物理习题答案

合集下载

大学物理习题答案

大学物理习题答案

大学物理习题答案 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-一、 单项选择题:1. 北京正负电子对撞机中电子在周长为L 的储存环中作轨道运动。

已知电子的动量是P ,则偏转磁场的磁感应强度为: ( C ) (A)eLP π; (B)eL P π4; (C) eLPπ2; (D) 0。

2. 在磁感应强度为B的均匀磁场中,取一边长为a 的立方形闭合面,则通过该闭合面的磁通量的大小为: ( D )(A) B a 2; (B) B a 22; (C) B a 26; (D) 0。

3.半径为R 的长直圆柱体载流为I ,电流I 均匀分布在横截面上,则圆柱体内(R r 〈)的一点P 的磁感应强度的大小为 ( B ) (A) r I B πμ20=; (B) 202R Ir B πμ=; (C) 202rIB πμ=; (D) 202RIB πμ=。

4.单色光从空气射入水中,下面哪种说法是正确的 ( A ) (A) 频率不变,光速变小; (B) 波长不变,频率变大; (C) 波长变短,光速不变; (D) 波长不变,频率不变.5.如图,在C 点放置点电荷q 1,在A 点放置点电荷q 2,S 是包围点电荷q 1的封闭曲面,P 点是S 曲面上的任意一点.现在把q 2从A 点移到B 点,则 (D )(A) 通过S 面的电通量改变,但P 点的电场强度不变;(B) 通过S 面的电通量和P 点的电场强度都改变; (C) 通过S 面的电通量和P 点的电场强度都不变; (D) 通过S 面的电通量不变,但P 点的电场强度改变。

6.如图所示,两平面玻璃板OA 和OB 构成一空气劈尖,一平面单色光垂直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将 ( C )(A) 干涉条纹间距增大,并向O 方向移动; (B) 干涉条纹间距减小,并向B 方向移动; (C) 干涉条纹间距减小,并向O 方向移动; (D) 干涉条纹间距增大,并向O 方向移动.7.在均匀磁场中有一电子枪,它可发射出速率分别为v 和2v 的两个电子,这两个电子的速度方向相同,且均与磁感应强度B 垂直,则这两个电子绕行一周所需的时间之比为 ( A )(A) 1:1; (B) 1:2; (C) 2:1; (D) 4:1.8.如图所示,均匀磁场的磁感强度为B ,方向沿y 轴正向,欲要使电量为Q 的正离子沿x 轴正向作匀速直线运动,则必须加一个均匀电场E ,其大小和方向为 ( D )(A) E =νB ,E 沿z 轴正向; (B) E =vB ,E 沿y 轴正向;(C) E =B ν,E 沿z 轴正向; (D) E =B ν,E 沿z 轴负向。

普通物理习题册下答案

普通物理习题册下答案

第9 单元 静电场(一)一 选择题[ C ]1 .一带电体可作为点电荷处理的条件是 (A)电荷必须呈球形分布。

(B)带电体的线度很小。

(C)带电体的线度与其它有关长度相比可忽略不计。

(D)电量很小。

[ C ]2.已知一高斯面所包围的体积内电量代数和∑i q =0,则可肯定:(A)高斯面上各点场强均为零。

(B)穿过高斯面上每一面元的电通量均为零。

(C)穿过整个高斯面的电通量为零。

(D)以上说法都不对。

[ D ]3.两个同心均匀带电球面,半径分别为R a 和R b ( R a <R b ) ,所带电量分别为Q a 和Q b ,设某点与球心相距r , 当R a < r < R b 时, 该点的电场强度的大小为: ( A )241r Q Q ba +⋅πε ( B )241rQ Q ba -⋅πε( C ))(4122bb a R Q rQ +⋅πε ( D )241rQ a ⋅πε[ D ]4. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,轴线方向单位长度上的带电量分别为λ1 和λ2 , 则在内圆柱面里面、距离轴线为r 处的P 点的电场强度大小 ( A )r 0212πελλ+( B )20210122R R πελπελ+( C ) 1014R πελ( D ) 0[ D ]5.图示为一具有球对称性分布的静电场的E ~r 关系曲线,请指出该静电场是由下列哪种带电体产生的。

(A)半径为R 的均匀带电球面。

(B)半径为R 的均匀带电球体。

(C)半径为R 、电荷体密度ρ=Ar(A 为常数)的非均匀带电球体。

(D)半径为R 、电荷体密度ρ=A/r(A 为常数)的非均匀带电球体。

二 填空题1. 在点电荷系的电场中,任一点的电场强度等于__各点电荷在该占单独产生的电场强度的矢量和__,这称为场强叠加原理。

2.静电场中某点的电场强度,其数值和方向等于 单位正电荷在该点受到的电场力___。

(完整版)大学物理课后习题答案详解

(完整版)大学物理课后习题答案详解

第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。

(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。

解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

大学普通物理学-二-牛顿运动定律

大学普通物理学-二-牛顿运动定律

第二章牛顿运动定律一、选择题1.关于惯性有下面四种说法,正确的为()。

A.物体静止或作匀速运动时才具有惯性B.物体受力作变速运动时才具有惯性C.物体受力作变速运动时才没有惯性D.惯性是物体的一种固有属性,在任何情况下物体均有惯性1.【答案】D。

解析:本题考查对惯性的正确理解。

物体的惯性是物体的自然固有属性,与物理的运动状态和地理位置没有关系,只要有质量的物体都有惯性,质量是一个物体惯性大小的量度,所以本题答案为D。

2.下列四种说法中,正确的为()。

A.物体在恒力作用下,不可能作曲线运动B.物体在变力作用下,不可能作曲线运动C.物体在垂直于速度方向,且大小不变的力作用下作匀速圆周运动D.物体在不垂直于速度方向的力作用下,不可能作圆周运动2.【答案】C。

解析:本题考查的是物体运动与受力的关系物体的运动受初始条件和受力共同影响,物体受恒力作用但仍然可以作曲线运动,比如平抛运动.对于圆周运动需要有向心力,向心力是改变物体速度方向,当一个物体只受向心力作用时则作匀速圆周运动,所以C选项是正确的。

3.一质点从t=0时刻开始,在力F1=3i+2j(SI单位)和F2=-2i-t j(SI单位)的共同作用下在Oxy平面上运动,则在t=2s时,质点的加速度方向沿()。

A.x轴正向B.x轴负向C.y轴正向D.y轴负向3.【答案】A。

解析:合力F=F1+F2=i+(2-t)j,在t=2s时,力F=i,沿x轴正方向,加速度也沿同一方向。

4.一人肩扛一重量为P的米袋从高台上往下跳,当其在空中运动时,米袋作用在他肩上的力应为()。

A.0B.P/4C.PD.P/24.【答案】A。

解析:米袋和人具有相同的加速度,因此米袋作用在他肩上的力应为0。

5.质量分别为m1、和m2的两滑块A和B通过一轻弹簧水平连接后置于水平桌面上,滑块与桌面间的滑动摩擦因数均为μ,系统在水平拉力F作用下匀速运动,如图2-1所示。

如突然撤销拉力,则撤销后瞬间,二者的加速度a A和a B,分别为()。

物理教材习题答案

物理教材习题答案

第一章质点运动习题解答一、分析题1.一辆车沿直线行驶,习题图1-1给出了汽车车程随时间的变化,请问在图中标出的哪个阶段汽车具有的速度最大。

答: E 。

位移-速度曲线斜率为速率,E 阶段斜率最大,速度最大。

2.有力P 与Q 同时作用于一个物体,由于摩擦力F 的存在而使物体处于平衡状态,请分析习题图1-2中哪个可以正确表示这三个力之间的关系。

答:C 。

三个力合力为零时,物体才可能处于平衡状态,只有(C )满足条件。

3.习题图1-3(a )为一个物体运动的速度与时间的关系,请问习题图1-3(b )中哪个图可以正确反映物体的位移与时间的关系。

ABCDEst0 习题图1-1QPFQPFABPQFCPQFDPQFE习题图1-2答:C 。

由v-t 图可知,速度先增加,然后保持不变,再减少,但速度始终为正,位移一直在增加,且三段变化中位移增加快慢不同,根据v-t 图推知s-t 图为C 。

三、综合题:1.质量为的kg 50.0的物体在水平桌面上做直线运动,其速率随时间的变化如习题图1-4所示。

问:(1)设s 0t时,物体在cm 0.2x处,那么s 9t时物体在x 方向的位移是多少?(2)在某一时刻,物体刚好运动到桌子边缘,试分析物体之后的运动情况。

解:(1)由v-t 可知,0~9秒内物体作匀减速直线运动,且加速度为:220.8cm/s0.2cm/s4a由图可得:02.0cm s ,00.8cm/s v , 1.0cm/s tv ,则由匀减速直线运动的0 timevelocity习题图1-3(a )timedisplacementA 0displacementB 0timedisplacementC 0timeD displacementtime displacementE 0time位移与速度关系可得:22002() ta s s v v2200()/2tsv v a s 22[0.8( 1.0)]/20.2 2.0cm1.1c m(2)当物体运动到桌子边缘后,物体将以一定的初速度作平抛运动。

大学物理学第一章习题答案

大学物理学第一章习题答案

习题11、1选择题(1) 一运动质点在某瞬时位于矢径的端点处,其速度大小为(A)(B)(C)(D)[答案:D](2) 一质点作直线运动,某时刻的瞬时速度,瞬时加速度,则一秒钟后质点的速度(A)等于零(B)等于-2m/s(C)等于2m/s (D)不能确定。

[答案:D](3) 一质点沿半径为R的圆周作匀速率运动,每t秒转一圈,在2t时间间隔中,其平均速度大小与平均速率大小分别为(A)(B)(C) (D)[答案:B]1、2填空题(1) 一质点,以的匀速率作半径为5m的圆周运动,则该质点在5s内,位移的大小就是;经过的路程就是。

[答案: 10m;5πm](2) 一质点沿x方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v0为5m·s-1,则当t为3s时,质点的速度v=。

[答案: 23m·s-1 ](3) 轮船在水上以相对于水的速度航行,水流速度为,一人相对于甲板以速度行走。

如人相对于岸静止,则、与的关系就是。

[答案:]1、3一个物体能否被瞧作质点,您认为主要由以下三个因素中哪个因素决定:(1) 物体的大小与形状;(2) 物体的内部结构;(3) 所研究问题的性质。

解:只有当物体的尺寸远小于其运动范围时才可忽略其大小的影响,因此主要由所研究问题的性质决定。

1、4下面几个质点运动学方程,哪个就是匀变速直线运动?(1)x=4t-3;(2)x=-4t3+3t2+6;(3)x=-2t2+8t+4;(4)x=2/t2-4/t。

给出这个匀变速直线运动在t=3s时的速度与加速度,并说明该时刻运动就是加速的还就是减速的。

(x单位为m,t单位为s)解:匀变速直线运动即加速度为不等于零的常数时的运动。

加速度又就是位移对时间的两阶导数。

于就是可得(3)为匀变速直线运动。

其速度与加速度表达式分别为t=3s时的速度与加速度分别为v=20m/s,a=4m/s2。

因加速度为正所以就是加速的。

江苏大学,大学物理 习题答案1-5

江苏大学,大学物理 习题答案1-5

练习 一(曲线运动、直线运动、圆周运动、抛体运动、相对运动)一、选择题 1. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C 处的加速度? ( C )(A) (B) (C) (D)解:(C)a 指向曲线凹侧,a 、v 间夹角大于900,速率减小,a 、v间夹角小于900,速率增加2.一质点沿x 轴作直线运动,其v -t 曲线如图所示,如t =0时,质点位于坐标原点,则t =4.5 s 时,质点在x 轴上的位置为 . ( B )(A) 5m . (B) 2m . (C) 0.(D) -2 m . (E) -5 m. 解:(B) 根据曲线下面积计算 3. 一质点沿x 轴运动的规律是x =t 2-4t +5(SI 制)。

则前三秒内它的 ( D )(A)位移和路程都是3m ; (B)位移和路程都是-3m ;(C)位移是-3m ,路程是3m ; (D)位移是-3m ,路程是5m 。

解: (D)由运动方程得42-=t v x ,令0=x v 得s t 2=,此值在前三秒内,因此前三秒内质点作回头运动.m x 5)0(=,m x 1)2(=,m x 2)3(=,m x x x 352)0()3(-=-=-=∆,m x x x x s 5)1()2()2()0(=-+-=∆4. 一质点的运动方程是j t R i t R rωωsin cos +=,R 、ω为正常数。

从t =ω/π到t =2 (1)该质点的位移是 (A) -2R i ; (B) 2R i ; (C) -2j ;(D) 0。

( B )(2)该质点经过的路程是 (A) 2R ; (B) R π;(C) 0; (D) ωR π。

(B ) 解: (1)(B),(2)B.由运动方程知质运点轨迹方程为圆, i R i R i R r r r2)()/()/2(=--=-=∆ωπωπ5.一质点在平面上运动,已知质点位置矢量的表示式为j bt i at r 22+=(其中a 、b 为常量), 则该质点作 ( B )(A) 匀速直线运动; (B) 变速直线运动;(C) 抛物线运动; (D)一般曲线运动.解:(B)a bx y bt y at x /,,22===6.某物体的运动规律为t k t 2d /d v v -=,式中的k 为大于零的常量.当0=t 时,初速为v 0,则速度v 与时间t 的函数关系是 ( C ) (A) 0221v v +=kt ; (B) 0221v v +-=kt ; (C) 02121v v +=kt ; (D) 02121v v +-=kt . 解:( C )⎰⎰-=t v v ktdt v dv 020 7. 某人以4km/h 的速率向东前进时,感觉风从正北吹来,如将速率增加一倍,则感觉风从东北方向吹来。

物理习题集答案

物理习题集答案

答案练习1 库伦定律 电场强度一、选择题 C B A C D二、填空题1. λ1d/(λ1+λ2).2. 2qy j /[4πε0 (a 2+y 2)3/2] , ±a/21/2.3. M/(E sin θ).三、计算题1. 取环带微元 d q =σd S=σ2π(R sin θ)R d θ =2πσR 2sin θd θd E =d qx/[4πε0(r 2+x 2)3/2]=()3024cos d sin 2RR R πεθθθπσ =σsin θcos θd θ/(2ε0))()0/2004/2d cos sin εσεθθθσπ==⎰E方向x 轴正向.2.取园弧微元 d q=λd l=[Q/(πR )]R d θ=Q d θ/π d E =d q/(4πε0r 2) =Q d θ/(4π2ε0R 2) d E x =d E cos(θ+π) =-d E cos θ d E y =d E sin(θ+π) =-d E sin θ E x =()⎰⎰-=2/32/2024d cos d ππεπθθR Q E x=Q/(2π2ε0R 2)E y =⎰d E y ()⎰-2/32/2024d sin ππεπθθR Q =0方向沿x 轴正向.练习2 电场强度(续)一、选择题 D C D B A 二、填空题1. 2p/(4πε0x 3), -p/(4πε0y 3).2. λ/(πε0a ), 03. 5.14⨯105.三、计算题1. 取无限长窄条电荷元d x ,电荷线密度λ'=λd x/a它在P 点产生的电场强度为d E=λ'/(2πε0r )=λd x/(2πε0a 22x b +) d E x =d E cos α=-λx d x/[2πε0a (b 2+x 2)] d E y =d E sin α=λb d x/[2πε0a (b 2+x 2)]E x =()⎰⎰-+=2/2/2202a a x x b a xdxdE πελ=()04ln 2/2/022=+-a a ax b πελE y =()⎰⎰-+=2/2/2202a a y xb a bdxdE πελbaa bx b a b a a 2arctan arctan 1202/2/0πελπελ=⋅=-2. 取窄条面元d S=a d x ,该处电场强度为 E=λ/(2πε0r ) 过面元的电通量为 d Φe =E ⋅d S=[λ/(2πε0r )]a d x cos θ =λac d x/[2πε0(c 2+x 2)] Φe =⎰d Φ()⎰-+=2/2/2202b b x c acdxπελ2/2/0arctan 12b b c x c ac -⋅=πελ =λa arctan[b /(2c )]/(πε0)练习3 高斯定理一、选择题 D A D C B二、填空题1. σ/(2ε0),向左;3σ/(2ε0),向左;σ/(2ε0),向右. 2 -Q/ε0, -2Q r 0/(9πε0R 2), -Q r 0/(2πε0R 2). 3 (q 1+ q 4)/ε0, q 1、q 2、q 3、q 4, 矢量和三、计算题1 因电荷分布以中心面面对称,故电场强度方向垂直于平板,距离中心相等处场强大小相等.取如图所示的柱形高斯面:两底面∆S 以平板中心面对称,侧面与平板垂直.=⋅⎰S E d SQ /ε左边=⎰⋅左底S E d +⎰⋅右底S E d +⎰⋅侧面S E d =2∆SE(1) 板内|x |<aQ=()[]⎰-∆xxSdx a x 2cos 0πρ=()()[]xx a x S a -∆2sin 20ππρ =4ρ0(a /π)∆S sin[πx /(2a )]得 E={2ρ0a sin[πx /(2a )]}/(πε0) (2)板外|x |>aQ=)[]⎰-∆aaSdx a x 2cos 0πρ=()()[]aa a x S a -∆2sin 20ππρ =4ρ0(a /π)∆S得 E=2ρ0a /(πε0)当x >0方向向右, 当x <0方向向左.2. 球形空腔无限长圆柱带电体可认为是均匀带正电(体电荷密度为ρ)无限长圆柱体与均匀带负电(体电荷密度为-ρ)球体组成.分别用高斯定理求无限长均匀带电圆柱体激发的电场E 1与均匀带电球体激发的电场E 2.为求E 1,在柱体内作同轴的圆柱形高斯面,有=⋅⎰S E d S02102ερπεπl r Q rlE == E 1=ρr 1/(2ε0)方向垂直于轴指向外;为求E 2,在球体内外作同心的球形高斯面,有=⋅⎰S E d S0224επQ E r = 球内r<a Q=-ρ4πr 23/3 E 2=-πr 2/(3ε0) 球外r>a Q=-ρ4πa 3/3 E 2=-πa 3/(3ε0r 22) 负号表示方向指向球心.对于O 点E 1=ρd/(2ε0), E 2=-πr 2/(3ε0)=0 (因r 2=0) 得 E O =ρa/(2ε0) 方向向右; 对于P 点E 1=ρd/(2ε0), E 2=-πa 3/(12ε0d 2) 得 E P =ρd/(2ε0)-πa 3/(12ε0d 2) 方向向左.练习4 静电场的环路定理 电势一、选择题 A C B D D二、填空题1. )222(812310q q q R++πε.2 Ed cos α.3 .-q/(6πε0R )三、计算题1.解:设球层电荷密度为ρ.ρ=Q/(4πR 23/3-4πR 13/3)=3Q/[4π(R 23-R 13)]球内,球层中,球外电场为E 1=0, E 2=ρ(r 3-R 13)/(3ε0r 2) , E 3=ρ(R 23-R 13)/(3ε0r 2)故⎰⎰⎰∞+=⋅=rR R R r211d d d 21r E r E r E ϕ⎰∞+2d 3R r E=0+{ρ(R 22-R 12)/(6ε0)+[ρR 13/(3ε0)(1/R 2-1/R 1)]}+ ρ(R 23-R 13)/(3ε0R 2)=ρ(R 22-R 12)/(2ε0)=3Q (R 22-R 12)/[8πε0(R 23-R 13)]2. (1)⎰⋅=-212d 2r r r r U U 1l E =⎰2102r r dr rπελ=(λ/2πε0)ln(r 2/r 1)(2)无限长带电直线不能选取无限远为势能零点,因为此时带电直线已不是无限长了,公式E=λ/(2πε0r )不再适用.练习5 静电场中的导体一、选择题 A A C D B二、填空题1. 2U 0/3+2Qd/(9ε0S ).2. 会, 矢量.3. 是, 是, 垂直, 等于.三、计算题1. E x =-∂U/∂x=-C [1/(x 2+y 2)3/2+x (-3/2)2x /(x 2+y 2)5/2] = (2x 2-y 2)C /(x 2+y 2)5/2 E y =-∂U/∂y=-Cx (-3/2)2y /(x 2+y 2)5/2=3Cxy /(x 2+y 2)5/2 x 轴上点(y =0) E x =2Cx 2/x 5=2C /x 3 E y =0E =2C i /x 3y 轴上点(x =0) E x =-Cy 2/y 5=-C /y 3 E y =0 E =-C i /y 32. B 球接地,有 U B =U ∞=0, U A =U AB U A =(-Q+Q B )/(4πε0R 3) U AB =[Q B /(4πε0)](1/R 2-1/R 1)得 Q B =QR 1R 2/( R 1R 2+ R 2R 3- R 1R 3)U A =[Q/(4πε0R 3)][-1+R 1R 2/(R 1R 2+R 2R 3-R 1R 3)]=-Q (R 2-R 1)/[4πε0(R 1R 2+R 2R 3-R 1R 3)]练习6 静电场中的电介质一、选择题 D D B A C二、填空题1. 非极性, 极性.2. 取向, 取向; 位移, 位移.3. -Q/(2S ), -Q/(S )三、计算题1. 在A 板体内取一点A , B 板体内取一点B ,它们的电场强度是四个表面的电荷产生的,应为零,有E A =σ1/(2ε0)-σ2/(2ε0)-σ3/(2ε0)-σ4/(2ε0)=0 E A =σ1/(2ε0)+σ2/(2ε0)+σ3/(2ε0)-σ4/(2ε0)=0 而 S (σ1+σ2)=Q 1 S (σ3+σ4)=Q 2 有 σ1-σ2-σ3-σ4=0σ1+σ2+σ3-σ4=0 σ1+σ2=Q 1/S σ3+σ4=Q 2/S解得 σ1=σ4=(Q 1+Q 2)/(2S )=2.66⨯10-8C/m 2σ2=-σ3=(Q 1-Q 2)/(2S )=0.89⨯10-8C/m 2 两板间的场强 E=σ2/ε0=(Q 1-Q 2)/(2ε0S )V=U A -U B ⎰⋅=BAl E d=Ed=(Q 1-Q 2)d /(2ε0S )=1000V四、证明题1. 设在同一导体上有从正感应电荷出发,终止于负感应电荷的电场线.沿电场线ACB作环路ACBA ,导体内直线BA 的场强为零,ACB 的电场与环路同向于是有=⋅⎰l E d l +⋅⎰ACBl E d ⎰⋅ABl E d 2=⎰⋅ACBl E d ≠与静电场的环路定理=⋅⎰l E d l0相违背,故在同一导体上不存在从正感应电荷出发,终止于负感应电荷的电场线.练习7 静电场习题课一、选择题 D B A C A二、填空题1. 9.42×103N/C, 5×10-9C .2.25.3 R 1/R 2, 4πε0(R 1+R 2), R 2/R 1.三、计算题1. (1)拉开前 C 0=ε0S/d W 0=Q 2/(2C 0)= Q 2d /(2ε0S )拉开后 C=ε0S/(2d )W=Q 2/(2C )=Q 2d /(ε0S ) ∆W=W -W 0= Q 2d /(2ε0S )(2)外力所作功A=-A e =-(W 0-W )= W -W 0= Q 2d /(2ε0S ) 外力作功转换成电场的能量 {用定义式解:A=⎰⋅l F d =Fd =QE 'd=Q [(Q/S )/(2ε0)]d= Q 2d /(2ε0S ) }2. 洞很细,可认为电荷与电场仍为球对称,由高斯定理可得球体内的电场为 E =(ρ4πr 3/3)/(4πε0r 2)(r /r ) =ρr /(3ε0)=Q r /(4πε0R 3) F =-q E =-qQ r /(4πε0R 3)F 为恢复力, 点电荷作谐振动-qQr /(4πε0R 3)=m d 2r/d t 2 ω=[ qQ /(4πε0mR 3)]1/2因t =0时, r 0=a, v 0=0,得谐振动A=a ,ϕ0=0故点电荷的运动方程为()t mR qQ a r 304cos πε=练习8 磁感应强度 毕奥—萨伐尔定律一、选择题 A A B C D二、填空题1. 所围面积,电流,法线(n ).2. μ0I/(4R 1)+ μ0I/(4R 2),垂直向外;(μ0I/4)(1/R 12+1/R 22)1/2,π+arctan(R 1/R 2). 3. 0.三、计算题1.取宽为d x 的无限长电流元d I=I d x/(2a ) d B=μ0d I/(2πr ) =μ0I d x/(4πar )d B x =d B cos α=[μ0I d x/(4πar )](a/r )=μ0I d x/(4πr 2)= μ0I d x/[4π(x 2+a 2)]d B y =d B sin α= μ0Ix d x/[4πa (x 2+a 2)]()⎰⎰-+==aax x ax xI B B 2204d d πμ=[μ0I/(4π)](1/a )arctan(x/a )a a-=μ0I/(8a )()⎰⎰-+==aay y a x a xIx B B 2204d d πμ=[μ0I/(8πa )]ln(x 2+a 2)a a-=02. 取宽为d L 细圆环电流, d I=I d N=I [N/(πR/2)]R d θ=(2IN/π)d θ d B=μ0d Ir 2/[2(r 2+x 2)3/2] r=R sin θ x=R cos θ d B=μ0NI sin 2θ d θ /(πR )⎰⎰==πππθθμ220d sin d RNI B B =μ0NI/(4R )练习9 毕—萨定律(续)一、选择题 D B C A D二、填空题1. 0.16T.2. μ0Qv /(8πl 2), z 轴负向.3. μ0nI πR 2. 三、计算题1.取窄条面元d S =b d r , 面元上磁场的大小为 B =μ0I /(2πr ), 面元法线与磁场方向相反.有Φ1=⎰-=aabIbdr r I 2002ln 2cos 2πμππμΦ2=⎰-=aabIbdr r I 42002ln 2cos 2πμππμ Φ1/Φ2=12. 在圆盘上取细圆环电荷元d Q =σ2πr d r ,[σ=Q /(πR 2) ],等效电流元为 d I =d Q /T =σ2πr d r/(2π/ω)=σωr d r(1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与ω同向,大小为d B=μ0d Ir 2/[2(x 2+r 2)3/2]=μ0σωr 3d r /[2(x 2+r 2)3/2]()()()⎰⎰++=+=RRx rx r r x r rr B 02322222002/32230d 42d σωμσωμ=()()()⎰+++Rx r x r x r232222220d 4σωμ-()()⎰++R x r x r x 023222220d 4σωμ=⎪⎪⎭⎫⎝⎛+++RR x r x x r 022202202σωμ =⎪⎪⎭⎫ ⎝⎛-++x x R x R R Q 222222220πωμ (2)求磁距. 电流元的磁矩 d P m =d IS=σωr d r πr 2=πσωr 2d r⎰=Rm dr r P 03πσω=πσωR 4/4=ωQR 2/4练习10 安培环路定理一、选择题 B C C D A二、填空题1. 环路L 所包围的电流, 环路L 上的磁感应强度,内外. 2. μ0I , 0, 2μ0I . 3. -μ0IS 1/(S 1+S 2),三、计算题1. 此电流可认为是由半径为R 的无限长圆柱电流I 1和一个同电流密度的反方向的半径为R '的无限长圆柱电流I 2组成.I 1=J πR 2 I 2=-J πR '2 J =I/[π (R 2-R '2)] 它们在空腔内产生的磁感强度分别为B 1=μ0r 1J/2B 2=μ0r 2J/2 方向如图.有B x=B2sinθ2-B1sinθ1=(μ0J/2)(r2sinθ2-r1sinθ1)= 0B y =B2cosθ2+B1cosθ1=(μ0J/2)(r2cosθ2+r1cosθ1)=(μ0J/2)d所以 B = B y= μ0dI/[2π(R2-R '2)]方向沿y轴正向2. 两无限大平行载流平面的截面如图.平面电流在空间产生的磁场为B1=μ0J/2在平面①的上方向右,在平面①的下方向左;电流②在空间产生的磁场为B2=μ0J/2在平面②的上方向左,在平面②的下方向右.(1) 两无限大电流流在平面之间产生的磁感强度方向都向左,故有B=B1+B2=μ0J (2) 两无限大电流流在平面之外产生的磁感强度方向相反,故有B=B1-B2=0练习11 安培力洛仑兹力一、选择题 D B C A B二、填空题1 IBR .2 10-2, π/23 0.157N·m ; 7.85×10-2J .三、计算题1. (1) P m=IS=Ia2方向垂直线圈平面.线圈平面保持竖直,即P m与B垂直.有M m=P m×BM m=P m B sin(π/2)=Ia2B=9.4×10-4m⋅N(2) 平衡即磁力矩与重力矩等值反向M m=P m B sin(π/2-θ)=Ia2B cosθM G= M G1 + M G2 + M G3= mg(a/2)sinθ+ mga sinθ+ mg(a/2)sinθ=2(ρSa)ga sinθ=2ρSa2g sinθIa2B cosθ=2ρSa2g sinθtanθ=IB/(2ρSg)=0.2694θ=15︒2.在圆环上取微元I2d l= I2R dθ该处磁场为B=μ0I1/(2πR cosθ)I2d l与B垂直,有d F= I2d lB sin(π/2)d F=μ0I1I2dθ/(2πcosθ)d F x=d F cosθ=μ0I1I2dθ/(2π)d F y=d F sinθ=μ0I1I2sinθdθ/(2πcosθ)⎰-=22212πππθμdI IFx=μ0I1I2/2因对称F y=0.故F=μ0I1I2/2 方向向右.练习12 物质的磁性一、选择题 D B D A C二、填空题1. 7.96×105A/m,2.42×102A/m.2. 见图3.矫顽力H c大, 永久磁铁.三、计算题1. 设场点距中心面为x,因磁场面对称以中心面为对称面过场点取矩形安培环路,有⎰⋅llH d=ΣI02∆LH=ΣI0(1)介质内,0<x<b/2. ΣI0=2x∆lJ=2x∆lγE,有H =x γE B =μ0μr 1H=μ0μr 1x γE(2) 介质外,|x |>b/2. ΣI 0=b ∆lJ =b ∆l γE ,有 H =b γE/2 B =μ0μr 2H=μ0μr 2b γE/22. 因磁场柱对称 取同轴的圆形安培环路,有⎰⋅ll H d =ΣI 0在介质中(R 1<r <R 2),ΣI 0=I ,有 2πrH = I H = I /(2πr ) 介质内的磁化强度 M =χm H =χm I /(2πr )介质内表面的磁化电流 J SR 1=| M R 1×n R 1|=| M R 1|=χm I /(2πR 1) I SR 1=J SR 1⋅2πR 1=χm I (与I 同向) 介质外表面的磁化电流 J SR 2=| M R 2×n R 2|=| M R 2|=χm I /(2πR 2) I SR 2=J SR 2⋅2πR 2=χm I (与I 反向)练习13 静磁场习题课一、选择题 D C A A A 二、填空题1. 6.67×10-6T ; 7.20×10-21A ·m 2.2. R ih πμ20.3. -πR 2c (Wb).三、计算题1.(1)螺绕环内的磁场具有轴对称性,故在环内作与环同轴的安培环路.有 ⎰⋅ll B d =2πrB=μ0∑I i =μ0NIB=μ0NI/(2πr )(2)取面积微元h d r 平行与环中心轴,有d Φm =|B ⋅d S | =[μ0NI/(2πr )]h d r =μ0NI h d r /(2πr )Φm =⎰=22120021ln 22D D D D NIh dr r NIh πμπμ 2. 因电流为径向,得径向电阻为⎰=2112ln 22R RR R d rd dr πρπρ I=ε/[ρln(R 2/R 1)/(2πd )]=2πd ε/[ρln(R 2/R 1)] 取微元电流 d I d l=J d S d r=[I/(2πrd )]r d θd d r=d εd θd r /[ρln(R 2/R 1)]受磁力为d F=|d I d l ×B |=Bd εd θd r /[ρln(R 2/R 1)]d M=|r ×d F |=Bd εd θ r d r /[ρln(R 2/R 1)] 练习练习14 电磁感应定律 动生电动势一、选择题 D B D A C二、填空题1. t I r r ωωπμcos 202210,22102Rr I r πμ . 2. > , < , = .3. B ωR 2/2; 沿曲线由中心向外.三、计算题1. 取顺时针为三角形回路电动势正向,得三角形面法线垂直纸面向里.取窄条面积微元 d S =y d x =[(a+b -x )l/b ]d xΦm =⎰⋅S d S B=()⎰+-+⋅ba abldxx b a x I πμ20 =()⎥⎦⎤⎢⎣⎡-++b a b a b a b Il ln 20πμ εi =-d Φm /d t=()dt dIa b a b a b b l ⎥⎦⎤⎢⎣⎡++-ln 20πμ=-5.18×10-8V负号表示逆时针2. (1) 导线ab 的动生电动势为εi = ⎰l v×B ·d l=vBl sin(π/2+θ)=vBl cos θI i =εi /R = vBl cos θ/R方向由b 到a . 受安培力方向向右,大小为 F =| ⎰l (I i d l×B )|= vB 2l 2cos θ/RF 在导轨上投影沿导轨向上,大小为F '= F cos θ =vB 2l 2cos 2θ/R重力在导轨上投影沿导轨向下,大小为mg sin θmg sin θ -vB 2l 2cos 2θ/R=ma=m d v /d t dt=d v /[g sin θ -vB 2l 2cos 2θ/(mR )])]{}⎰-=vmR l vB g dv t 0222cos sin θθ()()()mR t l B e l B mgR v θθθ222cos 2221cos sin --=(2) 导线ab 的最大速度v m =θθ222cos sin l B mgR .练习15 感生电动势 自感一、选择题 A D C B B二、填空题1. er 1(d B /d t )/(2m ),向右;eR 2(d B /d t )/(2r 2m ),向下.2. μ0n 2l πa 2, μ0nI 0πa 2ωcos ωt .3.ε=πR 2k/4,从c 流至b .三、计算题1.(1) 用对感生电场的积分εi =⎰l E i ·d l 解:在棒MN 上取微元d x (-R<x<R ), 该处感生电场大小为 E i =[R 2/(2r )](d B/d t ) 与棒夹角θ满足tan θ=x/Rεi =⎰⋅NMl E i d =⎰NMi x E θcos d=()⎰-⋅RRr R r x t B R 22d d d =⎰-+⋅RR R x x t B R 2232d d d =[R 3(d B/d t )/2](1/R )arctan(x/R )R R- =πR 2(d B/d t )/4因εi =>0,故N 点的电势高.(2) 用法拉第电磁感应定律εi =-d Φ/d t 解: 沿半径作辅助线OM ,ON 组成三角形回路MONMεi =⎰⋅NMl E i d =⎰⋅-MNl E i d=-⎢⎣⎡⋅⎰MNl E i d +⎰⋅OM l E i d +⎥⎦⎤⋅⎰NO l E i d=-(-d ΦmMONM /d t ) =d ΦmMONM /d t 而 ΦmMONM =⎰⋅Sd S B =πR 2B/4故 εi =πR 2(d B/d t )/4N 点的电势高. 2. .等效于螺线管B 内=μ0 nI=μ0 [Q ω /(2π)]/L=μ0 Q ω /(2πL )B 外=0Φ=⎰S B ⋅d S=B πa 2=μ0Q ω a 2 /(2 L ) εi =-d Φ/d t=-[μ0Q a 2 /(2 L )]d ω /d t=μ0ω 0Q a 2 /(2 L t 0) I i =εi /R=μ0ω 0Q a 2 /(2 LR t 0)方向与旋转方向一致.练习16 互感(续)磁场的能量一、选择题 D C B C A二、填空题1. 0.2. ΦAB =ΦBA .3. μ0I 2L /(16π.)三、计算题1. 取如图所示的坐标,设回路有电流为I ,则两导线间磁场方向向里,大小为0≤r ≤a B 1=μ0Ir/(2πa 2)+ μ0I/[2π(d -r )] a ≤r ≤d -a B 2=μ0I/(2πr )+μ0I/[2π(d -r )] d -a ≤r ≤d B 3=μ0I/(2πr )+ μ0I (d -r )/(2πa 2) 取窄条微元d S=l d r ,由Φm =⎰⋅SS B d 得Φml =⎰aa r Irl 0202d πμ+()⎰-a r d r Il 002d πμ +⎰-ad ar r Il πμ2d 0+()⎰--a d ar d rIl πμ2d 0 +⎰-ad ar r Il πμ2d 0+()⎰-a d aa rl r -d I 202d πμ =μ0Il/(4π)+[μ0Il/(2π)]ln[d/(d -a )] +[μ0Il/(2π)]ln[(d -a )/a ] +[μ0Il/(2π)]ln[(d -a )/a ]+[μ0Il/(2π)]ln[d/(d -a )]+μ0Il/(4π)=μ0Il/(2π)+(μ0Il/π)ln(d/a )由L l =Φl /I ,L 0= L l /l=Φl /(Il ).得单位长度导线自感 L 0==μ0l/(2π)+(μ0l/π)ln(d/a )2. 设环形螺旋管电流为I , 则管内磁场大小为B =μ0NI/(2πρ) r ≤ρ≤R方向垂直于截面; 管外磁场为零.取窄条微元d S=h d ρ,由Φm =⎰⋅SS B d 得Φm =⎰RrNIh πρρμ2d 0=μ0NIh ln(R/r )/(2π) M =Φm /I ==μ0Nh ln(R/r )/(2π)练习17 麦克斯韦方程组一、选择题 C A D B C二、填空题1. 1.2. ②, ③, ①.3. 1.33×102 W/m 2 , 2.51×10-6J/m 3.三、计算题1. 设极板电荷为Q , 因I=d Q/d t , Q=CU ,有 (1) I=d(CU )/d t=C d U/d td U/d t =I/C = I 0e -kt /CU = I 0(1-e -kt )/(kC )(2)I d =d Φd /d t =d(DS )/d t =d(εES )/d t =d[ε(U /d )S ]/d t=(εS /d )d U/d t =C d U/d t=I=I 0e -kt(3)在极板间以电容器轴线为心,以r 为半径作环面垂直于轴的环路,方向与I d 成右手螺旋.有⎰⋅ll H d =2πrH =∑I d当r <R 时 ∑I d =[I d /(πR 2)]πr 2 H =I d r /(2πR 2) B =μH =μI d r /(2πR 2)=μI 0e -kt r /(2πR 2) 当r >R 时 ∑I d =I d H =Ir /(2πr )B =μI 0e -k t /(2πr )方向与回路方向相同. O 点,r =0: B =0A 点,r =R 1<R :B =μI 0e -kt R 1/(2πR 2) 方向向里C 点,r =R 2>R : B =μI 0e -k t /(2πR 2) 方向向外.2.(1)坡印廷矢量平均值 S =I =P /(2πr 2) r =10km S =P /(2πr 2)=1.59×10-5W/m 2 (2) 电场强度和磁场强度振幅.εE =μHS =|S |=|E ×H |=2E με=εμH 2E=εμS H=μεS E m =E 2=002εμS =1.09⨯10-1V/mH m =H 2=002μεS =2.91×10-4A/m练习18 电磁感应习题课一、选择题 A B B C D二、填空题1 0, 2μ0I 2/(9π2a 2).2 700Wb/s.3 vBl sin α, A 点.三、计算题1. 任意时刻金属杆角速度为ω,取微元长度d rd εi =v ×B ⋅d l=ωrBdrεi =⎰d εi =r r B ad 0⎰ω=ω Ba 2/2I =εi /R =ω Ba 2/(2R )方向由O 向A .微元d r 受安培力为 |d F |=|I d l ×B |= IB d r d M =|d M |=|r ×d F |= IBr d r M=⎰d M =r r IB ad 0⎰=I Ba 2/2=ω B 2a 4/(4R )方向与ω相反.依转动定律,有-ω B 2a 4/(4R )=J α=(ma 2/3)d ω /d td t=-[4Rm/(3ω B 2a 2)]d ω =-[4Rm/(3 B 2a 2)]d ω/ωt =()[]()ωωωωd 34022⎰a B mR=-[4Rm/(3 B 2a 2)]ln(ω/ω0)t mRa B e43022-=ωω2. 因b >>a ,可认为小金属环上的磁场是均匀.Φm =⎰⋅Sd S B =BS cos θ=[μ0I/(2b )]πa 2cos θ=μ0I πa 2cos θ/(2b ) (1) I 恒定,θ=ω1t : εi =-d Φm /d t =(-d Φm /d θ)(d θ/d t )=μ0I πa 2ω1sin(ω1t )/(2b ) (2) I =I 0sin ω2t ,θ=0:εi =-d Φm /d t =(-d Φm /d I )(d I/d t ) =-μ0πa 2I 0ω2cos ω2t/(2b )(3) I =I 0sin ω2t ,θ= ω1t : εi =-d Φm /d t=-[(∂Φm /∂θ)(∂θ/∂t )+(∂Φm /∂I )(∂I/∂t )] =[μ0I 0πa 2/(2b )][ω1sin(ω1t )sin(ω2t )-ω2cos ω2t ]练习19 义相对论的基本原理及其时空观一、选择题 C D B A A二、填空题1. c , c .2. c c 97.017/16=.3. ()c l a 201-三、计算题1 (1)设K '相对于K 的运动速度为v ,运动方向为x 正向.因x 1=x 2,有∆t '=(∆t -v ∆x /c 2)/(1-v 2/c 2)1/2=∆t /(1-v 2/c 2)1/2 v=[1-(∆t )2/(∆t ')2]1/2c =3c /5=1.8×108m/s (2) ∆x '=(∆x -v ∆t )/(1-v 2/c 2)1/2=-v ∆t /(1-v 2/c 2)1/2=-v ∆t '=3c (m)=9×108m2. 设地球和飞船分别为K 和K '系,有(1)飞船上观察者测飞船长度为固有长度,又因光速不变,有∆x '=90m ∆t '=∆x '/c =3×10-7s (2)地球上观察者∆x =(∆x '+v ∆t ')/(1-v 2/c 2)1/2=270m ∆t =(∆t '+v ∆x '/c 2)/(1-v 2/c 2)1/2=9×10-7s {或 ∆t =(∆t '+v ∆x '/c 2)/(1-v 2/c 2)1/2=(∆x '/c+v ∆x '/c 2)/(1-v 2/c 2)1/2 =[(∆x '+v ∆t ')/(1-v 2/c 2)1/2]/c =∆x /c =9×10-7s }练习20 相对论力学基础一、选择题 A C A B C二、填空题1. 1.49MeV .2. 2/3c , 2/3c .3. 5.81×10-13, 8.04×10-2.三、计算题1. E k =mc 2-m 0c 2 m =m 0+E k /c 2回旋周期T =2πm /(qB )=2π( m 0+E k /c 2)/(qB ) E k =104MeV=1.6×10-9J m 0=1.67×10-27kg q =1.6⨯10-19C T =2π( m 0+E k /c 2)/(qB )=7.65×10-7s2. E = m 0c2/221cv - =E 0/221c v-γ= 1/221c v -=E /E 0v=c ()201E E -=2.998×108m/s运动的距离∆l =v ∆t =v τ0γ= c ()201E E -τ0 E /E 0=c τ0()1/20-E E =1.799×104m练习21 热辐射 光电效应一、选择题 A D C D B二、填空题1. 0.64 .2. 2.4×103K.3. 在一定温度下,单位时间内从绝对黑体表面单位面积上所辐射的各波长的总能量.三、计算题1. (1)T=b/λm =5.794×103K .(2) P =M (T )S =σT 44πR S 2=3.67×1026W(3) P '= P/S '=σT 44πR S 2/(4πL 2)=1.30×103W/m 22. λm = b/T =9.66×10-4mνm =c /λm = c /(b/T )=cT/b =3.11×1011Hz P =M (T )S =σT 44πR E 2=2.34×109W练习22 康普顿效应 氢原子的玻尔理论一、选择题 D B A C A二、填空题1. hc/λ;h/λ;h/(λc ).2. 1.45V ;7.14×105m/s .3. π;0.三、计算题1. h ν=hc /λ=mv 2/2+A =eU c +AU c =(hc /λ-A )/e =(hc /(λe )-A /emv =[2m ( hc /λ-A )]1/2R =mv /(qB )=[2m ( hc /λ-A )]1/2/(eB )2.(1) ∆λ=h (1-cos ϕ)/(m 0c ) λ=λ0+∆λ=λ0+h (1-cos ϕ)/(m 0c )=1.024×10-10m (2) h ν0+m 0c 2= h ν+mc 2= h ν+m 0c 2+E kh ν0= h ν+E k E k =h ν0- h ν= hc/λ0- hc/λ= hc (λ-λ0)/(λ0λ) = hc ∆λ/[λ0(λ0+∆λ)]=4.71×10-17J=294eV练习23 德布罗意波 不确定关系一、选择题 D C D A B二、填空题1. 1.46Å; 6.63×10-31m.2. 3/3. 3. 6.63×10-24. (或1.06×10-24,3.32×10-24, 0.53×10-24)三、计算题1. (1)由带电粒子在均匀磁场中作圆运动运动的知识知,R =mv /(qB ).于是有 p α=m αv α=qBR =2eBRλα=h/p α=h/(2eBR )=9.98×10-12m =9.98×10-3nm(2) 设小球与α粒子速率相同v =v α=2eBR/m αλ= h/p = h/(mv )= h/[m (2eBR/m α)] =[h/(2eBR )](m α/m )=(m α/m )λα=6.62×10-34m2. (1)考虑相对论效应E k =eU =mc 2-m 0c 2=E -E 0p 2c 2=E 2-E 02= (E+E 0)(E -E 0)= (E k +2E 0)E k= (eU +2 m 0c 2) eU p =[(eU +2 m 0c 2) eU ]1/2/cλ=h /p =hc/[(eU +2 m 0c 2) eU ]1/2=8.74×10-13m(2)不考虑相对论效应E k =eU=mv 2/2=p 2/(2m ) p =(2meU )1/2 λ=h /p = h /(2meU )1/2= h /(2m 0eU )1/2=1.23×10-12m(λ-λ0)/λ0=40.7%﹪﹪练习24 薛定谔方程 氢原子的量子力学描述一、选择题 A C A D B二、填空题1. ν3=ν1+ν2;1/λ3=1/λ1+1/λ2. 2. 粒子t 时刻出现在r 处的概率密度; 单值,有限,连续;⎰=ψ1d d d 2z y x . 3. a /6, a /2, 5a /6.三、计算题1所发射光子的能量ε=h ν=hc /λ=2.56eV 激发能为∆E =10.19eV 能级的能量为E k ,有∆E =E k - E 1E k =E 1+∆E =-13.6+10.19=-3.41eV 初态能量 E n =E k +ε=-0.85eV 初态主量子数 n =(E 1/E n )1/2=42. 由归一化⎰∞∞-=V Ψd 2⎰lx c22(l -x )d x =1得 c =530l0~l /3区间发现粒子的概率 P =⎰lx Ψ2d =⎰l30x 2(l -x )2d x /l 5=17/81=21%练习25 近代物理习题课一、选择题 D D D CB二、填空题1 13.6eV , 5.2 >, >, <. 3. 459W/s三、计算题1. (1)ε =h ν=hc/λ=2.86eV (2) 巴耳末系k =2,E 2=E 1/22=-13.6/4=-3.4eVE n =E 1/n 2=E 2+ε =-0.54eVn =(E 1/E n )1/2=5(3) 可发射四个线系, 共10条谱线;波长最短的谱线是从n =5的能态跃迁到n =1的能态而发射的光譜线2 ∆p ∆x ≧ћ/2 ∆p ≧ћ/(2∆x ) 取 p ≈∆p ≧ћ/(2∆x )=7.3⨯10-21kgm/sE k = p 2/(2m )≈[ћ/(2∆x )]2/(2m )=ћ2/[8 m (∆x )2]=2.5⨯10。

大学物理习题答案

大学物理习题答案

大学物理练习册 参考解答第12章 真空中的静电场一、选择题1(D),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B), 二、填空题(1). 电场强度和电势,0/q F E=,l E q W U aa⎰⋅==00d /(U 0=0).(2). ()042ε/q q +, q 1、q 2、q 3、q 4 ;(3). 0,λ / (2ε0) ; (4). σR / (2ε0) ; (5). 0 ; (6).⎪⎪⎭⎫ ⎝⎛-π00114r r q ε ;(7). -2×103 V ; (8).⎪⎪⎭⎫ ⎝⎛-πa br r q q 11400ε(9). 0,pE sin α ; (10). ()i a x A2+-.三、计算题1. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q / L ,在x 处取一电荷元d q = λd x = q d x / L ,它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L xq -+π=ε总场强为⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε 方向沿x 轴,即杆的延长线方向.2.一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在θ处取微小电荷 d q = λd l = 2Q d θ / π它在O 处产生场强θεεd 24d d 20220R QR q E π=π=L Pd EO按θ 角变化,将d E 分解成二个分量:θθεθd sin 2sin d d 202R QE E x π==θθεθd cos 2cos d d 202RQE E y π-=-= 对各分量分别积分,积分时考虑到一半是负电荷⎥⎦⎤⎢⎣⎡-π=⎰⎰πππθθθθε2/2/0202d sin d sin 2R QE x =02022/2/0202d cos d cos 2R QR Q E y εθθθθεππππ-=⎥⎦⎤⎢⎣⎡-π-=⎰⎰ 所以j RQ j E i E E y x202επ-=+= 3. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为λ,试求轴线上一点的电场强度.解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为 θλλλd d d π=π=l R取θ位置处的一条,它在轴线上一点产生的场强为θελελd 22d d 020RR E π=π=如图所示. 它在x 、y 轴上的二个分量为:d E x =d E sin θ , d E y =-d E cos θ对各分量分别积分RR E x 02002d sin 2ελθθελππ=π=⎰0d cos 2002=π-=⎰πθθελRE y 场强 i Rj E i E E y x02ελπ=+= 4. 实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100 N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C . (1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;(2) 假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0ε=8.85×10-12 C 2·N -1·m -2) 解:(1) 设电荷的平均体密度为ρ,取圆柱形高斯面如图(1)(侧面垂直底面,底面∆S 平行地面)上下底面处的 场强分别为E 1和E 2,则通过高斯面的电场强度通量为:⎰⎰E·S d =E 2∆S -E 1∆S =(E 2-E 1) ∆S高斯面S 包围的电荷∑q i =h ∆S ρ由高斯定理(E 2-E 1) ∆S =h ∆S ρ /ε 0∴ () E E h1201-=ερ=4.43×10-13 C/m 3(2) 设地面面电荷密度为σ.由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2)由高斯定理 ⎰⎰E·S d =∑i 01q ε-E ∆S =S ∆σε01∴ σ =-ε 0 E =-8.9×10-10 C/m 3 5. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R ), A 为一常量.试求球体内外的场强分布.解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为r r Ar V q d 4d d 2π⋅==ρ在半径为r 的球面内包含的总电荷为403d 4Ar r Ar dV q rVπ=π==⎰⎰ρ (r ≤R)以该球面为高斯面,按高斯定理有 0421/4εAr r E π=π⋅得到()0214/εAr E =, (r ≤R )方向沿径向,A >0时向外, A <0时向里.在球体外作一半径为r 的同心高斯球面,按高斯定理有0422/4εAR r E π=π⋅ 得到 ()20424/r AR E ε=, (r >R )方向沿径向,A >0时向外,A <0时向里.6. 如图所示,一厚为b 的“无限大”带电平板 , 其电荷体密度分布为ρ=kx (0≤x ≤b ),式中k 为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;(2) 平板内任一点P 处的电场强度; (3) 场强为零的点在何处?解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示. 按高斯定理∑⎰=⋅0ε/d q S E S,即22d d 12εερεkSbx x kSx S SE b b===⎰⎰得到 E = kb 2 / (4ε0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ',如图所示.按高斯定理有(2)()022εεkSb xdx kSS E E x==+'⎰得到 ⎪⎪⎭⎫ ⎝⎛-='22220b x k E ε (0≤x ≤b ) (3) E '=0,必须是0222=-b x , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为σ.如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为σ的大平面和面密度为-σ的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为ixx E 012εσ=圆盘在该处的场强为i x R x x E ⎪⎪⎭⎫ ⎝⎛+--=2202112εσ ∴ i xR x E E E 220212+=+=εσ该点电势为 ()220222d 2x R R xR x x U x+-=+=⎰εσεσ8. 一半径为R 的“无限长”圆柱形带电体,其电荷体密度为ρ =Ar (r ≤R ),式中A 为常量.试求:(1) 圆柱体内、外各点场强大小分布; (2) 选与圆柱轴线的距离为l (l >R ) 处为电势零点,计算圆柱体内、外各点的电势分布.解:(1) 取半径为r 、高为h 的高斯圆柱面(如图所示).面上各点场强大小为E 并垂直于柱面.则穿过该柱面的电场强度通量为:⎰π=⋅SrhE S E 2d为求高斯面内的电荷,r <R 时,取一半径为r ',厚d r '、高h 的圆筒,其电荷为r r Ah V ''π=d 2d 2ρσO R OxP则包围在高斯面内的总电荷为3/2d 2d 32Ahr r r Ah V r Vπ=''π=⎰⎰ρ由高斯定理得 ()033/22εAhr rhE π=π 解出()023/εAr E = (r ≤R )r >R 时,包围在高斯面内总电荷为:3/2d 2d 302AhR r r Ah V RVπ=''π=⎰⎰ρ由高斯定理 ()033/22εAhR rhE π=π 解出 ()r AR E 033/ε= (r >R )(2) 计算电势分布 r ≤R 时 ⎰⎰⎰⋅+==l R Rrl rr r AR r r A r E U d 3d 3d 0320εε ()R l AR r R A ln 3903330εε+-=r >R 时 rlAR r r AR r E U lrl rln 3d 3d 0303εε=⋅==⎰⎰9.一真空二极管,其主要构件是一个半径R 1=5×10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5×10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 V ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6×10-19 C)解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为λ.按高斯定理有 2πrE = λ/ ε0得到 E = λ / (2πε0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差⎰⎰π-=⋅=-21d 2d 0R R B AB A rrr E U U ελ120ln 2R R ελπ-=得到()120/ln 2R R U U A B -=πελ, 所以 ()rR R U U E A B 1/ln 12⋅-=在阴极表面处电子受电场力的大小为 ()()11211/c R R R U U eR eE F A B ⋅-===4.37×10-14 N 方向沿半径指向阳极.第13章 静电场中的导体和电解质一、选择题1(D),2(D),3(B),4(A),5(C),6(B),7(C),8(B),9(C),10(B) 二、填空题(1). 4.55×105 C ;(2). σ (x ,y ,z )/ε0,与导体表面垂直朝外(σ > 0) 或 与导体表面垂直朝里(σ < 0). (3). εr ,1, εr ; (4). 1/εr ,1/εr ;(5). σ ,σ / ( ε 0ε r ); (6).Rq 04επ ;(7). P ,-P ,0; (8) (1- εr )σ / εr ; (9). 减小, 减小; (10). 增大,增大.三、计算题1. 一接地的"无限大"导体板前垂直放置一"半无限长"均匀带电直线,使该带电直线的一端距板面的距离为d .如图所示,若带电直线上电荷线密度为λ,试求垂足O 点处的感生电荷面密度.解:如图取座标,对导体板内O 点左边的邻近一点,半无限长带电直线产生的场强为: ()⎰∞-=dx i dx E 2004/ελπ()d i 04/ελπ-= 导体板上的感应电荷产生的场强为:()0002/εσi E-='由场强叠加原理和静电平衡条件,该点合场强为零,即()[]()02/4/000=--εσελd π ∴ ()d π2/0λσ-=2.半径为R 1的导体球,带电荷q ,在它外面同心地罩一金属球壳,其内、外半径分别为R 2 = 2 R 1,R 3 = 3 R 1,今在距球心d = 4 R 1处放一电荷为Q 的点电荷,并将球壳接地(如图所示),试求球壳上感生的总电荷.解:应用高斯定理可得导体球与球壳间的场强为 ()304/r r q E επ= (R 1<r <R 2)设大地电势为零,则导体球心O 点电势为: ⎰⎰π==2121200d 4d R R R R r r q r E U ε⎪⎪⎭⎫⎝⎛-π=21114R R qε根据导体静电平衡条件和应用高斯定理可知,球壳内表面上感生电荷应为-q . 设球壳外表面上感生电荷为Q'.以无穷远处为电势零点,根据电势叠加原理,导体球心O 处电势应为: ⎪⎪⎭⎫ ⎝⎛+-'+π=1230041R q R q R Q d Q U ε 假设大地与无穷远处等电势,则上述二种方式所得的O 点电势应相等,由此可得Q '=-3Q / 4 , 故导体壳上感生的总电荷应是-[( 3Q / 4) +q ].3. 一圆柱形电容器,外柱的直径为4 cm ,内柱的直径可以适当选择,若其间充满各向同性的均匀电介质,该介质的击穿电场强度的大小为E 0= 200 KV/cm .试求该电容器可能承受的最高电压. (自然对数的底e = 2.7183)解:设圆柱形电容器单位长度上带有电荷为λ,则电容器两极板之间的场强分布 为 )2/(r E ελπ= 设电容器内外两极板半径分别为r 0,R ,则极板间电压为⎰⎰⋅π==R rRr rr r E U d 2d ελ 0ln 2r Rελπ= 电介质中场强最大处在内柱面上,当这里场强达到E 0时电容器击穿,这时应有 002E r ελπ=,000ln r RE r U = 适当选择r 0的值,可使U 有极大值,即令0)/ln(/d d 0000=-=E r R E r U ,得 e R r /0=,显然有22d d r U < 0,故当 e R r /0= 时电容器可承受最高的电压 e RE U /0max = = 147 kV.4. 如图所示,一圆柱形电容器,内筒半径为R 1,外筒半径为R 2 (R 2<2 R 1),其间充有相对介电常量分别为εr 1和εr 2=εr 1 / 2的两层各向同性均匀电介质,其界面半径为R .若两种介质的击穿电场强度相同,问:(1) 当电压升高时,哪层介质先击穿?(2) 该电容器能承受多高的电压?解:(1) 设内、外筒单位长度带电荷为+λ和-λ.两筒间电位移的大小为 D =λ / (2πr ) 在两层介质中的场强大小分别为E 1 = λ / (2πε0 εr 1r ), E 2 = λ / (2πε0 εr 2r ) 在两层介质中的场强最大处是各层介质的内表面处,即E 1M = λ / (2πε0 εr 1R 1), E 2M = λ / (2πε0 εr 2R ) 可得 E 1M / E 2M = εr 2R / (εr 1R 1) = R / (2R 1)已知 R 1<2 R 1, 可见 E 1M <E 2M ,因此外层介质先击穿. (2) 当内筒上电量达到λM ,使E 2M =E M 时,即被击穿,λM = 2πε0 εr 2RE M 此时.两筒间电压(即最高电压)为:r r r r U R R r M RR r M d 2d 221201012⎰⎰+=επελεπελ⎪⎪⎭⎫ ⎝⎛+=R R R R RE r r M r 22112ln 1ln 1εεε5. 两根平行“无限长”均匀带电直导线,相距为d ,导线半径都是R (R << d ).导线上电荷线密度分别为+λ和-λ.试求该导体组单位长度的电容.解:以左边的导线轴线上一点作原点,x 轴通过两导线并垂直于导线.两导线间x 处的场强为 x E 02ελπ=)(20x d -π+ελ两导线间的电势差为⎰--+π=Rd Rx xd x U d )11(20ελ O R 1R 2Rεr 2εr 1xx R d -R+λO-λ)ln (ln 20R d R R R d ---π=ελRRd -π=ln 0ελ 设导线长为L 的一段上所带电量为Q ,则有L Q /=λ,故单位长度的电容U LU Q C /)/(λ==RR d -π=lnε6.圆柱形电容器是由半径为a 的圆柱形导体和与它同轴的内半径为b (b >a )的导体圆筒构成,其间充满了相对介电常量为εr 的各向同性的均匀电介质.设圆柱导体单位长度带电荷为λ,圆筒上为-λ,忽略边缘效应.求电介质中的电极化强度P 的大小及介质内、外表面上的束缚电荷面密度σˊ.解:由D的高斯定理求出介质内的电位移大小为D = λ / (2πr ) (a <r <b ) 介质内的场强大小为E = D / (ε0εr ) = λ / (2πε0εr r ) (a ≤r ≤b ) 电极化强度 P = ε0χe E ()rr r ελεπ-=21 (a ≤r ≤b )内外表面上束缚电荷面密度a aP ='σcos180°=()ar r ελεπ--21b bP ='σcos 0°=()br r ελεπ-217. 一个圆柱形电容器,内圆柱半径为R 1,外圆柱半径为R 2,长为L (L >>R 2-R 1),两圆筒间充有两层相对介电常量分别为εr 1和εr 2的各向同性均匀电介质,其界面半径为R ,如图所示.设内、外圆筒单位长度上带电荷(即电荷线密度)分别为λ和-λ,求: (1) 电容器的电容. (2) 电容器储存的能量.解:(1) 根据有介质时的高斯定理可得两筒之间的电位移的大小为D = λ / (2πr ) 介质中的场强大小分别为E 1 = D / (ε0εr 1) = λ / (2πε0εr 1r ) E 2 = D / (ε0εr 2) = λ / (2πε0εr 2r )两筒间电势差⎰⎰⋅+⋅=21221d d R RR R r E r E UR R R R r r 220110ln π2ln π2εελεελ+=()()[]21021122/ln /ln r r r r R R R R εεεεελπ+=电容 ()()R R R R L U QC r r r r /ln /ln 22112210εεεεε+π== (2) 电场能量 2102112224ln ln2r r r r R R R RL CQ W εεεεελπ⎪⎪⎭⎫ ⎝⎛+==1r 28. 如图所示,一平板电容器,极板面积为S ,两极板之间距离为d ,其间填有两层厚度相同的各向同性均匀电介质,其介电常量分别为ε1和ε2.当电容器带电荷±Q 时,在维持电荷不变下,将其中介电常量为ε1的介质板抽出,试求外力所作的功.解:可将上下两部分看作两个单独的电容器串联,两电容分别为d S C 112ε= ,d SC 222ε=串联后的等效电容为 ()21212εεεε+=d SC带电荷±Q 时,电容器的电场能量为 ()S d Q C Q W 21212242εεεε+== 将ε1的介质板抽去后,电容器的能量为 ()S d Q W 202024εεεε+='外力作功等于电势能增加,即 ⎪⎪⎭⎫⎝⎛-=-'=∆=102114εεS d Q W W W A .第14章 稳恒电流的磁场一、选择题1(B),2(A),3(D),4(C),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8).BIR 2,沿y 轴正向;(9). ωλB R 3π,在图面中向上; (10). 正,负.三 计算题1. 将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感强度 )221()]4/([02⋅π=b I B μ BC 段在D 处的磁感强度 )221()]4/([03⋅π=b I B μ1B 、2B、3B 方向相同,可知D 处总的B 为)223(40baI B +ππ=μ2. 半径为R 的导体球壳表面流有沿同一绕向均匀分布的面电流,通过垂直于电流方向的每单位长度的电流为K .求球心处的磁感强度大小.解:如图 θd d d KR s K I == 2/32220])cos ()sin [(2)sin (d d θθθμR R R I B += 32302d sin RKR θθμ=θθμd sin 2120K =⎰π=020d sin 21θθμK B ⎰π-=00d )2cos 1(41θθμK π=K 041μ3. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度.解:取x 轴向右,那么有2/322112101])([2x b R I R B ++=μ沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B 方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.4.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得:)(220R r r RIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r RI Rd 2020⎰π=μπ=40Iμ在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+Iμ5. 一半径为 4.0 cm 的圆环放在磁场中,磁场的方向对环而言是对称发散的,如图所示.圆环所在处的磁感强度的大小为0.10 T ,磁场的方向与环面法向成60°角.求当圆环中通有电流I =15.8 A 时,圆环所受磁力的大小和方向.解:将电流元I d l 处的B分解为平行线圈平面的B 1和垂直线圈平面的B 2两分量,则 ︒=60sin 1B B ; ︒=60cos 2B B 分别讨论线圈在B 1磁场和B 2磁场中所受的合力F 1与F 2.电流元受B 1的作用力l IB lB I F d 60sin 90sin d d 11︒=︒=方向平行圆环轴线.因为线圈上每一电流元受力方向相同,所以合力⎰=11d F F ⎰π︒=Rl IB 20d 60sin R IB π⋅︒=260sin = 0.34 N ,方向垂直环面向上.电流元受B 2的作用力l IB lB I F d 60cos 90sin d d 22︒=︒= 方向指向线圈平面中心. 由于轴对称,d F 2对整个线圈的合力为零,即02=F . 所以圆环所受合力 34.01==F F N , 方向垂直环面向上.6. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB 段和CD段与竖直方向的夹角α =15°.求磁感强度B 的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言).重力矩 αραρsin sin 2121gSa a a gS a M +⋅= αρsin 22g Sa =磁力矩 ααcos )21sin(222B Ia BIa M =-π=B 2d l平衡时 21M M =所以 αρsin 22g Sa αcos 2B Ia =31035.9/tg 2-⨯≈=I g S B αρ T7. 半径为R 的半圆线圈ACD 通有电流I 2,置于电流为I 1的无限长直线电流的磁场中,直线电流I 1恰过半圆的直径,两导线相互绝缘.求半圆线圈受到长直线电流I 1的磁力.解:长直导线在周围空间产生的磁场分布为 )2/(10r I B π=μ取xOy 坐标系如图,则在半圆线圈所在处各点产生的磁感强度大小为: θμsin 210R I B π=, 方向垂直纸面向里,式中θ 为场点至圆心的联线与y 轴的夹角.半圆线圈上d l 段线电流所受的力为:l B I B l I F d d d 22=⨯= θθμd sin 2210R R I I π=θsin d d F F y =.根据对称性知: F y =0d =⎰y F θcos d d F F x = ,⎰π=0x x dF F ππ=2210I I μ2210I I μ=∴半圆线圈受I 1的磁力的大小为: 2210I I F μ=,方向:垂直I 1向右.8. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。

物理习题答案(zhuan)

物理习题答案(zhuan)

载流直导线AB 所受到的安培力的大小为01222I I F I Bl l aμπ==,方向垂直AB 水平向右 (b) 载流直导线AB 与无限长载流直导线垂直放置时,AB 上各处的磁感应强度不同。

以长直导线为原点作OX 坐标轴,根据安培环路定律,距长直导线为x 处的磁感应强度xI B πμ210=该处电流元d I x 所受安培力的大小为 2d d f I B x =整条载流直导线AB 所受合力为: 0120120122d d d ln ln(1)222a l a la la aaI I I I I I l F f I B x x x x aμμμπππ+++=====+⎰⎰⎰方向垂直AB 竖直向上。

习题十(P288)3.波长为690nm 的光波垂直投射到一双缝上,距双缝处置一屏幕。

如果屏幕上21个明条纹之间共宽10-2m ,试求两缝间的距离。

解:已知690nm λ= D=,相邻两条纹的间距为 22.31020x -⨯∆= 求缝宽b x D b λ∆= 所以7426.9101.06102.31020b D m xλ---⨯===⨯⨯∆9.有一单缝宽度a = 10-4m ,如垂直投射光为 =500nm 的绿光,试确定 =1时,在屏幕上所得条纹是明还是暗解:由衍射公式:sin a k ϕλ= 代入数据 得 47sin 2.010sin1 6.987510a k ϕλ--⨯⨯===≈⨯o为奇数所以得到的是暗条纹。

x D bλ∆= 所以 7426.9101.06102.31020b D m x λ---⨯===⨯⨯∆10.=的钠黄光垂直照射一狭缝,在距离80cm 的光屏上所呈现的中央亮带的宽度为10-3m ,求狭缝的宽度。

解:由衍射公式 sin a ϕλ= 有图可知:sin x Dϕ=所以 943589.3100.84.71102.0102D a xλ---⨯⨯===⨯⨯m 11.在双缝干涉实验中,若两条缝宽相等,单条缝(即把另一条缝遮住)的衍射条纹光强分布如何双缝同时打开时条纹光强分布又如何答:光强分布按衍射图案分布,且明暗条纹位置有的与干涉位置相同有的不同。

物理课后习题及解析

物理课后习题及解析

第十一章恒定磁场11-1两根长度一样的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度一样,R =2r ,螺线管通过的电流一样为I ,螺线管中的磁感强度大小r R B B 、满足〔 〕〔A 〕r R B B 2= 〔B 〕r R B B = 〔C 〕r R B B =2 〔D 〕r R B B 4=分析与解在两根通过电流一样的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度一样的细导线绕成的线圈单位长度的匝数之比因而正确答案为〔C 〕.11-2一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量为〔 〕〔A 〕B r 2π2 〔B 〕B r 2π〔C 〕αB r cos π22 〔D 〕αB r cos π2题 11-2 图分析与解作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为〔D 〕.11-3以下说法正确的选项是〔 〕〔A 〕闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过〔B 〕闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零〔C 〕磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零〔D 〕磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为〔B 〕.11-4在图〔a〕和〔b〕中各有一半径一样的圆形回路L1、L2,圆周内有电流I1、I2,其分布一样,且均在真空中,但在〔b〕图中L2回路外有电流I3,P 1、P 2为两圆形回路上的对应点,则〔 〕〔A 〕⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = 〔B 〕⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = 〔C 〕 ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ 〔D 〕⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 题 11-4 图分析与解由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为〔C 〕.11-5半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,假设导体中流过的恒定电流为I ,磁介质的相对磁导率为μr〔μr<1〕,则磁介质内的磁化强度为〔 〕 〔A 〕()r I μr π2/1-- 〔B 〕()r I μr π2/1-〔C 〕r I μr π2/-〔D 〕r μI r π2/分析与解利用安培环路定理可先求出磁介质中的磁场强度,再由M =〔μr-1〕H 求得磁介质内的磁化强度,因而正确答案为〔B 〕.11-11如下图,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析应用磁场叠加原理求解.将不同形状的载流导线分解成长直局部和圆弧局部,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=i B B 0. 解 〔a〕长直电流对点O 而言,有0d =⨯rl I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4圆弧电流所激发,故有 B 0的方向垂直纸面向外.〔b〕将载流导线看作圆电流和长直电流,由叠加原理可得B 0的方向垂直纸面向里.〔c 〕将载流导线看作1/2圆电流和两段半无限长直电流,由叠加原理可得B 0的方向垂直纸面向外.11-13如图(a)所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.题 11-13 图分析由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d *,如图〔b〕所示,载流长直导线的磁场穿过该面元的磁通量为 矩形平面的总磁通量解由上述分析可得矩形平面的总磁通量第十二章电磁感应电磁场和电磁波12-1一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动〔如下图〕,则〔 〕〔A 〕线圈中无感应电流〔B 〕线圈中感应电流为顺时针方向〔C 〕线圈中感应电流为逆时针方向〔D 〕线圈中感应电流方向无法确定题 12-1 图分析与解由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为〔B 〕.12-2将形状完全一样的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则〔 〕〔A 〕铜环中有感应电流,木环中无感应电流〔B 〕铜环中有感应电流,木环中有感应电流〔C 〕铜环中感应电动势大,木环中感应电动势小〔D 〕铜环中感应电动势小,木环中感应电动势大分析与解根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等,但在木环中不会形成电流.因而正确答案为〔A 〕.12-3有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12.假设它们分别流过i 1和i 2的变化电流且ti t i d d d d 21<,并设由i 2变化在线圈1中产生的互感电动势为12,由i 1变化在线圈2中产生的互感电动势为ε21,下述论断正确的选项是〔 〕. 〔A 〕2112M M =,1221εε=〔B 〕2112M M ≠,1221εε≠〔C 〕2112M M =, 1221εε<〔D 〕2112M M =,1221εε<分析与解教材中已经证明M21=M12,电磁感应定律t i M εd d 12121=;t i M εd d 21212=.因而正确答案为〔D 〕.12-4对位移电流,下述说法正确的选项是〔 〕〔A 〕位移电流的实质是变化的电场〔B 〕位移电流和传导电流一样是定向运动的电荷〔C 〕位移电流服从传导电流遵循的所有定律〔D 〕位移电流的磁效应不服从安培环路定理分析与解位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为〔A 〕.12-5以下概念正确的选项是〔 〕〔A 〕感应电场是保守场〔B 〕感应电场的电场线是一组闭合曲线〔C 〕LI Φm =,因而线圈的自感系数与回路的电流成反比〔D 〕 LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而正确答案为〔B 〕.12-7 载流长直导线中的电流以tI d d 的变化率增长.假设有一边长为d 的正方形线圈与导线处于同一平面内,如下图.求线圈中的感应电动势.分析 此题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如下图的坐标系.由于B 仅与*有关,即B =B (*),故取一个平行于长直导线的宽为d *、长为d 的面元d S ,如图中阴影局部所示,则d S =d d *,所以,总磁通量可通过线积分求得〔假设取面元d S =d *d y ,则上述积分实际上为二重积分〕.此题在工程技术中又称为互感现象,也可用公式tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为因此穿过线圈的磁通量为再由法拉第电磁感应定律,有解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为线圈与两长直导线间的互感为 当电流以tI d d 变化时,线圈中的互感电动势为 题 12-7 图第十四章 波 动 光 学14-1 在双缝干预实验中,假设单色光源S 到两缝S 1 、S 2 距离相等,则观察屏上中央明条纹位于图中O 处,现将光源S 向下移动到图中的S ′位置,则〔 〕〔A 〕 中央明纹向上移动,且条纹间距增大〔B 〕 中央明纹向上移动,且条纹间距不变〔C 〕 中央明纹向下移动,且条纹间距增大〔D 〕 中央明纹向下移动,且条纹间距不变分析与解 由S 发出的光到达S 1 、S 2 的光程一样,它们传到屏上中央O 处,光程差Δ=0,形成明纹.当光源由S 移到S ′时,由S ′到达狭缝S 1 和S 2 的两束光产生了光程差.为了保持原中央明纹处的光程差为0,它会向上移到图中O ′处.使得由S ′沿S 1 、S 2 狭缝传到O ′处的光程差仍为0.而屏上各级条纹位置只是向上平移,因此条纹间距不变.应选〔B 〕.题14-1 图14-2 如下图,折射率为n 2 ,厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1 和n 3,且n 1 <n 2 ,n 2 >n 3 ,假设用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两外表反射的光束的光程差是〔 〕题14-2 图分析与解 由于n 1 <n 2 ,n 2 >n 3 ,因此在上外表的反射光有半波损失,下外表的反射光没有半波损失,故它们的光程差222λ±=∆e n ,这里λ是光在真空中的波长.因此正确答案为〔B 〕.14-3 如图〔a 〕所示,两个直径有微小差异的彼此平行的滚柱之间的距离为L ,夹在两块平面晶体的中间,形成空气劈形膜,当单色光垂直入射时,产生等厚干预条纹,如果滚柱之间的距离L 变小,则在L *围内干预条纹的〔 〕〔A 〕 数目减小,间距变大 〔B 〕 数目减小,间距不变〔C 〕 数目不变,间距变小 〔D 〕 数目增加,间距变小题14-3图分析与解 图〔a 〕装置形成的劈尖等效图如图〔b 〕所示.图中 d 为两滚柱的直径差,b 为两相邻明〔或暗〕条纹间距.因为d 不变,当L 变小时,θ 变大,L ′、b 均变小.由图可得L d b n '==//2sin λθ,因此条纹总数n d b L N λ//2='=,因为d 和λn 不变,所以N 不变.正确答案为〔C 〕14-4用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射.假设屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为〔 〕〔A 〕 3 个 〔B 〕 4 个 〔C 〕 5 个 〔D 〕 6 个分析与解 根据单缝衍射公式因此第k 级暗纹对应的单缝处波阵面被分成2k 个半波带,第k 级明纹对应的单缝波阵面被分成2k +1 个半波带.则对应第二级暗纹,单缝处波阵面被分成4个半波带.应选〔B 〕.14-5 波长λ=550 nm 的单色光垂直入射于光栅常数d =='+b b 1.0 ×10-4cm 的光栅上,可能观察到的光谱线的最大级次为〔 〕〔A 〕 4 〔B 〕 3 〔C 〕 2 〔D 〕 1分析与解 由光栅方程(),...1,0dsin =±=k k λθ,可能观察到的最大级次为即只能看到第1 级明纹,正确答案为〔D 〕.14-6 三个偏振片P 1 、P 2 与P 3 堆叠在一起,P 1 与P 3的偏振化方向相互垂直,P 2与P 1 的偏振化方向间的夹角为30°,强度为I 0 的自然光入射于偏振片P 1 ,并依次透过偏振片P 1 、P 2与P 3 ,则通过三个偏振片后的光强为〔 〕〔A 〕 3I 0/16 〔B 〕 3I 0/8 〔C 〕 3I 0/32 〔D 〕 0分析与解 自然光透过偏振片后光强为I 1 =I 0/2.由于P 1 和P 2 的偏振化方向成30°,所以偏振光透过P 2 后光强由马吕斯定律得8/330cos 0o 212I I I ==.而P 2和P 3 的偏振化方向也成60°,则透过P 3 后光强变为32/360cos 0o 223I I I ==.故答案为〔C 〕.14-7自然光以60°的入射角照射到两介质交界面时,反射光为完全线偏振光,则折射光为〔 〕〔A 〕 完全线偏振光,且折射角是30°〔B 〕 局部偏振光且只是在该光由真空入射到折射率为3的介质时,折射角是30° 〔C 〕 局部偏振光,但须知两种介质的折射率才能确定折射角〔D 〕 局部偏振光且折射角是30°分析与解 根据布儒斯特定律,当入射角为布儒斯特角时,反射光是线偏振光,相应的折射光为局部偏振光.此时,反射光与折射光垂直.因为入射角为60°,反射角也为60°,所以折射角为30°.应选〔D 〕.14-9 在双缝干预实验中,用波长λ=546.1 nm 的单色光照射,双缝与屏的距离d ′=300mm .测得中央明纹两侧的两个第五级明条纹的间距为12.2mm ,求双缝间的距离.分析 双缝干预在屏上形成的条纹是上下对称且等间隔的.如果设两明纹间隔为Δ*,则由中央明纹两侧第五级明纹间距*5 -*-5 =10Δ* 可求出Δ*.再由公式Δ* =d ′λ/d 即可求出双缝间距d .解 根据分析:Δ* =〔*5 -*-5〕/10 =1.22×10-3m双缝间距: d =d ′λ/Δ* =1.34 ×10-4 m14-11如下图,将一折射率为1.58的云母片覆盖于杨氏双缝上的一条缝上,使得屏上原中央极大的所在点O 改变为第五级明纹.假定λ=550 nm ,求:〔1〕条纹如何移动? 〔2〕 云母片的厚度t.题14-11图 分析(1)此题是干预现象在工程测量中的一个具体应用,它可以用来测量透明介质薄片的微小厚度或折射率.在不加介质片之前,两相干光均在空气中传播,它们到达屏上任一点P 的光程差由其几何路程差决定,对于点O ,光程差Δ=0,故点O 处为中央明纹,其余条纹相对点O 对称分布.而在插入介质片后,虽然两相干光在两介质薄片中的几何路程一样,但光程却不同,对于点O ,Δ≠0,故点O 不再是中央明纹,整个条纹发生平移.原来中央明纹将出现在两束光到达屏上光程差Δ=0的位置.(2) 干预条纹空间分布的变化完全取决于光程差的变化.因此,对于屏上*点P 〔明纹或暗纹位置〕,只要计算出插入介质片前后光程差的变化,即可知道其干预条纹的变化情况. 插入介质前的光程差Δ1 =r 1 -r 2 =k 1λ〔对应k 1 级明纹〕,插入介质后的光程差Δ2 =〔n -1〕d +r 1 -r 2 =k 1λ〔对应k 1 级明纹〕.光程差的变化量为Δ2 -Δ1 =〔n -1〕d =〔k 2 -k 1 〕λ式中〔k 2 -k 1 〕可以理解为移过点P 的条纹数〔此题为5〕.因此,对于这类问题,求解光程差的变化量是解题的关键.解 由上述分析可知,两介质片插入前后,对于原中央明纹所在点O ,有将有关数据代入可得14-13 利用空气劈尖测细丝直径.如下图,λ=589.3 nm ,L =2.888 ×10-2m ,测得30 条条纹的总宽度为4.259 ×10-3 m ,求细丝直径d .分析 在应用劈尖干预公式L nb d 2λ= 时,应注意相邻条纹的间距b 是N 条条纹的宽度Δ* 除以〔N -1〕.对空气劈尖n =1.解 由分析知,相邻条纹间距1-∆=N x b ,则细丝直径为 题14-13 图14-21 一单色平行光垂直照射于一单缝,假设其第三条明纹位置正好和波长为600 nm 的单色光垂直入射时的第二级明纹的位置一样,求前一种单色光的波长.分析 采用比拟法来确定波长.对应于同一观察点,两次衍射的光程差一样,由于衍射明纹条件()212sin λϕ+=k b ,故有()()22111212λλ+=+k k ,在两明纹级次和其中一种波长的情况下,即可求出另一种未知波长.解 根据分析,将32nm 600122===k k ,,λ代入()()22111212λλ+=+k k ,得第十五章 狭义相对论15-1有以下几种说法:(1) 两个相互作用的粒子系统对*一惯性系满足动量守恒,对另一个惯性系来说,其动量不一定守恒;(2) 在真空中,光的速度与光的频率、光源的运动状态无关;(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都一样.其中哪些说法是正确的? ( )(A) 只有(1)、(2)是正确的 (B) 只有(1)、(3)是正确的(C) 只有(2)、(3)是正确的 (D) 三种说法都是正确的分析与解 物理相对性原理和光速不变原理是相对论的根底.前者是理论根底,后者是实验根底.按照这两个原理,任何物理规律(含题述动量守恒定律)对*一惯性系成立,对另一惯性系也同样成立.而光在真空中的速度与光源频率和运动状态无关,从任何惯性系(相对光源静止还是运动)测得光速均为3×108 m ·s -1.迄今为止,还没有实验能推翻这一事实.由此可见,(2)(3)说法是正确的,应选(C).15-2 按照相对论的时空观,判断以下表达中正确的选项是( )(A) 在一个惯性系中两个同时的事件,在另一惯性系中一定是同时事件(B) 在一个惯性系中两个同时的事件,在另一惯性系中一定是不同时事件(C) 在一个惯性系中两个同时又同地的事件,在另一惯性系中一定是同时同地事件(D) 在一个惯性系中两个同时不同地的事件,在另一惯性系中只可能同时不同地(E) 在一个惯性系中两个同时不同地事件,在另一惯性系中只可能同地不同时分析与解 设在惯性系S中发生两个事件,其时间和空间间隔分别为Δt 和Δ*,按照洛伦兹坐标变换,在S′系中测得两事件时间和空间间隔分别为 221ΔΔΔβx c t t --='v 和 21ΔΔΔβt x x --='v 讨论上述两式,可对题述几种说法的正确性予以判断:说法(A)(B)是不正确的,这是因为在一个惯性系(如S系)发生的同时(Δt =0)事件,在另一个惯性系(如S′系)中是否同时有两种可能,这取决于那两个事件在S 系中发生的地点是同地(Δ*=0)还是不同地(Δ*≠0).说法(D)(E)也是不正确的,由上述两式可知:在S系发生两个同时(Δt =0)不同地(Δ*≠0)事件,在S′系中一定是既不同时(Δt ′≠0)也不同地(Δ*′≠0),但是在S 系中的两个同时同地事件,在S′系中一定是同时同地的,故只有说法(C)正确.有兴趣的读者,可对上述两式详加讨论,以增加对相对论时空观的深入理解.15-3 有一细棒固定在S′系中,它与O*′轴的夹角θ′=60°,如果S′系以速度u 沿O*方向相对于S系运动,S系中观察者测得细棒与O* 轴的夹角( )(A) 等于60° (B) 大于60° (C) 小于60°(D) 当S′系沿O* 正方向运动时大于60°,而当S′系沿O*负方向运动时小于60°分析与解 按照相对论的长度收缩效应,静止于S′系的细棒在运动方向的分量(即O* 轴方向)相对S系观察者来说将会缩短,而在垂直于运动方向上的分量不变,因此S系中观察者测得细棒与O* 轴夹角将会大于60°,此结论与S′系相对S系沿O* 轴正向还是负向运动无关.由此可见应选(C).15-4 一飞船的固有长度为L ,相对于地面以速度v 1 作匀速直线运动,从飞船中的后端向飞船中的前端的一个靶子发射一颗相对于飞船的速度为v 2 的子弹.在飞船上测得子弹从射出到击中靶的时间间隔是( ) (c 表示真空中光速) (A)21v v +L (B)12v -v L (C)2v L (D)()211/1c L v v - 分析与解 固有长度是指相对测量对象静止的观察者所测,则题中L 、v 2 以及所求时间间隔均为同一参考系(此处指飞船)中的三个相关物理量,求解时与相对论的时空观无关.应选(C).讨论 从地面测得的上述时间间隔为多少? 建议读者自己求解.注意此处要用到相对论时空观方面的规律了.15-5 设S′系以速率v =0.60c 相对于S系沿**′轴运动,且在t =t ′=0时,* =*′=0.(1)假设有一事件,在S系中发生于t =2.0×10-7s,*=50m 处,该事件在S′系中发生于何时刻?(2)如有另一事件发生于S系中t =3.0×10-7 s,*=10m 处,在S′系中测得这两个事件的时间间隔为多少?分析 在相对论中,可用一组时空坐标(*,y ,z ,t )表示一个事件.因此,此题可直接利用洛伦兹变换把两事件从S系变换到S′系中.解 (1) 由洛伦兹变换可得S′系的观察者测得第一事件发生的时刻为(2) 同理,第二个事件发生的时刻为所以,在S′系中两事件的时间间隔为15-6 设有两个参考系S 和S′,它们的原点在t =0和t ′=0时重合在一起.有一事件,在S′系中发生在t ′=8.0×10-8s ,*′=60m ,y ′=0,z ′=0处,假设S′系相对于S系以速率v =0.6c 沿**′轴运动,问该事件在S系中的时空坐标各为多少?分析 此题可直接由洛伦兹逆变换将该事件从S′系转换到S系.解 由洛伦兹逆变换得该事件在S 系的时空坐标分别为 y =y ′=0z =z ′=015-7 一列火车长0.30km(火车上观察者测得),以100km ·h -1的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端.问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?分析 首先应确定参考系,如设地面为S系,火车为S′系,把两闪电击中火车前后端视为两个事件(即两组不同的时空坐标).地面观察者看到两闪电同时击中,即两闪电在S系中的时间间隔Δt =t 2-t 1=0.火车的长度是相对火车静止的观察者测得的长度(注:物体长度在不指明观察者的情况下,均指相对其静止参考系测得的长度),即两事件在S′系中的空间间隔Δ*′=*′2 -*′1=0.30×103m.S′系相对S系的速度即为火车速度(对初学者来说,完成上述根本分析是十分必要的).由洛伦兹变换可得两事件时间间隔之间的关系式为 ()()21221212/1cx x c t t t t 2v v -'-'+'-'=- (1) ()()21221212/1c x x c t t t t 2v v ----='-' (2) 将条件代入式(1)可直接解得结果.也可利用式(2)求解,此时应注意,式中12x x -为地面观察者测得两事件的空间间隔,即S系中测得的火车长度,而不是火车原长.根据相对论,运动物体(火车)有长度收缩效应,即()21212/1c x x x x 2v -'-'=-.考虑这一关系方可利用式(2)求解.解1 根据分析,由式(1)可得火车(S′系)上的观察者测得两闪电击中火车前后端的时间间隔为负号说明火车上的观察者测得闪电先击中车头*′2 处.解2 根据分析,把关系式()21212/1c x x x x 2v -'-'=- 代入式(2)亦可得 与解1一样的结果.相比之下解1较简便,这是因为解1中直接利用了12x x '-'=0.30km 这一条件.15-8 在惯性系S中,*事件A 发生在*1处,经过2.0 ×10-6s后,另一事件B 发生在*2处,*2-*1=300m.问:(1) 能否找到一个相对S系作匀速直线运动的参考系S′,在S′系中,两事件发生在同一地点?(2) 在S′系中,上述两事件的时间间隔为多少?分析 在相对论中,从不同惯性系测得两事件的空间间隔和时间间隔有可能是不同的.它与两惯性系之间的相对速度有关.设惯性系S′以速度v 相对S系沿* 轴正向运动,因在S 系中两事件的时空坐标,由洛伦兹时空变换式,可得 ()()2121212/1c t t x x x x 2v v ----='-' (1) ()()2121212/1c x x t t t t 22v c v ----='-' (2)两事件在S′系中发生在同一地点,即*′2-*′1=0,代入式(1)可求出v 值以此作匀速直线运动的S′系,即为所寻找的参考系.然后由式(2)可得两事件在S′系中的时间间隔.对于此题第二问,也可从相对论时间延缓效应来分析.因为如果两事件在S′系中发生在同一地点,则Δt ′为固有时间间隔(原时),由时间延缓效应关系式2/1ΔΔc t t 2v -='可直接求得结果.解 (1) 令*′2-*′1=0,由式(1)可得(2) 将v 值代入式(2),可得这说明在S′系中事件A 先发生.第十六章 量子物理16-1 以下物体哪个是绝对黑体( )(A) 不辐射可见光的物体 (B) 不辐射任何光线的物体(C) 不能反射可见光的物体 (D) 不能反射任何光线的物体分析与解 一般来说,任何物体对外来辐射同时会有三种反响:反射、透射和吸收,各局部的比例与材料、温度、波长有关.同时任何物体在任何温度下会同时对外辐射,实验和理解证明:一个物体辐射能力正比于其吸收能力.做为一种极端情况,绝对黑体(一种理想模型)能将外来辐射(可见光或不可见光)全部吸收,自然也就不会反射任何光线,同时其对外辐射能力最强.综上所述应选(D).16-2 光电效应和康普顿效应都是光子和物质原子中的电子相互作用过程,其区别何在? 在下面几种理解中,正确的选项是( )(A) 两种效应中电子与光子组成的系统都服从能量守恒定律和动量守恒定律(B) 光电效应是由于电子吸收光子能量而产生的,而康普顿效应则是由于电子与光子的弹性碰撞过程(C) 两种效应都相当于电子与光子的弹性碰撞过程(D) 两种效应都属于电子吸收光子的过程分析与解 两种效应都属于电子与光子的作用过程,不同之处在于:光电效应是由于电子吸收光子而产生的,光子的能量和动量会在电子以及束缚电子的原子、分子或固体之间按照适当的比例分配,但仅就电子和光子而言,两者之间并不是一个弹性碰撞过程,也不满足能量和动量守恒.而康普顿效应中的电子属于"自由〞电子,其作用相当于一个弹性碰撞过程,作用后的光子并未消失,两者之间满足能量和动量守恒.综上所述,应选(B).16-3 关于光子的性质,有以下说法(1) 不管真空中或介质中的速度都是c ; (2) 它的静止质量为零;(3) 它的动量为ch v ; (4) 它的总能量就是它的动能; (5) 它有动量和能量,但没有质量.其中正确的选项是( )(A) (1)(2)(3) (B) (2)(3)(4)(C) (3)(4)(5) (D) (3)(5)分析与解 光不但具有波动性还具有粒子性,一个光子在真空中速度为c (与惯性系选择无关),在介质中速度为nc ,它有质量、能量和动量,一个光子的静止质量m 0=0,运动质量2c h m v = ,能量v h E =,动量cv h λh p ==,由于光子的静止质量为零,故它的静能E 0 为零,所以其总能量表现为动能.综上所述,说法(2)、(3)、(4)都是正确的,应选(B). 16-4 关于不确定关系h p x x ≥ΔΔ有以下几种理解:(1) 粒子的动量不可能确定,但坐标可以被确定;(2) 粒子的坐标不可能确定,但动量可以被确定;(3) 粒子的动量和坐标不可能同时确定;(4) 不确定关系不仅适用于电子和光子,也适用于其他粒子.其中正确的选项是( )(A) (1)、(2) (B) (2)、(4)(C) (3)、(4) (D) (4)、(1)分析与解 由于一切实物粒子具有波粒二象性,因此粒子的动量和坐标(即位置)不可能同时被确定,在这里不能简单误认为动量不可能被确定或位置不可能被确定.这一关系式在理论上适用于一切实物粒子(当然对于宏观物体来说,位置不确定量或动量的不确定量都微缺乏道,故可以认为可以同时被确定).由此可见(3)、(4)说法是正确的.应选(C).16-5 粒子在一维矩形无限深势阱中运动,其波函数为则粒子在* =a /6 处出现的概率密度为( ) (A) a /2 (B) a /1 (C) a /2 (D) a /1分析与解 我们通常用波函数Ψ来描述粒子的状态,虽然波函数本身并无确切的物理含义,但其模的平方2ψ表示粒子在空间各点出现的概率.因此题述一线粒子在a x ≤≤0区间的概率密度函数应为()x aa x ψπ3sin 222=.将* =a /6代入即可得粒子在此处出现的概率为a /2.应选(C).16-7 太阳可看作是半径为7.0 ×108 m 的球形黑体,试计算太阳的温度.设太阳射到地球外表上的辐射能量为1.4 ×103 W ·m -2 ,地球与太阳间的距离为1.5 ×1011m.分析 以太阳为中心,地球与太阳之间的距离d 为半径作一球面,地球处在该球面的*一位置上.太阳在单位时间内对外辐射的总能量将均匀地通过该球面,因而可根据地球外表单位面积在单位时间内承受的太阳辐射能量E ,计算出太阳单位时间单位面积辐射的总能量()T M ,再由公式()4T σT M =,计算太阳温度.。

(物理)物理力学练习题含答案含解析

(物理)物理力学练习题含答案含解析

垂直于接触面.
3.杂技演员站在楼梯上处于静止状态,人没与墙面接触,只受到重力和支持力的作用,如 图。则人所受重力和支持力的示意图正确的是( )
A.
B.
C.
D.
【答案】 B 【解析】【解答】杂技演员站在楼梯上处于静止状态,受到平衡力的作用,所受重力和支 持力是一对平衡力,大小相等、方向相反、作用在同一直线上,重力的方向竖直向下,所 以支持力的方向竖直向上,B 符合题意,ACD 不符合题意。 故答案为:B。 【分析】画力的示意图的一般步骤为:一画简图二定点,三画线,四画尖,五把力的符号 标尖边.
=ρhg 可 得 , 该 石 料 立 于 水 平 地 面 上 时 对 地 面 的 压 强 ,D 符合题意。
【分析】A、根据图乙和 m= 即可求解;B、根据 F 浮=G-F 拉 求解;C、根据图乙和 阿基米德
原理求解;D、先根据图乙求出物体的高度,再根据 P= 求解。
11.如图所示,小物块 A 和弹簧放在光滑的水平面上,弹簧左端固定于竖直墙面,向左移 动物块 A 并压缩弹簧至 B 处,静止释放物块 A , 此后物块的动能是( )
A. 0,0
B. 0,5N
C. 5N,5N
D. 0,10N
【答案】 B
【解析】【解答】解:同一直线方向相反的两个力的合力等于两个力之差,所以弹簧测力
计在水平方向上受到两个力的合力为 0。
一个弹簧测力计的挂钩和挂环分别受到向上和向下都是 5N 的拉力作用(不计弹簧测力计 自重),则弹簧测力计所受合力及弹簧测力计的示数是 5N。 故答案为:B。 【分析】弹簧测力计上显示的是挂钩上力的大小,与挂环上力的大小以及弹簧测力受到的 合力大小无关。
止释放物块 A,此后物块的运动是先加速后匀速;所以动能的变化是先增加后不变。

物理练习题答案

物理练习题答案

物理练习题答案一、选择题1. 光在真空中的传播速度是()。

A. 299792 km/sB. 300000 km/sC. 3×10^8 m/sD. 3×10^5 km/s答案:C2. 一个物体的质量为2 kg,受到的重力是()。

A. 19.6 NB. 20 NC. 2 ND. 196 N答案:A3. 牛顿第二定律的表达式是()。

A. F = maB. F = mvC. F = m/aD. F = a/v答案:A二、填空题1. 物体的惯性大小只与物体的________有关。

答案:质量2. 根据能量守恒定律,能量既不会________,也不会________。

答案:凭空产生;凭空消失3. 电流的单位是________。

答案:安培(A)三、计算题1. 一辆汽车以20 m/s的速度行驶,如果它在5秒内停下来,求汽车的加速度。

解答:首先计算汽车的减速度 a。

\[ a = \frac{\Delta v}{\Delta t} = \frac{0 - 20}{5} = -4 \, \text{m/s}^2 \]加速度的大小为 4 m/s²,方向与初速度相反。

2. 一个质量为5 kg的物体,从静止开始自由下落,忽略空气阻力,求物体下落2秒后的速度。

解答:根据自由落体运动的公式,v = gt。

\[ v = 9.8 \times 2 = 19.6 \, \text{m/s} \]物体下落2秒后的速度为19.6 m/s。

四、简答题1. 什么是牛顿第三定律?答案:牛顿第三定律,也称为作用与反作用定律,指的是对于任意两个相互作用的物体,它们之间的作用力和反作用力总是大小相等、方向相反。

2. 简述电磁感应现象。

答案:电磁感应现象是指当导体在磁场中移动时,或者磁场在导体周围变化时,会在导体中产生电动势。

这个现象是电磁学的基础之一,也是现代发电机和电动机的工作原理。

五、实验题1. 利用弹簧秤测量物体的重力,并记录数据。

《普通物理》习题三答案

《普通物理》习题三答案

21 2《普通物理》习题三答案一、单项选择题(本大题共40 小题,每小题 2 分,共 80 分)1、下列说法中哪一个是正确的?( D ) A 、合力一定大于分力B 、物体速率不变,所受合外力为零C 、速率很大的物体,运动状态不易改变D 、质量越大的物体,运动状态越不易改变2、物体自高度相同的 A 点沿不同长度的光滑斜面自由下滑,如下图所示,斜面倾角多大时,物体滑到斜面底部的速率最大( D ) A 、30oB 、45oC 、60oD 、各倾角斜面的速率相等。

3、如下图所示,一轻绳跨过一定滑轮,两端各系一重物,它们的质量分别为m 1 和m 2 ,且 m 1 > m ,此时系统的加速度为 a ,今用一竖直向下的恒力 F = m g 代替 m ,系统的加速度为a ' ,若不计滑11轮质量及摩擦力,则有( B ) A 、a ' = aB 、a ' > aC 、a ' < aD 、条件不足不能确定。

4、一原来静止的小球受到下图 F 和 F 的作用,设力的作用时间为 5s ,问下列哪种情况下,小球12最终获得的速度最大( C ) A 、 F 1 = 6N , F 2 = 0 C 、 F 1 = F 2 = 8NB 、 F = 0 , F = 6N D 、 F 1 = 6 N , F 2 = 8N1 112 2 1 1 1 2 1 11 2 15、三个质量相等的物体 A 、B 、C 紧靠一起置于光滑水平面上,如下图,若 A 、C 分别受到水平力 1和 F 的作用( F > F ),则 A 对 B 的作用力大小( B )2A 、 F - F12B 、2 F 3+ F3C 、2F 3 - F3D 、 F3 + 2F 3121212126、用锤压钉不易将钉压入木块内,用锤击钉则很容易将钉击入木块,这是因为( D ) A 、前者遇到的阻力大,后者遇到的阻力小B 、前者动量守恒,后者动量不守恒C 、后者动量变化大,给钉的作用力就大D 、后者动量变化率大,给钉的作用冲力就大7、如图所示,木块质量 1 m 2 ,由轻质弹簧相连接,并静止于光滑水平桌面上,现将两木块相向 压紧弹簧,然后由静止释放,若当弹簧伸长到原来长度时, m 1 的速率为v 1 ,则弹簧原来压缩状态时所具有的势能为( C )A 、m v 2 2B 、 ⎡⎣(m -m ) m ⎤⎦ ⋅m v 22 C 、 ⎡⎣(m + m ) m ⎤⎦⋅ m v 2 2 D 、 (m + m )v 2 28、质量为20 ⨯10-5 kg 的子弹以 400 m s 的速率沿图示方向击入一原来静止的质量为 980 ⨯10-5 kg 的摆球中,摆线长为 1m ,不可伸缩,则子弹击入后摆球的速度大小为( A ) A 、4 m sB 、8 m sC 、2 m sD 、8π m sF m 2⎣ ⎦9、一船浮于静水中,船长 5m ,质量为 m ,一个质量亦为 m 的人从船尾走到船头,不计水和空气的阻力,则在此过程中船将( C ) A 、静止不动B 、后退 5mC 、后退 2.5mD 、后退 3m10、两轻质弹簧 A 和 B ,它们的劲度系数分别为 k 和k ,今将两弹簧连接起来,并竖直悬挂,下 AB端再挂一物体 m ,如图所示,系统静止时,这两个弹簧势能之比值将为( C ) A 、 E PAC 、 E PAE = k kPBABE = k kPBBAB 、 E PAD 、E PAE = k 2 k 2PBABE = k 2 k 2PBBA11、已知质点作直线运动,其加速度 a = 2m s 2 -(3m s 3 )t ,当t = 0 时,质点位于 x = 0 处,且v = 5m s ,则质点的运动方程为( A )A 、 x = (5m s )t + (1m s 2 )t 2 -(m 2s 3 ) t 3B 、 x = (1m s 2 )t 2 - (m 2s 3 )t 3C 、 x = (1m 2s 2 )t 2 -(m 3s 3 )t 3D 、 x = (1m s 2 )t 2 -(1m s 3 )t 312、一个质点在Oxy 平面内运动,其速度为v = (2 m s )i -(8m s 2 )tj ,已知质点 t = 0 时,它通过(3, 7)位置处,那么该质点任意时刻的位矢是( B ) A 、r = (2 m s )ti -(4m s 2 )t 2 jB 、r = ⎡⎣(2 m s ) t + 3m ⎤⎦ i - ⎡(4m s 2 )t 2 + 7m ⎤ jC 、-8mjD 、条件不足,不能确定13、质点作平面曲线运动,运动方程的标量函数为 x = x (t ) , y = y ( t ) ,位置矢量大小 r = x 2 + y 2 , 则下面哪些结论是正确的?( C ) A 、质点的运动速度是 dx dtB 、质点的运动速率是C 、 v = dr dt= d r dtD 、 dr dt 可以大于或小于 v14、质点沿轨道 AB 作曲线运动,速率逐渐减小,在图中哪一个图正确表示了质点 C 的加速度?( C )15、以初速度 0将一物体斜向上抛出,抛射角为 θ > 450 ,不计空气阻力,在t = v (sin θ -cos θ ) g时 刻 该 物 体 的 ( D ) A 、法向加速度为 g B 、法向加速度为- 2 3g C 、切向加速度为- 3 2gD 、切向加速度为- 2 3g16、一均匀圆盘状飞轮质量为 20kg ,半径为 30cm ,当它以60r min 的速率旋转时,其动能为( D ) A 、16.2 π 2 JB 、8.1 π 2 JC 、8.1 JD 、1.8π 2 J 17、长为 l 质量为 m 的均匀细棒,绕一端点在水平面内作匀速率转动,已知棒中心点的线速率为 v , 则细棒的转动动能为( C ) A 、mv 2 2B 、2mv 2 3C 、mv 2 6D 、mv 22418、如下图, 均匀细杆可绕距其一端 l 4( l 为杆长)的水平轴O 在竖直平面内转动,杆的质量为m 、当杆自由悬挂时,给它一个起始角速度 ω ,如杆恰能持续转动而不摆动(不计一切摩擦),则( A )v 0 v12 g lA、ω> 4 3r 7lB、ω=g lC、ω>g lD、ω>19、一半径为R ,质量为m 的圆形平面板在粗糙的水平桌面上绕垂直于平板OO' 轴转动。

(物理)物理力学练习题含答案及解析

(物理)物理力学练习题含答案及解析

(物理)物理力学练习题含答案及解析一、力学1.如图所示,小蚂蚁背负着果实静止在水平地面上.下列大小关系中,正确的是A.果实所受的支持力大于果实所受的重力B.果实所受的支持力小于果实所受的重力C.果实所受的支持力等于蚂蚁所受的支持力D.果实所受的支持力小于蚂蚁所受的支持力【答案】D【解析】试题分析:果实处于静止状态,它受到的支持力与自身的重力是一对平衡力,大小相等.蚂蚁和果实作为一个整体,它们所受的总重力与蚂蚁受到的支持力是一对平衡力,大小相等.所以,果实受到的支持力小于蚂蚁受到的支持力,D选项正确.考点:二力平衡受力分析2.忽略空气阻力,抛出后的小球在空中运动轨迹如图所示,抛出后的小球由于()A. 不受力,运动状态发生改变B. 不受力,运动状态不发生改变C. 受到重力作用,运动状态发生改变D. 受到推力作用,运动状态发生改变【答案】 C【解析】【分析】(1)抛出的物体不再受到手的推力的作用,物体由于惯性要保持原来的运动状态.(2)地面附近的物体受到重力的作用.(3)物体的运动速度和运动方向的变化都属于运动状态的改变.【解答】小球出手之前,和手一起运动,抛出的小球,不再受到手的推力,由于惯性保持原来的运动状态,继续前进.小球出手前后都受到重力作用,重力改变了小球的运动方向和速度,运动状态不断发生改变.故选C.【点评】(1)掌握抛出的物体不再受到手的作用,这个问题学生容易错误理解成还在受到手的作用.(2)掌握物体由于惯性保持原来的运动状态.(3)掌握地面附近的物体都受到重力作用.(4)掌握物体运动状态的改变保持物体运动速度的变化和方向的变化.3.如图所示,金属块P沿竖直墙壁(墙壁粗糙)向上做匀速直线运动,水平向右的力F1(F1>0)将金属块P压向竖直墙壁,竖直向上的力F2沿着墙壁竖直向上拉动金属块P,金属块P所受重力为G,金属块P对竖直墙壁的压力为F3,竖直墙壁对金属块P的压力为F4,竖直墙壁对金属块P的摩擦力为f, 则下列选项错误的是()A. F1与F4大小相等B. F3与F4是一对相互作用力C. F2与G是一对平衡力D. G与f之和与F2大小相等【答案】 C【解析】【解答】金属块P沿竖直墙壁向上做匀速直线运动,故金属块受到的应该是平衡力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理习题答案第八章8-6 长l=15.0cm AB上均匀地分布着线密度 =5.0x10-9C·m-1a=5.0cm处P点的场强;正电荷.试求:(1)在导线的延长线上与导线B端相距1d=5.0cm 处Q点的场强.(2)在导线的垂直平分线上与导线中点相距2解:如题8-6图所示(1)在带电直线上取线元x d,其上电量q d在P点产生场强为题8-6图20)(d π41d x a xE P -=λε2220)(d π4d x a xE E ll P P -==⎰⎰-ελ ]2121[π40l a l a +--=ελ)4(π220l a l-=ελ用15=l cm ,9100.5-⨯=λ1m C -⋅, 5.12=a cm 代入得21074.6⨯=P E 1C N -⋅ 方向水平向右(2)2220d d π41d +=x xE Q λε 方向如题8-6图所示 由于对称性⎰=l QxE 0d ,即Q E只有y 分量,∵ 22222220d d d d π41d ++=x x x E Qyλε22π4d d ελ⎰==lQyQy E E ⎰-+2223222)d (d l l x x2220d4π2+=l lελ以9100.5-⨯=λ1cm C -⋅, 15=l cm ,5d 2=cm 代入得 21096.14⨯==QyQ E E 1C N -⋅,方向沿y 轴正向8-7 一个半径为R 的均匀带电半圆环,电荷线密度为λ,求环心处O 点的场强. 解: 如8-7图在圆上取ϕRd dl =题8-7图ϕλλd d d R l q ==,它在O 点产生场强大小为20π4d d R R E εϕλ=方向沿半径向外则 ϕϕελϕd sin π4sin d d 0RE E x ==ϕϕελϕπd cos π4)cos(d d 0RE E y -=-=积分R R E x 000π2d sin π4ελϕϕελπ==⎰ 0d cos π400=-=⎰ϕϕελπR E y∴ RE E x 0π2ελ==,方向沿x 轴正向.题8-16图8-16 如题8-16图所示,在A ,B 两点处放有电量分别为+q ,-q 的点电荷,AB 间距离为2R ,现将另一正试验点电荷0q 从O 点经过半圆弧移到C 点,求移动过程中电场力作的解: 如题8-16图示0π41ε=O U 0)(=-R qR q 0π41ε=O U )3(R qR q -Rq 0π6ε-=∴ Rqq U U q A o C O 00π6)(ε=-=8-17 如题8-17图所示的绝缘细线上均匀分布着线密度为λ的正电荷,两直导线的长度和半圆环的半径都等于R .试求环中心O解: (1)由于电荷均匀分布与对称性,AB 和CD 段电荷在O 点产生的场强互相抵消,取θd d R l =则θλd d R q =产生O 点Ed 如图,由于对称性,O 点场强沿y 轴负方向题8-17图θεθλππcos π4d d 2220⎰⎰-==R R E E yR 0π4ελ=[)2sin(π-2sin π-]R0π2ελ-= (2) AB 电荷在O 点产生电势,以0=∞U⎰⎰===A B 200012ln π4π4d π4d R R x x x x U ελελελ同理CD 产生 2ln π402ελ=U 半圆环产生 0034π4πελελ==R R U∴ 0032142ln π2ελελ+=++=U U U U O 8-22 三个平行金属板A ,B 和C 的面积都是200cm 2,A 和B 相距4.0mm ,A 与C 相距2.0mm .B ,C 都接地,如题8-22图所示.如果使A 板带正电3.0×10-7C ,略去边缘效应,问B 板和C 板上的感应电荷各是多少?以地的电势为零,则A 板的电势是多少? 解: 如题8-22图示,令A 板左侧面电荷面密度为1σ,右侧面电荷面密度为2σ题8-22图 (1)∵ AB ACU U =,即∴ AB AB AC AC E E d d =∴2d d 21===ACABAB AC E E σσ 且 1σ+2σSqA =得 ,32S q A =σ Sq A321=σ而 7110232-⨯-=-=-=A C q S q σCC10172-⨯-=-=S q B σ(2) 31103.2d d ⨯===AC AC AC A E U εσV8-34 半径为1R =2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为2R =4.0cm 和3R =5.0cm ,当内球带电荷Q =3.0×10-8C(1)整个电场储存的能量;(2)如果将导体壳接地,计算储存的能量; (3)此电容器的电容值.解: 如图,内球带电Q ,外球壳内表面带电Q -,外表面带电Q题8-34图(1)在1R r <和32R r R <<区域0=E在21R r R <<时 301π4r rQ E ε=3R r >时 302π4rrQ E ε = ∴在21R r R <<区域⎰=21d π4)π4(21222001R R r r r Q W εε ⎰-==21)11(π8π8d 2102202R R R R Q rr Q εε 在3R r >区域⎰∞==32302220021π8d π4)π4(21R R Q r r rQ W εεε ∴ 总能量 )111(π83210221R R R Q W W W +-=+=ε41082.1-⨯=J(2)导体壳接地时,只有21R r R <<时30π4rrQ E ε=,02=W ∴ 4210211001.1)11(π8-⨯=-==R R Q W W ε J(3)电容器电容 )11/(π422102R R QW C -==ε 121049.4-⨯=第九章9-8 在真空中,有两根互相平行的无限长直导线1L 和2L ,相距0.1m ,通有方向相反的电流,1I =20A,2I =10A ,如题9-8图所示.A ,B 两点与导线在同一平面内.这两点与导线2L 的距离均为5.0cm .试求A ,B题9-8图解:如题9-8图所示,A B方向垂直纸面向里42010102.105.02)05.01.0(2-⨯=⨯+-=πμπμI I B A T(2)设0=B在2L 外侧距离2L 为r 处则02)1.0(220=-+rIr I πμπμ 解得 1.0=r m9-10 在一半径R =1.0cm I =5.0 A 通过,电流分布均匀.如题9-10图所示.试求圆柱轴线任一点P 处的磁感应强度.题9-10图解:因为金属片无限长,所以圆柱轴线上任一点P 的磁感应强度方向都在圆柱截面上,取坐标如题9-10图所示,取宽为l d 的一无限长直电流l RII d d π=,在轴上P 点产生B d 与R垂直,大小为RI R R R IR I B 20002d 2d 2d d πθμ=πθπμ=πμ= RI B B x 202d cos cos d d πθθμ=θ= RI B B y 202d sin )2cos(d d πθθμ-=θ+π= ∴ 520202221037.6)]2sin(2[sin 22d cos -ππ-⨯=πμ=π--ππμ=πθθμ=⎰RI R I R I B x T 0)2d sin (2220=πθθμ-=⎰ππ-RI B y∴ i B 51037.6-⨯= T题9-11图 题9-12图9-12 两平行长直导线相距d =40cm ,每根导线载有电流1I =2I =20A ,如题9-12图所示.求:(1)两导线所在平面内与该两导线等距的一点A(2)通过图中斜线所示面积的磁通量.(1r =3r =10cm,l =25cm)解:(1) 52010104)2(2)2(2-⨯=+=d I d I B A πμπμ T⊥纸面向外(2)r l S d d =612010110102.23ln 31ln 23ln 2])(22[1211-+⨯=πμ=πμ-πμ=-πμ+πμ=⎰lI l I l I ldr r d I r I r r r ΦWb9-17 在半径为R 的长直圆柱形导体内部,与轴线平行地挖成一半径为r 的长直圆柱形空腔,两轴间距离为a ,且a >r ,横截面如题9-17图所示.现在电流I沿导体管流动,电流均(1) (2)解:空间各点磁场可看作半径为R ,电流1I 均匀分布在横截面上的圆柱导体和半径为r 电流2I -均匀分布在横截面上的圆柱导体磁场之和. (1)圆柱轴线上的O 点B 的大小:电流1I 产生的01=B ,电流2I -产生的磁场222020222r R Ir a a I B -==πμπμ∴ )(222200r R a Ir B -=πμ(2)空心部分轴线上O '点B 的 大小:电流2I 产生的02='B , 电流1I 产生的222022r R Ia a B -πμ=')(2220r R Ia -=πμ∴)(22200r R IaB -='πμ9-18图9-18 如题9-18图所示,长直电流1I 附近有一等腰直角三角形线框,通以电流2I ,二者 共面.求△ABC 的各边所受的磁力.解: ⎰⨯=ABAB B l I F d 2daI I d I aI F AB πμπμ22210102== 方向垂直AB 向左⎰⨯=CAAC B l I F d 2 方向垂直AC 向下,大小为⎰++πμ=πμ=ad dAC dad I I r I rI F ln22d 210102 同理 BC F方向垂直BC 向上,大小⎰+πμ=ad dBc rI lI F 2d 102 ∵ ︒=45cos d d rl∴ ⎰++πμ=︒πμ=a d a BC d a d I I r r I I F ln 245cos 2d 2101209-20 如题9-20图所示,在长直导线AB 内通以电流1I =20A ,在矩形线圈CDEF 中通有电流2I =10 A ,AB 与线圈共面,且CD ,EF 都与AB 平行.已知a =9.0cm,b =20.0cm,d =1.0cm (1)导线AB(2)解:(1)CD F方向垂直CD 向左,大小4102100.82-⨯==d I bI F CD πμ N 同理FE F方向垂直FE 向右,大小5102100.8)(2-⨯=+=a d I bI F FE πμ NCF F方向垂直CF 向上,大小为⎰+-⨯=+πμ=πμ=ad dCF dad I I r r I I F 5210210102.9ln 2d 2 N ED F方向垂直ED 向下,大小为5102.9-⨯==CF ED F F N(2)合力ED CF FE CD F F F F F+++=方向向左,大小为 4102.7-⨯=F N合力矩B P M m⨯=∵ 线圈与导线共面∴ B P m//0=M.题9-21图9-21 边长为l =0.1m B =1T 的均匀磁场中,线圈平面与磁场方向平行.如题9-21图所示,使线圈通以电流I =10A ,求: (1)线圈每边所受的安培力; (2)对O O '轴的磁力矩大小;(3)从所在位置转到线圈平面与磁场垂直时磁力所作的功.解: (1) 0=⨯=B l I F bcB l I F ab⨯= 方向⊥纸面向外,大小为 866.0120sin ==︒IlB F ab N B l I F ca⨯=方向⊥纸面向里,大小866.0120sin ==︒IlB F ca N(2)IS P m =B P M m⨯= 沿O O '方向,大小为221033.443-⨯===B l I ISB M m N ⋅(3)磁力功 )(12ΦΦ-=I A∵ 01=Φ B l 2243=Φ ∴ 221033.443-⨯==B l IAJ9-27 在霍耳效应实验中,一宽1.0cm ,长4.0cm ,厚1.0×10-3cm3.0A 的电流,当磁感应强度大小为B =1.5T 的磁场垂直地通过该导体时,产生1.0×10-5V 的横向电压.试求:(1)载流子的漂移速度; (2)每立方米的载流子数目. 解: (1)∵ evB eE H =∴lBU B E v HH ==l 为导体宽度,0.1=lcm∴ 425107.65.110100.1---⨯=⨯⨯==lB U v H -1s m ⋅(2)∵nevS I =∴evS I n =524191010107.6106.13----⨯⨯⨯⨯⨯=29108.2⨯=3m - 第十章10-7 如题10-7图所示,长直导线通以电流I =5A ,在其右方放一长方形线圈,两者共面.线圈长b =0.06m ,宽a =0.04m ,线圈以速度v =0.03m ·s -1d =0.05m 时线圈中感应电动势的大小和方向.题10-7图解: AB 、CD 运动速度v方向与磁力线平行,不产生感应电动势. DA 产生电动势⎰==⋅⨯=AD I vb vBb l B v d2d )(01πμεBC 产生电动势)(π2d )(02d a Ivbl B v CB+-=⋅⨯=⎰με∴回路中总感应电动势8021106.1)11(π2-⨯=+-=+=ad d Ibv μεεε V 方向沿顺时针.题10-10图10-10 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3l磁感应强度B 平行于转轴,如图10-10所示.试求: (1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解: (1)在Ob 上取dr r r +→一小段则 ⎰==320292d lOb l B r rB ωωε 同理 ⎰==302181d lOa l B r rB ωωε ∴ 2261)92181(l B l B Ob aO ab ωωεεε=+-=+=(2)∵ 0>ab ε 即0<-b a U U ∴b 点电势高.10-14 如题10-14图所示,在垂直于直螺线管管轴的平面上放置导体ab 于直径位置,另一导体cd 在一弦上,导体均与螺线管绝缘.当螺线管接通电源的一瞬间管内磁场如题10-14图示(1)ab(2)cd解: 由⎰⎰⋅-=⋅l S tB l Ed d d d 旋知,此时旋E 以O 为中心沿逆时针方向. (1)∵ab 是直径,在ab 上处处旋E 与ab 垂直∴ ⎰=⋅ll 0d旋∴0=ab ε,有b a U U =(2)同理, 0d >⋅=⎰l E cddc旋ε∴ 0<-c d U U 即d c U U >第十二章12-2 在杨氏双缝实验中,作如下调节时,屏幕上的干涉条纹将如何变化?试说明理由. (1)使两缝之间的距离变小;(2)保持双缝间距不变,使双缝与屏幕间的距离变小; (3)整个装置的结构不变,全部浸入水中;(4)光源作平行于1S ,2S 联线方向上下微小移动; (5)用一块透明的薄云母片盖住下面的一条缝. 解: 由λdDx =∆知,(1)条纹变疏;(2)条纹变密;(3)条纹变密;(4)零级明纹在屏幕上作相反方向的上下移动;(5)零级明纹向下移动.题12-5图 题12-6图12-6 如题12-6图,牛顿环的平凸透镜可以上下移动,若以单色光垂直照射,看见条纹向中 心收缩,问透镜是向上还是向下移动?解: 条纹向中心收缩,透镜应向上移动.因相应条纹的膜厚k e 位置向中心移动.12-8 在双缝装置中,用一很薄的云母片(n=1.58)覆盖其中的一条缝,结果使屏幕上的第七级明条纹恰好移到屏幕中央原零级明纹的位置.若入射光的波长为5500oA ,求此云母片的厚度.解: 设云母片厚度为e ,则由云母片引起的光程差为e n e ne )1(-=-=δ 按题意 λδ7=∴ 610106.6158.1105500717--⨯=-⨯⨯=-=n e λm 6.6=m μ12-13 如题12-13图,波长为6800oA 的平行光垂直照射到L =0.12m 长的两块玻璃片上,两玻璃片一边相互接触,另一边被直径d =0.048mm 的细钢丝隔开.求: (1)两玻璃片间的夹角=θ?(2)相邻两明条纹间空气膜的厚度差是多少? (3)相邻两暗条纹的间距是多少? (4)在这0.12 m 内呈现多少条明条纹?题12-13图解: (1)由图知,d L =θsin ,即d L =θ故 43100.41012.0048.0-⨯=⨯==L d θ(弧度) (2)相邻两明条纹空气膜厚度差为7104.32-⨯==∆λe m(3)相邻两暗纹间距641010850100.421068002---⨯=⨯⨯⨯==θλl m 85.0= mm (4)141≈=∆lLN 条12-14 用=λ 5000oA 的平行光垂直入射劈形薄膜的上表面,从反射光中观察,劈尖的 棱边是暗纹.若劈尖上面媒质的折射率1n 大于薄膜的折射率n (n =1.5).求:(1)膜下面媒质的折射率2n 与n 的大小关系; (2)第10条暗纹处薄膜的厚度;(3)使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么变化?若e ∆=2.0 μm ,原来的第10条暗纹处将被哪级暗纹占据?解: (1)n n >2.因为劈尖的棱边是暗纹,对应光程差2)12(22λλ+=+=∆k ne ,膜厚0=e 处,有0=k ,只能是下面媒质的反射光有半波损失2λ才合题意; (2)3105.15.12500092929-⨯=⨯⨯==⨯=∆n e nλλ mm(因10个条纹只有9个条纹间距)(3)膜的下表面向下平移,各级条纹向棱边方向移动.若0.2=∆e μm ,原来第10条暗纹处现对应的膜厚为)100.2105.1(33--⨯+⨯='∆e mm21100.55.12105.3243=⨯⨯⨯⨯='∆=∆--n e N λ 现被第21级暗纹占据.第十二章13-12 单缝宽0.10mm ,透镜焦距为50cm ,用5000=λoA 的绿光垂直照射单缝.求:(1)位于透镜焦平面处的屏幕上中央明条纹的宽度和半角宽度各为多少?(2)若把此装置浸入水中(n=1.33),中央明条纹的半角宽度又为多少? 解:中央明纹的宽度为f nax λ2=∆半角宽度为naλθ1sin -=(1)空气中,1=n ,所以3310100.51010.01050005.02---⨯=⨯⨯⨯⨯=∆x m33101100.51010.0105000sin ----⨯=⨯⨯=θ rad (2)浸入水中,33.1=n ,所以有33101076.31010.033.110500050.02---⨯≈⨯⨯⨯⨯⨯=∆x m 331011076.3101.033.1105000sin ----⨯≈⨯⨯⨯=θ rad 13-13 用橙黄色的平行光垂直照射一宽为a=0.60mm 的单缝,缝后凸透镜的焦距f=40.0cm ,观察屏幕上形成的衍射条纹.若屏上离中央明条纹中心1.40mm 处的P 点为一明条纹;求:(1)入射光的波长;(2)P 点处条纹的级数;(3)从P 点看,对该光波而言,狭缝处的波面可分成几个半波带?解:(1)由于P 点是明纹,故有2)12(sin λϕ+=k a ,⋅⋅⋅=3,2,1k由ϕϕsin tan 105.34004.13≈=⨯==-f x 故3105.3126.0212sin 2-⨯⨯+⨯=+=k k a ϕλ3102.4121-⨯⨯+=k mm 当 3=k ,得60003=λo A4=k ,得47004=λoA(2)若60003=λoA ,则P 点是第3级明纹; 若47004=λoA ,则P 点是第4级明纹. (3)由2)12(sin λϕ+=k a 可知,当3=k 时,单缝处的波面可分成712=+k 个半波带; 当4=k 时,单缝处的波面可分成912=+k 个半波带.。

相关文档
最新文档