运筹学动态规划
动态规划
多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状 态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化 问题的方法为动态规划方法 。
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适 用动态规划的问题必须满足最优化原理和无后效性 。
动态规划
运筹学的分支
01 原理
03 局限性
目录
02 分类
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年 代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理, 从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域, 并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了 显著的效果 。
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足 最优化原理又称其具有最优子结构性质 。
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来 的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又 称为无后效性 。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因 素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点 。
运筹学教案动态规划
运筹学教案动态规划一、教学目标1. 了解动态规划的基本概念及其在运筹学中的应用。
2. 掌握动态规划的基本原理和方法,能够解决实际问题。
3. 学会使用动态规划解决最优化问题,提高解决问题的效率。
二、教学内容1. 动态规划的基本概念动态规划的定义动态规划与分治法的区别2. 动态规划的基本原理最优解的性质状态转移方程边界条件3. 动态规划的方法递推法迭代法表格法4. 动态规划的应用背包问题最长公共子序列最短路径问题三、教学方法1. 讲授法:讲解动态规划的基本概念、原理和方法。
2. 案例分析法:分析实际问题,引导学生运用动态规划解决问题。
3. 编程实践法:让学生动手编写代码,加深对动态规划方法的理解。
四、教学准备1. 教材:《运筹学导论》或相关教材。
2. 课件:动态规划的基本概念、原理、方法及应用案例。
3. 编程环境:为学生提供编程实践的平台,如Python、C++等。
五、教学过程1. 引入:通过一个实际问题,引出动态规划的概念。
2. 讲解:讲解动态规划的基本原理和方法。
3. 案例分析:分析实际问题,展示动态规划的应用。
4. 编程实践:让学生动手解决实际问题,巩固动态规划方法。
5. 总结:对本节课的内容进行总结,强调动态规划的关键要点。
6. 作业布置:布置相关练习题,巩固所学知识。
六、教学评估1. 课堂讲解:评估学生对动态规划基本概念、原理和方法的理解程度。
2. 案例分析:评估学生运用动态规划解决实际问题的能力。
3. 编程实践:评估学生动手实现动态规划算法的能力。
4. 课后作业:评估学生对课堂所学知识的掌握情况。
七、教学拓展1. 研究动态规划与其他优化方法的联系与区别。
2. 探讨动态规划在运筹学其他领域的应用,如库存管理、生产计划等。
3. 了解动态规划在、数据挖掘等领域的应用。
八、教学反思1. 反思本节课的教学内容、方法和过程,确保符合教学目标。
2. 考虑学生的反馈,调整教学方法和节奏,提高教学效果。
3. 探讨如何将动态规划与其他运筹学方法相结合,提高解决问题的综合能力。
运筹学——动态规划
优子策略。该原理的具体解释是,若某一全过程
最优策略为:
p1
(s1 )
{u1
(s1 ),
u 2
(s2
),
,
u
k
(sk
),
u
n
(sn
)}
则对上述策略中所隐含的任一状态而言,
第k子过程上对应于该状态的最优策略必然包
含在上述全过程最优策略p1*中,即为
pk
(sk
)
{u
k
(sk
),
u
k 1
(sk
1
),
2.正确地定义状态变量sk,使它既能正确地描述过 程的状态,又能满足无后效性.动态规划中的状 态与一般控制系统中和通常所说的状态的概念是 有所不同的,动态规划中的状态变量必须具备以 下三个特征:
20
2021/7/26
(1)要能够正确地描述受控过程的变化特征。 (2)要满足无后效性。即如果在某个阶段状态已经给定,那么在
sk 1 Tk (sk ,uk (sk ))
上式称为多阶段决策过程的状态转移方程。有些问题的 状态转移方程不一定存在数学表达式,但是它们的状态 转移,还是有一定规律可循的。
12
2021/7/26
(六) 指标函数 用来衡量策略或子策略或决策的效果的某种数量
指标,就称为指标函数。它是定义在全过程或各 子过程或各阶段上的确定数量函数。对不同问题 ,指标函数可以是诸如费用、成本、产值、利润 、产量、耗量、距离、时间、效用,等等。
7
2021/7/26
(二)状态、状态变量和可能状态集 1.状态与状态变量。用以描述事物(或系统)在某特 定的时间与空间域中所处位置及运动特征的量,称 为状态。反映状态变化的量叫做状态变量。状态变 量必须包含在给定的阶段上确定全部允许决策所需 要的信息。按照过程进行的先后,每个阶段的状态 可分为初始状态和终止状态,或称输入状态和输出 状态,阶段k的初始状态记作sk,终止状态记为sk+1 。但为了清楚起见,通常定义阶段的状态即指其初 始状态。
运筹学教案动态规划
运筹学教案动态规划一、引言1.1 课程背景本课程旨在帮助学生掌握运筹学中的动态规划方法,培养学生解决实际问题的能力。
1.2 课程目标通过本课程的学习,学生将能够:(1)理解动态规划的基本概念和原理;(2)掌握动态规划解决问题的方法和步骤;(3)能够应用动态规划解决实际问题。
二、动态规划基本概念2.1 定义动态规划(Dynamic Programming,DP)是一种求解最优化问题的方法,它将复杂问题分解为简单子问题,并通过求解子问题的最优解来得到原问题的最优解。
2.2 特点(1)最优子结构:问题的最优解包含其子问题的最优解;(2)重叠子问题:问题中含有重复子问题;(3)无后效性:一旦某个给定子问题的解确定了,就不会再改变;(4)子问题划分:问题可以分解为若干个子问题,且子问题之间是相互独立的。
三、动态规划解决问题步骤3.1 定义状态状态是指某一阶段问题的一个描述,可以用一组变量来表示。
3.2 建立状态转移方程状态转移方程是描述从一个状态到另一个状态的转换关系。
3.3 确定边界条件边界条件是指初始状态和最终状态的取值。
3.4 求解最优解根据状态转移方程和边界条件,求解最优解。
四、动态规划应用实例4.1 0-1背包问题问题描述:给定n个物品,每个物品有一个重量和一个价值,背包的最大容量为W,如何选择装入背包的物品,使得背包内物品的总价值最大。
4.2 最长公共子序列问题描述:给定两个序列,求它们的最长公共子序列。
4.3 最短路径问题问题描述:给定一个加权无向图,求从源点到其他各顶点的最短路径。
5.1 动态规划的基本概念和原理5.2 动态规划解决问题的步骤5.3 动态规划在实际问题中的应用教学方法:本课程采用讲授、案例分析、上机实践相结合的教学方法,帮助学生深入理解和掌握动态规划方法。
教学评估:课程结束后,通过课堂讨论、上机考试等方式对学生的学习情况进行评估。
六、动态规划算法设计6.1 动态规划算法框架介绍动态规划算法的基本框架,包括状态定义、状态转移方程、边界条件、计算顺序等。
运筹学第六章 动态规划
f
3
(C
2
)
min
((CC22,,DD21
) )
f f
4 4
( (
D1 D2
) )
6 5
11
min
5
2
min
7
7
最优决策C2 D2
15
f3(C1)=8
2
A5
1
B1 12 14
10
6
B2 10
4 13
B3
12 11
C1
3
9
f3(C2)=7
6
C2
5 8
C3
10
f4(D1)=5
D1
5 f5(E)=0
B1 12 14
2 f2(B2)=110 4
6
5
B2 10
4
1
13
B3
12 11
f2(B3)=19
f3(C1)=8
C1
3
9
f3(C2)=7
6
C2
5 8
C3
10
f3(C3)=12
f4(D1)=5
D1
5 f5(E)=0
E
D2 2
f4(D2)=2
状态 最优决策 状态 最优决策 状态 最优决策 状态 最优决策 状态 A ( A,B2) B2 (B2,C1) C1
22
f1(A)=19
A
f2(B1)=21
B1 12 14
2 f2(B2)=110 4
6
5
B2 10
4
1
13
B3
12 11
f2(B3)=19
f3(C1)=8
C1
3
9
管理运筹学07动态规划
连续时间动态规划
定义
连续时间动态规划是指时间连续变化,状态 和决策也连续变化,状态转移和决策可以发 生在任意时刻。
解决思路
通过将时间连续化,将连续的时间动态问题转化为 离散的时间动态问题,然后应用动态规划的方法进 行求解。
应用场景
控制系统优化、金融衍生品定价、物流优化 等。
状态转移
指从一个状态转移到另一个状态的过程,是动态规划的基本要素 之一。
状态转移方程
描述了状态转移的数学表达式,是动态规划算法的核心。
最优化原理
最优化原理
在多阶段决策问题中,如果每个阶段 都按照最优策略进行选择,则整个问 题的最优解一定是最优的。
最优子结构
如果一个问题的最优解可以由其子问 题的最优解推导出来,则称该问题具 有最优子结构。
解决方案
采用启发式搜索策略, 如模拟退火、遗传算法 等,来引导算法跳出局 部最优解。
案例
在旅行商问题中,采用 模拟退火算法结合动态 规划,在局部搜索和全 局搜索之间取得平衡, 得到全局最优解。
06 动态规划案例研究
案例一:生产与存储问题的动态规划解决方案
总结词
该案例研究探讨了如何利用动态规划解决生 产与存储问题,通过合理安排生产和存储策 略,降低总成本。
管理运筹学07动态规划
contents
目录
• 动态规划概述 • 动态规划的基本概念 • 动态规划的应用 • 动态规划的扩展 • 动态规划的挑战与解决方案 • 动态规划案例研究
01 动态规划概述
定义与特点
定义
动态规划是一种通过将原问题分解为 相互重叠的子问题,并存储子问题的 解以避免重复计算的方法,从而有效 地解决最优化问题的方法。
运筹学动态规划
特别注意:动态规划是求解某类问题的一种 方法,是考察问题的一种途径,而不是一种算法 (如线性规划是一种算法)。
因而,动态规划没有标准的数学表达式和明 确定义的一组规则,而必须对具体问题进行具体 分析处理.
动态规划
8.1 多阶段决策过程及实例 8.2 动态规划的基本概念和
基本方程 8.3 动态规划的最优性定理 8.4 动态规划与静态规划关系
综述
动态规划是运筹学的一个分支,是解决多 阶段决策过程最优化问题的一种数学方法。
该方法是由美国数学家贝尔曼(R.Bellman)等 人在本世纪50年代初提出的。
他们针对多阶段决策问题的特点,把多阶段 决策问题变换为一系列互相联系单阶段问题,然 后逐个加以解决。
1
2
3
始点
5
B1
6 3
A
4 B2 4 6
2
5
B3 6
C1
1 2
2
C2 2
3
C3
3
4 终点
D1 2
D2 3
E
4
D3
2、状态
5
B1
6 3
A 4 B246
25
B3 6
C1
1 2
2
C2 2
C3 3 3
D1 2
D2 3 E 4
D3
各个阶段开始时所处的自然状况和客观条件称为
状态,描述了研究问题过程的状况(称不可控因素).
一些与时间没有关系的静态规划(如线性 规划,非线性规划)问题,只要人为地引进 “时间”因素,也可把它视为多阶段决策问题, 用动态规划方法去处理。
运筹学动态规划
运筹学动态规划运筹学是一门综合运筹学、优化学、决策学和统计学等多学科知识的学科,它的核心内容是对决策问题进行建模和分析,并通过数学方法进行求解和优化。
动态规划是运筹学中的一种重要方法,它通过将问题划分为相互重叠的子问题,并通过解决子问题的最优解来求解原问题的最优解。
下面将详细介绍运筹学中的动态规划方法。
动态规划方法的核心思想是将原问题分解为若干个相互重叠的子问题,并通过求解子问题的最优解来求解原问题的最优解。
为了可以使用动态规划方法,必须满足以下两个条件:子问题的最优解可以作为原问题的最优解的一部分;子问题之间必须具有重叠性,即一个子问题可以被多次使用。
动态规划方法的具体步骤如下:首先,将原问题分解为若干个子问题,并定义出每个子问题的状态和状态转移方程;其次,通过迭代求解每个子问题的最优解,直到求解出原问题的最优解;最后,根据子问题的最优解和状态转移方程,得到原问题的最优解。
动态规划方法的应用非常广泛,可以用于求解各种各样的优化问题。
例如,在物流配送中,可以使用动态规划方法求解最短路径问题;在生产计划中,可以使用动态规划方法求解最优生产计划;在股票投资中,可以使用动态规划方法求解最优投资策略等。
动态规划方法的优点是可以通过求解子问题的最优解来求解原问题的最优解,避免了穷举法的复杂性。
此外,动态规划方法还可以通过引入一定的约束条件,来对问题进行更精确的建模和求解。
然而,动态规划方法也存在一些局限性。
首先,动态规划方法要求问题能够满足子问题的最优解可以作为原问题的最优解的一部分,这限制了动态规划方法的应用范围。
其次,动态规划方法通常需要建立较为复杂的状态转移方程,并进行复杂的计算,使得算法的实现和求解过程比较困难。
综上所述,动态规划是运筹学中的一种重要方法,通过将问题划分为相互重叠的子问题,并通过解决子问题的最优解来求解原问题的最优解。
动态规划方法的优点是可以高效地求解优化问题,但同时也存在一些局限性。
运筹学教案动态规划
运筹学教案动态规划教案章节一:引言1.1 课程目标:让学生了解动态规划的基本概念和应用领域。
让学生掌握动态规划的基本思想和解决问题的步骤。
1.2 教学内容:动态规划的定义和特点动态规划的应用领域动态规划的基本思想和步骤1.3 教学方法:讲授法:介绍动态规划的基本概念和特点。
案例分析法:分析动态规划在实际问题中的应用。
教案章节二:动态规划的基本思想2.1 课程目标:让学生理解动态规划的基本思想。
让学生学会将问题转化为动态规划问题。
2.2 教学内容:动态规划的基本思想状态和决策的概念状态转移方程和边界条件2.3 教学方法:讲授法:介绍动态规划的基本思想。
练习法:通过练习题让学生学会将问题转化为动态规划问题。
教案章节三:动态规划的求解方法3.1 课程目标:让学生掌握动态规划的求解方法。
让学生学会使用动态规划算法解决问题。
3.2 教学内容:动态规划的求解方法:自顶向下和自底向上的方法动态规划算法的实现:表格化和递归化的方法3.3 教学方法:讲授法:介绍动态规划的求解方法。
练习法:通过练习题让学生学会使用动态规划算法解决问题。
教案章节四:动态规划的应用实例4.1 课程目标:让学生了解动态规划在实际问题中的应用。
让学生学会使用动态规划解决实际问题。
4.2 教学内容:动态规划在优化问题中的应用:如最短路径问题、背包问题等动态规划在控制问题中的应用:如控制库存、制定计划等4.3 教学方法:讲授法:介绍动态规划在实际问题中的应用。
案例分析法:分析实际问题,让学生学会使用动态规划解决实际问题。
教案章节五:总结与展望5.1 课程目标:让学生总结动态规划的基本概念、思想和应用。
让学生展望动态规划在未来的发展。
5.2 教学内容:动态规划的基本概念、思想和应用的总结。
动态规划在未来的发展趋势和挑战。
5.3 教学方法:讲授法:总结动态规划的基本概念、思想和应用。
讨论法:让学生讨论动态规划在未来的发展趋势和挑战。
教案章节六:动态规划的优化6.1 课程目标:让学生了解动态规划的优化方法。
运筹学课程动态规划课件
5 A
3
1 B1 3
6
8 B2 7
6
C1 6 8
3 C2 5
3 C3 3
84 C4
2 D1
2
D2 1 2
3 D3
3
E1 3
5 5 E2 2
6 6
E3
F1 4
G 3 F2
1
2
3 4 运筹学课程动态规划
5
6
7
示例5(生产与存储问题):
某工厂生产并销售某种产品。已知今后四个月市场需求 预测及每月生产j个单位产品的费用如下:
上一个阶段的决策直接影响下一个阶段的决策
运筹学课程动态规划
8
示例6(航天飞机飞行控制问题):
由于航天飞机的运动的环境是不断变化的,因 此就要根据航天飞机飞行在不同环境中的情况, 不断地决定航天飞机的飞行方向和速度(状态), 使之能最省燃料和实现目的(如软着落问题)。
运筹学课程动态规划
9
所谓多阶段决策问题是指一类活动过程,它可以分为若 干个相互联系的阶段,在每个阶段都需要作出决策。这 个决策不仅决定这一阶段的效益,而且决定下一阶段的 初
1 6
C3
D1
10
E
D2
6
运筹学课程动态规划
12
以上求从A到E的最短路径问题,可以转化为四个性质完
全相同,但规模较小的子问题,即分别从 Di 、 Ci 、Bi、
A到E的最短路径问题。
第四阶段:两个始点 D 1 和 D 2 ,终点只有一个;
本阶段始点 (状态)
D1 D2
本阶段各终点(决策) E 10 6
cj30j
j0 j1,2,6
月1 2 3
4
需求 2 3 2
运筹学第五章动态规划
和 dk 2 (sk ));
(4) 允许决策集: D k ( s k ) ( x k , y k ) 0 ≤ y k ≤ s k ; 0 ≤ x k ≤ 1 0 0 0 ( s k y k )
状态转移方程: s k 1 s k x k y k ,s 1 5 0 0k4,3,2,1
其中s 5 表示第四阶段末的状态; (5) 阶段指标: v k ( s k ,x k ,y k ) q k y k p k x k ,k4,3,2,1;
5.1 动态规划的基本概念和模型
5.1.1 动态规划的基本概念
下面结合实例来介绍动态规划的基本概念:
【例5.1】 如图5.1所示,在处有一水库,现需从点铺设一条 管道到点,弧上的数字表示与其相连的两个地点之间所需修建 的渠道长度,请找出一条由到的修建线路,使得所需修建的渠 道长度最短。
2
A4
3
B
7
(1) 按月份分段: k4,3,2,1;
(2) 状态变量: s k 表示第 k 个月月初的库存量;
(3) 决策变量: dk1(sk表) 示第 k 个月已有库存 s的k 情况下,要定
购的商品量, dk2表(sk示) 第 个月k 已有库存 的商品量(为方便,后面将分别依次用 ,
的 来x sk 情 代k y况 替k 下,要d销k1(售sk )
(6) 动态规划基本方程:
fk(s k) (x k,y m k) a D x k(s k)v k(s k,x k,y k) fk 1 (s k 1 )
f5 (s 5 ) 0 k 4 ,3 ,2 ,1
求解(要求板书) 辅图1
辅图2
辅图3
5.2.3 动态规划的顺序解法
【 例 5.3】 图 5.3 所 示 为 一 水 利 网 络 , A 为 水 库 , 分B 1 ,别B 2 为,B 3 不;C 同1 ,C 的2 ,供C 3 水;D 目1 ,D 的2地,试找出给各供水目的地供水的 最短路线。
运筹学中的动态规划原理-教案
运筹学中的动态规划原理-教案一、引言1.1动态规划的基本概念1.1.1动态规划的定义:动态规划是一种数学方法,用于求解多阶段决策过程的最优化问题。
1.1.2动态规划的特点:将复杂问题分解为简单的子问题,通过求解子问题来得到原问题的最优解。
1.1.3动态规划的应用:广泛应用于资源分配、生产计划、库存控制等领域。
1.2动态规划的基本原理1.2.1最优性原理:一个最优策略的子策略也是最优的。
1.2.2无后效性:某阶段的状态一旦确定,就不受这个状态以后决策的影响。
1.2.3子问题的重叠性:动态规划将问题分解为子问题,子问题之间往往存在重叠。
1.3动态规划与静态规划的关系1.3.1静态规划:研究在某一特定时刻的最优决策。
1.3.2动态规划:研究在一系列时刻的最优决策。
1.3.3动态规划与静态规划的区别:动态规划考虑时间因素,将问题分解为多个阶段进行求解。
二、知识点讲解2.1动态规划的基本模型2.1.1阶段:将问题的求解过程划分为若干个相互联系的阶段。
2.1.2状态:描述某个阶段的问题情景。
2.1.3决策:在每个阶段,根据当前状态选择一个行动。
2.1.4状态转移方程:描述一个阶段的状态如何转移到下一个阶段的状态。
2.2动态规划的基本算法2.2.1递归算法:通过递归调用求解子问题。
2.2.2记忆化搜索:在递归算法的基础上,保存已经求解的子问题的结果,避免重复计算。
2.2.3动态规划算法:自底向上求解子问题,将子问题的解存储在表格中。
2.2.4动态规划算法的优化:通过状态压缩、滚动数组等技术,减少动态规划算法的空间复杂度。
2.3动态规划的经典问题2.3.1背包问题:给定一组物品,每种物品都有自己的重量和价值,求解在给定背包容量下,如何选择物品使得背包中物品的总价值最大。
2.3.2最长递增子序列问题:给定一个整数序列,求解序列的最长递增子序列的长度。
2.3.3最短路径问题:给定一个加权有向图,求解从源点到目标点的最短路径。
管理运筹学第3章:动态规划
B
fn*(Sn)
=
min [dn(sn,xn)+ fn+1*(Sn+1)
], n=4、3、2、1
xn∈Dn(Sn) f5*(S5) = min [r5(s5,x5)] x5∈D5(S5) 三、求解过程:
用反向嵌套递推法:从最后一个阶段开始,依次对各子过程寻优,直至获得全过程的最优, 形成最优策略,获得最优策略指标值。
4
3.3 DP建模及求解
一、建模条件:
决策过程本身具有时顺序性或可以转化为具有时序性的决策问题, 均可建立动态规划数学模型求解。
二、典型动态决策问题建模及其求解
1、最短路线问题
例1:求下列图中A到F的最短路线及最短路线值。
B1 3 A 4 B3 5 4 B2
9 5
C1 8 C2
1 5
D
1
4 2 E1 1 F 2 E2 5
5
3
4 6
D
2
6 9 7
5
1 7 C3 4 2
4
D
3
B1 3 4
9 5
C1 8
1 5
D
1
4
2
A 4
5
B2
5 1 B3 7
3
C2
4 6
D
2
6 9 7 5
E1
1 F 24 C3 24E2D
3
1、阶段(stage)n: n = 1、2、3、4、5。 2、状态(state)Sn: S1={A},S2={B1,B2,B3},S3={C1,C2,C3},S4={D1,D2,D3},S5={E1,E2}。 3、决策(decision)Xn:决策集Dn(Sn)。 D1(S1)={X1(A)}={B1,B2,B3}= S2, D2(S2)={X2(B1),X2(B2),X2(B3)}={C1,C2;C1,C2,C3 ;C2,C3 }={C1,C2,C3}=S3, D3(S3)={X3(C1),X3(C2),X3(C3)}={D1,D2;D1,D2,D3; D1,D2,D3}={D1,D2,D3}=S4, D4(S4)={X4(D1),X4(D2),X4(D3)}={E1,E2;E1,E2;E1,E2}={E1,E2}=S5, D5(S5)={X5(E1),X5(E2)}={F;F}={F}。 4、状态转移方程:Xn = Sn+1 5、指标函数(距离):dn(sn,xn)。 d2(B3,C2)=1, d3(C2,D3)=6 等。 6、指标递推方程:fn*(Sn) = min [rn(sn,xn)+ fn+1*(Sn+1) ], n=4、3、2、1
运筹学动态规划的概念
运筹学动态规划的概念运筹学中的动态规划是一种解决多阶段决策问题的数学方法。
它适用于需要做出一系列决策才能获得最优解的情况。
在这种情况下,每个决策都会对接下来的决策产生影响,因此需要考虑整个过程的影响。
动态规划的实质是将多阶段决策过程拆解成一系列子问题,每个子问题都可以用一个状态来描述。
通过求解每个子问题的最优解,就可以逐步得到整个过程的最优解。
动态规划的基本思想是以最优子结构为基础,避免重复计算已经求解过的子问题的过程。
也就是说,如果我们已经知道了子问题的最优解,那么整个问题的最优解就可以通过这些子问题的最优解推导出来。
通常情况下,动态规划问题需要满足以下几个条件:1.具有最优子结构特征:问题的最优解是由子问题的最优解组合而成的。
2.无后效性:子问题的解一旦确定,就不会被改变。
3.子问题重复性:不同的子问题可能会对应相同的状态。
4.边界性:即为问题的较小的子问题需要单独处理。
通过以上条件,我们就可以将动态规划问题分解为一个个子问题,并求解每个子问题所对应的最优值。
动态规划的基本流程分为三个步骤:1.定义状态:构建状态转移方程需要定义状态,状态通常用一个或多个变量来表示,变量的取值代表状态。
2.写出状态转移方程:根据定义好的状态,写出各个状态之间的转移方程。
3.确定边界条件:对较小的子问题需要单独处理,因此当状态变量为边界值时,需要特殊处理。
动态规划的应用广泛,它可以用于解决大量的问题。
例如,求解最长公共子序列问题、背包问题、最短路问题、字符串编辑距离问题等等。
它在图像处理、自然语言处理、生物信息学等领域中也有广泛的应用,如图像去噪、序列比对、DNA 序列匹配等。
总之,动态规划是运筹学中一种解决多阶段决策问题的重要方法,它通过将问题分解成子问题,并求解每个子问题的最优解,得出整个问题的最优解。
在实际应用中,我们需要根据具体问题特点,定义好状态,写出好的状态转移方程,才能有效地解决问题。
运筹学动态规划汇总
j
aj
…
…
n
an
c1
c2
…
cj
…
cn
这就是背包问题。类似的还有工厂里的下料问题、运输中的 货物装载问题、人造卫星内的物品装载问题等。
静态规划模型:
maxZ c j x j
j 1
n
n a j x j a ji x 0且 为 整 数 ( j 1.2. .n) j
例:某厂设计一种电子设备,由三种元件 D1,D2、D3组成。已知这三种元件 的 价格和可靠性如表9—9所示,要求在 设计中所使用元件的费用不超过105 元。试问应如何设计使设备的可靠性 达到最大(不考虑重量的限制)。
元件 D1 D2 D3 单位/元(Ck) 30 15 20 可靠性(Pk) 0.9 0.8 0.5
状态转移方程
允许决策集合
动态规划基本方程
复合系统可靠性问题
某种复合系统由n个部件串联而成; 部件1 部件2 …... 部件n
部件i装有zi个备用元件,它正常工作的概率为pi(zi);
系统正常工作的概率为:
p pi ( zi )
i 1
n
部件i装一个备用元件的费用为ci,系统总费用不得超过c; 部件i装一个备用元件的重量为wi,系统总费用不得超过w; 求可以使得p达到最大的zi的选取方法。
内容
复合系统可靠性问题
部件1 部件2
…...
部件n 部件i装有zi个备用元件,它失败的概率为pi(zi); 部件i装一个备用元件的费用为ci,系统总费用不得超过c; 部件i装一个备用元件的重量为wi,系统总费用不得超过w; 求可以使得p达到最大的zi的选取方法。
静态规划的模型为:
运筹学课程07-动态规划(胡运权 清华大学)
Vk ,n (sk , uk , sk 1 , uk 1 , , sn1 )
可递推
k [ sk , uk , Vk 1, n ( sk 1 , uk 1 , , sn 1 )]
指标函数形式: 和、 积
NEUQ
原过程的一个后部子过程: 对于任意给定的k(1 ≤ k≤n),从第k段到第n段的过 程称为原过程的一个后部子过程
阶段4
本阶段始点 (状态) D1 D2 本阶段各终点(决策) E 10 6 10 6 到E的最短距离 本阶段最优终点 (最优决策) E E
NEUQ
分析得知:从D1 和 D2 到E的最短路径唯一。
NEUQ
第三阶段:有三个始点C1,C2,C3,终点有D1,D2,对始点 和终点进行分析和讨论分别求C1,C2,C3到D1,D2 的最短路 径问题:
NEUQ
动态规划 Dynamic Programming
不要过河拆桥 追求全局最优
本章内容
多阶段决策过程的最优化 动态规划的基本概念和基本原 理 动态规划方法的基本步骤 动态规划方法应用举例
NEUQ
NEUQ
一、多阶段决策过程的最优化
示例1(工厂生产安排):
某种机器可以在高、低两种负荷下生产。高负荷生产
NEUQ
示例3 (连续生产过程的控制问题):
一般化工生产过程中,常包含一系列完成
生产过程的设备,前一工序设备的输出则是后
一工序设备的输入,因此,应该如何根据各工
序的运行工况,控制生产过程中各设备的输入 和输出,以使总产量最大。
示例4、最短路径问题
NEUQ
给定一个交通网络图如下,其中两点之间的数字表示距离 (或花费),试求从A点到G点的最短距离(总费用最小)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 动态规划应用举例
例1 生产与存储问题 一个工厂生产的某种产品,在一定的时期
内,增大生产批量,能够降低产品的单位成本,但若超过市场的需 求量,就会造成产品的积压而增加存储的费用。因此如何正确地制 定生产计划,使得在整个计划期内,生产和存储的总费用最小,这 就是生产与存储问题。
第三节 动态规划应用举例
第七章 动态规划
第一节 最短线路问题
第二节 动态规划的基本概念和原理 第三节 动态规划应用举例 第四节 决策变量连续的动态规划问题 第五节 乘积形式的目标函数 第六节 随机型动态规划问题
第一节 最短线路问题
一、最短线路问题及其解法
图7-1是一个线路网络图。从A到E要修建一条石 油管道。管道必须在B、C、D三处设立加压站。 在B处有B1,B2,B3三个不同地址可供选择作为 建站点。当然,从A到这3个点的距离是不同的; 同样,C和D处也都有不同的地址可供选择。图 上的圆圈称为节点,表示地址,两个节点之间的 箭线称为线或边,表示可以修建管道,线上的数 字表示两个地址之间的距离。现在的问题是在许 多条从A到E的线路中,找出一条最短的,称为最 短线路问题。
三、最优化原理与动态规划方程
基本步骤为:
(1)将问题的求解过程恰当地分成若干阶段,一般可按问题所处的空间或时间 进行划分,并确定阶段变量,对n个阶段问题来说,k=1,2,…,n。 (2)正确地选择状态变量sk,它应当满足无后效性等三个条件,并确定状态集
合Sk。
(3)确定决策变量xk(sk)及阶段的允许决策集合Dk(sk)。 (4)写出状态转移函数 (5)根据题意,列出指标函数Fk,n,fk(sk),F1,n,f1(s1)。
三、最优化原理与动态规划方程
•最优化原理 对于多阶段决策问题,作为整个 过程的最优策略具有这样的性质:无论过去的状 态和决策如何,就前面决策所形成的状态而言, 余下的诸决策必然构成一个最优子策略。
•用动态规划求解多阶段决策问题的基本思想是: 利用最优化原理,建立动态规划方程,即建立动 态规划的数学模型,然后求得其最优解。
1.阶段和阶段变量
图 7-4
1.阶段和阶段变量
图 7-5
2.状态和状态变量
在多阶段决策过程中,每个阶段的起始位置或状 况称为该阶段的状态。每个阶段的初始状况又是 前一个阶段的一个终止状况(当然,第一阶段除 外)。因而,一旦各个阶段的状态都确定之后, 整个过程也就完全确定。从这个意义上说,多阶 段决策过程也就是各个状态的演变过程。应当注 意,不同的问题,其状态的含义也不同。
一、最短线路问题及其解法
1.逆序法 2.顺序法
一、最短线路问题及其解法
图 7-1
1.逆序法
图 7-2
2.顺序法
图 7-3
第二节 动态规划的基本概念和原理
一、多阶段决策问题
二、动态规划的基本概念 三、最优化原理与动态规划方程
一、多阶段决策问题
如果一个问题的求解过程可以按空间(例如最短 线路问题)、按时间(例如后面将要讨论的生产计 划问题),或者按问题的要求可以划分成相互关 联的若干阶段,而每个阶段都需要作出决策,当 所有阶段的决策都确定后,整个问题的求解策略 也就确定了,那么这样的问题称为多阶段决策问 题。不论按哪种因素分段,统称为时段,于是问 题成为按时段的变动而作出决策的问题,这就是 “动态”的含义。
第三节 动态规划应用举例
例2 某建筑公司拟建造甲,乙,丙三类住宅出售。甲类住宅每栋耗
资100万元,售价200万元;乙类住宅每栋耗资60万元,售价110 万元;丙类住宅每栋耗资30万元,售价70万元。由于有关规定, 建造每类住宅不得超过3栋。该公司拥有建房资金350万元,问应 如何安排资金,可使该公司的售房收益最大? 解 在这个问题中,并没有明显的时间和空间上的阶段性。但可 以人为地赋予它“时段”的概念,即把考虑甲,乙,丙三类住宅的
举例如下: 假设某厂生产的一种产品,以后四个月的订单如表7-1所示。合同规 定在月底前交货,生产每批产品的固定成本为3千元,每批生产的 产品件数不限。每件产品的可变成本为1千元,每批产品的最大生 产能力为5件。产品每件每月的存储费为0.5千元。设1月初有库存产 品1件,4月底不再留下产品。试在满足需要的前提下,如何组织生 产才能使总的成本费用最低。
6.阶段损益和策略效益
三、最优化原理与动态规划方程
前面在最短线路问题中已经指出,从A到E的最优 线路有这样的特点:如果最短线路经过第k阶段 的状态s k,那么从s k出发到达终点的这条线路对 于从s k出发到达终点的所有线路来说,必是最短 线路。在实际生活中具有这样特点的问题很多。 美国科学家贝尔曼研究了这类问题,提出了求解 多阶段决策问题的最优化原理。
二、动态规划的基本概念
1.阶段和阶段变量 2.状态和状态变量 3.决策和决策变量 4.策略和子策略 5.状态转移函数 6.阶段损益和策略效益
二、动态规划的基本概念
正确地划分阶段是运用动态规划求解问题的基础。 一般说来,如何划分并没有固定的模式,只能依 靠经验和技巧。有的问题,虽不能像最短线路问 题那样明显地分段,但适当问题。从网络图上看不出明显的阶段 划分,但增加节点后,将问题化为图7-5所示的 情况,便成为多阶段决策问题。
5.状态转移函数
顺序状态转移函数与逆序状态转移函数统称为状 态转移函数。多阶段决策问题有的可以用逆序法, 即状态转移用顺序状态转移函数来求解;也可以 用顺序法求解,但有的问题却只能用逆序法来求 解,因此我们主要讨论逆序法求解。用逆序法求 解,要用顺序状态转移函数,因此,如不加说明, 以后总是指顺序状态转移函数。
3.决策和决策变量
知道了阶段k的状态s k后,就要作出关于这一个 阶段的决策。所谓决策,就是从本阶段的状态出 发,如何演变到下一阶段状态所作的抉择。描述 决策的变量称为决策变量。通常用x k表示第k个 阶段的决策。
4.策略和子策略
对一个多阶段决策问题,由第1个阶段到最后阶 段(设为阶段n),当每一个阶段的决策都确定后, 构成的决策序列称为一个整体策略,简称策略。 由于每个阶段都有若干个可能的状态和不同的可 能决策,因而具有许多不同的策略可供选择。其 中能够满足预期目标的子策略,称为从s k出发的 最优子策略。