高中数学人教A版选修2-1第三章《立体几何中的向量方法》综合解决评价单

合集下载

新人教A版高中数学选修2-1第三章《空间向量与立体几何》知识点汇总及解题方法总计

新人教A版高中数学选修2-1第三章《空间向量与立体几何》知识点汇总及解题方法总计

第三章 空间向量与立体几何单元小结[核心速填]1.空间向量的有关定理和推论(1)共线向量定理:对空间任意两个向量a ,b (b ≠0),a ∥b 的充要条件是存在实数λ,使得a =λb .(2)共线向量定理的推论:若OA →,OB →不共线,则P ,A ,B 三点共线的充要条件是OP →=λOA →+μOB →,且λ+μ=1.(3)共面向量定理:如果两个向量a ,b 不共线,那么向量p 与向量a ,b 共面的充要条件是存在惟一的有序实数对(x ,y ),使得p =x a +y b .(4)共面向量定理的推论:已知空间任意一点O 和不共线的三点A ,B ,C ,则P ,A ,B ,C 四点共面的充要条件是OP →=xOA →+yOB →+zOC →(其中x +y +z =1).(5)空间向量基本定理:如果三个向量a ,b ,c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =x a +y b +z c ,其中{a ,b ,c }叫做空间的一个基底.2.空间向量运算的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3). (1)a +b =(a 1+b 1,a 2+b 2,a 3+b 3),a -b =(a 1-b 1,a 2-b 2,a 3-b 3),λa =(λa 1,λa 2,λa 3),a ·b =a 1b 1+a 2b 2+a 3b 3.(2)重要结论:a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R ); a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.3.模、夹角和距离公式(1)设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则①|a |=a ·a②cos 〈a ,b 〉=a ·b |a ||b |=(2)设A (a 1,b 1,c 1),B (a 2,b 2,c 2),则d AB =|AB →|4.空间向量的结论与线面位置关系的对应关系(1)设直线l 的方向向量是u =(a 1,b 1,c 1),平面α的法向量v =(a 2,b 2,c 2), 则l ∥α⇔u ⊥v ⇔u ·v =0⇔a 1a 2+b 1b 2+c 1c 2=0,l ⊥α⇔u ∥v ⇔u =k v ⇔(a 1,b 1,c 1)=k (a 2,b 2,c 2)⇔a 1=ka 2,b 1=kb 2,c 1=kc 2(k ∈R ).(2)设直线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为u ,v ,则l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; l ⊥m ⇔a ⊥b ⇔a ·b =0; l ∥α⇔a ⊥u ⇔a ·u =0; l ⊥α⇔a ∥u ⇔a =k u ,k ∈R ;α∥β⇔u ∥v ⇔u =k v ,k ∈R ; α⊥β⇔u ⊥v ⇔u ·v =0. 5.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2的夹角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α的夹角θ满足sin θ=|cos 〈m ,n 〉|.(3)求二面角的大小:(ⅰ)如图3­1①,AB ,CD 是二面角α­l ­β的两个半平面α,β内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.图3­1(ⅱ)如图3­1②③,n 1,n 2分别是二面角α­l ­β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.[体系构建][题型探究]类型一、空间向量的基本概念及运算例1、如图3­2,在四棱锥S ­ABCD 中,底面ABCD 是边长为1的正方形,S 到A 、B 、C 、D 的距离都等于2.给出以下结论:图3­2①SA →+SB →+SC →+SD →=0; ②SA →+SB →-SC →-SD →=0; ③SA →-SB →+SC →-SD →=0; ④SA →·SB →=SC →·SD →; ⑤SA →·SC →=0.其中正确结论的序号是________. 【答案】 ③④【解析】容易推出SA →-SB →+SC →-SD →=BA →+DC →=0,所以③正确;又因为底面ABCD 是边长为1的正方形,SA =SB =SC =SD =2,所以SA →·SB →=2·2·cos∠ASB ,SC →·SD →=2·2·cos ∠CSD ,而∠ASB =∠CSD ,于是SA →·SB →=SC →·SD →,因此④正确,其余三个都不正确,故正确结论的序号是③④.[规律方法] 1.空间向量的线性运算包括加、减及数乘运算,选定空间不共面的三个向量作为基向量,并用它们表示出目标向量,这是用向量法解决立体几何问题的基本要求,解题时可结合已知和所求,根据图形,利用向量运算法则表示所需向量.2.空间向量的数量积(1)空间向量的数量积的定义表达式a ·b =|a |·|b |·cos 〈a ,b 〉及其变式cos 〈a ,b 〉=a ·b|a | ·|b |是两个重要公式. (2)空间向量的数量积的其他变式是解决立体几何问题的重要公式,如a 2=|a |2,a 在b 上的投影a ·b|b |=|a |·cos θ等.[跟踪训练]1.如图3­3,已知ABCD ­A ′B ′C ′D ′是平行六面体.设M 是底面ABCD 的中心,N 是侧面BCC ′B ′对角线BC ′上的34分点,设MN →=αAB →+βAD→+γAA ′→,则α+β+γ=________.图3­3【答案】32[连接BD ,则M 为BD 的中点,MN →=MB →+BN →=12DB →+34BC ′→=12(DA →+AB →)+34(BC →+CC ′→)=12(-AD →+AB →)+34(AD →+AA ′→)=12AB →+14AD →+34AA ′→.∴α=12,β=14,γ=34.∴α+β+γ=32.]类型二、空间向量的坐标运算例2、(1)已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x =( )A .(0,3,-6)B .(0,6,-20)C .(0,6,-6)D .(6,6,-6)(2)已知向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),a ∥b ,b ⊥C . ①求向量a ,b ,c ;②求a +c 与b +c 所成角的余弦值.【答案】(1)B [由b =12x -2a 得x =4a +2b ,又4a +2b =4(2,3,-4)+2(-4,-3,-2)=(0,6,-20), 所以x =(0,6,-20).](2)①∵向量a =(x,1,2),b =(1,y ,-2),c =(3,1,z ),且a ∥b ,b ⊥c ,∴⎩⎪⎨⎪⎧x 1=1y =2-23+y -2z =0,解得⎩⎪⎨⎪⎧x =-1,y =-1,z =1,∴向量a =(-1,1,2),b =(1,-1,-2),c =(3,1,1). ②∵a +c =(2,2,3),b +c =(4,0,-1), ∴(a +c )·(b +c )=2×4+2×0+3×(-1)=5,|a +c |=22+22+32=17,|b +c |=42+02+(-1)2=17, ∴a +c 与b +c 所成角的余弦值为(a +c )·(b +c )|a +c ||b +c |=517.[规律方法] 熟记空间向量的坐标运算公式 设a =(x 1,y 1,z 1),b =(x 2,y 2,z 2), (1)加减运算:a ±b =(x 1±x 2,y 1±y 2,z 1±z 2). (2)数量积运算:a ·b =x 1x 2+y 1y 2+z 1z 2. (3)向量夹角:cos 〈a ,b 〉=x 1x 2+y 1y 2+z 1z 2x 21+y 21+z 21x 22+y 22+z 22. (4)向量长度:设M 1(x 1,y 1,z 1),M 2(x 2,y 2,z 2),则|M 1M 2→|=(x 1-x 2)2+(y 1-y 2)2+(z 1-z 2)2. 提醒:在利用坐标运算公式时注意先对向量式子进行化简再运算. [跟踪训练]2.在空间直角坐标系中,已知点A (1,-2,11),B (4,2,3),C (6,-1,4),则△ABC 一定是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形【答案】C [∵AB →=(3,4,-8),AC →=(5,1,-7),BC →=(2,-3,1),∴|AB →|=32+42+(-8)2=89,|AC →|=52+12+(-7)2=75,|BC →|=22+(-3)2+1=14,∴|AC →|2+|BC →|2=|AB →|2,∴△ABC 一定为直角三角形.]类型三、利用空间向量证明平行、垂直问题例3、 在四棱锥P ­ABCD 中,AB ⊥AD ,CD ⊥AD ,PA ⊥底面ABCD ,PA =AD =CD =2AB =2,M 为PC 的中点.(1)求证:BM ∥平面PAD ;(2)平面PAD 内是否存在一点N ,使MN ⊥平面PBD ?若存在,确定N 的位置;若不存在,说明理由.[思路探究] (1)证明向量BM →垂直于平面PAD 的一个法向量即可;(2)假设存在点N ,设出其坐标,利用MN →⊥BD →,MN →⊥PB →,列方程求其坐标即可. 【答案】以A 为原点,以AB ,AD ,AP 分别为x 轴、y 轴、z 轴建立空间直角坐标系如图所示,则B (1,0,0),D (0,2,0),P (0,0,2),C (2,2,0),M (1,1,1),(1)证明:∵BM →=(0,1,1),平面PAD 的一个法向量为n =(1,0,0), ∴BM →·n =0,即BM →⊥n ,又BM ⊄平面PAD ,∴BM ∥平面PAD . (2)BD →=(-1,2,0),PB →=(1,0,-2), 假设平面PAD 内存在一点N ,使MN ⊥平面PBD . 设N (0,y ,z ),则MN →=(-1,y -1,z -1), 从而MN ⊥BD ,MN ⊥PB , ∴⎩⎪⎨⎪⎧MN →·BD →=0,MN →·PB →=0,即⎩⎪⎨⎪⎧1+2(y -1)=0,-1-2(z -1)=0,∴⎩⎪⎨⎪⎧y =12,z =12,∴N ⎝ ⎛⎭⎪⎫0,12,12,∴在平面PAD 内存在一点N ⎝ ⎛⎭⎪⎫0,12,12,使MN ⊥平面PBD .[规律方法]利用空间向量证明空间中的位置关系(1)线线平行:证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直:证明两条直线垂直,只需证明两直线的方向向量垂直. (3)线面平行:①证明直线的方向向量与平面的法向量垂直;②证明可在平面内找到一个向量与直线的方向向量是共线向量;③利用共面向量定理,即证明直线的方向向量可用平面内两不共线向量线性表示.(4)线面垂直:①证明直线的方向向量与平面的法向量平行;②利用线面垂直的判定定理转化为线线垂直问题.(5)面面平行:①证明两个平面的法向量平行(即是共线向量);②转化为线面平行、线线平行问题.(6)面面垂直:①证明两个平面的法向量互相垂直;②转化为线面垂直、线线垂直问题.[跟踪训练]3.如图3­4,长方体ABCD­A1B1C1D1中,点M,N分别在BB1,DD1上,且AM⊥A1B,AN⊥A1D.图3­4(1)求证:A1C⊥平面AMN.(2)当AB=2,AD=2,A1A=3时,问在线段AA1上是否存在一点P使得C1P∥平面AMN,若存在,试确定P的位置.【答案】(1)证明:因为CB⊥平面AA1B1B,AM⊂平面AA1B1B,所以CB⊥AM,又因为AM⊥A1B,A1B∩CB=B,所以AM⊥平面A1BC,所以A1C⊥AM,同理可证A1C⊥AN,又AM∩AN=A,所以A1C⊥平面AMN.(2)以C 为原点,CD 所在直线为x 轴,CB 所在直线为y 轴,CC 1所在直线为z 轴,建立空间直角坐标系,因为AB =2,AD =2,A 1A =3,所以C (0,0,0),A 1(2,2,3),C 1(0,0,3),CA 1→=(2,2,3), 由(1)知CA 1⊥平面AMN ,故平面AMN 的一个法向量为CA 1→=(2,2,3).设线段AA 1上存在一点P (2,2,t ),使得C 1P ∥平面AMN ,则C 1P →=(2,2,t -3), 因为C 1P ∥平面AMN ,所以C 1P →·CA 1→=4+4+3t -9=0, 解得t =13.所以P ⎝⎛⎭⎪⎫2,2,13, 所以线段AA 1上存在一点P ⎝ ⎛⎭⎪⎫2,2,13,使得C 1P ∥平面AMN .类型四、利用空间向量求空间角例4、如图3­5,在等腰直角三角形ABC 中,∠A =90°,BC =6,D ,E 分别是AC ,AB 上的点,CD =BE =2,O 为BC 的中点.将△ADE 沿DE 折起,得到如图(2)所示的四棱锥A ′­BCDE ,其中A ′O = 3.(1) (2)图3­5(1)证明:A ′O ⊥平面BCDE ;(2)求二面角A ′­CD ­B 的平面角的余弦值.[思路探究] (1)利用勾股定理可证A ′O ⊥OD ,A ′O ⊥OE ,从而证得A ′O ⊥平面BCDE ;(2)用“三垂线”法作二面角的平面角后求解或用向量法求两个平面的法向量的夹角.【答案】(1)证明:由题意,得OC =3,AC =32,AD =2 2. 如图,连接OD ,OE ,在△OCD 中,由余弦定理,得OD =OC 2+CD 2-2OC ·CD cos 45°= 5.由翻折不变性,知A ′D =22,所以A ′O 2+OD 2=A ′D 2,所以A ′O ⊥OD . 同理可证A ′O ⊥OE .又因为OD ∩OE =O ,所以A ′O ⊥平面BCDE .(2)如图,过点O 作OH ⊥CD 交CD 的延长线于点H ,连接A ′H .因为A ′O ⊥平面BCDE ,OH ⊥CD , 所以A ′H ⊥CD .所以∠A ′HO 为二面角A ′­CD ­B 的平面角. 结合图(1)可知,H 为AC 的中点,故OH =322,从而A ′H =OH 2+A ′O 2=302. 所以cos ∠A ′HO =OH A ′H =155. 所以二面角A ′­CD ­B 的平面角的余弦值为155. [规律方法] 用向量法求空间角的注意点(1)异面直线所成角:两异面直线所成角的范围为0°<θ≤90°,需找到两异面直线的方向向量,借助方向向量所成角求解.(2)直线与平面所成的角:要求直线a 与平面α所成的角θ,先求这个平面α的法向量n 与直线a 的方向向量a 夹角的余弦cos 〈n ,a 〉,易知θ=〈n ,a 〉-π2或者π2-〈n ,a 〉.(3)二面角:如图3­6,有两个平面α与β,分别作这两个平面的法向量n 1与n 2,则平面α与β所成的角跟法向量n 1与n 2所成的角相等或互补,所以首先应判断二面角是锐角还是钝角.图3­6[跟踪训练]4.在如图3­7所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB是圆台的一条母线.图3­7(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC . (2)已知EF =FB =12AC =23,AB =BC ,求二面角F ­BC ­A 的余弦值.【答案】 (1)证明:设CF 的中点为I ,连接GI ,HI .在△CEF 中,因为点G ,I 分别是CE ,CF 的中点, 所以GI ∥EF .又EF ∥OB ,所以GI ∥OB .在△CFB 中,因为H ,I 分别是FB ,CF 的中点, 所以HI ∥BC .又HI ∩GI =I ,BC ∩OB =B , 所以平面GHI ∥平面ABC . 因为GH ⊂平面GHI , 所以GH ∥平面ABC .(2)连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径, 所以BO ⊥AC .以O 为坐标原点,建立如图所示的空间直角坐标系. 由题意得B (0,23,0),C (-23,0,0). 过点F 作FM ⊥OB 于点M , 所以FM =FB 2-BM 2=3, 可得F (0,3,3).11 故BC →=(-23,-23,0),BF →=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的法向量.由⎩⎪⎨⎪⎧m ·BC →=0,m ·BF →=0可得⎩⎨⎧ -23x -23y =0,-3y +3z =0.可得平面BCF 的一个法向量m =⎝ ⎛⎭⎪⎫-1,1,33.因为平面ABC 的一个法向量n =(0,0,1), 所以cos 〈m ,n 〉=m ·n|m |·|n |=77,所以二面角F ­BC ­A 的余弦值为77.。

人教A版选修2-1第三章第八课时同步练习3.2立体几何中的向量方法(1)

人教A版选修2-1第三章第八课时同步练习3.2立体几何中的向量方法(1)

§3.2立体几何中的向量方法(1)一、选择题1.若平面α、β的法向量分别为a =⎝⎛⎭⎫12,-1,3,b =(-1,2 , 6),则( )A .α∥βB .α与β相交但不垂直C .α⊥βD .α∥β或α与β重合2.直线l 1、l 2的方向向量分别为a =(1,2,-2),b =(-2,3,2),则( )A .l 1∥l 2B .l 1与l 2相交,但不垂直C .l 1⊥l 2D .不能确定3.在如图所示的坐标系中,ABCD -A 1B 1C 1D 1为正方体,给出下列结论:①直线DD 1的一个方向向量为(0,0,1).②直线BC 1的一个方向向量为(0,1,1).③平面ABB 1A 1的一个法向量为(0,1,0).④平面B 1CD 的一个法向量为(1,1,1).其中正确的个数为( )A .1个B .2个C .3个D .4个4.已知空间四边形ABCD 中,AC =BD ,顺次连结各边中点P 、Q 、R 、S ,如图,所得图形是( )A .长方形B .正方形C .梯形D .菱形5.若直线l 1、l 2的方向向量分别为a =(1,2,-2),b =(-3,-6,6),则( )A .l 1∥l 2B .l 1⊥l 2C .l 1、l 2相交但不垂直D .不能确定 6.若a =(1,2,3)是平面γ的一个法向量,则下列向量中能作为平面γ的法向量的是( )A .(0,1,2)B .(3,6,9)C .(-1,-2,3)D .(3,6,8)7.如果一条直线l 与平面α内的两条直线垂直,那么l 与α的位置关系是( )A .平行B .垂直C .l ⊂αD .不确定8.平面的一条斜线和这个平面所成的角θ的范围是( )A .0°<θ<180°B .0°≤θ≤90°C .0°<θ≤90°D .0°<θ<90°二、填空题9.如果三点A (1,5,-2),B (2,4,2),C (a,3,b +2)在同一直线上,那么a =______,b =_______.10.平面α的法向量u =(x,1,-2),平面β的法向量v =⎝⎛⎭⎫-1,y ,12,已知α∥β, 则x +y =________.11.已知平面α经过三点A (1,2,3),B (2,0,-1),C (3,-2,0),则平面α的一个法向量是________(写出一个即可).12.已知空间直角坐标系O -xyz 中的点A (1,1,1),平面α过点A 并且与直线OA 垂直,动点P (x ,y ,z )是平面α内的任一点,则点P 的坐标满足的条件为________.三、解答题13.在底面为正方形的四棱锥P -ABCD 中,E 是PC 中点,求证:P A ∥平面EDB .14.如图, 正四棱柱ABCD -A 1B 1C 1D 1中,底面边长为22,侧棱长为4,E ,F 分别是棱AB 、BC 的中点,EF ∩BD =G .求证:平面B 1EF ⊥平面BDD 1B 1.参考答案1.[答案] D[解析] ∵b =-2a ,∴b ∥a ,∴α∥β或α与β重合.2.[答案] C[解析] ∵a ·b =0,∴a ⊥b ,∴l 1⊥l 2.3.[答案] C[解析] DD 1∥AA 1,AA 1→=(0,0,1);BC 1∥AD 1,AD 1→=(0,1,1),直线AD ⊥平面ABB 1A 1,AD →=(0,1,0);C 1点坐标为(1,1,1),AC 1→与平面B 1CD 不垂直,∴④错.4.[答案] D[解析] ∵PQ →=BQ →-BP →=12BC →-12BA →=12AC →. 同理SR →=12AC →,∴PQ →=SR →, ∴四边形PQRS 为平行四边形,又∵PS →=AS →-AP →=12AD →-12AB →=12BD →, ∴|PS →|=12|BD →|,即PS =12BD , 又|PQ →|=12|AC →|,∴PQ =12AC , ∵AC =BD ,∴PS =PQ ,∴四边形ABCD 为菱形.5.[答案] D[解析] ∵a =(1,2,-2),b =(-3,-6,6),∴b =-3a ,∴l 1∥l 2或l 1与l 2重合,故选D.6.[答案] B[解析] 因为(3,6,9)=3(1,2,3)=3a ,即向量(3,6,9)与a 平行,故(3,6,9)能作为平面γ的法向量.7.[答案] D[解析] 直线和平面可能的位置关系是平行,垂直,在平面内,故选D.8.[答案] D [解析] 由斜线和平面所成的角定义知选D.二、填空题9. [答案] 3 210. [答案] 154[解析] ∵α∥β,∴u ∥v ,∴x -1=1y=-212, ∴⎩⎪⎨⎪⎧ x =4y =-14,∴x +y =154. 11. [答案] 形如(2k ,k,0) (k ≠0)的都可以[解析] 因为A (1,2,3),B (2,0,-1),C (3,-2,0),所以AB →=(1,-2,-4),AC →=(2,-4,-3).设平面α的法向量是n =(x ,y ,z ),依题意,应有n ·AB →=0且n ·AC →=0,即⎩⎪⎨⎪⎧x -2y -4z =0,2x -4y -3z =0.解得z =0且x =2y . 令y =1,则x =2,所以平面α的一个法向量是n =(2,1,0).(答案不唯一)12.[答案] x +y +z =3[解析] 由题意知,OA ⊥α,直线OA 的方向向量OA →=(1,1,1),因为P ∈α,∴OA →⊥AP →,∴(1,1,1)·(x -1,y -1,z -1)=0,∴x +y +z =3.三、解答题13.[证明] 设DA →=a ,DC →=b ,DP →=c ,则DE →=12(b +c ),DB →=12(a +b ),P A →=a -c , ∵P A →=2DB →-2DE →,∴P A →与DB →、DE →共面,∵DB →、DE →不共线,P A ⊄平面BDE .∴P A ∥平面BDE .14.[解析] 以D 为原点,DA 、DC 、DD 1分别为x 轴、y 轴、z 轴建立空间直角坐标系,由题意知:D (0,0,0),B 1(22,22,4),E (22,2,0),F (2,22,0), B 1E →=(0,-2,-4),EF →=(-2,2,0).设平面B 1EF 的一个法向量为n =(x ,y ,z ). 则n ·B 1F →=-2y -4z =0,n ·EF →=-2x +2y =0. 解得x =y ,z =-24y ,令y =1得n =(1,1,-24),又平面BDD 1B 1的一个法向量为AC →=(-22,22,0)而n ·AC →=1×(-22)+1×22+(-24)×0=0即n ⊥AC →.∴平面B 1EF ⊥平面BDD 1B 1.。

【专业资料】新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.2.3 含解析

【专业资料】新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.2.3 含解析

第3课时 用向量方法求空间中的角课时过关·能力提升基础巩固1若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A.120° B.60°C.30°D.以上均错l 的方向向量与平面α的法向量的夹角为120°,∴它们所在直线的夹角为60°.则直线l 与平面α所成的角为90°-60°=30°.2设四边形ABCD ,ABEF 都是边长为1的正方形,FA ⊥平面ABCD ,则异面直线AC 与BF 所成的角等于 ( )A.45°B.30°C.90°D.60°,则A (0,0,0),F (0,0,1),B (0,1,0),C (1,1,0), ∴AC⃗⃗⃗⃗⃗ =(1,1,0),BF ⃗⃗⃗⃗⃗ =(0,-1,1). ∴AC ⃗⃗⃗⃗⃗ ·BF⃗⃗⃗⃗⃗ =-1. 设异面直线AC 与BF 所成的角为θ, ∴cos θ=|cos <AC ⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗⃗ >|=12. 又∵θ∈(0°,90°],∴θ=60°.3若a =(λ,1,2)与b =(2,-1,-2)的夹角为钝角,则实数λ的取值范围为( ) A.λ<52B.λ<52,且λ≠-2C.λ≥52,且λ≠4D.λ≥52,得a ·b =2λ+(-1)-4<0,即λ<52.而|a |=√5+λ2,|b |=3,又<a ,b >为钝角,∴3√5+λ≠-1,即λ≠-2.4若斜线段与它在平面α内射影的长之比是2∶1,则AB 与平面α所成角为( ) A.π6 B.π3C.23πD.56πAB 与平面α所成角为θ,由题意知cos θ=12,则AB 与平面α所成角为π3.5若平面α的一个法向量为n =(4,1,1),直线l 的一个方向向量为a =(-2,-3,3),则l 与α所成角的余弦值为 ( )A.-√11B.√11C.-√110D.√913<a ,n >=√4+9+9√16+1+1=3√11=-4√1133, 故l 与α所成角的余弦值为√1-(-4√1133)2=√91333.6在正方体ABCD-A 1B 1C 1D 1中,二面角A-BD 1-B 1的大小为 .,以点C 为原点建立空间直角坐标系.设正方体的边长为a ,则A (a ,a ,0),B (a ,0,0),D 1(0,a ,a ),B 1(a ,0,a ), ∴BA ⃗⃗⃗⃗⃗ =(0,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,a ,a ),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,a ). 设平面ABD 1的法向量为n =(x ,y ,z ), 则n ·BA ⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,a ,0)=ay=0, n ·BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,a )=-ax+ay+az=0. ∵a ≠0,∴y=0,x=z.令x=z=1,则n =(1,0,1),同理,求得平面B 1BD 1的法向量m =(1,1,0),∴cos <n ,m >=n ·m |n ||m |=12,∴<n ,m >=60°.而二面角A-BD 1-B 1为钝角,故为120°.°7在正四棱锥P-ABCD 中,高为1,底面边长为2,E 为BC 的中点,则异面直线PE 与DB 所成的角为 .,则B (1,1,0),D (-1,-1,0),E (0,1,0),P (0,0,1),∴DB⃗⃗⃗⃗⃗⃗ =(2,2,0),PE ⃗⃗⃗⃗⃗ =(0,1,-1). ∴cos <DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=DB ⃗⃗⃗⃗⃗⃗ ·PE ⃗⃗⃗⃗⃗⃗|DB ⃗⃗⃗⃗⃗⃗ ||PE ⃗⃗⃗⃗⃗⃗|=√8×√2=12.∴<DB ⃗⃗⃗⃗⃗⃗ ,PE ⃗⃗⃗⃗⃗ >=π.∴PE 与DB 所成的角为π.8在长方体ABCD-A 1B 1C 1D 1中,已知DA=DC=4,DD 1=3,则异面直线A 1B 与B 1C 所成角的余弦值为 .9如图,在长方体ABCD-A 1B 1C 1D 1中,AD=AA 1=1,AB=2,点E 是棱AB 上的动点.若异面直线AD 1与EC 所成角为60°,试确定此时动点E 的位置.DA 所在直线为x 轴,以DC 所在直线为y 轴,以DD 1所在直线为z 轴,建立空间直角坐标系.设E (1,t ,0)(0≤t ≤2),则A (1,0,0),D (0,0,0),D 1(0,0,1),C (0,2,0),D 1A ⃗⃗⃗⃗⃗⃗⃗ =(1,0,-1),CE ⃗⃗⃗⃗⃗ =(1,t-2,0), 根据数量积的定义及已知得:1+0×(t-2)+0=√2×√1+(t -2)2·cos 60°, 所以t=1.所以点E 的位置是AB 的中点. 10如图,在四棱锥P-ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC=∠BAD=π,PA=AD=2,AB=BC=1.求平面PAB 与平面PCD 所成二面角的余弦值.{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ }为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).因为AD ⊥平面PAB ,所以AD ⃗⃗⃗⃗⃗ 是平面PAB 的一个法向量,AD ⃗⃗⃗⃗⃗ =(0,2,0).因为PC⃗⃗⃗⃗⃗ =(1,1,-2),PD ⃗⃗⃗⃗⃗ =(0,2,-2).设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC ⃗⃗⃗⃗⃗ =0,m ·PD ⃗⃗⃗⃗⃗ =0. 即{x +y -2z =0,2y -2z =0. 令y=1,解得z=1,x=1.所以m =(1,1,1)是平面PCD 的一个法向量.从而cos <AD ⃗⃗⃗⃗⃗ ,m >=AD ⃗⃗⃗⃗⃗⃗·m |AD ⃗⃗⃗⃗⃗⃗ ||m |=√33,所以平面PAB 与平面PCD 所成二面角的余弦值为√33.能力提升1已知E ,F 分别是棱长为1的正方体ABCD-A 1B 1C 1D 1的棱BC ,CC 1的中点,则截面AEFD 1与底面ABCD 所成二面角的正弦值是( ) A.23B.√23C.√53D.2√33D 为坐标原点,以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图,则A (1,0,0),E (12,1,0),F (0,1,12),D 1(0,0,1),∴AD 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),AE ⃗⃗⃗⃗⃗ =(-12,1,0). 设平面AEFD 1的法向量为n =(x ,y ,z ),则 {n ·AD 1⃗⃗⃗⃗⃗⃗⃗ =0,n ·AE ⃗⃗⃗⃗⃗ =0⇒{-x +z =0,-x 2+y =0,∴x=2y=z. 取y=1,则n =(2,1,2),而平面ABCD 的一个法向量为u =(0,0,1),∴cos <n ,u >=2,∴sin <n ,u >=√5.2在棱长为1的正方体ABCD-A 1B 1C 1D 1中,M ,N 分别是A 1B 1,BB 1的中点,那么直线AM 与CN 所成角的余弦值是( )A.√32B.√1010C.35D.25,建立空间直角坐标系,则A (1,0,0),M (1,12,1),C (0,1,0),N (1,1,12),∴AM ⃗⃗⃗⃗⃗⃗ =(0,12,1),CN ⃗⃗⃗⃗⃗ =(1,0,12).∴AM ⃗⃗⃗⃗⃗⃗ ·CN ⃗⃗⃗⃗⃗ =12,|AM ⃗⃗⃗⃗⃗⃗ |=|CN ⃗⃗⃗⃗⃗ |=√52. ∴cos <AM ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ >=1252×52=25.3在正方体ABCD-A 1B 1C 1D 1中,EF ⊥AC ,EF ⊥A 1D ,则EF 与BD 1所成的角是( ) A.90°B.60°C.30°D.0°,以D 为原点建立空间直角坐标系,设正方体的棱长为a ,则A 1(a ,0,a ),D (0,0,0),A (a ,0,0),C (0,a ,0),B (a ,a ,0),D 1(0,0,a ), ∴DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(a ,0,a ),AC ⃗⃗⃗⃗⃗ =(-a ,a ,0),BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =(-a ,-a ,a ). ∵EF ⊥AC ,EF ⊥A 1D ,设EF ⃗⃗⃗⃗⃗ =(x ,y ,z ), ∴EF ⃗⃗⃗⃗⃗ ·DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(a ,0,a )=ax+az=0, EF ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-a ,a ,0)=-ax+ay=0.∵a ≠0,∴x=y=-z (x ≠0).∴EF ⃗⃗⃗⃗⃗ =(x ,x ,-x ).∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-aEF ⃗⃗⃗⃗⃗ . ∴BD 1⃗⃗⃗⃗⃗⃗⃗⃗ ∥EF ⃗⃗⃗⃗⃗ ,即BD 1∥EF. 故EF 与BD 1所成的角是0°.4二面角α-l-β内有一点P ,若点P 到平面α,β的距离分别是5,8,且点P 在平面α,β内的射影间的距离为7,则二面角的度数是( ) A.30°B.60°C.120°D.150°,PA ⊥α,PB ⊥β,∠ADB 为二面角α-l-β的平面角.由题意知PA=5,PB=8,AB=7, 由余弦定理,可得cos ∠APB=52+82-72=1,则∠APB=60°,故∠ADB=120°.5在空间中,已知平面α过点(3,0,0)和(0,4,0)及z 轴上一点(0,0,a )(a>0),若平面α与平面xOy 的夹角为45°,则a= .6在长方体ABCD-A 1B 1C 1D 1中,B 1C 和C 1D 与底面所成的角分别为60°和45°,则异面直线B 1C 和C 1D 所成角的余弦值为 .,可知∠CB 1C 1=60°,∠DC 1D 1=45°.设B 1C 1=1,则CC 1=√3=DD 1.∴C 1D 1=√3,则有B 1(√3,0,0),C (√3,1,√3),C 1(√3,1,0),D (0,1,√3).∴B 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3),C 1D ⃗⃗⃗⃗⃗⃗⃗ =(-√3,0,√3). ∴cos <B 1C ⃗⃗⃗⃗⃗⃗⃗ ,C 1D ⃗⃗⃗⃗⃗⃗⃗ >=B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·C 1D⃗⃗⃗⃗⃗⃗⃗⃗⃗ |B 1C ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||C 1D ⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2√6=√64.7如图,在三棱锥P-ABC 中,PA=PB=PC=BC ,且∠BAC=π2,则PA 与底面ABC 所成角的大小为 .,∵PA=PB=PC ,∴P 在底面上的射影O 是△ABC 的外心.又∠BAC=π2,∴O 在BC 上且为BC 的中点.∴AO 为PA 在底面上的射影,∠PAO 即为所求的角.在△PAO 中,PO=√32PB=√32PA ,∴sin ∠PAO=PO =√3.∴∠PAO=π3.8在正方体ABCD-A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值是 .,设棱长为1,则B (1,1,0),C 1(0,1,1),A 1(1,0,1),D (0,0,0). BC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,-1),BD ⃗⃗⃗⃗⃗⃗ =(-1,-1,0). 设平面A 1BD 的一个法向量为n =(1,x ,y ),设BC 1与平面A 1BD 所成的角为θ,n ⊥A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ ,n ⊥BD⃗⃗⃗⃗⃗⃗ , 所以n ·A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =0,n ·BD ⃗⃗⃗⃗⃗⃗ =0, 所以{-1-y =0,-1-x =0,解得{x =-1,y =-1.所以n =(1,-1,-1),则cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,n >=BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n|BC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗|·|n |=-√63,所以sin θ=√63.所以cos θ=√1-(√63)2=√33.9如图,在直三棱柱ABC-A 1B 1C 1中,AA 1=BC=AB=2,AB ⊥BC ,求二面角B 1-A 1C-C 1的大小.,则A (2,0,0),C (0,2,0),A 1(2,0,2),B 1(0,0,2),C 1(0,2,2).设AC 的中点为M ,连接BM.∵BM ⊥AC ,BM ⊥CC 1,∴BM ⊥平面AA 1C 1C ,即BM ⃗⃗⃗⃗⃗⃗ =(1,1,0)是平面AA 1C 1C 的一个法向量.设平面A 1B 1C 的一个法向量是n =(x ,y ,z ).A 1C ⃗⃗⃗⃗⃗⃗⃗ =(-2,2,-2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,0,0),∴n ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =-2x=0,n ·A 1C ⃗⃗⃗⃗⃗⃗⃗ =-2x+2y-2z=0,令z=1,解得x=0,y=1.∴n =(0,1,1).设法向量n 与BM⃗⃗⃗⃗⃗⃗ 的夹角为φ,二面角B 1-A 1C-C 1为θ,显然θ为锐角.∴cos θ=|cos φ|=|n ·BM ⃗⃗⃗⃗⃗⃗⃗ ||n ||BM ⃗⃗⃗⃗⃗⃗⃗ |=12,解得θ=π3.∴二面角B 1-A 1C-C 1的大小为π3.★10四棱柱ABCD-A 1B 1C 1D 1的侧棱AA 1垂直于底面,底面ABCD 为直角梯形,AD ∥BC ,AD ⊥AB ,AD=AB=AA 1=2BC ,E 为DD 1的中点,F 为A 1D 的中点. (1)求证:EF ∥平面A 1BC ;(2)求直线EF 与平面A 1CD 所成角θ的正弦值.E ,F 分别是DD 1,DA 1的中点,∴EF ∥A 1D 1.又A 1D 1∥B 1C 1∥BC ,∴EF ∥BC ,且EF ⊄平面A 1BC ,BC ⊂平面A 1BC , ∴EF ∥平面A 1BC.AB ,AD ,AA 1两两垂直,以AB 所在直线为x 轴,以AD 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,如图.设BC=1,则A (0,0,0),A 1(0,0,2),C (2,1,0),D (0,2,0),D 1(0,2,2),F (0,1,1),E (0,2,1), 故FE ⃗⃗⃗⃗⃗ =(0,1,0),A 1D ⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2,-2),CD ⃗⃗⃗⃗⃗ =(-2,1,0). 设平面A 1CD 的法向量n =(x ,y ,z ), 则{n ·A 1D⃗⃗⃗⃗⃗⃗⃗⃗ =(x ,y ,z )·(0,2,-2)=2y -2z =0,n ·CD ⃗⃗⃗⃗⃗ =(x ,y ,z )·(-2,1,0)=-2x +y =0.取n =(1,2,2),则sin θ=|cos <n ,FE ⃗⃗⃗⃗⃗ >|=|n ·FE ⃗⃗⃗⃗⃗⃗|n ||FE ⃗⃗⃗⃗⃗⃗ || =|√1+4+4·√0+1+0|=23,故直线EF 与平面A 1CD 所成角θ的正弦值等于23.。

高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案

高中数学选修2-1(人教A版)第三章空间向量与立体几何3.1知识点总结含同步练习及答案

描述:例题:高中数学选修2-1(人教A版)知识点总结含同步练习题及答案第三章 空间向量与立体几何 3.2 立体几何中的向量方法一、学习任务1. 理解直线的方向向量与平面的法向量的意义;会用待定系数法求平面的法向量.2. 能用向量语言表述线线、线面、面面的垂直和平行关系.3. 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);能用向量方法判断一些简单的空间线面的平行和垂直关系.4. 能用向量方法解决线线、线面、面面的夹角的计算问题;体会向量方法在研究几何问题中的作用.二、知识清单异面直线所成的角 线面角 二面角三、知识讲解1.异面直线所成的角设直线 是异面直线,过空间一点 分别作直线 的平行线 ,我们把直线 所成的锐角或直角叫做异面直线 所成的角,或异面直线 的夹角.a ,b O a ,b ,a ′b ′,a ′b ′a ,b a ,b 如图,在正方体 中,求:(1)异面直线 与 所成的角;(2) 与 所成的角.解:(1)因为 ,而 ,所以 ,即 与 所成角为 .(2)如下图,连接 ,,因为 ,所以 与 所成的角即为 与 所成的角.又 ,所以 为正三角形,所以 和 所成的角为 ,即 与 所成的角为 .ABCD −A 1B 1C 1D 1AB A 1D 1A D 1D C 1∥AB A 1B 1⊥A 1D 1A 1B 1⊥AB A 1D 1AB A 1D 190∘A B 1B 1D 1A ∥D B 1C 1A B 1A D 1D C 1A D 1A =A =D 1B 1B 1D 1△AB 1D 1A D 1A B 160∘A D 1DC 160∘A1D平面平行,或在平面内,则称直线和平面所成的角是AP P求直线 与 平面∠AP B=∠APRt△AP D描述:例题:3.二面角从一条直线出发的两个半平面所组成的图形叫做二面角(dihedral angle).这条直线叫做二面角的棱,这两个半平面叫做二面角的面.棱 、面分别为 , 的二面角记作二面角.有时为了方便,也可在 , 内(棱以外的半平面部分)分别取点 , ,将这个二面角记作二面角.如果棱记作 ,那么这个二面角记作二面角或.在二面角的棱上任取一点,以点为垂足,在半平面和内分别作垂直于棱的射线和,则射线和构成的叫做二面角的平面角.两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.AB αβα−AB −βαβP Q P −AB −Q l α−l −βP −l −Q α−l −βl O O αβl OA OB OA OB ∠AOB 如图,在正方体 中,,,, 分别是 ,, 和 的中点.(1)求证:;(2)求二面角 的平面角的正切值.解:(1)因为 , 均为所在棱的中点,所以 .而 ,所以 .又因为 , 均为所在棱的中点,所以 和 均为等腰直角三角形.所以 ,所以 , ,故.而 ,所以 .(2)在平面 中,过点 作 于点 ,连接 .由(1)知 ,又 ,所以 .ABCD −A 1B 1C 1D 1E F M N A 1B 1BC C 1D 1B 1C 1平面 MNF ⊥平面 ENF M −EF −N N F NF ⊥平面 A 1B 1C 1D 1MN ⊂平面 A 1B 1C 1D 1NF ⊥MN M E △MN C 1△NE B 1∠MN =∠NE =C 1B 145∘∠MNE =90∘MN ⊥NE MN ⊥平面 NEF MN ⊂平面 MNF 平面 MNF ⊥平面 NEF NEF N NG ⊥EF G MG MN ⊥平面 NEF EF ⊂平面 NEF MN ⊥EFEF ⊥ MNGM−EF−N||n。

新人教A版选修2-1 3.2立体几何中的向量方法(教案)

新人教A版选修2-1 3.2立体几何中的向量方法(教案)

第一课时: §3.2立体几何中的向量方法(一)教学要求:向量运算在几何证明与计算中的应用.掌握利用向量运算解几何题的方法,并能解简单的立体几何问题.教学重点:向量运算在几何证明与计算中的应用.教学难点:向量运算在几何证明与计算中的应用.教学过程:一、复习引入1. 用向量解决立体几何中的一些典型问题的基本思考方法是:⑴如何把已知的几何条件(如线段、角度等)转化为向量表示; ⑵考虑一些未知的向量能否用基向量或其他已知向量表式; ⑶如何对已经表示出来的向量进行运算,才能获得需要的结论?2. 通法分析:利用两个向量的数量积的定义及其性质可以解决哪些问题呢? ⑴利用定义a ·b =|a ||b |cos <a ,b >或cos <a ,b >=a b a b ⋅⋅r r r r ,可求两个向量的数量积或夹角问题;⑵利用性质a ⊥b ⇔a ·b =0可以解决线段或直线的垂直问题;⑶利用性质a ·a =|a |2,可以解决线段的长或两点间的距离问题.二、例题讲解1. 出示例1:已知空间四边形OABC 中,OA BC ⊥,OB AC ⊥.求证:OC AB ⊥. 证明:·OC AB u u u u r u u u r =·()OC OB OA -u u u u r u u u r u u u r =·OC OB u u u u r u u u r -·OC OA u u u u r u u u r . ∵OA BC ⊥,OB AC ⊥, ∴·0OA BC =u u u r u u u r ,·0OB AC =u u u r u u u u r , ·()0OA OC OB -=u u u r u u u u r u u u r ,·()0OB OC OA -=u u u r u u u u r u u u r . ∴··OA OC OA OB =u u u r u u u u r u u u r u u u r ,··OB OC OB OA =u u u r u u u u r u u u r u u u r . ∴·OC OB u u u u r u u u r =·OC OA u u u u r u u u r ,·OC AB u u u u r u u u r =0. ∴OC AB ⊥ 2. 出示例2:如图,已知线段AB 在平面α内,线段AC α⊥,线段BD ⊥AB ,线段'DD α⊥,'30DBD ∠=o ,如果AB =a ,AC =BD =b ,求C 、D 间的距离.解:由AC α⊥,可知AC AB ⊥. 由'30DBD ∠=o 可知,<,CA BD u u u r u u u u r >=120o , ∴2||CD u u u u r =2()CA AB BD ++u u u r u u u r u u u u r =2||CA u u u r +2||AB u u u r +2||BD u u u u r +2(·CA AB u u u r u u u r +·CA BD u u u r u u u u r +·AB BD u u u r u u u u r ) =22222cos120b a b b +++o =22a b +.∴22CD a b =+.3. 出示例3:如图,M 、N 分别是棱长为1的正方体''''ABCD A B C D -的棱'BB 、''B C 的中点.求异面直线MN 与'CD 所成的角.解:∵MN u u u u r =1(')2CC BC +u u u u r u u u r ,'CD u u u u r ='CC CD +u u u u r u u u u r , ∴·'MN CD u u u u r u u u u r =1(')2CC BC +u u u u r u u u r ·(')CC CD +u u u u r u u u u r =12(2|'|CC u u u u r +'CC CD u u u u r u u u u r g +·'BC CC u u u r u u u u r +·BC CD u u u r u u u u r ). ∵'CC CD ⊥,'CC BC ⊥,BC CD ⊥,∴'0CC CD =u u u u r u u u u r g,·'0BC CC =u u u r u u u u r ,·0BC CD =u u u r u u u u r , ∴·'MN CD u u u u r u u u u r =122|'|CC u u u u r =12. …求得 cos <,'MN CD u u u u r u u u u r >12=,∴<,'MN CD u u u u r u u u u r >=60o . 4. 小结:利用向量解几何题的一般方法:把线段或角度转化为向量表示式,并用已知向量表示未知向量,然后通过向量的运算去计算或证明.三、巩固练习 作业:课本P 116 练习 1、2题.第二课时: §3.2立体几何中的向量方法(二)教学要求:向量运算在几何证明与计算中的应用.掌握利用向量运算解几何题的方法,并能解简单的立体几何问题.教学重点:向量运算在几何证明与计算中的应用.教学难点:向量运算在几何证明与计算中的应用.教学过程:一、复习引入讨论:将立体几何问题转化为向量问题的途径?(1)通过一组基向量研究的向量法,它利用向量的概念及其运算解决问题;(2)通过空间直角坐标系研究的坐标法,它通过坐标把向量转化为数及其运算来解决问题.二、例题讲解1. 出示例1: 如图,在正方体1111ABCD A B C D -中,E 、F 分别是1BB 、CD 的中点,求证:1D F ⊥平面ADE . 证明:不妨设已知正方体的棱长为1个单位长度,且设DA uuu r =i ,DC u u u u r =j ,1DD u u u u r =k .以i 、j 、k 为坐标向量建立空间直角坐标系D -xyz ,则∵AD uuu u r =(-1,0,0),1D F u u u u r =(0,12,-1),∴AD uuu u r ·1D F u u u u r =(-1,0,0)·(0,12,-1)=0,∴1D F ⊥AD . 又 AE uuu r =(0,1,12),∴AE uuu r ·1D F u u u u r =(0,1,12)·(0,12,-1)=0, ∴1D F ⊥ AE . 又 AD AE A =I , ∴1D F ⊥平面ADE .说明:⑴“不妨设”是我们在解题中常用的小技巧,通常可用于设定某些与题目要求无关的一些数据,以使问题的解决简单化.如在立体几何中求角的大小、判定直线与直线或直线与平面的位置关系时,可以约定一些基本的长度.⑵空间直角坐标些建立,可以选取任意一点和一个单位正交基底,但具体设置时仍应注意几何体中的点、线、面的特征,把它们放在恰当的位置,才能方便计算和证明.2. 出示例2:课本P 116 例3分析:如何转化为向量问题?进行怎样的向量运算?3. 出示例3:课本P 118 例4分析:如何转化为向量问题?进行怎样的向量运算?4. 出示例4:证:如果两条直线同垂直于一个平面,则这两条直线平行.改写为:已知:直线OA ⊥平面α,直线BD ⊥平面α,O 、B 为垂足.求证:OA //BD . 证明:以点O 为原点,以射线OA 为非负z 轴,建立空间直角坐标系O -xyz ,i ,j ,k 为沿x 轴,y 轴,z 轴的坐标向量,且设BD uuu u r =(,,)x y z . ∵BD ⊥α, ∴BD uuu u r ⊥i ,BD uuu u r ⊥j , ∴BD uuu u r ·i =(,,)x y z ·(1,0,0)=x =0,BD uuu u r ·j =(,,)x y z ·(0,1,0)=y =0, ∴BD uuu u r =(0,0,z ).∴BD uuu u r =z k .即BD uuu u r //k .由已知O 、B 为两个不同的点,∴OA //BD .5. 法向量定义:如果表示向量a 的有向线段所在直线垂直于平面α,则称这个向量垂直于平面α,记作a ⊥α.如果a ⊥α,那么向量a 叫做平面α的法向量.6. 小结:向量法解题“三步曲”:(1)化为向量问题 →(2)进行向量运算 →(3)回到图形问题.三、巩固练习 作业:课本P 120、 习题A 组 1、2题.第三课时: §3.2立体几何中的向量方法(三)教学要求:向量运算在几何证明与计算中的应用.掌握利用向量运算解几何题的方法,并能解简单的立体几何问题.教学重点:向量运算在几何证明与计算中的应用.教学难点:向量运算在几何证明与计算中的应用.教学过程:一、复习引入 1. 法向量定义:如果直线l α⊥平面, 取直线l 的方向向量为a r ,则向量a r 叫作平面α的法向量(normal vectors ). 利用法向量,可以巧妙的解决空间角度和距离.2. 讨论:如何利用法向量求线面角? → 面面角? 直线AB 与平面α所成的角θ,可看成是向量AB u u u r 所在直线与平面α的法向量n 所在直线夹角的余角,从而求线面角转化为求直线所在的向量与平面的法向量的所成的线线角,根据两个向量所成角的余弦公式cos ,a b a b a b=r r r r g r r g ,我们可以得到如下向量法的公式: sin cos ,AB n AB n AB nθ==u u u r r g u u u r r u u u r r g .3. 讨论:如何利用向量求空间距离?两异面直线的距离,转化为与两异面直线都相交的线段在公垂向量上的投影长.点到平面的距离,转化为过这点的平面的斜线在平面的法向量上的投影长.二、例题讲解:1. 出示例1:长方体1111ABCD A B C D -中,AD =1AA =2,AB =4,E 、F 分别是11A D 、AB 的中点,O 是11BC B C 与的交点. 求直线OF 与平面DEF 所成角的正弦.解:以点D 为空间直角坐标系的原点,DA 、DC 、1DD 为坐标轴,建立如图所示的空间直角坐标系. 则(2,2,0),(1,0,2),(2,2,0),(1,4,1),(0,4,0)D E F O C . 设平面DEF 的法向量为 (,,)n x y z =r , 则n DE n DF ⎧⊥⎪⎨⊥⎪⎩r u u u r r u u u r , 而(1,0,2)DE =u u u r , (2,2,0)DF =u u u r . ∴ 00n DE n DF ⎧=⎪⎨=⎪⎩r u u u r g r u u u r g ,即20220x z x y +=⎧⎨+=⎩, 解得::2:2:1x y z =-, ∴ (2,2,1)n =-r . ∵ ||||cos n OF n OF α•=r u u u r r u u u r , 而(1,2,1)OF =--u u u r . ∴ cos α=2222276||||(2)211(2)(1)n OF n OF •==-•-+++-+-r u u u r r u u u r g 所以,直线OF 与平面DEF 所成角的正弦为76. 2. 变式: 用向量法求:二面角1A DE O --余弦;OF 与DE 的距离;O 点到平面DEF 的距离. 三、巩固练习作业:课本P 121、 习题A 组 5、6题.。

人教A版选修2-1第三章第十课时同步练习3.2立体几何中的向量方法(3)(修改稿)

人教A版选修2-1第三章第十课时同步练习3.2立体几何中的向量方法(3)(修改稿)

§3.2立体几何中的向量方法(3)1. (1)已知三点A(1,0,0),B(3,1,1),C(2,0,1).求D(2,0,-1)到平面ABC的距离.(2)已知四边形ABCD中,∠BAD=∠ABC=900,PA⊥平面ABCD,PA=AD=3,AB=2,BC=1.求点D到平面PAC的距离.2.如图:ABCD为矩形,PA⊥平面ABCD,PA=AD,M、N分别是PC、AB中点,(1)求证:MN⊥平面PCD;(2)求NM与平面ABCD所成的角的大小.3.一条线段夹在一个直二面角的两个面内,它和两个面所成的角都是300,求这条线段与这个二面角的棱所成的角的大小.4. 正四棱锥S —ABCD 中,所有棱长都是2,P 为SA 的中点,如图. (1)求二面角B —SC —D 的大小;(2)求DP 与SC 所成的角的大小.5. 如图,直三棱柱ABC —A 1B 1C 1,底面△ABC 中,CA=CB=1,∠BCA=90°,棱AA 1=2,M 、N 分别是A 1B 1,A 1A 的中点; (1)求;(2)求;,cos 11的值><CB (3).:11M C B A ⊥求证(4)求CB 1与平面A 1ABB 1所成的角的余弦值.参考答案1.解:(1)设()c b a n ,,=是平面ABC 的法向量,由于()(),0,1,1,1,1,2--==则 ⎪⎩⎪⎨⎧=⋅=⋅00AC n ,即 ()()()()⎩⎨⎧=--⋅=⋅00,1,1,,01,1,2,,c b a c b a ,由此解得⎩⎨⎧-=-=c a b a .令1=a ,得1,1-=-=c b , ()1,1,1--=∴.又()1,0,1-=DA .∴所求距离()()()3321,1,11,1,101,1=----⋅-==d . (2)以A 为坐标原点,分别以,,所在直线为x 、y 、z 轴建立坐标系. 过D 作 DQ ⊥AC 于Q ,∵PA ⊥平面ABCD ,∴PA⊥DQ,∴DQ ⊥平面PAC , ∴就是D 到平面PAC 的距离.()0,0,2=,()0,1,0BC ,()0,3,0=. 设)0,1,2()(m m m =+==()0>m ,)0,3,2()0,1,2()0,3,0(-=+-=+=∴m m m AQ DA DQ , 由0)0,1,2(0,3,2,=⋅-=⋅⊥m m m AQ DQ AQ DQ )(得,0)3(42=-+m m m 得, 53=∴m . ),0,512,56(-=∴∴556)512()56(22=-+=.2.(1)略 (2)4503.4504.(1) 13-(2) π 略 略解:如图,建立空间直角坐标系O —xyz.(1)依题意得B (0,1,0)、N (1,0,1) ∴|BN |=3)01()10()01(222=-+-+-.x(2)依题意得A 1(1,0,2)、B (0,1,0)、C (0,0,0)、B 1(0,1,2) ∴1BA ={-1,-1,2},1CB ={0,1,2,},1BA ·1CB =3,|1BA |=6,|1CB |=5∴cos<1BA ,1CB 30101||||1111=⋅CB BA CB BA .(3)证明:依题意,得C 1(0,0,2)、M (21,21,2),B A 1={-1,1,2},M C 1={21,21,0}.∴B A 1·M C 1=-2121++0=0,∴B A 1⊥M C 1,∴A 1B ⊥C 1M.。

人教A版高中数学高二选修2-1单元目标检测 第三章 空间向量与立体几何

人教A版高中数学高二选修2-1单元目标检测 第三章 空间向量与立体几何

数学人教A 选修2-1第三章 空间向量与立体几何单元检测(时间:45分钟,满分:100分)一、选择题(每小题6分,共48分)1.已知点A (-4,8,6),则点A 关于y 轴对称的点的坐标为( ). A .(-4,-8,6) B .(-4,-8,-6) C .(-6,-8,4) D .(4,8,-6)2.若a =(0,1,-1),b =(1,1,0),且(a +λb )⊥a ,则实数λ的值为( ). A .-1 B .0 C .1 D .-23.若向量a =(1,λ,2),b =(2,-1,2),a ,b 夹角的余弦值为89,则λ等于( ), A .2 B .-2 C .-2或255 D .2或255- 4.已知a =(2,-1,2),b =(2,2,1),则以a ,b 为邻边的平行四边形的面积为( ).A B C .4 D .8 5.如图,在四面体ABCD 中,已知AB =b ,AD =a ,AC =c ,12BE EC =,则DE 等于( ).A .2133-++a b c B .2133++a b c C .2133-+a b c D .2133-+a b c 6.在三棱锥P -ABC 中,△ABC 为等边三角形,PA ⊥平面ABC ,且PA =AB ,则二面角A -PB -C 的平面角的正切值为( ).A B C D 7.已知A (1,2,3),B (2,1,2),P (1,1,2),点Q 在直线OP 上运动(O 为原点),则当QA QB ⋅取最小值时,点Q 的坐标为( ).A .444,,333⎛⎫⎪⎝⎭ B .848,,333⎛⎫ ⎪⎝⎭C .884,,333⎛⎫ ⎪⎝⎭D .448,,333⎛⎫ ⎪⎝⎭8.正方体ABCD -A 1B 1C 1D 1的棱长为a ,E ,F 分别是BB 1,CD 的中点,则点F 到平面A 1D 1E 的距离为( ).A .310a B .10a C .10a D .710a 二、填空题(每小题6分,共18分)9.若向量a =(4,2,-4),b =(1,-3,2),则2a ·(a +2b )=________.10.如图,在矩形ABCD 中,AB =3,BC =1,EF ∥BC 且AE =2EB ,G 为BC 的中点,K 为△AFD 的外心,沿EF 将矩形折成120°的二面角A -EF -B ,此时KG 的长为__________.11.已知直线AB ,CD 是异面直线,AC ⊥AB ,AC ⊥CD ,BD ⊥CD ,且AB =2,CD =1,则异面直线AB 与CD 所成角的大小为________.三、解答题(共3小题,共34分)12.(10分)已知向量a =(1,-3,2),b =(-2,1,1),点A (-3,-1,4),B (-2,-2,2). (1)求|2a +b |;(2)在直线AB 上,是否存在一点E ,使得OE ⊥b ?(O 为原点)13.(10分)如图,在四棱锥P -ABCD 中,底面是边长为BAD =120°,且PA ⊥平面ABCD ,PA =,M ,N 分别为PB ,PD 的中点.(1)证明:MN∥平面ABCD;(2)过点A作AQ⊥PC,垂足为点Q,求二面角A-MN-Q的平面角的余弦值.14.(14分)如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1.(1)求证:CD=C1D;(2)求二面角A-A1D-B的平面角的余弦值;参考答案1答案:D2答案:D 解析:a +λb =(λ,1+λ,-1). 由(a +λb )⊥a ,知(a +λb )·a =0, 所以1+λ+1=0,解得λ=-2. 3答案:C解析:由公式cos 〈a ,b 〉=||||⋅a ba b ,知89==λ=-2或255.4答案:A 解析:|a |=3,|b |=3,而a·b =4=|a||b|cos ,a b ,∴cos ,a b =49,故sin ,a b=于是以a ,b 为邻边的平行四边形的面积为 S =|a||b|sin ,a b=33⨯= 5答案:A 解析:DE =DA +AB +BE =DA +AB +13(AC -AB )=2133-++a b c .6答案:A 解析:设PA =AB =2,建立空间直角坐标系,平面PAB 的一个法向量是m =(1,0, 0),平面PBC 的一个法向量是n=⎫⎪⎪⎝⎭. 则cos 〈m ,n〉=·3||||||||3===m nm n m n . ∴正切值tan 〈m ,n.7答案:D 解析:由题意可知OQ =λOP ,故可设Q (λ,λ,2λ),∴QA ·QB =6λ2-16λ+10=242633λ⎛⎫-- ⎪⎝⎭,∴43λ=时,QA ·QB 取最小值,此时Q 的坐标为448,,333⎛⎫⎪⎝⎭. 8答案:C 解析:建立如图所示的坐标系,则A 1(a,0,a ),D 1(0,0,a ),A (a,0,0),B (a ,a,0),B 1(a ,a ,a ),E ,,2a a a ⎛⎫ ⎪⎝⎭,F 0,,02a ⎛⎫⎪⎝⎭.设平面A 1D 1E 的法向量为n =(x ,y ,z ),则11·0A D =n ,11·0A E =n ,即(x ,y ,z )·(-a,0,0)=0,(x ,y ,z )·0,,2a a ⎛⎫- ⎪⎝⎭=0, ∴-ax =0,02aay z -=. ∴x =0,2z y =. ∴n =0,,2z z ⎛⎫ ⎪⎝⎭. ∴10,||||2FD d ⎛ ⋅⎝==n n . 9答案:32解析:2a·(a +2b )=2|a|2+4a·b =2×36+4×(-10)=32. 10解析:如图,过K 作KM ⊥EF ,M 为垂足,则向量MK 与FC 的夹角为120°.KG =KM +MF +FC +CG ,2KG =2KM +2MF +2FC +2CG +2KM ·MF +2FC ·CG +2KM ·FC +2KM ·CG . ∴2KG =1+14+1+14+0+0+2×1×1×cos 60°+0+0+2×12×12×cos 180°=2+12+1-12=3. ∴3KG =.答案:60° 解析:设AB 与CD 所成的角为θ, 则cos θ=cos ,AB CD =AB CD AB CD⋅.由于AB ·CD =(AC +CD +DB )·CD =AC ·CD +2CD +DB ·CD =0+12+0=1,∴cos θ=11212AB CD AB CD⋅==⨯. 由于0°<θ≤90°,∴θ=60°,故异面直线AB 与CD 所成角的大小为60°.12答案:解:(1)2a +b =(2,-6,4)+(-2,1,1)=(0,-5,5),故|2a +b|=答案:解:OE =OA +AE =OA +t AB =(-3,-1,4)+t (1,-1,-2)=(-3+t ,-1-t,4-2t ).若OE ⊥b ,则OE ·b =0,所以-2(-3+t )+(-1-t )+(4-2t )=0,解得95t =,因此存在点E ,使得OE ⊥b ,此时E 点坐标为6142,,555⎛⎫--⎪⎝⎭. 13答案:证明:连结BD ,因为M ,N 分别是PB ,PD 的中点, 所以MN 是△PBD 的中位线.所以MN ∥BD . 又因为MN ⊄平面ABCD ,BD ⊂平面ABCD , 所以MN ∥平面ABCD .答案:解法一:连结AC 交BD 于O ,以O 为原点,OC ,OD 所在直线为x ,y 轴,建立空间直角坐标系O -xyz ,如图所示.在菱形ABCD 中,∠BAD =120°,得AC =AB=BD=6. 又因为PA ⊥平面ABCD ,所以PA ⊥AC .在直角△PAC中,AC =PA =AQ ⊥PC ,得QC =2,PQ =4,由此知各点坐标如下:A(,0,0),B (0,-3,0),C,0,0),D (0,3,0),P(0,,M 3,22⎛-- ⎝,N 3,22⎛- ⎝,Q 33⎛ ⎝⎭. 设m =(x ,y ,z )为平面AMN 的法向量. 由AM=32-⎝,AN=32-⎝,知30,230.2x y x y -+=+=取z =-1,得m =(0,-1). 设n =(x ,y ,z )为平面QMN 的法向量.由QM=32⎛- ⎝⎭,QN=32⎛- ⎝⎭知30,62330.2x y z x y ⎧--+=⎪⎪⎨⎪++=⎪⎩ 取z =5,得n =(0,5). 于是cos 〈m ,n〉=·||||33=m n m n . 所以二面角A -MN -Q的平面角的余弦值为33.解法二:在菱形ABCD 中,∠BAD =120°,得AC =AB =BC =CD =DA ,BDAB . 又因为PA ⊥平面ABCD ,所以PA ⊥AB ,PA ⊥AC ,PA ⊥AD . 所以PB =PC =PD . 所以△PBC ≌△PDC .而M ,N 分别是PB ,PD 的中点,所以MQ =NQ ,且AM =12PB =12PD =AN . 取线段MN 的中点E ,连结AE ,EQ , 则AE ⊥MN ,QE ⊥MN ,所以∠AEQ 为二面角A -MN -Q 的平面角.由AB =PA =,故在△AMN 中,AM =AN =3,MN =12BD =3,得AE =2.在直角△PAC 中,AQ ⊥PC ,得AQ =QC =2,PQ =4,在△PBC 中,cos ∠BPC =222526PB PC BC PB PC +-=⋅,得MQ =在等腰△MQN 中,MQ =NQ MN =3,得QE ==.在△AEQ 中,2AE =,2QE =,AQ =cos ∠AEQ =222233AE QE AQ AE QE +-=⋅.所以二面角A -MN -Q . 14答案:解:如图,以A 1为原点,A 1B 1,A 1C 1,A 1A 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系A 1xyz ,则A 1(0,0,0),B 1(1,0,0),C 1(0,1,0),B (1,0,1).答案:解:如图,以A 1为原点,A 1B 1,A 1C 1,A 1A 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系A 1xyz ,则A 1(0,0,0),B 1(1,0,0),C 1(0,1,0),B (1,0,1).设C 1D =x ,∵AC ∥PC 1, ∴111C P C D xAC CD x==-. 由此可得D (0,1,x ),P 0,1,01x x ⎛⎫+⎪-⎝⎭, ∴1A B =(1,0,1),1A D =(0,1,x ),1B P =1,1,01x x ⎛⎫-+⎪-⎝⎭. 设平面BA 1D 的一个法向量为n 1=(a ,b , c ),则11110,0.A B a c A D b cx ⎧⋅=+=⎪⎨⋅=+=⎪⎩n n 令c =-1,则n 1=(1,x ,-1). ∵PB 1∥平面BA 1D ,高中数学-打印版精心校对 ∴n 1·1B P =1×(-1)+x ·11x x ⎛⎫+ ⎪-⎝⎭+(-1)×0=0. 由此可得12x =,故CD =C 1D . 答案:解:由(1)知,平面BA 1D 的一个法向量n 1=11,,12⎛⎫- ⎪⎝⎭.又n 2=(1,0,0)为平面AA 1D 的一个法向量, ∴cos 〈n 1,n 2〉=1212123||||312⋅==⨯n n n n . 故二面角A -A 1D -B 的平面角的余弦值为23. (3)求点C 到平面B 1DP 的距离. 答案:解:∵1PB =(1,-2,0),PD =10,1,2⎛⎫- ⎪⎝⎭, 设平面B 1DP 的一个法向量n 3=(a 1,b 1,c 1), 则311113120,0.2PB a b c PD b ⎧⋅=-=⎪⎨⋅=-+=⎪⎩n n 令c 1=1,可得n 3=11,,12⎛⎫ ⎪⎝⎭. 又10,0,2DC ⎛⎫= ⎪⎝⎭, ∴点C 到平面B 1DP 的距离33||1||3DC d ⋅==n n .。

高二数学人教A版选修2-1(第3.2 立体几何中的向量方法) Word版含解析

高二数学人教A版选修2-1(第3.2 立体几何中的向量方法) Word版含解析

绝密★启用前人教版选修2-1 课时3.2立体几何中的向量方法一、选择题1.【题文】已知三条直线l 1,l 2,l 3的一个方向向量分别为a =(4,-1,0),b =(1,4,5),c =(-3,12,-9),则 ( )A .l 1⊥l 2,但l 1与l 3不垂直B .l 1⊥l 3,但l 1与l 2不垂直C .l 2⊥l 3,但l 2与l 1不垂直D .l 1,l 2,l 3两两互相垂直2.【题文】已知直线l 1的方向向量为a =(2,4,x ),直线l 2的方向向量为b =(2,y,2),若|a |=6,且a ⊥b ,则x +y 的值是( ) A .-3或1 B .3或-1 C .-3 D .13.【题文】已知(2,2,5)u =-,(6,4,4)v =-,u ,分别是平面α,β的法向量,则平面α,β的位置关系式( )A .平行B .垂直C .所成的二面角为锐角D .所成的二面角为钝角4.【题文】在空间直角坐标系中,点B 是()1,2,3A 在yOz 坐标平面内的射影,O 为坐标原点,则OB 等于( )A .14B .13C .23D .115.【题文】长方体1111ABCD A BC D -中,AB =AA 1=2,AD =1,E 为CC 1的中点,则异面直线BC 1与AE 所成角的余弦值为 ( ) A. 1010B.3010 C. 21510D.310106.【题文】在棱长为的正方体1111ABCD A B C D -中,平面1AB C 与平面11A C D 间的 距离为( )A .63B .33 C .332 D .237.【题文】如图,在四面体OABC 中,G 是底面△ABC 的重心,则OG 等于()GCABOA.OC OB OA ++B.111222OA OB OC ++C.111236OA OB OC ++ D.111333OA OB OC ++8.【题文】在直三棱柱111C B A ABC -中,底面是等腰直角三角形, 90=∠ACB ,侧棱21=AA ,D ,E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是ABD ∆的重心G .则B A 1与平面AB D 所成角的余弦值 ()A .32 B .37C .23D .73二、填空题9.【题文】如图,在直三棱柱111ABC A B C -中,∠ACB =90°,AA 1=2,AC =BC =1,则异面直线A 1B 与AC 所成角的余弦值是________.10.【题文】已知正四棱锥P ABCD -的侧棱与底面所成角为60°,M 为PA 的中点,连接DM ,则DM 与平面PAC 所成角的大小是________.11.【题文】如图所示,正方体1111ABCD A BC D -的棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是______.三、解答题12.【题文】如图,AB 是圆的直径,PA 垂直于圆所在的平面,C 是圆上异于A 、B 的点.(1)求证:平面PAC ⊥平面PBC ;(2)若AB =2,AC =1,PA =1,求二面角C PB A --的余弦值.13.【题文】如图,直三棱柱111ABC A B C -中,△ABC 是等边三角形,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1;(2)若AB =BB 1=2,求A 1D 与平面AC 1D 所成角的正弦值.14.【题文】直四棱柱1111ABCD A BC D -中,底面A B C D为菱形,且160,,BAD A A AB E ∠==为1BB 延长线上的一点,1D E ⊥面1D AC .设2AB =. (1)求二面角1E AC D --的大小;(2)在1D E 上是否存在一点P ,使1//A P 面EAC ?若存在,求1:D P PE 的值;若不存在,说明理由.人教版选修2-1 课时3.2立体几何中的向量方法参考答案与解析一、选择题 1. 【答案】A【解析】∵a ·b =(4,-1,0)·(1,4,5)=4-4+0=0,a ·c =(4,-1,0)·( -3,12,-9)=-12-12+0=-24≠0.b ·c =(1,4,5)·(-3,12,-9)=-3+48-45=0,∴a ⊥b ,a 与c 不垂直,b ⊥c . ∴l 1⊥l 2,l 2⊥l 3,但l 1不垂直于l 3. 考点:直线的方向向量. 【题型】选择题 【难度】较易 2. 【答案】A【解析】|a |=2222+4+6x =,∴x =±4,又∵a ⊥b ,∴a ·b =2×2+4y +2x =0, ∴y =-1-12x ,∴当x =4时,y =-3,当x =-4时,y =1,∴x +y =1或-3. 考点:直线的方向向量. 【题型】选择题 【难度】较易 3. 【答案】B【解析】由(2,2,5)u =-,(6,4,4)v =-,可得262(4)540u v ⋅=-⨯+⨯-+⨯=,所以u v ⊥,又u ,分别是平面α,β的法向量,所以αβ⊥,故选B. 考点:空间向量在解决空间垂直中的应用. 【题型】选择题【难度】较易 4. 【答案】B【解析】因为点B 是()1,2,3A 在yOz 坐标平面内的射影,所以(0,2,3)B ,22202313∴=++=OB .故选B . 考点:空间中两点间的距离. 【题型】选择题 【难度】较易 5. 【答案】B【解析】建立坐标系如图所示,则A (1, 0, 0),E (0, 2, 1),B (1, 2, 0),C 1(0, 2, 2),则1BC =(-1, 0, 2),AE =(-1,2, 1).cos 〈1BC ,AE 〉=11AE BC AE BC ⋅⋅=3010. 所以异面直线BC 1与AE所成角的余弦值为3010.故选B.考点:异面直线所成角的向量求法. 【题型】选择题 【难度】较易 6.【答案】B【解析】建立如图所示的直角坐标系,设平面11A C D 的法向量(,,1)n x y =,则1100n DA n DC ⎧⋅=⎪⎨⋅=⎪⎩,即()()()(),,11,0,10,,,10,1,10x y x y ⋅-=⎧⎪⎨⋅-=⎪⎩()1,1,1,1,1,x n y =⎧⇒∴=⎨=⎩又(1,0,0)AD =-,∴平面1AB C 与平面11A C D 间的距离()()2221,0,01,1,133111AD n d n⋅-⋅===++,故选B.考点:面与面间的距离的向量求法. 【题型】选择题 【难度】一般 7. 【答案】D【解析】由题意知,()()11=+=+=33OG OA AG OA AC AB OA OC OA OB OA ++-+- =111333OA OB OC ++,故选D. 考点:空间向量的运算. 【题型】选择题 【难度】一般 8. 【答案】B【解析】以C 为坐标原点,CA 所在直线为轴,CB 所在直线为y 轴,1CC 所在直线为轴,建立直角坐标系,设a CB CA ==,则(),0,0A a ,()0,,0B a ,)(2,0,1a A ,)(1,0,0D ,则)(1,2,2a a E ,)(31,3,3a a G ,则)(32,6,6a a GE =,)(1,,0a BD -=, ∵点E 在平面ABD 上的射影是ABD ∆的重心G , ∴⊥GE 平面ABD ,∴0=⋅BD GE ,解得2=a .∴)(32,31,31=GE ,)(2,2,21-=BA , ∵⊥GE 平面ABD ,∴GE 为平面ABD 的一个法向量.32323634||||,cos 111=⋅=⋅⋅>=<BA GE BA GE BA GE , ∴B A 1与平面ABD 所成的角的余弦值为37,故选B.考点:线面角的空间向量求法. 【题型】选择题 【难度】较难二、填空题 9. 【答案】66【解析】以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A 1(1, 0, 2),B (0, 1, 0),A (1, 0, 0),C (0, 0, 0),则1A B =(-1, 1,-2),AC =(-1, 0, 0),cos 〈1A B ,AC 〉=11A B AC A B AC⋅⋅=1114++=66. 考点:异面直线夹角的向量求法. 【题型】填空题 【难度】较易 10. 【答案】45°【解析】设底面正方形的边长为a ,由已知可得正四棱锥的高为62a ,建立如图所示的空间直角坐标系,则平面PAC 的一个法向量为n =(1,0,0),D 2,0,02a ⎛⎫- ⎪ ⎪⎝⎭,P 60,0,2a ⎛⎫ ⎪ ⎪⎝⎭,M 260,,44a a ⎛⎫- ⎪ ⎪⎝⎭,则DM =226,,244a a a ⎛⎫- ⎪ ⎪⎝⎭,所以cos 〈DM ,n 〉=n DM n DM⋅⋅=22,所以DM 与平面PAC 所成的角为45°.考点:线面角的空间向量求法. 【题型】填空题 【难度】一般 11. 【答案】平行【解析】分别以C 1B 1、C 1D 1、C 1C 所在直线为x ,y ,z 轴,建立空间直角坐标系, 如图所示.∵A 1M =AN =23a ,∴M 2(,,)33a a a ,N 22(,,)33a a a ,∴MN =2(,0,)33a a .又C 1(0,0,0),D 1(0,a,0),∴11C D =(0,a,0),∴MN ·11C D =0,∴MN ⊥11C D .∵11C D 是平面BB 1C 1C 的一个法向量,且MN ⊄平面BB 1C 1C ,∴MN ∥平面BB 1C 1C .考点:向量法求线面关系. 【题型】填空题 【难度】一般三、解答题 12.【答案】(1)见解析(2)64【解析】(1)证明:由AB 是圆的直径,得AC ⊥BC ,由PA ⊥平面ABC ,BC ⊂平面ABC ,得PA ⊥BC .又PA ∩AC =A ,PA ⊂平面PAC ,AC ⊂平面PAC , 所以BC ⊥平面PAC .又BC ⊂平面PBC ,所以平面PBC ⊥平面PAC . (2)过C 作CM ∥AP ,则CM ⊥平面ABC .如图,以点C 为坐标原点,分别以直线CB ,CA ,CM 为x 轴、y 轴、z 轴建立空间直角坐标系.在Rt △ABC 中,因为AB =2,AC =1,所以BC =3.又因为PA =1,所以A (0,1,0),B (3,0,0),P (0,1,1),故CB =(3,0,0),CP =(0,1,1),设平面BCP 的法向量为1n =(x 1,y 1,z 1),则110,0,n CB n CP ⎧⋅=⎪⎨⋅=⎪⎩所以111300x y z ⎧⎪⎨⎪⎩=,+=,令y 1=1,则1n =(0,1,-1).AP =(0,0,1),AB =(3,-1,0),设平面ABP 的法向量为2n =(x 2,y 2,z 2),则220,0,n AP n AB ⎧⋅=⎪⎨⋅=⎪⎩所以222300x y z ⎧⎪⎨⎪⎩-=,=,令x 2=1,则2n =(1,3,0).于是cos 〈1n ,2n 〉=322=64.由题意可知二面角C PB A --的余弦值为64. 考点:空间二面角的向量求法. 【题型】解答题 【难度】一般 13.【答案】(1)见解析(2)23535【解析】(1)证明:因为三棱柱111ABC A B C -是直三棱柱,所以四边形A 1ACC 1是矩形.连接A 1C 交AC 1于O ,连接OD ,则O 是A 1C 的中点,又D 是BC 的中点,所以在△A 1BC 中,OD ∥A 1B ,因为A 1B ⊄平面ADC 1,OD ⊂平面ADC 1,所以A 1B ∥平面ADC 1. (2)因为△ABC 是等边三角形,D 是BC 的中点,所以AD ⊥BC .以D 为原点,建立如图所示空间坐标系D xyz -.由已知AB =BB 1=2,得D (0,0,0),A (3,0, 0),A 1(3,0, 2),C 1(0,-1, 2),则DA =(3,0, 0),1DC =(0,-1,2),设平面AC 1D 的法向量为=(x ,y ,z ),则10,0,n DA n DC ⎧⋅=⎪⎨⋅=⎪⎩即30,20,x y z ⎧=⎪⎨-+=⎪⎩取z =1,则x =0,y =2,∴=(0,2,1), 又1DA =(3,0,2),∴cos 〈1DA ,〉=257⋅=23535,设A 1D 与平面ADC 1所成角为θ,则sin θ=|cos 〈1DA ,〉|=23535, 故A 1D 与平面ADC 1所成角的正弦值为23535.考点:线面角的向量求法. 【题型】解答题 【难度】一般 14.【答案】(1)45︒(2)存在点P 使1//A P 面,EAC 此时1:3:2D P PE = 【解析】(1)设AC 与BD 交于O ,设1B E h =,如图所示建立空间直角坐标系O xyz -,则1(3,0,0),(0,1,0),(3,0,0),(0,1,0),(0,1,2),A B C D D --- (0,1,2),E h +则11(0,2,),(23,0,0),(3,1,2),D E h CA D A ===-1D E ⊥平面1D AC ,111,D E AC D E D A ∴⊥⊥,220,1,h h ∴-=∴=即(0,1,3)E .1(0,2,1),(3,1,3)D E AE ∴==-,设平面EAC 的法向量为(,,)m x y z =, 则,,m CA m AE ⎧⊥⎪⎨⊥⎪⎩即230,330,x x y z ⎧=⎪⎨-++=⎪⎩令1z =-,则0,3x y ==,()0,3,1m ∴=-. 又平面1D AC 的一个法向量为()10,2,1D E =,1112cos ,==2m D E m D E m D E⋅∴⋅, ∴二面角1E AC D --大小为45.(2)设111(),D P PE D E D P λλ==-得112(0,,),111D P D E λλλλλλ==+++ 111121(3,1,0)(0,,)(3,,)1111A P A D D P λλλλλλλλ-∴=+==--+=-++++,1//A P 面113,,303(1)0,,112EAC A P m λλλλλ-∴⊥∴-⨯+⨯+-⨯=∴=++ ∴存在点P 使1//A P 面,EAC 此时1:3:2D P PE =考点:空间向量法求二面角. 【题型】解答题 【难度】一般。

新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.1.4

新版高中数学人教A版选修2-1习题:第三章空间向量与立体几何 3.1.4

3.1.4空间向量的正交分解及其坐标表示课时过关·能力提升基础巩固1下列说法正确的是()A.任何三个不共线的向量可构成空间向量的一个基底B.空间的基底有且仅有一个C.两两垂直的三个非零向量可构成空间的一个基底D.基底{a,b,c}中基向量与基底{e,f,g}中基向量对应相等项中应是不共面的三个向量构成空间向量的基底;B项,空间基底有无数个;D项中因为基底不唯一,所以D错.故选C.2已知点A在基底{a,b,c}下的坐标为(8,6,4),其中a=i+j,b=j+k,c=k+i,则点A在基底{i,j,k}下的坐标是()A.(12,14,10)B.(10,12,14)C.(14,12,10)D.(4,3,2)=8a+6b+4c=8(i+j)+6(j+k)+4(k+i)=12i+14j+10k.3在空间直角坐标系Oxyz中,下列说法正确的是()⃗⃗⃗⃗⃗ 与点B的坐标相同A.向量AB⃗⃗⃗⃗⃗ 与点A的坐标相同B.向量ABC.向量AB⃗⃗⃗⃗⃗ 与向量OB ⃗⃗⃗⃗⃗ 的坐标相同 D.向量AB ⃗⃗⃗⃗⃗ 与向量OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ 的坐标相同4点A (-1,2,1)在x 轴上的投影点和在xOy 平面上的投影点的坐标分别为( ) A.(-1,0,1),(-1,2,0)B.(-1,0,0),(-1,2,0)C.(-1,0,0),(-1,0,0)D.(-1,2,0),(-1,2,0)A 在x 轴投影知y=0,z=0,由点A 在xOy 平面投影知z=0.故选B .5设{i ,j ,k }是空间的一个单位正交基底,a =2i -4j+5k ,b=i+2j-3k ,则向量a ,b 的坐标分别为 , .-4,5) (1,2,-3)6已知{a ,b ,c }是空间的一个基底,下列向量可以与p =2a -b ,q =a +b 构成空间的另一个基底的是 (填序号).①2a ②-b ③c ④a +c7如图,在边长为2的正方体ABCD-A 1B 1C 1D 1中,取点D 为原点建立空间直角坐标系,已知O ,M 分别是AC ,DD 1的中点,写出下列向量的坐标.AM ⃗⃗⃗⃗⃗⃗ = ,OB 1⃗⃗⃗⃗⃗⃗⃗⃗ = .-2,0,1) (1,1,2)8如图,在梯形ABCD 中,AB ∥CD ,AB=2CD ,点O 为空间任一点,设OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,OC ⃗⃗⃗⃗⃗ =c ,则向量OD ⃗⃗⃗⃗⃗⃗ 用a ,b ,c 表示为 .-12b +c9如图所示,已知正方体ABCD-A 1B 1C 1D 1的棱长为1,建立适当的空间直角坐标系,求BD 1⃗⃗⃗⃗⃗⃗⃗⃗ 的坐标.1⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ .以AB ⃗⃗⃗⃗⃗ ,A D ⃗⃗⃗⃗⃗⃗ ,AA 1⃗⃗⃗⃗⃗⃗⃗ 为单位正交基底,建立空间直角坐标系,如图所示,则BD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +DD 1⃗⃗⃗⃗⃗⃗⃗⃗ =-AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ =(-1,1,1).10已知PA 垂直于正方形ABCD 所在的平面,M ,N 分别是AB ,PC 的中点,并且PA=AD=1,如图所示,设DA ⃗⃗⃗⃗⃗ =e 1,AB ⃗⃗⃗⃗⃗ =e 2,AP ⃗⃗⃗⃗⃗ =e 3,以{e 1,e 2,e 3}为单位正交基底建立空间直角坐标系Axyz ,求向量MN ⃗⃗⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ 的坐标.DC⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ =e 2. ∵PC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AP ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ −AP ⃗⃗⃗⃗⃗ =e 2-e 1-e 3, ∴MN ⃗⃗⃗⃗⃗⃗⃗ =MA ⃗⃗⃗⃗⃗⃗ +AP ⃗⃗⃗⃗⃗ +PN⃗⃗⃗⃗⃗⃗ =-12AB ⃗⃗⃗⃗⃗ +AP ⃗⃗⃗⃗⃗ +12PC ⃗⃗⃗⃗⃗=-12e 2+e 3+12(e 2-e 1-e 3)=-12e 1+12e 3.∴MN ⃗⃗⃗⃗⃗⃗⃗ =(-12,0,12),DC ⃗⃗⃗⃗⃗ =(0,1,0). 能力提升1有下列叙述:①在空间直角坐标系中,x 轴上的点的坐标一定是(0,b ,c );②在空间直角坐标系中,在yOz 平面上点的坐标一定可写成(0,b ,c ); ③在空间直角坐标系中,在z 轴上的点的坐标可记作(0,0,c ); ④在空间直角坐标系中,在xOz 平面上点的坐标是(a ,0,c ).其中正确的个数是( ) A.1B.2C.3D.4错,x 轴上的点的坐标应是(a ,0,0).②③④正确.2如图,在长方体ABCD-A 1B 1C 1D 1中,AC 与BD 的交点为M ,设A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =a ,A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =b ,A 1A ⃗⃗⃗⃗⃗⃗⃗ =c ,则下列向量中与B 1M ⃗⃗⃗⃗⃗⃗⃗⃗ 相等的向量是 ( )A.-12a +12b +cB.12a +12b +cC.12a -12b +cD.-12a -12b +c1M =B 1B ⃗⃗⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗=A 1A ⃗⃗⃗⃗⃗⃗⃗ +12BD ⃗⃗⃗⃗⃗⃗ =A 1A ⃗⃗⃗⃗⃗⃗⃗ +12(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )=A 1A ⃗⃗⃗⃗⃗⃗⃗ +12(B 1A 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ +A 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=c +12(-a +b )=-12a +12b +c .3设p :a ,b ,c 是三个非零向量;q :{a ,b ,c }为空间的一个基底,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件a ,b ,c 不共面时,{a ,b ,c }可以当基底,否则不能当基底.当{a ,b ,c }为基底时,一定有a ,b ,c 为非零向量.4如图,在空间四边形OABC 中,OA ⃗⃗⃗⃗⃗ =a ,OB ⃗⃗⃗⃗⃗ =b ,OC ⃗⃗⃗⃗⃗ =c ,点M 在OA 上,且OM ⃗⃗⃗⃗⃗⃗ =2MA ⃗⃗⃗⃗⃗⃗ ,N 是BC 的中点,MN ⃗⃗⃗⃗⃗⃗⃗ =x a +y b +z c ,则x ,y ,z 的值为( ) A.12,-23,12B.-23,12,12C.12,12,-23 D.23,23,-125已知向量AB ⃗⃗⃗⃗⃗ =(-4,-3,-1),把AB ⃗⃗⃗⃗⃗ 按向量(2,1,1)平移后所得向量的坐标是 .-4,-3,-1)6设{i ,j ,k }是空间向量的单位正交基底,a =3i+2j-k ,b=-2i+4j+2k ,则向量a ,b 的关系是 .a ·b =-6i 2+8j 2-2k 2=-6+8-2=0,∴a ⊥b .⊥b7已知在空间四边形ABCD 中,AB ⃗⃗⃗⃗⃗ =a-2c ,CD ⃗⃗⃗⃗⃗ =5a+6b-8c ,对角线AC ,BD 的中点分别为E ,F ,则EF⃗⃗⃗⃗⃗ = .EF ⃗⃗⃗⃗⃗ =EA ⃗⃗⃗⃗⃗ +AB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ ,且EF ⃗⃗⃗⃗⃗ =EC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ ,∴两式相加,得2EF ⃗⃗⃗⃗⃗ =(EA ⃗⃗⃗⃗⃗ +EC ⃗⃗⃗⃗⃗ )+AB ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ +(BF ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ ).∵E 为AC 的中点,F 为BD 的中点,∴EA ⃗⃗⃗⃗⃗ +EC ⃗⃗⃗⃗⃗ =0,BF ⃗⃗⃗⃗⃗ +DF ⃗⃗⃗⃗⃗ =0.∴2EF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =(a-2c )+(5a+6b-8c )=6a+6b-10c .∴EF ⃗⃗⃗⃗⃗ =3a+3b-5c .a+3b-5c8已知向量p 在基底{a ,b ,c }下的坐标是(2,3,-1),求p 在基底{a ,a +b ,a +b +c }下的坐标.p =2a +3b -c .设p =x a +y (a +b )+z (a +b +c )=(x+y+z )a +(y+z )b +z c ,则有{x +y +z =2,y +z =3,z =-1,解得{x =-1,y =4,z =-1,故p 在基底{a ,a +b ,a +b +c }下的坐标为(-1,4,-1).9已知正方体ABCD-A'B'C'D',点E 是上底面A'B'C'D'的中心,求AE ⃗⃗⃗⃗⃗ =x AD ⃗⃗⃗⃗⃗ +y AB ⃗⃗⃗⃗⃗ +z AA '⃗⃗⃗⃗⃗⃗ 中x ,y ,z 的值.⃗⃗⃗ =AA '⃗⃗⃗⃗⃗⃗ +A'E ⃗⃗⃗⃗⃗⃗ =AA '⃗⃗⃗⃗⃗⃗ +12A 'C '⃗⃗⃗⃗⃗⃗⃗ =AA '⃗⃗⃗⃗⃗⃗ +12(A 'B '⃗⃗⃗⃗⃗⃗⃗ +A 'D '⃗⃗⃗⃗⃗⃗⃗ ) =AA '⃗⃗⃗⃗⃗⃗ +12A 'B '⃗⃗⃗⃗⃗⃗⃗ +12A 'D '⃗⃗⃗⃗⃗⃗⃗ =12AD ⃗⃗⃗⃗⃗ +12AB ⃗⃗⃗⃗⃗ +AA '⃗⃗⃗⃗⃗⃗.∵AE ⃗⃗⃗⃗⃗ =x AD ⃗⃗⃗⃗⃗ +y AB ⃗⃗⃗⃗⃗ +z AA'⃗⃗⃗⃗⃗⃗ ,∴x=12,y=12,z=1.★10如图,在正方体ABCD-A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点,求证:EF ⊥平面B 1AC.AB ⃗⃗⃗⃗⃗ =a ,AD ⃗⃗⃗⃗⃗ =c ,AA 1⃗⃗⃗⃗⃗⃗⃗ =b ,把向量EF ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ 1和B 1C ⃗⃗⃗⃗⃗⃗⃗ 分别用a ,b ,c 表示出来,证明A F ⃗⃗⃗⃗⃗⃗ ·AB 1⃗⃗⃗⃗⃗⃗⃗ =0,EF ⃗⃗⃗⃗⃗ ·B 1C ⃗⃗⃗⃗⃗⃗⃗ =0即可.AB ⃗⃗⃗⃗⃗ =a ,AD ⃗⃗⃗⃗⃗ =c ,AA 1⃗⃗⃗⃗⃗⃗⃗ =b ,有a ·b =0,a ·c =0,b ·c =0. 则EF ⃗⃗⃗⃗⃗ =EB 1⃗⃗⃗⃗⃗⃗⃗ +B 1F ⃗⃗⃗⃗⃗⃗⃗ =12(BB 1⃗⃗⃗⃗⃗⃗⃗ +B 1D 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ )=12(AA 1⃗⃗⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ )=12(AA 1⃗⃗⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ) =12(-a +b +c ),AB 1⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BB 1⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AA 1⃗⃗⃗⃗⃗⃗⃗ =a +b . ∴EF ⃗⃗⃗⃗⃗ ·AB 1⃗⃗⃗⃗⃗⃗⃗ =12(-a +b +c )·(a +b ) =12(|b |2-|a |2)=0.∴EF ⃗⃗⃗⃗⃗ ⊥AB 1⃗⃗⃗⃗⃗⃗⃗ ,即EF ⊥AB 1. 同理EF ⊥B 1C.∵AB 1∩B 1C=B 1,∴EF ⊥平面B 1AC.。

高二数学选修2-1人教A全册导学案第3章空间向量与立体几何§3.2《立体几何中的向量方法》

高二数学选修2-1人教A全册导学案第3章空间向量与立体几何§3.2《立体几何中的向量方法》

§3.2 立体几何中的向量方法知识点一用向量方法判定线面位置关系(1)设a、b分别是l1、l2的方向向量,判断l1、l2的位置关系:①a=(2,3,-1),b=(-6,-9,3).②a=(5,0,2),b=(0,4,0).(2)设u、v分别是平面α、β的法向量,判断α、β的位置关系:①u=(1,-1,2),v=(3,2,).②u=(0,3,0),v=(0,-5,0).(3)设u是平面α的法向量,a是直线l的方向向量,判断直线l与α的位置关系.①u=(2,2,-1),a=(-3,4,2).②u=(0,2,-3),a=(0,-8,12).解(1)①∵a=(2,3,-1),b=(-6,-9,3),∴a=-b,∴a∥b,∴l1∥l2.②∵a=(5,0,2),b=(0,4,0),∴a·b=0,∴a⊥b,∴l1⊥l2.(2)①∵u=(1,-1,2),v=(3,2,),∴u·v=3-2-1=0,∴u⊥v,∴α⊥β.②∵u=(0,3,0),v=(0,-5,0),∴u=-v,∴u∥v,∴α∥β.(3)①∵u=(2,2,-1),a=(-3,4,2),∴u·a=-6+8-2=0,∴u⊥a,∴l⊂α或l∥α.②∵u=(0,2,-3),a=(0,-8,12),∴u=-a,∴u∥a,∴l⊥α.知识点二利用向量方法证明平行问题如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是C1C、B1C1的中点.求证:MN∥平面A1BD.证明方法一如图所示,以D为原点,DA、DC、DD1所在直线分别为x轴、y轴、z 轴建立空间直角坐标系,设正方体的棱长为1,则可求得M (0,1,),N (,1,1),D(0,0,0),A1(1,0,1),B(1,1,0),于是=(,0,),设平面A1BD的法向量是n=(x,y,z).n=(x,y,z).则n·=0,得取x=1,得y=-1,z=-1.∴n=(1,-1,-1).又·n=(,0,)·(1,-1,-1)=0,方法二∵ =∴∥,又∵MN⊄平面A1BD.∴MN∥平面A1BD.知识点三利用向量方法证明垂直问题在正棱锥P—ABC中,三条侧棱两两互相垂直,G是△PAB的重心,E、F分别为BC、PB上的点,且BE∶EC=PF∶FB=1∶2.(1)求证:平面GEF⊥平面PBC;(2)求证:EG是PG与BC的公垂线段.证明(1)方法一如图所示,以三棱锥的顶点P为原点,以PA、PB、PC所在直线分别为x轴、y轴、z轴建立空间直角坐标系.令PA=PB=PC=3,则A(3,0,0)、B(0,3,0)、C(0,0,3)、E(0,2,1)、F(0,1,0)、G(1,1,0)、P(0,0,0).于是=(3,0,0),=(3,0,0),故=3,∴PA∥FG.而PA⊥平面PBC,∴FG⊥平面PBC,又FG⊂平面EFG,∴平面EFG⊥平面PBC.方法二同方法一,建立空间直角坐标系,则E(0,2,1)、F(0,1,0)、G(1,1,0).=(0,-1,-1),=(0,-1,-1),设平面EFG的法向量是n=(x,y,z),则有n⊥,n⊥,∴令y=1,得z=-1,x=0,即n=(0,1,-1).而显然=(3,0,0)是平面PBC的一个法向量.这样n·= 0,∴n⊥即平面PBC的法向量与平面EFG的法向量互相垂直,∴平面EFG⊥平面PBC.(2)∵=(1,1,1),=(1,1,0),=(0,3,3),∴·=11= 0,·=33 = 0,∴EG⊥PG,EG⊥BC,∴EG是PG与BC的公垂线段.知识点四利用向量方法求角四棱锥P—ABCD中,PD⊥平面ABCD,PA与平面ABCD所成的角为60°,在四边形ABCD中,∠D=∠DAB=90°,AB=4,CD=1,AD=2.(1)建立适当的坐标系,并写出点B,P的坐标;(2)求异面直线PA与BC所成角的余弦值.解(1)如图所示,以D为原点,射线DA,DC,DP分别为x轴,y轴,z轴的正方向,建立空间直角坐标系D—xyz,∵∠D=∠DAB=90°,AB=4,CD=1,AD=2,∴A(2,0,0),C(0,1,0),B(2,4,0).由PD⊥面ABCD得∠PAD为PA与平面ABCD所成的角.∴∠PAD=60°.在Rt△PAD中,由AD=2,得PD=2.∴P(0,0,2).(2)∵=(2,0,-2),=(2,3,0)∴cos〈,〉=∴PA与BC所成角的余弦值为.正方体ABEF-DCE′F′中,M、N分别为AC、BF的中点(如图所示),求平面MNA 与平面MNB所成二面角的余弦值.解取MN的中点G,连结BG,设正方体棱长为1.方法一∵△AMN,△BMN为等腰三角形,∴AG⊥MN,BG⊥MN.∴∠AGB为二面角的平面角或其补角.∵AG=BG=,,设〈,〉=θ,2=2+2·+2,∴1=()2+2××cosθ+()2.∴cosθ=,故所求二面角的余弦值为.方法二以B为坐标原点,BA,BE,BC所在的直线分别为x轴、y轴、z轴建立空间直角坐标系B-xyz则M(,0,),N (,,0),中点G(,,),A(1,0,0),B(0,0,0),由方法一知∠AGB为二面角的平面角或其补角.∴=(,-,-),=(,-,-),∴ cos<, >==,故所求二面角的余弦值为.方法三建立如方法二的坐标系,∴即取n1=(1,1,1).同理可求得平面BMN的法向量n2=(1,-1,-1).∴cos〈n1,n2〉=,故所求二面角的余弦值为知识点五用向量方法求空间的距离已知正方形ABCD的边长为4,E、F分别是AB、AD的中点,GC⊥平面ABCD,且GC=2,求点B到平面EFG的距离.解如图所示,以C为原点,CB、CD、CG所在直线分别为x、y、z轴建立空间直角坐标系C-xyz.由题意知C(0,0,0),A(4,4,0),B(4,0,0),D(0,4,0),E(4,2,0),F(2,4,0),G(0,0,2).=(0,2,0),=(-2,4,0),设向量⊥平面GEF,垂足为M,则M、G、E、F四点共面,故存在实数x,y,z,使= x+ y+ z,即= x(0,2,0)+y(2,4,0)+z(4,0,2)=(2y4z,2x+4y,2z).由BM⊥平面GEF,得⊥,⊥,于是·=0,·=0,即即,解得∴=(-2y-4z,2x+4y,2z)=∴||=即点B到平面GEF的距离为.考题赏析(安徽高考)如图所示,在四棱锥O—ABCD中,底面ABCD是边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求异面直线AB与MD所成角的大小;(2)求点B到平面OCD的距离.解作AP⊥CD于点P.如图,分别以AB、AP、AO所在直线为x、y、z轴建立平面直角坐标系.A(0,0,0),B(1,0,0),P (0,,0),D (-,,0),O(0,0,2),M(0,0,1).(1)设AB与MD所成角为θ,∵=(1,0,0),=(-,,-1),∴cos =.∴θ=.∴AB与MD所成角的大小为.(2)∵=(0,,),=(,,),∴设平面OCD的法向量为n = ( x, y , z ),则n·=0,n·= 0.得取z=,解得n = (0,4,).设点B到平面OCD的距离为d,则d为在向量n上的投影的绝对值.∵=(1,0,2),∴d=,∴点B到平面OCD的距离为,1.已知A(1,0,0)、B(0,1,0)、C(0,0,1),则平面ABC的一个单位法向量是( )A.(,,-) B.(,-,)C.(-,,) D.(-,-,-)答案 D=(-1,1,0),是平面OAC的一个法向量.=(-1,0,1),=(0,-1,1)设平面ABC的一个法向量为n=(x,y,z)∴令x=1,则y=1,z=1∴n=(1,1,1)单位法向量为:=± (,,).2.已知正方体ABCD—A1B1C1D1,E、F分别是正方形A1B1C1D1和ADD1A1的中心,则EF和CD所成的角是( )A.60°B.45°C.30°D.90°答案 B3.设l1的方向向量a=(1,2,-2),l2的方向向量b=(-2,3,m),若l1⊥l2,则m=( ) A.1 B.2 C.D.3答案 B解析因l1⊥l2,所以a·b=0,则有1×(-2)+2×3+(-2)×m=0,∴2m=6-2=4,即m=2.4.若两个不同平面α,β的法向量分别为u=(1,2,-1),v=(-3,-6,3),则( )A.α∥βB.α⊥βC.α,β相交但不垂直D.以上均不正确答案 A解析因v=-3u,∴v∥u.故α∥β.5.已知a、b是异面直线,A、B∈a,C、D∈b,AC⊥b,BD⊥b,且AB=2,CD=1,则a与b所成的角是( )A.30°B.45°C.60°D.90°答案 C解析设〈,〉=θ,·=(++·= ||2= 1,cosθ=,所以θ=606.若异面直线l1、l2的方向向量分别是a=(0,-2,-1),b=(2,0,4),则异面直线l1与l2的夹角的余弦值等于( )A.B.C.-D.答案 B解析设异面直线l1与l2的夹角为θ,则cosθ=7.已知向量n=(6,3,4)和直线l垂直,点A(2,0,2)在直线l上,则点P(-4,0,2)到直线l的距离为________.答案,解析=(6,0,0),因为点A在直线l上,n与l垂直,所以点P到直线l的距离为8.平面α的法向量为(1,0,-1),平面β的法向量为(0,-1,1),则平面α与平面β所成二面角的大小为________.答案或,解析设n1=(1,0,-1),n2=(0,-1,1)则cos〈n1,n2〉=〈n1,n2〉=.因平面α与平面β所成的角与〈n1,n2〉相等或互补,所以α与β所成的角为或.9.已知四面体顶点A(2,3,1)、B(4,1,-2)、C(6,3,7)和D(-5,-4,8),则顶点D到平面ABC的距离为________.答案11解析设平面ABC的一个法向量为n =(x,y,z)则令x=1,则n = (1,2,),=(7,7,7)故所求距离为,10.如图所示,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥平面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于F.(1)证明:PA∥平面BDE;(2)证明:PB⊥平面DEF.证明(1)如图建立空间直角坐标系,设DC=a,AC∩BD=G,连结EG,则A(a,0,0),P(0,0,a),C(0,a,0),E (0,,),G (,,0).于是=(a,0,a),=(,0,),∴= 2,∴PA∥EG.又EG平面DEB.PA平面DEB.∴PA∥平面DEB.(2)由B(a,a,0),得=(a, a, a),又=(0, ,),∵·=∴PB⊥DE.又EF⊥PB,EF∩DE=E,∴PB⊥平面EFD.11.如图所示,已知点P在正方体ABCD—A′B′C′D′的对角线BD′上,∠PDA=60°.(1)求DP与CC′所成角的大小;(2)求DP与平面AA′D′D所成角的大小.解如图所示,以D为原点,DA为单位长度建立空间直角坐标系D—xyz.则=(1,0,0),= (0,0,1).连结BD,B′D′.在平面BB′D′D中,延长DP交B′D′于H.设= (m,m,1) (m>0),由已知〈,〉= 60,由·= ||||cos〈,〉,可得2m =解得m =,所以=(,,1),(1)因为cos〈,〉=(2)所以〈,〉= 45,即DP与CC′所成的角为45.(2)平面AA′D′D的一个法向量是= (0,1,0).因为cos〈,〉=所以〈,〉= 60°,可得DP与平面AA′D′D所成的角为30.12. 如图,四边形ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.平面PBD⊥平面PAC,(1)求点A到平面PBD的距离;(2)求异面直线AB与PC的距离.(1)解以AC、BD的交点为坐标原点,以AC、BD所在直线为x轴、y轴建立如图所示的空间直角坐标系,则A(3,0,0),B(0,1,0),C(,0,0),D(0,1,0),P(3,0,2).设平面PBD的一个法向量为n1=(1,y1,z1).由n1⊥,n1⊥,可得n1=(1,0,).(1)=(,0,0),点A到平面PBD的距离,,13.如图所示,直三棱柱ABC—A1B1C1中,底面是以∠ABC为直角的等腰直角三角形,AC = 2a,BB1 = 3a,D为A1C1的中点,在线段AA1上是否存在点F,使CF⊥平面B1DF?若存在,求出||;若不存在,请说明理由.解以B为坐标原点,建立如图所示的空间直角坐标系B-xyz.假设存在点F,使CF⊥平面B1DF,并设=λ=λ(0,0,3a)=(0,0,3λa)(0<λ<1),∵D为A1C1的中点,∴D(,,3a)=(,,3a)-(0,0,3a)=(,,0),=∵CF⊥平面B1DF,∴CF⊥, ⊥,即解得λ=或λ=∴存在点F使CF⊥面B1DF,且当λ=时,||=,|| = a当λ=,|| =,|| = 2a.14.如图(1)所示,已知四边形ABCD是上、下底边长分别为2和6,高为eq \r(3)的等腰梯形.将它沿对称轴OO1折成直二面角,如图(2).(1)证明:AC⊥BO1;(2)求二面角O—AC—O1的余弦值.(1)证明由题设知OA⊥OO1,OB⊥OO1.所以∠AOB是所折成的直二面角的平面角,即OA⊥OB.故以O为原点,OA、OB、OO1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,如图所示,则相关各点的坐标是A(3,0,0)、B(0,3,0)、C(0,1, )、O1(0,0, ).·=-3+·=0.所以AC⊥BO1.(2)解因为·=+ ·=0.所以BO1⊥OC.由(1)AC⊥BO1,所以BO1⊥平面OAC,是平面OAC的一个法向量.设n=(x,y,z)是平面O1AC的一个法向量,由取z= ,得n=(1,0,).设二面角O-AC-O1的大小为θ,由n 、的方向可知θ=〈n,〉,所以cosθ= cos〈n ,〉=即二面角O—AC—O1的余弦值是.。

高中数学选修2-1第三章《空间向量与立体几何》单元质量测评(含答案)

高中数学选修2-1第三章《空间向量与立体几何》单元质量测评(含答案)

高中数学选修2-1第三章《空间向量与立体几何》单元质量测评(含答案)一、选择题:本大题共12小题,每小题5分,共60分.1.若平面α外直线l 的方向向量为a ,平面α的法向量为n ,则能使l ∥α的是( )A .a =(1,0,1),n =(-2,0,0)B .a =(1,3,5),n =(1,0,1)C .a =(0,2,1),n =(-1,0,-1)D .a =(1,-1,3),n =(0,3,1)2.已知A (1,2,-1),B 为A 关于平面xOy 的对称点,C 为B 关于y 轴的对称点,则BC →=( )A .(-2,0,-2)B .(2,0,2)C .(-1,0,-1)D .(0,-2,-2) 3.设(43)(32)a b ==,,,,,x z ,且∥a b ,则xz 等于( ) A.4-B.9C.9-D.6494.若向量(12)λ=,,a 与(212)=-,,b 的夹角的余弦值为89,则λ=( )A.2 B.2- C.2-或255D.2或255-5.已知A (2,-4,-1),B (-1,5,1),C (3,-4,1),D (0,0,0),令a =CA →,b =CB →,则a +b 为( )A .(5,-9,2)B .(-5,9,-2)C .(5,9,-2)D .(5,-9,-2) 6.已知a =(1,2,-y ),b =(x,1,2),且(a +2b )∥(2a -b ),则( )A .x =13,y =1B .x =12,y =-4C .x =2,y =-14 D .x =1,y =-17.已知向量i ,j ,k 是一组单位正交向量,m =8j +3k ,n =-i +5j -4k ,则m ·n =( )A .7B .-20C .28D .118.已知a =(-1,-5,-2),b =(x,2,x +2),若a ⊥b ,则x 的值为( )A .0B .-143C .-6D .±69.如图,在四面体ABCD 中,已知AB →=b ,AD →=a ,AC →=c ,BE →=12EC →,则DE →=( )A .-a +23b +13cB .a +23b +13cC .a -23b +13c D.23a -b +13c10.如图所示,直三棱柱ABC —A 1B 1C 1中,AA 1=AB =AC ,AB ⊥AC ,M 是CC 1的中点,Q 是BC 的中点,P 是A 1B 1的中点,则直线PQ 与AM 所成的角为( )A.π6B.π4C.π3D.π211.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a 、b 、c 三向量共 面,则实数λ等于 ( )A .627B .637C .647D .65712. 已知△ABC 的三个顶点为A (3,3,2),B (4,-3,7),C (0,5,1),则BC 边上的 中线长为 ( )A .2B .3C .4D .5 二、填空题:本大题共4小题,每小题5分,共20分.13.在棱长为a 的正方体1111ABCD A B C D 中,向量1BA 与向量AC 所成的角为 . 14.在长方体ABCD —A 1B 1C 1D 1中,若E 为矩形ABCD 的中心,设A 1E →=A 1A →+xA 1B 1→+yA 1D 1→,则x =________,y =________.15.已知a =(3,1,5),b =(1,2,-3),向量c 与z 轴垂直,且满足a ·c =9,b ·c =-4,则c =________.16.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M 是AA 1的中点,则A 1到平面MBD 的距离为________. 三、解答题:17.(本小题满分10分)已知空间三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →.(1)求a 与b 的夹角θ的余弦值;(2)若向量k a +b 与k a -2b 互相垂直,求k 的值.18.(本小题10分)如图所示,已知几何体ABCD -A 1B 1C 1D 1是平行六面体.化简12AA 1→+BC →+23AB →,并在图上标出结果;19.(本小题满分10分)如图,在直棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3. 证明:AC ⊥B 1D ;20.(本小题满分10分) 已知正方体ABCD -A 1B 1C 1D 1,求证:AD 1∥平面BDC 1. 参考答案 一.选择题二.填空题13. 120° 14. 12 12 15. (225,-215,0) 16.66a三、解答题:17. 解 a =AB →=(-1,1,2)-(-2,0,2)=(1,1,0),b =AC →=(-3,0,4)-(-2,0,2)=(-1,0,2).(1)cos θ=a ·b |a ||b |=-1+0+02×5=-1010, ∴a 与b 的夹角θ的余弦值为-1010. (2)k a +b =(k ,k,0)+(-1,0,2)=(k -1,k,2),k a -2b =(k ,k,0)-(-2,0,4)=(k +2,k ,-4),∴(k -1,k,2)·(k +2,k ,-4)=(k -1)·(k +2)+k 2-8=0,即2k 2+k -10=0,∴k =-52或k =2.18. 解 如图所示,取AA 1的中点E ,在D 1C 1上取一点F ,使得D 1F =2FC 1,连接EF ,则 12AA 1→+BC →+23AB → =EA 1→+A 1D 1→+D 1F →=EF →.19. 解 由题意易知,AB ,AD ,AA 1两两垂直.如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.设AB =t ,则相关各点的坐标为A (0,0,0),B (t,0,0),B 1(t,0,3),C (t,1,0),C 1(t,1,3),D (0,3,0),D 1(0,3,3).从而B 1D →=(-t,3,-3),AC →=(t,1,0),BD →=(-t,3,0).因为AC ⊥BD ,所以AC →·BD →=-t 2+3+0=0.解得t =3或t =-3(舍去).于是B 1D →=(-3,3,-3),AC →=(3,1,0).因为AC →·B 1D →=-3+3+0=0,所以AC →⊥B 1D →,即AC ⊥B 1D .20.证明 以D 为坐标原点,建立如图所示的空间直角坐标系Dxyz .设正方体的棱长为1,则有D (0,0,0),A (1,0,0),D 1(0,0,1),A 1(1,0,1),C (0,1,0),B (1,1,0),C 1(0,1,1),AD 1→=(-1,0,1),设n =(x ,y ,z )为平面BDC 1的法向量, 则n ⊥DB →,n ⊥DC 1→,所以⎩⎪⎨⎪⎧x ,y ,z ,1,=0,x ,y ,z,1,=0,即⎩⎪⎨⎪⎧x +y =0,y +z =0,令x =1,则n =(1,-1,1),n ·AD 1→=(1,-1,1)·(-1,0,1)=0,故n ⊥AD 1→, 又AD 1⊄平面BDC 1, 所以AD 1∥平面BDC 1.。

人教A版选修2-1第三章第九课时同步练习3.2立体几何中的向量方法(2)(修改稿)

人教A版选修2-1第三章第九课时同步练习3.2立体几何中的向量方法(2)(修改稿)

§3.2立体几何中的向量方法(2)一、选择题1.平面α的斜线l 与它在这个平面上射影l ′的方向向量分别为a =(1,0,1),b =(0,1,1),则斜线l 与平面α所成的角为( )A .30°B .45°C .60°D .90°2.已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 、SD 所成的角的余弦值为( )A.13B.23 C .-33 D.233.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成的角的余弦值为( )A.32B.1010 C.35D.254.把正方形ABCD 沿对角线AC 折起成直二面角,点E 、F 分别是AD 、BC 的中点,O 是正方形中心,则折起后,∠EOF 的大小为( )A .(0°,90°)B .90°C .120°D .(60°,120°)5.把正方形ABCD 沿对角线AC 折起,当A 、B 、C 、D 四点为顶点的三棱锥体积最大时,直线BD 与平面ABC 所成的角的大小为( )A .90°B .60°C .45°D .30°6.在正方体ABCD -A 1B 1C 1D 1中,若F 、G 分别是棱AB 、CC 1的中点,则直线FG 与平面A 1ACC 1所成角的正弦值等于( )A.23B.54 C.33 D.367.从点P 引三条射线P A 、PB 、PC ,每两条的夹角都是60°,则二面角B —P A —C 的余弦值是( )A.12B.13C.33D.328.在边长为a 的正三角形ABC 中,AD ⊥BC 于D ,沿AD 折成二面角B —AD —C 后, BC =12a ,这时二面角B —AD —C 的大小为( )A .30°B .45°C .60°D .90°二、填空题9.如图,在正三棱柱ABC -A 1B 1C 1中,已知AB =1,点D 在棱BB 1上,且BD =1,则AD 与平面AA 1C 1C 所成角的正弦值为________.10.在正方体ABCD -A 1B 1C 1D 1中,则A 1B 与平面A 1B 1CD 所成角的大小为___.11.如图所示,ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,则SC 与平面ABCD 所成的角的正弦值为________.三、解答题12.如图5所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)求直线BE 和平面ABB 1A 1所成的角的正弦值;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你的结论.参考答案一、选择题 1.[答案] C[解析] l 与α所成的角为a 与b 所成的角(或其补角),∵cos 〈a ,b 〉=a ·b |a |·|b |=12,∴〈a ,b 〉=60°. 2.[答案] C[解析] 如图,设棱长为1,∵AE →=12(AB →+AS →)=12(DC →+DS →-DA →),∴|AE →|=14(1+1+1+2×1×1cos60°-2×1×1cos60°)=32, ∴cos 〈AE →,SD →〉=AE →·SD →|AE →|·|SD →|=12(AB →+AS →)·SD →32·1=12(DC →+DS →-DA →)·SD →32=-33,故选C. 3.[答案] D[解析] 解法一:∵AM →=AA 1→+A 1M →,CN →=CB →+BN →, ∴AM →·CN →=(AA 1→+A 1M →)·(CB →+BN →) =AA 1→·BN →=12.而|AM →|=(AA 1→+A 1M →)·(AA 1→+A 1M →)=|AA 1→|2+|A 1M →|2=1+14=52. 同理,|CN →|=52.如令α为所求角,则cos α=AM →·CN →|AM →||CN →|=1254=25.应选D.解法二:如图以D 为原点,分别以DA 、DC 、DD 1为x 轴、y 轴、z 轴建立空间直角坐标系,则A (1,0,0),M (1,12,1),C (0,1,0),N (1,1,12),∴AM →=⎝⎛⎭⎫1,12,1-(1,0,0)=(0,12,1),CN →=(1,1,12)-(0,1,0)=(1,0,12). 故AM →·CN →=0×1+12×0+1×12=12,|AM →|=02+⎝⎛⎭⎫122+12=52, |CN →|=12+02+⎝⎛⎭⎫122=52.∴cos α=AM →·CN →|AM →||CN →|=1252·52=25.4.[答案] C[解析] OE →=12(OA →+OD →),OF →=12(OB →+OC →),∴OE →·OF →=14(OA →·OB →+OA →·OC →+OD →·OB →+OD →·OC →)=-14|OA →|2.又|OE →|=|OF →|=22|OA →|,∴cos 〈OE →,OF →〉=-14|OA →|212|OA →|2=-12.∴∠EOF =120°,故选C. 5.[答案] C[解析] 翻折后A 、B 、C 、D 四点构成三棱锥的体积最大时,平面ADC ⊥平面BAC ,设未折前正方形的对角线交点为O ,则∠DBO 即为BD 与平面ABC 所成的角,大小为45°. 6.[答案] D[解析] 解法一:过F 作BD 的平行线交AC 于M ,则∠MGF 即为所求.设正方体棱长为1,MF =24,GF =62, ∴sin ∠MGF =36. 解法二:分别以AB 、AD 、AA 1为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体棱长为1,则易知平面ACC 1A 1的一个法向量为n =(-1,1,0),∵F (12,0,0),G (1,1,12),∴FG →=⎝⎛⎭⎫12,1,12, 设直线FG 与平面A 1ACC 1所成角θ,则sin θ=|cos 〈n ,FG →〉|=|n ·FG →||n |·|FG →|=122·62=36.7.[答案] B[解析] 在射线P A 上取一点O ,分别在面P AB ,P AC 内作OE ⊥P A ,OF ⊥P A 交PB ,PB 于EF ,连接E 、F ,则∠EOF 即为所求二面角的平面角.在△EOF 中可求得cos ∠EOF =13. 8.[答案] C 二、填空题 9.[答案]64[解析] 解法一:取AC 、A 1C 1的中点M 、M 1,连结MM 1、BM .过D 作DN ∥BM ,则容易证明DN ⊥平面AA 1C 1C .连结AN ,则∠DAN 就是AD 与平面AA 1C 1C 所成的角.在Rt △DAN 中, sin ∠DAN =ND AD =322=64.解法二:取AC 、A 1C 1中点O 、E ,则OB ⊥AC ,OE ⊥平面ABC ,以O 为原点OA 、OB 、OE 为x 轴、y 轴、z 轴建立空间直角坐标系,在正三角形ABC 中,BM=32AB =32,∴A ⎝⎛⎭⎫12,0,0,B ⎝⎛⎭⎫0,32,0,D ⎝⎛⎭⎫0,32,1, ∴AD →=⎝⎛⎭⎫-12,32,1,又平面AA 1C 1C 的法向量为e =(0,1,0), 设直线AD 与平面AA 1C 1C 所成角为θ,则 sin θ=|cos 〈AD →,e 〉|=|AD →·e ||AD →|·|e |=64.解法三:设BA →=a ,BC →=b ,BD →=c , 由条件知a ·b =12,a ·c =0,b ·c =0,又AD →=BD →-BC →=c -b ,平面AA 1C 1C 的法向量BM →=12(a +b ).设直线BD 与平面AA 1C 1C 成角为θ,则 sin θ=|cos 〈AD →,BM →〉|=|AD →·BM →||AD →|·|BM →|,∵AD →·BM →=(c -b )·12(a +b )=12a ·c -12a ·b +12b ·c -12|b |2=-34. |AD →|2=(c -b )2=|c |2+|b |2-2b ·c =2, ∴|AD →|=2,|BM →|2=14(a +b )2=14(|a |2+|b |2+2a ·b )=34,∴|BM →|=32,∴sin θ=64.10.[答案] 30°[解析] 解法一:连结BC 1,设与B 1C 交于O 点,连结A 1O . ∵BC 1⊥B 1C ,A 1B 1⊥BC 1,A 1B 1∩B 1C =B 1. ∴BC 1⊥平面A 1B 1C ,∴A 1B 在平面A 1B 1CD 内的射影为A 1O .∴∠OA 1B 就是A 1B 与平面A 1B 1CD 所成的角,设正方体的棱长为1.在Rt △A 1OB 中,A 1B =2,BO =22, ∴sin ∠OA 1B =BO A 1B =222=12.∴∠OA 1B =30°.即A 1B 与平面A 1B 1CD 所成的角为30°.解法二:以D 为原点,DA ,DC ,DD 1分别x ,y ,z 轴,建立如图所示的空间直角坐标系,设正方体的棱长为1,则A 1(1,0,1),C (0,1,0).∴DA 1→=(1,0,1),DC →=(0,1,0).设平面A 1B 1CD 的一个法向量为n =(x ,y ,z ) 则⎩⎪⎨⎪⎧n ·DA 1→=0,n ·DC →=0⇒⎩⎪⎨⎪⎧x +z =0y =0令z =-1得x =1.∴n =(1,0,-1),又B (1,1,0),∴A 1B →=(0,1,-1), cos 〈n ,A 1B →〉=A 1B →·n |A 1B →||n |=12·2=12.∴〈n ,A 1B →〉=60°,所以A 1B 与平面A 1B 1CD 所成的角为30°. 11.[答案]33[解析] AS →是平面ABCD 的法向量, 设CS →与AS →的夹角为φ. ∵CS →=CB →+BA →+AS →,∴AS →·CS →=AS →·(CB →+BA →+AS →)=AS →·AS →=1. |AS →|=1,|CS →|=(CB ―→+BA ―→+AS ―→)2 =|CB ―→|2+|BA ―→|2+|AS ―→|2=3, ∴cos φ=AS →·CS →|AS →|·|CS →|=33.三、解答题12.[解析] 解法一:设正方体的棱长为1,如图所示,以AB →,AD →,AA 1→为单位正交基底建立空间直角坐标系.(1)依题意,得B (1,0,0),E (0,1,12),A (0,0,0),D (0,1,0),所以BE →=(-1,1,12),AD →=(0,1,0).在正方体ABCD -A 1B 1C 1D 1中,因为AD ⊥平面ABB 1A 1,所以AD →是平面ABB 1A 1的一个法向量,设直线BE 与平面ABB 1A 1所成的角为θ,则sin θ=|BE →·AD →||BE →|·|AD →|=132×1=23.即直线BE 与平面ABB 1A 1所成的角的正弦值为23.(2)依题意,得A 1(0,0,1),BA 1→=(-1,0,1), BE →=(-1,1,12).设n =(x ,y ,z )是平面A 1BE 得一个法向量,则由n ·BA 1→=0,n ·BE →=0,得⎩⎪⎨⎪⎧-x +z =0,-x +y +12z =0 所以x =z ,y =12z .取z =2,得n =(2,1,2).设F 是棱C 1D 1上的点,则F (t,1,1)(0≤t ≤1).又B 1(1,0,1),所以B 1F →=(t -1,1,0),而B 1F ⊄平面A 1BE ,于是B 1F ∥平面A 1BE ⇔B 1F →·n =0⇔(t -1,1,0)·(2,1,2)=0⇔2(t -1)+1=0⇔t =12⇔F 为C 1D 1的中点.这说明在棱C 1D 1上存在一点F (C 1D 1的中点),使B 1F ∥平面A 1BE . 解法二:(1)如图(a)所示,取AA 1的中点M ,连结EM ,BM . 因为E 是DD 1的中点,四边形ADD 1A 1为正方形,所以EM ∥AD . 又在正方体ABCD -A 1B 1C 1D 1中,AD ⊥平面ABB 1A 1,所以EM ⊥ABB 1A 1,从而BM 为直线BE 在平面ABB 1A 1上的射影, ∠EBM 直线BE 与平面ABB 1A 1所成的角.设正方体的棱长为2,则EM =AD =2,BE =22+22+12=3.于是,在Rt △BEM 中,sin ∠EBM =EM BE =23.即直线BE 和平面ABB 1A 1所成的角的正弦值为23.(2)在棱C 1D 1上存在点F ,使B 1F ∥平面A 1BE .如图(b)所示,分别取C 1D 1和CD 的中点F ,G ,连结EG ,BG ,CD 1,FG .因A 1D 1∥B 1C 1∥BC ,且A 1D 1=BC ,所以四边形A 1BCD 1为平行四边形,因此D 1C ∥A 1B . 又E ,G 分别为D 1D ,CD 的中点,所以EG ∥D 1C ,从而EG ∥A 1B . 这说明A 1,B ,G ,E 共面.所以BG ⊂平面A 1BE .因四边形C 1CDD 1与B 1BCC 1皆为正方形,F ,G 分别为C 1D 1和CD 的中点,所以FG ∥C 1C ∥B 1B ,且FG =C 1C =B 1B ,因此四边形B 1BGF 为平行四边形,所以B 1F ∥BG .而B 1F ⊄平面A 1BE ,BG ⊂平面A 1BE ,故B 1F ∥平面A 1BE .[点评] 本题考查了直线与平面所成的角,直线与平面平行的性质与判定.综合考查了学生空间想象能力、探究能力和运算能力.。

高中数学(人教版A版选修2-1)配套课时作业:第三章 空间向量与立体几何 章末总结 Word版含答案

高中数学(人教版A版选修2-1)配套课时作业:第三章  空间向量与立体几何 章末总结 Word版含答案

章末总结知识点一 空间向量的计算空间向量及其运算的知识与方法与平面向量及其运算类似,是平面向量的拓展,主要考查空间向量的共线与共面以及数量积运算,是用向量法求解立体几何问题的基础.【例1】沿着正四面体O -ABC 的三条棱OA 、OB →、OC →的方向有大小等于1、2和3的三个力f 1,f 2,f 3.试求此三个力的合力f 的大小以及此合力与三条棱夹角的余弦值.知识点二 证明平行、垂直关系空间图形中的平行、垂直问题是立体几何当中最重要的问题之一,利用空间向量证明平行和垂直问题,主要是运用直线的方向向量和平面的法向量,借助空间中已有的一些关于平行和垂直的定理,再通过向量运算来解决.例2如图,正方体ABCD—A1B1C1D1中,M、N分别为AB、B1C的中点.(1)用向量法证明平面A1BD∥平面B1CD1;(2)用向量法证明MN⊥面A1BD.例3如图,在棱长为1的正方体ABCD—A1B1C1D1中,P是侧棱CC1上的一点,CP=m.试确定m使得直线AP与平面BDD1B1所成的角为60°.例4正方体ABCD—A1B1C1D1中,E、F分别是BB1、CD的中点,求证:平面AED⊥平面A1FD1.知识点三空间向量与空间角求异面直线所成的角、直线与平面所成的角、二面角,一般有两种方法:即几何法和向量法,几何法求角时,需要先作出(或证出)所求空间角的平面角,费时费力,难度很大.而利用向量法,只需求出直线的方向向量与平面的法向量.即可求解,体现了向量法极大的优越性.例5如图所示,在长方体ABCD—A1B1C1D1中,AB=5,AD=8,AA1=4,M为B1C1上一点且B1M=2,点N在线段A1D上,A1D⊥AN.(1)cos〈1A D,AM→〉;(2)求直线AD与平面ANM所成角的余弦值;(3)求平面ANM与平面ABCD所成角的余弦值.知识点四空间向量与空间距离近年来,对距离的考查主要体现在两点间的距离和点到平面的距离,两点间的距离可以直接代入向量模的公式求解,点面距可以借助直线的方向向量与平面的法向量求解,或者利用等积求高的方法求解.例6如图,P A⊥平面ABCD,四边形ABCD是正方形,P A=AD=2,M、N分别是AB、PC的中点.(1)求二面角P—CD—B的大小;(2)求证:平面MND⊥平面PCD;(3)求点P到平面MND的距离.章末总结重点解读例1 解如图所示,用a ,b ,c 分别代表棱OA →、OB →、OC →上的三个单位向量,则f 1=a ,f 2=2b ,f 3=3c ,则f =f 1+f 2+f 3=a +2b +3c ,∴|f |2=(a +2b +3c )(a +2b +3c )=|a |2+4|b |2+9|c |2+4a·b +6a·c +12b·c=14+4cos 60°+6cos 60°+12 cos 60°=14+2+3+6=25,∴|f |=5,即所求合力的大小为5.且cos 〈f ,a 〉=f·a |f |·|a |=|a |2+2a·b +3a·c 5=1+1+325=710, 同理可得:cos 〈f ,b 〉=45,cos 〈f ,c 〉=910. 例2 证明 (1)在正方体ABCD —A 1B 1C 1D 1中,BD →=AD →-AB →,B 1D 1→=A 1D 1→-A 1B 1→,又∵AD →=A 1D 1→,AB →=A 1B 1→,∴BD →=B 1D 1→.∴BD ∥B 1D 1.同理可证A 1B ∥D 1C ,又BD ∩A 1B =B ,B 1D 1∩D 1C =D 1,所以平面A 1BD ∥平面B 1CD 1.(2) MN →=MB →+BC →+CN →=12AB →+AD →+12(CB →+CC 1→) =12AB →+AD →+12(-AD →+AA 1→) =12AB →+12AD →+12AA 1→. 设AB →=a ,AD →=b ,AA 1→=c ,则MN →=12(a +b +c ). 又BD →=AD →-AB →=b -a ,∴MN →·BD →=12(a +b +c )(b -a )=12(b 2-a 2+c·b -c·a ). 又∵A 1A ⊥AD ,A 1A ⊥AB ,∴c·b =0,c·a =0.又|b |=|a |,∴b 2=a 2,∴b 2-a 2=0.∴MN →·BD →=0,∴MN ⊥BD .同理可证,MN ⊥A 1B ,又A 1B ∩BD =B ,∴MN ⊥平面A 1BD .例3 解 建立如图所示的空间直角坐标系, 则A (1,0,0),B (1,1,0),P (0,1,m ),C (0,1,0),D (0,0,0),B 1(1,1,1),D 1(0,0,1).则BD →=(-1,-1,0),BB 1→=(0,0,1),AP →=(-1,1,m ),AC →=(-1,1,0).又由AC →·BD →=0,AC →·BB 1→=0知,AC →为平面BB 1D 1D 的一个法向量. 设AP 与平面BB 1D 1D 所成的角为θ,则sin θ=|cos 〈AP →,AC →〉|= =22+m 2·2. 依题意得22+2m 2·2=sin 60°=32, 解得m =33. 故当m =33时,直线AP 与平面BDD 1B 1所成角为60°. 例4 证明如图,建立空间直角坐标系Dxyz .设正方体棱长为1,则E ⎝⎛⎭⎫1,1,12、D 1(0,0,1)、F ⎝⎛⎭⎫0,12,0、A (1,0,0). ∴DA →=(1,0,0)=D 1A 1→,DE →=⎝⎛⎭⎫1,1,12, D 1F →=⎝⎛⎭⎫0,12,-1. 设m =(x 1,y 1,z 1),n =(x 2,y 2,z 2)分别是平面AED 和A 1FD 1的一个法向量.⇒⎩⎪⎨⎪⎧ x 1=0x 1+y 1+12z 1=0. 令y 1=1,得m =(0,1,-2). 又由⇒⎩⎪⎨⎪⎧x 2=012y 2-z 2=0, 令z 2=1,得n =(0,2,1).∵m·n =(0,1,-2)·(0,2,1)=0,∴m ⊥n ,故平面AED ⊥平面A 1FD 1.例5 解 (1)建立空间直角坐标系(如图).则A (0,0,0),A 1(0,0,4),D (0,8,0),M (5,2,4).∴AM →=(5,2,4),A 1D →=(0,8,-4).∴AM →·A 1D →=0+16-16=0,∴AM →⊥A 1D →.∴cos 〈A 1D →,AM →〉=0.(2)∵A 1D ⊥AM ,A 1D ⊥AN ,且AM ∩AN =A , ∴A 1D →⊥平面ANM ,∴A 1D →=(0,8,-4)是平面ANM 的一个法向量.又AD →=(0,8,0),|A 1D →|=45,|AD →|=8,A 1D →·AD →=64,∴cos 〈A 1D →,AD →〉=6445×8=25=255. ∴AD 与平面ANM 所成角的余弦值为55. (3)∵平面ANM 的法向量是A 1D →=(0,8,-4),平面ABCD 的法向量是a =(0,0,1),∴cos 〈A 1D →,a 〉=-445=-55. ∴平面ANM 与平面ABCD 所成角的余弦值为55. 例6 (1)解 ∵P A ⊥平面ABCD ,由ABCD 是正方形知AD ⊥CD .∴CD ⊥面P AD ,∴PD ⊥CD .∴∠PDA 是二面角P —CD —B 的平面角. ∵P A =AD ,∴∠PDA =45°,即二面角P —CD —B 的大小为45°. (2)如图,建立空间直角坐标系,则P (0,0,2),D (0,2,0),C (2,2,0),M (1,0,0),∵N 是PC 的中点,∴N (1,1,1),∴MN →=(0,1,1),ND →=(-1,1,-1),PD →=(0,2,-2).设平面MND 的一个法向量为m =(x 1,y 1,z 1),平面PCD 的一个法向量为n =(x 2,y 2,z 2).∴m ·MN →=0,m ·ND →=0,即有⎩⎪⎨⎪⎧ y 1+z 1=0,-x 1+y 1-z 1=0. 令z 1=1,得x 1=-2,y 1=-1.∴m =(-2,-1,1).同理,由n ·ND →=0,n ·PD →=0,即有⎩⎪⎨⎪⎧-x 2+y 2-z 2=0,2y 2-2z 2=0. 令z 2=1,得x 2=0,y 2=1,∴n =(0,1,1). ∵m·n =-2×0+(-1)×1+1×1=0,∴m ⊥n .∴平面MND ⊥平面PCD .(3)设P 到平面MND 的距离为d .由(2)知平面MND 的法向量m =(-2,-1,1), ∵PD →·m =(0,2,-2)·(-2,-1,1)=-4,∴|PD →·m |=4,又|m |=-2+-2+12=6, ∴d ==46=263. 即点P 到平面MND 的距离为263.。

第三章空间向量与立体几何综合测试题(含详解新人教A版选修2-1)

第三章空间向量与立体几何综合测试题(含详解新人教A版选修2-1)

第三章空间向量与立体几何综合测试题(含详解新人教A版选修2-1)x第三章空间向量与立体几何综合测试题(含详解新人教A版选修2-1)(时间:100分钟;满分:120分)一、选择题(本大题共10小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知a=(λ+1,0,2λ),b=(6,2μ-1,2),若a∥b,则λ与μ的值分别为()A.15,12B.5,2C.-15,-12D.-5,-2解析:选A.a∥b,则存在m∈R,使得a=mb,又a=(λ+1,0,2λ),b=(6,2μ-1,2),则有λ+1=6m,0=-,2λ=2m,可得λ=15,μ=12.2.已知A(1,-2,11),B(4,2,3),C(6,-1,4)三点,则△ABC是() A.直角三角形B.钝角三角形C.锐角三角形D.等腰三角形解析:选A.AB→=(3,4,-8),BC→=(2,-3,1),CA→=(-5,-1,7),∴BC→•CA→=-10+3+7=0.∴BC⊥CA.∴△ABC是直角三角形.3.已知在空间四边形OABC中,OA→=a,OB→=b,OC→=c,点M 在OA上,且OM=2MA,N为BC中点,则MN→等于()A.12a-23b+12cB.-23a+12b+12cC.12a+12b-12cD.23a+23b-12c解析:选B.因MN→=ON→-OM→=12(OB→+OC→)-23OA→=12b +12c-23a.4.已知a=(1,0,1),b=(-2,-1,1),c=(3,1,0),则|a-b+2c|等于() A.310B.210C.10D.5解析:选A.|a-b+2c|=-b+,∵a-b+2c=(1,0,1)-(-2,-1,1)+2(3,1,0)=(9,3,0),∴|a-b+2c|=92+32+0=310.5.给出下列命题:①已知a⊥b,则a•(b+c)+c•(b-a)=b•c;②A、B、M、N为空间四点,若BA→、BM→、BN→不能构成空间的一个基底,则A、B、M、N四点共面;③已知a⊥b,则a,b与任何向量都不能构成空间的一个基底;④已知{a,b,c}是空间的一个基底,则基向量a,b可以与向量m=a +c构成空间另一个基底.其中正确命题的个数是()A.1B.2C.3D.4解析:选C.当a⊥b时,a•b=0,a•(b+c)+c•(b-a)=a•b+a•c+c•b -c•a=c•b=b•c,故①正确;当向量BA→、BM→、BN→不能构成空间的一个基底时,BA→、BM→、BN→共面,从而A、B、M、N四点共面,故②正确;当a⊥b时,a,b不共线,任意一个与a,b不共面的向量都可以与a,b构成空间的一个基底,故③错误;当{a,b,c}是空间的一个基底时,a,b,c不共面,所以a,b,m也不共面,故a,b,m可构成空间的另一个基底,故④正确.6.在下列条件中,使M与A、B、C一定共面的是()A.OM→=2OA→-OB→-OC→B.OM→=15OA→+13OB→+12OC→C.MA→+MB→+MC→=0D.OM→+OA→+OB→+OC→=0解析:选C.空间的四点M、A、B、C共面只需满足OM→=xOA→+yOB→+zOC→,且x+y+z=1,或存在实数x,y使得MC→=xMA→+yMB→. 7.在空间直角坐标系Oxyz中,i,j,k分别是x轴、y轴、z轴的方向向量,设a为非零向量,且〈a,i〉=45°,〈a,j〉=60°,则〈a,k〉=()A.30°B.45°C.60°D.90°解析:选C.如图所示,设|a|=m(m>0),a=OP→,PA⊥平面xOy,则在Rt△PBO中,|PB|=|OP→|•cos〈a,i〉=22m,在Rt△PCO中,|OC|=|OP→|•cos〈a,j〉=m2,∴|AB|=m2,在Rt△PAB中,|PA|=|PB|2-|AB|2=24m2-m24=m2,∴|OD|=m2,在Rt△PDO中,cos〈a,k〉=|OD||OP|=12,又0°≤〈a,k〉≤180°,∴〈a,k〉=60°.8.已知点A(-3,4,3),O为坐标原点,则OA与坐标平面yOz所成角的正切值为()A.34B.35C.53D.1解析:选B.A点在面yOz上的射影为B(0,4,3)且|OB|=5,所以OA与平面yOz所成角θ满足tanθ=|AB||OB|=35.9.如图所示,在正方体ABCD-A1B1C1D1中,以D为原点建立空间直角坐标系,E为BB1的中点,F为A1D1的中点,则下列向量中能作为平面AEF的法向量的是()A.(1,-2,4)B.(-4,1,-2)C.(2,-2,1)D.(1,2,-2)解析:选B.设平面AEF的法向量为n=(x,y,z),正方体ABCD-A1B1C1D1的棱长为1,则A(1,0,0),E(1,1,12),F(12,0,1).故AE→=(0,1,12),AF→=(-12,0,1).由AE→•n=0,AF→•n=0,即y+12z=0,-12x+z=0,所以y=-12z,x=2z.当z=-2时,n=(-4,1,-2),故选B.10.正方体ABCD-A1B1C1D1中,二面角A-BD1-B1的大小为() A.90°B.60°C.120°D.45°解析:选C.如图,以C为原点建立空间直角坐标系Cxyz,设正方体的边长为a,则A(a,a,0),B(a,0,0),D1(0,a,a),B1(a,0,a),于是BA→=(0,a,0),BD1→=(-a,a,a),BB1→=(0,0,a).设平面ABD1的法向量为n=(x,y,z),则n•BA→=(x,y,z)•(0,a,0)=ay=0,n•BD1→=(x,y,z)•(-a,a,a)=-ax+ay+az=0.∵a≠0,∴y=0,x=z.令x=z=1,则n=(1,0,1),同理,平面B1BD1的法向量m=(-1,-1,0).由于cos〈n,m〉=n•m|n||m|=-12,而二面角A-BD1-B1为钝角,故为120°.二、填空题(本大题共5小题,把答案填在题中横线上)11.已知a=(2,-1,0),b=(k,0,1),若〈a,b〉=120°,则k=________. 解析:∵cos〈a,b〉=a•b|a||b|=2k5•k2+1=-12<0,∴k<0,且k2=511.∴k=-5511.答案:-551112.若a=(2,3,-1),b=(-2,1,3),则以a,b为邻边的平行四边形的面积为________.解析:cos〈a,b〉=a•b|a||b|=-27,得sin〈a,b〉=357,由公式S=|a||b|sin〈a,b〉可得结果.答案:6513.如图,空间四边形OABC,点M,N分别为OA,BC的中点,且OA→=a,OB→=b,OC→=c,用a,b,c表示MN→,则MN→=________. 解析:MN→=ON→-OM→=12(OB→+OC→)-12OA→=-12a+12b+12c.答案:-12a+12b+12c14.点P是棱长为1的正方体ABCD-A1B1C1D1内一点,且满足AP→=34AB→+12AD→+23AA1→,则点P到棱AB的距离为__________.解析:如图所示,过P作PQ⊥平面ABCD于Q,过Q作QE⊥AB于E,连接PE.∵AP→=34AB→+12AD→+23AA1→,∴PQ=23,EQ=12,∴点P到棱AB的距离为PE=PQ2+EQ2=56.答案:5615.如图所示,在棱长为4的正方体ABCD-A1B1C1D1中,点E是棱CC1的中点,则异面直线D1E与AC所成的角的余弦值是________.解析:如图,建立空间直角坐标系,则A(4,0,0),C(0,4,0),D1(0,0,4),E(0,4,2),AC→=(-4,4,0),D1E→=(0,4,-2).cos〈AC→,D1E→〉=1632×20=105.∴异面直线D1E与AC所成角的余弦值为105.答案:105三、解答题(本题共5小题,解答写出文字说明、证明过程或演算步骤)16.如图,在平行六面体ABCD-A1B1C1D1中,CM=2MA,A1N=2ND,且AB→=a,AD→=b,AA1→=c,试用a,b,c表示向量MN→.解:∵MN→=MA→+AA1→+A1N→=-13AC→+AA1→+23A1D→=-13(AB→+AD→)+AA1→+23(A1A→+A1D1→)=-13AB→-13AD→+13AA1→+23AD→=-13a+13b+13c,∴MN→=-13a+13b+13c.17.在正方体ABCD-A1B1C1D1中,P为DD1的中点,M为四边形ABCD 的中心.求证:对A1B1上任一点N,都有MN⊥AP.证明:建立如图所示的空间直角坐标系Dxyz,设正方体的棱长为1,则A(1,0,0),P0,0,12,M12,12,0,N(1,y,1).∴AP→=-1,0,12,MN→=12,y-12,1.∴AP→•MN→=(-1)×12+0×y-12+12×1=0,∴AP→⊥MN→,即A1B1上任意一点N都有MN⊥AP.18.如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,AB=1,BM⊥PD于点M.(1)求证:AM⊥PD;(2)求直线CD与平面ACM所成角的余弦值.解:(1)证明:∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB.∵AB⊥AD,AD∩PA=A,∴AB⊥平面PAD.∵PD⊂平面PAD,∴AB⊥PD,又∵BM⊥PD,AB∩BM=B,∴PD⊥平面ABM.∵AM⊂平面ABM,∴AM⊥PD.(2)如图所示,以点A为坐标原点,建立空间直角坐标系Axyz,则A(0,0,0),P(0,0,2),B(1,0,0),C(1,2,0),D(0,2,0).∵AM⊥PD,PA=AD,∴M为PD的中点,∴M的坐标为(0,1,1).∴AC→=(1,2,0),AM→=(0,1,1),CD→=(-1,0,0).设平面ACM的一个法向量为n=(x,y,z),由n⊥AC→,n⊥AM→可得x+2y=0y+z=0,令z=1,得x=2,y=-1.∴n=(2,-1,1).设直线CD与平面ACM所成的角为α,则sinα=|CD→•n||CD→|•|n|=63.∴cosα=33,即直线CD与平面ACM所成角的余弦值为33.19.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A-PB-C的余弦值.解:(1)证明:因为∠DAB=60°,AB=2AD,由余弦定理得BD=3AD,从而BD2+AD2=AB2,故BD⊥AD.又因为PD⊥底面ABCD,可得BD⊥PD.又因为AD∩PD=D,所以BD⊥平面PAD,故PA⊥BD.(2)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系Dxyz,则A(1,0,0),B(0,3,0),C(-1,3,0),P(0,0,1),AB→=(-1,3,0),PB→=(0,3,-1),BC→=(-1,0,0).设平面PAB的法向量为n=(x,y,z),则n•AB→=0,n•PB→=0,即-x+3y=0,3y-z=0,因此可取n=(3,1,3).设平面PBC的法向量为m,则m•PB→=0,m•BC→=0,可取m=(0,-1,-3),〈m,n〉等于二面角A-PB-C的平面角,cos 〈m,n〉=-427=-277.故二面角A-PB-C的余弦值为-277.20.如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=2,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O为AD中点.(1)求证:PO⊥平面ABCD;(2)求异面直线PB与CD所成角的余弦值;(3)求点A到平面PCD的距离.解:(1)证明:如图所示,以O为坐标原点,OC→、OD→、OP→的方向分别为x轴,y轴,z轴的正方向,建立空间直角坐标系Oxyz.则A(0,-1,0),B(1,-1,0),C(1,0,0),D(0,1,0),P(0,0,1).所以OP→=(0,0,1),AD→=(0,2,0),OP→•AD→=0,所以,PO⊥AD,又侧面PAD⊥底面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,所以PO⊥平面ABCD.(2)CD→=(-1,1,0),PB→=(1,-1,-1),所以cos〈PB→,CD→〉=PB→•CD→|PB→||CD→|=-1-13×2=-63,所以异面直线PB与CD 所成的角的余弦值为63.(3)设平面PCD的法向量为n=(x0,y0,z0),CP→=(-1,0,1),CD→=(-1,1,0),由n•CP→=0n•CD→=0,得-x0+z0=0-x0+y0=0,即x0=y0=z0,取x0=1,得平面PCD的一个法向量为n=(1,1,1).又AC→=(1,1,0),从而点A到平面PCD的距离d=|AC→•n||n|=23=233.。

高中数学人教A版选修2-1第三章《空间向量和立体几何》—单元回归评价单(无答案)

高中数学人教A版选修2-1第三章《空间向量和立体几何》—单元回归评价单(无答案)

《空间向量与立体几何》—单元回归评论单高二数学组设计人:审查人:班级:组名:姓名:【高考考点】空间线面地点关系、线面成角、锥体的体积计算、证明平行、垂直、求线面角、面面角【考大纲求】1.空间向量及其运算( 1)认识空间向量的观点,认识空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示. ( 2)掌握空间向量的线性运算及其坐标表示.( 3)掌握空间向量的数目积及其坐标表示,能运用向量的数目积判断向量的共线与垂直.2.空间向量的应用( 1 )理解直线的方向向量与平面的法向量.( 2 )能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.( 3 )能用向量方法证明相关直线和平面地点关系的一些定理(包含三垂线定理).(4)能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题,认识向量方法在研究立体几何问题中的应用 .【必备知识】掌握线面垂直、面面垂直的判断定理;用几何法和向量法求线面所成角【重点能力与学科修养】运算求解能力、数据剖析能力数学运算空间想象【知识建构】 ---空间向量及其运算、立体几何中的向量方法【问题解决】( 2015 年课标 II19 题)如图,长方体ABCD A 1B 1C 1D 1中 , AB=16 ,BC=10 , AA 1 8 , 点 E , F 分 别 在 A 1 B 1 , C 1D 1 上 ,D FCA 1E D 1 F 4 .过点 E , F 的平面与此长方体的面订交,A EB交线围成一个正方形.DC(Ⅰ)在图中画出这个正方形(不用说出画法和原因);AB(Ⅱ)求直线 AF 与平面所成角的正弦值.【拓展训练】1、( 2014 年课标 II11 题) 直三棱柱 ABC-AB C 中,∠ BCA=90°,M ,N 分别是 A B ,A C 的中点,BC=CA=CC ,1 1 11 11 1 1则 BM 与 AN 所成的角的余弦值为()A.1 B.2 C.30 D.21051022、( 2016 年课标 II14 题) α, β是两个平面, m , n 是两条直线,有以下四个命题:①假如 m ⊥ n , m ⊥ α, n ∥ β,那么 α⊥ β. ②假如 m ⊥ α, n ∥α,那么 m ⊥ n. ③假如 α∥ β,m? α,那么 m ∥ β.④假如 m ∥ n , α∥ β,那么 m 与 α所成的角和 n 与 β所成的角相等. 此中正确的命题有 ________. (填写全部正确命题的编号 )3 、( 2017 年全国 II 卷) 10.已知直三棱柱C1 1C1中,C120o ,2 ,C CC 1 1,则异面直线 1与C 1 所成角的余弦值为()A .3B .15C .103255D .34、( 2014 年课标Ⅰ 19 题)如图三棱锥 ABC A 1B 1C 1 中,侧面 BB 1C 1C 为菱形, AB B 1C .(Ⅰ ) 证明:AC AB1;(Ⅱ)若 AC AB1,CBB1 60o,AB=Bc,求二面角 A A1B1 C1的余弦值.5 、( 2017 年全国 I 卷) 18.( 12 分)如图,在四棱锥P-ABCD中, AB//CD,且BAP CDP90o(1)证明:平面PAB⊥平面 PAD;(2)若 PA=PD=AB=DC,APD90o,求二面角A-PB-C的余弦值.6 、( 2017 年全国 II 卷) 19.( 12 分)如图,四棱锥 P-ABCD中,侧面 PAD为等比三角形且垂直于底面ABCD, 1 ABC 90 o ,AB BC AD, BAD2E 是 PD 的中点 .( 1)证明:直线CE / / 平面PAB( 2)点 M 在棱 PC 上,且直线BM 与底面 ABCD所成锐角为45o,求二面角M-AB-D 的余弦值7 、( 2018 年全国 I 卷) 18.( 12 分)如图,四边形ABCD 为正方形,E,F分别为AD, BC 的中点,以DF为折痕把△ DFC 折起,使点C抵达点 P 的地点,且 PF ⊥ BF .⑴证明:平面PEF ⊥平面 ABFD ;⑵求 DP 与平面 ABFD 所成角的正弦值.【多元评论】自我评论伙伴评论学科长评论小组长评论学术助理评论1 、达成票据状况2、主动帮助伙伴3、主动展讲4、主动增补与怀疑5、纪律状况。

2020-2021学年人教A版数学选修2-1:第三章 空间向量与立体几何 单元质量评估(一)

2020-2021学年人教A版数学选修2-1:第三章 空间向量与立体几何 单元质量评估(一)

第三章单元质量评估(一)时限:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的)1.在长方体ABCD -A 1B 1C 1D 1中,AB →+BC →+CC 1→-D 1C 1→等于( A ) A.AD 1→ B.AC 1→ C.AD → D.AB →2.已知a =3i +2j -k ,b =i -j +2k ,则5a 与3b 的数量积等于( A ) A .-15 B .-5 C .-3 D .-13.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( D )A.627 B .9 C.607D.657解析:本题考查向量共面.∵a ,b ,c 三向量共面,∴存在实数m ,n ,使得c =m a +n b ,即⎩⎪⎨⎪⎧7=2m -n 5=-m +4nλ=3m -2n,∴λ=657.故选D.4.在三棱柱ABC -A 1B 1C 1中,D ,F 分别是CC 1,A 1B 的中点,且DF →=αAB →+βAC →,则( A )A .α=12,β=-1B .α=-12,β=1 C .α=1,β=-12 D .α=-1,β=12解析:本题主要考查空间向量基本定理.如图,取AB 中点E ,连接EF ,CE ,则EF 綊12CC 1.又D 为C 1C 的中点,则EF 綊DC ,四边形DCEF 为平行四边形,则DF →=CE →=12AB →-AC →,因此α=12,β=-1,故选A.5.如图,在正四棱锥P -ABCD 中,已知P A →=a ,PB →=b ,PC →=c ,PE →=12PD →,则BE →=( A )A.12a -32b +12cB.12a +12b +12c C .-12a -32b +12cD .-12a -12b +32c解析:本题主要考查空间向量基本定理.如图,连接AC ,BD ,交点为O ,再连接PO ,则PO →=12a +12c .又PO →=12PD →+12b ,所以PD →=a +c -b ,故PE →=12PD →=12a +12c -12b ,从而BE →=BP →+PE →=12a -32b +12c ,故选A.6.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 在AC 上,且AM =12MC ,N 在A 1D 上,且A 1N =2ND .设AB →=a ,AD →=b ,AA 1→=c ,则MN →=( A )A .-13a +13b +13cB .a +13b -13c C.13a -13b -23cD .-13a +b +13c解析:因为M 在AC 上,且AM =12MC ,N 在A 1D 上,且A 1N =2ND ,所以AM →=13AC →,A 1N →=23A 1D →.又ABCD -A 1B 1C 1D 1为平行六面体,且AB →=a ,AD →=b ,AA 1→=c ,所以AC →=a +b ,A 1D →=b -c ,所以MN →=MA →+AA 1→+A 1N →=-13AC →+AA 1→+23A 1D →=-13(a +b )+c +23(b -c )=-13a +13b +13c .7.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,则下列结论错误的是( C )A .AC ⊥BDB .△ACD 是等边三角形C .AB 与平面BCD 所成的角为90° D .AB 与CD 所成的角为60°解析:如图,取BD 的中点O ,连接AO ,CO ,AC ,则AO ⊥BD ,CO ⊥BD .又AO ∩CO =O ,∴BD ⊥平面AOC ,又AC ⊂平面AOC ,∴AC ⊥BD ,A 中结论正确;∵AC =2AO =AD =CD ,∴△ACD 是等边三角形,B 中结论正确;∵AO ⊥平面BCD ,∴∠ABD 是AB 与平面BCD 所成的角,为45°,C 中结论错误;AC →=AB →+BD →+DC →,不妨设AB =1,则AC →2=(AB →+BD →+DC →)2=AB →2+BD →2+DC →2+2AB →·BD →+2BD →·DC →+2AB →·DC →,∴1=1+2+1+22×⎝ ⎛⎭⎪⎫-22+22×⎝⎛⎭⎪⎫-22+2cos 〈AB →,DC →〉,∴cos 〈AB →,DC →〉=12,∴〈AB →,DC →〉=60°,即AB 与CD 所成的角为60°,D 中结论正确.故选C.8.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为a ,M ,N 分别为A 1B 和AC 上的点,且A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是( B )A .斜交B .平行C .垂直D .不能确定解析:设A 1A →=a ,A 1B 1→=b ,A 1D 1→=c .由题意,知A 1B =AC =2a .又A 1M =AN =23a ,∴A 1M →=13A 1B →=13(a +b ),AN →=13AC →=13(b +c ),则MN →=A 1A →+AN →-A 1M →=a +13(b +c )-13(a +b )=23a +13c ,因此,MN →与A 1A →,A 1D 1→共面,∴MN ∥平面AA 1D 1D ,从而MN ∥平面BB 1C 1C .9.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,2AC =AA 1=BC =2,D 为AA 1上一点.若二面角B 1-DC -C 1的大小为60°,则AD 的长为( A )A. 2B. 3 C .2 D.22解析:本题考查空间向量在立体几何中的应用.如图,以C 为坐标原点,CA ,CB ,CC 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则C (0,0,0),B 1(0,2,2).设AD =a ,则点D 的坐标为(1,0,a ),CD →=(1,0,a ),CB 1→=(0,2,2).设平面B 1CD 的一个法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·CB 1→=0,m ·CD →=0⇒⎩⎪⎨⎪⎧2y +2z =0,x +az =0,令z =-1,得m =(a,1,-1).又平面C 1DC 的一个法向量为(0,1,0),记为n ,则由cos60°=m ·n |m ||n |,得1a 2+2=12,即a =2,故AD = 2.故选A.10.设P 是60°的二面角α-l -β内一点,P A ⊥α,PB ⊥β,A ,B 是垂足,P A =4,PB =2,则AB 的长度为( D )A .2 2B .2 3C .2 5D .27解析:本题主要考查空间向量的模的求解方法,考查空间向量的数量积运算.由已知,得〈P A →,PB →〉=120°,AB →=PB →-P A →,|AB →|2=|PB →-P A →|2=|P A →|2+|PB →|2-2|P A →||PB →|cos 〈P A →,PB →〉=28,则|AB →|=27,故选D.11.三棱柱ABC -A 1B 1C 1中,底面ABC 为正三角形,侧棱长等于底面边长,A 1在底面的射影是△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( B )A.13B.23C.33D.23解析:如图,设A 1在底面ABC 内的射影为O ,以O 为坐标原点,建立如图所示的空间直角坐标系.设△ABC 边长为1,则A ⎝ ⎛⎭⎪⎫33,0,0,B 1⎝ ⎛⎭⎪⎫-32,12,63,所以AB 1→=⎝ ⎛⎭⎪⎫-536,12,63. 平面ABC 的法向量n =(0,0,1),则AB 1与底面ABC 所成角α的正弦值为sin α=|cos 〈AB 1→,n 〉|=637536+14+69=23.故选B.12.在三棱锥P -ABC 中,△ABC 为等边三角形,P A ⊥平面ABC ,且P A =AB ,则二面角A -PB -C 的平面角的正切值为( A )A. 6B. 3C.66D.62解析:设P A =AB =2,建立如图所示的空间直角坐标系.则B (0,2,0),C (3,1,0),P (0,0,2).所以BP →=(0,-2,2),BC →=(3,-1,0).设n =(x ,y ,z )是平面PBC的一个法向量.则⎩⎪⎨⎪⎧BP →·n =0,BC →·n =0,即⎩⎪⎨⎪⎧-2y +2z =0,3x -y =0. 令y =1.则x =33,z =1.即n =⎝ ⎛⎭⎪⎫33,1,1.易知m =(1,0,0)是平面P AB 的一个法向量.则cos 〈m ,n 〉=m ·n |m ||n |=331×213=77.所以正切值tan 〈m ,n 〉= 6.故选A.二、填空题(本大题共4小题,每小题5分,共20分,请把答案填写在题中横线上)13.已知a =(3λ,6,λ+6),b =(λ+1,3,2λ)为两平行平面的法向量,则λ=2.解析:由题意知a ∥b ,所以3λλ+1=63=λ+62λ,解得λ=2.14.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E 为底面正方形ABCD 的中心,设A 1E →=A 1A →+xA 1B 1→+yA 1D 1→,则x +y =1.解析:本题主要考查空间向量基本定理.A 1E →=A 1B →+A 1D →2=(A 1A →+AB →)+(A 1A →+AD →)2=A 1A →+AB →+AD →2=A 1A →+A 1B 1→+A 1D 1→2,因而x =y =12,所以x +y =1.15.空间四点A (2,3,1),B (4,1,2),C (6,3,7),D (3,1,0),则点D 到平面ABC 的距离是1717.解析:本题主要考查空间向量的坐标运算以及空间点到平面的距离的求法.由已知,得AB →=(2,-2,1),AC →=(4,0,6).设平面ABC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧AB →·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2x -2y +z =0,4x +6z =0,令x =3,则y =2,z =-2,所以n =(3,2,-2),AD →=(1,-2,-1),所以点D 到平面ABC 的距离为|AD →·n ||n |=1717.16.在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 是正方形,且PD =AB =1,G 为△ABC 的重心,则PG 与底面ABCD 所成的角θ的正弦值为31717.解析:本题主要考查向量法求线面角,考查三角形重心的坐标公式.如图,分别以DA ,DC ,DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,由已知D (0,0,0),P (0,0,1),A (1,0,0),B (1,1,0),C (0,1,0),则重心G ⎝ ⎛⎭⎪⎫23,23,0,因而DP →=(0,0,1),GP →=⎝ ⎛⎭⎪⎫-23,-23,1,那么sin θ=|cos 〈DP →,GP →〉|=|DP →·GP →||DP →|·|GP →|=31717.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)如图,正方体ABCD -A ′B ′C ′D ′中,点E 是上底面A ′B ′C ′D ′的中心,用向量DA →,DC →,DD ′→表示向量BD ′→,AE →.解:BD ′→=DD ′→-DB →=-DA →-DC →+DD ′→.AE →=AA ′→+A ′E →=DD ′→+12A ′C ′→=DD ′→+12AC →=DD ′→+12(DC →-DA →)=-12DA →+12DC →+DD ′→.18.(12分)如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,PG ⊥平面ABCD ,垂足为G ,G 在AD 上,且PG =4,AG =13GD ,BG ⊥GC ,GB =GC =2,E 是BC 的中点.(1)求异面直线GE 与PC 所成角的余弦值; (2)若F 是棱PC 上一点,且DF ⊥GC ,求PFFC 的值.解:(1)以G 点为坐标原点,分别以GB →,GC →,GP →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则G (0,0,0),B (2,0,0),C (0,2,0),P (0,0,4),故E (1,1,0),GE →=(1,1,0),PC →=(0,2,-4).∵cos 〈GE →,PC →〉=GE →·PC →|GE →||PC →|=22×20=1010,∴GE 与PC 所成角的余弦值为1010.(2)∵GD →=34BC →=⎝⎛⎭⎪⎫-32,32,0,∴D ⎝⎛⎭⎪⎫-32,32,0.设F (0,y ,z ),则DF →=(0,y ,z )-⎝⎛⎭⎪⎫-32,32,0=⎝⎛⎭⎪⎫32,y -32,z .∵DF →⊥GC →,∴DF →·GC →=0,即⎝⎛⎭⎪⎫32,y -32,z ·(0,2,0)=2y -3=0,∴y =32.又点F 在PC 上,∴PF →=λPC →,即⎝⎛⎭⎪⎫0,32,z -4=λ(0,2,-4),∴z =1,故F ⎝ ⎛⎭⎪⎫0,32,1,∴PF →=⎝ ⎛⎭⎪⎫0,32,-3,FC →=⎝ ⎛⎭⎪⎫0,12,-1,∴PFFC =35252=3.19.(12分)如图,在多面体EF -ABCD 中,正方形ADEF 与梯形ABCD 所在平面互相垂直,AB ∥CD ,AD ⊥CD ,AB =AD =1,CD =2,M ,N 分别为EC 和BD 的中点.(1)求证:BC ⊥平面BDE ;(2)求直线MN 与平面BMC 所成角的正弦值.解:(1)证明:如图,在梯形ABCD 中,取CD 的中点H ,连接BH . 因为AD =AB ,AB ∥CD ,AD ⊥CD ,AB =1,CD =2,所以四边形ADHB 为正方形.又BD 2=AD 2+AB 2=2,BC 2=HC 2+HB 2=2,所以CD 2=BD 2+BC 2,所以BC ⊥BD .Z 又平面ADEF ⊥平面ABCD ,平面ADEF ∩平面ABCD =AD ,DE ⊥AD ,所以DE ⊥平面ABCD ,所以BC ⊥DE .又BD ∩DE =D ,故BC ⊥平面BDE .(2)由(1),知DE ⊥平面ABCD ,AD ⊥CD ,所以DE ,DA ,DC 两两垂直.以D 为坐标原点,建立如图所示的空间直角坐标系D -xyz ,则C (0,2,0),B (1,1,0),M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,12,0,所以BC →=(-1,1,0),MC →=⎝⎛⎭⎪⎫0,1,-12.设n =(x ,y ,z )为平面BMC的法向量,则⎩⎪⎨⎪⎧n ·BC →=0n ·MC →=0,即⎩⎨⎧-x +y =0y -12z =0,可取n =(1,1,2).又M N →=⎝⎛⎭⎪⎫12,-12,-12,所以cos 〈n ,MN →〉=n ·MN →|n ||MN →|=-23,所以直线MN 与平面BMC 所成角的正弦值为23.20.(12分)如图,在四棱锥S -ABCD 中,底面ABCD 是直角梯形,侧棱SA ⊥底面ABCD ,AB 垂直于AD 和BC ,SA =AB =BC =2,AD =1,M 是棱SB 的中点.(1)求证:AM ∥平面SCD ;(2)求平面SCD 与平面SAB 所成的二面角的余弦值;(3)设点N 是线段CD 上的动点,MN 与平面SAB 所成的角为θ,求sin θ的最大值.解:(1)证明:以点A 为坐标原点,建立如图所示的空间直角坐标系, 则A (0,0,0),B (0,2,0),C (2,2,0),D (1,0,0),S (0,0,2),M (0,1,1),∴AM →=(0,1,1),SD →=(1,0,-2),CD →=(-1,-2,0), 设平面SCD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧SD →·n =0CD →·n =0,∴⎩⎪⎨⎪⎧x -2z =0-x -2y =0, 令z =1,得n =(2,-1,1).∵AM →·n =0,∴AM →⊥n ,∴AM ∥平面SCD . (2)易知平面SAB 的一个法向量为n 1=(1,0,0),设平面SCD 与平面SAB 所成的二面角为φ,易知0°<φ≤90°, 则cos φ=⎪⎪⎪⎪⎪⎪n ·n 1|n ||n 1|=26×1=63,∴平面SCD 与平面SAB 所成的二面角的余弦值为63.(3)设N (x,2x -2,0)(1≤x ≤2),则MN →=(x,2x -3,-1),平面SAB 的一个法向量为n 1=(1,0,0),∴sin θ=⎪⎪⎪⎪⎪⎪n 1·MN→|n 1||MN →|=⎪⎪⎪⎪⎪⎪x 5x 2-12x +10=110×⎝ ⎛⎭⎪⎫1x 2-12×1x +5=110⎝ ⎛⎭⎪⎫1x -352+75,∴当1x =35,即x =53时,sin θ取得最大值,最大值为357.21.(12分)如图①在直角梯形ABCP 中,BC ∥AP ,AB ⊥BC ,CD ⊥AP ,AD =DC =PD =2,E ,F ,G 分别是线段PC ,PD ,BC 的中点,现将△PDC 折起,使平面PDC ⊥平面ABCD .(如图②)(1)求证:AP ∥平面EFG ; (2)求二面角G -EF -D 的大小.解:(1)证明:因为在图①中,AP ⊥CD ,所以在图②中PD ⊥CD ,AD ⊥CD ,所以∠ADP 是二面角P -DC -A 的平面角,因为平面PDC ⊥平面ABCD ,所以∠ADP =90°,即PD ⊥DA ,又AD ∩DC =D ,所以PD ⊥平面ABCD .如图.以D 为坐标原点,直线DA ,DC ,DP 分别为x ,y 与z 轴建立空间直角坐标系,则D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),P (0,0,2),E (0,1,1),F (0,0,1),G (1,2,0).所以AP →=(-2,0,2),EF →=(0,-1,0),FG →=(1,2,-1),设平面GEF 的法向量n =(x ,y ,z ),由法向量的定义得⎩⎪⎨⎪⎧n ·EF →=0,n ·FG →=0⇒⎩⎪⎨⎪⎧ (x ,y ,z )·(0,-1,0)=0,(x ,y ,z )·(1,2,-1)=0⇒⎩⎪⎨⎪⎧ y =0,x +2y -z =0⇒⎩⎪⎨⎪⎧y =0,x =z .不妨设z =1,则n =(1,0,1),AP →·n =-2×1+2×0+1×2=0,所以AP →⊥n ,点P ∉平面EFG ,所以AP ∥平面EFG .(2)由(1)知平面GEF 的法向量n =(1,0,1),因平面EFD 与坐标平面PDC 重合,则它的一个法向量为i =(1,0,0),由图形观察二面角G -EF -D 为锐角,设二面角G -EF -D 为θ,则cos θ=|n ·i ||n |=12=22. 故二面角G -EF -D 的大小为45°.22.(12分)如图,在△ABC 中,∠C =90°,AC =BC =a ,点P 在AB 上,PE ∥BC 交AC 于点E ,PF ∥AC 交BC 于点F .沿PE 将△APE 翻折成△A ′PE ,使平面A ′PE ⊥平面 FCEP ,沿PF 将△BPF 翻折成△B ′PF ,使平面B ′PF ⊥平面FCEP .(1)求证:B ′C ∥平面A ′PE ;(2)设APPB =λ,当λ为何值时,二面角C -A ′B ′-P 的大小为60°? 解:(1)证明:因为FC ∥PE ,FC ⊄平面A ′PE ,所以FC ∥平面A ′EP .因为平面A ′PE ⊥平面FCEP ,且A ′E ⊥PE ,所以A ′E ⊥平面FCEP .同理,B ′F ⊥平面FCEP ,所以B ′F ∥A ′E ,从而B ′F ∥平面A ′PE .又FC ∩B ′F =F ,所以平面B ′CF ∥平面A ′PE ,从而B ′C ∥平面A ′PE .(2)以点C 为坐标原点,CF 所在直线为x 轴,CE 所在直线为y 轴,过C 且垂直于平面FCEP 的直线为z 轴,建立空间直角坐标系,如图,则C (0,0,0),A ′⎝ ⎛⎭⎪⎫0,a λ+1,λa λ+1,B ′⎝ ⎛⎭⎪⎫λa λ+1,0,a λ+1,P ⎝ ⎛⎭⎪⎫λa λ+1,a λ+1,0, ∴CA ′→=⎝ ⎛⎭⎪⎫0,a λ+1,λa λ+1,A ′B ′→=⎝ ⎛⎭⎪⎫λa λ+1,-a λ+1,(1-λ)a λ+1,B ′P→=⎝ ⎛⎭⎪⎫0,a λ+1,-a λ+1, ∴平面CA ′B ′的一个法向量为m =⎝ ⎛⎭⎪⎫1λ,λ,-1,平面P A ′B ′的一个法向量为n =(1,1,1).由|m ·n ||m ||n |=|1λ+λ-1|1λ2+λ2+1·3=cos60°=12,化简得1λ2+λ2-8λ-8λ+9=0,解得λ=7±352.。

【高中数学】《立体几何中的向量方法》单元回归—评价单

【高中数学】《立体几何中的向量方法》单元回归—评价单

高三数学《立体几何中的向量方法》单元回归—评价单设计人:陈银璋审核人:吴燕瑜编号:20170707班级:组名:姓名:考纲要求:能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题.了解向量方法在研究立体几何问题中的应用.[知识建构]请同学们采用多元归纳法,以个性化地形式建构本单元知识体系1.两个向量的数量积(1)非零向量a,b的数量积①结合律:②交换律:③分配律:2.空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3),数量积共线垂直模夹角(1)两个重要向量①直线的方向向量直线的方向向量是指和这条直线平行(或重合)的非零向量,一条直线的方向向量有无数个.②平面的法向量直线l⊥平面α,取直线l的方向向量,则这个向量叫做平面α的法向量.显然一个平面的法向量有无数个,它们是共线向量.(2)空间位置关系的向量表示位置关系向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2 l1⊥l2直线l的方向向量为n,平面α的法向量为m l∥αl⊥α平面α、β的法向量分别为n,m α∥βα⊥β设异面直线a,b所成的角为θ,则cos θ=|a·b||a||b|,其中a,b分别是直线a,b的方向向量.5.直线与平面所成角如图所示,设l为平面α的斜线,l∩α=A,a为l的方向向量,n为平面α的法向量,φ为l与α所成的角,则sin φ=|cos〈a,n〉|=|a·n| |a||n|.6.二面角(1)若AB,CD分别是二面角α-l-β的两个平面内与棱l垂直的异面直线,则二面角(或其补角)的大小就是向量AB与CD的夹角,如图(1).平面α与β相交于直线l,平面α的法向量为n1,平面β的法向量为n2,〈n1,n2〉=θ,则二面角α-l-β为θ或π-θ.设二面角大小为φ,则|cos φ|=|cos θ|=|n1·n2||n1||n2|,如图(2)(3).[问题解决]问题1、利用向量法求异面直线所成角的步骤问题2 利用向量法求线面角的方法问题3利用向量法求二面角的方法[拓展训练]1.已知正四棱锥S -ABCD的侧棱长与底面边长都相等,E是SB的中点,则AE,SD所成角的余弦值为()A.13B.23C.33D.232.在三棱锥P-ABC中,PA⊥平面ABC,∠BAC=90°,D,E,F分别是棱AB,BC,CP的中点,AB=AC=1,PA=2,则直线PA与平面DEF所成角的正弦值为()A.15B.255C.55D.253.如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC=2,在四边形ABCD 中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°的角.求证:(1)CM∥平面PAD;(2)平面PAB⊥平面PAD.4.如图,在三棱柱ABC -A1B1C1中,四边形AA1C1C是边长为2的菱形,平面ABC⊥平面AA1C1C,∠A1AC=60°,∠BCA=90°.(1)求证:A1B⊥AC1;(2)已知点E是AB的中点,BC=AC,求直线EC1与平面ABB1A1所成的角的正弦值.5. 如图,四棱锥P-ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD . (Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《立体几何中的向量方法》平行与垂直关系的向量证法
综合解决评价单
高二年级数学组 设计人: 审核人:
班级 组名 姓名 时间: 年 月 日
问题1:利用向量方法证平行关系
1.如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱
AA 1上,且AP =2PA 1,点S 在棱BB 1上,且SB 1=2BS ,点Q 、R 分别是O 1B 1、AE 的中点,求证:PQ ∥RS .
2. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别是C 1C 、B 1C 1的中点.求证:MN ∥平面A 1BD .
3.(创新拓展)如图,O 是正方体ABCD -A 1B 1C 1D 1的底面中心,P 是DD 1的中点,Q 点在CC 1上,问:当
点Q 在CC 1的什么位置时,平面BD 1Q ∥平面APO?
问题2:利用向量方法证明垂直关系
1.在正方体ABCD -A 1B 1C 1D 1中,P 为DD 1的中点,O 为底面ABCD 的中心,求证:OB 1⊥平面PAC .
2.三棱锥被平行于底面ABC 的平面所截得的几何体如图所示,截面为A 1B 1C 1,∠BAC =90°,A 1A ⊥
平面ABC .A 1A =3,AB =AC =2A 1C 1=2,D 为BC 中点. 证明:平面A 1AD ⊥平面BCC 1B 1.
3.(创新拓展)如图所示,矩形ABCD 的边AB =a ,BC =2,PA ⊥平面ABCD ,
PA =2,现有数据:a =3
2
;a =1;a =2;a =3;a =4.若在BC 边上存在
点Q ,使PQ ⊥QD ,则a 可以取所给数据中的哪些值?并说明理由.
[拓展训练]
1.若平面α的法向量为μ,直线l 的方向向量为v ,直线l 与平面α的夹角为θ,则下列关系式成立的是
( ). A .cos θ=μ·v |μ||v| B .cos θ=|μ·v|
|μ||υ|
C .sin θ=
μ·v |μ||v| D .sin θ=|μ·v|
|μ||v|
2.在正方体ABCD -A 1B 1C 1D 1中,M 是C 1C 的中点,O 是底面ABCD 的中点,P 是A 1B 1上的任意点,则直线BM 与OP 所成的角为 ( ).
A 6
∏ B 4∏ C 3∏ D 2∏
3.三棱锥A -BCD 中,平面ABD 与平面BCD 的法向量分别为n 1,n 2,若〈n 1,n 2〉=π
3
,则二面角A ­
BD ­ C 的大小为 ( ). A.
π3 B.2π3 C.π6或π3 D.π3或2π
3
4.在矩形ABCD 中,AB =1,BC =2,PA ⊥平面ABCD ,PA =1,则PC 与平面ABCD 所成角是 ( ).
A .30°
B .45°
C .60°
D .90° 5.如图所示,已知点P 为菱形ABCD 外一点,且PA ⊥面ABCD ,PA =AD =AC ,点F 为PC 中点,则二面角C ­BF ­D 的正切值为 ( ). A.36 B.34
C.
33 D.23
3 6.设直线l 与平面α相交,且l 的方向向量为a ,α的法向量为n ,若〈a ,n 〉=2π
3
,则l 与α
所成的角为 7.已知点A (1,0,0),B (0,2,0),C (0,0,3)则平面ABC 与平面xOy 所成锐二面角的余弦值为________.
8.在正方体ABCD —A 1B 1C 1D 1中,直线BC 1与平面A 1BD 所成角的余弦值是______.
9.正△ABC 与正△BCD 所在平面垂直,则二面角A ­BD ­C 的正弦值为________.
10.如图所示,三棱柱OAB -O 1A 1B 1中,平面OBB 1O 1⊥平面OAB ,∠O 1OB =60°,
∠AOB =90°,且OB =OO 1=2,OA =3,求异面直线A 1B 与AO 1所成角的余弦值的大小.
11.如图,在四棱锥P -ABCD 中,底面为直角梯形,AD ∥BC ,∠BAD =90°,PA ⊥底面ABCD ,且PA =AD =AB =2BC ,M 、N 分别为PC 、PB 的中点.求BD 与平面ADMN 所成的角θ.
12.(创新拓展)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,∠BCF =∠CEF =90°,AD =3,EF =2. (1)求证:AE ∥平面DCF ;
(2)当AB 的长为何值时,二面角A ­EF ­C 的大小为60°?
【我的问题】。

相关文档
最新文档