离散教材课后习题(1-8,11章)-2013-2014-1
离散数学课后习题及答案
离散数学课后习题及答案离散数学是计算机科学与数学的重要基础课程之一,它涵盖了很多重要的概念和理论。
为了更好地掌握离散数学的知识,课后习题是必不可少的一部分。
本文将介绍一些常见的离散数学课后习题,并提供相应的答案,希望对读者有所帮助。
一、集合论1. 设A={1,2,3},B={2,3,4},求A∪B和A∩B的结果。
答案:A∪B={1,2,3,4},A∩B={2,3}2. 设A={1,2,3},B={2,3,4},C={3,4,5},求(A∪B)∩C的结果。
答案:(A∪B)∩C={3,4}二、逻辑与命题1. 判断下列命题的真假:a) 若2+2=5,则地球是平的。
b) 若今天下雨,则我会带伞。
c) 若x>0,则x^2>0。
答案:a)假,b)真,c)真。
2. 用真值表验证下列命题的等价性:a) p∧(q∨r) ≡ (p∧q)∨(p∧r)b) p→q ≡ ¬p∨q答案:a)等价,b)等价。
三、关系与函数1. 给定关系R={(1,2),(2,3),(3,4)},求R的逆关系R^-1。
答案:R^-1={(2,1),(3,2),(4,3)}2. 设函数f(x)=x^2,g(x)=2x+1,求复合函数f(g(x))的表达式。
答案:f(g(x))=(2x+1)^2=4x^2+4x+1四、图论1. 给定图G,其邻接矩阵为:0 1 11 0 11 1 0求图G的度数序列。
答案:度数序列为(2,2,2)2. 判断下列图是否为连通图:a) G1的邻接矩阵为:0 1 11 0 01 0 0b) G2的邻接矩阵为:0 1 01 0 10 1 0答案:a)不是连通图,b)是连通图。
五、组合数学1. 从10个不同的球中,任选3个,求共有多少种选法。
答案:C(10,3)=120种选法。
2. 求下列排列的循环节:a) (123)(45)(67)b) (12)(34)(56)(78)答案:a)循环节为(123)(45)(67),b)循环节为(12)(34)(56)(78)。
离散数学第2版课后习题答案
离散数学第2版课后习题答案离散数学是计算机科学和数学领域中一门重要的学科,它研究离散对象及其关系、结构和运算方法。
离散数学的应用非常广泛,包括计算机科学、信息科学、密码学、人工智能等领域。
而离散数学第2版是一本经典的教材,它系统地介绍了离散数学的基本概念、原理和方法。
本文将为读者提供离散数学第2版课后习题的答案,帮助读者更好地理解和掌握离散数学的知识。
第一章:基本概念和原理1.1 命题逻辑习题1:命题逻辑的基本符号有哪些?它们的含义是什么?答:命题逻辑的基本符号包括命题变量、命题联结词和括号。
命题变量用字母表示,代表一个命题。
命题联结词包括否定、合取、析取、条件和双条件等,分别表示“非”、“与”、“或”、“如果...则...”和“当且仅当”。
括号用于改变命题联结词的优先级。
习题2:列举命题逻辑的基本定律。
答:命题逻辑的基本定律包括德摩根定律、分配律、结合律、交换律、吸收律和否定律等。
1.2 集合论习题1:什么是集合?集合的基本运算有哪些?答:集合是由一些确定的对象组成的整体,这些对象称为集合的元素。
集合的基本运算包括并、交、差和补等。
习题2:列举集合的基本定律。
答:集合的基本定律包括幂等律、交换律、结合律、分配律、吸收律和德摩根定律等。
第二章:数理逻辑2.1 命题逻辑的推理习题1:什么是命题逻辑的推理规则?列举几个常用的推理规则。
答:命题逻辑的推理规则是用来推导命题的逻辑规则。
常用的推理规则包括假言推理、拒取推理、假言三段论和析取三段论等。
习题2:使用推理规则证明以下命题:如果A成立,则B成立;B不成立,则A不成立。
答:假言推理规则可以用来证明该命题。
根据假言推理规则,如果A成立,则B成立。
又根据假言推理规则,如果B不成立,则A不成立。
2.2 谓词逻辑习题1:什么是谓词逻辑?它与命题逻辑有何区别?答:谓词逻辑是一种扩展了命题逻辑的逻辑系统,它引入了谓词和量词。
与命题逻辑不同,谓词逻辑可以对个体进行量化和描述。
2014教材课后习题答案第08-11章
P184 第八章3. 一简谐波,振动周期21=T s ,波长λ = 10 m ,振幅A = 0.1 m .当 t = 0时,波源振动的位移恰好为正方向的最大值.若坐标原点和波源重合,且波沿Ox 轴正方向传播,求: (1) 此波的表达式; (2) t 1 = T /4时刻,x 1 = λ /4处质点的位移; (3) t 2 = T /2时刻,x 1 = λ /4处质点的振动速度.解:(1) )1024cos(1.0x t y π-π=)201(4cos 1.0x t -π= (SI) (2)t 1 = T /4 = (1 /8) s ,x 1 = λ /4 = (10 /4) m 处质点的位移)80/4/(4cos 1.01λ-π=T ym 1.0)818/1(4cos 1.0=-π=(3) 振速 )20/(4sin 4.0x t ty-ππ-=∂∂=v . )4/1(212==T t s ,在 x 1 = λ /4 = (10 /4) m 处质点的振速 26.1)21sin(4.02-=π-ππ-=v m/s4. 在弹性媒质中有一沿x 轴正向传播的平面波,其表达式为)214cos(01.0π-π-=x t y (SI).若在x = 5.00 m 处有一媒质分界面,且在分界面处反射波相位突变π,设反射波的强度不变,试写出反射波的表达式. 解:反射波在x 点引起的振动相位为π+π--+π-=+21)55(4x t t φωπ-π+π+=10214x t反射波表达式为)10214cos(01.0π-π+π+=x t y (SI) 或 )214cos(01.0π+π+=x t y (SI)5. 已知一平面简谐波的表达式为 )24(cos x t A y +π= (SI).(1) 求该波的波长λ ,频率ν 和波速u 的值;(2) 写出t = 4.2 s 时刻各波峰位置的坐标表达式,并求出此时离坐标原点最近的那个波峰的位置;(3) 求t = 4.2 s 时离坐标原点最近的那个波峰通过坐标原点的时刻t . 解:这是一个向x 轴负方向传播的波.(1) 由波数 k = 2π / λ 得波长 λ = 2π / k = 1 m 由 ω = 2πν 得频率 ν = ω / 2π = 2 Hz 波速 u = νλ = 2 m/s(2) 波峰的位置,即y = A 的位置. 由 1)24(cos =+πx t有 π=+πk x t 2)24( ( k = 0,±1,±2,…)解上式,有 t k x 2-=.当 t = 4.2 s 时, )4.8(-=k x m .所谓离坐标原点最近,即| x |最小的波峰.在上式中取k = 8,可得 x = -0.4 的波峰离坐标原点最近.(3) 设该波峰由原点传播到x = -0.4 m 处所需的时间为∆t ,则 ∆t = | ∆x | /u = | ∆x | / (ν λ ) = 0.2 s∴ 该波峰经过原点的时刻 t = 4 s6. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s .在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动,求x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度.解:设x = 0处质点振动的表达式为 )cos(0φω+=t A y , 已知 t = 0 时,y 0 = 0,且 v 0 > 0 ∴π-=21φ ∴ )2cos(0φν+π=t A y )21100cos(1022π-π⨯=-t (SI) 由波的传播概念,可得该平面简谐波的表达式为)/22cos(0u x t A y νφνπ-+π=)2121100cos(1022x t π-π-π⨯=- (SI) x = 4 m 处的质点在t 时刻的位移)21100cos(1022π-π⨯=-t y (SI)该质点在t = 2 s 时的振动速度为 )21200sin(1001022π-π⨯⨯-=-πv= 6.28 m/s7. 沿x 轴负方向传播的平面简谐波在t = 2 s 时刻的波形曲线如图所示,设波速u = 0.5 m/s . 求:原点O 的振动方程.解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分 T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图. 此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ ∴ )2121cos(5.0π+π=t y (SI)x (m)y (m)O u 0.512t = 2 sx (m)y (m)0u0.512t = 0-18. 如图所示为一平面简谐波在t = 0 时刻的波形图,设此简谐波的频率为250 Hz ,且此时质点P 的运动方向向下,求(1) 该波的表达式; (2) 在距原点O 为100 m 处质点的振动方程与振动速度表达式. 解:(1) 由P 点的运动方向,可判定该波向左传播.原点O 处质点,t = 0 时φcos 2/2A A =, 0sin 0<-=φωA v所以 4/π=φO 处振动方程为 )41500cos(0π+π=t A y (SI)由图可判定波长λ = 200 m ,故波动表达式为]41)200250(2cos[π++π=x t A y (SI) (2) 距O 点100 m 处质点的振动方程是)45500cos(1π+π=t A y 振动速度表达式是 )45500cos(500π+ππ-=t A v (SI)9. 如图所示,S 1,S 2为两平面简谐波相干波源.S 2的相位比S 1的相位超前π/4 ,波长λ = 8.00 m ,r 1 = 12.0 m ,r 2 = 14.0 m ,S 1在P 点引起的振动振幅为0.30 m ,S 2在P 点引起的振动振幅为0.20 m ,求P 点的合振幅.解:=-π--=∆)(21212r r λφφφ422412/r r π-=π+π-πλλ 464.0)cos 2(2/1212221=++=∆φA A A A A m10. 图中A 、B 是两个相干的点波源,它们的振动相位差为π(反相).A 、B 相距 30 cm ,观察点P 和B 点相距 40 cm ,且AB PB ⊥.若发自A 、B 的两波在P 点处最大限度地互相削弱,求波长最长能是多少.解:在P 最大限度地减弱,即二振动反相.现二波源是反相的相干波源,故要 求因传播路径不同而引起的相位差等于 ± 2k π(k = 1,2,…). 由图 =AP 50 cm . ∴ 2π (50-40) /λ = 2k π,∴ λ = 10/k cm ,当k = 1时,λmax = 10 cm11. 如图所示,一平面简谐波沿Ox 轴正向传播,波速大小为u ,若P 处质点的振动方程为)cos(φω+=t A y P ,求(1) O 处质点的振动方程; (2) 该波的波动表达式;(3) 与P 处质点振动状态相同的那些质点的位置.P S S解:(1) O 处质点振动方程 ])(cos[0φω++=u Lt A y (2) 波动表达式 ])(cos[φω+--=uLx t A y(3) ωuk L x L x π±=±=2 (k = 0,1,2,3,…)12.如图为一平面简谐波在t = 0 时刻的波形图,已知波速u = 20 m/s .试画出P 处质点与Q振动方程.解:(1)波的周期T = λ / u =( 40/20) s= 2 s . P 处Q 处质点振动周期与波的周期相等,故P 处质点的振动曲线如图(a) 振动方程为:)21cos(20.0π-π=t y P (SI) 2分(2) Q 处质点的振动曲线如图(b),振动 2分 方程为 )cos(20.0π+π=t y Q (SI) 或)cos(20.0π-π=t y Q (SI)13.两波在一很长的弦线上传播,其表达式分别为:)244(31cos 1000.421t x y -π⨯=- (SI))244(31cos 1000.422t x y +π⨯=- (SI)求: (1) 两波的频率、波长、波速; (2) 两波叠加后的节点位置; (3) 叠加后振幅最大的那些点的位置.解:(1) 与波动的标准表达式 )/(2cos λνx t A y -π= 对比可得:ν = 4 Hz , λ = 1.50 m , 波速 u = λν = 6.00 m/s(2) 节点位置 )21(3/4π+π±=πn x )21(3+±=n x m , n = 0,1,2,3, …(3) 波腹位置 π±=πn x 3/44/3n x ±= m , n = 0,1,2,3, …14. 一列横波在绳索上传播,其表达式为 )]405.0(2cos[05.01xt y -π= (SI) (1) 现有另一列横波(振幅也是0.05 m )与上述已知横波在绳索上形成驻波.设这一-横波在x = 0处与已知横波同位相,写出该波的表达式.(2) 写出绳索上的驻波表达式;求出各波节的位置坐标;并写出离原点最近的四个波节的坐标数值.解:(1) 由形成驻波的条件.可知待求波的频率和波长均与已知波相同,传播方向为x 轴的负方向.又知 x = 0处待求波与已知波同相位,∴待求波的表达式为)]405.0(2cos[05.02xt y +π= (2) 驻波表达式 21y y y +=∴ )40cos()21cos(10.0t x y ππ= (SI)波节位置由下式求出. )12(212/+π=πk x k = 0,±1,±2,… ∴ x = 2k + 1 k = 0,±1,±2,…离原点最近的四个波节的坐标是x = 1 m 、-1 m 、3 m 、-3 m.P208 第九章3. 在双缝干涉实验中,波长λ=550 nm 的单色平行光垂直入射到缝间距a =2×10-4 m 的双缝上,屏到双缝的距离D =2 m .求:(1) 中央明纹两侧的两条第10级明纹中心的间距;(2) 用一厚度为e =6.6×10-5 m 、折射率为n =1.58的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?(1 nm = 10-9 m)解:(1) ∆x =20 D λ / a =0.11 m(2) 覆盖云玻璃后,零级明纹应满足(n -1)e +r 1=r 2设不盖玻璃片时,此点为第k 级明纹,则应有r 2-r 1=k λ所以 (n -1)e = k λ k =(n -1) e / λ=6.96≈7零级明纹移到原第7级明纹处4. 在双缝干涉实验中,用波长λ=546.1nm (1 nm=10-9 m)的单色光照射,双缝与屏的距离D =300 mm .测得中央明条纹两侧的两个第五级明条纹的间距为12.2 mm ,求双缝间的距离. 解:由题给数据可得相邻明条纹之间的距离为∆x =12.2 / (2×5)mm =1.22 mm 由公式 ∆x =D λ / d ,得d =D λ / ∆x =0.134 mm5. 在图示的双缝干涉实验中,若用薄玻璃片(折射率n 1=1.4)覆盖缝S 1,用同样厚度的玻璃片(但折射率n 2=1.7)覆盖缝S 2,将使原来未放玻璃时屏上的中央明条纹处O 变为第五级明纹.设单色光波长λ=480 nm(1nm=109m ),求玻璃片的厚度d (可认为光线垂直穿过玻璃片).解:原来, δ = r 2-r 1= 0覆盖玻璃后, δ=( r 2 + n 2d – d )-(r 1 + n 1d -d )=5λ ∴ (n 2-n 1)d =5λ125n n d -=λ= 8.0×10-6 m6. 在双缝干涉实验中,单色光源S 0到两缝S 1和S 2的距离分别为l 1和l 2,并且l 1-l 2=3λ,λ为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D (D >>d ),如图.求: (1) 零级明纹到屏幕中央O 点的距离. (2) 相邻明条纹间的距离.S 1 S 2 n 2 n 1 r 1r 2 d屏 dS 2 S 1 l 1 S 0 l 2D解:(1) 如图,设P 0为零级明纹中心则 D O P d r r /012≈- (l 2 +r 2) - (l 1 +r 1) = 0∴ r 2 – r 1 = l 1 – l 2 = 3λ ∴()d D d r r D O P /3/120λ=-=(2) 在屏上距O 点为x 处, 光程差λδ3)/(-≈D dx 明纹条件λδk ±= (k =1,2,....) ()d D k x k /3λλ+±=在此处令k =0,即为(1)的结果.相邻明条纹间距d D x x x k k /1λ=-=+∆7. 用波长为λ1的单色光垂直照射牛顿环装置时,测得中央暗斑外第1和第4暗环半径之差为l 1,而用未知单色光垂直照射时,测得第1和第4暗环半径之差为l 2,求未知单色光的波长λ2.解:由牛顿环暗环半径公式 λkR r k =,根据题意可得 11114λλλR R R l =-=22224λλλR R R l =-=212212//l l =λλ211222/l l λλ=8. 折射率为1.60的两块标准平面玻璃板之间形成一个劈形膜(劈尖角θ 很小).用波长λ=600nm (1 nm =10-9 m)的单色光垂直入射,产生等厚干涉条纹.假如在劈形膜内充满n =1.40的液体时的相邻明纹间距比劈形膜内是空气时的间距缩小∆l =0.5 mm ,那么劈尖角θ 应是多少?解:空气劈形膜时,间距 θλθλ2sin 21≈=n l液体劈形膜时,间距 θλθλn l 2sin 22≈= ()()θλ2//1121n l l l -=-=∆∴ θ = λ ( 1 – 1 / n ) / ( 2∆l )=1.7×10-4 rad9. 用波长λ=500 nm (1 nm =10-9 m)的单色光垂直照射在由两块玻璃板(一端刚好接触成为劈棱)构成的空气劈形膜上.劈尖角θ=2×10-4 rad .如果劈形膜内充满折射率为n =1.40的液体.求从劈棱数起第五个明条纹在充入液体前后移动的距离. 解:设第五个明纹处膜厚为e ,则有2ne +λ / 2=5 λ 设该处至劈棱的距离为l ,则有近似关系e =l θ,由上两式得 2nl θ=9 λ / 2,l =9λ / 4n θ 充入液体前第五个明纹位置 l 1=9 λ / 4θ充入液体后第五个明纹位置 l 2=9 λ / 4n θ 充入液体前后第五个明纹移动的距离∆l =l 1 – l 2=9 λ ( 1 - 1 / n ) / 4θ =1.61 mmOP 0 r 1 r 2Dl 2s 1 s 2d l 1 0x10.11.波长为λ的单色光垂直照射到折射率为n 2的劈形膜上,如图所示,图中n 1<n 2<n 3,观察反射光形成的干涉条纹.(1) 从形膜顶部O 开始向右数起,第五条暗纹中心所对应的薄膜厚度e 5是多少?(2) 相邻的二明纹所对应的薄膜厚度之差是多少? 解:∵ n 1<n 2<n 3, 二反射光之间没有附加相位差π,光程差为δ = 2n 2 e第五条暗纹中心对应的薄膜厚度为e 5,2n 2 e 5 = (2k - 1)λ / 2 k = 5()2254/94/152n n e λλ=-⨯= 明纹的条件是 2n 2 e k = k λ 相邻二明纹所对应的膜厚度之差∆e = e k+1-e k = λ / (2n 2)12. 在如图所示的牛顿环装置中,把玻璃平凸透镜和平面玻璃(设玻璃折射率n 1=1.50)之间的空气(n 2=1.00)改换成水(2n '=1.33),求第k 个暗环半径的相对改变量()k k k r r r /'-. 解:在空气中时第k 个暗环半径为λkR r k =, (n 2 = 1.00)充水后第k 个暗环半径为2/n kR r k '='λ , (2n ' = 1.33) 干涉环半径的相对变化量为()λλkR n kR r r r kk k 2/11'-='-n 2n 1n 3O λn 1 n 12/11n '-==13.3%13.P226 第10章3. 用波长λ=632.8 nm(1nm=10−9m)的平行光垂直照射单缝,缝宽a =0.15 mm ,缝后用凸透镜把衍射光会聚在焦平面上,测得第二级与第三级暗条纹之间的距离为1.7 mm ,求此透镜的焦距.解:第二级与第三级暗纹之间的距离∆x = x 3 –x 2≈f λ / a . ∴ f ≈a ∆x / λ=400 mm4. 一束单色平行光垂直照射在一单缝上,若其第3级明条纹位置正好与2600nm λ=的单色平行光的第2级明条纹的位置重合.求前一种单色光的波长?解:单缝衍射明纹估算式:()sin 21(1,2,3,)b k k θ=±+=⋅⋅⋅根据题意,第二级和第三级明纹分别为22sin 2212b λθ=⨯+()33sin 2312b λθ=⨯+()且在同一位置处,则 23sin sin θθ= 解得: 325560042577nm λλ==⨯=5. 某种单色平行光垂直入射在单缝上,单缝宽a = 0.15 mm .缝后放一个焦距f = 400 mm 的凸透镜,在透镜的焦平面上,测得中央明条纹两侧的两个第三级暗条纹之间的距离为8.0 mm ,求入射光的波长.解:设第三级暗纹在ϕ3方向上,则有a sin ϕ3 = 3λ此暗纹到中心的距离为 x 3 = f tg ϕ3因为ϕ3很小,可认为tg ϕ3≈sin ϕ3,所以x 3≈3f λ / a .两侧第三级暗纹的距离是 2 x 3 = 6f λ / a = 8.0mm∴ λ = (2x 3) a / 6f= 500 nm6. (1) 在单缝夫琅禾费衍射实验中,垂直入射的光有两种波长,λ1=400 nm ,λ2=760 nm(1 nm=10-9 m).已知单缝宽度a =1.0×10-2 cm ,透镜焦距f =50 cm .求两种光第一级衍射明纹中心之间的距离.(2) 若用光栅常数d =1.0×10-3 cm 的光栅替换单缝,其他条件和上一问相同,求两种光第一级主极大之间的距离.解:(1) 由单缝衍射明纹公式可知()111231221sin λλϕ=+=k a (取k =1 ) ()222231221sin λλϕ=+=k af x /tg 11=ϕ , f x /tg 22=ϕ 由于 11tg sin ϕϕ≈ , 22tg sin ϕϕ≈所以 a f x /2311λ= a f x /2322λ=则两个第一级明纹之间距为a f x x x /2312λ∆=-=∆=0.27 cm (2) 由光栅衍射主极大的公式 1111sin λλϕ==k d2221sin λλϕ==k d 且有f x /tg sin =≈ϕϕ所以d f x x x /12λ∆=-=∆=1.8 cm7. 一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9 m),试求: (1) 光栅常数a +b (2) 波长λ2解:(1) 由光栅衍射主极大公式得 ()1330sin λ=+b acm 1036.330sin 341-⨯==+λb a (2) ()2430sin λ=+b a()4204/30sin 2=+=b a λnm8. 以波长400 nm ─760 nm (1 nm =10-9 m)的白光垂直照射在光栅上,在它的衍射光谱中,第二级和第三级发生重叠,求第二级光谱被重叠的波长范围.解:令第三级光谱中λ=400 nm 的光与第二级光谱中波长为λ' 的光对应的衍射角都为θ, 则 d sin θ =3λ,d sin θ =2λ'λ'= (d sin θ / )2==λ23600nm∴第二级光谱被重叠的波长范围是 600 nm----760 nm9. 钠黄光中包含两个相近的波长λ1=589.0 nm 和λ2=589.6 nm .用平行的钠黄光垂直入射在每毫米有 600条缝的光栅上,会聚透镜的焦距f =1.00 m .求在屏幕上形成的第2级光谱中上述两波长λ1和λ2的光谱之间的间隔∆l .(1 nm =10-9 m)解:光栅常数 d = (1/600) mm = (106/600) nm =1667 nm据光栅公式,λ1 的第2级谱线 d sin θ1 =2λ1 sin θ1 =2λ1/d = 2×589/1667 = 0.70666θ1 = 44.96︒ λ2 的第2级谱线 d sin θ2 =λ2 sin θ2 =2λ2 /d = 2×589.6 /1667 = 0.70738θ2 = 45.02︒∆ lfLOλ1,λ2Gθ1θ2两谱线间隔 ∆ l = f (tg θ2 -tg θ1 ) =1.00×103 ( tg 45.02︒-tg 44.96︒) = 2.04 mm10. 波长600nm λ=的单色光垂直入射到一光栅上,第2、第3级明条纹分别出现在2sin 0.20θ=与3sin 0.30θ=处,且第4级缺级.求:⑴光栅常数;⑵光栅上狭缝的宽度;⑶在屏上实际呈现出的全部级数?解:根据光栅方程sin ,d k θλ=(1)则光栅的光栅常数 6322260010610sin 0.20d mmλθ--⨯⨯===⨯(2)由于第4级缺级,4db= 31.5104db mm -==⨯(3)03max 6sin 9061011060010d k λ--⨯⨯===⨯则出现第0,1,2,3,5,6,7,9k =±±±±±±±级条纹,共15条。
离散数学答案第二版-高等教育出版社课后答案
第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)∀,在(a)中为假命题,在(b)中为真命题。
大学_《离散数学》课后习题答案
《离散数学》课后习题答案《离散数学》简介1、集合论部分:集合及其运算、二元关系与函数、自然数及自然数集、集合的基数2、图论部分:图的基本概念、欧拉图与哈密顿图、树、图的矩阵表示、平面图、图着色、支配集、覆盖集、独立集与匹配、带权图及其应用3、代数结构部分:代数系统的基本概念、半群与独异点、群、环与域、格与布尔代数4、组合数学部分:组合存在性定理、基本的计数公式、组合计数方法、组合计数定理5、数理逻辑部分:命题逻辑、一阶谓词演算、消解原理离散数学被分成三门课程进行教学,即集合论与图论、代数结构与组合数学、数理逻辑。
教学方式以课堂讲授为主,课后有书面作业、通过学校网络教学平台发布课件并进行师生交流。
《离散数学》学科内容随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。
离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。
由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。
离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。
离散数学的应用遍及现代科学技术的诸多领域。
离散数学也可以说是计算机科学的基础核心学科,在离散数学中的有一个著名的典型例子-四色定理又称四色猜想,这是世界近代三大数学难题之一,它是在1852年,由英国的一名绘图员弗南西斯格思里提出的,他在进行地图着色时,发现了一个现象,“每幅地图都可以仅用四种颜色着色,并且共同边界的国家都可以被着上不同的颜色”。
(完整word版)离散数学课后答案(word文档良心出品)
离散数学课后答案习题一6.将下列命题符号化。
(1)小丽只能从框里那一个苹果或一个梨.(2)这学期,刘晓月只能选学英语或日语中的一门外语课.答:(1)(p Λ¬q )ν(¬pΛq)其中p:小丽拿一个苹果,q:小丽拿一个梨(2)(p Λ¬q )ν(¬pΛq)其中p:刘晓月选学英语,q:刘晓月选学日语14.将下列命题符号化.(1) 刘晓月跑得快, 跳得高.(2)老王是山东人或河北人.(3)因为天气冷, 所以我穿了羽绒服.(4)王欢与李乐组成一个小组.(5)李辛与李末是兄弟.(6)王强与刘威都学过法语.(7)他一面吃饭, 一面听音乐.(8)如果天下大雨, 他就乘班车上班.(9)只有天下大雨, 他才乘班车上班.(10)除非天下大雨, 他才乘班车上班.(11)下雪路滑, 他迟到了.(12)2与4都是素数, 这是不对的.(13)“2或4是素数, 这是不对的”是不对的.答:(1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高.(2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人.(3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服.(4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题.(5)p, 其中, p: 李辛与李末是兄弟.(6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语.(7)p∧q, 其中, p: 他吃饭, q: 他听音乐.(8)p→q, 其中, p: 天下大雨, q: 他乘班车上班.(9)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(10)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(11)p→q, 其中, p: 下雪路滑, q: 他迟到了.(12) ¬ (p∧q)或¬p∨¬q, 其中, p: 2是素数, q: 4是素数.(13) ¬ ¬ (p∨q)或p∨q, 其中, p: 2是素数, q: 4是素数.16.19.用真值表判断下列公式的类型:(1)p→ (p∨q∨r) (2)(p→¬q) →¬q(3) ¬ (q→r) ∧r(4)(p→q) →(¬q→¬p)(5)(p∧r) ↔( ¬p∧¬q)(6)((p→q) ∧ (q→r)) → (p→r)(7)(p→q) ↔ (r↔s)答:(1), (4), (6)为重言式.(3)为矛盾式.(2), (5), (7)为可满足式习题二9.用真值表求下面公式的主析取范式.(1) (pνq)ν(¬pΛr)(2) (p→q) →(¬p↔q)答:(1)(2)p q (p → q) →(¬p ↔ q)0 0 1 0 0 10 1 1 1 1 01 0 0 1 1 11 1 1 0 0 0从真值表可见成真赋值为01, 10.于是(p → q) →(¬p ↔ q) ⇔ m1 ∨ m211.用真值表求下面公式的主析取范式和主合取范式;(1) (pνq)Λr(2) p→(pνqνr)(3) ¬(q→¬p)Λ¬p15.用主析取范式判断下列公式是否等值:(1) (p→q) →r与q→ (p→r)(2) ¬(pΛq)与(¬pνq)答:(1)(p→q) →r ⇔¬(¬p∨q) ∨ r ⇔¬(¬p∨q) ∨ r ⇔ p¬∧q ∨ r ⇔p¬∧q∧(r¬∨r) ∨(p¬∨p) ∧(q¬∨q)∧r ⇔p¬∧q∧r ∨p¬∧q∧¬r ∨ p ∧q∧r ∨ p∧¬q∧r ∨¬p∧q∧r ∨¬p∧¬q∧r = m101 ∨ m100 ∨ m111 ∨m101 ∨ m011 ∨ m001 ⇔m1 ∨ m3 ∨ m4 ∨ m5 ∨ m7 = ∑(1, 3, 4, 5, 7).而 q→(p→r) ⇔¬q ∨(¬p∨r) ⇔¬q ∨¬p ∨r ⇔(¬p∨p)¬∧q∧(¬r∨r) ∨¬p∧(¬q∨q)∧(¬r∨r) ∨(¬p∨p)∧(¬q∨q)∧r ⇔(¬p¬∧q∧¬r)∨(¬p¬∧q∧r)∨(p¬∧q∧¬r)∨(p¬∧q∧r) ∨(¬p∧¬q∧¬r)∨(¬p∧¬q∧r)∨(¬p ∧q∧¬r)∨(¬p∧q∧r) ∨(¬p∧¬q∧r)∨(¬p∧q∧r)∨(p∧¬q∧r)∨(p∧q∧r) = m0 ∨ m1 ∨ m4 ∨ m5 ∨ m0 ∨ m1 ∨ m2 ∨ m3 ∨ m1 ∨ m3 ∨ m5 ∨m7 ⇔ m0 ∨ m1 ∨ m2 ∨ m3 ∨ m4 ∨ m5 ∨ m7 ⇔∑(0, 1, 2, 3, 4, 5, 7). 两个公式的主吸取范式不同, 所以(p→q) →rk q→ (p→r).16. 用主析取范式判断下列公式是否等值:(1)(p→q) →r与q→ (p→r)(2) ¬ (p∧q)与¬ (p∨q)答:(1)(p→q) →r) ⇔m1∨m3∨m4∨m5∨m7q→ (p→r) ⇔m0∨m1∨m2∨m3∨m4∨m5∨m7所以(p→q) →r) k q→ (p→r)(2)¬ (p∧q) ⇔m0∨m1∨m2¬ (p∨q) ⇔m0所以¬ (p∧q) k ¬ (p∨q)习题三15.在自然推理系统P中用附加前提法证明下面各推理:(1)前提: p→ (q→r), s→p, q 结论: s→r(2)前提: (p∨q) → (r∧s), (s∨t) →u 结论: p→u答:(1)证明: ① s 附加前提引入② s→p 前提引入③ p ①②假言推理④ p→(q→r) 前提引入⑤ q→r ③④假言推理⑥ q 前提引入⑦ r ⑤⑥假言推理(2)证明: ① P 附加前提引入② p∨q ①附加③ (p∨q) → (r∧s) 前提引入④ r∧s ②③假言推理⑤④化简⑥ s∨t ⑤附加⑦ (s∨t) →u 前提引入⑧ u ⑥⑦假言推理16.在自然推理系统P中用归谬法证明下面推理:(1)前提: p→¬q, ¬r∨q, r∧¬s 结论: ¬p(2)前提: p∨q, p→r, q→s 结论: r∨s答:(1)证明: ① P 结论否定引入② p→¬q 前提引入③¬q ①②假言推理④¬r∨q 前提引入⑤¬r ③④析取三段论⑥ r∧¬s 前提引入⑦ r ⑥化简⑧¬r∧r ⑤⑦合取⑧ 为矛盾式, 由归谬法可知, 推理正确.(2)证明: ①¬ (r∨s) 结论否定引入② p∨q 前提引入③ p→r 前提引入④ q→s 前提引入⑤ r∨s ②③④构造性二难⑥¬ (r∨s) ∧ (r∨s) ①⑤合取⑥为矛盾式, 所以推理正确.18.在自然推理系统P中构造下面推理的证明.(1)如果今天是星期六, 我们就要到颐和园或圆明园去玩. 如果颐和园游人太多, 我们就不去颐和园玩. 今天是星期六. 颐和园游人太多. 所以我们去圆明园玩.(2)如果小王是理科学生, 他的数学成绩一定很好. 如果小王不是文科生, 他必是理科生. 小王的数学成绩不好. 所以小王是文科学生.(1)令 p: 今天是星期六;q: 我们要到颐和园玩;r: 我们要到圆明园玩;s:颐和园游人太多.前提: p→ (q∨r), s →¬q, p, s. 结论: r.证明① p 前提引入② p→q∨r前提引入③q∨r①②假言推理④s前提引入⑤ s →¬q前提引入⑥¬q ④⑤假言推理⑦ r ③⑥析取三段论r ¬q s →¬q sq∨r p→q∨r p(2)令p: 小王是理科生,q: 小王是文科生,r: 小王的数学成绩很好.前提: p→r, ¬q→p, ¬r 结论: q证明:① p→r 前提引入②¬r 前提引入③¬p ①②拒取式④¬q→p 前提引入⑤ q ③④拒取式习题四在一阶逻辑中将下列命题符号化:(1)没有不能表示成分数的有理数.(2)在北京卖菜的人不全是外地人.(3)乌鸦都是黑色的.(4)有的人天天锻炼身体. 没指定个体域, 因而使用全总个体域.答:(1) ¬∃x(F(x) ∧¬G(x))或∀x(F(x) →G(x)), 其中, F(x): x为有理数, G(x): x能表示成分数.(2) ¬∀x(F(x) →G(x))或∃x(F(x) ∧¬G(x)), 其中, F(x): x在北京卖菜,G(x): x是外地人.(3) ∀x(F(x) →G(x)), 其中, F(x): x是乌鸦, G(x): x是黑色的.(4) ∃x(F(x) ∧G(x)), 其中, F(x): x是人, G(x): x天天锻炼身体.5. 在一阶逻辑中将下列命题符号化:(1)火车都比轮船快.(2)有的火车比有的汽车快.(3)不存在比所有火车都快的汽车.(4)“凡是汽车就比火车慢”是不对的.答:因为没指明个体域, 因而使用全总个体域(1) ∀x∀y(F(x) ∧G(y) →H(x,y)), 其中, F(x): x是火车, G(y): y是轮船, H(x,y):x比y快.(2) ∃x∃y(F(x) ∧G(y) ∧H(x,y)), 其中, F(x): x是火车, G(y): y是汽车, H(x,y):x比y快.(3) ¬∃x(F(x) ∧∀y(G(y) →H(x,y))) 或∀x(F(x) →∃y(G(y) ∧¬H(x,y))), 其中, F(x): x是汽车, G(y): y是火车, H(x,y):x比y快.(4) ¬∀x∀y(F(x) ∧G(y) →H(x,y)) 或∃x∃y(F(x) ∧G(y) ∧¬H(x,y) ), 其中, F(x): x是汽车, G(y): y是火车, H(x,y):x比y慢.9.给定解释I如下:(a)个体域DI为实数集合\.(b)DI中特定元素⎯a =0.(c)特定函数⎯f (x,y)=x−y, x,y∈DI.(d)特定谓词⎯F(x,y): x=y,⎯G(x,y): x<y, x,y∈DI.说明下列公式在I下的含义, 并指出各公式的真值:(1) ∀x∀y(G(x,y) →¬F(x,y))(2) ∀x∀y(F(f(x,y),a) →G(x,y))(3) ∀x∀y(G(x,y) →¬F(f(x,y),a))(4) ∀x∀y(G(f(x,y),a) →F(x,y))答:(1) ∀x∀y(x<y→x≠y), 真值为1.(2) ∀x∀y((x−y=0) →x<y), 真值为0.(3) ∀x∀y((x<y) → (x−y≠0)), 真值为1.(4) ∀x∀y((x−y<0) → (x=y)), 真值为0.习题五5.给定解释I如下:(a) 个体域D={3,4}.(b)⎯f (x)为⎯f (3)=4,⎯f (4)=3.(c)⎯F(x,y)为⎯F(3,3)=⎯F(4,4)=0,⎯F(3,4)=⎯F(4,3)=1.试求下列公式在I下的真值:(1) ∀x∃yF(x,y)(2) ∃x∀yF(x,y)(3) ∀x∀y(F(x,y) →F(f(x),f(y)))答:(1) ∀x∃yF(x,y)⇔(F(3,3)∨F(3,4))∧(F(4,3)∨F(4,4))⇔(0∨1)∧(1∨0) ⇔1(2)∃x∀yF(x,y)⇔(F(3,3)∧F(3,4))∨(F(4,3)∧F(4,4))⇔(0∧1)∨(1∧0)⇔0(3)∀x∀y(F(x,y)→F(f(x),f(y)))⇔(F(3,3)→F(f(3),f(3)))∧(F(4,3)→F(f(4),f(3)))∧(F(3,4)→F(f(3),f(4)))∧(F(4,4)→F(f(4),f(4))) ⇔ (0→0)∧(1→1)∧(1→1)∧(0→0)⇔112.求下列各式的前束范式.(1) ∀xF(x) →∀yG(x, y);(3) ∀xF(x, y) ↔∃xG(x, y);答:前束范式不是唯一的.(1) ∀xF(x) →∀yG(x, y) ⇔∃x(F(x) →∀yG(x, y))⇔∃x∀y(F(x) → G(x, y)).(3) ∀xF(x, y) ↔∃xG(x, y) ⇔ (∀xF(x, y) →∃xG(x, y)) ∧ (∃xG(x, y) →∀xF(x, y)) ⇔ (∀x1F(x1, y) →∃x2G(x2, y)) ∧ (∃x3G(x3, y) →∀x4F(x4, y)) ⇔∃x1∃x2(F(x1, y) → G(x2, y)) ∧∀x3∀x4(G(x3, y) → F(x4, y)) ⇔∃x1∃x2∀x3∀x4((F(x1, y) → G(x2, y)) ∧ (G(x3, y) → F(x4, y))).13.将下列命题符号化, 要求符号化的公式全为前束范式:(1) 有的汽车比有的火车跑得快.(2) 有的火车比所有的汽车跑得快.(3) 说所有的火车比所有的汽车跑得快是不对的.(4) 说有的飞机比有的汽车慢是不对的.答:(1)令F(x):x是汽车,G(y):y是火车,H(x,y):x比y跑得快.∃x(F(x)∧∃y(G(y)∧H(x,y))⇔∃x∃y(F(x)∧G(y)∧H(x, y)).(2)令F(x):x是火车, G( y): y 是汽车,H(x,y):x比y跑得快.∃x(F(x)∧∀y(G(y)→ H(x,y)))⇔∃x∀y(F(x)∧(G y)→H(x,y))).;错误的答案:∃x∀y(F(x)∧G(y)→H(x,y)).(3)令F(x):x是火车,G(y):y是汽车,H(x,y):x比y跑得快.¬∀x(F(x)→∀y(G(y)→H(x,y)))⇔¬∀x∀y(F(x)→(G(y)→H(x,y)))⇔¬∀x∀y(F(x)∧G(y)→H(x,y))(不是前束范式)⇔∃x∃y(F(x)∧G(y)∧H(x,y)).(4)令F(x):x是飞机,G(y):y是汽车,H(x,y):x比y跑得慢.¬∃x(F(x)∧∃y(G(y)∧H(x,y)))⇔¬∃x∃y(F(x)∧G(y)∧H(x,y))(不是前束范式)⇔∀x∀y¬(F(x)∧G(y)∧H(x,y))⇔∀x∀y(F(x)∧G(y)→¬H(x,y)).21.24.在自然推理系统F中, 构造下面推理的证明:每个喜欢步行的人都不喜欢骑自行车. 每个人或者喜欢骑自行车或者喜欢乘汽车. 有的人不喜欢乘汽车, 所以有的人不喜欢步行. (个体域为人类集合) 答:令 F(x): x 喜欢步行, G( x): x喜欢骑自行车, H(x): x 喜欢乘汽车.前提:∀x(F(x)→¬G(x)), ∀x(G(x)∨H(y)),∃x¬H(x).结论:∃x¬F(x).② ∀x(G(x) ∨ H(y)) 前提引入② G(c) ∨ H(c) ①UI③∃x¬H(x) 前提引入④¬H(c) ③UI⑤ G(c) ②④析取三段⑥∀x(F(x) →¬G(x)) 前提引入⑦ F(c) →¬G(c) ⑥UI⑧¬F(c) ⑤⑦拒取⑨∃x¬F(x) ⑧EG习题七12.设A={0, 1, 2, 3}, R是A上的关系, 且R={〈0, 0〉, 〈0, 3〉, 〈2, 0〉, 〈2,1〉, 〈2, 3〉, 〈3, 2〉} 给出R的关系矩阵和关系图.16.设A={a,b,c,d}, R1,R2为A上的关系, 其中R1={〈a,a〉,〈a,b〉,〈b,d〉}R2={〈a,d〉,〈b,c〉,〈b,d〉,〈c,b〉} 求R1·R2, R2·R1,R1²,R2³. R1·R2={〈a,a〉,〈a,c〉,〈a,d〉},R2·R1={〈c,d〉}, R1²={〈a,a〉,〈a,b〉,〈a,d〉},R2³={〈b,c〉,〈b,d〉,〈c,b〉}20.设R1和R2为A上的关系,证明: (1)(R1∪R2) −1=R1−1∪R2−1(2)(R1∩R2) −1=R1−1∩R2−1答:(1)(R1∪R2)−1=R1−1∪R2−1任取〈x,y〉〈x,y〉(∈R1∪R2)−1⇔〈y,x〉(∈R1∪R2)⇔〈y,x〉∈R1∨ (y,x)∈R2)⇔〈x,y〉∈R1−1∨〈x,y〉∈R2−1⇔〈x,y〉∈R1−1∨R2−1所以(R1∪R2) −1=R1−1∪R2−1(2)(R1∩R2) −1=R1−1∩R2−1 任取〈x,y〉〈x,y〉(∈R1∩R2) −1⇔〈y,x〉(∈R1∩R2)⇔〈y,x〉∈R1∧ (y,x)∈R2)⇔〈x,y〉∈R1−1∧〈x,y〉∈R2−1⇔〈x,y〉∈R1−1∧R2−1所以(R1∪R2) −1=R1−1∩R2−126.33.43.16.47.。
离散数学课后习题参考答案(可编辑)
习题参考解答习题1.11、(3)P:银行利率降低Q:股价没有上升P∧Q(5) P:他今天乘火车去了北京Q:他随旅行团去了九寨沟(7) P:不识庐山真面目Q:身在此山中Q→P,或 ~P→~Q(9) P:一个整数能被6整除Q:一个整数能被3整除R:一个整数能被2整除T:一个整数的各位数字之和能被3整除P→Q∧R ,Q→T2、(1)T (2)F (3)F (4)T (5)F(6)T (7)F (8)悖论习题 1.31(3)(4)2、不, 不, 能习题 1.4主合取范式主析取范式3、解:根据给定的条件有下述命题公式:(A→(CD))∧~(B∧C)∧~(C∧D)(~A∨(C∧~D)∨(~C∧D))∧(~B∨~C)∧(~C∨~D) ((~A∧~B)∨(C∧~D∧~B)∨(~C∧D∧~B)∨(~A∧~C)∨(C∧~D∧~C)∨(~C∧D∧~C))∧(~C∨~D) ((~A∧~B)∨(C∧~D∧~B)∨(~C∧D∧~B)∨(~A∧~C)∨(~C∧D∧~C)) ∧(~C∨~D)(~A∧~B∧~C)∨(C∧~D∧~B∧~C)∨(~C∧D∧~B∧~C)∨ (~A∧~C∧~C)∨(~C∧D∧~C∧~C)∨(~A∧~B∧~D)∨(C∧~D∧~B∧~D)∨(~C∧D∧~B∧~D)∨(~A∧~C∧~D)∨(~C∧D∧~C∧~D)(由题意和矛盾律)(~C∧D∧~B)∨(~A∧~C)∨(~C∧D)∨(C∧~D∧~B)(~C∧D∧~B∧A)∨ (~C∧D∧~B∧~A)∨ (~A∧~C∧B)∨(~A∧~C∧~B)∨ (~C∧D∧A)∨ (~C∧D∧~A)∨(C∧~D∧~B∧A)∨(C∧~D∧~B∧~A)(~C∧D∧~B∧A)∨ (~A∧~C∧B∧D)∨ (~A∧~C∧B∧~D)∨(~A∧~C∧~B∧D)∨ (~A∧~C∧~B∧~D)∨(~C∧D∧A∧B)∨ (~C∧D∧A∧~B)∨ (~C∧D∧~A∧B)∨ (~C∧D∧~A∧~B)∨(C∧~D∧~B∧A)∨(C∧~D∧~B∧~A) (~C∧D∧~B∧A)∨ (~A∧~C∧B∧D)∨ (~C∧D∧A∧~B)∨(~C∧D∧~A∧B) ∨(C∧~D∧~B∧A)(~C∧D∧~B∧A)∨ (~A∧~C∧B∧D)∨(C∧~D∧~B∧A) 三种方案:A和D、 B和D、A和C习题 1.51、 (1)需证为永真式(3)需证为永真式为永真式。
邱学绍离散数学课后习题答案及全解指南
7
/wenda
实用文章
又因为 p → q ⇔ ¬p ∨ q p ↔ q ⇔ ( p → q) ∧ (q → p) ⇔ (¬p ∨ q) ∧ (¬q ∨ p) 即含有 →, ↔ 的公式均可以转换为仅含{ ¬,∨,∧ }中的联结词的公式。因此,含{ ¬,∨,∧ }外其他联结词的
表 2-11
p
q
r
p → q q → r ( p → q) ∧ (q → r) p → r
A
0
0
0
1
1
1
1
1
0
0
1
1
1
1
1
1
0
1
0
1
0
0
1
1
0
1
1
1
1
1
1
1
1
0
0
0
1
0
0
1
3 /wenda
实用文章
1
0
1
0
1
0
1
1
1
1
0
1
⑶设 A=(p→q)↔(¬p↔q),其真值表如表 2-10 所示:
表 2-10
p
q
¬p
¬p ↔ q
p→q
A
0
0
1
0
1
0
0
1
1
1
1
1
0
1
1
0
0
1
0
离散数学课后答案精编版
( P, Q, R) = (T , T ,×), ( F ,×,×) 。
(3) (¬¬P ∧ Q ) → ((Q → R ) ↔ ¬P ) 解 当P =T 时 原式= (¬¬T ∧ Q ) → ((Q → R ) ↔ ¬T ) = Q → ((Q → R ) ↔ F ) = Q → ¬(Q → R ) 当Q = T 时
( P, Q, R) = (T , T , F ) ,存在成假解释 ( P, Q, R) = (T , T , T ) ,故公式可满足,但非永真。
1.3 试求下列公式的成真解释和成假解释 (1) ¬(( P → Q ) → R ) ↔ (Q ∨ R ) 解 当Q = T 时 原式= ¬(( P → T ) → R ) ↔ (T ∨ R ) = ¬(T → R ) ↔ T = ¬R 当 R = T 时,上式= F ,当 R = F 时,上式= T 。 当Q = F 时 原式= ¬(( P → F ) → R ) ↔ ( F ∨ R ) = ¬(¬P → R ) ↔ R 当R =T 时 上式= ¬(¬P → T ) ↔ T = ¬T ↔ T =F 当R = F 时 上式= ¬(¬P → F ) ↔ F
P ∧ Q = ¬( P → ¬Q)
所以,联结词集合 {¬, →}可以表示集合 {¬,∧,∨}。 又因为,联结词集合 {¬,∧,∨} 是完备的,即 {¬,∧,∨} 可以表示任何一个命题演算公式, 所以 {¬, →}可以表示任何一个命题演算公式,故联结词集合 {¬, →}是完备的。 1.6 试证明联结词集合 {∧}, {→} 不是完备的。 证明 设 集 合
( P, Q, R) = (T , T , T ) 。
(4) (¬¬P → ¬Q ) ∧ (Q ∨ (¬R ∧ P )) 解 当P =T 时 原式= (¬¬T → ¬Q ) ∧ (Q ∨ (¬R ∧ T )) = (T → ¬Q ) ∧ (Q ∨ ¬R ) = ¬Q ∧ (Q ∨ ¬R ) 当Q = T 时 上式= ¬T ∧ (T ∨ ¬R ) =F ∧T =F 当Q = F 时 上式= ¬F ∧ ( F ∨ ¬R ) = T ∧ ¬R
离散参考答案(全)
2013-7-29
离散数学
23
题解1-4(7)
g) (A→D)∧(B→D) (A∨B)→D
证明:(A→D)∧(B→D) ( A∨D)∧(B∨D) ( A∧B) ∨D (A ∨ B) ∨D (A∨B)→D
2013-7-29
离散数学
24
习题1-5(1)
(1) 试证下列各式为重言式。 a) (P∧(P→Q)) →Q。 c) ((P→Q)∧(Q→R))→(P→R)。
FFF
F
T
T
18
题解1-4(1)
e)(P→(Q→R)) →((P→Q) →(P→R))
PQR
TTT TTF TFT TFF FTT FTF
Q→R P→(Q→R)
T F T T T F T F T T T T
P→Q
T T F F T T
P→R
T F T F T T
(P→Q) →(P→R)
T F T T T T
e
T T T T T T
FFT
FFF
2013-7-29
T
T
T
T
T
T
离散数学
T
T
T
T
19
T
T
习题1-4(7)
(7) 证明下列等价式: a) A→(B→A) A→(A→ B)。 d) (A B) (A∧ B)∨( A∧B)。 f) A→(B∨C) (A∧ B)→C。 g) (A→D)∧(B→D) (A∨B)→D。
A (BC) (2) (A∧B)C (3) (C∧D)E (4) C (DE) (5) (A∧B) (DE) (6) F(D∧E) (7) F (D ∨ E) (8) F (D E) (9) (D E) F (10) (A∧B)F (11) A(BF)
离散课后作业答案
假设n=2k,那么,总共有logn+1(即k+1)层,非递归部分之和为
n2+n2/21+n2/22+…+n2/2k=(1+1/2+1/22+1/23+…+1/2logn)n2
=2n2=O(n2)
5-4.SolutionType DandC1(int left,int right)
int x,i;
int location=-1;
for(i=0;i<15;i++)
{
a[i]=i+1;
}
cin>>x;
i=0;
int j=14,l,u;
while(i<=j)
{
l=i+(j-i)/3;
u=i+(j-i)*2/3;
if(x==a[u])
{
location=u;
break;
}
else if(x==a[l])
{
location=l;
break;
}
else if(x>a[u])
i=u+1;
else if(x<a[l])
j=l-1;
else
{
i=l+1;
j=u-1;
}
}
cout<<location<<endl; //x的位置
}
5-12
Void stoogesort(nt a[],int left,int right)
(3)由(1)、(2)可知,取 , , ,当 时,有 ,所以 。
2-11.(1)当 时, ,所以 , 。可选 , 。对于 , ,即 。注意:是f(n)和g(n)的关系。
离散数学课后习题答案高等教育出版社
离散数学课后习题答案高等教育出版社【篇一:离散数学答案屈婉玲版第二版高等教育出版社课后答案】>第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)? 0∨(0∧1) ?0(2)(p?r)∧(﹁q∨s) ?(0?1)∧(1∨1) ?0∧1?0.(3)(?p∧?q∧r)?(p∧q∧﹁r) ?(1∧1∧1) ? (0∧0∧0)?0(4)(?r∧s)→(p∧?q) ?(0∧1)→(1∧0) ?0→0?117.判断下面一段论述是否为真:“?是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: ?是无理数 1q: 3是无理数 0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除 0命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(?q→?p)(5)(p∧r) ?(?p∧?q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ?q?p?q→?p (p→q)→(?q→?p) 0 01 111 1 0 11 011 1 1 00 100 1 1 11 001 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ?(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)?(?p∨(p∨q))∨(?p∨r)??p∨p∨q∨r?1 所以公式类型为永真式(3) p qr p∨q p∧r (p∨q)→(p∧r)0 0000 10 0100 10 1010 00 1110 010 010 010 111 111 010 011 111 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)?(p→(q∧r))(4)(p∧?q)∨(?p∧q)?(p∨q) ∧?(p∧q)证明(2)(p→q)∧(p→r)? (?p∨q)∧(?p∨r)??p∨(q∧r))?p→(q∧r)(4)(p∧?q)∨(?p∧q)?(p∨(?p∧q)) ∧(?q∨(?p∧q)?(p∨?p)∧(p∨q)∧(?q∨?p) ∧(?q∨q)?1∧(p∨q)∧?(p∧q)∧1?(p∨q)∧?(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(?p→q)→(?q∨p)(2)?(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(?p→q)→(?q?p)??(p?q)?(?q?p)?(?p??q)?(?q?p)? (?p??q)?(?q?p)?(?q??p)?(p?q)?(p??q)? (?p??q)?(p??q)?(p?q)?m0?m2?m3?∑(0,2,3)主合取范式:(?p→q)→(?q?p)??(p?q)?(?q?p)?(?p??q)?(?q?p)?(?p?(?q?p))?(?q?(?q?p))?1?(p??q)?(p??q) ? m1?∏(1)(2) 主合取范式为:?(p→q)?q?r??(?p?q)?q?r?(p??q)?q?r?0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)(3)主合取范式为:(p?(q?r))→(p?q?r)??(p?(q?r))→(p?q?r)?(?p?(?q??r))?(p?q?r)?(?p?(p?q?r))?((?q??r))?(p?q?r))?1?1?1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统p中构造下面推理的证明: (2)前提:p?q,?(q?r),r结论:?p(4)前提:q?p,q?s,s?t,t?r结论:p?q证明:(2)①?(q?r) 前提引入②?q??r ①置换③q??r②蕴含等值式④r前提引入⑤?q ③④拒取式⑥p?q前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t?r 前提引入②t①化简律③q?s 前提引入④s?t 前提引入⑤q?t ③④等价三段论⑥(q?t)?(t?q) ⑤置换⑦(q?t)⑥化简⑧q ②⑥假言推理⑨q?p前提引入⑩p⑧⑨假言推理(11)p?q ⑧⑩合取15在自然推理系统p中用附加前提法证明下面各推理: (1)前提:p?(q?r),s?p,q结论:s?r证明①s附加前提引入②s?p前提引入③p ①②假言推理④p?(q?r) 前提引入⑤q?r③④假言推理⑥q 前提引入⑦r⑤⑥假言推理16在自然推理系统p中用归谬法证明下面各推理:(1)前提:p??q,?r?q,r??s结论:?p证明:①p结论的否定引入②p?﹁q 前提引入③﹁q ①②假言推理④¬r?q 前提引入⑤¬r ④化简律⑥r?¬s 前提引入⑦r⑥化简律⑧r?﹁r ⑤⑦合取由于最后一步r?﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命【篇二:最新离散数学_屈婉玲_耿素云_张立昂_主编_高等教育出版社_课后最全答案_文档】xt>课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)pq,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;返回7.(1):∨∨∨∨?∧∧;(2):∨∨∨?∧∧∧;8.(1):1?∨∨∨,重言式;(2):∨?∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧?0,矛盾式.11.(1):∨∨?∧∧∧∧;(2):∨∨∨∨∨∨∨?1;(3):0?∧∧∧.12.a?∧∧∧∧?∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取a为p,b为q时,*1为假言推理定律,即(p→q)∧p→q ? q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p?(┐p∨q) ∧q →p?q →p?┐p∨┐q??∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)?(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r)(使用了交换律)?(p∨q)∨(┐p∧r)∨┐q∨┐r?(┐p∨q)∨(┐q∧┐r)?┐p∨(q∨┐q)∧┐r?110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)【篇三:离散数学_屈婉玲_耿素云_张立昂_主编_高等教育出版社_课后最全答案_文档(最新)】章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;最新精品推荐。
离散数学课后习题答案
第1章习题解答1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。
分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。
本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。
其次,(4)这个句子是陈述句,但它表示的判断结果是不确定。
又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。
(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。
这里的“且”为“合取”联结词。
在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是… … ”、“不仅……,而且… … ”、“一面……,一面… … ”、“……和… … ”、“……与……”等。
但要注意,有时“和”或“与”联结的是主语,构成简单命题。
例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。
1.2 (1)p : 2是无理数,p 为真命题。
(2)p : 5能被2 整除,p 为假命题。
(6)p →q 。
其中,p : 2是素数,q:三角形有三条边。
由于p 与q 都是真命题,因而p →q 为假命题。
(7)p →q ,其中,p:雪是黑色的,q:太阳从东方升起。
由于p 为假命题,q 为真命题,因而p →q 为假命题。
(8)p : 2000年10 月1 日天气晴好,今日(1999 年2 月13 日)我们还不知道p 的真假,但p 的真值是确定的(客观存在的),只是现在不知道而已。
(9)p:太阳系外的星球上的生物。
它的真值情况而定,是确定的。
离散课后习题答案4
(b)满足交换律和结合律,不满足幂等律,单位元为 a,没有零元
a −1 = a, b −1 = b (c)满足交换律,不满足幂等律,不满足结合律
a � (b � b) = a � a = b, (a � b) � b = a � b = a a � (b � b) ≠ (a � b) � b 没有单位元, 没有零元
(6) n
关于普通的加法和乘法运算。
封闭,均满足交换律,结合律,乘法对加法满足分配律
加法单位元是 0,无零元;
乘法无单位元( n > 1),零元是 0; n = 1单位元是 1
(7)A = { a1, a2 ,⋯, an} n 运算定义如下:
封闭 不满足交换律,满足结合律,
(8)S =
关于普通的加法和乘法运算。
5
令 b = a 2 的证。
21.设 G 是 Mn(R)上的加法群,n≥2,判断下述子集是否构成子群。
(1)全体对称矩阵
是子群
(2)全体对角矩阵
是子群
(3)全体行列式大于等于 0 的矩阵. 不是子群
(4)全体上(下)三角矩阵。 是子群
22.设 G 为群,a 是 G 中给定元素,a 的正规化子 N(a)表示 G 中与 a 可交换的元素构成
11.设
G=
⎧⎛ ⎨⎜⎜ ⎩⎝
1 0
0⎞ ⎛1
1
⎟⎟, ⎠
⎜⎜ ⎝
0
0 ⎞ ⎛−1
− 1⎟⎟⎠,
⎜⎜ ⎝
0
0⎞ ⎛−1
1 ⎟⎟⎠,
⎜⎜ ⎝
0
0 ⎞⎫ − 1⎟⎟⎠⎭⎬
,证明
G
关于矩阵乘法构成一个群.
解:(1) ∀ x,y∈G, 易知 xy∈G,乘法是 Z 上的代数运算。
离散课后习题答案
第十四章部分课后习题参考答案5、设无向图G有10 条边,3 度与4度顶点各2个,其余顶点的度数均小于3,问G至、少有多少个顶点?在最少顶点的情况下,写出度数列、解:由握手定理图G的度数之和为:2⋅10 = 20( ) ™(G) 。
3 度与4度顶点各2个,这4个顶点的度数之和为14 度。
其余顶点的度数共有6度。
其余顶点的度数均小于3,欲使G的顶点最少,其余顶点的度数应都取2, 所以,G 至少有7个顶点, 出度数列为3,3,4,4,2,2,2, () = 4 ,( ) = 2 .G™G7、设有向图D的度数列为2,3,2,3,出度列为1,2,1,1,求D的入度列,并求(D),™(D) ,(D),™+( ) ,D( D),™(D) .解:D 的度数列为2,3,2,3,出度列为1,2,1,1,D 的入度列为1,1,1,2.( ) = 3, ( ) = 2 , +D™D (D) = 2, ™+( ) = 1,D( D) = 2,™( D) = 18、设无向图中有6条边,3 度与5度顶点各1个,其余顶点都是2度点,问该图有多少个顶点?解:由握手定理图G的度数之和为:2⋅6 = 12设2度点x个,则3⋅1 + 5 ⋅1 + 2x= 12 ,x= 2 ,该图有4个顶点.14、下面给出的两个正整数数列中哪个是可图化的?对可图化的数列,试给出3种非同构的无向图,其中至少有两个时简单图。
(1) 2,2,3,3,4,4,5 (2) 2,2,2,2,3,3,4,4解:(1) 2+2+3+3+4+4+5=23 是奇数,不可图化;(2) 2+2+2+2+3+3+4+4=16, 是偶数,可图化;18、设有3个4阶4条边的无向简单图G1、G2、G3,证明它们至少有两个是同构的。
证明:4 阶4条边的无向简单图的顶点的最大度数为3,度数之和为8,因而度数列1为2,2,2,2;3,2,2,1;3,3,1,1。
但3,3,1,1 对应的图不是简单图。
离散数学黄亚群版课后答案
离散数学黄亚群版课后答案
一、第1章关系
1、1.1题:
答案:一个关系是一个二元数学对象的集合,它的两个元素分别称为关系的左边和右边,并用序偶对符号“(,)”表示。
一个关系R是一个集合,它由元素组成,每个元素是一个序偶,即(a,b),其中a 和b都是a关系R的左和右变量。
2、1.2题:
答案:关系的充要条件是:1)自反性:a)若(a,b)属于R,则(b,a)也属于R;b)若(a,a)属于R,则a自己和自己也互为关系。
2)可传递性:如果(a,b)和(b,c)均属于R,则必然有(a,c)也属于R。
3)对称性:若(a,b)属于R,则(b,a)也必然属于R。
二、第2章函数
1、2.1题:
答案:一个函数是一种特殊的关系,它有两个变量,一个变量是函数的自变量,另一个变量是函数的因变量,函数有分布统一和一一对应的性质,即:函数的自变量只能取唯一的值,而因变量可以取到任意值。
2、2.2题:
答案:函数的充要条件是:1)定义域:是给定的函数的自变量可取值的范围;2)值域:指函数的因变量可取值的范围;3)单调性:函
数的自变量可以只唯一的因变量值;4)可传递:函数的自变量和因变
量都有一般性,可以转换,两个或多个自变量可能对应同一个因变量;5)关系性:给定函数上任意自变量a所对应的因变量b,可以对任意
给定的自变量X,并且在函数关系R上找到唯一值X,从而实现反函数。
离散数学课后习题答案(左孝凌版)
离散数学课后习题答案(左孝凌版)1-1,1-2(1)解:a)是命题,真值为T。
b)不是命题。
c)是命题,真值要根据具体情况确定。
d)不是命题。
e)是命题,真值为T。
f)是命题,真值为T。
g)是命题,真值为F。
h)不是命题。
i)不是命题。
(2)解:原子命题:我爱天安门。
复合命题:如果不是练健美操,我就出外旅游拉。
(3)解:a)(┓P ∧R)→Qb)Q→Rc)┓Pd)P→┓Q(4)解:a)设Q:我将去参加舞会。
R:我有时间。
P:天下雨。
Q↔ (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。
b)设R:我在看电视。
Q:我在吃苹果。
R∧Q:我在看电视边吃苹果。
c) 设Q:一个数是奇数。
R:一个数不能被2除。
(Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。
(5) 解:a)设P:王强身体很好。
Q:王强成绩很好。
P∧Qb)设P:小看书。
Q:小听音乐。
P∧Qc)设P:气候很好。
Q:气候很热。
P∨Qd)设P: a和b是偶数。
Q:a+b是偶数。
P→Qe)设P:四边形ABCD是平行四边形。
Q :四边形ABCD的对边平行。
P↔Qf)设P:语法错误。
Q:程序错误。
R:停机。
(P∨ Q)→ R(6) 解:a)P:天气炎热。
Q:正在下雨。
P∧Qb)P:天气炎热。
R:湿度较低。
P∧Rc)R:天正在下雨。
S:湿度很高。
R∨Sd)A:英上山。
B:进上山。
A∧Be)M:老王是革新者。
N:小是革新者。
M∨Nf)L:你看电影。
M:我看电影。
┓L→┓Mg)P:我不看电视。
Q:我不外出。
R:我在睡觉。
P∧Q∧Rh)P:控制台打字机作输入设备。
Q:控制台打字机作输出设备。
P∧Q1-3(1)解:a)不是合式公式,没有规定运算符次序(若规定运算符次序后亦可作为合式公式)b)是合式公式c)不是合式公式(括弧不配对)d)不是合式公式(R和S之间缺少联结词)e)是合式公式。
(2)解:a)A是合式公式,(A∨B)是合式公式,(A→(A∨B))是合式公式。
《离散的数学结构》课后习题答案
离散数学辅助教材概念分析结构思想与推理证明第一部分集合论刘国荣交大电信学院计算机系离散数学习题解答习题一(第一章集合)1. 列出下述集合的全部元素:1)A={x | x ∈N∧x是偶数∧x<15}2)B={x|x∈N∧4+x=3}3)C={x|x是十进制的数字}[解] 1)A={2,4,6,8,10,12,14}2)B=∅3)C={0,1,2,3,4,5,6,7,8,9}2. 用谓词法表示下列集合:1){奇整数集合}2){小于7的非负整数集合}3){3,5,7,11,13,17,19,23,29}[解] 1){n n∈I∧(∃m∈I)(n=2m+1)};2){n n∈I∧n≥0∧n<7};3){p p∈N∧p>2∧p<30∧⌝(∃d∈N)(d≠1∧d≠p∧(∃k∈N)(p=k⋅d))}。
3. 确定下列各命题的真假性:1)∅⊆∅2)∅∈∅3)∅⊆{∅}4)∅∈{∅}5){a,b}⊆{a,b,c,{a,b,c}}6){a,b}∈(a,b,c,{a,b,c})7){a,b}⊆{a,b,{{a,b,}}}8){a,b}∈{a,b,{{a,b,}}}[解]1)真。
因为空集是任意集合的子集;2)假。
因为空集不含任何元素;3)真。
因为空集是任意集合的子集;4)真。
因为∅是集合{∅}的元素;5)真。
因为{a,b}是集合{a,b,c,{a,b,c}}的子集;6)假。
因为{a,b}不是集合{a,b,c,{a,b,c}}的元素;7)真。
因为{a,b}是集合{a,b,{{a,b}}}的子集;8)假。
因为{a,b}不是集合{a,b,{{a,b}}}的元素。
4. 对任意集合A,B,C,确定下列命题的真假性:1)如果A∈B∧B∈C,则A∈C。
2)如果A∈B∧B∈C,则A∈C。
3)如果A⊂B∧B∈C,则A∈C。
[解] 1)假。
例如A={a},B={a,b},C={{a},{b}},从而A∈B∧B∈C但A∈C。
吉林大学离散数学课后习题答案
第一章集合论基础§1.1 基本要求1. 掌握集合、子集、超集、空集、幂集、集合族的概念。
懂得两个集合间相等和包含关系的定义和性质,能够利用定义证明两个集合相等。
熟悉常用的集合表示方法。
2. 掌握集合的基本运算:并、交、余、差、直乘积、对称差的定义以及集合运算满足的基本算律,能够利用它们来证明更复杂的集合等式。
3. 掌握关系、二元关系、空关系、全域关系、相等关系、逆关系的概念以及关系的性质:自反性、对称性、反对称性、传递性。
会做关系的乘积。
了解关系的闭包运算:自反闭包、对称闭包、传递闭包。
4. 掌握等价关系、等价类、商集的概念,了解等价关系和划分的内在联系。
5. 掌握部分序关系、部分序集、全序关系、全序集的概念以及部分序集中的特殊元素:最大元、最小元、极大元、极小元、上确界、小确界的定义。
能画出有限部分序集的Hasse 图,并根据图讨论部分序集的某些性质。
6. 掌握映射、映像、1-1映射等概念,会做映射的乘积。
了解可数集合的概念,掌握可数集合的判定方法。
7. 了解关系在数据库中的应用(数据的增、删、改)以及划分在计算机中的应用。
§1.2 主要解题方法1.2.1 证明集合的包含关系方法一.用定义来证明集合的包含关系是最常用也是最基本的一种方法。
要证明A⊆B,首先任取x∈A,再演绎地证出x∈B成立。
由于我们选择的元素x是属于A的任何一个,而非特指的一个,故知给出的演绎证明对A中含有的每一个元素都成立。
当A是无限集时,因为我们不能对x∈A,逐一地证明x∈B成立,所以证明时的假设“x是任取的”就特别重要。
例1.2.1 设A,B,C,D是任意四个非空集合,若A⊆C,B⊆D,则A×B⊆C×D。
证明:任取(x,y) ∈A×B,往证(x,y) ∈C×D。
由(x,y) ∈A×B知,x∈A,且y∈B。
又由A⊆C,B⊆D知,x∈C,且y∈D,因此,(x,y) ∈C×D。