【2017年整理】北师大版八年级数学竞赛题

合集下载

北师大版八年级数学竞赛题

北师大版八年级数学竞赛题

xOAy北师大版八年级数学竞赛试题一、选择题(每小题3分,共27分)1、下列式子正确的是()A、9)9(2-=- B、525±= C、1)1(33-=- D、2)2(2-=-2、如下是一种电子计分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.3、某校八年级8位同学一分钟跳绳的次数分别为:150,164,168,172,176,168,183,185.则由这组数据得到的结论中错误的是()A.中位数为170 B.众数为168C.平均数为170.75 D.平均数为1704、不能判定四边形ABCD是平行四边形的是 ( )A、AB = CD,AD = BCB、AB∥CD,AB = CDC、AD∥BC,AB = CDD、AB∥CD,AD∥BC5、若点P(m+2,m+1)在y轴上,则点P的坐标为()A(2,1)B(0,2)C(0,-1)D (1,0)6、若点(m,n)在函数y=2x+1的图象上,则2m-n的值是()A.2 B.-2 C.1 D.-17、如图,函数2y x=和4y ax=+的图象交于点A(m,3),则不等式24x ax+<的解集为()A.32x<B.3x<C.32x>D.3x>(第7题)(第8题)8、如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点A′的坐标为()A(3,1)B(1,3)C(3,-1) D (1,1)二、填空题(每小题3分,共21分)学校:班级:姓名:考号:…………………………………………装……………………订………………………线………………………………………9、256的平方根是 ;10、若532+y xba 与x yb a2425-是同类项,则x= , y = ;11、写出一个y 随着x 的增大而增大的一次函数的解析式:______________12、如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC = 4,则四边形CODE 的周长是(12题) (13题)13、如图:矩形ABCD 的对角线AC =10,BC =8,则图中五个小矩形的周长之和 为_______ .14、 不等式组 的整数解的和是 .15、观察分析下列数据,寻找规律: 0,3,6,3,23,15,32,……那么第10个数据应是 . 三. 解答题(共75分)16、计算(每题5分,共10分) (1)解不等式组:()3228131x x x x -<+⎧⎪⎨-≥--⎪⎩(2)17、(9分)如图,在正方形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 分别在OD 、OC 上,且DE=CF ,连接DF 、AE ,AE 的延长线交DF 于点M . 求证:AM ⊥DF .x +2>0,x -1≤218、(6分)长方形ABCD ,长为6,宽为4,建立直角坐标系使其中C 点的坐标 (-3,2),并且写出其它顶点的坐标。

北师大版八年级上数学竞赛试卷完整版.doc

北师大版八年级上数学竞赛试卷完整版.doc

八年级数学竞赛试卷第1页,共2页八年级数学竞赛试卷一.选择题(每题5分,共30分)1.要从4424333x y x y y x +===的图象得到直线,就要将直线( ) A 、向上平移23个单位 B 、向下平移23个单位 C 、向上平移2个单位 D 、向下平移2个单位2.把aa -111-)(中根号外的)(1-a 移入根号内得( ) A 、1-a B 、a -1 C 、—1-a D 、—a -13.如果ab >0,bc <0,那么直线bcx -a b -y =不经过第( )象限.A 、一B 、二C 、三D 、四4. 点P 关于x 轴的对称点1P 的坐标是(4,-8),则P 点关于原点的对称点2P 的坐标是 ( ) A 、(-4,-8) B 、(4,8) C 、(-4,8) D 、(4,-8)5.你一定知道乌鸦喝水的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中(如图),瓶中水面的高度随石子的增多而上升,乌鸦喝到了水。

但是还没解渴,瓶中水面就下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地飞走了。

如果设衔入瓶中石子的体积为x ,瓶中二.填空题(每题5分,共30分)6.足球比赛的记分规则是:胜一场记3分,平一场记1分,负一场记0分;一支中学生足球队参加了15场比赛,负了4场,共得29分,则这支球队胜了 场。

7.已知72π⎡-⎢⎣,,,其中无理数有 个。

8.某班有48人准备去西湖划船,每条小船坐3人,租金16元,每条大船坐5人,租金24元,10.在平面直角坐标系中,把直线y=3x 沿y 轴向下平移后得到直线AB ,如果点N (m ,n )是直线AB 上的一点,且3m ﹣n=2,那么直线AB 的函数表达式为 . 三.解答题(每题10分,共60分) 11.已知1-a +2)2(-ab =0, 求ab 1+)1)(1(1++b a +)2)(2(1++b a +…+)2006)(2005(1++b a 的值。

北师大版八年级下册数学竞赛试题(4)

北师大版八年级下册数学竞赛试题(4)

实验中学八年级数学竞赛试题一、填空题(每小题3分,共30分) 1.因式分解:x 3–4x = .2.满足不等式032>+-x 的非负整数是 . 3.若543zy x ==,则xz y x 562-+= . 4.在一组样本容量为80的数据中,某一组数据出现的频率为0.25,则这组数据出现的频数为 . 5.若关于x 的不等式组⎪⎩⎪⎨⎧+++②m <x ①x >x 01456的解集为4x <,则m 的取值范围是 。

6.若不等式0432b <a x b a -+-)(的解集是49x >,则不等式 032)4(b >a x b a -+-的解集是 。

7.数与数之间的关系非常奇妙.例如: ①21211=-,②34322=-,③49433=-,…… 根据式中所蕴含的规律可知第n 个式子是 .8.如图,在梯形ABCD 中,AD ∥BC,AB =AD =5cm ,CD =6cm ,BC =10cm ,E 是BC 上的一个动点,当四边形AECD 为平行四边形时,OA 的长为 cm ;ABCDOE ABDABC第8题 第9题 第10题9.某数学课外实验小组想利用树影测量树高,他们在同一时刻测得一名身高为1.5米的同学落在地面上的影子长为1.35米,因大树靠近一幢大楼,影子不会落在地面上(如图),他们测得地面部分的影子BC=3.6米,墙上影长CD=1.8米,则树高AB= 米.10.在由边长为1的正三角形组成的正六边形网格中画一个与已知△ABC 相似但不全等的三角形. 二、选择题(每小题3分,共18分) 11.下列用数轴表示不等式121≤+x 的解集正确的是【】A B C D12.下列因式分解正确的是 【 】A .4x 2–4xy +y 2–1=(2x –y )2–1=(2x –y +1)(2x –y –1) B . 4x 2–4xy +y 2–1=(2x –y )2–1=(2x –y +1)(2x +y –1) C .4x 2–4xy +y 2–1=(2x –y )2–1=(2x –y +1)(2x +y +1) D .4x 2–4xy +y 2–1=(2x +y )2–1=(2x +y +1)(2x +y –1)13. 数据8,10,12,9,11的平均数和方差分别是 【 】A .10和2B .10和2C .50和2D .50和214.若21=+xx ,则221xx+= 【 】A . 1B .2C .3D .4 15.已知x 为整数,且分式1222-+x x 的值为整数,则x 可取的值有 【 】A .1个B .2个C .3个D .4个 16.要使a 5<a 3<a <a 2<a 4成立,则a 的取值范围是【 】A.0<a <1B. a >1C.-1<a <0D. a <-117.(9分)因式分解:(1)222121b ab a +- (2)x 4+4 (3)(x 2+9y 2)2–36x 2y 218.(5分)解不等式组:⎪⎩⎪⎨⎧->-<--xx x x 25)12(3123,并把解集在数轴上表示出来.19.化简: ⎪⎪⎭⎫⎝⎛-∙⎪⎪⎭⎫ ⎝⎛--+y x x y y x y x 11(5分)20.如图,将方格纸分成6个三角形,在②③④⑤⑥这5个三角形中,与三角形①相似的三角形有哪些?说明理由!(8分)①②③④⑤⑥21.甲、乙两个施工队各有若干名工人,现两施工队分别从东西两头同时修一条公路,甲队有1人每天修路6米,其余每人每天修路11米;乙队有1人每天修路7米,其余每人每天修路10米.已知两队每天完成的工作量相同,且每队每天修路的工作量不少于100米也不超过200米,问甲、乙两队各有多少人?(10分)22.如图,把一张长方形纸片ABCD 沿AF 折叠,使B 点落在B ′处, 若∠ADB =20º,那么∠BAF 应为多少度时才能使AB ′∥BD ?(11分)ABCD20oFB′23.如图,在△ABC 中,AB =6cm ,BC=12cm ,AC =9cm ,P 点以1cm/s 的速度从A 点出发沿AC 方向运动,Q 点以2cm/s 的速度从C 点出发沿CB 方向运动,问当P 点运动到几秒时,△CPQ 与△ABC 相似? (12分)24.有一个测量弹跳力的体育器材,如图所示,竖杆AC 、BD 的长度分别为200厘米和300厘米,CD =300厘米.现有一人站在斜杆AB 下方的点E 处,直立、单手上举时中指指尖(点F )到地面的高度EF =205厘米,屈膝尽力跳起时,中指指尖刚好触到斜杆的点G处,此时,就将EG与EF的差值y(厘米)作为此人此次的弹跳成绩,设CE=x厘米.求:(1)用含x的代数式表示y;(2)若他弹跳时的位置为x=150cm,求该人的弹跳成绩.(12分)。

2017年全国初中数学联合竞赛(初二年级)试题参考答案和评分标准

2017年全国初中数学联合竞赛(初二年级)试题参考答案和评分标准

若 b =6,则 (a 9)2 0 ,解得 a 9 ,此时 c 18 .
因此, a 9 , b =6, c 18 ,故 a2 b2 c2 =441.
5.梯形 ABCD 中, AD // BC , AB 3 , BC 4 , CD 2 , AD 1,则梯形的面积为 ( )
B
形,底边 AE 边上的高为 32 12 2 2 .
A
D
H
E
C
所以△ ABE 的面积 S 1 AE 2 2 1 BE AH ,故可得 AH 4 2 .
2
2
3
A
D
F
所以梯形的面积为 1 (1 4) 4 2 10 2 .
2
3
3
E
6.如图,梯形 ABCD 中, AD // BC , A 90 ,点 E 在 AB 上,若 AE 42 ,
【答】 20 . 因为 表示100 C,C B, B A中的最小者,所以 100 C , C B , B A ,所以
6 3(100 C ) 2(C B ) (B A) 300 (A B C ) 120,所以 20 .
第一试
一、选择题:(本题满分 42 分,每小题 7 分)
1.已知实数 a,b, c 满足 2a 13b 3c 90, 3a 9b c 72 ,则 3b c = a 2b
A. 2.
B. 1.
C. 0.
D. 1.
【答】B.
()
已知等式可变形为 2(a 2b) 3(3b c) 90 , 3(a 2b) (3b c) 72 ,解得 a 2b 18 ,
A

2017全国初中数学联赛初二卷(同名10385)

2017全国初中数学联赛初二卷(同名10385)

2017年全国初中数学联合竞赛试题 初二卷第一试一、选择题:(本题满分 42 分,每小题 7 分) 1.已知实数a,b,c 满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为( ). A.2 B.1 C.0 D.-1 2.已知实数a,b,c 满足a+b+c=1,1110135a b c ++=+++,则(a+1)2+(b+3)2+(c+5)2的值为( ). A.125 B.120 C.100 D.813.若正整数a,b,c 满足a ≤b ≤c 且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为( ). A.4 B.3 C.2 D.14.已知正整数a,b,c 满足a 2-6b-3c+9=0,-6a+b 2+c=0,则a 2+b 2+c 2的值为( ). A.424 B.430 C.441 D.4605.梯形ABCD 中,AD ∥BC ,AB=3,BC=4,CD=2,AD=1,则梯形的面积为( ). 102 103C.32D.336.如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62二、填空题:(本题满分 28 分,每小题 7 分)7.311a a ++=a 的值为________.8.已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________.9.设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分20分)设A,B是两个不同的两位数,且B是由A交换个位数字和十位数字所得,如果A2-B2是完全平方数,求A的值.二、(本题满分25分)如图,△ABC中,D为BC的中点,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF⊥DF,P为AD和EF的交点.证明:EF=2PD.三、(本题满分25分)已知a,b,c 55a bb c++为有理数,求222a b ca b c++++的最小值.2017年全国初中数学联合竞赛试题初二卷参考答案第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-1答案:B对应讲次:所属知识点:方程思路:因为所求分式的特点可以想到把a+2b,3b+c看成一个整体变量求解方程.分析:已知等式可变形为2(a+2b)+3(3b+c)=90,3(a+2b)+(3b+c)=72,解得a+2b=18,3b+c=18,所以312b ca b+=+.2.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.81答案:C对应讲次:所属知识点:方程思路:可以想到换元法.分析:设x=a+1,y=b+3,z=c+5,则x+y+z=10,111x y z++=,∴xy+xz+yz=0,由x2+y2+z2=(x+y+z)2-2(xy+xz+yz)=100.则(a+1)2+(b+3)2+(c+5)2 =100.3. 若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.1答案:B对应讲次:所属知识点:数论思路:先通过a≤b≤c且abc=2(a+b+c)的限定关系确定可能的种类,再通过枚举法一一验证.分析:若(a,b,c)为好数组,则abc=2(a+b+c)≤6c,即ab≤6,显然a=1或2.若a=1,则bc=2(1+b+c),即(b-2)(c-2)=6,可得(a,b,c)=(1,3,8)或(1,4,5),共2个好数组.若a=2,则b=2或3,可得b=2,c=4;b=3,c=52,不是整数舍去,共1个好数组.共3个好数组(a,b,c)=(1,3,8) (1,4,5) (2,2,4).4. 已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.460答案:C对应讲次:所属知识点:方程思路:由已知等式消去c整理后,通过a,b是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.分析:联立方程可得(a-9)2+3(b-1)2=75,则3(b-1)2≤75,即1≤b≤6.当b=1,2,3,4,5时,均无和之对应的正整数a;当b=6时,a=9,符合要求,此时c=18,代入验证满足原方程.因此,a=9,b=6,c=18,则a2+b2+c2=441.5. 梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().102103C.32D.33答案:A 对应讲次:所属知识点:平面几何思路:通过作平行四边形把边长关系转化到一个三角形中来.分析:作AE ∥DC ,AH ⊥BC ,则ADCE 是平行四边形,则BE=BC-CE=BC-AD=3=AB , 则△ABE 是等腰三角形,BE=AB=3,AE=2,经计算可得42AH =所以梯形ABCD 的面积为()14210214233⨯+⨯=.6. 如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62 答案:B 对应讲次:所属知识点:平面几何思路:补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.分析:作CF ⊥AD ,交AD 的延长线于点F ,将△CDF 绕点C 逆时针旋转90°至△CGB ,则ABCF 为正方形,可得△ECG ≌△ECD ,∴EG=ED. 设DE=x ,则DF=BG=x-28,AD=98-x.在Rt △EAD 中,有422+(98-x)2=x 2,解得x=58.二、填空题:(本题满分 28 分,每小题 7 分)7.311a a ++=a 的值为________.答案:8 对应讲次: 所属知识点:方程思路:通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.分析:易得(3211aa +=.令1x a +,则x ≥0,代入整理可得x(x-3)(x+1)2=0,解得x 1=0, x 2=3, x 3=-1,舍负,即a=-1或8,验证可得a=8.8. 已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 答案:20° 对应讲次: 所属知识点:代数思路:一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况. 分析:∵θ≤100°-C ,θ≤C-B ,θ≤B-A ∴θ≤16[3(100°-C )+2(C-B)+(B-A)]=20°又当A=40°,B=60°,C=80°时,θ=20°可以取到. 则θ的最大值为20°.9. 设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.答案:7 对应讲次: 所属知识点:数论思路:因为p 是质数,只能拆成1和p ,另一方面通过a+b 、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么和条件矛盾,要么得出结果.分析:因为a,b 互质,所以a+b 、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得a=b=1,p=4,不是质数舍;381ab p a b⎧=⎪⎨=⎪+⎩可得a=7,b=1,p=7,符合题意.则p=7.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 答案:34 对应讲次: 所属知识点:数论思路:考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.分析:设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i k i ka a a k k N ++==≤∈∑∑,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34.由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设A,B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果A 2-B 2是完全平方数,求A 的值. 答案:65 对应讲次: 所属知识点:数论思路:对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a+b ,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果. 分析:设A=10a+b(1≤a,b ≤9,a,b ∈N),则B=10b+a ,由A,B 不同得a ≠b ,A 2-B 2=(10a+b )2-(10b+a)2=9×11×(a+b )(a-b).………5分由A 2-B 2是完全平方数,则a >b ,()()11|a b a b +-,可得a+b=11,………10分 a-b 也是完全平方数,所以a-b=1或4.………15分若a-b=1,则a=6,b=5; 若a-b=4,则没有正整数解. 因此a=6,b=5,A=65.………20分二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,P 为AD 和EF 的交点.证明:EF=2PD.对应讲次:所属知识点:平面几何思路:因为EF 、PD 都在△DEF 中,所以想办法推出其性质,比较容易得出∠EDF=90°,此时若能得出EF=PD ,则自然可以得到结论.分析:由DE 平分∠ADB ,DF 平分∠ADC ,可得∠EDF=90°. ………5分 由BE ⊥DE 得BE ∥DF ,则∠EBD=∠FDC.………10分又BD=DC ,∠BED=∠DFC=90°,则△BED ≌△DFC ,BE=DF . ………15分 得四边形BDFE 是平行四边形,∠PED=∠EDB=∠EDP ,EP=PD. ………20分 又△EDF 是直角三角形,∴EF=2PD.………25分三、(本题满分 25 分)已知a,b,c 55a bb c++为有理数,求222a b c a b c ++++的最小值.答案:3 对应讲次: 所属知识点:数论思路:通过a,b,c 是正整数,可以把有理部分和无理部分分离考虑.50b c -≠,可以通过分母有理化来实现分离,再利用a,b,c 互不相等,从最小正整数开始讨论即可得出最小值.50b c -≠)()2222255555555a bb cab bc bac a b b c b c b c+--+-+==--+b 2=ac. …10分()()22222a c ba b c a c b a b c a c b+-++==+-++++.………15分不妨设a <c ,若a=1,c=b 2,因为a ≠b ,则a+c-b=1+b(b-1)≥3,取等号当且仅当b=2时. ………20分 若a ≥2,因为c ≠b ≠1,则a+c-b=a+b(b-1)≥a+2≥4>3.所以222a b c a b c++++的最小值为3,当a=1,b=2,c=4时.………25分。

北师大版八年级上册数学竞赛试题

北师大版八年级上册数学竞赛试题

八年级数学竞赛题一、选择题1、关于x的方程|x2x–1|= a仅有两个不同的实根,则实数a的取值范围是()A.a > 0B.a ≥4C.2 < a < 4D.0 < a < 42、设a、b为有理数,且满足等式a + b 3 = 6 ⋅ 1 + 4 + 2 3 ,则a + b的值为( )A.2B.4C.6D.83、将满足条件“至少出现一个数字0,且是4的倍数的正整数”从小到大排成一列数:20,40,60,80,100,104,……,则这列数中的第158个数为().A.2000B.2004C.2008D.20124、n是某一正整数,由四位学生分别代入代数式n3-n算出的结果如下,其中正确的结果是()A.373174B.373175C.373176D.3731775、若2x+5y+4z=6,3x+y-7z=-4,则x+y-z的值为()A.-1B.0C.1D.46、过点P (-1,3)作直线,使它与两坐标轴围成的三角形面积为5,这样的直线可以作( )A.1条B.2 条C.3条D.4条 7、已知731 的整数部分是a ,小数部分是b ,则a 2+(1+7)ab=( )A.12B.11C.10D.98、某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘,根据需要,单片软件至少买3片,盒装磁盘至少买2盒,则不同的选购方式共有( ) A.5种 B.6种 C.7种 D.8种 二、填空题:1、如果整数a(a≠2)使得关于x 的一元一次方程ax+5=a 2+2a+2x 的解是整数,则满足条件的所有整数a 的和是__________.2、对于所有的正整数k ,设直线kx+(k+1)y-1=0与两坐标轴所围成的直角三角形的面积为S k ,则 S 1+S 2+S 3+…+S 2006= .3、一只猴子爬一个8级的梯子,每次可爬一级或上跃二级,最多上跃三级。

从地面上到最上一级,一共可以有 种不同的爬跃方式。

北师大版八年级上数学竞赛试题

北师大版八年级上数学竞赛试题

新沟桥初中2016—2017学年第一学期八年级数学竞赛试题一.选择题(共8小题,每题4分) 1.若233+-+-=x x y ,则x y =( )A .0B .1C .4D .92.如图,△ABC 的顶点在边长为1的正方形网格的格点上,BD ⊥AC 于点D .则BD 的长为( )A .B .C .D .3.若点M (x ,y )满足(x +y )2=x 2+y 2﹣2,则点M 所在象限是( )A .第一象限或第三象限B .第二象限或第四象限C .第一象限或第二象限D .不能确定4.如图,圆柱的轴截面ABCD 是边长为4的正方形,动点P 从A 点出发,沿着圆柱的侧面移动到BC 的中点S 的最短距离为( )A .212π+B .2412π+C .214π+D .242π+ 5.已知a ,b ,c 为△ABC 的三边,化简()()()222a cb ac b c b a -++--+-+的结果为()A .a+b+cB .a+b ﹣cC .a ﹣b ﹣cD .3b ﹣a ﹣c6.无论m 为何值,点A (m ,5﹣2m )不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知一次函数y=kx+b-x 的图象与x 轴的正半轴相交,且函数值y 随自变量x 的增大而增大,则k ,b 的取值情况为( )A .k >1,b <0B .k >1,b >0C .k >0,b >0D .k >0,b <0 8.在平面直角坐标系中,过点(﹣2,3)的直线l 经过一、二、三象限,若点(0,a ),(﹣1,b ),(c ,﹣1)都在直线l 上,则下列判断正确的是( ) A .a <b B .a <3 C .b <3 D .c <﹣2 请将选择题答案填入答题卡中:题号 1 2 3 4 5 6 7 8 答案二.填空题(共8小题,每题4分)9.若是正整数,最小的整数n 是 .10.已知点A (m ,﹣2),B (3,m ﹣1),且直线AB ∥x 轴,则m 的值是 .11.如图,在高3米,坡面线段距离AB 为5米的楼梯表面铺地毯,则地毯长度至少需 米.12.如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐标 .13.如图,OP=1,过P 作PP 1⊥OP ,得OP 1=;再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=;又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2;…依此法继续作下去,得OP 2016= .14.实数a ,b ,c 在数轴上的对应点如图所示,化简=---++c b c b a a 2.15.如图,三个正比例函数的图象分别对应表达式:①y=ax ,②y=bx ,③y=cx ,将a ,b ,c 从小到大排列并用“<”连接为 . 16.如图,定点A (﹣2,0),动点B 在直线y=x 上运动,当线段AB 最短时,点B 的坐标为 . 三.解答题(共6小题,共56分) 17.(8分)观察下列等式:①==﹣1②==﹣③==﹣回答下列问题: (1)化简:= ;(n 为正整数)(2)利用上面所的规律计算:201520161201420151231121++++++++ .18.(8分)问题背景:在△ABC 中,AB ,BC ,AC 三边的长分别为,3,,求这个三角形的面积. 小军同学在解答这道题时,先建立了一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需要求出△ABC 的高,借用网格就能计算出它的面积.班级: 姓名: 考号:2题图2题图11题图 12题图13题图15题图16题图(1)请你直接写出△ABC 的面积 ; (2)如果△MNP 三边的长分别为,2,,请在图2的正方形网格(每个小正方形的边长为1)画出相应的格点△MNP ,并直接写出△MNP 的面积 .19.(8分)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)如果的小数部分为a ,的整数部分为b ,求5-+b a 的值;(2)如果(310+)的整数部分为x ,小数部分为y ,求x ﹣y 的相反数.20.(10分)为了提高身体素质,有些人选择到专业的健身中心锻炼身体,某健身中心的消费方式如下:普通消费:35元/次;白金卡消费:购卡280元/张,凭卡免费消费12次,超过12次按普通消费计费; 钻石卡消费:购卡560元/张,凭卡每次消费不再收费.以上消费卡使用年限均为一年,每位顾客只能购买一张卡,且只限本人使用. (1)设一年内去该健身中心健身x 次(x 为正整数),所需总费用为y 元,请分别写出选择普通消费和白金卡消费的y 与x 的函数关系式;(2)若王阿姨打算每年去该健身中心健身18次,请通过计算帮助王阿姨选择最合算的消费方式. 20.(12分)如图,在平面直角坐标系中,点A (﹣3b ,0)为x 轴负半轴上一点,点B (0,4b )为y 轴正半轴上一点,其中b 满足方程:3(b +1)=6. (1)求点A 、B 的坐标;(2)点C 为y 轴负半轴上一点,且△ABC 的面积为12,求点C 的坐标;(3)在x 轴上是否存在点P ,使得△PBC 的面积等于△ABC 的面积的一半?若存在,求出相应的点P 的坐标;若不存在,请说明理由.21.(12分)小明和爸爸进行登山锻炼,两人同时从山脚下出发,沿相同路线匀速上山,小明用8分钟登上山顶,此时爸爸距出发地280米.小明登上山顶立即按原路匀速下山,与爸爸相遇后,和爸爸一起以原下山速度返回出发地.小明、爸爸在锻炼过程中离出发地的路程y 1(米)、y 2(米)与小明出发的时间x (分)的函数关系如图. (1)图中a= ,b= ; (2)求直线AC 的解析式;(3)求小明的爸爸下山所用的时间.。

2017全国初中数学联赛初二卷及详解

2017全国初中数学联赛初二卷及详解

2017年全国初中数学联合竞赛试题 初二卷第一试一、选择题:(本题满分 42 分,每小题 7 分) 1.已知实数a,b,c 满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为( ). A.2 B.1 C.0 D.-1 2.已知实数a,b,c 满足a+b+c=1,1110135a b c ++=+++,则(a+1)2+(b+3)2+(c+5)2的值为( ). A.125 B.120 C.100 D.813.若正整数a,b,c 满足a ≤b ≤c 且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为( ). A.4 B.3 C.2 D.14.已知正整数a,b,c 满足a 2-6b-3c+9=0,-6a+b 2+c=0,则a 2+b 2+c 2的值为( ). A.424 B.430 C.441 D.4605.梯形ABCD 中,AD ∥BC ,AB=3,BC=4,CD=2,AD=1,则梯形的面积为( ). A.1023 B.1033C.32D.33 6.如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62二、填空题:(本题满分 28 分,每小题 7 分)7.311a a ++=a 的值为________.8.已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________.9.设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分20分)设A,B是两个不同的两位数,且B是由A交换个位数字和十位数字所得,如果A2-B2是完全平方数,求A的值.二、(本题满分25分)如图,△ABC中,D为BC的中点,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF⊥DF,P为AD与EF的交点.证明:EF=2PD.三、(本题满分25分)已知a,b,c 55a bb c++为有理数,求222a b ca b c++++的最小值.2017年全国初中数学联合竞赛试题初二卷参考答案第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-1答案:B对应讲次:所属知识点:方程思路:因为所求分式的特点可以想到把a+2b,3b+c看成一个整体变量求解方程.解析:已知等式可变形为2(a+2b)+3(3b+c)=90,3(a+2b)+(3b+c)=72,解得a+2b=18,3b+c=18,所以312b ca b+=+.2.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.81答案:C对应讲次:所属知识点:方程思路:可以想到换元法.解析:设x=a+1,y=b+3,z=c+5,则x+y+z=10,111x y z++=,∴xy+xz+yz=0,由x2+y2+z2=(x+y+z)2-2(xy+xz+yz)=100.则(a+1)2+(b+3)2+(c+5)2 =100.3. 若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.1答案:B对应讲次:所属知识点:数论思路:先通过a≤b≤c且abc=2(a+b+c)的限定关系确定可能的种类,再通过枚举法一一验证. 解析:若(a,b,c)为好数组,则abc=2(a+b+c)≤6c,即ab≤6,显然a=1或2.若a=1,则bc=2(1+b+c),即(b-2)(c-2)=6,可得(a,b,c)=(1,3,8)或(1,4,5),共2个好数组.若a=2,则b=2或3,可得b=2,c=4;b=3,c=52,不是整数舍去,共1个好数组.共3个好数组(a,b,c)=(1,3,8) (1,4,5) (2,2,4).4. 已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.460答案:C对应讲次:所属知识点:方程思路:由已知等式消去c整理后,通过a,b是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.解析:联立方程可得(a-9)2+3(b-1)2=75,则3(b-1)2≤75,即1≤b≤6.当b=1,2,3,4,5时,均无与之对应的正整数a;当b=6时,a=9,符合要求,此时c=18,代入验证满足原方程.因此,a=9,b=6,c=18,则a2+b2+c2=441.5. 梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().A.1023B.1033C.32D.33答案:A对应讲次:所属知识点:平面几何思路:通过作平行四边形把边长关系转化到一个三角形中来.解析:作AE∥DC,AH⊥BC,则ADCE是平行四边形,则BE=BC-CE=BC-AD=3=AB,则△ABE 是等腰三角形,BE=AB=3,AE=2,经计算可得423AH =. 所以梯形ABCD 的面积为()14210214233⨯+⨯=.6. 如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62 答案:B 对应讲次:所属知识点:平面几何思路:补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.解析:作CF ⊥AD ,交AD 的延长线于点F ,将△CDF 绕点C 逆时针旋转90°至△CGB ,则ABCF 为正方形,可得△ECG ≌△ECD ,∴EG=ED. 设DE=x ,则DF=BG=x-28,AD=98-x.在Rt △EAD 中,有422+(98-x)2=x 2,解得x=58.二、填空题:(本题满分 28 分,每小题 7 分)7.311a a ++=a 的值为________.答案:8 对应讲次: 所属知识点:方程思路:通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.解析:易得(321a =.令x ,则x ≥0,代入整理可得x(x-3)(x+1)2=0,解得x 1=0, x 2=3, x 3=-1,舍负,即a=-1或8,验证可得a=8.8. 已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 答案:20° 对应讲次: 所属知识点:代数思路:一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况. 解析:∵θ≤100°-C ,θ≤C-B ,θ≤B-A ∴θ≤16[3(100°-C )+2(C-B)+(B-A)]=20°又当A=40°,B=60°,C=80°时,θ=20°可以取到. 则θ的最大值为20°.9. 设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.答案:7 对应讲次: 所属知识点:数论思路:因为p 是质数,只能拆成1和p ,另一方面通过a+b 、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.解析:因为a,b 互质,所以a+b 、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得a=b=1,p=4,不是质数舍;381ab p a b⎧=⎪⎨=⎪+⎩可得a=7,b=1,p=7,符合题意.则p=7.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 答案:34 对应讲次: 所属知识点:数论思路:考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.解析:设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i k i ka a a k k N ++==≤∈∑∑,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34.由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设A,B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果A 2-B 2是完全平方数,求A 的值. 答案:65 对应讲次: 所属知识点:数论思路:对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a+b ,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果. 解析:设A=10a+b(1≤a,b ≤9,a,b ∈N),则B=10b+a ,由A,B 不同得a ≠b ,A 2-B 2=(10a+b )2-(10b+a)2=9×11×(a+b )(a-b).………5分由A 2-B 2是完全平方数,则a >b ,()()11|a b a b +-,可得a+b=11, ………10分 a-b 也是完全平方数,所以a-b=1或4.………15分若a-b=1,则a=6,b=5; 若a-b=4,则没有正整数解. 因此a=6,b=5,A=65.………20分二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,P 为AD 与EF 的交点.证明:EF=2PD.对应讲次:所属知识点:平面几何思路:因为EF 、PD 都在△DEF 中,所以想办法推出其性质,比较容易得出∠EDF=90°,此时若能得出EF=PD ,则自然可以得到结论.解析:由DE 平分∠ADB ,DF 平分∠ADC ,可得∠EDF=90°.………5分由BE ⊥DE 得BE ∥DF ,则∠EBD=∠FDC. ………10分又BD=DC ,∠BED=∠DFC=90°,则△BED ≌△DFC ,BE=DF . ………15分 得四边形BDFE 是平行四边形,∠PED=∠EDB=∠EDP ,EP=PD. ………20分 又△EDF 是直角三角形,∴EF=2PD.………25分三、(本题满分 25 分)已知a,b,c 为有理数,求222a b c a b c ++++的最小值.答案:3 对应讲次: 所属知识点:数论思路:通过a,b,c 是正整数,可以把有理部分和无理部分分离考虑.0c -≠,可以通过分母有理化来实现分离,再利用a,b,c 互不相等,从最小正整数开始讨论即可得出最小值.0c -≠)()22222555bcab bc bac b cb c +--+-==--b 2=ac. …10分()()22222a c ba b c a c b a b c a c b +-++==+-++++.………15分不妨设a <c ,若a=1,c=b 2,因为a ≠b ,则a+c-b=1+b(b-1)≥3,取等号当且仅当b=2时. ………20分 若a ≥2,因为c ≠b ≠1,则a+c-b=a+b(b-1)≥a+2≥4>3.所以222a b c a b c++++的最小值为3,当a=1,b=2,c=4时.………25分。

2017年全国初中数学联赛初二卷和详解

2017年全国初中数学联赛初二卷和详解

2017年全国初中数学联合竞赛试题初二卷第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-12.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.813.若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.14.已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.4605.梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().C. D.6.如图,梯形ABCD中,AD∥BC,∠A=90°,点E在AB上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE的值为().A.56B.58C.60D.62二、填空题:(本题满分28分,每小题7分)7.=a的值为________.8.已知△ABC的三个内角满足A<B<C<100°.用θ表示100°-C,C-B,B-A中的最小者,则θ的最大值为________.9.设a,b是两个互质的正整数,且38abpa b=+为质数.则p的值为________.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________.第二试一、(本题满分20分)设A,B是两个不同的两位数,且B是由A交换个位数字和十位数字所得,如果A2-B2是完全平方数,求A的值.二、(本题满分25分)如图,△ABC中,D为BC的中点,DE平分∠ADB,DF平分∠ADC,BE⊥DE,CF⊥DF,P为AD与EF的交点.证明:EF=2PD.三、(本题满分25分)已知a,b,c为有理数,求222a b ca b c++++的最小值.2017年全国初中数学联合竞赛试题初二卷参考答案第一试一、选择题:(本题满分42 分,每小题7 分)1.已知实数a,b,c满足2a+13b+3c=90,3a+9b+c=72,则32b ca b++的值为().A.2B.1C.0D.-1答案:B对应讲次:所属知识点:方程思路:因为所求分式的特点可以想到把a+2b,3b+c看成一个整体变量求解方程.解析:已知等式可变形为2(a+2b)+3(3b+c)=90,3(a+2b)+(3b+c)=72,解得a+2b=18,3b+c=18,所以312b ca b+=+.2.已知实数a,b,c满足a+b+c=1,111135a b c++=+++,则(a+1)2+(b+3)2+(c+5)2的值为().A.125B.120C.100D.81答案:C对应讲次:所属知识点:方程思路:可以想到换元法.解析:设x=a+1,y=b+3,z=c+5,则x+y+z=10,111x y z++=,∴xy+xz+yz=0,由x2+y2+z2=(x+y+z)2-2(xy+xz+yz)=100.则(a+1)2+(b+3)2+(c+5)2 =100.3. 若正整数a,b,c满足a≤b≤c且abc=2(a+b+c),则称(a,b,c)为好数组.那么好数组的个数为().A.4B.3C.2D.1答案:B对应讲次:所属知识点:数论思路:先通过a≤b≤c且abc=2(a+b+c)的限定关系确定可能的种类,再通过枚举法一一验证. 解析:若(a,b,c)为好数组,则abc=2(a+b+c)≤6c,即ab≤6,显然a=1或2.若a=1,则bc=2(1+b+c),即(b-2)(c-2)=6,可得(a,b,c)=(1,3,8)或(1,4,5),共2个好数组.若a=2,则b=2或3,可得b=2,c=4;b=3,c=52,不是整数舍去,共1个好数组.共3个好数组(a,b,c)=(1,3,8) (1,4,5) (2,2,4).4. 已知正整数a,b,c满足a2-6b-3c+9=0,-6a+b2+c=0,则a2+b2+c2的值为().A.424B.430C.441D.460答案:C对应讲次:所属知识点:方程思路:由已知等式消去c整理后,通过a,b是正整数的限制,枚举出所有可能,并一一代入原方程验证,最终确定结果.解析:联立方程可得(a-9)2+3(b-1)2=75,则3(b-1)2≤75,即1≤b≤6.当b=1,2,3,4,5时,均无与之对应的正整数a;当b=6时,a=9,符合要求,此时c=18,代入验证满足原方程.因此,a=9,b=6,c=18,则a2+b2+c2=441.5. 梯形ABCD中,AD∥BC,AB=3,BC=4,CD=2,AD=1,则梯形的面积为().C. D.答案:A对应讲次:所属知识点:平面几何思路:通过作平行四边形把边长关系转化到一个三角形中来.解析:作AE∥DC,AH⊥BC,则ADCE是平行四边形,则BE=BC-CE=BC-AD=3=AB,则△ABE 是等腰三角形,BE=AB=3,AE=2,经计算可得AH =所以梯形ABCD 的面积为()1142⨯+=.6. 如图,梯形ABCD 中,AD ∥BC ,∠A=90°,点E 在AB 上,若AE=42,BE=28,BC=70,∠DCE=45°,则DE 的值为( ).A.56B.58C.60D.62 答案:B 对应讲次:所属知识点:平面几何思路:补形法,把直角梯形先补成正方形,再利用旋转把边长关系转化到同一个三角形Rt △EAD 中去,利用勾股定理求解.解析:作CF ⊥AD ,交AD 的延长线于点F ,将△CDF 绕点C 逆时针旋转90°至△CGB ,则ABCF 为正方形,可得△ECG ≌△ECD ,∴EG=ED. 设DE=x ,则DF=BG=x-28,AD=98-x.在Rt △EAD 中,有422+(98-x)2=x 2,解得x=58.二、填空题:(本题满分 28 分,每小题 7 分)7.=a 的值为________.答案:8 对应讲次: 所属知识点:方程思路:通过等式两边都6次方可以去掉最外面根式,再用换元法化简等式,最后要验证结果是否满足最初的等式.解析:易得(321a =.令x ,则x ≥0,代入整理可得x(x-3)(x+1)2=0,解得x 1=0, x 2=3, x 3=-1,舍负,即a=-1或8,验证可得a=8.8. 已知△ABC 的三个内角满足A <B <C <100°.用θ表示100°-C,C-B,B-A 中的最小者,则θ的最大值为________. 答案:20° 对应讲次: 所属知识点:代数思路:一般来说,求几个中最小者的最大值时,就是考虑这几个都相等的情况. 解析:∵θ≤100°-C ,θ≤C-B ,θ≤B-A ∴θ≤16[3(100°-C )+2(C-B)+(B-A)]=20°又当A=40°,B=60°,C=80°时,θ=20°可以取到. 则θ的最大值为20°.9. 设a,b 是两个互质的正整数,且38ab p a b=+为质数.则p 的值为________.答案:7 对应讲次: 所属知识点:数论思路:因为p 是质数,只能拆成1和p ,另一方面通过a+b 、a 、b 两两互质来拆分38ab a b+的可能种类,最后分类讨论,要么与条件矛盾,要么得出结果.解析:因为a,b 互质,所以a+b 、a 、b 两两互质,因为38ab a b +质数,所以318ab p a b⎧=⎪⎨=⎪+⎩可得a=b=1,p=4,不是质数舍;381ab p a b⎧=⎪⎨=⎪+⎩可得a=7,b=1,p=7,符合题意.则p=7.10.20个都不等于7的正整数排成一行,若其中任意连续若干个数之和都不等于7,则这20个数之和的最小值为________. 答案:34 对应讲次: 所属知识点:数论思路:考虑1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1满足题设要求,其和为34,接下来只需要考虑该数列是否为和最小的数列.解析:设该正整数列为()20,*n a n n N ≤∈,考虑()16,,,14,*k k k i i i k i ka a a k k N ++==≤∈∑∑,依抽屉原理必然有两项模7的余数相同,则该两项的差是7的倍数,于是任意连续7项之中必有连续子列之和为7的倍数,又不能为7,则最小为14.于是20个数中至少有2组这样的子列其总和不小于28,剩下6个数之和不小于6,于是该数列之和不小于34.由1,1,1,1,1,1,8,1,1,1,1,1,1,8,1,1,1,1,1,1可知,存在数列和为34的情况.第二试一、(本题满分 20 分)设A,B 是两个不同的两位数,且B 是由A 交换个位数字和十位数字所得,如果A 2-B 2是完全平方数,求A 的值. 答案:65 对应讲次: 所属知识点:数论思路:对于需要考虑不同位数上数字的情况,可以把一个两位数ab 设为10a+b ,转为为代数问题,再利用完全平方数的质因数分解式也是以完全平方数对的形式出现,综合分析所有限定下可能性,最终确定结果. 解析:设A=10a+b(1≤a,b ≤9,a,b ∈N),则B=10b+a ,由A,B 不同得a ≠b ,A 2-B 2=(10a+b )2-(10b+a)2=9×11×(a+b )(a-b).………5分由A 2-B 2是完全平方数,则a >b ,()()11|a b a b +-,可得a+b=11, ………10分 a-b 也是完全平方数,所以a-b=1或4.………15分若a-b=1,则a=6,b=5; 若a-b=4,则没有正整数解. 因此a=6,b=5,A=65.………20分二、(本题满分 25 分)如图,△ABC 中,D 为BC 的中点,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,P 为AD 与EF 的交点.证明:EF=2PD.对应讲次:所属知识点:平面几何思路:因为EF 、PD 都在△DEF 中,所以想办法推出其性质,比较容易得出∠EDF=90°,此时若能得出EF=PD ,则自然可以得到结论.解析:由DE 平分∠ADB ,DF 平分∠ADC ,可得∠EDF=90°.………5分由BE ⊥DE 得BE ∥DF ,则∠EBD=∠FDC. ………10分又BD=DC ,∠BED=∠DFC=90°,则△BED ≌△DFC ,BE=DF . ………15分 得四边形BDFE 是平行四边形,∠PED=∠EDB=∠EDP ,EP=PD. ………20分 又△EDF 是直角三角形,∴EF=2PD.………25分三、(本题满分 25 分)已知a,b,c 为有理数,求222a b c a b c ++++的最小值.答案:3 对应讲次: 所属知识点:数论思路:通过a,b,c 是正整数,可以把有理部分和无理部分分离考虑.0c -≠,可以通过分母有理化来实现分离,再利用a,b,c 互不相等,从最小正整数开始讨论即可得出最小值.0c -≠)()22222555bcab bc bac b cb c +--+-==--b 2=ac. …10分()()22222a c ba b c a c b a b c a c b +-++==+-++++.………15分不妨设a <c ,若a=1,c=b 2,因为a ≠b ,则a+c-b=1+b(b-1)≥3,取等号当且仅当b=2时. ………20分 若a ≥2,因为c ≠b ≠1,则a+c-b=a+b(b-1)≥a+2≥4>3.所以222a b c a b c++++的最小值为3,当a=1,b=2,c=4时.………25分。

北师大版数学竞赛初二数学模拟试题含答案

北师大版数学竞赛初二数学模拟试题含答案

学习资料收集于网络,仅供参考初二数学竞赛模拟试题分满分:150时限:120分钟分,每小题均给出了代606分,满分为一、选择题(本题共10个小题,每小题的四个结论,其中只有一个是正确的,请将正确答案的代号DC、号为A、B、填在题后的括号里)33的时,式子时,式子-的值是2006;当x=11.当x=110pxpx?qx?10??qx.值是D.-2026B. –2008C.2026 A. 2008. BCE= 2.如第2题图,AB∥DE,∠ABC=140°,∠DEC=160°,∠°°°C. 20 D. 15A. 30°B. 25AED B AF C D B E C 第题图6题图第5 题图第2. 3. 三角形的边长为整数,其周长为8,这个三角形的形状为 D. 钝角三角形等腰三角形 C. 正三角形A. 直角三角形 B.6小时、3小时、4小时、44.A、B、C、D四同学用五笔打一篇文章分别要用则打完这篇文章需要的时间让他们同时打印,小时才能打完,如果合理分工,.为小时小时 D. 2小时A. 0.5 B. 1小时 C. 1.5,已≌F六个正方形,且CDB、C、D、E、题图5.如第5,图中的矩形被分成A、. 1,则这个矩形的面积为知正方形F的面积为D. 100C. 110 B. 120 A. 143的面积分别为、等腰三角形ABC6题图,设正方形AEFD、长方形EBCD6.如第. 、SS、S,则S、S、S的大小关系为331122=S>S=S D. S=S>SA. S>S B. S<S<S C. S321323312112于ABABC内的一个动点,如PE⊥已知7.如第7题图,P是边长为1的正三角形的值于D,则PD+PE+PF于PF⊥BCF,PD⊥ACE,. 为A231DE D. C. A. 2 B.P222CBF30504054,3,.的大小关系为8. 比较7题图第3050405040304050303050403?435?45?43??53?4??5 A. B.C. D.学习资料.学习资料收集于网络,仅供参考,AO=2OB,试在在直角三角形ABC中9.如第9题图,A ,OAB为等腰三角形上找一点P使△直线AO、BO O B .个点有这样的P9题图第D. 8C. 7 B.6 A. 51分钟才能算煎熟,则10. 一只锅一次能放两只饼子,一只饼子的两面都要各煎煎熟2006只饼子至少需要___________分钟.A. 1003B. 2005C. 2006D. 2007二、填空题(本题共5小题,每小题6分,满分为30分)11.有两组数,第一组数的平均数为13.06,第二组数的平均数为10.2,这两组数的总的平均数是12.02,则第一组与第二组的个数比是.GFE第一组同学到体育室拿了全部蓝球的一半又,12.在上体育课时D第三组拿了剩余的一半个,第二组拿了剩余的一半又半个,C . 个,正好拿完,则原有的蓝球有半又半个B C ∠∠4×4的正方形网格中,∠A+B+ 13.如第13题图,在A. +∠D+∠E+∠F+∠G= 题图第13B点爬到桶内一只蚂蚁欲从圆柱形的桶外A14.如第14题图,D C 点到桶口点去寻找食物.已知A点到桶口的距离AD 为12cm, B则的距离BC为8cm,弧CD若蚂蚁爬最短的路线,的长为15 cm,,B A . 最短路程为第14题图千米的两地出发,相向而行,甲每小时815.甲乙两人同时从相距走3千米,乙每小时走2千米,与甲同时、同地、同向出发的还有一只小狗,它每小时走5千米,狗碰到乙后就回头向甲走去,碰到甲后又回头向乙走去…,这只小狗就这样往返于甲乙两人之间,直到甲乙相遇为止,则这只小狗共走了千米.三、解答题(本题共3小题,每小题20分,共60分)16.计算1111111111111(1??...??)(??...??)?(1??...??)(??...?) 2200520062320062007220062007232006的值.17.在一次象棋比赛中,第一组有八名同学.在循环赛中(即每两名同学都要赛一局),已知比赛中没有出现平局,第一名同学胜a局,输b局;第二名同学胜a局,211222a?...?aa?与;b局…第八名同学胜a.试比较b,局输局输882812222b...??b?b 的大小812学习资料.学习资料收集于网络,仅供参考1?kx(常数k为正整数)的图象与两坐标轴所围成的三角形面18.设一次函数y?k1?? S的值+S+SSS积为求200623+…k,+1学习资料.学习资料收集于网络,仅供参考参考答案一、DCBBADBBDC二、15. 8. 14. 25cm ; 51; 12.7; 13.315°;:11.9111.16三、(6分设),则原式为a1??...??2006211)-( a+)(a-1) (14分a(a-1+) 20072007111122+a-a+(18分=a)=-a+. (20a-a分)200720072007200717.因为没有平局,所以ab=7(1≤k≤8) (5分),且易知比赛中胜的总局数与输kk+a?a?...?ab?b?...?b(9分即),则= ,的总局数相等811822222222)()-(b...?a?b?b?...?aa?821128222222)(??(ab)?...?a?b)(12分)?(ab =821218)?)(a??)(a)a?(ab)(?b?(?bab)...?(?bab)(16分=8112118822820b?()a...??a7?[(a??bb?)]?...?)分.(18821821学习资料.学习资料收集于网络,仅供参考222222从而=.(20分) b?b?b?...a?a??a (828112)11?kx1与x、y.直线轴的交点分别为()和()(4分),18,00?,y1?k1?kk111111(14则S分) )????(?分(6).k2kk?12kk?1所以S+S+S+…+S 20062131003111111???)(1?)?(?)?...?((20分=)分(16).??? 2223200620072007??学习资料.。

北师大初二上数学竞赛试卷

北师大初二上数学竞赛试卷

一、选择题(每题5分,共25分)1. 下列数中,哪个是质数?A. 14B. 15C. 17D. 182. 下列图形中,哪个是轴对称图形?A. 正方形B. 长方形C. 三角形D. 梯形3. 若a=3,b=4,则a²+b²的值为:A. 7B. 11C. 15D. 194. 一个等腰三角形的底边长为8,腰长为10,则这个三角形的面积是:A. 24B. 32C. 40D. 485. 下列哪个函数是单调递增函数?A. y=x²B. y=x³C. y=2xD. y=3x二、填空题(每题5分,共25分)6. 若a+b=10,ab=24,则a²+b²的值为______。

7. 下列等式正确的是______。

8. 一个圆的半径为5,则其周长的值为______。

9. 一个长方体的长、宽、高分别为2、3、4,则其体积为______。

10. 下列哪个数是整数?三、解答题(每题15分,共45分)11. (15分)已知一元二次方程x²-5x+6=0,求该方程的两个实数根。

12. (15分)如图,等腰三角形ABC中,AB=AC,AD⊥BC于D,AB=10,BC=12,求三角形ABC的面积。

13. (15分)某商品原价为x元,打八折后的价格为y元,求y关于x的函数表达式。

四、附加题(共20分)14. (10分)已知等差数列{an}的首项为a₁,公差为d,求第n项an的表达式。

15. (10分)一个长方体的长、宽、高分别为a、b、c,求其表面积S和体积V的表达式。

注意:本试卷满分100分,考试时间为90分钟。

请认真审题,仔细作答。

祝各位考生取得优异成绩!。

北师大版初中数学八年级上册竞赛试题 (无答案))

北师大版初中数学八年级上册竞赛试题  (无答案))

八年级数学全能竞赛试题时间:90分钟 总分:100分 一.选择题:(每小题3分,共30分) 1.下列数中最大的数是( )(A )2 (B) -2 (C) 0 (D) -3 2. 若分式1-2x 有意义,则x 的取值范围是( ) (A) x=1 (B)x>1 (C) x ≠1 (D)x<1 3. 不等式组 ⎩⎨⎧>+≤+43242x x 的解集在数轴上表示正确的是( )(A ) (B)(C) (D)4. 如图,△ABC 中,AB=AC,D 是边BC 上的一点,且点C 在AD 的垂直平分线上,若∠BAD=15° ,则∠BAC 的大小是( ) (A )85° (B) 80° (C) 65° (D) 50°5. 要使a 5<a 3<a <a 2<a 4成立,则a 的取值范围是( ) (A )0<a <1 (B ) a >1 (C )-1<a <0 (D) a <-16. 若21=+xx ,则221x x += ( )(A) 1 (B) 2 (C) 3 (D) 4 7. 已知实数m 满足 |2013-m|+2014-m =m,那么m-20132=( )(A) 2011 (B) 2012 (C) 2013 (D)20148.古希腊著名的毕达哥拉斯学派把1,3,6,10,。

...,这样的数称为“三角形数”,而把1,4,9,16,...这样的数称为“正方形数”。

从下图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和,下列等式中,符合这一规律的是( )(A) 13=3+10 (B) 25=9+16(C) 36=15+21 (D) 49=18+319.如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 的中点, MN ⊥AC 于点N,则MN=( )(A) 4 (B) 2.4 (C) 3 (D) 3.210. 一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论①k<0;②a>0;③当x <3 时,y 1>y 2中,正确的个数是( )(A) 0 (B)1 (C)2 (D)3二.填空题:(每题3分,共18分)11.无论a,b 为何值,a 2+b 2-4a-4b+12 0(填“>”“<”“≥”“≤”或“=”)12.如图,已知函数y =3x +b 和y =ax -3的图象交于点P(-2,-5),则根据图象可得不等式3x +b >ax -3 的解集是_______________.13.若等腰三角形的底为a ,顶角是底角的4倍,则该等腰三角形腰上的高是 .14.如图,∠AOB= 70° .QC ⊥OA 于C,QD ⊥OB 于D,若QC=QD,则∠AOQ= 15.已知不等式组⎩⎨⎧>-<-32123b x a x 的解集是-1<x<1,那么(a+1)(b-1)= .16.数与数之间的关系非常奇妙.例如: ①2121-1=,②34322=-,③49433=-,……根据式中所蕴含的规律可知第n 个式子是 . 三.解答题:(共52分)17. (9分)因式分解:(1)222121b ab a +- (2)(x+2)(x-3)-3x+10 (3)(x 2+9y 2)2–36x 2y 2xyO3 y 2=x +ay =kx +b18.(4分)解不等式组⎪⎩⎪⎨⎧<-+≤+321)2(352x x x x ,并把解集在数轴上表示出来。

八年级下学期数学竞赛试题(北师大版)

八年级下学期数学竞赛试题(北师大版)

八年级下学期数学竞赛试题(时间:120分钟,满分:150分))一、选择题(40分))1、若分式34xx-+的值为0,则x的值是(A)A.x=3 B.x=0 C.x=-3 D.x=-42、若等腰三角形有两条边的长度为3和1,则此等腰三角形的周长为(B)A.5 B.7 C.5或7 D.63、在两个直角三角形中,若有一对角对应相等,一对边对应相等,则两个直角三角形(C )A.一定全等B.一定不全等C.可能全等D.以上都不是4、下列各式属于正确分解因式的是(B)A.1+4x2=(1+2x)2B.6a-9-a2=-(a-3)2C.1+4m-4m2=(1-2m)2D.x2+xy+y2=(x+y)25、使不等式x-1≥2与3x-7<8同时成立的x的整数值是(A)A.3,4 B.4,5 C.3,4,5 D.不存在6、方程1311x x-=-+的解是(A)A.x=2 B.x=1 C.x=12D.x=-27、如果点P(2x+6,x-4)在第四象限内,那么x的取值范围在数轴上可表示为(C) A. B.C.D.8、如图,□ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为(B)A.13 B.17 C.20 D.269、(湖北十堰)如图所示,小华从A点出发,沿直线前进10米后左转240,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是(B)A.140米B.150米C.160米D.240米10、若关于x的不等式721x mx-<⎧⎨-≤⎩的整数解共有4个,则m的取值范围是( D )A.6<m<7B.6≤m<7C.6≤m≤7D.6<m≤7二、填空题(20分)11、不等式2x-1>3的解集是 x>2.12、在等腰△ABC中,AB=AC,∠A=50°,则∠B= 650.13、化简2212124x x xx x--+÷--=12-+xx.14、(泰安)如图,在□ABCD 中,AB=6,BC=8,∠C 的平分线交AD 于E ,交BA 的延长线于F ,则AE+AF 等于 4三、解答题(16分)15、(1)因式分解:①3a 2-12ab+12b 2 ②2m 3-8m解:①3a 2-12ab+12b 2 =3(a -2b)2 ②2m 3-8m=2m(m+2)(m -2) (2)解不等式组: 3(2)42113x x x x -≥-⎧⎪+⎨>-⎪⎩①②,并写出它的所有的整数解. 解:解①得x ≥1,解②得x <4,∴不等式的解集为1≤x <4.所有整数解是:1,2,3. 16、已知│x -y+1│与x 2+8x+16互为相反数,求x 2+2xy+y 2的值.解:由条件知│x -y+1│+x 2+8x+16=0,即│x -y+1│+(x+4),2=0,可知x=-4,y=-3.∴x 2+2xy+y 2=(x+y)2=49.四、解答题(16分)17、如图,在边长为1个单位长度的小正方形组成的两格中,点A 、B 、C 都是格点.(1)将△ABC 向左平移6个单位长度得到得到△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.解:(1)如图所示:△A 1B 1C 1,即为所求(2)如图所示:△A 2B 2C 2,即为所求18、已知关于x 的分式方程﹣=1的解为负数,求k 的取值范围。

北师大版数学初二竞赛试卷

北师大版数学初二竞赛试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √-1B. πC. 2.5D. 无理数2. 下列等式中,正确的是()A. a² = b² → a = bB. a² + b² = c² → a = cC. (a + b)² = a² + b²D. (a - b)² = a² - b²3. 已知函数y = 2x + 1,若x的取值范围是[1, 3],则y的取值范围是()A. [3, 7]B. [4, 8]C. [5, 9]D. [6, 10]4. 下列各式中,完全平方公式正确的是()A. (a + b)² = a² + 2ab + b²B. (a - b)² = a² - 2ab + b²C. (a + b)² = a² - 2ab + b²D. (a - b)² = a² + 2ab - b²5. 已知一元二次方程x² - 5x + 6 = 0的解为x₁和x₂,则x₁ + x₂ = ()A. 5B. 6C. 7D. 86. 在直角坐标系中,点A(2, 3)关于原点对称的点的坐标是()A. (2, 3)B. (-2, -3)C. (3, 2)D. (-3, -2)7. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形8. 已知一元一次方程2x - 5 = 3x + 1,则x = ()A. -2B. -1C. 0D. 19. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = x²C. y = 1/xD. y = 3x10. 在等腰三角形ABC中,底边AB = AC = 6cm,腰BC = 8cm,则高AD = ()A. 4cmB. 5cmC. 6cmD. 7cm二、填空题(每题5分,共50分)1. 若x² - 4x + 3 = 0,则x = _______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

xOAy北师大版八年级数学竞赛试题一、选择题(每小题3分,共27分)1、下列式子正确的是()A、9)9(2-=- B、525±= C、1)1(33-=- D、2)2(2-=-2、如下是一种电子计分牌呈现的数字图形,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.3、某校八年级8位同学一分钟跳绳的次数分别为:150,164,168,172,176,168,183,185.则由这组数据得到的结论中错误的是()A.中位数为170 B.众数为168C.平均数为170.75 D.平均数为1704、不能判定四边形ABCD是平行四边形的是 ( )A、AB = CD,AD = BCB、AB∥CD,AB = CDC、AD∥BC,AB = CDD、AB∥CD,AD∥BC5、若点P(m+2,m+1)在y轴上,则点P的坐标为()A(2,1)B(0,2)C(0,-1)D (1,0)6、若点(m,n)在函数y=2x+1的图象上,则2m-n的值是()A.2 B.-2 C.1 D.-17、如图,函数2y x=和4y ax=+的图象交于点A(m,3),则不等式24x ax+<的解集为()A.32x<B.3x<C.32x>D.3x>(第7题)(第8题)8、如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点A′的坐标为()A(3,1)B(1,3)C(3,-1) D (1,1)二、填空题(每小题3分,共21分)学校:班级:姓名:考号:…………………………………………装……………………订………………………线………………………………………9、256的平方根是 ;10、若532+y x ba 与x yb a2425-是同类项,则x= , y = ;11、写出一个y 随着x 的增大而增大的一次函数的解析式:______________12、如图,矩形ABCD 的对角线AC 、BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC = 4,则四边形CODE 的周长是(12题) (13题)13、如图:矩形ABCD 的对角线AC =10,BC =8,则图中五个小矩形的周长之和 为_______ .14、 不等式组 的整数解的和是 .15、观察分析下列数据,寻找规律: 0,3,6,3,23,15,32,……那么第10个数据应是 . 三. 解答题(共75分)16、计算(每题5分,共10分)(1)解不等式组:()3228131x x x x -<+⎧⎪⎨-≥--⎪⎩(2)17、(9分)如图,在正方形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 分别在OD 、OC 上,且DE=CF ,连接DF 、AE ,AE 的延长线交DF 于点M . 求证:AM ⊥DF . 18、(6分)长方形ABCD ,长为6,宽为4,建立直角坐标系使其中C 点的坐标x +2>0,x -1≤2 学校: 班级: 姓名: 考号:…………………………………………装……………………订………………………线………………………………………(-3,2),并且写出其它顶点的坐标。

C BD A 19、(9分)某文化用品商店计划同时购进一批A 、B 两种型号的计算器,若购进A 型计算器10只和B 型计算器8只,共需要资金880元;若购进A 型计算器2只和B 型计算器5只,共需要资金380元.求A 、B 两种型号的计算器每只进价各是多少元?20.(10分)在如图所示的直角坐标系中,解答下列问题: (1)分别写出A 、B 两点的坐标;(2)将△ABC 绕点A 顺时针旋转90°,画出旋转后的△AB 1C 1; (3)求出线段B 1A 所在直线 l 的函数解析式, 并写出在直线l 上从B 1到A 的自变量x 的取值范围.21、(10分)如图,四边形ABC D 是平行四边形,△AB ’C 和△ABC 关于AC 所在的直线对称,AD 和B ’C 相交于点O ,连接BB ’.(1)请直接写出图中所有的等腰三角形(不添加字母);(2)求证:△AB ’O ≌△CDO .22、(10分)甲、乙两人同时从相距90千米的A 地前往B 地,甲乘汽车,乙骑摩O B'ABC DE AM BCD N 90y 千米()x 时()31.51O托车,甲到达B 地停留半小时后返回A 地.如图是他们离A 地的距离y (千米)与时间x (时)之间的函数关系图象.(1)求甲从B 地返回A 地的过程中,y 与x 之间的函数关系式,并写出自变量x的取值范围;(2)若乙出发后2小时和甲相遇,求乙从A 地到B 地用了多长时间?23、(11分)如图,在菱形ABCD 中,AB =2,∠DAB =60°,点E 是AD 边的中点.点M 是AB 边上一动点(不与点A 重合),延长ME 交射线CD 于点N ,连接MD 、AN . (1)求证:四边形AMDN 是平行四边形;(2)填空:①当AM 的值为_______时,四边形AMDN 是矩形; ②当AM 的值为________时,四边形AMDN 是菱形.八年级数学竞赛试题参考答案一、选择题1--------8 C C D C C D A C二、填空题:9、±4 ;10、2,-1 ;11、略;12、8;13、28;14、5 ;15、3三、解答题:16、(1)-2≤x<2 ;(2)、3 +2;17、略; 18 略; 19、A型40元,B型60元.20、解:(1)A(2,0),B(-1,-4) (2)画图(3) 线段B1A所在直线l 的解析式为:3342y x=-+线段B1A的自变量x 的取值范围是:-2 ≤ x ≤ 221、(1)△ABB”、△AOC和△BB”C (2)略22、.解:(1)设y=kx+b,根据题意得∴y=-60x+180(1.5≤x≤3).(2)当x=2时,y=-60×2+180=60.∴骑摩托车的速度为60÷2=30(千米/时).∴乙从A地到B地用时为90÷30=3(小时).23、(1)证明:∵四边形ABCD是菱形,∴ND∥AM.∴∠NDE=∠MAE,∠DNE=∠AME.又∵点E是AD边的中点,∴DE=AE.∴△NDE≌△MAE,∴ND=MA.∴四边形AMDN是平行四边形.(2)① 1 ;②2.作文优美语段集锦1、青春是用意志的血滴和拼搏的汗水酿成的琼浆——历久弥香;青春是用不凋的希望和不灭的向往编织的彩虹——绚丽辉煌;青春是用永恒的执著和顽强的韧劲筑起的一道铜墙铁壁——固若金汤。

2、信念是巍巍大厦的栋梁,没有它,就只是一堆散乱的砖瓦;信念是滔滔大江的河床,没有它,就只有一片泛滥的波浪;信念是熊熊烈火的引星,没有它,就只有一把冰冷的柴把;信念是远洋巨轮的主机,没有它,就只剩下瘫痪的巨架。

3、站在历史的海岸漫溯那一道道历史沟渠:楚大夫沉吟泽畔,九死不悔;魏武帝扬鞭东指,壮心不已;陶渊明悠然南山,饮酒采菊……他们选择了永恒,纵然谄媚诬蔑视听,也不随其流扬其波,这是执著的选择;纵然马革裹尸,魂归狼烟,只是豪壮的选择;纵然一身清苦,终日难饱,也愿怡然自乐,躬耕陇亩,这是高雅的选择。

在一番选择中,帝王将相成其盖世伟业,贤士迁客成其千古文章。

3、只有启程,才会到达理想和目的地,只有拼搏,才会获得辉煌的成功,只有播种,才会有收获。

只有追求,才会品味堂堂正正的人。

4、如果说友谊是一颗常青树,那么,浇灌它的必定是出自心田的清泉;如果说友谊是一朵开不败的鲜花,那么,照耀它的必定是从心中升起的太阳。

多少笑声都是友谊唤起的,多少眼泪都是友谊揩干的。

友谊的港湾温情脉脉,友谊的清风灌满征帆。

友谊不是感情的投资,它不需要股息和分红。

(友谊可以换其他词语)5、如果说生命是一座庄严的城堡,如果说生命是一株苍茂的大树,如果说生命是一只飞翔的海鸟。

那么,信念就是那穹顶的梁柱,就是那深扎的树根,就是那扇动的翅膀。

没有信念,生命的动力便荡然无存;没有信念,生命的美丽便杳然西去。

6、毅力,是千里大堤一沙一石的凝聚,一点点地累积,才有前不见头后不见尾的壮丽;毅力,是春蚕吐丝一缕一缕的环绕,一丝丝地坚持,才有破茧而出重见光明的辉煌;毅力,是远航的船的帆,有了帆,船才可以到达成功的彼岸。

7、爱心是一片照射在冬日的阳光,使贫病交迫的人感到人间的温暖;爱心是一泓出现在沙漠里的泉水,使濒临绝境的人重新看到生活的希望;爱心是一首飘荡在夜空的歌谣,使孤苦无依的人获得心灵的慰藉。

8、心的本色该是如此。

成,如朗月照花,深潭微澜,不论顺逆,不论成败的超然,是扬鞭策马,登高临远的驿站;败,仍滴水穿石,汇流入海,有穷且益坚,不坠青云的傲岸,有“将相本无主,男儿当自强”的倔强。

荣,江山依旧,风采犹然,恰沧海巫山,熟视岁月如流,浮华万千,不屑过眼烟云;辱,胯下韩信,雪底苍松,宛若羽化之仙,知退一步,海阔天空,不肯因噎废食。

9、成熟是一种明亮而不刺眼的光辉,一种圆润而不腻耳的音响,一种不需要对别人察颜观色的从容,一种终于停止了向周围申诉求告的大气,一种不理会哄闹的微笑,一种洗刷了偏激的淡漠,一种无须声张的厚实,一种并不陡峭的高度。

10、爱,有的时候不需要山盟海誓的承诺,但她一定需要细致入微的关怀与问候;爱,有的时候不需要梁祝化蝶的悲壮,但她一定需要心有灵犀的默契与投合;爱,有的时候不需要雄飞雌从的追随,但她一定需要相濡以沫的支持与理解。

11、微笑着,去唱生活的歌谣,不要埋怨生活给予了太多的磨难,不必抱怨生命中有太多的曲折。

大海如果失去了巨浪的翻滚,就会失去雄浑;沙漠如果失去了飞沙的狂舞,就会失去壮观。

人生如果仅去求得两点一线的一帆风顺,生命也就失去了存在的意义。

12、即使青春是一枝娇艳的花,但我明白,一枝独放永远不是春天,春天该是万紫千红的世界。

即使青春是一株大地伟岸的树,但我明白,一株独秀永远不是挺拔,成行成排的林木,才是遮风挡沙的绿色长城。

即使青春是一叶大海孤高的帆,但我明白,一叶孤帆很难远航,千帆竞发才是大海的壮观。

13、生命不是一篇"文摘",不接受平淡,只收藏精彩。

她是一个完整的过程,是一个"连载",无论成功还是失败,她都不会在你背后留有空白;生命也不是一次彩排,走得不好还可以从头再来,她绝不给你第二次机会,走过去就无法回头。

14、试试看——不是像企鹅那样静静的站在海边,翘首企盼机会的来临,而是如苍鹰一般不停的翻飞盘旋,执著的寻求。

试试看——不是面对峰回路转、杂草丛生的前途枉自嗟叹,而是披荆斩棘,举步探索。

试试看——不是拘泥于命运的禁锢,听凭命运的摆布,而是奋力敲击其神秘的门扉,使之洞开一个新的天地。

相关文档
最新文档