28.2.3切线长定理(2)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
回顾反思 1.切线长定理
· O ·
B
A
·
P
从圆外一点可以引圆的两条切线,它们的切线长相 等,这一点和圆心的连线平分两条切线的夹角。
回顾反思 2.三角形的内切圆、内心、内心的性质
A
D
O B
ห้องสมุดไป่ตู้
E
F
C
三角形的内切圆的有关计算 如图,△ABC的内切圆的半径为r, △ABC的周长为l, 求△ABC的面积S. A
G E
F H
4、以正方形ABCD的一边BC为直径的半圆上有 一个动点K,过点K作半圆的切线EF,EF分别 交AB、CD于点E、F,试问:四边形AEFD的周 长是否会因K点的变动而变化?为什么?
A E
D
K F
B
C
5.小红家的锅盖坏了,为了配一个锅盖,需要测量锅盖的 直径(锅边所形成的圆的直径),而小红家只有一把长20cm 的直尺,根本不够长,怎么办呢?小红想了想,采取以下方 法:首先把锅平放到墙根,锅边刚好靠到两墙,用直尺紧贴 墙面量得MA的长,即可求出锅盖的直径,请你利用图乙,说 明她这样做的道理.
P
5、如图,AB是⊙O的直径, AD、DC、BC是切线,点A、E、B 为切点,若BC=9,AD=4,求OE的长.
C E D A · O D F B A · O
E
C
B
6、如图,在梯形ABCD中,AD//BC, AB⊥BC,以AB为直径的⊙O与DC相切于 E.已知AB=8,边BC比AD大6, 求边AD、BC的长。
A 16cm C 12cm A B D D C E B P 14cm 8cm
练一练
1、已知:两个同心圆PA、PB是大圆的两条切线, PC、PD是小圆的两条切线,A、B、C、D为切点。 求证:AC=BD
A P B
C O· D
2、如图,PA、PB是⊙O的切线,A、B为切 点,∠OAB=30°. (1)求∠APB的度数; (2)当OA=3时,求AP的长. A
如图,Rt△ABC中,∠C=90°,BC=a,AC=b, AB=c,⊙O为Rt△ABC的内切圆. 求:Rt△ABC的内切圆的半径 r. 解:设Rt△ABC的内切圆与三边相切于D、E、F, 连结OD、OE、OF则OA⊥AC,OE⊥BC,OF⊥AB。 A ∵ ⊙O与Rt△ABC的三边都相切 ∴AD=AF,BE=BF,CE=CD 设AD= x , BE= y ,CE= r 则有 x+r=b y+r=a x+ y = c
D O F
·
B
a+ b- c C 解得 r= 2 a+ b- c
2
E
设Rt△ABC的直角边为a、b,斜边为c,则Rt△ABC的
内切圆的半径 r=
或r= a+b+c
ab
1.边长为3、4、5的三角形的内切圆的半径为——
2. 边长为5、5、6的三角形的内切圆的半径为—— 3. 已知:△ABC的面积S=4cm,周长等于 10cm.求内切圆⊙O的半径r.
A D E O
B
C
基础题:
1.既有外接圆,又内切圆的平行四边形是正方形 ______. 2.直角三角形的外接圆半径为5cm,内切圆半径为1cm, 22cm 则此三角形的周长是_______. 3.⊙O是边长为2cm的正方形ABCD的内切圆,EF切⊙O 2cm 于P点,交AB、BC于E、F,则△BEF的周长是_____.
A
·O E C B
一、判断
练习

(1)过任意一点总可以作圆的两条切线(
(2)从圆外一点引圆的两条切线,它们的长相等。 二、填空 (1)如图PA、PB切圆于A、B两点, APB 50 连结PO,则 APO 25 度。 A O P
B
(3)如图,PA、PB、DE分别切⊙O于A、B、 C,DE分别交PA,PB于D、E,已知P到⊙O的 切线长为8CM,则Δ PDE的周长为( A )
(2)填空:AB+CD = AD+BC B L (>,<,=) 结论:圆的外切四边形的两组对边和相等。 比较圆的内接四边形的性质:
圆的内接四边形:角的关系
圆的外切四边形:边的关系
例3.如图所示PA、PB分别切圆 O于A、B,并与圆O的切线分别 相交于C、D,• 已知PA=7cm, D (1)求△PCD的周长. (2) 如果∠P=46°, P 求∠COD的度数
解:设△ABC的内切圆与三边相切于D、E、F, D
连结OA、OB、OC、OD、OE、OF, 则OD⊥AB,OE⊥BC,OF⊥AC.
∴S△ABC=S△AOB+S△BOC +S△AOC B
1 1 1 = 2 AB· OD+ 2 BC· OE+ 2 AC· OF 1 = 2 l· r
F O
·
C
E
设△ABC的三边为a、b、c,面积为S, 2S 则△ABC的内切圆的半径 r= a+b+c
同学们要好好学习
老师期盼你们快快进步!
例2、 已知四边形ABCD的边AB、BC、CD、 DA分别与⊙O相切于P、Q、M、N, 求证:AB+CD=AD+BC。 D M C
N
O A P Q
B
(1)找出图中所有相等的线段 N D C DN=DP,AP=AL,BL=BM,CN=CM P O M
A
已知:四边形ABCD的边 AB,BC,CD,DA和圆O 分别相切于L,M,N,P。探索圆外切四边形边 的关系。
O B P
随堂训练 3、如图,AC为⊙O的直径,PA、PB分别切 ⊙O于点A、B,OP交⊙O于点M,连结BC。 (1)若OA=3cm, ∠APB=60°,则PA=______. (2)观察OP与BC的位置关系,并给予证明。
A
O P
M B
C
4、试一试:已知:如图,P为⊙O外一点,PA, PB为⊙O的切线,A和B是切点,BC是直径。 ∠C=50, ①求∠APB的度数 ②求证:AC∥OP。 A C O B
相关文档
最新文档