+b(b为常数)的图象经过点(1,5),则b的值为 .13.已知A地在B地正南方3 km处,甲、乙两人同时分别从A、B两地向正北方向第9题图第10题图第13题图stO42BAC匀速直行,他们与A 地的距离s (km )与所行的时间t (h )之间的函数图象如图所示,当行走3 h 后,他们之间的距离为 km.14.(2015·海南中考)点(-1,1y )、(2,2y )是直线y =2x +1上的两点,则1y ________2y .(填“>”或“=”或“<”)15.如图所示,一次函数y =kx +b (k <0)的图象经过点A .当y <3时,x 的 取值范围是 .16.函数y =-3x +2的图象上存在点P,使得点P •到x •轴的距离等于3,则点P •的坐标为 .17.(浙江金华中考)小明从家跑步到学校,接着马上步行回家. 如图是小明离家的路程y (米)与时间t (分)的函数图象,则小明回家的速度是每分钟步行 米.第17题图18.据有关资料统计,两个城市之间每天的电话通话次数T •与这两个城市的人口数m 、n (单 位:万人)以及两个城市间的距离d (单位:km )有T =2kmnd 的关系(k 为常数).•现测 得A 、B 、C 三个城市的人口数及它们之间的距离如图所示,且已知A 、B 两个城市间每 天的电话通话次数为t ,那么B ,C 两个城市间每天的电话通话次数为_______(用t 表 示).三、解答题(共46分)19.(6分)已知一次函数的图象经过点A (2,0)与B (0,4).(1)求一次函数的表达式,并在直角坐标系内画出这个函数的图象;(2)如果(1)中所求的函数的值在-4≤≤4的范围内,求相应的的值在什么范 围内.20.(6分)已知一次函数,(1)为何值时,它的图象经过原点 (2)为何值时,它的图象经过点(0,)第15题图第18题图21.(6分)已知与成正比例,且时.(1)求与之间的函数关系式;(2)当时,求的值.22.(6分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,求这个一次函数的表达式.第22题图23.(6分)小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1 kg收费22元,超过1 kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快寄樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数表达式;(2)已知小李给外婆快寄了 kg樱桃,请你求出这次快寄的费用是多少元24.(8分)已知某服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料米,B种布料米,可获利50元;做一套N型号的时装需用A种布料米,B种布料米,可获利45元.设生产M型号的时装套数为,用这批布料生产两种型号的时装所获得的总利润为y元.(1)求y(元)与(套)之间的函数表达式,并求出自变量的取值范围.(2)当生产M型号的时装多少套时,能使该厂所获利润最大最大利润是多少25.(8分)(2015·天津中考)1号探测气球从海拔5 m处出发,以1 m/min的速度上升.与此同时,2号探测气球从海拔15 m处出发,以 m/min的速度上升.两个气球都匀速上升了50 min.设气球上升时间为x min(0≤x≤50).(1)根据题意,填写下表:上升时间/min10 30 (x)1号探测气球所在位置的海拔/m 15 … 2号探测气球所在位置的海拔/m30…(2)在某时刻两个气球能否位于同一高度如果能,这时气球上升了多长时间位于什么高度如果不能,请说明理由.(3)当30≤x ≤50时,两个气球所在的位置的海拔最多相差多少米第四章 一次函数检测题参考答案一、选择题解析:2y x =中x 的指数是2,2y x =中2x 不是整式,2=x y 是正比例函数,111222x y x +==+是一次函数.解析:∵ 正比例函数y =3x 的图象经过点(1,m ), ∴ 把点(1,m )代入正比例函数y =3x ,可得m =3,故选B. 解析:把点A (a ,b )代入正比例函数y =﹣x ,可得﹣3a =2b ,所以3a +2b =0,故选D.解析:∵ 一次函数y =﹣x +2中k =﹣1<0,b =2>0, ∴ 该函数图象经过第一、二、四象限.故选C . 解析:∵ 一次函数y =kx +b 中y 随着x 的增大而减小,∴ k <0. 又∵ kb <0,∴ b >0,∴ 此一次函数图象经过第一、二、四象限,故选A . 解析:直线y =kx -4(k <0)与两坐标轴的交点坐标为(0,-4),40k ⎛⎫ ⎪⎝⎭,, ∵ 直线y =kx -4(k <0)与两坐标轴所围成的三角形面积等于4,∴ 4×4k ⎛⎫- ⎪⎝⎭×12=4,解得k =-2,则直线的表达式为y =-2x -4.故选B .解析:∵ 通过图象可知的函数表达式为=3,的函数表达式为=-4+ , ∴ 小敏行走的速度为÷=4(km/h ),小聪行走的速度为÷=3(km/h ).故选D. 解析:∵ 点(0,4)和点(1,12)在上,∴ 得到方程组解得∴ y 1=8x +4(x >0). ∵ 点(0,8)和点(1,12)在上, ∴ 得到方程组解得∴ y 2=4x +8(x >0). 当时,,,∴.故选A .解析:∵ 点A 的坐标是(0,1),∴ OA =1.∵ 点B 在直线y =33x 上, ∴ OB =2,∴ OA 1=4,∴ OA 2=16,得出OA 3=64,∴ OA 4=256, ∴ A 4的坐标是(0,256).故选C . 解析:当y =0时,23x -23=0,解得=1, ∴ 点E 的坐标是(1,0),即OE =1.∵ OC =4,∴ EC =OC -OE =4-1=3,点F 的横坐标是4, ∴ y =23×4-23=2,即CF =2.∴ △CEF 的面积=·CE ·CF =×3×2=3.故选B .二、填空题11.-1 解析:若两个变量和y 间的关系式可以表示成y =k +b (k ,b 为常数,k ≠0)的形式,则称y 是的一次函数(为自变量,y 为因变量). 因而有m 2=1,解得m =±1.又m -1≠0,∴ m =-1.12. 3 解析:一次函数y =2x +b 的图象经过点(1,5),所以5=2+b ,解得b =3.13.23解析:由题意可知甲走的是路线,乙走的是路线, 因为直线过点(0,0),(2,4),所以. 因为直线过点(2,4),(0,3),所以.当时,.14.< 解析:∵ 一次函数y =2x +1中k =2>0,∴ y 随x 的增大而增大,∵ -1<2,由21x x <,得1y <2y .>2 解析:由函数图象可知,此函数y 随x 的增大而减小,当y =3时,x =2, 故当y <3时,x >2.故答案为x >2.16.13⎛⎫- ⎪⎝⎭,3或53⎛⎫ ⎪⎝⎭,-3 解析:∵ 点P 到轴的距离等于3,∴ 点P 的纵坐标为3或-3. 当时,;当时,, ∴ 点P 的坐标为或.解析:由图象知,小明回家走了15-5=10(分钟),路程是800米, 故小明回家的速度是每分钟步行80010=80(米). 18.2t 解析:根据题意,有t =25080160⨯k ,∴ k =325t .因此,B 、C 两个城市间每天的电话通话次数为T BC =k ×280100325.5642320t t⨯=⨯= 三、解答题19. 解:(1)由题意,得20,2,4,4,a b a b b +==-⎧⎧⎨⎨==⎩⎩解得 ∴ 这个一次函数的表达式为,函数图象如图所示. (2)∵ ,-4≤≤4, ∴ -4≤≤4,∴ 0≤≤4.20.分析:(1)把点的坐标代入一次函数表达式,并结合一次函数 的定义求解即可;(2)把点的坐标代入一次函数表达式即可. 解:(1)∵ 图象经过原点,第19题答图∴点(0,0)在函数图象上,代入函数表达式,得,解得.又∵是一次函数,∴ 3-k≠0,∴k≠3.故符合.∴当k为9时,它的图象经过原点.(2)∵图象经过点(0,),∴(0,-2)满足函数表达式,代入,得-2=-2k+18,解得.由(1)知k≠3,故符合.∴当k为10时,它的图象经过点(0,-2).21.解:(1)因为与成正比例,所以可设将代入,得所以与之间的函数关系式为(2)将代入,得=1.22.解:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2).设这个一次函数表达式为y=kx+b,∵这个一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组32bk b=⎧⎨+=⎩,,解得31bk=⎧⎨=-⎩,,则这个一次函数的表达式为y=-x+3.23.分析:(1)根据快递的费用=包装费+运费,当0<x≤1和x>1时,可以求出y与x之间的函数表达式;(2)由(1)的表达式可以得出x=>1,代入表达式就可以求解.解:(1)由题意,得当0<x≤1时,y=22+6=28;当x>1时,y=28+10(x-1)=10x+18,∴y=()()01 1018.1xx x⎧<≤⎨+>⎩28,(2)当x=时,y=10×+18=43.∴小李这次快寄的费用是43元.24.解:(1).∵两种型号的时装共用A种布料[+0.•6(80-)]米≤70米,。

北师大版数学八年级上册第三、四章综合练习题

北师大版数学八年级上册第三、四章综合练习题

第三、四章综合练习题一、选择题1、已知点P(0, m)在y轴的负半轴上,则点M(-m, ~m+l)在( )A.第一象限B.第二象限C.第三象限D.第四象限2、一个正比例函数的图象经过(2, -1),则它的表达式为( )1 1A.y=—2XB. y=2xC. y=-~ XD. y=~ X3、点M在X轴上侧,距离X轴5个单位长度,距离y轴3个单位长度,则点M 的坐标为( )A.(5,3)B. (-5, 3)或(5,3)C.(3.5)D. (-3, 5)或(3、5)4、在平面直角坐标系中,点P(2,-3)关于X轴的对称点的坐标是()A. (-2,3)B. (2,3)C. (-2,-3)D. (-3,2)5、笛卡尔是法国著名的数学家,他首先提出并创建了坐标的思想,引入坐标和变量的概念,平面直角坐标系很好地体现了下列哪一种数学思想?( )A.数形结合B.类比C.分类讨论D.建模6、对于一次函数y= —2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过笫三象限C.函数的图象向下平移4个单位长度得丁=一2x的图象D.函数的图象与X轴的交点坐标是(0, 4)7、在平面直角坐标系中的坐标轴上,到原点的距离为2的点有( )A. 1个B. 2个C. 3个D. 4个已知点A (x, y)是第二象限的点,且∣x∣=2, ∣y∣ = 3,则点B (_x,—y) 的坐标是( )A.(2,3)B.(2,-3)C.(-2,-3)D.(-2,3)9、在平面直角坐标系中,点(・3, 7√+l) 一定在( )A.第四象限B.第三象限C.第二象限D.第一象限10、已知点M(l, a)和点N(2, b)是一次函数y= -2x+1图象上的两点,则a与b的大小关系是( )A. d>bB. ci — bC. a<bD.以上都不对二、填空题11、___________________________________________________________ 如果直线AB平行于X轴,则点A, B的坐标之间的关系是 ___________________12、___________________________________________________________ 若点P1(m,-1)关于原点的对称点是卩2(2,兀),则m + n的值是_____________13、一次函数y= (m+2)x+l,若y随X的增大而增大,则m的取值范围是_14、将直线y=2x+l向下平移3个单位长度后所得直线的表达式是_.15、____________________________________________________ 直线y=—X与直线y=x+2与X轴围成的三角形面积是 ______________________ .16、_______________________________________________________________ 若√^z3+(b÷2)2=0,则点M(a, b)关于y轴的对称点的坐标为__________________三、解答题17、已知点A(χ-5, 2χ-4)在第一、三象限的角平分线上,求点A的坐标.18^已知一次函数y=ax+b.(1)当点P(a, b)在第二象限时,直线y =ax+b经过哪儿个象限?(2)如果ab<O,且y随X的增大而增大,则函数的图象不经过哪些象限?19、某通讯公司手机话费收费有/套餐(月租费15元,通话费每分钟0.1元) 和B套餐(月租费0元,通话费每分钟0.15元)两种.设A套餐每月话费为刃(元),E套餐为y2(元),月通话时间为X分钟.⑴分别表示出刃与X,y2与X的函数关系式;(2)月通话时间多长时,/, E两种套餐收费一样?(3)什么情况下/套餐更省钱?20、对于a、b定义两种新运算“*”和“□”:a*b=a+kb, a□b=ka+b (其中A■为常数,且dθ).若平面直角坐标系Xoy中的点P(a,b),有点P的坐标为(d*b, Qb)与之相对应,则称点P为点P的啧衍生点”例如:P (1, 4)的“2 衍生点”为P (Z+2×4, 2×1÷4),即P (9, 6).(1)________________________________________点P (・1, 6)的“2衍生点”P的坐标为 __________________________________ •(2)若点P的“3衍生点”P的坐标为(5, 7),求点P的坐标.第三、四章综合练习题参考答案一、选择题1、已知点P(0, m)在y轴的负半轴上,则点M(—m, ~m÷l)在(A )A.第一象限B.第二象限C.第三象限D.第四象限2、一个正比例函数的图象经过(2, -1),则它的表达式为(C)A. γ=—2XB. y=2xC. γ=—5 XD. y=* X3、点M在X轴上侧,距离X轴5个单位长度,距离y轴3个单位长度,则点M 的坐标为(D )A.(5,3)B. (一5, 3)或(5,3)C.(3.5)D. (-3, 5)或(3、5)4、在平面直角坐标系中,点P(2,-3)关于X轴的对称点的坐标是(B)A. (—2,3)B. (2,3)C. (-2,-3)D. (—3,2)5、笛卡尔是法国著名的数学家,他首先提出并创建了坐标的思想,引入坐标和变量的概念,平面直角坐标系很好地体现了下列哪一种数学思想?(A )A.数形结合B.类比C.分类讨论D.建模6、对于一次函数y= —2x+4,下列结论错误的是(D)A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=—2x的图象D.函数的图象与X轴的交点坐标是(0, 4)7、在平面直角坐标系中的坐标轴上,到原点的距离为2的点有(D)A. 1个B. 2个C. 3个D. 4个8、已知点A (x, y)是第二象限的点,且∣x∣=2, ∣y∣ = 3,则点B (—x, —y) 的坐标是(D )A.(2,3)B.(2,-3)C.(-2,-3)D.(-2,3)9、在平而直角坐标系中,点(-3, ”,+1) —定在(C )A.第四象限B.第三象限C.第二彖限D.第一象限10、已知点M(l, a)和点N(2, b)是一次函数y= -2x+1图象上的两点,贝IJa与b的大小关系是(A)A. Cc>bB. Cl = bC. a<bD.以上都不对二、填空题11、如果直线AB平行于X轴,则点A, B的坐标之间的关系是_纵坐标相等—12、若点P1(m,-1)关于原点的对称点是P2(2,n),则m + n的值是113、一次函数y= (m+2)x+l,若y随X的增大而增大,则m的取值范围是」 >一2 .14、将直线y=2x+1向下平移3个单位长度后所得直线的表达式是y=2χ-2 .15、直线y=—X与直线y=x+2与X轴围成的三角形面积是1 .16、若√a-3+(b+2)2=0,则点M(a, b)关于y轴的对称点的坐标为(一3, —三、解答题17、已知点A(χ-5, 2χ-4)在第一、三象限的角平分线上,求点A的坐标.解:由题意得x—5 = 2χ-4,解得x=-lt将X—-1代入点A的坐标可知,点A.的坐标为(一6, —6)18、已知一次函数y=ax+b.(1)当点P(a, b)在第二象限时,直线y =ax+b经过哪儿个象限?(2)如果abvθ,且y随X的增大而增大,则函数的图象不经过哪些象限?解:⑴匚点P(a, b)在第二象限,□a<0, b>0, □直线y =ax+b经过第一、二、四象限(2)□y随X的增大而增大,30, 乂□ab<O,匚b<0, □一次函数y =ax+b的图象不经过第二象限19、某通讯公司手机话费收费有/套餐(月租费15元,通话费每分钟0.1元) 和B套餐(月租费0元,通话费每分钟0.15元)两种.设/套餐每月话费为yι(元),E套餐为力(元),月通话时间为X分钟.(1)分别表示出yι与X,y2与X的函数关系式;(2)月通话时间多长时,/, B两种套餐收费一样?(3)什么情况下/套餐更省钱?解:(l)yι = 0.1x+15, yι=0.15x(2)III y1=y2得0.Ix+15=0.15x,解得x=300,即月通话时间为300分钟时, A, B两种套餐收费一样(3)当通话时间多于300分钟时,/套餐更省钱20、对于心b定义两种新运算“*”和“□”:a*b=a*b, a~lb=ka+b(其中A■为常数,且炉0).若平面直角坐标系XOy中的点P(a,b),有点P的坐标为(α*b, a∑b)与之相对应,则称点P为点P的啧衍生点”例如:P (b 4)的“2 衍生点”为P (7+2×4, 2×1÷4), BP P f (9, 6)∙(1)点P (・1, 6)的“2衍生点”P的坐标为______ .(2)若点P的“3衍生点的坐标为(5, 7),求点P的坐标.解:略。

北师大版八年级数学上册第七章章节测试题及答案 - 副本

北师大版八年级数学上册第七章章节测试题及答案 - 副本

北师大版八年级数学上册第七章章节测试题及答案一、选择题(共15小题)1. 如图,点在延长线上,下列条件中不能判定的是A. B.C. D.2. 如图中的同旁内角有A. 对B. 对C. 对D. 对3. 如图,下列不能判定的条件是A. B.C. D.4. 一副直角三角板如图放置,点在延长线上,已知:,,,,那么的度数为A. B. C. D.5. 下列各数中,可以用来说明命题“任何偶数都是的倍数”是假命题的反例为A. B. C. D.6. 图书馆将某一本书和某一个关键词建立联系,规定:当关键词出现在书中时,元素,否则(,为正整数).例如:当关键词出现在书中时,,否则.根据上述规定,某读者去图书馆寻找同时有关键词“,,”的书,则下列相关表述错误的是A. 当时,选择这本书B. 当时,不选择这本书C. 当,,全是时,选择这本书D. 只有当时,才不能选择这本书7. 下面是投影屏上出示的抢答一题,需要回答横线上符号代表的内容.则回答正确的是A. 代表B. @代表同位角C. 代表D. 代表8. 下列语句不是命题的是A. 两直线平行,同位角相等B. 锐角都相等C. 画直线平行于D. 所有质数都是奇数9. 下列命题中的真命题是A. 在同一平面内,,,是直线,如果,,则B. 在同一平面内,,,是直线,如果,,则C. 在同一平面内,,,是直线,如果,,则D. 在同一平面内,,,是直线,如果,,则10. 已知同一平面有三条直线,,,且,,则直线与的位置关系是A. 垂直B. 平行C. 相交D. 不能确定11. 下列句子属于命题的是A. 正数大于一切负数吗?B. 将开平方C. 钝角大于直角D. 作线段的中点12. 如图,直线,若,,则等于A. B. C. D.13. 用三个不等式,,中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为A. B. C. D.14. 甲乙两人轮流在黑板上写下不超过的正整数(每次只能写一个数),规定禁止在黑板上写已经写过的数的约数,最后不能写的为失败者,如果甲写第一个,那么,甲写数字时有必胜的策略.A. B. C. D.15. 如图所示,在中,是边上的高,,分别是,的平分线,,,则A. B. C. D.二、填空题(共8小题)16. 如果两条直线都与同一条直线平行,那么这两条直线互相.17. 将命题“等角对等边”改写成“如果,那么”的形式:.18. 如图所示,一条公路修到湖边时,需要拐弯绕湖而过,第一次拐的角,第二次拐的角,则第三次拐的角时,道路才能恰好与平行.19. 如图,()与是直线和直线被直线所截得的;()与是直线和直线被直线所截得的;()与是直线和直线被直线所截得的;()图中所有的同位角有对,它们是;()图中所有的内错角有对,它们是;()图中所有的同旁内角有对,它们是.20. 小聪,小玲,小红三人参加“普法知识竞赛”.其中前题是选择题,每题分,每题有A,B两个选项,且只有一个选项是正确的,三人的答案和得分如下表,试问:这五道题的正确答案的选项(A或者B)(按题的顺序排列)是.21. 已知直线,,在同一平面内,且满足,,那么直线与的位置关系是:.(从“”或“”中选填)22. 用一组,的值说明命题“若,则"是错误的,这组值可以是.(按顺序分别写出,的值)23. 如图,是的角平分线,的一个外角的平分线交边的延长线于点,且,,则的度数为.三、解答题(共7小题)24. 根据图形回答:(1)由,可得,理由是.(2)由,可得,理由是.(3)由,可得,理由是.25. 已知:如图,,相交于点,,.求证:.26. 如图,,,,说明的理由.27. 求证:如果一个角的两条边与另一个角的两条边分别平行,那么这两个角相等或互补.28. 砸“金蛋”游戏:把个“金蛋”连续编号为,,,,,接着把编号是的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为,,,,再把编号是的整数倍的“金蛋”全部砸碎按照这样的方法操作,直到无编号是的整数倍的“金蛋”为止.操作过程中砸碎编号是“”的“金蛋”共多少个?29. 如图,,的平分线的反向延长线和的平分线交于点,,求的度数.30. 判断下列命题是真命题还是假命题,若是假命题,请举一反例加以说明.(1)两个角的和是,则这两个角是邻补角.(2)已知三条线段,,,如果,那么这三条线段一定能围成三角形.答案1. A2. D3. C4. A【解析】,,,,,且,,.5. D【解析】因为是偶数,符合命题的条件,但不是的倍数,不符合命题的结论,所以可以用来说明命题“任何偶数都是的倍数”是假命题的反例是.6. D【解析】根据题意的值要么为,要么为,,说明,,,故关键词“,,”同时出现在书中,故读者去图书馆寻找同时有关键词“,,”的书可选这本书,故选项A表述正确;当时,则,,中必有值为的,即关键词“,,”不同时具有,从而不选择这本书,故选项B表述正确;当,,全是时,即,,,故关键词“,,”同时出现在书中,则选择这本书,故选项C表述正确;根据前述分析可知,只有当时,才能选择这本书,当的值为、或时,都不能选择这本书,故选项D表述错误.7. C【解析】延长交于点,则(三角形的外角等于与它不相邻的两个内角之和),又,得,故(内错角相等,两直线平行).故选C.8. C9. C10. B【解析】同一平面有三条直线,,,且,,则直线与的位置关系是平行,原因是平行与同一条直线的两直线平行.11. C12. B13. D【解析】命题①,如果,,那么.,.整理得.命题①是真命题.命题②,如果,,那么.,..,,.命题②是真命题.命题③,如果,,那么.,.,,,.命题③为真命题.综上,真命题的个数为.14. D【解析】对于选项A:当甲写时,乙可以写,,,,,,如果乙写,则乙必胜,因为无论甲写,,,,这五个数中的(连带)或(连带),乙可以写或,剩下个数字;当甲写或时,乙可以写(连带)或(连带),剩下偶数个数字甲最后不能写,乙必胜;对于选项B:当甲写后,乙可以写,,,,,,,如果乙写,则乙必胜,因为剩下,,,,这个数中,无论甲写(连带)或(连带),乙可以写或;当甲写或时,乙可以写(连带)或(连带),甲最后不能写,乙必胜;对于选项C:当甲写时,乙可以写,,,,,,当乙写(或)时,甲就必须写(或),因为乙写(或)后,连带(或)也不能写了,这样才能保证剩下能写的数有偶数个,甲才可以获胜;对于选项D:甲先写,由于的约数有,,,,接下来乙可以写的数只有,,,,,,把这个数分成三组:,,,当然也可,,或,,等等,只要组内两数大数不是小数的倍数即可,这样,乙写某组数中的某个数时,甲就写同组中的另一数,从而甲一定写最后一个,甲必获胜,综上可知,只有甲先写,才能必胜,故选:D.15. A【解析】根据三角形内角和定理,得,所以.因为是的平分线,所以.所以.所以.16. 平行17. 在三角形中,如果有两个角相等,那么这两个角所对的边也相等18.【解析】如图所示,作.因为,所以.当时,,得.因为,所以,得.即第三次拐的角为时,道路才能恰好与平行.19. ,,,同位角,,,,同旁内角,,,,内错角,,与,与,与,与,与,与,,与,与,与,与,,与,与,与,与20. BABBA21.22. ,(答案不唯一)【解析】当,时,满足,但是,所以命题“若,则"是错误的.答案不唯一.23.【解析】是的角平分线,,,.平分,,.,.故答案为:.24. (1);;同位角相等,两直线平行(2);;内错角相等,两直线平行(3);;同旁内角互补,两直线平行25. 因为(对顶角相等),,(已知),所以(等量代换).所以(内错角相等,两直线平行).26. 在和中,所以.所以(全等三角形对应角相等).27. 已知:如图,,,求证:.证明:,.,..已知:如图,,,求证:.证明:,.,..28. ,第一次砸碎的倍数的金蛋个数为;剩下个金蛋,重新编号为,,,,,,第二次砸碎的倍数的金蛋个数为;剩下个金蛋,重新编号为,,,,,,第三次砸碎的倍数的金蛋个数为;剩下个金蛋,因为,所以砸三次后,就不再存在编号为的金蛋,故操作过程中砸碎编号是“”的“金蛋”共个.29. 如图,过点作.因为,所以,因为的平分线的反向延长线和的平分线交于点,所以设,,所以,,所以四边形中,,即,又因为,所以,所以,所以.30. (1)假命题.如图所示,在等腰中,,,则,但与不是邻补角.(2)假命题.例如,,,,但,构不成三角形.北师大版八年级数学上册第七章章节测试题及答案一、选择题(共15小题)1. 如图,点在延长线上,下列条件中不能判定的是A. B.C. D.2. 如图中的同旁内角有A. 对B. 对C. 对D. 对3. 如图,下列不能判定的条件是A. B.C. D.4. 一副直角三角板如图放置,点在延长线上,已知:,,,,那么的度数为A. B. C. D.5. 下列各数中,可以用来说明命题“任何偶数都是的倍数”是假命题的反例为A. B. C. D.6. 图书馆将某一本书和某一个关键词建立联系,规定:当关键词出现在书中时,元素,否则(,为正整数).例如:当关键词出现在书中时,,否则.根据上述规定,某读者去图书馆寻找同时有关键词“,,”的书,则下列相关表述错误的是A. 当时,选择这本书B. 当时,不选择这本书C. 当,,全是时,选择这本书D. 只有当时,才不能选择这本书7. 下面是投影屏上出示的抢答一题,需要回答横线上符号代表的内容.则回答正确的是A. 代表B. @代表同位角C. 代表D. 代表8. 下列语句不是命题的是A. 两直线平行,同位角相等B. 锐角都相等C. 画直线平行于D. 所有质数都是奇数9. 下列命题中的真命题是A. 在同一平面内,,,是直线,如果,,则B. 在同一平面内,,,是直线,如果,,则C. 在同一平面内,,,是直线,如果,,则D. 在同一平面内,,,是直线,如果,,则10. 已知同一平面有三条直线,,,且,,则直线与的位置关系是A. 垂直B. 平行C. 相交D. 不能确定11. 下列句子属于命题的是A. 正数大于一切负数吗?B. 将开平方C. 钝角大于直角D. 作线段的中点12. 如图,直线,若,,则等于A. B. C. D.13. 用三个不等式,,中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为A. B. C. D.14. 甲乙两人轮流在黑板上写下不超过的正整数(每次只能写一个数),规定禁止在黑板上写已经写过的数的约数,最后不能写的为失败者,如果甲写第一个,那么,甲写数字时有必胜的策略.A. B. C. D.15. 如图所示,在中,是边上的高,,分别是,的平分线,,,则A. B. C. D.二、填空题(共8小题)16. 如果两条直线都与同一条直线平行,那么这两条直线互相.17. 将命题“等角对等边”改写成“如果,那么”的形式:.18. 如图所示,一条公路修到湖边时,需要拐弯绕湖而过,第一次拐的角,第二次拐的角,则第三次拐的角时,道路才能恰好与平行.19. 如图,()与是直线和直线被直线所截得的;()与是直线和直线被直线所截得的;()与是直线和直线被直线所截得的;()图中所有的同位角有对,它们是;()图中所有的内错角有对,它们是;()图中所有的同旁内角有对,它们是.20. 小聪,小玲,小红三人参加“普法知识竞赛”.其中前题是选择题,每题分,每题有A,B两个选项,且只有一个选项是正确的,三人的答案和得分如下表,试问:这五道题的正确答案的选项(A或者B)(按题的顺序排列)是.21. 已知直线,,在同一平面内,且满足,,那么直线与的位置关系是:.(从“”或“”中选填)22. 用一组,的值说明命题“若,则"是错误的,这组值可以是.(按顺序分别写出,的值)23. 如图,是的角平分线,的一个外角的平分线交边的延长线于点,且,,则的度数为.三、解答题(共7小题)24. 根据图形回答:(1)由,可得,理由是.(2)由,可得,理由是.(3)由,可得,理由是.25. 已知:如图,,相交于点,,.求证:.26. 如图,,,,说明的理由.27. 求证:如果一个角的两条边与另一个角的两条边分别平行,那么这两个角相等或互补.28. 砸“金蛋”游戏:把个“金蛋”连续编号为,,,,,接着把编号是的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为,,,,再把编号是的整数倍的“金蛋”全部砸碎按照这样的方法操作,直到无编号是的整数倍的“金蛋”为止.操作过程中砸碎编号是“”的“金蛋”共多少个?29. 如图,,的平分线的反向延长线和的平分线交于点,,求的度数.30. 判断下列命题是真命题还是假命题,若是假命题,请举一反例加以说明.(1)两个角的和是,则这两个角是邻补角.(2)已知三条线段,,,如果,那么这三条线段一定能围成三角形.答案1. A2. D3. C4. A【解析】,,,,,且,,.5. D【解析】因为是偶数,符合命题的条件,但不是的倍数,不符合命题的结论,所以可以用来说明命题“任何偶数都是的倍数”是假命题的反例是.6. D【解析】根据题意的值要么为,要么为,,说明,,,故关键词“,,”同时出现在书中,故读者去图书馆寻找同时有关键词“,,”的书可选这本书,故选项A表述正确;当时,则,,中必有值为的,即关键词“,,”不同时具有,从而不选择这本书,故选项B表述正确;当,,全是时,即,,,故关键词“,,”同时出现在书中,则选择这本书,故选项C表述正确;根据前述分析可知,只有当时,才能选择这本书,当的值为、或时,都不能选择这本书,故选项D表述错误.7. C【解析】延长交于点,则(三角形的外角等于与它不相邻的两个内角之和),又,得,故(内错角相等,两直线平行).故选C.8. C9. C10. B【解析】同一平面有三条直线,,,且,,则直线与的位置关系是平行,原因是平行与同一条直线的两直线平行.11. C12. B13. D【解析】命题①,如果,,那么.,.整理得.命题①是真命题.命题②,如果,,那么.,..,,.命题②是真命题.命题③,如果,,那么.,.,,,.命题③为真命题.综上,真命题的个数为.14. D【解析】对于选项A:当甲写时,乙可以写,,,,,,如果乙写,则乙必胜,因为无论甲写,,,,这五个数中的(连带)或(连带),乙可以写或,剩下个数字;当甲写或时,乙可以写(连带)或(连带),剩下偶数个数字甲最后不能写,乙必胜;对于选项B:当甲写后,乙可以写,,,,,,,如果乙写,则乙必胜,因为剩下,,,,这个数中,无论甲写(连带)或(连带),乙可以写或;当甲写或时,乙可以写(连带)或(连带),甲最后不能写,乙必胜;对于选项C:当甲写时,乙可以写,,,,,,当乙写(或)时,甲就必须写(或),因为乙写(或)后,连带(或)也不能写了,这样才能保证剩下能写的数有偶数个,甲才可以获胜;对于选项D:甲先写,由于的约数有,,,,接下来乙可以写的数只有,,,,,,把这个数分成三组:,,,当然也可,,或,,等等,只要组内两数大数不是小数的倍数即可,这样,乙写某组数中的某个数时,甲就写同组中的另一数,从而甲一定写最后一个,甲必获胜,综上可知,只有甲先写,才能必胜,故选:D.15. A【解析】根据三角形内角和定理,得,所以.因为是的平分线,所以.所以.所以.16. 平行17. 在三角形中,如果有两个角相等,那么这两个角所对的边也相等18.【解析】如图所示,作.因为,所以.当时,,得.因为,所以,得.即第三次拐的角为时,道路才能恰好与平行.19. ,,,同位角,,,,同旁内角,,,,内错角,,与,与,与,与,与,与,,与,与,与,与,,与,与,与,与20. BABBA21.22. ,(答案不唯一)【解析】当,时,满足,但是,所以命题“若,则"是错误的.答案不唯一.23.【解析】是的角平分线,,,.平分,,.,.故答案为:.24. (1);;同位角相等,两直线平行(2);;内错角相等,两直线平行(3);;同旁内角互补,两直线平行25. 因为(对顶角相等),,(已知),所以(等量代换).所以(内错角相等,两直线平行).26. 在和中,所以.所以(全等三角形对应角相等).27. 已知:如图,,,求证:.证明:,.,..已知:如图,,,求证:.证明:,.,..28. ,第一次砸碎的倍数的金蛋个数为;剩下个金蛋,重新编号为,,,,,,第二次砸碎的倍数的金蛋个数为;剩下个金蛋,重新编号为,,,,,,第三次砸碎的倍数的金蛋个数为;剩下个金蛋,因为,所以砸三次后,就不再存在编号为的金蛋,故操作过程中砸碎编号是“”的“金蛋”共个.29. 如图,过点作.因为,所以,因为的平分线的反向延长线和的平分线交于点,所以设,,所以,,所以四边形中,,即,又因为,所以,所以,所以.30. (1)假命题.如图所示,在等腰中,,,则,但与不是邻补角.(2)假命题.例如,,,,但,构不成三角形.。

北师大版八年级数学上册试题 第6章 数据的分析 章节测试卷(含解析)

北师大版八年级数学上册试题 第6章 数据的分析 章节测试卷(含解析)

第6章《数据的分析》章节测试卷、一.选择题(共10小题,满分30分,每小题3分)1.八(1)班的学生从第一学期到第二学期时,下列有关年龄的统计量不变的是()A.平均年龄B.年龄的方差C.年龄的众数D.年龄的中位数2.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的是()吨2 A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是433.某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均值(结果取整数)为()A.87次B.110次C.112次D.120次4.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数是()A.3分B.3.55分C.4分D.45%5.八位评委对参加演讲比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下的6个分数的平均分作为选手的比赛得分,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的()A.平均数B.中位数C.极差D.众数6.育新中学八年级六班有53人.一次月考后,数学老师对数学成绩进行了统计.由于有三人因事没有参加本次月考,因此计算其他50人的平均分为90分,方差s2=40.后来三进行了补考,数学成绩分别为88分,90分,92分.加入这三人的成绩后,下列说法正确的是()A.平均分和方差都改变B.平均分不变,方差变大C.平均分不变,方差变小D.平均分和方差都不变7.一组数据的方差为s2,将这组数据中每个数据都除以3,所得新数据的方差是()A.13s2B.3s2C.19s2D.9s28.(3分)某同学各科成绩如图所示,则其成绩的中位数是()A.75分B.75.5分C.76分D.77分9.第1组数据为:0、0、0、1、1、1,第2组数据为:m 个00、0、⋯、0、n 个11、1、⋯、1,其中m 、n 是正整数.下列结论:①当m=n 时,两组数据的平均数相等;②当m>n 时,第1组数据的平均数小于第2组数据的平均数;③当m<n 时,第1组数据的中位数小于第2组数据的中位数;④当m =n 时,第2组数据的方差小于第1组数据的方差.其中正确的是( )A .①②B .②③C .①③D .②④10.某数学兴趣小组对我县祁禄山的红军小道的长度进行n 次测量,得到n 个结果x 1,x 2,x 3,…,x n (单位:km ).如果用x 作为这条路线长度的近似值,要使得(x −x 1)2+(x −x 2)2+⋅⋅⋅+(x −x n )2的值最小,x 应选取这n 次测量结果的( )A .中位数B .众数C .平均数D .最小值二.填空题(共6小题,满分18分,每小题3分)11.某学校开展“齐诵满江红,传承报国志”诵读比赛,八年级准备从小乐和小涵两位同学中选拔一位同学参加决赛,如图是小乐和小涵两位同学参加5次选拔赛的测试成绩(满分为100分)折线统计图,若选择一位成绩优异且稳定的同学参赛,推选参加决赛的同学是 (填“小乐”或“小涵”).12.有一组数据:a,b,c,d,e(a <b <c <d <e).将这组数据改变为a −2,b,c,d,e +2.设这组数据改变前后的方差分别是s 21,s 22,则s 21与s 22的大小关系是 .13.两组数据:3,a ,2b ,5与a ,6,b 的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的众数为 .14.甲、乙、丙三种糖果的售价分别为每千克6元、每千克7元、每千克8元,若将甲种糖果6千克,乙种糖果10千克,丙种糖果4千克混合在一起,则混合后的糖果的售价应定为每千克元.15.若质数a,b满足a2−9b−4=0,则数据a,b,2,3的中位数是.16.若五个整数由小到大排列后,中位数为4,唯一的众数为2,则这组数据之和的最小值是.三.解答题(共7小题,满分52分)17.(6分)已知一组数据:x,10,12,6的中位数与平均数相等,求x的值.18.(6分)校园广播站招聘小记者,对应聘同学分别进行笔试(含阅读能力、思维能力和表达能力三项测试)和面试,应聘者小成同学成绩(单位:分)如下表:笔试面试阅读能力思维能力表达能力92成绩889086(1)请求出小成同学的笔试平均成绩;(2)如果笔试平均成绩与面试成绩按6:4的比例确定总成绩,请求出小成同学的总成绩.19.(8分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a77 1.2乙7b c d(1)写出表格中a,b,c,d的值:(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.(8分)近些年来,我国航天事业飞速发展.今年5月30日,搭载神舟十六号载人飞船的长征二号F遥十六运载火箭,在酒泉卫星发射中心发射升空,神舟十六号航天员乘组由景海鹏、朱杨柱、桂海潮3名航天员组成,发射取得圆满成功.而“天宫课堂”让广大人民尤其是青少年学到了很多科学知识,激发了更多人的航天梦.为普及科学知识,某校开展了“天宫课堂”知识竞赛.为了解七、八年级学生(八年级有600名学生、八年级有800名学生)的竞赛情况,现从两个年级各随机抽取20名学生的成绩(百分制)进行分析.过程如下:【收集数据】八年级20名学生成绩:62,52,58,67,70,69,75,73,75,75,80,78,77,90,81,84,86,88,94,98;八年级20名学生成绩在80≤x<90的分数:83,85,87,81,80,84,82;【整理数据】按照分数段,整理、描述两组样本数据:年级x<7070≤x<8080≤x<9090≤x≤10八年级5a53八年级3674【分析数据】两组样本数据的平均数、中位数、众数、方差如表所示:年级平均数中位数众数方差八年级76.676b131八年级76.6c78124(1)直接写出a、b、c的值;(2)根据抽样调查数据,估计全校七、八年级“天宫课堂”竞赛成绩为优秀(80分及以上)的共有多少人?【得出结论】(3)通过以上分析,你认为这两个年级中哪个年级对“天宫课堂”知识掌握情况更好一些,并说明推断的合理性(写出一条理由即可).21.(8分)每年4月中上旬的体育考试,是初三同学们决胜中考的第一关,为了解我校初2023届学生的体育训练情况,对初2023届学生进行了一次体育机器模拟测试.测试完成后,在初2023届的学生中随机抽取了20名男生,20名女生的本次体育机考的测试成绩,对数据进行整理分析,并给出了下列信息:①20名女生的测试成绩统计如下:44,47,48,45,50,49,45,50,48,49,50,50,44,50,43,50,44,50,49,45.②抽取的20名男生的测试成绩扇形统计图如图:③抽取的20名男生成绩得分用x表示,共分成五组:A:40<x≤42;B:42<x≤44;C:44<x≤46;D:46<x≤48;E:48<x≤50.其中,抽取的20名男生的测试成绩中,D组的成绩如下:47,48,48,47,48,48.④抽取男生与女生的学生的测试成绩的平均数、中位数、众数如表所示:性别平均数中位数众数女生47.548.5c男生47.5b49(1)根据以上信息可以求出:a=______,b=______,c=______;(2)结合以上的数据分析,针对本次的体育测试成绩中,你认为此次的体育测试成绩男生与女生谁更好?请说明理由(理由写出一条即可);(3)若初2023届学生中男生有600人,女生有550人,(规定49分及以上为优秀)请估计该校初2023届参加此次体育测试的学生中成绩为优秀的学生人数.22.(8分)某校为了解八年级800名学生跳绳情况,从八年级学生中随机抽取50名学生进行1分钟跳绳测试,并对测试成绩进行统计,绘制了如下统计表.组别1分钟跳绳个数n频数组内学生平均1分钟跳绳个数A n<100680B100≤n<13015120C130≤n<16020145D n≥1609180其中C组同学跳绳个数:130,134,135,136,138,140,142,142,143,144,145,145,147,148,150,152,155,157,158,159.根据以上信息,回答下列问题:(1)这50名学生1分钟跳绳个数的中位数是_______;(2)求这50名学生1分钟跳绳个数的平均数;(3)若跳绳个数超过140个为优秀,则该校八年级学生跳绳成绩优秀的约有多少人?23.(8分)甲、乙两名队员练习射击,每次射击的环数为整数,两人各射击10次,其成绩分别绘制成如图1、图2所示的统计图,两幅图均有部分被污染,两名队员10次的射击成绩整理后,得到的统计表如下表所示.平均数中位数众数方差甲a7b 1.8乙7c83(1)甲队员射中7环的次数为___________;(2)统计表中a=___________;b=___________;c=___________;(3)___________队员的发挥更稳定;(4)乙队员补射1次后,成绩为m环,据统计乙队员这11次射击成绩的中位数比c大0.5,则m的最小值为___________.答案与试题一.选择题1.B【分析】根据当数据都加上一个数时的平均数、方差、众数、中位数的变化特征逐项判断即可解答.【详解】解:由题意知,八年级一班的学生升八年级时,每个同学的年龄都加1,其中平均年龄加1,众数加1,中位数加1,方差不变,故A、C、D不符合要求;B符合要求.故选:B.2.C【分析】根据众数、平均数、中位数和方差的定义计算各量,然后对各选项进行判断.【详解】∵这组数据的6出现了3次,3,4,5各出现了1次,∴众数为6吨,∵平均数为3+4+5+6×36=5吨,方差为[(4−5)2+(3−5)2+(5−5)2+(6−5)2×3]6=43吨2,中位数是6+52= 5.5吨,∴A,B,D选项正确,不符合题意,C选项错误,符合题意,故选:C3.C【分析】根据众数的定义求解即可【详解】解:∵45%>25%>15%>10%>5%,∴由扇形统计图知,得4分的人数占总人数的45%,人数最多,所以所打分数的众数为4分,故选:C.5.B【分析】根据平均数、中位数、众数、极差的意义分别判断即可得到答案.【详解】去掉一个最高分和一个最低分后一定会影响平均分、极差,有可能影响众数,但是这组数据的中间两个数没有变化故一定不会影响中位数,故选:B.6.C【分析】分别求出加入三人成绩后的平均分、方差,然后比较大小即可.【详解】解:由题意知,加入三人成绩后的平均分为:90×50+88+90+9253=90,∴平均分不变,方差为:40×50+(88−90)2+(90−90)2+(92−90)253≈37.9,∵37.9<40,∴方差变小,故选:C.7.C【分析】本题主要考查的是方差的求法.解答此类问题,通常用x1,x2,…,x n表示出已知数据的平均数与方差,再根据题意用x1,x2,…,x n表示出新数据的平均数与方差,寻找新数据的平均数与原来数据平均数之间的关系.【详解】设原数据为x1,x2,…,x n,其平均数为x,方差为s2.根据题意,得新数据为13x1,13x2,…,13x n,其平均数为13x.根据方差的定义可知,新数据的方差为1n[(13x1−13x)2+(13x2−13x)2+⋯+(13x n−13x)2]=19×1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2]=19s2.故选C.【点睛】本题考查平均数与方差,会分别利用方差和平均数的公式去表示方差和平均数是解题的关键.其次根据题意给代数式进行等量变形也非常重要.8.(3分)(2023春·江西九江·八年级统考期中)某同学各科成绩如图所示,则其成绩的中位数是()9.C【分析】根据平均数的定义,中位数的定义,方差的定义对每一项判断解答即可.【详解】解:∵第1组数据为:0、0、0、1、1、1,∴第1组数据的平均数为0+0+0+1+1+16=12,∵第2组数据为:m个00、0、⋯、0、n个11、1、⋯、1,∴第2组数据平均数为m×0+n×1m+n =nm+n,∵m=n,∴第2组数据平均数nm+n =n2n=12,∴当m=n时,两组数据的平均数相等,故①正确;∵当m>n时,m+n>2n,∴第2组数据平均数nm+n <n2n=12,∴第1组数据的平均数大于第2组数据的平均数,故②错误;∵第1组数据为:0、0、0、1、1、1,∴第1组数据的中位数为0+12=12,∵第2组数据为:m个00、0、⋯、0、n个11、1、⋯、1,∴当m<n时,若m+n为奇数时,第2组数据的中位数为1;若m+n偶数,第2组数据的中位数是为1,∴当m<n时,第2组的中位数为1,当m<n时,第1组数据的中位数小于第2组数据的中位数,故③正确;∵第1组数据为:0、0、0、1、1、1,∴第1组数据方差:3×(0−0.5)2+3×(1−0.5)26=0.25,∵第2组数据为:m个00、0、⋯、0、n个11、1、⋯、1,∴第2组数据的方差为m(0−0.5)2+n(1−0.5)2m+n=0.25,∴当m=n时,第2组数据的方差等于第1组数据的方差,∴正确的序号为①③,故选C.10.C【分析】先设出y=(x﹣x1)2+(x﹣x2)2+(x﹣x3)2+…+(x﹣xn)2,然后进行整理得出y=nx2﹣2(x1+x2+x3+…+xn)x+(x12+x22+x32+…+xn2),再求出二次函数的最小值,再根据x的取值即可得出答案.【详解】解:设y=(x﹣x1)2+(x﹣x2)2+(x﹣x3)2+…+(x﹣xn)2 y=x2﹣2xx1+x12+x2﹣2xx2+x22+x2﹣2xx3+x32+…+x2﹣2xxn+xn2y=nx2﹣2(x1+x2+x3+…+xn)x+(x12+x22+x32+…+xn2),则当x=−﹣2(x1+x2+x3+…+x n)2n =x1+x2+x3+…+x nn时,二次函数y=nx2﹣2(x1+x2+x3+…+xn)x+(x12+x22+x32+…+xn2)最小,∴x所取平均数时,结果最小,故选:C.二.填空题11.解:根据题意得:x小乐=85+90+60+70+905=79,S2小乐=15[(85−79)2+(90−79)2+(60−79)2+(70−79)2+(90−79)2]=144,x小涵=80+80+90+85+905=85,S2小涵=15[(80−85)2+(80−85)2+(90−85)2+(85−85)2+(90−85)2]=20,∵x小涵>x小乐,S2小涵<S2小乐,∴小涵的成绩优异且稳定,∴推选参加决赛的同学是小涵,故答案为:小涵.12.S21<S22【分析】设数据a,b,c,d,e的平均数为x,根据平均数的定义得出数据a−2,b,c,d,e+2的平均数也为x,再利用方差的定义分别求出s21,s22,进而比较大小.【详解】解:设数据a,b,c,d,e的平均数为x,则数据a−2,b,c,d,e+2的平均数也为x,∵s21=15[(a−x)2+(b−x)2+…+(e−x)2],s22=15[(a−2−x)2+(b−x)2+…+(e+2−x)2]=15[(a−x)2+(b−x)2+…+(e−x)2−4(a−x)+4+4(e−x)+4]=15[(a−x)2+(b−x)2+…+(e−x)2+4(e−a)+8]∴s22=S21+15[4(e−a)+8]∵a<e,∴s21<s22.故答案为s21<s22.13.8【分析】根据平均数的意义,求出a、b的值,进而确定两组数据,再合并成一组,找出出现次数最多的数据即可.【详解】解:由题意得,{3+a+2b+5=4×6a+6+b=3×6,解得{a=8b=4,这两组数合并成一组新数据为:3,8,8.5,8,6,4,在这组新数据中,出现次数最多的是8,因此众数是8,故答案为:8.14.6.9【分析】先根据甲种糖果6千克,乙种糖果10千克,丙种糖果4千克求出混合后的糖果甲、乙、丙比,再用各自所占比乘各自的售货单价相加即可.【详解】解:若将甲种糖果6千克,乙种糖果10千克,丙种糖果4千克混合在一起,则混合后的糖果甲、乙、丙比为3:5:2,∴混合后的糖果的售价每千克应定为310×6+510×7+210×8= 6.9(元),故答案为:6.9.15.4或7【分析】由题意知a2−4=9b,即(a+2)(a−2)=9b,且a,b是质数,可得{a+2=9a−2=b或{a+2=b a−2=9或{a+2=9ba−2=1或{a+2=3ba−2=3,解方程组可得满足要求的a,b的值,然后根据中位数是第二、三位数的平均数求解即可.【详解】解:由题意知a2−4=9b,即(a+2)(a−2)=9b,且a,b是质数,∴{a+2=9a−2=b 或{a+2=ba−2=9或{a+2=9ba−2=1或{a+2=3ba−2=3,解得{a=7b=5,{a=11b=13,{a=3b=59(舍去),{a=5b=73(舍去),当{a=7b=5时,2,3,5,7的中位数为3+52=4;当{a=11b=13时,2,3,11,13的中位数为3+112=7;∴数据a,b,2,3的中位数是4或7,故答案为:4或7.16.19【分析】根据“五个整数由小到大排列后,中位数为4,唯一的众数为2”,可知此组数据的第三个数是4,第一个和第二个数是2,据此可知当第四个数是5,第五个数是6时和最小.【详解】∵中位数为4∴中间的数为4,又∵众数是2∴前两个数是2,∵众数2是唯一的,∴第四个和第五个数不能相同,为5和6,∴当这5个整数分别是2,2,4,5,6时,和最小,最小是2+2+4+5+6=19,故答案为19.三.解答题17.解:①当x≤6时,这组数据按从小到大顺序排列为x,6,10,12由题意得x+6+10+124=6+102则x=4②当6<x≤10时,这组数据按从小到大顺序排列为6,x,10,12由题意得x+6+10+124=x+102则x=8③当10<x≤12时,这组数据按从小到大顺序排列为6,10,x,12由题意得x+6+10+124=x+102则x=8(舍)④当x>12时,这组数据按从小到大顺序排列为6,10,12,x由题意得x+6+10+124=10+122则x=16综上所述:x=4或8或16.18.(1)解:由题意可得:88+90+863=88(分)∴小成同学面试平均成绩为88分;(2)解:(88×6+92×4)÷(6+4)=89.6(分)∴小成同学的最终成绩为89.6分.19.解:(1)甲的平均成绩a=5×1+6×2+7×4+8×2+9×11+2+4+2+1=7(环),∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b=7+82=7.5(环),又∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的众数:c=8(环)其方差为:d=110[(3−7)2+(4−7)2+(6−7)2+(7−7)2+3×(8−7)2+(9−7)2+(10−7)2]=110×(16+9+1+0+3+4+9)=110×42=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.20.(1)解:根据八年级20名学生成绩,分数段在70≤x<80的有7人,即a=7;八年级20名学生成绩中,75分的有3人,人数最多,故b=75;根据八年级分数段可得,中位数在80≤x<90分数段中,将80≤x<90分数段中的分数按照从小到大排列为80,81,82,83,84,85,87,故八年级的中位数是80+812=80.5;故a、b、c的值分别为:7,75,80.5.(2)解:七、八年级“天宫课堂”竞赛成绩为优秀人数为:600×820+800×1120=680人;故根据抽样调查数据,估计全校七、八年级“天宫课堂”竞赛成绩为优秀(80分及以上)的共有680人.(3)八年级对“天宫课堂”知识掌握情况更好一些,∵八年级的中位数和众数都高于八年级,且方差小于八年级的方差,说明八年级的成绩更加稳定一些.21.(1)由题意可得:a%=1−(5%+5%+30%+45%)=15%,∴a=15,由已知可得男生各组人数分别如下:A、B、C三组总人数为:20×(5%+5%+15%)=5,D组:20×30%=6,E组:20×45 %=9,∴男生成绩按照从低到高排序,排在第10和第11位的都为48,∴b=48,把女生成绩从低到高排序为:43,44,44,44,45,45,45,47,48,48,49,49,49,50,50,50,50,50,50,50,∴根据众数的意义可得c=50,故答案为:15;48;50;(2)∵在本次测试中,男生成绩和女生成绩的平均数相同,女生成绩的中位数与众数都比男生成绩的中位数与众数较高,∴此次的体育测试成绩女生更好;(3)由数据可知:男生E组数据48<x≤50均为优秀,女生优秀人数为10人,∴600×45%+550×1020=545(人),∴该校初2023届参加此次体育测试的学生中成绩为优秀的学生为545人.故答案为:545人.22.(1)根据数据可知中位数在C组,由C组数据同学跳绳个数:130,134,135,136,138,140,142,142,143,144,145,145,147,148,150,152,155,157,158,159.可得这50名学生1分钟跳绳个数的中位数是137.故答案为:137.(2)150(80×6+120×15+145×20+180×9)=150×7800=156.答:这50名学生1分钟跳绳个数的平均数为156;(3)14+950×800=368(人)答:该校八年级学生跳绳成绩优秀的约有368人.23.(1)解:由条形统计图可得成绩为7环的次数为10−2−1−1−2=4(次),故答案为:4;(2)解:平均数a=5×2+6×1+7×4+8×1+9×210=7,众数b=7,由折线统计图可得剩余两次的成绩和为7×10−3−6−4−8−7−8−10−9=15,∵众数为8,∴剩余两次的成绩为7和8,将乙的10次成绩从大到小依次排序为10,9,8,8,8,7,7,6,4,3,∴中位数c=8+72=7.5,故答案为:7,7,7.5;(3)解:∵方差1.8<2,∴甲队员的发挥更稳定,理由是方差越小稳定性越好,故答案为:甲;(4)解:由题意知,乙队员11次射箭成绩的中位数为7.5+0.5=8,即乙的11次成绩从大到小依次排序中第6次成绩为8,∴m≥8,∴m的最小值为8,故答案为:8..。

最新版(北师大版)八年级数学上册全册同步练习(含答案)

最新版(北师大版)八年级数学上册全册同步练习(含答案)

第一章勾股定理1探索勾股定理第1课时探索勾股定理1.已知直角三角形两直角边的长分别为12,16,则其斜边的长为()A.16 B.18 C.20 D.282.如图,以Rt△ABC的三边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=12,则S3=________.3.如图,某农舍的大门是一个木制的长方形栅栏,它的高为2m,宽为1.5m.现需要在相对的顶点间用一块木板加固,则木板的长为________.4.如图,在Rt△ABC中,AC=8cm,BC=17cm.(1)求AB的长;(2)求阴影长方形的面积.5.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,BC=5,AC=12,求AB、CD的长.第2课时验证勾股定理及其简单应用1.从某电线杆离地面8m处拉一根长为10m的缆绳,这条缆绳在地面的固定点到电线杆底部的距离为()A.2m B.4m C.6m D.8m2.图中不能用来证明勾股定理的是()3.如图,小丽和小明一起去公园荡秋千,秋千绳索OA长5m.小丽坐上秋千后,小明在距离秋千3m的点B处保护.当小丽荡至小明处时,试求小丽上升的高度AC.4.如图,在海上观察所A处,我边防海警发现正北方向6km的B处有一可疑船只正在向其正东方向8km的C处行驶,我边防海警即刻派船只前往拦截.若可疑船只的行驶速度为40km/h,则我边防海警船的速度为多少时,才能恰好在C处将可疑船只截住?2一定是直角三角形吗1.下列各组数中不是勾股数的是()A.9、12、15 B.41、40、9C.25、7、24 D.6、5、42.已知△ABC中,a、b、c分别是∠A、∠B、∠C的对边,下列条件中不能判断△ABC 是直角三角形的是()A.∠A=∠C-∠B B.a∶b∶c=2∶3∶4C.a2=b2-c2D.a=3,b=5,c=43.如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的()A.北偏东75°的方向上B.北偏东65°的方向上C.北偏东55°的方向上D.无法确定4.已知a,b,c是△ABC的三边长,且满足关系式(a2+b2-c2)2+|a-b|=0,则△ABC 的形状为______________.5.在△ABC中,AB=8,BC=15,CA=17,则△ABC的面积为________.6.如图,每个小正方形的边长均为1.(1)直接计算结果:AB2=________,BC2=________,AC2=________;(2)请说明△ABC的形状.3勾股定理的应用1.如图是一个长方形公园的示意图,游人从A景点走到C景点至少要走()A.600m B.800m C.1000m D.1400m2.如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条笔直的水管,则水管的长为()A.45m B.40m C.50m D.56m3.在一块平地上,张大爷家屋前9米远处有一棵大树,在一次强风中,这棵大树从离地面6米处折断倒下,如图,量得倒下部分的长是10米.请你帮张大爷分析一下,大树倒下时会砸到张大爷的房子吗?()A.一定不会B.可能会C.一定会D.以上答案都不对4.如图,一个无盖圆柱形纸筒的底面周长是60cm,高是40cm.一只小蚂蚁在圆筒底部的A处,它想吃到上底面上与点A相对的点B处的蜜糖,试问蚂蚁爬行的最短路程是多少?第二章 实 数1 认识无理数1.下列各数中,是无理数的是( )A .0.3333… B.227 C .0.1010010001 D .-π22.下列说法正确的是( )A .0.121221222…是有理数B .无限小数都是无理数C .面积为5的正方形的边长是有理数D .无理数是无限小数3.若面积为15的正方形的边长为x ,则x 的范围是( ) A .3<x <4 B .4<x <5 C .5<x <6 D .6<x <74.有六个数:0.123,(-1.5)3,3.1416,117,-2π,0.1020020002….若其中无理数的个数为x ,整数的个数为y ,则x +y =________.5.下列各数中哪些是有理数?哪些是无理数?|+5|,-789,π,0.01·8·,3.6161161116…,3.1415926,0,-5%,π3,223.6.已知半径为1的圆.(1)它的周长l 是有理数还是无理数?说说你的理由; (2)估计l 的值(结果精确到十分位).2 平方根第1课时 算术平方根1.数5的算术平方根为( )A. 5 B .25 C .±25 D .±52.如果a -3是一个数的算术平方根,那么a 的值可能为( ) A .0 B .1 C .2 D .43.下列有关说法正确的是( ) A .0.16的算术平方根是±0.4 B .(-6)2的算术平方根是-6 C.81的算术平方根是±9 D.4916的算术平方根是744.要切一块面积为0.81m 2的正方形钢板,则它的边长是________. 5.若|a -2|+b +3+(c -5)2=0,则a -b +c =________. 6.求下列各数的算术平方根: (1)0.25; (2)13; (3)⎝⎛⎭⎫-382; (4)179.7.如图,某玩具厂要制作一批体积为100000cm 3的长方体包装盒,其高为40cm.按设计需要,底面应做成正方形,则底面边长应是多少?第2课时 平方根1.81的平方根是( ) A .9 B .-9 C .±9 D .272.关于平方根,下列说法正确的是( )A .任何一个数都有两个平方根,并且它们互为相反数B .负数没有平方根C .任何一个数都只有一个算术平方根D .以上都不对3.如果一个数的一个平方根是-16,那么这个数是________. 4.计算:(1)( 3.1)2=________; (2)(-8)2=________. 5.求下列各数的平方根:(1)25; (2)1681; (3)0.16; (4)(-2)2.6.若一个正数的平方根为2x +1和x -7,求x 和这个正数.3 立方根1.9的立方根是( )A .3B .±3 C.39 D .±39 2.下列说法中正确的是( )A .-4没有立方根B .1的立方根是±1 C.136的立方根是16D .-5的立方根是3-5 3.已知(x -1)3=64,则x 的值为________. 4.-64的立方根为________. 5.求下列各式的值: (1)3-164; (2)30.001; (3)-3(-7)3.6.已知3x +1的平方根是±4,求9x +19的立方根.7.已知第一个立方体纸盒的棱长是6cm ,第二个立方体纸盒的体积比第一个立方体纸盒的体积大127cm 3,求第二个立方体纸盒的棱长.4估算1.在3,0,-2,-2这四个数中,最小的数是()A.3 B.0C.-2 D.- 22.估计14+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间3.7的整数部分是________.4.比较大小:35________4 3.5用计算器开方1.用计算器求2018的算术平方根时,下列四个键中,必须按的键是() A.+ B.× C. D.÷2.计算器计算的按键顺序为1·69=,其显示的结果为________.3.用科学计算器计算:36+23≈________(结果精确到0.01).4.在某项工程中,需要一块面积为3平方米的正方形钢板,应该如何划线、下料呢?要解决这个问题,必须首先求出正方形的边长,那么请你算一算:(1)如果精确到十分位,正方形的边长是多少?(2)如果精确到百分位呢?6 实 数1.2的相反数是( )A .- 2 B. 2 C.12 D .22.下列各数是有理数的是( ) A .π B. 3 C.27 D.383.如图,M ,N ,P ,Q 是数轴上的四个点,这四个点中最适合表示7的点是________.4.计算:(1)38+327-(-2)2; (2)|1-2|-(3)2+(6-π)0.5.在数轴上表示下列各数,并把这些数用“<”连接起来.-145,3,2,π,0.7 二次根式第1课时 二次根式及其性质1.下列式子中,不是二次根式的是( ) A.45 B.-3 C.a 2+3 D.232.下列根式中属于最简二次根式的是( ) A. 6 B.12C.8D.27 3.化简8的结果是( )A. 2 B .2 2 C .3 2 D .4 2 4.下列变形正确的是( )A.(-4)×(-9)=-4×-9B.1614=16×14=4×12=2 C.62=62= 3 D.252-242=25-24=15.3的倒数是________. 6.化简: (1)2581=________; (2)34=________; (3)3116=________. 7.化简:(1)3×25×25; (2)(-12)×(-8).第2课时 二次根式的运算1.下列根式中,能与18合并的是( ) A. 2 B. 3 C. 5 D. 62.计算12×3的结果为( ) A .2 B .4 C .6 D .36 3.下列计算正确的是( ) A .23+32=5 B.8÷2=2 C .53×52=5 6 D.412=2124.计算24-923的结果是( ) A. 6 B .- 6 C .-43 6 D.4365.若a =22+3,b =22-3,则下列等式成立的是( ) A .ab =1 B .ab =-1 C .a =b D .a =-b 6.计算:(1)(3+5)(3-5); (2)212+348; (3)153-8; (4)(3-1)2-2.第3课时二次根式的混合运算1.化简8-2(2-2)得()A.-2 B.2-2C.2 D.42-22.下列计算正确的是()A.6÷(3-6)=2-1B.27-123=9- 4C.2+5=7D.(-6)2=63.估计20×15+3的运算结果应在()A.1到2之间B.2到3之间C.3到4之间D.4到5之间4.计算:(1)(548+12-627)÷3;(2)(23-1)2+(3+2)(3-2);(3)(25-2)0+|2-5|+(-1)2017-13×45;(4)6÷3+2(2-1).第三章位置与坐标1确定位置1.如果影剧院的座位8排5座用(8,5)表示,那么(4,6)表示()A.6排4座B.4排6座C.4排4座D.6排6座2.下列表述中,位置确定的是()A.北偏东30°B.东经118°,北纬24°C.淮海路以北,中山路以南D.银座电影院第2排3.小明向班级同学介绍自己家的位置时,最恰当的表述是()A.在学校的东边B.在东南方向800米处C.距学校800米处D.在学校东南方向800米处4.生态园位于县城东北方向5公里处,下图表示准确的是()5.如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示,纵线用英文字母表示.这样,棋子①的位置可记为(C,4),棋子②的位置可记为(E,3),则棋子⑨的位置可记为________.6.如图是游乐园的一角.(1)如果用(3,2)表示跳跳床的位置,那么跷跷板用数对________表示,碰碰车用数对________表示,摩天轮用数对________表示;(2)已知秋千在大门以东400m,再往北300m处,请你在图中标出秋千的位置.2平面直角坐标系第1课时平面直角坐标系1.下列选项中,平面直角坐标系的画法正确的是()2.在平面直角坐标系中,点(6,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,笑脸盖住的点的坐标可能为()A.(5,2)B.(3,-4)C.(-4,-6)D.(-1,3)4.已知点A的坐标为(-2,-3),则点A到x轴的距离为________,到原点的距离为________.5.在如图所示的平面直角坐标系xOy中.(1)分别标出点A(4,2),B(0,6),C(-1,3),D(-2,-3),E(2,-4),F(3,0)的位置;(2)写出点M,N,P的坐标.第2课时平面直角坐标系中点的坐标特点1.下列各点在第四象限的是()A.(-1,2) B.(3,-5)C.(-2,-3) D.(2,3)2.下列各点中,在y轴上的是()A.(0,3) B.(-3,0)C.(-1,2) D.(-2,-3)3.在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.若点P(m+1,m+3)在直角坐标系的x轴上,则点P的坐标为()A.(0,2) B.(-2,0)C.(4,0) D.(0,-2)5.已知M(1,-2),N(-3,-2),则直线MN与x轴、y轴的位置关系分别为() A.相交、相交B.平行、平行C.垂直、平行D.平行、垂直6.已知A(0,1),B(2,0),C(4,3).(1)在如图所示的平面直角坐标系中描出各点,画出△ABC;(2)求△ABC的面积.第3课时建立平面直角坐标系描述图形的位置1.如图,在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3)2.如图,已知等腰三角形ABC.若要建立直角坐标系求各顶点的坐标,则你认为最合理的方法是()A.以BC的中点O为坐标原点,BC所在的直线为x轴,AO所在的直线为y轴B.以B点为坐标原点,BC所在的直线为x轴,过B点作x轴的垂线为y轴C.以A点为坐标原点,平行于BC的直线为x轴,过A点作x轴的垂线为y轴D.以C点为坐标原点,平行于BA的直线为x轴,过C点作x轴的垂线为y轴3.中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.如图,在某平面直角坐标系中,如果所在位置的坐标为(-3,1),所在位置的坐标为(2,-1),那么所在位置的坐标为()A.(0,1) B.(4,0)C.(-1,0) D.(0,-1)4.如图,长方形ABCD的长AD=6,宽AB=4.请建立适当的直角坐标系使得C点的坐标为(-3,2),并且求出其他顶点的坐标.3轴对称与坐标变化1.点P(3,-5)关于y轴对称的点的坐标为()A.(-3,-5) B.(5,3)C.(-3,5) D.(3,5)2.已知点P(a,3)和点Q(4,-3)关于x轴对称,则a的值为()A.-4 B.-3 C.3 D.43.已知点P(-2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.-1 C.5 D.-54.将△ABC各顶点的横坐标都乘以-1,纵坐标不变,顺次连接这三个点,得到另一个三角形,下列选项中正确表示这种变换的是()5.已知点M(a,-1)和点N(2,b)不重合.当M、N关于________对称时,a=-2,b =-1.6.如图,在直角坐标系中,A(-1,5),B(-3,0),C(-4,3).(1)在图中作出△ABC关于y轴对称的图形△A1B1C1;(2)写出点C1的坐标;(3)求△ABC的面积.第四章一次函数1函数1.有下面四个关系式:①y=|x|;②|y|=x;③2x2-y=0;④y=x(x≥0).其中y是x 的函数的是()A.①②B.②③C.①②③D.①③④2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,这一过程中汽车的行驶速度v和行驶时间t之间的关系用图象表示,其图象可能是()3.某学习小组做了一个实验:从一幢100m高的楼顶随手放下一只苹果,测得有关数据如下:下落时间t(s),1,2,3,4下落高度h(m),5,20,45,80则下列说法错误的是()A.苹果每秒下落的高度越来越大B.苹果每秒下落的高度不变C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5秒4.一个正方形的边长为3cm,它的各边边长减少x cm后,得到的新正方形的周长为y cm,则y与x之间的函数关系式是__________.5.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元.(1)写出y与x之间的函数关系式;(2)当老师带领20名学生参观时,门票的总费用为多少元?2 一次函数与正比例函数1.下列函数中,是一次函数的有( )①y =πx ;②y =2x -1;③y =1x ;④y =2-3x ;⑤y =x 2-1.A .4个B .3个C .2个D .1个2.已知y =x +2-3b 是正比例函数,则b 的值为( ) A.23 B.32C .0D .任意实数 3.若y =(m -2)x +(m 2-4)是正比例函数,则m 的值是( ) A .2 B .-2 C .±2 D .任意实数4.汽车开始行驶时,油箱内有油40升.若每小时耗油5升,则油箱内余油量y (升)与行驶时间t (小时)之间的函数关系式为( )A .y =40t +5B .y =5t +40C .y =5t -40D .y =40-5t5.小雨拿5元钱去邮局买面值为80分的邮票,小雨买邮票后所剩的钱数y (元)与买邮票的枚数x (枚)之间的关系式为____________.6.甲、乙两地相距520km ,一辆汽车以80km/h 的速度从甲地开往乙地.(1)写出汽车距乙地的路程s (km)与行驶时间t (h)之间的函数关系式(不要求写出自变量的取值范围);(2)当行驶时间为4h 时,求汽车距乙地的路程.3 一次函数的图象第1课时 正比例函数的图象和性质1.正比例函数y =3x 的大致图象是( )2.已知直线y =-2x 上有两点(-1,a ),(2,b ),则a 与b 的大小关系是( ) A .a >b B .a <b C .a =b D .无法确定 3.已知正比例函数y =kx (k ≠0),点(2,-3)在该函数的图象上,则y 随x 的增大而( ) A .增大 B .减小 C .不变 D .不能确定4.画出正比例函数y =12x 的图象,并结合图象回答下列问题:(1)点(4,2)是否在正比例函数y =12x 的图象上?点(-2,-2)呢?(2)随着x 值的增大,y 的值如何变化?5.已知正比例函数y =(2-m )x |m -2|,且y 随x 的增大而减小,求m 的值.第2课时一次函数的图象和性质1.函数y=-2x+3的图象大致是()2.若点A(1,a)和点B(4,b)在直线y=-2x+m上,则a与b的大小关系是() A.a>b B.a<bC.a=b D.与m的值有关3.在一次函数y=(2m+2)x+4中,y随x的增大而增大,那么m的值可以是() A.0 B.-1 C.-1.5 D.-24.把直线y=-5x+6向下平移6个单位长度,得到的直线的表达式为()A.y=-x+6 B.y=-5x-12C.y=-11x+6 D.y=-5x5.已知一次函数y=(m+2)x+(3-n).(1)当m满足什么条件时,y随x的增大而增大?(2)当m,n满足什么条件时,函数图象经过原点?4 一次函数的应用第1课时 确定一次函数的表达式1.某正比例函数的图象如图所示,则此函数的表达式为( ) A .y =-12x B .y =12x C .y =-2x D .y =2x2.已知y 与x 成正比例,当x =1时,y =8,则y 与x 之间的函数表达式为( ) A .y =8x B .y =2x C .y =6x D .y =5x 3.如图,直线AB 对应的函数表达式是( ) A .y =-32x +2 B .y =32x +3C .y =-23x +2D .y =23x +24.如图,长方形ABCO 在平面直角坐标系中,且顶点O 为坐标原点.已知点B (4,2),则对角线AC 所在直线的函数表达式为____________.5.已知直线y =kx +b 经过点A (0,3)和B (1,5). (1)求这个函数的表达式;(2)当x =-3时,y 的值是多少?第2课时单个一次函数图象的应用1.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度h(cm)和燃烧时间t(h)之间的函数关系用图象可以表示为()2.一次函数y=mx+n的图象如图所示,则关于x的方程mx+n=0的解为()A.x=2B.y=2C.x=-3D.y=-33.周末小丽从家出发骑单车去公园,途中,她在路边的便利店购买一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用了20分钟B.公园离小丽家的距离为2000米C.小丽在便利店的时间为15分钟D.便利店离小丽家的距离为1000米4.若一次函数y=ax+b的图象经过点(2,3),则关于x的方程ax+b=3的解为________.5.某工厂加工一批零件,每名工人每天的薪金y(元)与生产件数x(件)之间的函数关系如图所示.已知当生产件数x大于等于20件时,y与x之间的函数表达式为y=4x+b.当工人生产的件数为20件时,求每名工人每天获得的薪金.第3课时两个一次函数图象的应用1.如图,图象l甲,l乙分别表示甲、乙两名运动员在校运动会800米比赛中所跑的路程s(米)与时间t(分钟)之间的关系,则()A.甲跑的速度比乙跑的速度快B.乙跑的速度比甲跑的速度快C.甲、乙两人所跑的速度一样快D.图中提供的信息不足,无法判断2.如图,l1反映了某公司的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系.当该公司盈利(收入大于成本)时,销售量()A.小于3t B.大于3t C.小于4t D.大于4t3.小明和小强进行百米赛跑,小明比小强跑得快,如果两人同时起跑,小明肯定赢.如图,现在小明让小强先跑________米,直线________表示小明所跑的路程与时间的关系,大约________秒时,小明追上了小强,小强在这次赛跑中的速度是________.4.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先出发,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离y(米)与爬山所用时间x(分钟)之间的关系(从小强开始爬山时计时).(1)小强让爷爷先出发多少米?(2)山顶离山脚的距离有多少米?谁先爬上山顶?(3)小强经过多长时间追上爷爷?第五章 二元一次方程组1 认识二元一次方程组1.下列属于二元一次方程的是( ) A .xy +2x -y =7 B .4x +1=y C.1x+y =5 D .x 2-y 2=2 2.下列各组数是二元一次方程组⎩⎪⎨⎪⎧x +y =1,2x +y =5的解的是( )A.⎩⎪⎨⎪⎧x =-1,y =2B.⎩⎪⎨⎪⎧x =-2,y =3C.⎩⎪⎨⎪⎧x =2,y =1D.⎩⎪⎨⎪⎧x =4,y =-3 3.如果⎩⎪⎨⎪⎧x =3,y =-5是方程mx +2y =-2的一组解,那么m 的值为( )A.83 B .-83 C .-4 D.854.一个长方形的长的2倍比宽的5倍还多1cm ,宽的3倍又比长多1cm ,求这个长方形的长与宽.设长为x cm ,宽为y cm ,则下列方程组中正确的是( )A.⎩⎪⎨⎪⎧2x -5y =1,x -3y =1B.⎩⎪⎨⎪⎧5y -2x =1,3y -x =1C.⎩⎪⎨⎪⎧2x -5y =1,3y -x =1D.⎩⎪⎨⎪⎧5y -2x =1,x -3y =1 5.为了响应“足球进校园”的口号,某校计划为学校足球队购买一些足球.已知购买2个A 品牌的足球和3个B 品牌的足球共需380元,购买4个A 品牌的足球和2个B 品牌的足球共需360元.(1)设A 品牌足球的单价为x 元,B 品牌足球的单价为y 元,请根据题意列出相应的方程组;(2)⎩⎪⎨⎪⎧x =40,y =100是(1)中列出的二元一次方程组的解吗?2 求解二元一次方程组第1课时 代入法1.方程组⎩⎪⎨⎪⎧3x -4y =2,x +2y =1用代入法消去x ,所得关于y 的一元一次方程为( )A .3-2y -1-4y =2B .3(1-2y )-4y =2C .3(2y -1)-4y =2D .3-2y -4y =22.方程组⎩⎪⎨⎪⎧y =3x ,x +y =16的解是( )A.⎩⎪⎨⎪⎧x =3,y =9B.⎩⎪⎨⎪⎧x =2,y =6C.⎩⎪⎨⎪⎧x =4,y =12D.⎩⎪⎨⎪⎧x =1,y =3 3.用代入消元法解二元一次方程组⎩⎪⎨⎪⎧3x -y =5①,5x +3y =9②,首先把方程________变形得__________,再代入方程________.4.用代入消元法解下列方程组:(1)⎩⎪⎨⎪⎧y =x +2,4x +3y =13; (2)⎩⎪⎨⎪⎧3x +2y =19,2x -y =1.5.已知|x +y -3|+(x -2y )2=0,求x ,y 的值.第2课时 加减法1.对于方程组⎩⎪⎨⎪⎧4x +7y =-19,4x -5y =17,用加减法消去x ,得到的方程是( )A .2y =-2B .2y =-36C .12y =-2D .12y =-362.方程组⎩⎪⎨⎪⎧x -y =2,2x -y =1的解为( )A.⎩⎪⎨⎪⎧x =-1,y =-3B.⎩⎪⎨⎪⎧x =1,y =-3 C.⎩⎪⎨⎪⎧x =-1,y =3 D.⎩⎪⎨⎪⎧x =1,y =3 3.已知方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5,则x +y 的值为( )A .-1B .0C .2D .34.用加减消元法解下列方程组:(1)⎩⎪⎨⎪⎧x +y =2,6x -y =5; (2)⎩⎪⎨⎪⎧x +2y =5,x +y =2;(3)⎩⎪⎨⎪⎧2x +y =2,3x -2y =10; (4)⎩⎪⎨⎪⎧3x -4y =14,2x -3y =3.3 应用二元一次方程组——鸡兔同笼1.中国古代第一部数学专著《九章算术》中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x 人,物品价值y 元,则所列方程组正确的是( )A.⎩⎪⎨⎪⎧8y +3=x ,7y -4=xB.⎩⎪⎨⎪⎧8x +3=y ,7x -4=yC.⎩⎪⎨⎪⎧8x -3=y ,7x +4=yD.⎩⎪⎨⎪⎧8y -3=x ,7y +4=x 2.某年级共有学生246人,其中男生人数y 比女生人数x 的2倍多2人,则下面所列的方程组中符合题意的是( )A.⎩⎪⎨⎪⎧x +y =246,2y =x -2B.⎩⎪⎨⎪⎧x +y =246,2x =y +2C.⎩⎪⎨⎪⎧x +y =246,y =2x +2D.⎩⎪⎨⎪⎧x +y =246,2y =x +2 3.有若干只鸡和兔关在一个笼子里,从上面数,有30个头;从下面数,有84条腿,问笼中鸡和兔各有几只?4.小明同学发现他奶奶今年的年龄是他年龄的5倍,12年后,他奶奶的年龄是他年龄的3倍.问小明和他奶奶今年的年龄各是多少?4 应用二元一次方程组——增收节支1.小李家去年节余50000元,今年可节余95000元,并且今年收入比去年高15%,支出比去年低10%,问今年的收入与支出各是多少?设去年的收入为x 元,支出为y 元,则可列方程组为( )A.⎩⎪⎨⎪⎧x +y =50000,85%x +110y =95000B.⎩⎪⎨⎪⎧x +y =50000,85%x -110%y =95000C.⎩⎪⎨⎪⎧x -y =50000,115%x -90%y =95000D.⎩⎪⎨⎪⎧x -y =50000,85%x -110%y =95000 2.在去年植树节时,甲班比乙班多种了100棵树.今年植树时,甲班比去年多种了10%,乙班比去年多种了12%,结果甲班比乙班还是多种100棵树.设甲班去年植树x 棵,乙班去年植树y 棵,则下列方程组中正确的是( )A.⎩⎪⎨⎪⎧x -y =100,10%x -12%y =100B.⎩⎪⎨⎪⎧x -y =100,112%x -110%y =100C.⎩⎪⎨⎪⎧x -y =100,12%x -10%y =100D.⎩⎪⎨⎪⎧x -y =100,110%x -112%y =1003.母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,若设鲜花x 元/束,礼盒y 元/盒,则可列方程组______________.4.某校初三(2)班40名同学为“希望工程”共捐款100元,捐款情况如下表:捐款(元),1,2,3,4人数(人),6,●,●,7表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚了,求捐款2元和3元的同学各有多少名.5 应用二元一次方程组——里程碑上的数1.已知两数x 、y 之和是10,x 比y 的2倍大1,则下面所列方程组正确的是( ) A.⎩⎪⎨⎪⎧x +y =10,y =2x +1 B.⎩⎪⎨⎪⎧x +y =10,y =2x -1 C.⎩⎪⎨⎪⎧x +y =10,x =2y +1 D.⎩⎪⎨⎪⎧x +y =10,x =2y -1 2.通讯员要在规定时间骑车到达某地,若他每小时行驶15千米,则可提前24分钟到达;若他每小时行驶12千米,则要迟到15分钟.设通讯员到达某地的路程是x 千米,原定的时间为y 小时,则可列方程组为( )A.⎩⎨⎧x 15-15=y ,x 12+12=yB.⎩⎨⎧x 15+15=y ,x 12-12=yC.⎩⎨⎧x 15-2460=y ,x 12-1560=yD.⎩⎨⎧x 15+2460=y ,x 12-1560=y 3.一个两位数的数字和为14,若调换个位数字与十位数字,所得的新数比原数小36,则这个两位数是________.4.甲、乙两地相距880千米,小轿车从甲地出发,2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米,问大客车每小时行多少千米?小轿车每小时行多少千米?6 二元一次方程与一次函数1.已知直线y =3x 与y =-x +b 的交点为(-1,-3),则关于x ,y 的方程组⎩⎪⎨⎪⎧y -3x =0,y +x -b =0的解为( )A.⎩⎪⎨⎪⎧x =1,y =3B.⎩⎪⎨⎪⎧x =-1,y =3C.⎩⎪⎨⎪⎧x =1,y =-3D.⎩⎪⎨⎪⎧x =-1,y =-3 2.以方程2x +y =5的解为坐标的所有点组成的图象与一次函数__________的图象相同.3.若一次函数y =2x -4的图象上有一点的坐标是(3,2),则方程2x -y -4=0必有一组解为__________.4.如图,一次函数y =kx +b 的图象l 1与一次函数y =-x +3的图象l 2相交于点P ,则关于x ,y 的方程组⎩⎪⎨⎪⎧y =kx +b ,y =-x +3的解为__________. 5.用图象法解方程组⎩⎪⎨⎪⎧y =2x -2,x +y =-5.6.已知一次函数y =ax -5与y =2x +b 的图象的交点坐标为A (1,-2).(1)直接写出关于x ,y 的方程组⎩⎪⎨⎪⎧ax -y =5,2x -y =-b 的解; (2)求a ,b 的值.7 用二元一次方程组确定一次函数表达式1.一次函数y =kx +b 的图象如图所示,则( )A.⎩⎪⎨⎪⎧k =-13,b =-1B.⎩⎪⎨⎪⎧k =13,b =1C.⎩⎪⎨⎪⎧k =3,b =1D.⎩⎪⎨⎪⎧k =13,b =-12.已知一次函数y =kx +b ,下表中列出了x 与y 的部分对应值,则( )x,…,-1,1,…y,…,1,-5,…A.⎩⎪⎨⎪⎧k =3,b =-2 B.⎩⎪⎨⎪⎧k =-3,b =2 C.⎩⎪⎨⎪⎧k =-3,b =-2 D.⎩⎪⎨⎪⎧k =3,b =2 3.已知y 是关于x 的一次函数,且当x =3时,y =-2;当x =2时,y =-3,则这个一次函数的表达式为____________.4.若某公司销售人员的个人月收入y (元)与其每月的销售量x (千件)是一次函数关系(如图),则个人月收入y (元)与每月销售量x (千件)之间的函数关系式为____________.5.如图是某长途汽车站旅客携带行李费用示意图.(1)求行李费y (元)与行李质量x (千克)之间的函数关系式;(2)当旅客携带60千克行李时,需付行李费多少元?*8 三元一次方程组1.以下方程中,属于三元一次方程组的是( )A.⎩⎪⎨⎪⎧2x +3y =4,2y +z =5,x 2+y =1B.⎩⎪⎨⎪⎧x +y +z =2,x -2y =3,y -6z =9C.⎩⎪⎨⎪⎧1x +1y +1z =16,3x -4y =3,x +z =2D.⎩⎪⎨⎪⎧x -y =2,2x -3y =4,2x -2y =42.已知三元一次方程组⎩⎪⎨⎪⎧2x -3y +2z =5,x -2y +3z =-6,3x -y +z =3消去未知数y 后,得到的方程组可能是( )A.⎩⎪⎨⎪⎧7x +z =4,5x -z =12B.⎩⎪⎨⎪⎧7x +z =4,x -5z =8C.⎩⎪⎨⎪⎧7x -z =12,x -5z =28D.⎩⎪⎨⎪⎧7x -z =4,x -5z =12 3.三元一次方程组⎩⎪⎨⎪⎧x -y =1,y -z =1,x +z =6的解是( )A.⎩⎪⎨⎪⎧x =2,y =3,z =4B.⎩⎪⎨⎪⎧x =2,y =4,z =3C.⎩⎪⎨⎪⎧x =3,y =2,z =4D.⎩⎪⎨⎪⎧x =4,y =3,z =24.有甲、乙、丙三种货物,如果购买甲3件、乙2件、丙1件共需315元;购买甲1件、乙2件、丙3件共需285元,那么购买甲、乙、丙各1件共需( )A .128元B .130元C .150元D .160元5.解方程组:⎩⎪⎨⎪⎧x +y =1,y +z =5,z +x =6.第六章数据的分析1平均数第1课时平均数1.数据:-2,-1,0,3,4的平均数是()A.0 B.0.8 C.1 D.22.7位评委给一个演讲者打分(满分10分)如下:9,8,9,10,10,7,9.若去掉一个最高分和一个最低分,则这名演讲者的最后平均得分是()A.7分B.8分C.9分D.10分3.若一组数据2,4,3,x,4的平均数是3,则x的值为()A.1 B.2 C.3 D.44.某大学招生考试只考数学和物理,计算综合得分时,按数学占60%、物理占40%计算.如果小明数学得分为95分,物理得分为90分,那么小明的综合得分是________分.5.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:,笔试,面试,体能甲,83,79,90乙,85,80,75丙,80,90,73(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;(2)该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%、30%、10%的比例计入总分.根据规定,请你说明谁将被录用.第2课时加权平均数的应用1.小明在七年级第二学期的数学成绩如下表所示.如果按如图所显示的权重计分,那么小明该学期的总评得分为________.姓名,平时,期中,期末,总评小明,90分,90分,85分2.某公司招聘一名公关人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:,面试,笔试成绩,评委1,评委2,评委388,90,86,92(1)请计算小王面试的平均成绩;(2)如果将面试的平均成绩与笔试成绩按6∶4的比例确定最终成绩,请你计算出小王的最终成绩.3.学校对王老师和张老师的工作态度、教学成绩及业务学习三个方面做了一个初步评估,成绩如下表所示:,工作态度,教学成绩,业务学习王老师,98,95,96张老师,90,99,98若工作态度、教学成绩、业务学习分别占20%、60%、20%,请分别计算王老师和张老师三个方面的平均分,并以此判断谁应评为优秀.2中位数与众数1.数据21、12、18、16、20、21的众数是()A.21 B.20 C.18 D.162.某区在一次空气污染指数抽查中,收集到10天的数据如下:61,75,70,56,81,91,92,91,75,81.该数据的中位数是()A.77.3 B.91 C.81 D.783.抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了如下统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.30,30B.30,20C.40,40D.30,404.若一组数据6、7、4、6、x、1的平均数是5,则这组数据的众数是________.5.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品每月的生产定额,统计了这15人某月加工的零件个数(如下表).月加工零件数(件),54,45,30,24,21,12人数,1,1,2,6,3,2(1)写出这15人该月加工零件数的平均数、中位数和众数;(2)假设生产部负责人把每位工人的月加工零件数定为24件,你认为是否合理?请说明理由.3 从统计图分析数据的集中趋势1.在一次体育课上,体育老师对九年级(1)班的40名学生进行了立定跳远项目的测试,测试所得分数及相应的人数如图所示,则该班40名学生这次测试的平均分为( ) A.53分 B.354分 C.403分 D .8分2.某次比赛中,15名选手的成绩如图所示,则这15名选手成绩的众数和中位数分别是( )A .98,95B .98,98C .95,98D .95,953.如图是小华同学6次数学测验的成绩统计图,则该同学这6次成绩的众数和中位数分别是____________.4.某校八(4)班共有40人,每位同学都向“希望工程”捐献了图书,捐书情况绘制成了如图所示的扇形统计图,求捐书册数的平均数、众数和中位数.4数据的离散程度第1课时极差、方差和标准差1.在九年级体育中考中,某班一组女生(每组8人)参加仰卧起坐测试的成绩如下(单位:次/分):46,44,45,42,48,46,47,45,则这组数据的极差为()A.2 B.4 C.6 D.82.甲、乙两个样本,甲样本的方差是0.105,乙样本的方差是0.055,那么样本() A.甲的波动比乙大B.乙的波动比甲大C.甲、乙的波动一样大D.甲、乙的波动大小无法确定3.某兴趣小组为了解我市气温的变化情况,记录了今年1月份连续6天的最低气温(单位:℃):-7,-4,-2,1,-2,2.关于这组数据,下列结论不正确的是() A.平均数是-2 B.中位数是-2C.众数是-2 D.方差是74.已知一组数据:2,4,5,6,8,则它的方差为________,标准差为________.5.甲、乙两名同学进行射击训练,在相同条件下各射靶10次,成绩统计如下(单位:环):甲:9,5,7,8,7,6,8,6,7,7;乙:7,9,6,8,2,7,8,4,9,10.谁的成绩射击成绩较稳定?。

北师大版八年级上册数学各章基础题练习

北师大版八年级上册数学各章基础题练习

第一章勾股定理一、填空题1、如图(一),图中的字母、数代表正方形的面积,贝U A= ____________ 。

2、________________________________________________________________________ 如图(二),9, 36表示两个正方形的面积,则阴影部分的面积是 ________________________________3、如图(三),根据图中的数据进行计算,AB ___________ 。

4、小明、小红在同一位置,小明向北走了6m小红向东走了8m,这时两人相距_m 。

5、A ABC的三边长分别是.2 , . 2 , 2,则厶ABC的面积是________________ 。

、如图(八),一架长25米的云梯,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑5米,那么云梯的底端在水平方向将滑多少米?(保留一位小数)O B (八)D、如图(十二),一根长度为50cm的木棒的两端系着一根长度为70cm的绳子,现准备在绳子上找一点,然后将绳子拉直,使拉直后的绳子与木棒构成一个直角三角形,这个点将绳子分成的两段各有多长?、选择题1若x 2=a ,则下列说法错误的是((A ) x 是a 的算术平方根 (C ) x 是a 的平方根2、下列各数中的无理数是( ) 2、 如果 1 2a 有意义,则a 的取值范围是 _______________________________________________________ 。

3、 算术平方根等于本身的数有 ________________ 。

4、 a 是9的算术平方根,而 b 的算术平方根是9,则a b _____________三、计算1、*‘( 5)2 肩12、J 12 V75 J8 V2V 25第二章实数)(B )a 是x 的平方 (D ) x 的平方是(A ) ,16(B ) 3.14(C)—11(D ) 0.1010010001 …(两个1之间的零的个数依次多1 个)3、 .9=()(A ) 土 3(B ) 3(C ) ± 81(D ) 81如果x 是0.01的算 术平方根, 则x=( )(A ) 0.0001 (B )± 0.0001 (C ) 0.1(D ) ± 0.1面积为8的止方形的 1对角线的长匸疋( )(A ) ,2(B ) 2 (C ) 2 2(D ) 4下列各式错误的是()(A ) 5 C.5)2(B ) 5(5)2(C ) 5 (■.5)2 ( D ) 5G 5)24的算术平方根是 ( )(A ) .2(B ) 2(C ) 4 (D ) 16(A) a=b ■ a (B ) a=b —Va 3,'b(C) ■, a b a=b(D )、填空题1、一个正方形的面积扩大为原来的100倍,则其边长扩大为原来的 倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章勾股定理一、填空题(每小题4分,共40分)1、请你任写两组勾股数:、。

(要求两组数的比值不同)2、如图(一),图中的字母、数代表正方形的面积,则A= 。

3、如图(二),9,36表示两个正方形的面积,则阴影部分的面积是。

4、如图(三),根据图中的数据进行计算,AB= 。

5、在直角三角形中,a,b为直角边,c为斜边。

(1)若a=3,b=4,则c= 。

(2)若c=17,a=15,则b= 。

6、小明、小红在同一位置,小明向北走了6m,小红向东走了8m,这时两人相距 m。

7、△ABC的三边长分别是2,2,2,则△ABC的面积是。

8、如图(四),在方格纸中,一个小正方形的面积是1,则图中四边形ABCD的面积是。

9、如图(五),Rt△ABC中,∠ACB=90°,CD⊥AB,若AC=12,BC=5,则CD= 。

10、如图(六),工人师傅准备在一个长、宽分别是10cm,9cm的长方形铁板上打两个小孔,小孔的圆心距两边的距离都是3cm,则两孔圆心间的距离是 cm。

二、(10分)如图(七),用四个边长是a,b,c的直角三角形拼成右边的一个正方形,用这种拼图,你能推导出勾股定理吗?写出你的推导过程。

(七)ACB AB三、(10分)如图(八),一架长25米的云梯,斜靠在一面墙上,梯子底端离墙7米,如果梯子的顶端下滑5米,那么云梯的底端在水平方向将滑多少米?(保留一位小数)(八)四、(10分)如图(九),工人要从甲楼顶端A 处引一条电线到乙楼的顶端B 处,已知甲楼高14米,乙楼高20米,而两楼之间相距33米,这根电线至少要多长?(保留整数)。

五、(10分)如图(十),一段台阶,每级台阶的高度为30cm ,宽度为60cm ,A 、B 两点间相距多远?(保留整数)六、(10分)如图(十一),△ABC 中,AB=25,AC=7,BC=24,根据题中的已知,提出几个与△ABC 有关的问题,并加以解决(每个问题3分)。

(十一) D O第二章 实 数一、选择题(每小题3分,共30分)下列每小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内。

1、若x 2=a ,则下列说法错误的是( )(A )x 是a 的算术平方根 (B )a 是x 的平方 (C )x 是a 的平方根 (D )x 的平方是a 2、下列各数中的无理数是( ) (A )16 (B )3.14 (C )113(D )0.1010010001…(两个1之间的零的个数依次多1个) 3、下列说法正确的是( )(A )任何一个实数都可以用分数表示 (B )无理数化为小数形式后一定是无限小数 (C )无理数与无理数的和是无理数 (D )有理数与无理数的积是无理数 4、9=( )(A )±3 (B )3 (C )±81 (D )81 5、如果x 是0.01的算术平方根,则x=( )(A )0.0001 (B )±0.0001 (C )0.1 (D )±0.1 6、面积为8的正方形的对角线的长是( )(A )2 (B )2 (C )22 (D )4 7、下列各式错误的是( )(A )2)5(5= (B )2)5(5-=(C )2)5(5-=(D )2)5(5-=8、4的算术平方根是( )(A )2 (B )2 (C )4 (D )16 9、下列推理不正确的是( ) (A )a=b b a = (B )a=b 33b a =(C )b a =a=b (D )33b a = a=b10、如图(一),在方格纸中,假设每个小正方形的面积为2, 则图中的四条线段中长度是 有理数的有( )条。

(A )1 (B )2 (C )3 (D )4二、填空题(每空2分,共20分)1、任意写一对和是有理数的无理数 。

2、一个正方形的面积扩大为原来的100倍,则其边长扩大为原来的 倍。

3、如果a 21-有意义,则a 的取值范围是 。

4、算术平方根等于本身的数有 。

5、a 是9的算术平方根,而b 的算术平方根是9,则=+b a 。

6、若0)3(22=++-y x ,则=+y x 。

7、一个房间的面积是10.8m 2,而该房间恰好由120个相同的正方形地砖铺成,则每块地砖的边长是 厘米。

8、若104<<a ,则满足条件的整数a 有 个。

9、若a 200是整数,请写出小于10的a 的整数值 。

10、若b a +=5,其中a 是整数,10<<b ,则=+-)54)((b a 。

三、计算(每小题4分,共16分)1、2591)5(2--- 2、6227-3、287512÷-⨯4、326)32)(23(+--四、将下列实数填在相应的集合中(5分)0,3-, 43.0 ,2)5(-,π,320--,713-,31,0.7171171117…整数集合 ……正无理数集合 ……有理数集合 ……六、(6分)根据a 的取值,比较2a 与a 的大小。

第三章图形的平移与旋转一、填空题(每空3分,共39分)1、图形的平移与旋转在生活中随处所见,在进行队列训练时,齐步走可以看成,向左转可以看成。

2、如图(一)△OAB可以看成是由△OCD绕点O按顺时针方向旋转而来的,则旋转中心是,旋转角是,点C的对应点是。

3、如图(二),如果将相邻两个菱形看成是“基本图案”则此图是由基本图案旋转次形成的,每次旋转的角度分别是。

(一)4、在正体的大写英语字母中,是中心对称图形的有。

5、如图(三),绕旋转中心至少要旋转多少度,才能与原来图形重合。

6、如图(四),已知∠A=120°、∠C=140°,那么射线CD经过怎样的旋转可与射线AB平行。

二、简答(分析下列各图的形成过程,每小题4分,共12分)1、如图(五),细胞分裂示意图2、如图(六),风车3、如图(七),从△ABC变形为△DEF第四章四边形一、选择题(每小题3分,共30分)下列每小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内。

1、用同一种正多边形密铺地面,下列正多边形不能密铺的是()(A)正三角形(B)正方形(C)正五边形(D)正六边形2、下列四个图形中,是中心对称图形,但不是轴对称图形的是()3、如图(一)是五个正三角形组成的图形,图中有()个等腰梯形。

(A)1 (B)2 (C)3 (D)4 (一)4、下列说法正确的是()(A)一组对边相等,另一组对边平行的四边形是平等四边形(B)对角线互相垂直的四边形是菱形(C)对角线相等的四边形是矩形(D)有三个角是直角的四边形是矩形5、将一个四边形绕着某点旋转90°,能与原图形重合,这个四边形是()(A)平行四边形(B)菱形(C)正六边形(D)正方形6、用两个全等的三角形纸片拼成平行四边形,如果三角形的三边互不相等,你能拼出()种不同的平行四边形。

(A)1 (B)2 (C)3 (D)47、用折纸、剪切的方法得到一个菱形,最少要剪()刀(设一条线段剪一刀)。

(A)1 (B)2 (C)3 (D)48、等腰梯形的两底的差等于腰长,则其腰与下底的夹角是()度。

(A)30 (B)45 (C)60 (D)759、如图(二),平行四边形ABCD的对角线交于点O,则图中相等的线段有()对。

(A)1 (B)2 (C)3 (D)4 (二)10、如图(三)是一个中心对称图形(点O是其对称中心),但它的一部分被纸片遮住,你认为遮住的部分可由()平移而来。

O(三)二、填空题(每空2分,共30分)2、如果一个多边形的每个外角都等于相邻的内角的51,则这个多边形的边数是 。

3、如果两个多边形的边数相差2,则其内角和相差 ,外角和相差 。

4、若菱形的对角线长分别是6cm 、8cm ,则其周长是 cm ,面积是 cm 2。

5、如图(四),平行四边形ABCD 中,∠DAB=70°, 将平行四边形ABCD 变化为一个矩形(图中的 虚线部分),在此过程中,分析每条边的运动。

AB : AD : BC : CD :6、 边形的内角和是其外角和的3倍。

(四)7、平行四边形的周长是24,而相邻两边的差是2,则其相邻边分别是 。

8、用长度是40cm 的绳子围成矩形,你认为能围成矩形的最大面积为 cm 2。

9、在△ABC 中,∠ACB=90°,CD 、CE 分别是斜边上的高和中线,若AC=8,BC=6,则ED= 。

10、用两类不同形状的正多边形密铺地面,除了正三角形与正六边形可供选择外,还可以选择 与 来密铺。

五、(6分)如图(五),四边形ABCD 中,E 、F 分别是对角线BD 上的两点,且BE=DF ,连接AE 、AF 、CE 、CF 。

四边形AECF 是什么样的四边形,说明你的道理。

(五)六(7分)如图(六),将两条宽度相同的纸条(对边平行)交叉重叠,你认为重叠部分是什么图形,为什么?(六)七、(13分)1、如图(七),正△ABC 中,点M 与点N 分别是BC 、CA 上的点,且BM=CN ,连接AM 、BN ,两线交于点Q ,求∠AQN 的度数。

(七)2、将1题中的“正△ABC ”分别改为正方形ABCD ,正五边形ABCDE ,正六边形ABCDEF ,……,正n 边形ABCD …N ,其余条件不变,根据第1题的求解思路分别推断∠AQN 的度数,将结论填 入下表:正多边形 正方形正五边形正六边形…… 正n 边形∠AQN 的度数半期检测题一、选择题(每小题3分,共36分)下列每小题都给出了四个答案,其中只有一个答案是正确的,请把正确答案的代号填在该小题后的括号内。

1、以下列长度的线段为边不能构成直角三角形的是( )。

(A )3,4,5 (B )6,8,10 (C )5,12,13 (D )6,24,25 2、21482-化简后的结果是( )。

(A )0 (B )24- (C )22 (D )233、立方根等于本身的数有( )个。

(A )1 (B )2 (C )3 (D )44、在下列6幅图案,②,③,④,⑤,⑥中能通过平移或旋转①得到的有( )个。

(A )2 (B )3 (C )4 (D )5 5、2)9(-的算术平方根是( )。

(A )-9 (B )9 (C )3 (D )3 6、如图(一),将一张矩形纸片按图示方式折叠, 然后按虚线剪开,将阴影部分展开后7、边长是2的正三角形的面积是( )。

(A )321(B )3 (C )32 (D )34 8、下列各数中,是无理数的是( )。

(A )117(B )16 (C )14.3 (D )27 9、在下列几张扑克牌中,牌面是中心对称图形的有( )个。

(A )1 (B )2 (C )3 (D )410、下列各图中,每个正方形网格都是由几个边长为1的正方形组成:其中阴影部分的面积是25的是11、菱形具有而矩形不一定具有的性质是( )。

相关文档
最新文档