导数及其应用专题练习作业含答案1

合集下载

导数应用练习题含答案(供参考)

导数应用练习题含答案(供参考)

课外作业 一.选择题,1. .函数x x x x f +--=23)(的单调减区间是 ( )A .()1,-∞- B.),31(∞ C .()1,-∞-和),31(∞ D.)31,1(-解: 'f (x )=-32x -2x+1<0,所以x>31或x<-1,故选C 2.函数xxx f sin )(=,则 ( ) A .)(x f 在),0(π内是减函数 B. )(x f 在),0(π内是增函数C .)(x f 在)2,2(ππ-内是减函数 D. )(x f 在)2,2(ππ-内是增函数 解: 'f (x )=2sin cos xx x x -,当x ∈),0(π时'f (x )<0,故选A 3. .函数()(1)x f x x e 的单调递增区间是 ( )A .[0,+∞)B . [2,+∞)C .(-∞,2]D .(-∞,1]解:令'f (x )=x e -(x-1)xe >0,得2-x>0,x<2,故选C4..()f x '是f (x )的导函数,()f x '的图象如右图所示,则f (x )的图象只可能是( )A B C DA .B .C .D . 解:)('x f 越大表示曲线f (x )递增(减)速度越快,故选D5.下列函数中,在),0(+∞上为增函数的是 ( ) A.y=sinx+1, B.xxe y = C.x x y -=3D.x x y -+=)1ln(解:y=sinx+1是周期函数,不满足条件; xxe y =,则'y =x e +x xe ,当x>0时'y >0成立。

故选B6.对于R 上可导的任意函数,若满足()()01/≥-x fx ,则必有( )A . ()()()1220f f f <+ B. ()()()1220f f f >+ C . ()()()1220f f f ≥+ D. ()()()1220f f f ≤+解:x ≥1时'f (x )≥0;x ≤1时'f (x )≤0。

导数及其应用测试题(有详细答案)

导数及其应用测试题(有详细答案)

12.已知函数f{x)=x3+ax2+bx+a2在ul处有极值为10,则犬2)等于.JT13.函数y=尤+2cosx在区间[0,—]±的最大值是14.已知函数fM=x3+ax在R上有两个极值点,则实数。

的取值范围是15.已知函数八尤)是定义在R上的奇函数,/(1)=0,二⑴;'3)>0危>0),则不等式%x2f(x)>0的解集是三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)16.设函数/(x)=2x3+3破2+3笊+8c在x=1刚好工=2取得极值.(1)求。

、b的值;(2)若对于随意的xg[0,3],都有/(x)<c2成立,求c的取值范围.17.已知函数f(x)=2x3-3x2+3.(1)求曲线y=f(x)在点工=2处的切线方程;(2)若关于工的方程/(x)+m=0有三个不同的实根,求实数m的取值范围.18.设函S/W=x3-6x+5,x e R.(1)求f(x)的单调区间和极值;《导数及其应用》一、选择题1.r(x0)=o是函数y(尤)在点气处取极值的:A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2、设曲线y=x2+l在点(x,/(x))处的切线的斜率为g(x),WI函数>=g(x)cosx的部分图象可以4.若曲线y=x2+ax+b在点(0,方)处的切线方程是x-j+l=0,贝!|()A.q=L b=lB.a=—1,b=lC.g=L b=—1D.a=—1,b=—15.函数/(x)=x3+ttx2+3x—9,已知处)在x=—3时取得极值,则0等于()A.2B.3C.4D.56.设函数f⑴的导函数为扩(x),且/(x)=x2+2x-r(l),则广(0)等于()A、0B>-4C、-2D、27.直线y=x是曲线y=a+lnx的一条切线,则实数。

的值为()A.-1B.eC.In2D.18.若函数f(x)=x3-12x^区间以-盘+1)上不是单调函数,则实数k的取值范围()A.kJ—3^4—1■ k<23B.—3<上<—l^(il<k<3C.-2<k<2D.不存在这样的实数k9.函数f(x)的定义域为(m),导函数/(%)在(。

导数及其应用专题练习含答案

导数及其应用专题练习含答案

第18页
第二部分
第7讲
高考调研
高考总复习· 二轮专题· 数学· 理
【解析】 -4 ≥ 1 ex+ex+2 2
-4ex -4ex 易知 y′ = x ,显然 y′<0 ,又 x = e +12 e +12 -4 1 x =- 1( 当且仅当 e = ex 时取 “ = ”) ,∴ x 1 e· ex+2
第27页
第二部分
第7讲
高考调研
高考总复习· 二轮专题· 数学· 理
下列命题正确的是________.(写出所有正确命题的编号) ①直线 l:y=0 在点 P(0,0)处“切过”曲线 C:y=x3; ②直线 l:x=-1 在点 P(-1,0)处“切过”曲线 C:y=(x+ 1)3; ③直线 l:y=x 在点 P(0,0)处“切过”曲线 C:y=sinx; ④直线 l:y=x 在点 P(0,0)处“切过”曲线 C:y=tanx; ⑤直线 l:y=x-1 在点 P(1,0)处“切过”曲线 C:y=lnx.
第7讲
高考调研
高考总复习· 二轮专题· 数学· 理
【解析】
f′(x)=-2f′(0)e
-2 x
+sinx+3,所以 f′(0)=-
2f′(0)+3, 所以 f′(0)=1.而 f(0)=1-cos0+0+1=1, 所以所求 切线方程为 y-1=1· (x-0),即 x-y+1=0.
【答案】 x-y+1=0
-2sin2x,x<0, 1 π ∵f(6)=6,f′(x)= π,x≥0,
1 π π ∴f′[-f( )]=f′(- )=-2sin(- )= 3. 6 6 3
【答案】
3
第11页
第二部分
第7讲
高考调研

导数及其应用测试题(有详细答案)

导数及其应用测试题(有详细答案)

《导数及其应用》一、选择题1。

0()0f x '=是函数()f x 在点0x 处取极值的:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 2、设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为A 。

B. C 。

D.3.设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( )4.若曲线y =x 2+ax +b在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 5.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( )A .2B .3C .4D .56。

设函数()f x 的导函数为()f x ',且()()221f x x x f '=+⋅,则()0f '等于 ( )A 、0B 、4-C 、2-D 、27。

直线y x =是曲线ln y a x =+的一条切线,则实数a 的值为( )A .1-B .eC .ln 2D .18。

若函数)1,1(12)(3+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围( ) A .3113≥≤≤--≤k k k 或或 B .3113<<-<<-k k 或C .22<<-kD .不存在这样的实数k9.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示, 则函数()f x 在(),a b 内有极小值点 ( )A .1个B .2个C .3个D .4个 10.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .3 B .52 C .2 D .32二、填空题(本大题共4个小题,每小题5分,共20分) 11。

导数专题训练(含答案)

导数专题训练(含答案)

导数专题训练及答案专题一导数的几何意义及其应用导数的几何意义是高考重点考查的内容之一,常与解析几何知识交汇命题,主要题型是利用导数的几何意义求曲线上某点处切线的斜率或曲线上某点的坐标或过某点的切线方程,求解这类问题的关键就是抓住切点P(x0,f(x0)),P点的坐标适合曲线方程,P点的坐标也适合切线方程,P点处的切线斜率k=f′(x0).解题方法:(1) 解决此类问题一定要分清“在某点处的切线”,还是“过某点的切线”的问法.(2)解决“过某点的切线”问题,一般是设切点坐标为P(x0,y0),然后求其切线斜率k=f′(x0),写出其切线方程.而“在某点处的切线”就是指“某点”为切点.(3)曲线与直线相切并不一定只有一个公共点,当曲线是二次曲线时,我们知道直线与曲线相切,有且只有一个公共点,这种观点对一般曲线不一定正确.[例1]已知曲线y=13x3+43.(1)求曲线在点P(2,4)处的切线方程;(2)求曲线过点P(2,4)的切线方程;(3)求斜率为4的曲线的切线方程.[变式训练]已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标.专题二导数在研究函数单调性中的应用利用导数的符号判断函数的单调性,进而求出函数的单调区间,是导数几何意义在研究曲线变化规律时的一个重要应用,体现了数形结合思想.这类问题要注意的是f(x)为增函数⇔f′(x)≥0且f′(x)=0的根有有限个,f(x)为减函数⇔f′≤0且f′(x)=0的根有有限个.解题步骤:(1)确定函数的定义域;(2)求导数f′(x);(3)①若求单调区间(或证明单调性),只需在函数f(x)的定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知函数f(x)的单调性,则将原问题转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题,再进行求解.[例2]设函数f(x)=x e a-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4.(1)求a,b的值;(2)求f(x)的单调区间.[变式训练]设函数f(x)=xekx(k≠0).(1)讨论函数f(x)的单调性;(2)若函数f(x)在区间(-1,1)内单调递增,求k的取值范围.专题三 导数在求函数极值与最值中的应用利用导数可求出函数的极值或最值,反之,已知函数的极值或最值也能求出参数的值或取值范围.该部分内容也可能与恒成立问题、函数零点问题等结合在一起进行综合考查,是高考的重点内容.解题方法:(1)运用导数求可导函数y =f(x)的极值的步骤:①先求函数的定义域,再求函数y =f(x)的导数f ′(x);②求方程f ′(x)=0的根;③检查f ′(x)在方程根的左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值,如果左负右正,那么f(x)在这个根处取得极小值.(2)求闭区间上可导函数的最值时,对函数极值是极大值还是极小值,可不再作判断,只需要直接与端点的函数值比较即可获得.(3)当连续函数的极值点只有一个时,相应的极值点必为函数的最值.[例3] 已知函数f (x )=-x 3+ax 2+bx 在区间(-2,1)内,当x =-1时取极小值,当x =23时取极大值.(1)求函数y =f (x )在x =-2时的对应点的切线方程;(2)求函数y =f (x )在[-2,1]上的最大值与最小值.[变式训练] 设函数f (x )=[ax 2-(4a +1)x +4a +3]e x .(1)若曲线y =f (x )在点(1,f (1))处的切线方程与x 轴平行,求a ;(2)若f (x )在x =2处取得极小值,求a 的取值范围.专题四 导数在证明不等式中的应用在用导数方法证明不等式时,常构造函数,利用单调性和最值方法证明不等式.解题方法:一般地,如果证明f(x)>g(x),x ∈(a ,b),可转化为证明F(x)=f(x)-g(x)>0,若F ′(x)>0,则函数F(x)在(a ,b)上是增函数,若F(a)≥0,则由增函数的定义知,F(x)>F(a)≥0,从而f(x)>g(x)成立,同理可证f(x)<g(x),f(x)>g(x).[例4] 已知函数f (x )=ln x -(x -1)22. (1)求函数f (x )的单调递增区间;(2)证明:当x >1时,f (x )<x -1.[变式训练] 已知函数f (x )=a e x -ln x -1.(1)设x =2是f (x )的极值点,求a ,并求f (x )的单调区间;(2)证明:当a ≥1e 时,f (x )≥0.专题五 定积分及其应用定积分的基本应用主要有两个方面:一个是求坐标平面上曲边梯形的面积,另一个是求变速运动的路程(位移)或变力所做的功.高考中要求较低,一般只考一个小题.解题方法:(1)用微积分基本定理求定积分,关键是找出被积函数的原函数,这就需要利用求导运算与求原函数是互逆运算的关系来求原函数.(2) 利用定积分求平面图形的面积的步骤如下:①画出图形,确定图形范围;②解方程组求出图形交点坐标,确定积分上、下限;③确定被积函数,注意分清函数图形的上、下位置;④计算定积分,求出平面图形面积.(3)利用定积分求加速度或路程(位移),要先根据物理知识得出被积函数,再确定时间段,最后用求定积分方法求出结果.[例5] 已知抛物线y =x 2-2x 及直线x =0,x =a ,y =0围成的平面图形的面积为43,求a 的值.[变式训练] (1)若函数f (x )在R 上可导,f (x )=x 3+x 2f ′(1),则∫20f (x )d x = ____;(2)在平面直角坐标系xOy 中,直线y =a (a >0)与抛物线y =x 2所围成的封闭图形的面积为823,则a =____.专题六 化归与转化思想在导数中的应用化归与转化就是在处理问题时,把待解决的问题或难解决的问题,通过某种转化过程,归结为一类已解决或易解决的问题,最终求得问题的解答.解题方法:与函数相关的问题中,化归与转化思想随处可见,如,函数在某区间上单调可转化为函数的导数在该区间上符号不变,不等式的证明可转化为最值问题等.[例6] 设f (x )=e x1+ax 2,其中a 为正实数. (1)当a =43时,求f (x )的极值点;(2)若f (x )为R 上的单调函数,求a 的取值范围.[变式训练] 如果函数f(x)=2x2-ln x 在定义域内的一个子区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.答案例1 解:(1)因为P (2,4)在曲线y =13x 3+43上,且y ′=x 2,所以在点P (2,4)处的切线的斜率k =y ′|x =2=4.所以曲线在点P (2,4)处的切线方程为y -4=4(x -2),即4x -y -4=0.(2)设曲线y -13x 3+43与过点P (2,4)的切线相切于点A ⎝ ⎛⎭⎪⎫x 0,13x 30+43,则切线的斜率k =y ′|x =x 0=x 20,所以切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 即y =x 20·x -23x 30+43.因为点P (2,4)在切线上,所以4=2x 20-23x 30+43,即x 30-3x 20+4=0,所以x 30+x 20-4x 20+4=0,所以(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=0.(3)设切点为(x 1,y 1),则切线的斜率k =x 21=4,得x 0=±2.所以切点为(2,4),⎝ ⎛⎭⎪⎫-2,-43, 所以切线方程为y -4=4(x -2)和y +43=4(x +2),即4x -y -4=0和12x -3y +20=0.变式训练 解:(1)因为f (2)=23+2-16=-6,所以点(2,-6)在曲线上.因为f ′(x )=(x 3+x -16)′=3x 2+1,所以在点(2,-6)处的切线的斜率为k =f ′(2)=3×22+1=13,所以切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 30=-8,所以x 0=-2,y 0=(-2)3+(-2)-16=-26,所以k =3×(-2)2+1=13,所以直线l 的方程为y =13x ,切点坐标为(-2,-26).例2 解:(1)因为f (x )=x e a -x +bx ,所以f ′(x )=(1-x )e a -x +b .依题设,知⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x .由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号. 令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.所以,当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增. 故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞).综上可知,f ′(x )>0,x ∈(-∞,+∞). 故f (x )的单调递增区间为(-∞,+∞).变式训练 解:(1)f ′(x )=(1+kx )e kx (k ≠0), 令f ′(x )=0得x =-1k (k ≠0).若k >0,则当x ∈⎝ ⎛⎭⎪⎫-∞,-1k 时,f ′(x )<0,函数f (x )单调递减,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )>0,函数f (x )单调递增; 若k <0,则当x ∈⎝⎛⎭⎪⎫-∞,-1k 时,f ′(x )>0,函数f (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫-1k ,+∞时,f ′(x )<0,函数f (x )单调递减. (2)由(1)知,若k >0时,则当且仅当-1k ≤-1,即k ≤1,函数f (x )在(-1,1)上单调递增.若k <0时,则当且仅当-1k ≥1,即k ≥-1时,函数f (x )在(-1,1)上单调递增.综上可知,函数f (x )在(-1,1)上单调递增时,k 的取值范围是[-1,0)∪(0,1].例3 解:(1)f ′(x )=-3x 2+2ax +b .又x =-1,x =23分别对应函数取得极小值、极大值的情况,所以-1,23为方程-3x 2+2ax +b =0的两个根.所以a =-12,b =2,则f (x )=-x 3-12x 2+2x . x =-2时,f (x )=2,即(-2,2)在曲线上. 又切线斜率为k =f ′(x )=-3x 2-x +2, f ′(-2)=-8,所求切线方程为y -2=-8(x +2), 即为8x +y +14=0.(2)x 在变化时,f ′(x )及f (x )的变化情况如下表: ↘↗↘则f (x )在[-2,1]上的最大值为2,最小值为-32.变式训练 解:(1)因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[2ax -(4a +1)]e x +[ax 2-(4a +1)x +4a +3]e x =[ax 2-(2a +1)x +2]e x .所以f ′(1)=(1-a )e.由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.(2)由(1)得f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0. 所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0,所以f ′(x )>0.所以2不是f (x )的极小值点.综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.例4 (1)解:f ′(x )=1x -x +1=-x 2+x +1x,x ∈(0,+∞). 由f ′(x )>0得⎩⎪⎨⎪⎧x >0,-x 2+x +1>0,解得0<x <1+52. 故f (x )的单调递增区间是⎝ ⎛⎭⎪⎫0,1+52. (2)证明:令F (x )=f (x )-(x -1),x ∈(0,+∞). 则有F ′(x )=1-x 2x .当x ∈(1,+∞)时,F ′(x )<0, 所以F (x )在[1,+∞)上单调递减,故当x >1时,F (x )<F (1)=0,即当x >1时,f (x )<x -1.变式训练 (1)解:f (x )的定义域为(0,+∞),f ′(x )=a e x -1x .由题设知,f ′(2)=0,所以a =12e 2. 从而f (x )=12e 2e x -ln x -1,f ′(x )=12e 2e x -1x . 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增. (2)证明:当a ≥1e 时,f (x )≥e xe -ln x -1. 设g (x )=e x e -ln x -1,则g ′(x )=e x e -1x . 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0. 所以x =1是g (x )的最小值点. 故当x >0时,g (x )≥g (1)=0. 因此,当a ≥1e 时,f (x )≥0.例5 解:作出y =x 2-2x 的图象如图所示.(1)当a <0时,S =∫0a (x 2-2x )d x =⎝⎛⎭⎪⎫13x 3-x 2|0a =-a 33+a 2=43,所以(a +1)(a -2)2=0, 因为a <0,所以a =-1. (2)当a >0时, ①若0<a ≤2,则S =-∫a 0(x 2-2x )d x = -⎝ ⎛⎭⎪⎫13x 3-x 2|a 0=a 2-a 33=43, 所以a 3-3a 2+4=0, 即(a +1)(a -2)2=0. 因为a >0,所以a =2. ②当a >2时,不合题意. 综上a =-1或a =2.变式训练 解析:(1)因为f (x )=x 3+x 2f ′ 所以f ′(x )=3x 2+2xf ′(x ), 所以f ′(1)=3+2f ′(1), 所以f ′(1)=-3,所以∫20f (x )d x =⎝⎛⎭⎪⎫14x 4+13x 3f ′(1)|20=-4.(2)由⎩⎪⎨⎪⎧y =x 2,y =a 可得A (-a ,a ),B (a ,a ),S = (a -x 2)d x=⎝ ⎛⎭⎪⎫ax -13x 3|=2⎝ ⎛⎭⎪⎫a a -13a a =4a 323=823, 解得a =2. 答案:(1)-4 (2)2例6 解:(1)对f (x )求导得f ′(x )=e x·1+ax 2-2ax (1+ax 2)2.①当a =43时,若f ′(x )=0,则4x 2-8x +3=0, 解得x 1=32,x 2=12. 综合①,可知: ↗↘↗所以,x 1=32是极小值点,x 2=12是极大值点. (2)若f (x )为R 上的单调函数,则f ′(x )在R 上不变号,结合①与条件a >0, 知ax 2-2ax +1≥0在R 上恒成立, 因此Δ=4a 2-4a =4a (a -1)≤0, 由此并结合a >0,知0<a ≤1.变式训练 解析:显然函数f (x )的定义域为(0,+∞), y ′=4x -1x =4x 2-1x .由y ′>0,得函数f (x )的单调递增区间为⎝ ⎛⎭⎪⎫12,+∞; 由y ′<0,得函数f (x )的单调递减区间为⎝⎛⎭⎪⎫0,12,由于函数在区间(k -1,k +1)上不是单调函数,所以⎩⎨⎧k -1<12<k +1,k -1≥0,解得1≤k <32. 答案:⎣⎢⎡⎭⎪⎫1,32。

高考数学导数及其应用专题训练参考答案

高考数学导数及其应用专题训练参考答案

高考数学:导数及其应用专题训练【参考答案】1.A2.A3.D4.A5.C6.C7.A8.A9.C10.⎩⎨⎧⎭⎬⎫x | 12<x<2 ; 11. 4 ; 12. 32; 13.—16 ; 14.y =3x +1 ; 15.3-1【部分习题解析】4.解析:f ′(x)=6x(x -2),∵f(x)在(-2,0)上为增函数,在(0,2)上为减函数,∴当x =0时,f(x)=m 最大.∴m =3,f(-2)=-37,f(2)=-5.答案:A5.解析:因为y ′=-x2+81,所以当x >9时,y ′<0;当x ∈(0,9)时,y ′>0,所以函数y =-13x3+81x -234在(9,+∞)上单调递减,在(0,9)上单调递增,所以x =9是函数的极大值点,又因为函数在(0,+∞)上只有一个极大值点,所以函数在x =9处取得最大值. 答案:C6.解析:∵f(x)=-12x2+bln(x +2)在(-1,+∞)上是减函数,∴f ′(x)=-x +bx +2<0在(-1,+∞)上恒成立,即b<x(x +2)在(-1,+∞)上恒成立.设g(x)=x(x +2)=(x +1)2-1在(-1,+∞)上单调递增, ∴g(x)>-1. ∴当b ≤-1时,b<x(x +2)在(-1,+∞)上恒成立.即f(x)=-12x2+bln(x +2)在(-1,+∞)上是减函数.答案:C7.解析:由函数f(x)可知f(x -1)=⎩⎪⎨⎪⎧x x <1,-x x ≥1.①当x <1时,原不等式等价于x +(x +1)x ≤3,解得-3≤x ≤1,又x <1,所以-3≤x <1;②当x ≥1时,原不等式等价于x +(x+1)(-x)≤3,即x2≥-3恒成立,所以x ≥1,综合①②可知,不等式的解集为{x|x ≥-3}.9.解析:船速度为x(x>0)时,燃料费用为Q 元,则Q =kx3,由6=k ×103可得k =3500,∴Q =3500x3.∴总费用y =⎝⎛⎭⎫3500x3+96·1x =3500x2+96x ,y ′=6500x -96x2.令y ′=0得x =20,当x ∈(0,20)时,y ′<0,此时函数单调递减,当x ∈(20,+∞)时,y ′>0,此时函数单调递增,∴当x =20时,y 取得最小值,∴此轮船以20公里/小时的速度使行驶每公里的费用总和最小.答案:C10.[解析] 由题意可知a>0,且-2,1是方程ax2+bx +c =0的两个根,则⎩⎨⎧-ba=-1,ca =-2,解得⎩⎪⎨⎪⎧b =a ,c =-2a ,所以不等式cx2+bx +a>c(2x -1)+b 可化为-2ax2+ax +a>-2a(2x -1)+a ,整理得2x2-5x +2<0,解得12<x<2.∴原不等式的解集为⎩⎨⎧⎭⎬⎫x | 12<x<2.11.解析:若x =0,则不论a 取何值,f(x)≥0显然成立. 当x >0,即x ∈(0,1]时,f(x)=ax3-3x +1≥0可化为a ≥3x2-1x3.设g(x)=3x2-1x3,则g ′(x)=31-2x x4,所以g(x)在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎦⎤12,1上单调递减,因此g(x)max =g ⎝⎛⎭⎫12=4,从而a ≥4. 当x <0,即x ∈[-1,0]时, 同理,a ≤3x2-1x3. g(x)在区间[-1,0)上单调递增,∴g(x)min =g(-1)=4,从而a ≤4,综上,可知a =4. 答案:412.解析:由题意得f ′(x)=3x2-12,令f ′(x)=0得x =±2,且f(-3)=17,f(-2)=24,f(2)=-8,f(3)=-1,所以M =24,m =-8,M -m =32. 答案:3215.解析:f ′(x)=x2+a -2x2x2+a 2=a -x2x2+a 2,当x >a 时,f ′(x)<0,f(x)单调递减,当-a <x <a 时,f ′(x)>0,f(x)单调递增,当x =a 时,f(x)=a 2a =33,a =32<1,不合题意. ∴f(x)max =f(1)=11+a =33,a =3-1. 答案:3-116.解:(1)f ′(x)=3x2-9x +6=3(x -1)(x -2),因为x ∈(-∞,+∞),f ′(x)≥m , 即3x2-9x +(6-m)≥0恒成立.所以Δ=81-12(6-m)≤0,得m ≤-34,即m 的最大值为-34.17.解析:(1)∵f(x)=1-x ax +lnx ,∴f ′(x)=ax -1ax2(a>0).∵函数f(x)在[1,+∞)上为增函数,∴f ′(x)=ax -1ax2≥0对x ∈[1,+∞)恒成立.∴ax -1≥0对x ∈[1,+∞)恒成立.即a ≥1x 对x ∈[1,+∞)恒成立. ∴a ≥1.(2)当a =1时,f ′(x)=x -1x2.∴当x ∈⎣⎡⎭⎫12,1时,f ′(x)<0, 故f(x)在x ∈⎣⎡⎭⎫12,1上单调递减;当x ∈(1,2]时,f ′(x)>0,故f(x)在x ∈(1,2]上单调递增. ∴f(x)在区间⎣⎡⎦⎤12,2上有唯一极小值点,故f(x)min =f(x)极小值=f(1)=0. 又f ⎝⎛⎭⎫12=1-ln2,f(2)=-12+ln2,f(12)-f(2)=32-2ln2=lne3-ln162, ∵e3>16,∴f ⎝⎛⎭⎫12-f(2)>0,即f ⎝⎛⎭⎫12>f(2). ∴f(x)在区间⎣⎡⎦⎤12,2上的最大值f(x)max =f ⎝⎛⎭⎫12=1-ln2. 综上可知,函数f(x)在⎣⎡⎦⎤12,2上的最大值是1-ln2,最小值是0.(3)当a =1时,f(x)=1-x x +lnx ,f ′(x)=x -1x2,故f(x)在[1,+∞)上为增函数.当n>1时,令x =nn -1,则x>1,故f(x)>f(1)=0. ∴f ⎝⎛⎭⎫n n -1=1-n n -1n n -1+ln n n -1=-1n +ln n n -1>0, 即ln n n -1>1n . ∴ln 21>12,ln 32>13,ln 43>14,…,ln n n -1>1n .∴ln 21+ln 32+ln 43+…+ln n n -1>12+13+14+…+1n .∴lnn>12+13+14+ (1).即对大于1的任意正整数n ,都有lnn>12+13+14+…+1n .本题的关键在于f(x)=1-x x +lnx ,f ′(x)=x -1x2,故f(x)在[1,+∞)上为增函数.当n>1时,令x =n n -1,则x>1,故f(x)>f(1)=0,∴f ⎝⎛⎭⎫n n -1=1-nn -1n n -1+lnnn -1=-1n +ln n n -1>0,即ln n n -1>1n.怎么想到要这么做,主要受前面两小题的强烈提示.通过本题的学习,我们要掌握此类问题一般规律.本题出错在于同学完全没有想到利用前面的结论,而直接讨论函数f(x)=ln x x -1-1x 的单调性求解,可以试试看,肯定行不通.18.解:(1)由f(x)=g(x),得k =lnxx2.令h(x)=lnx x2,所以方程f(x)=g(x)在区间⎣⎡⎦⎤1e ,e 内解的个数即为函数h(x)=lnxx2,x ∈⎣⎡⎦⎤1e ,e 的图象与直线y =k 交点的个数.h ′(x)=1-2lnxx3,当h ′(x)=0时,x = e.当x 在区间⎣⎡⎦⎤1e ,e 内变化时,h ′(x),h(x)变化如下: x ⎣⎡⎭⎫1e ,ee (e ,e] h ′(x) + 0 - h(x)递增12e递减当x =1e 时,y =-e2;当x =e 时,y =12e ;当x =e 时,y =1e2.所以,①当k>12e 或k<-e2时,该方程无解.②当k =12e 或-e2≤k<1e2时,该方程有一个解.③当1e2≤k<12e 时,该方程有两个解.(2)由(1)知lnx x2≤12e ,∴lnx x4≤12e ·1x2.∴ln224+ln334+…+lnn n4≤12e ⎝⎛⎭⎫122+132+…+1n2. ∵122+132+…+1n2<11·2+12·3+…+1n -1·n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =1-1n <1.∴ln224+ln334+…+lnn n4<12e. 19.解析:设包装盒的高为h(cm),底面边长为a(cm).由已知得a =2x ,h =60-2x2=2(30-x),0<x <30.(1)S =4ah =8x(30-x)=-8(x -15)2+1 800,所以当x =15时,S 取得最大值.(2)V =a2h =22(-x3+30x2),V ′=62x(20-x). 由V ′=0得x =0(舍去)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时h a =12. 即包装盒的高与底面边长的比值为12.引入恰当的变量、建立适当的模型是解题的关键.第(1)中侧面积 S是关于 x 的二次函数,可以利用抛物线的性质求最值,也可以利用导数求解;而第(2)题中容积 V 是关于 x 的三次函数,因此只能利用导数求最值.20.解析:(1)f ′(x)=3ax2+2bx +c ,依题意⎩⎪⎨⎪⎧ f ′1=3a +2b +c =0,f ′-1=3a -2b +c =0⇒⎩⎪⎨⎪⎧b =0,3a +c =0. 又f ′(0)=-3,∴c =-3,a =1. ∴f(x)=x3-3x.(2)设切点为(x0,x30-3x0),∵f ′(x)=3x2-3,∴f ′(x0)=3x20-3. ∴切线方程为y -(x30-3x0)=(3x20-3)(x -x0), 又切线过点A(2,m),∴m -(x30-3x0)=(3x20-3)(2-x0). ∴m =-2x30+6x20-6. 令g(x)=-2x3+6x2-6,则g ′(x)=-6x2+12x =-6x(x -2). 由g ′(x)=0得x =0或x =2.g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2. 画出草图知(如图4-3-3),当-6<m <2时,m =-2x3+6x2-6有三解, ∴ m 的取值范围是(-6,2).21.解析:(1)由已知有f ′(x)=x +1x ,当x ∈[1,e]时,f ′(x)>0,f(x)在[1,e]上为增函数,∴f(x)max =f(e)=12e2+1,f(x)min =f(1)=12.(2)证明:设F(x)=12x2+lnx -23x3, 则F ′(x)=x +1x -2x2=1-x 1+x +2x2x当x ∈[1,+∞)时,F ′(x)<0,F(x)在[1,+∞)上为减函数,且F(1)=-16<0故x ∈[1,+∞)时,F(x)<0. ∴12x2+lnx <23x3.∴在[1,+∞)上,函数f(x)的图像在函数g(x)=23x3图像的下方.方法点睛 一般地,在闭区间[a ,b]上的连续函数f(x)必有最大值与最小值,在开区间(a ,b)内的连续函数不一定有最大值与最小值,若函数y =f(x)在闭区间[a ,b]上单调递增,则f(a)是最小值,f(b)是最大值;反之,则f(a)是最大值,f(b)是最小值.22.解析:(1)f ′(x)=3x2+2ax.由已知条件⎩⎪⎨⎪⎧ f 1=0,f ′1=-3,即⎩⎪⎨⎪⎧a +b +1=0,2a +3=-3,解得⎩⎪⎨⎪⎧a =-3,b =2. (2)由(1)知f(x)=x3-3x2+2,f ′(x)=3x2-6x =3x(x -2),f ′(x)与f(x)随x 变化情况如下:x (-∞,0) 0 (0,2) 2 (2,+∞) f ′(x)+-+f(x) 2 ↘ -2由f(x)=f(0)解得x =0,或x =3.因此根据f(x)的图像当0<t ≤2时,f(x)的最大值为f(0)=2,最小值为f(t)=t3-3t2+2; 当2<t ≤3时,f(x)的最大值为f(0)=2,最小值为f(2)=-2; 当t >3时,f(x)的最大值为f(t)=t3-3t2+2,最小值为f(2)=-2. 23.解析:(1)函数f(x)的定义域为(-∞,+∞),因为f ′(x)=x +ex -(ex +xex)=x(1-ex), 由f ′(x)=x(1-ex)>0得x <0,f ′(x)<0得x >0,则f(x)的单调递增区间为(-∞,0),单调递减区间为(0,+∞). (2)由(1)知,f(x)在[0,2]上单调递减,在[-2,0)上单调递增,又f(-2)=2+3e2,f(2)=2-e2,且2+3e2>2-e2,所以x ∈[-2,2]时,[f(x)]min =2-e2,故m <2-e2时,不等式f(x)>m 恒成立.【方法点睛】 1.不等式恒成立问题一般转化为函数的最值(或值域)来求解.其解题步骤为①分离参数;②构造函数;③求函数的最值(或值域);④由恒成立得出参数的取值范围.2.在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合,用导数求解实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义该极值点就是最值点.24.规范解题:(1)f ′(x)=a ⎝⎛⎭⎫x +1x -lnx x +12-bx2.(1分)由于直线x +2y -3=0的斜率为-12,且过点(1,1).故⎩⎪⎨⎪⎧f 1=1,f ′1=-12,(3分) 即⎩⎪⎨⎪⎧b =1,a 2-b =-12.解得a =1,b =1.(4分)(2)证明:由(1)知f(x)=lnx x +1+1x ,所以f(x)-lnx x -1=11-x2⎝⎛⎭⎫2lnx -x2-1x .(5分) 考虑函数h(x)=2lnx -x2-1x(x >0),(6分)则h ′(x)=2x -2x2-x2-1x2=-x -12x2.(8分)所以当x ≠1时,h ′(x)<0.而h(1)=0,故 当x ∈(0,1)时,h(x)>0,可得11-x2h(x)>0;(9分)当x ∈(1,+∞)时,h(x)<0,可得11-x2h(x)>0.(10分)从而当x >0,且x ≠1时,f(x)-lnxx -1>0,即f(x)>lnxx -1.(12分)【方法点睛】模板构建:利用导数证明不等式的基本步骤: 第一步 作差f(x)-lnxx -1; 第二步 构造新的函数h(x); 第三步 对h(x)求导;第四步 利用h ′(x)判断11-x2h(x)的正负;第五步 结论.。

人教版高中数学选修二第二单元《一元函数的导数及其应用》测试题(答案解析)(1)

人教版高中数学选修二第二单元《一元函数的导数及其应用》测试题(答案解析)(1)

一、选择题1.已知函数()()221sin 1x xf x x ++=+,其中()f x '为函数()f x 的导数,则()()()()2020202020192019f f f f ''+-+--=( )A .0B .2C .2019D .20202.已知函数2()ln f x a x x =+,0a >,若曲线()y f x =在点(1,1)处的切线是曲线()y f x =的所有切线中斜率最小的,则a =( )A .12B .1CD .23.已知()21ln (0)2f x a x x a =+>,若对任意两个不等的正实数1x ,2x ,都有()()12122f x f x x x ->-恒成立,则a 的取值范围是( )A .(]0,1B .()1,+∞C .()0,1D .[)1,+∞4.已知函数()=x e xf x x+,1(ln )a f e =,1()2b f =,1()c f e =,则( )A .a b c >>B .c b a >>C .b a c >>D .b c a >>5.记函数()cos2f x x =的导函数为()f x ',则函数()()()g x x f x '=+在[0,]x π∈内的单调递增区间是( )A .0,2π⎡⎤⎢⎥⎣⎦B .,2ππ⎡⎤⎢⎥⎣⎦C .511,1212ππ⎡⎤⎢⎥⎣⎦D .5,12ππ⎡⎤⎢⎥⎣⎦6.设函数()21ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为( ) A .()1,0- B .()1,-+∞ C .()0,∞+ D .()(),10,-∞-+∞7.已知函数()2ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .8.已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-9.已知定义在R 上的函数()f x 满足(3)16f =,且()f x 的导函数'()41f x x <-,则不等式2()21f x x x <-+的解集为( ) A .{}|33x x -<< B .{}|3x x >- C .{}|3x x >D .{|3x x <-或3x10.已知函数()f x 的导函数()f x ,且满足2()32(2)f x x xf '=+,则(5)f '=( ) A .5B .6C .7D .-1211.已知函数2()sin cos f x x x x x =++,则不等式1(ln )(ln )2(1)0f x f f x+-<的解集为( ) A .(,)e +∞B .(0,)eC .1(,)e eD .1(0,)(1,)e e12.已知定义在(0,)+∞上的函数()f x 的导函数()f x '满足()1xf x '>,则( ) A .()()21ln 2f f -< B .()()21ln 2f f -> C .()()211f f -<D .()()211f f ->二、填空题13.已知函数()f x 是定义在R 上的偶函数,其导函数为()f x ',若对任意的正实数,()()()()220,xf x f x g x x f x '+<=,则不等式()(12x g g ->的解集为______ 14.已知()f x 是定义在R 上的奇函数,当0x >时,()()xf x f x '<,若()10f =,则不等式()0f x x>的解集为________. 15.函数32()22=-f x x x 在区间[1,2]-上的最大值是___________.16.若点()()()112212,,,A x y B x y x x <是函数1,1()ln ,1x e x f x x x ⎧-+=⎨>⎩的图象上任意两点,且函数()f x 分别在点A 和点B 处的切线互相垂直,则12x x 的最小值为______. 17.设(1+ax )2020=a 0+a 1x +a 2x 2+……+a 2019x 2019+a 2020x 2020,若a 1+2a 2+3a 3+…+2019a 2019+2020a 2020=2020a ,则实数a =_______. 18.已知函数()331xf x x e =++,其导函数为()f x ',则()()()()2020202020192019f f f f ''+-+--的值为_______.19.已知函数()f x axlnx =,()x 0,∞∈+,其中a 为实数,()f'x 为()f x 的导函数,若()f'e 2(e 2.71828==⋯是自然对数的底数),则a 的值为______.20.函数sin x y x e =+在点(0,1)处的切线方程是__________.三、解答题21.已知函数()1ex f x a +=,()ln1xg x a=-,其中0a >. (1)若1a =,在平面直角坐标系xOy 中,过坐标原点O 分别作函数()y f x =与()y g x =的图象的切线1l ,2l ,求1l ,2l 的斜率之积;(2)若()()f x g x ≥在区间()0,∞+上恒成立,求a 的最小值. 22.已知函数()331f x x x =-+.(1)求曲线()y f x =在点()()0,0f 处的切线方程; (2)求函数()f x 的单调区间.(3)求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值.23.设函数32()23(1)6f x x a x ax b =-+++,其中,a b ∈R .(1)若曲线()y f x =在(1,(1))f --的切线方程为123y x =+,求a ,b 的值; (2)若()f x 在3x =处取得极值,求a 的值; (3)若()f x 在(,0)-∞上为增函数,求a 的取值范围.24.已知函数()3ln 42x a f x x x =+--,其中a R ∈,且曲线()y f x =在点()()1,1f 处的切线垂直于直线12y x =. (1)求a 的值;(2)求函数()f x 的单调区间.25.已知函数()ln f x ax x b =+,()23g x x kx =++,曲线()y f x =在()()1,1f 处的切线方程为1y x =-,a ,b ,R k ∈.(1)若函数()f x 在(),b m 上有最小值,求a ,b 的值及m 的取值范围; (2)当1,x e e⎡⎤∈⎢⎥⎣⎦时,其中 2.718e =⋅⋅⋅,e 为自然对数的底数,若关于x 的不等式()()20f x g x +≥有解,求k 的取值范围.26.已知函数f (x )=ax 3+bx +c 在x =2处取得极值为c ﹣16. (1)求a 、b 的值;(2)若f (x )有极大值28,求f (x )在[﹣3,3]上的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将函数解析式变形为()22sin 11x xf x x +=++,求得()f x ',进而可求得所求代数式的值. 【详解】()()222221sin 12sin 2sin 1111x x x x x x x f x x x x ++++++===++++,所以,()()()()()2222020sin 202022020sin 202020202020222020120201f f ⨯-+-⨯++-=++=+-+, ()()()()()2222cos 122sin 1x x x x x f x x++-+'=+,函数()f x '的定义域为R ,()()()()()2222cos 122sin 1x x x x x f x x ⎡⎤⎡⎤⎡⎤+-⋅-++-+-⎣⎦⎣⎦⎣⎦-=⎡⎤-+⎣⎦'()()()()()2222cos 122sin 1x x x x x f x x ++-+'==+, 所以,函数()f x '为偶函数,因此,()()()()20202020201920192f f f f ''+-+--=. 故选:B. 【点睛】结论点睛:本题考查利用函数奇偶性求值,关于奇函数、偶函数的导函数的奇偶性,有如下结论:(1)可导的奇函数的导函数为偶函数; (2)可导的偶函数的导函数为奇函数. 在应用该结论时,首先应对此结论进行证明.2.D解析:D 【分析】()y f x =的所有切线的斜率即为()2af x x x'=+(0x >)的值域,由题意知当1x =时()f x '取得最小值,由基本不等式可知()2a x f x x '=+≥=,当且仅当2ax x =即22a x =时()f x '取得最小值,可得2a = 【详解】 因为2()ln f x a x x =+,定义域为()0,∞+,所以()2af x x x'=+, 由导数的几何意义可知:当1x =时()f x '取得最小值, 因为0a >,0x >,所以()2a x f x x '=+≥=, 当且仅当2ax x=即22a x =时()f x '取得最小值, 又因为1x =时()f x '取得最小值,所以2212a =⨯=, 故选:D 【点睛】关键点点睛:本题的关键点是由导数的几何意义可得当1x =时()2af x x x'=+取得最小值,再利用基本不等式求()f x '取得最小值时满足2ax x=即22a x =,即可求出a 的值. 3.D解析:D 【分析】根据条件()()12122f x f x x x ->-可变形为112212()2[()]20f x x f x x x x --->-,构造函数()21()2ln ()202g x f x x a x a x x =-=+>-,利用其为增函数即可求解. 【详解】 根据1212()()2f x f x x x ->-可知112212()2[()]20f x x f x x x x --->-, 令()21()2ln ()202g x f x x a x a x x =-=+>- 由112212()2[()]20f x x f x x x x --->-知()g x 为增函数, 所以()()'200,0ag x x x a x=+-≥>>恒成立, 分离参数得()2a x x ≥-,而当0x >时,()2x x -在1x =时有最大值为1, 故1a ≥. 故选:D 【点睛】关键点点睛:本题由条件()()12122f x f x x x ->-恒成立,转化为112212()2[()]20f x x f x x x x --->-恒成立是解题的关键,再根据此式知函数()21()2ln ()202g x f x x a x a x x =-=+>-为增函数,考查了推理分析能力,属于中档题. 4.B解析:B 【分析】求出()f x 的导数,根据导数判断出函数的单调性,再根据111ln ,,2e e的大小关系即可判断. 【详解】()=x e xf x x+,0x ≠()()()()2211xx x e x e x e x f x x x+-+-'∴==, 当(),0x ∈-∞时,()0f x '<,则()f x 单调递减, 当()0,1x ∈时,()0f x '<,则()f x 单调递减, 当()1,x ∈+∞时,()0f x '>,则()f x 单调递增,11012e <<<,112f f e ⎛⎫⎛⎫∴< ⎪ ⎪⎝⎭⎝⎭,且1112f ⎛⎫=> ⎪⎝⎭, 1ln 10e =-<,()11ln 111f f e e ⎛⎫∴=-=-< ⎪⎝⎭,111ln 2f f f e e ⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即c b a >>.故选:B. 【点睛】易错点睛:本题考查利用函数单调性判断大小,注意函数的定义域为{}0x x ≠,故单调区间有3个,故在判断1(ln )a f e=的大小的时候应从函数值判断,而不能直接利用单调性.5.C解析:C 【分析】先对函数()f x 求导,再利用辅助角公式化简,然后利用正弦函数图像和性质即可分增区间. 【详解】()cos2f x x =, ()'2sin 2f x x ∴=-,2()2sin 24sin 23g x x x x π⎛⎫=-=+ ⎪⎝⎭,令2222232k x k πππππ-+≤+≤+, 解得71212k x k ππππ-+≤≤-+, ()g x ∴在[]0,π内的递增区间为511,1212ππ⎡⎤⎢⎥⎣⎦. 故选:C . 【点睛】本题主要考查的是正弦复合函数的单调性以及单调区间的求解,以及复合函数的导数的求法,熟练掌握正弦函数图像和性质是解决本题的关键,是中档题.6.B解析:B 【详解】()21ln 2f x x ax bx =--,,,由得,()()()1111ax x f x ax a x x+-=-+-=-', 若,由,得,当时,,此时单调递增;1x > 时,,此时单调递减;所以是的极大值点.若,则由,得或.时的极大值点, ,解得.综上:,的取值范围时.故选B .【点晴】本题是一道关于函数极值的题目,考虑运用导数求函数的极值.对求导,得,由得,将代入到导函数中,可得()()()1111ax x f x ax a x x+-=-+-=-',接下来分和两种情况,结合函数的单调性,分别求出的极大值点,从而建立的不等式求解即可.7.A解析:A 【分析】利用函数的定义域和函数的值域排除BD ,通过函数的单调性排除C ,推出结果即可. 【详解】令()ln 1g x x x =--,则11()1x g x x x-'=-=, 由()0g x '>得1x >,即函数()g x 在(1,)+∞上单调递增, 由()0g x '<得01x <<,即函数()g x 在(0,1)上单调递减, 所以当1x =时,()()min 10g x g ==, 于是对任意(0,1)(1,)x ∈+∞,有()0g x >,则()0f x >,故排除BD ,因为函数()g x 在()0,1单调递减,则函数()f x 在()0,1递增,故排除C.【点睛】本题考查利用导数对函数图象辨别,属于中档题.8.D解析:D 【分析】作出函数()y f x =的图像,和函数y ax =的图像,结合图像可知直线y ax =介于l 与x 轴之间,利用导数求出直线l 的斜率,数形结合即可求解. 【详解】由题意可作出函数()y f x =的图像,和函数y ax =的图像.由图像可知:函数y ax =的图像是过原点的直线, 当直线介于l 与x 轴之间符合题意,直线l 为曲线的切线,且此时函数()y f x =在第二象限的部分的解析式为22y x x =-,求其导数可得22y x '=-,因为0x ≤,故2y '≤-, 故直线l 的斜率为2-,故只需直线y ax =的斜率a []2,0∈-. 故选:D 【点睛】本题考查了不等式恒成立求出参数取值范围,考查了数形结合的思想,属于中档题.9.C解析:C 【分析】根据题意,设2()()21g x f x x x =-+-,求导分析可得()0g x '<,即函数()g x 在R 上为减函数,则原不等式可以转化为()()3g x g <,结合函数的单调性分析可得答案.解:根据题意,设2()()21g x f x x x =-+-,其导数()()41g x f x x '='-+, 又由()41f x x '<-,即()410f x x '-+<, 则()0g x '<,即函数()g x 在R 上为减函数,又由f (3)16=,则g (3)f =(3)18310-+-=, ()()22()21()2103f x x x f x x x g x g <-+⇒-+-<⇒<,又由函数()g x 为减函数,则有3x >,则不等式2()21f x x x <-+的解集为{|3}x x >; 故选:C . 【点睛】本题考查函数的导数与函数单调性的关系,涉及不等式的求解,根据条件构造函数,利用函数的单调性和导数之间的关系是解决本题的关键,属于中档题.10.B解析:B 【分析】将()2f '看出常数利用导数的运算法则求出()f x ',令2x =求出()2f '代入()f x ',令5x =求出()5f '即可.【详解】 解:()2()322f x x xf '=+,()()622f x x f '∴=+', ()(2)1222f f '∴=+'(2)12f '∴=- ()624f x x '∴=- (5)65246f '∴=⨯-=故选B . 【点睛】本题主要考查了导数的运算法则,解题的关键是弄清()2f '是常数,属于基础题.11.C解析:C 【分析】先判断出()f x 为R 上的偶函数,再利用当0x >时,()'0f x >得到函数的单调性,从而可解原不等式. 【详解】因为()()()()22()sin cos sin cos f x x x x x x x x x f x -=--+-+-=++=,所以()f x 为R上的偶函数,又1(ln )(ln )2(1)0f x f f x+-<等价于(ln )(ln )2(1)0f x f x f +--<即:(ln )(1)f x f <,()'()sin cos sin 22cos f x x x x x x x x =+-+=+,当0x >时,()'0f x >,故()f x 在()0,∞+为增函数,故(ln )(1)f x f <等价于ln 1x <即1ln 1x -<<即1x e e <<,故不等式的解集为1e e ⎛⎫⎪⎝⎭,,故选C.【点睛】对于偶函数()f x ,其单调性在两侧是相反的,并且()()()f x fx f x ==-,对于奇函数()g x ,其单调性在两侧是相同的.另外解函数不等式要利用函数的单调性去掉对应法则f .12.B解析:B 【解析】分析:根据题意,由()1xf x '>可得()()'1f x lnx x='>,构造函数()()g x f x lnx =-,可得()()()110xf x g x f x x x-=-=''>',故()g x 单调递增,根据单调性可得结论. 详解:令()(),0g x f x lnx x =->, ∴()()()11xf x g x f x x x=''-'-=, ∵()1xf x '>, ∴()0g x '>,∴函数()g x 在()0,+∞上单调递增, ∴()()21g g >,即()()2211f ln f ln ->-, ∴()()21ln2f f ->. 故选B .点睛:本题考查对函数单调性的应用,考查学生的变形应用能力,解题的关键是根据题意构造函数()()g x f x lnx =-,通过判断函数的单调性得到函数值间的关系,从而达到求解的目的.二、填空题13.【分析】根据条件可得函数为偶函数且在单调递减从而可得不等式【详解】当时且为偶函数在单调递减解得:故答案为:【点睛】求解的关键在于构造什么样的函数再利用导数研究函数的单调性进而将不等式进行等价转化解析:1322x x ⎧⎫<<⎨⎬⎩⎭【分析】根据条件可得函数()g x 为偶函数,且在(0,)+∞单调递减,从而可得不等式. 【详解】当0x >时,()''(()2())0g x x xf x f x =+<,且()g x 为偶函数,∴()g x 在(0,)+∞单调递减, ∴()(()111122222x x x g g g g--->⇔>⇔<112x ⇔-<, 解得:1322x <<, 故答案为:1322x x ⎧⎫<<⎨⎬⎩⎭. 【点睛】求解的关键在于构造什么样的函数,再利用导数研究函数的单调性,进而将不等式进行等价转化.14.【分析】令对其求导由时可知从而在上单调递减由的奇偶性可得是定义域上的偶函数从而可得出在上的单调性再结合可求出的解集【详解】由题意令则因为时则故在上单调递减又是定义在上的奇函数所以所以即是上的偶函数根 解析:()()1,00,1-【分析】 令()()f xg x x=,对其求导,由0x >时,()()xf x f x '<,可知()0g x '<,从而()g x 在()0,∞+上单调递减,由()f x 的奇偶性,可得()g x 是定义域上的偶函数,从而可得出()g x 在(),0-∞上的单调性,再结合()()110g g -==,可求出()0g x >的解集.【详解】 由题意,令()()f x g x x =,则()()()2xf x f x g x x'-'=, 因为0x >时,()()xf x f x '<,则()()()20xf x f x g x x'-'=<,故()g x 在()0,∞+上单调递减,又()f x 是定义在R 上的奇函数,所以()()f x f x -=-, 所以()()()()()f x f x f x g x g x x x x---====--,即()g x 是()(),00,-∞⋃+∞上的偶函数,根据偶函数的对称性,可知()g x 在(),0-∞上单调递增,且()()()11101f g g -===,所以()()1,00,1x ∈-时,()0g x >.故答案为:()()1,00,1-.【点睛】关键点点睛:本题考查不等式的解集,解题关键是求出函数的单调性.本题通过构造函数()()f xg x x=,求导并结合当0x >时,()()xf x f x '<,可求出函数()g x 在()0,∞+上的单调性,再结合函数的奇偶性,可求出()g x 在定义域上的单调性.考查了学生的运算求解能力,逻辑推理能力,属于中档题.15.8【分析】对函数求导由导数确定单调区间由单调性确定极值再比较极值与函数端点值即可确定函数最值【详解】f′(x)=6x2-4x=2x(3x-2)已知x ∈-12当2≥x>或-1≤x<0时f′(x)>0f解析:8 【分析】对函数求导,由导数确定单调区间,由单调性确定极值,再比较极值与函数端点值,即可确定函数最值. 【详解】f ′(x )=6x 2-4x = 2x (3x -2), 已知x ∈[-1,2],当2 ≥ x >23或-1 ≤ x <0时, f ′(x )>0, f (x )单调递增区间是2[1,0),(,2]3-, 当0<x <23时,f ′(x )<0, f (x )单调递减区间是2(0,)3,故函数在0x =处取极大值,f (0)=0,又f (2)=8,故 f (x )的最大值是8. 故答案为:8 【点睛】本题考查了利用导数求函数的最值,考查了计算能力,属于基础题目.16.【分析】先判定再根据切线相互垂直可得的关系利用该关系式把转化为一元函数利用导数可求其最小值【详解】当时当时因为故所以即其中又令则当时;当时故故答案为:【点睛】本题考查导数的几何意义以及导数在函数最值解析:1e-【分析】先判定()()12,1,1,x x ∈-∞∈+∞,再根据切线相互垂直可得12,x x 的关系,利用该关系式把12x x 转化为一元函数,利用导数可求其最小值.【详解】当1x <时,()0xf x e '=-<,当1x >时,()10f x x'=>, 因为()()121f x f x ''=-,故()()12,1,1,x x ∈-∞∈+∞,所以1211x e x -⨯=-即12x x e =,其中11<x . 又1121xx x x e =,令(),1tg t te t =<,则()()1,1tg t t e t '=+<,当1t <-时,()0g t '<;当11t -<<时,()0g t '>, 故()()min 11g t g e=-=-, 故答案为:1e-. 【点睛】本题考查导数的几何意义以及导数在函数最值中的应用,注意根据导数的性质确定切点的位置,而多元函数的最值问题一般可转化为一元函数的最值问题,后者可利用导数来处理.17.0【分析】结合所求式子与已知的式子特点可以对原函数求导然后利用赋值法求解即可【详解】对已知的式子两边同时求导可得:2020a (1+ax )2019令x =1则:2020a (1+a )2019=a1+2a2解析:0 【分析】结合所求式子与已知的式子特点,可以对原函数求导,然后利用赋值法求解即可. 【详解】对已知的式子两边同时求导可得:2020a (1+ax )2019220191232020232020a a x a x a x =++++,令x =1则:2020a (1+a )2019=a 1+2a 2+3a 3+…+2020a 2020, 又因为:a 1+2a 2+3a 3+…+2019a 2019+2020a 2020=2020a , 所以(1+a )2019=1,所以a =0. 故答案为:0. 【点睛】本题考查了二项式定理的系数的性质、赋值法的应用.同时考查了学生的运算能力,属于中档题.18.3【分析】根据解析式可得到解析式可求得;求导后可得到从而代入的值可求得结果【详解】故答案为:【点睛】本题考查根据函数的性质求解函数值的问题涉及到导数的运算关键是能够通过函数解析式得到原函数和导函数的解析:3 【分析】根据()f x 解析式可得到()f x -解析式,可求得()()3f x f x -+=;求导后可得到()()f x f x ''-=,从而代入x 的值可求得结果.【详解】()333311x x x e f x x x e e --=-=-++ ()()3f x f x ∴-+=()()202020203f f ∴+-=()()222223333332121xx x x x x x e e f x x x x e e e e e ---'=+=+=-++++++ ()()f x f x ''∴-= ()()201920190f f ''∴--= ()()()()20202020201920193f f f f ''∴+-+--=故答案为:3 【点睛】本题考查根据函数的性质求解函数值的问题,涉及到导数的运算,关键是能够通过函数解析式得到原函数和导函数的性质.19.1【分析】根据题意求出函数的导数将代入计算可得解可得a 的值即可得答案【详解】根据题意函数则函数若则解可得;故答案为1【点睛】本题考查导数的计算关键是掌握导数的计算公式属于基础题解析:1 【分析】根据题意,求出函数()'f x 的导数,将x e =代入计算可得()'ln 22f e a e a a =+==,解可得a 的值,即可得答案. 【详解】根据题意,函数()ln f x ax x =,则函数()()()''ln ln 'ln f x a x x ax x a x a =+=+, 若()'2f e =,则()'ln 22f e a e a a =+==, 解可得1a =; 故答案为1. 【点睛】本题考查导数的计算,关键是掌握导数的计算公式,属于基础题.20.【解析】分析:求出函数的导数求得切线的斜率由斜截式方程即可得到所求切线的方程详解:的导数为在点(01)处的切线斜率为即有在点(01)处的切线方程为故答案为点睛:近几年高考对导数的考查几乎年年都有利用解析:210x y -+=【解析】分析:求出函数sin xy x e =+的导数,求得切线的斜率,由斜截式方程,即可得到所求切线的方程.详解:sin x y x e =+的导数为'cos x y x e =+, 在点(0,1)处的切线斜率为0cos02k e =+=, 即有在点(0,1)处的切线方程为210x y -+=. 故答案为210x y -+=.点睛:近几年高考对导数的考查几乎年年都有,利用导数的几何意义,求曲线的切线方程是导数的重要应用之一,曲线()y f x =在点0x 的导数0'()f x 就是曲线在该点的切线的斜率,我们通常用导数的这个几何意义来研究一些与曲线的切线有关的问题,用导数求切线方程的关键在于求切点坐标和斜率,分清是求在曲线某点处的切线方程,还是求过某点处的曲线切线方程.三、解答题21.(1)1;(2)21e. 【分析】(1)利用导数的运算法则和公式求得1()e x f x +'=,1()g x x'=,得到切线1l ,2l 的斜率∴111ex l k +=,221l k x =,根据两切线都经过原点,求得121,e x x ==,进而求得两直线的斜率之积;(2)问中是典型的无法分离参数的情况,进行转化并构造函数,1()e x F x x +=,转化为()ln 1x F x F a ⎛⎫≥- ⎪⎝⎭,分类讨论,并注意利用导数进一步研究函数()F x 的单调性,当ln 10,x a ->转化为1max ln 1e x x x x a a +⎛⎫≥-⇒≥ ⎪⎝⎭,进而再次造函数令1()ex x x ϕ+=,利用导数研究单调性并求得其最大值,即得a 的最小值. 【详解】解:(1)当1a =时,()1x f x e=+,()ln 1g x x =-设过原点O 的直线分别切()f x ,()g x 于点()111,P x y ,()222,P x y1()e x f x +'=,1()g x x'=, ∴111e x l k +=,221l k x =且11111122222e e 1e ln 11x x x x x x x x ++⎧=⎪=⎧⎪⇒⎨⎨=-⎩⎪=⎪⎩ ∴12221e 1el l k k ⋅=⋅=. (2)由1eln 1x xa a+≥-在(0,)+∞上恒成立得∵0a >,∴111eln x x a a a+≥- ln 1eln 1ln 1e (*)xx ax x x x a a a +⎛⎫⎛⎫≥-=-⋅ ⎪ ⎪⎝⎭⎝⎭令1()e x F x x +=,∴()ln1x F x F a ⎛⎫≥- ⎪⎝⎭①当ln 10xa-≤时,(*)左边0,>右边0,≤显然成立 ②当ln10,xa->注意到1()(1)e 0x F x x +'=+> ∴()F x 在(0,)+∞上∴1maxln1e x x x x a a +⎛⎫≥-⇒≥ ⎪⎝⎭ 令1()e x x x ϕ+=,11221e e 1()e ex x x x x x x ϕ++++--'==,令()0x ϕ'= 得01x <<时,()0x ϕ'>,()x ϕ↗; 当1x >时,()0x ϕ'<,()x ϕ↘ ∴max 21()(1)x e ϕϕ==,∴21a e ≥.【点睛】本题考查求曲线上某点处的切线的斜率问题和利用导数研究不等式恒成立问题,属中档题,难度一般.关键是要熟练掌握导数的运算法则和求导公式,这是一切导数问题的基础,第(2)问中将不等式整理为为ln 1eln 1ln 1e (*)xx ax x x x a a a +⎛⎫⎛⎫≥-=-⋅ ⎪ ⎪⎝⎭⎝⎭令1()e x F x x +=,转化为()ln 1x F x F a ⎛⎫≥- ⎪⎝⎭,是难点也是解决问题的关键点,多次构造函数,并利用函数思想进行转化和求解是本题的显著特点,值得好好体会.22.(1)310x y +-=;(2)()f x 的单调递增区间为(),1-∞-和()1,+∞,单调递减区间为()1,1-;(3)最大值为3,最小值为1-. 【分析】(1)对()f x 求导, ()0k f '=,计算()0f 求切点,利用点斜式即可写出切线方程; (2)令()0f x '>可得单调递增区间,令()0f x '<可得单调递减区间; (3)求出()f x 在1,22⎡⎤⎢⎥⎣⎦上单调性,即可利用单调性求出最值.【详解】()()()233311f x x x x ==+'--,()03k f '==-,因为()01f =,所以切点为()0,1,所以切线方程为()130y x -=--, 即310x y +-=,(2)由()()()2333110f x x x x '=-=+->可得1x >或1x <-,由()()()2333110f x x x x '=-=+-<可得11x -<<,所以函数()f x 的单调递增区间为(),1-∞-和()1,+∞, 单调递减区间为()1,1-,(3)由(2)知()f x 在1,12⎡⎤⎢⎥⎣⎦单调递减,[]1,2单调递增,所以31113312228f ⎛⎫⎛⎫=-⨯+=- ⎪ ⎪⎝⎭⎝⎭,()3223213f =-⨯+=, ()3113111f =-⨯+=-,所以()()min 11f x f ==- ,()()max 23f x f == , 所以函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值为3,最小值为1-, 【点睛】方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数在区间[],a b 上单调递增或递减,则()f a 与()f b 一个为最大值,另一个为最小值;(2)若函数在区间[],a b 内有极值,则要先求出函数在[],a b 上的极值,再与()f a ,()f b 比较,最大的为最大值,最小的为最小值;(3)函数()f x 在区间(),a b 上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.23.(1)0a =,4b =-;(2)3a =;(3)[0,)a ∈+∞.(1)利用导数的几何意义,可得(1)12f '-=,(1)9f -=-,计算整理,即可求得a ,b 的值;(2)令'(3)0f =,即可求得a 的值,检验可得3x =为极值点,即可得答案; (3)令'()0f x =,解得1x a =,21x =,分别求得1a <和1a ≥时,()f x 的单调区间,结合题意,分析推理,即可得答案. 【详解】(1)因为32()23(1)6f x x a x ax b =-+++,所以2()66(1)6f x x a x a '=-++,由题设可得(1)121212f a '-=+=,(1)959f a b -=-+-=-, 解得0a =,4b =-.(2)因为()f x 在3x =取得极值, 所以(3)12360f a '=-+=,解得3a =.当3a =时,'2()624186(1)(3)f x x x x x =-+=--, 令'()0f x =,解得x=1或3,所以3x =为()f x 的极值点,故3a =满足题意. (3)令()6()(1)0f x x a x '=--=, 得1x a =,21x =. 当1a <时,若(,)(1,)x a ∈-∞+∞,则()0f x '>,所以()f x 在(,)a -∞和(1,)+∞上为增函数, 故当01a ≤<时,()f x 在(,0)-∞上为增函数恒成立. 当0a <时,()f x 在(,)a -∞上为增函数,不符合题意, 当1a ≥时,若(,1)(,)x a ∈-∞+∞,则()0f x '>,所以()f x 在(,1)-∞和(,)a +∞上为增函数, 从而()f x 在(,0)-∞上也为增函数,满足题意.综上所述,当[0,)a ∈+∞时,()f x 在(,0)-∞上为增函数. 【点睛】本题考查导数的几何意义、利用导数求函数的单调区间和极值点问题,考查计算求值,分类讨论的能力,属中档题. 24.(1)54a =;(2)单调递减区间是()0,5,单调递增区间是()5,+∞. 【分析】(1)求导,使()12f '=-求解a 的值;(2)将(1)中所求a 的值代入,求解()0f x '>和()0f x '<的区间,从而得出函数()f x 的单调区间.(1)对()f x 求导得()2114a f x x x=--', 由()f x 在点()()1,1f 处的切线垂直于直线12y x =, 知()3124f a '=--=-,解得54a =. (2)由(1)知()()53ln 0442x f x x x x =+-->,则()22454x x f x x'--=, 令()0f x '=,解得1x =-或5x =,因为1x =-不在()f x 的定义域()0,∞+内,所以舍去. 当()0,5x ∈时,()0f x '<,故()f x 在()0,5内单调递减; 当()5,x ∈+∞时,()0f x '>,故()f x 在()5,+∞内单调递增. 故()f x 的单调递减区间是(0,5),单调递增区间是()5,+∞. 【点睛】本题考查导数的几何意义,考查函数单调区间的求解,难度一般.25.(1)1,0,a b =⎧⎨=⎩;1,e ⎛⎫+∞ ⎪⎝⎭;(2)2321e e k e -+≥-. 【分析】(1)求出函数的导数,得到关于a ,b 的方程组,求出a ,b 的值,解关于导函数的不等式,求出函数的最小值,进而可得m 的取值范围;(2)问题等价于不等式22ln 3x x x k x++≥-在1,x e e ⎡⎤∈⎢⎥⎣⎦上有解,设()22ln 3x x x h x x ++=-,1,x e e ⎡⎤∈⎢⎥⎣⎦,求导可得函数的最值,进而可得k 的取值范围. 【详解】(1)()()ln 1f x a x '=+,由题意得()()1011f f ⎧=⎪⎨='⎪⎩,解得:10a b =⎧⎨=⎩, 故()ln 1f x x '=+, 当()0f x '>,即1x e>时,()f x 单调递增, 当()0f x '<,即10x e<<时,()f x 单调递减, 因为()f x 在()0,m 上有最小值, 所以m 的取值范围是1,e ⎛⎫+∞ ⎪⎝⎭;(2)关于x 的不等式()()20f x g x +≥在1,x e e⎡⎤∈⎢⎥⎣⎦上有解, 即232ln 0x x x kx ++≥+在1,x e e ⎡⎤∈⎢⎥⎣⎦上有解, 等价于不等式22ln 3x x x k x++≥-在1,x e e ⎡⎤∈⎢⎥⎣⎦上有解, 设()22ln 3x x x h x x ++=-,1,x e e ⎡⎤∈⎢⎥⎣⎦, ()2223x x h x x+-'∴=-, 当()0h x '>,即11x e<<时,()h x 单调递增, 当()0h x '<,即1x e <<时,()h x 单调递减, 又21321e h e e e -+⎛⎫=- ⎪⎝⎭,()2e 2e 3e e h ++=-, 所以()()22222211233212420e e e e e e e e h h e e e e e e ---++-+-++⎛⎫-=-==< ⎪⎝⎭, 故()2min 1321e e h x h e e -+⎛⎫==- ⎪⎝⎭, 所以2321e e k e-+≥-. 【点睛】本题考查函数的单调性,最值问题,考查导数的应用,是一道中档题.26.(1)1,12a b ==-;(2)最小值为4-,最大值为28.【分析】(1)先对函数()f x 进行求导,根据(2)0f '=,(2)16f c =-,求出a ,b 的值.(2)根据导数可知()f x 在2x =-处取得极大值,即可求出c ,再求出端点处的函数值,即可判断.【详解】(1)因3()f x ax bx c =++ ,故2()3f x ax b '=+,由于()f x 在点2x =处取得极值,故有(2)0(2)16f f c ==-'⎧⎨⎩,即1208216a b a b c c +=⎧⎨++=-⎩ ,解得112a b =⎧⎨=-⎩; (2)由(1)知 3()12f x x x c =-+,2()312f x x '=-令()0f x '= ,得122,2x x =-=,当(,2)x ∈-∞-时,()0f x '>故()f x 在(,2)-∞-上为增函数; 当(2,2)x ∈- 时,()0f x '< 故()f x 在(2,2)- 上为减函数, 当(2,)x ∈+∞ 时()0f x '> ,故()f x 在(2,)+∞ 上为增函数. 由此可知()f x 在12x =- 处取得极大值(2)16f c -=+,()f x 在22x = 处取得极小值(2)16f c =-,由题设条件知1628c += ,得12c =,此时(3)921f c -=+=,(3)93f c =-+=,(2)164f c =-=-, 因此()f x 上[3,3]-的最小值为(2)4f =-,最大值为28.【点睛】本题主要考查函数的导数与极值,最值之间的关系,属于导数的应用.。

高三导数及其应用测试题及答案解析

高三导数及其应用测试题及答案解析

高三数学章末综合测试题导数及其应用一、选择题:本大题共12小题,每小题5分,共60分.1.曲线y =13x 3+x 在点⎝⎛⎭⎫1,43处的切线与坐标轴围成的三角面积为( ) A.19 B.29 C.13 D.232.函数y =4x 2+1x 的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,-1) D.⎝⎛⎭⎫-∞,-12 3.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 等于( )A .-2B .-1C .1D .24.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处的切线的斜率为( ) A .4 B .-14 C .2D .-125.已知f (x )=x 3-ax 在(-∞,-1]上递增,则a 的取值范围是( ) A .a >3 B .a ≥3 C .a <3D .a ≤36.设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =xf ′(x )的图像的一部分,则f (x )的极大值与极小值分别是( ) A .f (1)与f (-1) B .f (-1)与f (1) C .f (2)与f (-2)D .f (-2)与f (2)7.若函数f (x )=13x 3+12f ′(1)x 2-f ′(2)x +3,则f (x )在点(0,f (0))处切线的倾斜角为( )A.π4B.π3C.2π3D.3π48.下图所示为函数y =f (x ),y =g (x )的导函数的图像,那么y =f (x ),y =g (x )的图像可能是( )9.若函数f (x )在R 上满足f (x )=e x +x 2-x +sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是( )A .y =2x -1B .y =3x -2C .y =x +1D .y =-2x +310.如图,函数f (x )的导函数y =f ′(x )的图像,则下面判断正确的是( ) A .在(-2,1)内f (x )是增函数 B .在(1,3)内f (x )是减函数新 课标 第 一 网 C .在(4,5)内f (x )是增函数 D .在x =2时,f (x )取到极小值11.已知函数f (x )=x 3-px 2-qx 的图像与x 轴相切于(1,0)点,则f (x )的极大值、极小值分别为( ) A.427、0 B .0、427 C .-427、0 D .0、-42712.若函数y =f (x )的图像在点P 处的切线方程为x -y +2=0,则f (1)+f ′(1)=( ) w w w .x k b 1.c o m A .1 B .2 C .3D .4二、填空题:本大题共4个小题,每小题5分,共20分.13.设P 为曲线C :y =x 2-x +1上一点,曲线C 在点P 处的切线的斜率的范围是[-1,3],则点P 纵坐标的取值范围是__________.14.已知函数f (x )=ln x +2x ,g (x )=a (x 2+x ),若f (x )≤g (x )恒成立,则实数a 的取值范围是__________.15.设函数y =ax 2+bx +k (k >0)在x =0处取得极值,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线x +2y +1=0,则a +b 的值为__________.16.已知函数f (x )的导函数的图像如图所示,则下列说法正确的是__________. ①函数f (x )在区间(-3,1)内单调递减;②函数f (x )在区间(1,7)内单调递减; ③当x =-3时,函数f (x )有极大值;④当x =7时,函数f (x )有极小值. 三、解答题:本大题共6小题,共70分.17.(10分)已知函数f (x )=x 3+ax 2+bx +a 2(a ,b ∈R ).(1)若函数f (x )在x =1处有极值为10,求b 的值; (2)若对任意a ∈[-4,+∞),f (x )在x ∈[0,2]上单调递增,求b 的最小值. 18.(12分)已知函数f (x )=x 3-12x 2+bx +c .(1)若f (x )在(-∞,+∞)上是增函数,求b 的取值范围;(2)若f (x )在x =1处取得极值,且x ∈[-1,2]时,f (x )<c 2恒成立,求c 的取值范围. 19.(12分)已知函数f (x )=2mx -m 2+1x 2+1(x ∈R ). (1)当m =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当m >0时,求函数f (x )的单调区间与极值. 20.(12分)已知函数f (x )=(a -12)x 2+ln x (a ∈R ).(1)当a =1时,求f (x )在区间[1,e]上的最大值和最小值;(2)若在区间(1,+∞)上,函数f (x )的图像恒在直线y =2ax 下方,求a 的取值范围.21.(12分)设函数f (x )=ln x ,g (x )=ax +bx,函数f (x )的图像与x 轴的交点也在函数g (x )的图像上,且在此点有公共切线. (1)求a ,b 的值; (2)对任意x >0,试比较f (x )与g (x )的大小.22.(12分)设函数f (x )=ax 3-2bx 2+cx +4d (a ,b ,c ,d ∈R )的图像关于原点对称,且x =1时,f (x )取极小值-23. (1)求a ,b ,c ,d 的值; (2)当x ∈[-1,1]时,图像上是否存在两点,使得过两点处的切线互相垂直?试证明你的结论; (3)若x 1,x 2∈[-1,1],求证:|f (x 1)-f (x 2)|≤43.一、选择题:本大题共12小题,每小题5分,共60分.1.曲线y =13x 3+x 在点⎝⎛⎭⎫1,43处的切线与坐标轴围成的三角面积为( ) A.19 B.29 C.13 D.23解析:y ′=x 2+1,当x =1时,k =y ′|x =1=2,∴切线方程为y -43=2(x -1).当x =0时,y =-23,当y =0时,x =13.∴三角形的面积S =12×|-23|×13=19.答案:A2.函数y =4x 2+1x 的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,-1)D.⎝⎛⎭⎫-∞,-12 解析:由y =4x 2+1x ,得y ′=8x -1x 2. 令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2+1x 在⎝⎛⎭⎫12,+∞上递增. 答案:B3.若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 等于( )A .-2B .-1C .1D .2解析:据已知可得f ′(x )=sin x +x cos x ,故f ′⎝⎛⎭⎫π2=1.由两直线的位置关系可得-a2×1=-1,解得a =2. 答案:D4.设函数f (x )=g (x )+x 2,曲线y =g (x )在点(1,g (1))处的切线方程为y =2x +1,则曲线y =f (x )在点(1,f (1))处的切线的斜率为( ) A .4B .-14C .2D .-12解析:∵f (x )=g (x )+x 2,∴f ′(x )=g ′(x )+2x ,X k b 1 . c o m f ′(1)=g ′(1)+2=2+2=4. 答案:A5.已知f (x )=x 3-ax 在(-∞,-1]上递增,则a 的取值范围是( ) A .a >3 B .a ≥3 C .a <3D .a ≤3解析:由f (x )=x 3-ax ,得f ′(x )=3x 2-a , 由3x 2-a ≥0对于一切x ∈(-∞,-1]恒成立, 3x 2≥a ,∴a ≤3.若a <3,则f ′(x )>0对于一切x ∈(-∞,-1]恒成立. 若a =3,x ∈(-∞,-1)时,f ′(x )>0恒成立. x =-1时,f ′(-1)=0,∴a ≤3. 答案:D6.设f (x )是一个三次函数,f ′(x )为其导函数,如图所示的是y =xf ′(x )的图像的一部分,则f (x )的极大值与极小值分别是( ) A .f (1)与f (-1) B .f (-1)与f (1) C .f (2)与f (-2)D .f (-2)与f (2)解析:由y =xf ′(x )的图像知±2是y =f ′(x )的两个零点,设f ′(x )=a (x -2)(x +2).当x >2时,xf ′(x )=ax (x -2)(x +2)>0,∴a >0.由f ′(x )=a (x -2)(x +2)知,f (-2)是极大值,f (2)是极小值,故选D. 答案:D7.若函数f (x )=13x 3+12f ′(1)x 2-f ′(2)x +3,则f (x )在点(0,f (0))处切线的倾斜角为( )A.π4 B.π3 C.2π3D.3π4解析:由题意,得f ′(x )=x 2+f ′(1)x -f ′(2), 令x =0,得f ′(0)=-f ′(2), 令x =1,得f ′(1)=1+f ′(1)-f ′(2), ∴f ′(2)=1,∴f ′(0)=-1,即f (x )在点(0,f (0))处切线的斜率为-1, ∴倾斜角为3π4.答案:D8.下图所示为函数y =f (x ),y =g (x )的导函数的图像,那么y =f (x ),y =g (x )的图像可能是( )解析:由y =f ′(x )的图像知,y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )图像上任意一点切线的斜率在(0,+∞)也单调递减,故可排除A ,C.又由图像知,y =f ′(x )与y =g ′(x )的图像在x =x 0处相交,说明y =f (x )与y =g (x )的图像在x =x 0处的切线斜率相同,故可排除B.故选D. 答案:D9.若函数f (x )在R 上满足f (x )=e x +x 2-x +sin x ,则曲线y =f (x )在点(0,f (0))处的切线方程是( ) A .y =2x -1 B .y =3x -2 C .y =x +1D .y =-2x +3解析:令x =0,解得f (0)=1.对f (x )求导,得f ′(x )=e x +2x -1+cos x ,令x =0,解得f ′(0)=1,故切线方程为y =x +1. 答案:C10.如图,函数f (x )的导函数y =f ′(x )的图像,则下面判断正确的是( )A .在(-2,1)内f (x )是增函数B .在(1,3)内f (x )是减函数新 课 标 第 一 网C .在(4,5)内f (x )是增函数D .在x =2时,f (x )取到极小值解析:在(-2,1)上,导函数的符号有正有负,所以函数f (x )在这个区间上不是单调函数;同理,函数f (x )在(1,3)上也不是单调函数,在x =2的左侧,函数f (x )在⎝⎛⎭⎫-32,2上是增函数.在x =2的右侧,函数f (x )在(2,4)上是减函数,所以在x =2时,f (x )取到极大值;在(4,5)上导函数的符号为正,所以函数f (x )在这个区间上为增函数. 答案:C11.已知函数f (x )=x 3-px 2-qx 的图像与x 轴相切于(1,0)点,则f (x )的极大值、极小值分别为( ) A.427、0 B .0、427C .-427、0D .0、-427解析:f ′(x )=3x 2-2px -q ,由f ′(1)=0,f (1)=0,得⎩⎪⎨⎪⎧ 3-2p -q =0,1-p -q =0,解得⎩⎪⎨⎪⎧p =2,q =-1.∴f (x )=x 3-2x 2+x .由f ′(x )=3x 2-4x +1=0,得x =13,或x =1.从而求得当x =13时,f (x )取极大值427;当x =1时,f (x )取极小值0.故选A.答案:A12.如右图,若函数y =f (x )的图像在点P 处的切线方程为x -y +2=0,则f (1)+f ′(1)=( ) w w w .x k b 1.c o m A .1 B .2 C .3D .4解析:由图像知f (1)=3,f ′(1)=1,故f (1)+f ′(1)= 3+1=4. 答案:D第Ⅱ卷 (非选择 共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.设P 为曲线C :y =x 2-x +1上一点,曲线C 在点P 处的切线的斜率的范围是[-1,3],则点P 纵坐标的取值范围是__________. 解析:设P (a ,a 2-a +1),y ′|x =a =2a -1∈[]-1,3, ∴0≤a ≤2.从而g (a )=a 2-a +1=⎝⎛⎭⎫a -122+34. 当a =12时,g (a )min =34;a =2时,g (a )max =3. 故P 点纵坐标范围是⎣⎡⎦⎤34,3.答案:⎣⎡⎦⎤34,314.已知函数f (x )=ln x +2x ,g (x )=a (x 2+x ),若f (x )≤g (x )恒成立,则实数a 的取值范围是__________. 解析:设F (x )=f (x )-g (x ),其定义域为(0,+∞),则F ′(x )=1x +2-2ax -a =-(2x +1)(ax -1)x ,x ∈(0,+∞).当a ≤0时,F ′(x )>0,F (x )单调递增,F (x )≤0不可能恒成立. 当a >0时,令F ′(x )=0,得x =1a ,或x =-12(舍去).当0<x <1a 时,F ′(x )>0;当x >1a 时,F ′(x )<0.故F (x )在(0,+∞)上有最大值F ⎝⎛⎭⎫1a ,由题意F ⎝⎛⎭⎫1a ≤0恒成立,即ln 1a +1a -1≤0.令φ(a )=ln 1a +1a -1,则φ(a )在(0,+∞)上单调递减,且φ(1)=0,故ln 1a +1a -1≤0成立的充要条件是a ≥1. 答案:[1,+∞)15.设函数y =ax 2+bx +k (k >0)在x =0处取得极值,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线x +2y +1=0,则a +b 的值为__________.解析:∵f (x )=ax 2+bx +k (k >0),∴f ′(x )=2ax +b .又f (x )在x =0处有极值,故f ′(0)=0,从而b =0.由曲线y =f (x )在(1,f (1))处的切线与直线x +2y +1=0垂直,可知该切线斜率为2,即f ′(1)=2,∴2a =2,得a =1.∴a +b =1+0=1. 答案:116.已知函数f (x )的导函数的图像如图所示,则下列说法正确的是__________.(填写正确命题的序号) ①函数f (x )在区间(-3,1)内单调递减; ②函数f (x )在区间(1,7)内单调递减; ③当x =-3时,函数f (x )有极大值; ④当x =7时,函数f (x )有极小值.解析:由图像可得,在区间(-3,1)内f (x )的导函数数值大于零,所以f (x )单调递增;在区间(1,7)内f (x )的导函数值小于零,所以f (x )单调递减;在x =-3左右的导函数符号不变,所以x =-3不是函数的极大值点;在x =7左右的导函数符号在由负到正,所以函数f (x )在x =7处有极小值.故②④正确. 答案:②④三、解答题:本大题共6小题,共70分.17.(10分)已知函数f (x )=x 3+ax 2+bx +a 2(a ,b ∈R ). (1)若函数f (x )在x =1处有极值为10,求b 的值;(2)若对任意a ∈[-4,+∞),f (x )在x ∈[0,2]上单调递增,求b 的最小值. 解析:(1)f ′(x )=3x 2+2ax +b ,则⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10⇒⎩⎪⎨⎪⎧ a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3.当⎩⎪⎨⎪⎧ a =4,b =-11时,f ′(x )=3x 2+8x -11,Δ=64+132>0,故函数有极值点; 当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3(x -1)2≥0,故函数无极值点; 故b 的值为-11.(2)方法一:f ′(x )=3x 2+2ax +b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立, 则F (a )=2xa +3x 2+b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立. ∵x ≥0,F (a )在a ∈[-4,+∞)上单调递增或为常数函数,∴得F (a )min =F (-4)=-8x +3x 2+b ≥0对任意的x ∈[0,2]恒成立,即b ≥(-3x 2+8x )max , 又-3x 2+8x =-3⎝⎛⎭⎫x -432+163≤163, 当x =43时,(-3x 2+8x )max =163,得b ≥163,故b 的最小值为163.方法二:f ′(x )=3x 2+2ax +b ≥0对任意的a ∈[-4,+∞),x ∈[0,2]都成立, 即b ≥-3x 2-2ax 对任意的a ∈[-4,+∞),x ∈[0,2]都成立,即b ≥(-3x 2-2ax )max . 令F (x )=-3x 2-2ax =-3⎝⎛⎭⎫x +a 32+a 23, ①当a ≥0时,F (x )max =0,于是b ≥0; ②当-4≤a <0时,F (x )max =a 23,于是b ≥a 23.又∵⎝⎛⎭⎫a 23max =163,∴b ≥163. 综上,b 的最小值为163.18.(12分)已知函数f (x )=x 3-12x 2+bx +c .(1)若f (x )在(-∞,+∞)上是增函数,求b 的取值范围;(2)若f (x )在x =1处取得极值,且x ∈[-1,2]时,f (x )<c 2恒成立,求c 的取值范围.解析:(1)f ′(x )=3x 2-x +b ,因f (x )在(-∞,+∞)上是增函数,则f ′(x )≥0,即3x 2-x +b ≥0, ∴b ≥x -3x 2在(-∞,+∞)恒成立.设g (x )=x -3x 2,当x =16时,g (x )max =112,∴b ≥112.(2)由题意,知f ′(1)=0,即3-1+b =0,∴b =-2.x ∈[-1,2]时,f (x )<c 2恒成立,只需f (x )在[-1,2]上的最大值小于c 2即可.因f ′(x )=3x 2-x -2, 令f ′(x )=0,得x =1,或x =-23.∵f (1)=-32+c ,f (-23)=2227+c ,f (-1)=12+c ,f (2)=2+c ,∴f (x )max =f (2)=2+c ,∴2+c <c 2,解得c >2,或c <-1, 所以c 的取值范围为(-∞,-1)∪(2,+∞). 19.(12分)已知函数f (x )=2mx -m 2+1x 2+1(x ∈R ).(1)当m =1时,求曲线y =f (x )在点(2,f (2))处的切线方程; (2)当m >0时,求函数f (x )的单调区间与极值. 解析:(1)当m =1时,f (x )=2x x 2+1,f (2)=45,又因为f ′(x )=2(x 2+1)-4x 2(x 2+1)2=2-2x 2(x 2+1)2,则f ′(2)=-625.所以曲线y =f (x )在点(2,f (2))处的切线方程为 y -45=-625(x -2),即6x +25y -32=0. (2)f ′(x )=2m (x 2+1)-2x (2mx -m 2+1)(x 2+1)2=-2(x -m )(mx +1)(x 2+1)2.令f ′(x )=0,得到x 1=-1m ,x 2=m .∵m >0,∴-1m<m .当x 变化时,f ′(x ),f (x )的变化情况如下表:x ⎝⎛⎭⎫-∞,-1m-1m ⎝⎛⎭⎫-1m ,m m (m ,+∞)f ′(x ) - 0 + 0 - f (x )递减极小值递增极大值递减从而f (x )在区间⎝⎛⎭⎫-∞,-1m ,(m ,+∞)内为减函数,在区间⎝⎛⎭⎫-1m ,m 内为增函数, 故函数f (x )在点x 1=-1m 处取得极小值f ⎝⎛⎭⎫-1m ,且f ⎝⎛⎭⎫-1m =-m 2,函数f (x )在点x 2=m 处取得极大值f (m ),且f (m )=1.20.(12分)已知函数f (x )=(a -12)x 2+ln x (a ∈R ).(1)当a =1时,求f (x )在区间[1,e]上的最大值和最小值;(2)若在区间(1,+∞)上,函数f (x )的图像恒在直线y =2ax 下方,求a 的取值范围.解析:(1)当a =1时,f (x )=12x 2+ln x ,f ′(x )=x +1x =x 2+1x.对于x ∈[1,e]有f ′(x )>0, ∴f (x )在区间[1,e]上为增函数, ∴f (x )max =f (e)=1+e 22,f (x )min =f (1)=12.(2)令g (x )=f (x )-2ax =(a -12)x 2-2ax +ln x ,则g (x )的定义域为(0,+∞).在区间(1,+∞)上,函数f (x )的图像恒在直线y =2ax 下方等价于g (x )<0在区间(1,+∞)上恒成立. ∵g ′(x )=(2a -1)x -2a +1x=(2a -1)x 2-2ax +1x=(x -1)[(2a -1)x -1]x,①若a >12,令g ′(x )=0,得极值点x 1=1,x 2=12a -1,当x 2>x 1=1,即12<a <1时,在(x 2,+∞)上有g ′(x )>0,此时g (x )在区间(x 2,+∞)上是增函数,并且在该区间上有g (x )∈(g (x 2),+∞),不符合题意; 当x 2≤x 1=1,即a ≥1时,同理可知,g (x )在区间(1,+∞)上,有g (x )∈(g (1),+∞),也不符合题意; ②若a ≤12,则有2a -1≤0,此时在区间(1,+∞)上恒有g ′(x )<0,从而g (x )在区间(1,+∞)上是减函数.要使g (x )<0在此区间上恒成立,只需满足g (1)=-a -12≤0⇒a ≥-12, 由此求得a 的取值范围是⎣⎡⎦⎤-12,12. 综上可知,当a ∈⎣⎡⎦⎤-12,12时,函数f (x )的图像恒在直线y =2ax 下方. 21.(12分)设函数f (x )=ln x ,g (x )=ax +b x,函数f (x )的图像与x 轴的交点也在函数g (x )的图像上,且在此点有公共切线.(1)求a ,b 的值;(2)对任意x >0,试比较f (x )与g (x )的大小.解析:(1)f (x )=ln x 的图像与x 轴的交点坐标是(1,0),依题意,得g (1)=a +b =0.①又f ′(x )=1x ,g ′(x )=a -b x 2, 且f (x )与g (x )在点(1,0)处有公共切线,∴g ′(1)=f ′(1)=1,即a -b =1.②由①②得,a =12,b =-12. (2)令F (x )=f (x )-g (x ),则F (x )=ln x -⎝⎛⎭⎫12x -12x =ln x -12x +12x, ∴F ′(x )=1x -12-12x 2=-12⎝⎛⎭⎫1x-12≤0. ∴F (x )在(0,+∞)上为减函数.当0<x <1时,F (x )>F (1)=0,即f (x )>g (x );当x =1时,F (1)=0,即f (x )=g (x );当x >1时,F (x )<F (1)=0,即f (x )<g (x ).22.(12分)设函数f (x )=ax 3-2bx 2+cx +4d (a ,b ,c ,d ∈R )的图像关于原点对称,且x =1时,f (x )取极小值-23. (1)求a ,b ,c ,d 的值;(2)当x ∈[-1,1]时,图像上是否存在两点,使得过两点处的切线互相垂直?试证明你的结论;(3)若x 1,x 2∈[-1,1],求证:|f (x 1)-f (x 2)|≤43. 解析:(1)∵函数f (x )的图像关于原点对称,∴对任意实数x 有f (-x )=-f (x ),∴-ax 3-2bx 2-cx +4d =-ax 3+2bx 2-cx -4d , 即bx 2-2d =0恒成立,∴b =0,d =0,∴f (x )=ax 3+cx ,f ′(x )=3ax 2+c ,∵当x =1时,f (x )取极小值-23, ∴3a +c =0,且a +c =-23, 解得a =13,c =-1. (2)当x ∈[-1,1]时,图像上不存在这样的两点使结论成立. 假设图像上存在两点A (x 1,y 1),B (x 2,y 2),使得过此两点处的切线互相垂直,则由f ′(x )=x 2-1知,两点处的切线斜率分别为k 1=x 12-1,k 2=x 22-1, 且(x 12-1)(x 22-1)=-1.(*)∵x 1,x 2∈[-1,1],∴x 12-1≤0,x 22-1≤0. ∴(x 12-1)(x 22-1)≥0.此与(*)相矛盾,故假设不成立.(3)f ′(x )=x 2-1,令f ′(x )=0,得x =±1.当x ∈(-∞,-1)或x ∈(1,+∞)时,f ′(x )>0, 当x ∈(-1,1)时,f ′(x )<0,∴f (x )在[-1,1]上是减函数,且f (x )max =f (-1)=23,f (x )min =f (1)=-23. ∴在[-1,1]上,|f (x )|≤23, 于是x 1,x 2∈[-1,1]时,|f (x 1)-f (x 2)|≤|f (x 1)|+|f (x 2)|≤23+23=43.。

2023年人教版数学导数及其应用练习题及答案

2023年人教版数学导数及其应用练习题及答案

2023年人教版数学导数及其应用练习题及答案首先,我们来介绍一下导数及其应用的相关概念。

在数学中,导数是一个非常重要的概念,它描述了函数在某一点的变化率。

导数的求解可以帮助我们了解函数的特征及其在不同点的变化情况。

导数在许多实际问题中都有广泛的应用,包括物理学、工程学等领域。

接下来,我们将给出一些关于导数的练习题以及它们的答案,供同学们进行练习和巩固知识。

练习题1:已知函数 f(x) = 3x^2 - 2x + 1,求 f(x) 的导数 f'(x)。

解答:根据导数的定义,我们可以使用求导法则来求解这个问题。

对于多项式函数而言,求导的方法非常简单,只需要将各个项的指数降低一次,并乘以原来的系数即可。

对于函数 f(x) = 3x^2 - 2x + 1,将每一项的指数降低一次,有 f'(x) = 2*3x^1 - 1*2x^0 + 0 = 6x - 2。

所以,f(x) 的导数 f'(x) = 6x - 2。

练习题2:已知函数 g(x) = e^x,求 g(x) 的导数 g'(x)。

解答:对于指数函数 e^x,其导数仍然是 e^x。

这是因为指数函数的变化率与自身相等。

所以,g(x) 的导数 g'(x) = e^x。

练习题3:已知函数 h(x) = sin(x),求 h(x) 的导数 h'(x)。

解答:对于三角函数 sin(x),其导数是余弦函数 cos(x)。

所以,h(x) 的导数 h'(x) = cos(x)。

练习题4:已知函数 i(x) = ln(x),求 i(x) 的导数 i'(x)。

解答:对于自然对数函数 ln(x),其导数是 1/x。

所以,i(x) 的导数 i'(x) = 1/x。

通过以上的练习题,我们可以初步掌握导数的求解方法及其在不同函数类型下的应用。

在实际问题中,导数可以帮助我们解决最优化问题、求取曲线的切线与法线、估算函数值等。

高三导数及应用练习题

高三导数及应用练习题

高三导数及应用练习题导数是微积分中非常重要的概念,对于高中生来说,学习导数是必不可少的一部分内容。

导数的概念以及其应用能力的培养对于高三学生来说具有重要的意义,因此在这篇文章中,我将为大家提供一些导数及应用的练习题,希望能够帮助大家提升自己的学习水平。

【练习题一】1. 求函数 f(x) = 3x^2 - 2x + 1 在点 x = 2 处的导数。

解: 首先,我们可以利用导数的定义来求解该题目。

导数的定义是函数 f(x) 在某一点 x 附近的变化率。

对于给定的函数 f(x) = 3x^2 - 2x + 1,我们可以通过求函数在 x = 2 处的变化率来求解该导数值。

根据定义,我们可以得到如下结果:f'(2) = lim(h→0) [f(2+h) - f(2)] / h代入 f(x) = 3x^2 - 2x + 1,得到:f'(2) = lim(h→0) [(3(2+h)^2 - 2(2+h) + 1 - (3(2)^2 - 2(2) + 1)] / h化简上述表达式,我们可以得到:f'(2) = lim(h→0) [(12h + 9)] / h进一步简化,我们得到:f'(2) = lim(h→0) [12h + 9] / h利用极限的性质,我们可以得到:f'(2) = 12因此,函数 f(x) = 3x^2 - 2x + 1 在点 x = 2 处的导数为 12。

2. 求函数 g(x) = sin(2x) 在点x = π/4 处的导数。

解: 对于函数g(x) = sin(2x),我们需要利用链式法则来求解其导数。

根据链式法则的定义,我们可以得到如下结果:g'(x) = cos(2x) * 2代入x = π/4,我们可以得到:g'(π/4) = cos(2 * π/4) * 2化简表达式,我们可以得到:g'(π/4) = cos(π/2) * 2利用三角函数的性质,我们可以得到:g'(π/4) = 0 * 2因此,函数 g(x) = sin(2x) 在点x = π/4 处的导数为 0。

高中数学导数及其应用多选题测试试题含答案

高中数学导数及其应用多选题测试试题含答案

高中数学导数及其应用多选题测试试题含答案一、导数及其应用多选题1.已知函数()f x 对于任意x ∈R ,均满足()()2f x f x =-.当1x ≤时()ln ,01,0x x x f x e x <≤⎧=⎨≤⎩,若函数()()2g x m x f x =--,下列结论正确的为( )A .若0m <,则()g x 恰有两个零点B .若32m e <<,则()g x 有三个零点 C .若302m <≤,则()g x 恰有四个零点 D .不存在m 使得()g x 恰有四个零点 【答案】ABC 【分析】设()2h x m x =-,作出函数()g x 的图象,求出直线2y mx =-与曲线()ln 01y x x =<<相切以及直线2y mx =-过点()2,1A 时对应的实数m 的值,数形结合可判断各选项的正误. 【详解】由()()2f x f x =-可知函数()f x 的图象关于直线1x =对称. 令()0g x =,即()2m x f x -=,作出函数()f x 的图象如下图所示:令()2h x m x =-,则函数()g x 的零点个数为函数()f x 、()h x 的图象的交点个数,()h x 的定义域为R ,且()()22h x m x m x h x -=--=-=,则函数()h x 为偶函数,且函数()h x 的图象恒过定点()0,2-,当函数()h x 的图象过点()2,1A 时,有()2221h m =-=,解得32m =. 过点()0,2-作函数()ln 01y x x =<<的图象的切线, 设切点为()00,ln x x ,对函数ln y x =求导得1y x'=, 所以,函数ln y x =的图象在点()00,ln x x 处的切线方程为()0001ln y x x x x -=-, 切线过点()0,2-,所以,02ln 1x --=-,解得01x e=,则切线斜率为e , 即当m e =时,函数()y h x =的图象与函数()ln 01y x x =<<的图象相切. 若函数()g x 恰有两个零点,由图可得0m ≤或m e =,A 选项正确; 若函数()g x 恰有三个零点,由图可得32m e <<,B 选项正确; 若函数()g x 恰有四个零点,由图可得302m <≤,C 选项正确,D 选项错误. 故选:ABC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.2.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它得名于荷兰数学家鲁伊兹布劳威尔(L.E.Brouwer )简单的讲就是对于满足一定条件的连续函数()f x ,存在一个点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数,而称0x 为该函数的一个不动点,依据不动点理论,下列说法正确的是( ) A .函数()sin f x x =有3个不动点B .函数2()(0)f x ax bx c a =++≠至多有两个不动点C .若定义在R 上的奇函数()f x ,其图像上存在有限个不动点,则不动点个数是奇数 D.若函数()f x =[0,1]上存在不动点,则实数a 满足l a e ≤≤(e 为自然对数的底数) 【答案】BCD 【分析】根据题目中的定义,结合导数、一元二次方程的性质、奇函数的性质进行判断即可. 【详解】令()sin g x x x =-,()1cos 0g x x '=-≥, 因此()g x 在R 上单调递增,而(0)0g =, 所以()g x 在R 有且仅有一个零点, 即()f x 有且仅有一个“不动点”,A 错误;0a ≠,20ax bx c x ∴++-=至多有两个实数根,所以()f x 至多有两个“不动点”,B 正确;()f x 为定义在R 上的奇函数,所以(0)0f =,函数()-y f x x =为定义在R 上的奇函数,显然0x =是()f x 的一个“不动点”,其它的“不动点”都关于原点对称,个数和为偶数, 因此()f x 一定有奇数个“不动点”,C 正确;因为()f x 在[0,1]存在“不动点”,则()f x x =在[0,1]有解,x =⇒2x a e x x =+-在[0,1]有解,令2()xm x e x x =+-,()12x m x e x '=+-,令()12x n x e x '=+-,()20x n x e '=-=,ln 2x =,()n x 在(0,ln 2)单调递减,在(ln 2,1)单调递增,∴min ()(ln 2)212ln 232ln 20n x n ==+-=->, ∴()0m x '>在[0,1]恒成立,∴()m x 在[0,1]单调递增,min ()(0)1m x m ==,max ()(1)m x m e ==,∴1a e ≤≤,D 正确,. 故选:BCD 【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.3.对于函数2ln ()xf x x =,下列说法正确的是( )A .()f x 在x =12eB .()f x 有两个不同的零点C .fff <<D .若()21f x k x<-在()0,∞+上恒成立,则2e k >【答案】ACD 【分析】求得函数的导数312ln ()-'=xf x x ,根据导数的符号,求得函数的单调区间和极值,可判定A 正确;根据函数的单调性和()10f =,且x >()0f x >,可判定B 不正确;由函数的单调性,得到f f >,再结合作差比较,得到f f >,可判定C 正确;分离参数得到()221ln 1x k f x x x+>+=在()0,∞+上恒成立,令()2ln 1x g x x+=,利用导数求得函数()g x 的单调性与最值,可判定D 正确. 【详解】由题意,函数2ln ()x f x x =,可得312ln ()(0)xf x x x -'=>,令()0f x '=,即312ln 0xx-=,解得x =当0x <<()0f x '>,函数()f x 在上单调递增;当x >()0f x '<,函数()f x 在)+∞上单调递减,所以当x =()f x 取得极大值,极大值为12f e=,所以A 正确; 由当1x =时,()10f =,因为()f x 在上单调递增,所以函数()f x 在上只有一个零点,当x >()0f x >,所以函数在)+∞上没有零点,综上可得函数在(0,)+∞只有一个零点,所以B 不正确;由函数()f x 在)+∞上单调递减,可得f f >,由于ln ln 2ln ,242f f ππ====,则2ln ln 2ln ln 22444f f ππππππ-=-=-,因为22ππ>,所以0f f ->,即f f >,所以ff f <<,所以C 正确;由()21f x k x <-在()0,∞+上恒成立,即()221ln 1x k f x x x +>+=在()0,∞+上恒成立, 设()2ln 1x g x x +=,则()32ln 1x g x x --'=, 令()0g x '=,即32ln 10x x--=,解得x =所以当0x <<()0g x '>,函数()g x在上单调递增;当x >()0g x '<,函数()g x在)+∞上单调递减,所以当x =()g x取得最大值,最大值为22e eg e =-=, 所以2ek >,所以D 正确. 故选:ACD. 【点睛】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.4.已知0a >,0b >,下列说法错误的是( ) A .若1a b a b ⋅=,则2a b +≥ B .若23a b e a e b +=+,则a b > C .()ln ln a a b a b -≥-恒成立 D .2ln a a b b e e-<恒成立 【答案】AD 【分析】对A 式化简,通过构造函数的方法,结合函数图象,说明A 错误;对B 不等式放缩22a b e a e b +>+,通过构造函数的方法,由函数的单调性,即可证明B 正确;对C 不等式等价变型()ln ln ln1-≥-⇔≥-a b a a b a b b a ,通过10,ln 1∀>>-x x x恒成立,可得C 正确;D 求出ln -a a b b e 的最大值,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,故D 错误.【详解】A. 1ln ln 0⋅=⇔+=a b a b a a b b 设()ln f x x x =,()()0∴+=f a f b由图可知,当1+→b 时,存在0+→a ,使()()0f a f b += 此时1+→a b ,故A 错误. B. 232+=+>+a b b e a e b e b设()2xf x e x =+单调递增,a b ∴>,B 正确C. ()ln ln ln 1-≥-⇔≥-a b a a b a b b a又10,ln 1∀>>-x x x ,ln 1∴≥-a bb a,C 正确D. max 1=⇒=x x y y e e当且仅当1x =; min 1ln =⇒=-y x x y e 当且仅当1=x e;所以2ln -≤a a b b e e ,当且仅当11a b e =⎧⎪⎨=⎪⎩时取等号,D 错误.故选:AD 【点睛】本题考查了导数的综合应用,考查了运算求解能力和逻辑推理能力,转化的数学思想和数形结合的数学思想,属于难题.5.设函数()ln xf x x=,()ln g x x x =,下列命题,正确的是( ) A .函数()f x 在()0,e 上单调递增,在(),e +∞单调递减 B .不等关系33e e ππππ<<<成立C .若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,则1a ≥D .若函数()()2h x g x mx =-有两个极值点,则实数()0,1m ∈【答案】AC 【分析】利用函数的单调性与导数的关系可判断A 选项的正误;由函数()f x 在区间(),e +∞上的单调性比较3π、e π的大小关系,可判断B 选项的正误;分析得出函数()()22s x g x ax=-在()0,∞+上为减函数,利用导数与函数单调性的关系求出a 的取值范围,可判断C 选项的正误;分析出方程1ln 2xm x+=在()0,∞+上有两个根,数形结合求出m 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,函数()ln x f x x =的定义域为()0,∞+,则()21ln xf x x-'=. 由()0f x '>,可得0x e <<,由()0f x '>,可得x e >.所以,函数()f x 在()0,e 上单调递增,在(),e +∞单调递减,A 选项正确; 对于B 选项,由于函数()ln xf x x=在区间(),e +∞上单调递减,且4e π>>, 所以,()()4f f π>,即ln ln 44ππ>,又ln 41ln 213ln 22043236--=-=>, 所以,ln ln 4143ππ>>,整理可得3e ππ>,B 选项错误; 对于C 选项,若120x x <<时,总有()()()22212122a x x g x g x ->-恒成立,可得()()22112222g x ax g x ax ->-,构造函数()()2222ln s x g x ax x x ax =-=-,则()()12s x s x >,即函数()s x 为()0,∞+上的减函数,()()21ln 20s x x ax '=+-≤对任意的()0,x ∈+∞恒成立,即1ln xa x+≥对任意的()0,x ∈+∞恒成立, 令()1ln x t x x +=,其中0x >,()2ln xt x x'=-. 当01x <<时,()0t x '>,此时函数()t x 单调递增; 当1x >时,()0t x '<,此时函数()t x 单调递减.所以,()()max 11t x t ==,1a ∴≥,C 选项正确;对于D 选项,()()22ln h x g x mx x x mx =-=-,则()1ln 2h x x mx '=+-,由于函数()h x 有两个极值点,令()0h x '=,可得1ln 2xm x+=, 则函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点, 当1x e>时,()0t x >,如下图所示:当021m <<时,即当102m <<时,函数2y m =与函数()t x 在区间()0,∞+上的图象有两个交点.所以,实数m 的取值范围是10,2⎛⎫ ⎪⎝⎭,D 选项错误. 故选:AC. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.6.已知函数1()2ln f x x x=+,数列{}n a 的前n 项和为n S ,且满足12a =,()()*1N n n a f a n +=∈,则下列有关数列{}n a 的叙述正确的是( )A .21a a <B .1n a >C .100100S <D .112n n n a a a +⋅+<【答案】AB 【分析】A .计算出2a 的值,与1a 比较大小并判断是否正确;B .利用导数分析()f x 的最小值,由此判断出1n a >是否正确;C .根据n a 与1的大小关系进行判断;D .构造函数()()1ln 11h x x x x =+->,分析其单调性和最值,由此确定出1ln 10nn a a +->,将1ln 10n na a +->变形可得112n n a a ++>,再将112n n a a ++>变形可判断结果.【详解】A 选项,3221112ln 2ln 4ln 2222a e =+=+<+=,A 正确;B 选项,因为222121()x f x x x x='-=-,所以当1x >时,()0f x '>,所以()f x 单增,所以()(1)1f x f >=,因为121a =>,所以()11n n a f a +=>,所以1n a >,B 正确; C 选项,因为1n a >,所以100100S >,C 错误;D 选项,令1()ln 1(1)h x x x x =+->,22111()0x h x x x x-='=->, 所以()h x 在(1,)+∞单调递增,所以()(1)0h x h >=,所以1ln 10nna a +->, 则22ln 20n n a a +->,所以112ln 2n n n a a a ⎛⎫++> ⎪⎝⎭,即112n n a a ++>,所以112n n n a a a ++>,所以D 错误. 故选:AB. 【点睛】易错点睛:本题主要考查导数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(2)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.7.已知函数()ln f x x mx =-有两个零点1x 、2x ,且12x x <,则下列结论不正确的是( ) A .10m e<<B .21x x -的值随m 的增大而减小C .101x <<D .2x e >【答案】C 【分析】由()0f x =得出ln xm x =,构造函数()ln x g x x=,利用导数分析函数()g x 的单调性与极值,数形结合可判断ACD 选项的正误;任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<,利用函数()g x 的单调性结合不等式的基本性质得出2121ξξηη->-,可判断B 选项的正误. 【详解】令()0f x =,可得ln xm x =,构造函数()ln x g x x=,定义域为()0,∞+,()1ln xg x x-'=. 当0x e <<时, ()0g x '>,此时函数()g x 单调递增; 当x e >时,()0g x '<,此时函数()g x 单调递减. 所以,()()max 1g x g e e==,如下图所示:由图象可知,当10m e <<时,直线y m =与函数()ln x g x x=的图象有两个交点,A 选项正确;当1x >时,()0g x >,由图象可得11x e <<,2x e >,C 选项错误,D 选项正确;任取1m 、210,m e ⎛⎫∈ ⎪⎝⎭,且12m m <,设()()121g g m ξξ==,其中121e ξξ<<<;设()()122g g m ηη==,其中121e ηη<<<.由于函数()g x 在区间()1,e 上单调递增,且()()11g g ξη<,11ξη∴<; 函数()g x 在区间(),e +∞上单调递减,且()()22g g ξη<,22ξη∴>. 由不等式的基本性质可得1212ξξηη-<-,则2121ξξηη->-. 所以,21x x -的值随m 的增大而减小,B 选项正确. 故选:C. 【点睛】在利用导数研究函数的零点问题个数中,可转化为判定()m g x =有两个实根时实数m 应满足的条件,并注意()g x 的单调性、奇偶性、最值的灵活应用.另外还可作出函数()y g x =的大致图象,直观判定曲线交点个数,但应注意严谨性,进行必要的论证.8.已知实数a ,b ,c ,d 满足2111a a e cb d --==-,其中e 是自然对数的底数,则()()22a c b d -+-的值可能是( ) A .7B .8C .9D .10【答案】BCD【分析】 由题中所给的等式,分别构造函数()2xf x x e =-和()2g x x =-+,则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,利用导数的几何意义可知当()01f x '=-时,切点到直线的距离最小,再比较选项.【详解】 由212a a a e b a e b-=⇒=-,令()2x f x x e =-,()12x f x e '∴=- 由1121c d c d -=⇒=-+-,令()2g x x =-+ 则()()22a c b d -+-的表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,设()y f x =上与()y g x =平行的切线的切点为()000,M x y由()0001210xf x e x '=-=-⇒=,∴切点为()00,2M -所以切点为()00,2M -到()y g x =的距离的平方为28=的距离为(),M a b 与(),N c d 的距离的平方的最小值.故选:BCD.【点睛】本题考查构造函数,利用导数的几何意义求两点间距离的最小值,重点考查转化思想,构造函数,利用几何意义求最值,属于偏难题型.。

导数及其应用综合练习(含详解答案)

导数及其应用综合练习(含详解答案)

第1课 导数的概念及运算一、热身训练1.一点沿直线运动,如果由始点起经过t 秒后的距离为t t t t s 873741234-+-=,那么速度为零的时刻是 ____________.2.已知)1()('23f x x x f +=, 则=)2('f ____________. 3.已知),(,cos 1sin ππ-∈+=x xxy ,则当2'=y 时,=x ____________.4.已知a x x a x f =)(,则=)1('f ____________.5.已知函数f (x )在x =1处的导数为3,则f (x )的解析式可能为____________. (1)f (x )=(x -1)2+3(x -1) (2)f (x )=2(x -1) (3)f (x )=2(x -1)2 (4)f (x )=x -16.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为____________. 7.过点(0,-4)与曲线y =x 3+x -2相切的直线方程是____________.8.已知两曲线ax x y +=3和c bx x y ++=2都经过点P (1,2),且在点P 处有公切线,试求a , b , c 值。

二、范例导析例1. 电流强度是单位时间内通过导体的电量的大小。

从时刻0t =开始的t 秒内,通过导体的电量(单位:库仑)可由公式223q t t =+表示。

(1) 求第5秒内时的电流强度;(2) 什么时刻电流强度达到63安培(即库仑/秒)?例2.下列函数的导数:①2(1)(231)y x x x =++- ②y = ③()(cos sin )x f x e x x =⋅+例3. 如果曲线103-+=x x y 的某一切线与直线34+=x y 平行,求切点坐标与切线方程.例3变式.求曲线32y x x =-的过点(1,1)A 的切线方程。

高中数学导数及其应用多选题练习题及解析

高中数学导数及其应用多选题练习题及解析

高中数学导数及其应用多选题练习题及解析一、导数及其应用多选题1.已知函数1(),()122x x f x e g x n ==+的图象与直线y =m 分别交于A 、B 两点,则( )A .f (x )图像上任一点与曲线g (x )上任一点连线线段的最小值为2+ln 2B .∃m 使得曲线g (x )在B 处的切线平行于曲线f (x )在A 处的切线C .函数f (x )-g (x )+m 不存在零点D .∃m 使得曲线g (x )在点B 处的切线也是曲线f (x )的切线 【答案】BCD 【分析】利用特值法,在f (x )与g (x )取两点求距离,即可判断出A 选项的正误;解方程12()(2)m f lnm g e-''=,可判断出B 选项的正误;利用导数判断函数()()y f x g x m =-+的单调性,结合极值的符号可判断出C 选项的正误;设切线与曲线()y g x =相切于点(C n ,())g n ,求出两切线的方程,得出方程组,判断方程组是否有公共解,即可判断出D 选项的正误.进而得出结论. 【详解】在函数1(),()122xx f x e g x n ==+上分别取点1(0,1),(2,)2P Q,则||2PQ =,而2ln 2<+(注ln 20.7≈),故A 选项不正确; ()x f x e =,1()22x g x ln =+,则()x f x e '=,1()g x x'=,曲线()y f x =在点A 处的切线斜率为()f lnm m '=, 曲线()y g x =在点B 处的切线斜率为12121(2)2m m g ee--'=,令12()(2)m f lnm g e-''=,即1212m m e-=,即1221m me -=,则12m =满足方程1221m me -=,m ∴∃使得曲线()y f x =在A 处的切线平行于曲线()y g x =在B 处的切线,B 选项正确;构造函数1()()()22xx F x f x g x m e ln m =-+=-+-,可得1()x F x e x'=-,函数1()xF x e x'=-在(0,)+∞上为增函数,由于1()20F e '<,F '(1)10e =->,则存在1(,1)2t ∈,使得1()0tF t e t'=-=,可得t lnt =-,当0x t <<时,()0F x '<;当x t >时,()0F x '>.∴11()()2222t t min t F x F t e ln m e lnt m ln ==-+-=-++-11132220222t m ln m ln ln m t =+++->+-=++>, ∴函数()()()F x f x g x m =-+没有零点,C 选项正确;设曲线()y f x =在点A 处的切线与曲线()y g x =相切于点(C n ,())g n ,则曲线()y f x =在点A 处的切线方程为()lnm y m e x lnm -=-,即(1)y mx m lnm =+-, 同理可得曲线()y g x =在点C 处的切线方程为1122n y x ln n =+-, ∴11(1)22m n n m lnm ln ⎧=⎪⎪⎨⎪-=-⎪⎩,消去n 得1(1)202m m lnm ln --++=,令1()(1)22G x x x lnx ln =--++,则11()1x G x lnx lnx x x-'=--=-, 函数()y G x '=在(0,)+∞上为减函数,G '(1)10=>,1(2)202G ln '=-<, 则存在(1,2)s ∈,使得1()0G s lns s'=-=,且1s s e =.当0x s <<时,()0G x '>,当x s >时,()0G x '<.∴函数()y G x =在(2,)+∞上为减函数,5(2)02G =>,17(8)20202G ln =-<, 由零点存 定理知,函数()y G x =在(2,)+∞上有零点, 即方程1(1)202m m lnm ln --++=有解. m ∴∃使得曲线()y f x =在点A 处的切线也是曲线()y g x =的切线.故选:BCD . 【点睛】本题考查导数的综合应用,涉及函数的最值、零点以及切线问题,计算量较大,考查了转化思想和数形结合思想,属难题.2.已知(0,1)x ∈,则下列正确的是( ) A .cos 2x x π+<B .22xx <C .sin 2x >D .1ln 1x x <-【答案】ABC 【分析】构造函数()sin f x x x =-证明其在0,2π⎛⎫ ⎪⎝⎭单调递减,即可得sin 22x x ππ⎛⎫-<-⎪⎝⎭即可判断选项A ;作出2yx 和2x y =的函数图象可判断选项B ;作出()sin2xf x =,()224x h x x =+的图象可判断选项C ;构造函数()1ln 1x g x x =+-利用导数判断其在()0,1x ∈上的单调性即可判断选项D ,进而可得正确选项.【详解】对于选项A :因为()0,1x ∈,所以022x ππ<-<,令()sin f x x x =-,()cos 10f x x '=-≤,()sin f x x x =-在0,2π⎛⎫⎪⎝⎭单调递减,所以()()00f x f <=,即sin x x <,所以sin 22x x ππ⎛⎫-<- ⎪⎝⎭即cos 2x x π<-,可得cos 2x x π+<,故A 正确, 对于选项B :由图象可得()0,1x ∈,22x x <恒成立,故选项B 正确;对于选项C :要证22sin 24xx x >+ 令()sin 2x f x =,()224xh x x =+()()f x f x -=-,()sin2xf x =是奇函数, ()()h x h x -=,()224x h x x =+是偶函数, 令2224144x t x x ==-++ ,则y t = 因为24y x =+在()0,∞+单调递增,所以2414t x =-+在()0,∞+单调递增,而y t =调递增,由符合函数的单调性可知()224x h x x =+在()0,∞+单调递增, 其函数图象如图所示:由图知当()0,1x ∈时22sin 24xx x >+C 正确; 对于选项D :令()1ln 1x g x x =+-,()01x <<,()221110x g x x x x-'=-=<, 所以()1ln 1x g x x=+-在()0,1单调递减,所以()()1ln1110g x g >=+-=, 即1ln 10x x+->,可得1ln 1x x >-,故选项D 不正确.故选:ABC 【点睛】思路点睛:证明不等式恒成立(或能成立)一般可对不等式变形,分离参数,根据分离参数后的结果,构造函数,由导数的方法求出函数的最值,进而可求出结果;有时也可根据不等式,直接构成函数,根据导数的方法,利用分类讨论求函数的最值,即可得出结果.3.对于定义域为R 的函数()f x ,()'f x 为()f x 的导函数,若同时满足:①()00f =;②当x ∈R 且0x ≠时,都有()0xf x '>;③当120x x <<且12x x =时,都有()()12f x f x <,则称()f x 为“偏对称函数”.下列函数是“偏对称函数”的是( )A .21()xx f x ee x =--B .2()1xf x e x =+-C .31,0(),0x e x f x x x ⎧-≥=⎨-<⎩D .42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩【答案】ACD 【分析】结合“偏对称函数”的性质,利用导数的方法,分别讨论四个函数是否满足三个条件,即可得到所求结论. 【详解】条件①()00f =;由选项可得:001(0)00f e e =--=,02(0)010f e =+-=,03(0)10f e =-=,4()ln(10)0f x =-=,即ABCD 都符合;条件②0()0()0x xf x f x >⎧'>⇔⎨'>⎩,或0()0x f x <⎧⎨'<⎩;即条件②等价于函数()f x 在区间(,0)-∞上单调递减,在区间(0,)+∞上单调递增; 对于21()xx f x ee x =--,则()()21()11212x x x xf x e e e e =-+-=-',由0x >可得,()()120(1)1x xf x e e '-=+>,即函数1()f x 单调递增;由0x <可得,()()120(1)1xxf x ee '-=+<,即函数1()f x 单调递减;满足条件②;对于2()1xf x e x =+-,则2()10x f x e =+>'显然恒成立,所以2()1xf x e x =+-在定义域上单调递增,不满足条件②;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,当0x <时,3()f x x =-显然单调递减;当0x ≥时,3()1x f x e =-显然单调递增;满足条件②;对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,当0x ≤时,4()ln(1)f x x =-显然单调递减;当0x >时,4()2f x x =显然单调递增,满足条件②; 因此ACD 满足条件②;条件③当120x x <<且12x x =时,12x x -=,都有()()12f x f x <,即()()()()21220f x f x f x f x -=-->,对于21()xx f x ee x =--,()()212122211211x x x x f x f x e e e e x x -=-+--+()()()()22222222222222x x x x x x x x x e e e e e e e x e ----=----=-+-,因为222x x e e -+≥=,当且仅当22x x e e -=,即20x =时,等号成立, 又20x >,所以222x x e e -+>, 则()()()()2222122211222xx x x f x f x e ee e xx ----=--->令()xxg x e ex -=--,0x >,所以()1110x x e e g x -'=+->=>在0x >上显然恒成立,因此()xxg x e ex -=--在0x >上单调递增,所以()()00g x g >=,即()()()222121120xx f x f x e ex -->-->,所以()()1211f x f x >满足条件③;对于31,0(),0x e x f x x x ⎧-≥=⎨-<⎩,()()2232311211x xf x f x e x x e -=--=-+,令()1xh x e x =--,0x >,则()10xh x e '=->在0x >上显然恒成立,所以()()00h x h >=,则()()23231210xf x f x e x --=>-,即()()3231f x f x >满足条件③; 对于42,0()ln(1),0x x f x x x >⎧=⎨-≤⎩,()()()()212122442ln 12ln 1f x f x x x x x -=--=-+,令()()2ln 1u x x x =-+,0x >, 则()1221101u x x'=->-=>+在0x >上显然恒成立,所以()()00u x u >=, 则()()()1422422ln 10f x f x x x -=-+>,即()()1442f x f x >满足条件③; 综上,ACD 选项是“偏对称函数”, 故选:ACD. 【点睛】 思路点睛:求解此类函数新定义问题时,需要结合函数新定义的概念及性质,结合函数基本性质,利用导数的方法,通过研究函数单调性,值域等,逐项判断,即可求解.(有时也需要构造新的函数,进行求解.)4.关于函数()sin ,(,)x f e x x x π∈-=+∞+,下列结论正确的有( ) A .()f x 在(0,)+∞上是增函数 B .()f x 存在唯一极小值点0x C .()f x 在(,)π-+∞上有一个零点 D .()f x 在(,)π-+∞上有两个零点 【答案】ABD 【分析】根据函数()f x 求得()'f x 与()f x '',再根据()0f x ''>在(,)π-+∞恒成立,确定()'f x 在(,)π-+∞上单调递增,及(0,)x ∈+∞()0f x '>,且存在唯一实数03(,)42x ππ∈--,使0()=0f x ',从而判断A ,B 选项正确;再据此判断函数()f x 的单调性,从而判断零点个数.【详解】由已知()sin ,(,)x f e x x x π∈-=+∞+得()cos x f x e x '=+,()sin xf x e x ''=-,(,)x π∈-+∞,()0f x ''>恒成立,()'f x 在(,)π-+∞上单调递增,又3423()0,()0,(0)20422f e f e f ππππ--'''-=-<-=>=> (0,)x ∴∈+∞时()(0)0f x f ''>>,且存在唯一实数03(,)42x ππ∈--,使0()=0f x ',即00cos x e x =-,所以()f x 在(0,)+∞上是增函数,且()f x 存在唯一极小值点0x ,故A,B 选项正确. 且()f x 在0(,)x π-单调递减,0(,)x +∞单调递增,又()00f eππ--=+>,000000()sin sin cos )04x f x e x x x x π=+=-=-<,(0)10=>f ,所以()f x 在(,)π-+∞上有两个零点,故D 选项正确,C 选项错误.故选:ABD. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.5.设函数()()1x af x a x a =->的定义域为()0,∞+,已知()f x 有且只有一个零点,下列结论正确的有( ) A .a e =B .()f x 在区间()1,e 单调递增C .1x =是()f x 的极大值点D .()f e 是()f x 的最小值【答案】ACD 【分析】()f x 只有一个零点,转化为方程0x a a x -=在(0,)+∞上只有一个根,即ln ln x ax a=只有一个正根.利用导数研究函数ln ()xh x x=的性质,可得a e =,判断A ,然后用导数研究函数()x e f x e x =-的性质,求出()'f x ,令()0f x '=,利用新函数确定()'f x 只有两个零点1和e ,并证明出()'f x 的正负,得()f x 的单调性,极值最值.判断BCD .【详解】()f x 只有一个零点,即方程0x a a x -=在(0,)+∞上只有一个根,x a a x =,取对数得ln ln x a a x =,即ln ln x ax a=只有一个正根.设ln ()xh x x =,则21ln ()x h x x-'=,当0x e <<时,()0h x '>,()h x 递增,0x →时,()h x →-∞,x e >时,()0h x '<,()h x 递减,此时()0h x >,max 1()()h x h e e==. ∴要使方程ln ln x ax a =只有一个正根.则ln 1a a e =或ln 0a a<,解得a e =或0a <,又∵1a >,∴a e =.A 正确;()x e f x e x =-,1()x e f x e ex -'=-,1()0x e f x e ex -'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.设()(1)ln 1p x e x x =--+,1()1e p x x-'=-,当01x e <<-时,()0p x '>,()p x 递增,1x e >-时,()0p x '<,()p x 递减,(1)p e -是极大值,又(1)()0p p e ==, 所以()p x 有且只有两个零点,01x <<或x e >时,()0p x <,即(1)ln 1e x x -<-,11e x x e --<,1e x ex e -<,()0f x '>,同理1x e <<时,()0f x '<,所以()f x 在(0,1)和(,)e +∞上递增,在(1,)e 上递减,所以极小值为()0f e =,极大值为(1)f ,又(0)1f =,所以()f e 是最小值.B 错,CD 正确. 故选:ACD . 【点睛】关键点点睛:本题考用导数研究函数的零点,极值,单调性.解题关键是确定()'f x 的零点时,利用零点定义解方程,1()0xe f x e ex-'=-=,11x e e x --=,取对数得1(1)ln x e x -=-,易知1x =和x e =是此方程的解.然后证明方程只有这两个解即可.6.函数()ln f x x x =、()()f x g x x'=,下列命题中正确的是( ).A .不等式()0g x >的解集为1,e ⎛⎫+∞ ⎪⎝⎭B .函数()f x 在()0,e 上单调递增,在(,)e +∞上单调递减C .若函数()()2F x f x ax =-有两个极值点,则()0,1a ∈D .若120x x >>时,总有()()()2212122m x x f x f x ->-恒成立,则m 1≥【答案】AD 【分析】对A ,根据()ln f x x x =,得到()()ln 1f x xg x x x'+==,然后用导数画出其图象判断;对B ,()1ln f x x '=+,当x e >时,()0f x '>,当0x e <<时,()0f x '<判断;对C ,将函数()()2F x f x ax =-有两个极值点,()ln 120x a x+=+∞在,有两根判断;对D ,将问题转化为22111222ln ln 22m m x x x x x x ->-恒成立,再构造函数()2ln 2m g x x x x =-,用导数研究单调性. 【详解】对A ,因为()()()ln 1ln f x x f x x x g x x x'+===、, ()2ln xg x x-'=, 令()0g x '>,得()0,1x ∈,故()g x 在该区间上单调递增;令()0g x '<,得()1x ∈+∞,,故()g x 在该区间上单调递减. 又当1x >时,()0g x >,()10,11g g e ⎛⎫== ⎪⎝⎭, 故()g x 的图象如下所示:数形结合可知,()0g x >的解集为1,e ⎛⎫+∞ ⎪⎝⎭,故正确;对B ,()1ln f x x '=+,当x e >时,()0f x '>,当0x e <<时,()0f x '<,所以函数()f x 在()0,e 上单调递减,在(,)e +∞上单调递增,错误;对C ,若函数()()2F x f x ax =-有两个极值点,即()2ln F x x x ax =-有两个极值点,又()ln 21F x x ax '=-+,要满足题意,则需()ln 2100x ax -+=+∞在,有两根, 也即()ln 120x a x+=+∞在,有两根,也即直线()2y a y g x ==与的图象有两个交点. 数形结合则021a <<,解得102a <<. 故要满足题意,则102a <<,故错误; 对D ,若120x x >>时,总有()()()2212122m x x f x f x ->-恒成立, 即22111222ln ln 22m m x x x x x x ->-恒成立, 构造函数()2ln 2m g x x x x =-,()()12g x g x >,对任意的120x x >>恒成立, 故()g x ()0+∞,单调递增,则()ln 10g x mx x '=--≥()0+∞, 恒成立, 也即ln 1x m x+≤,在区间()0,∞+恒成立,则()max 1g x m =≤,故正确. 故选:AD. 【点睛】本题主要考查导数在函数图象和性质中的综合应用,还考查了数形结合的思想、转化化归思想和运算求解的能力,属于较难题.7.已知函数1()2ln f x x x=+,数列{}n a 的前n 项和为n S ,且满足12a =,()()*1N n n a f a n +=∈,则下列有关数列{}n a 的叙述正确的是( )A .21a a <B .1n a >C .100100S <D .112n n n a a a +⋅+<【答案】AB 【分析】A .计算出2a 的值,与1a 比较大小并判断是否正确;B .利用导数分析()f x 的最小值,由此判断出1n a >是否正确;C .根据n a 与1的大小关系进行判断;D .构造函数()()1ln 11h x x x x=+->,分析其单调性和最值,由此确定出1ln 10n n a a +->,将1ln 10n na a +->变形可得112n n a a ++>,再将112n n a a ++>变形可判断结果. 【详解】A 选项,3221112ln 2ln 4ln 2222a e =+=+<+=,A 正确; B 选项,因为222121()x f x x x x='-=-,所以当1x >时,()0f x '>,所以()f x 单增,所以()(1)1f x f >=, 因为121a =>,所以()11n n a f a +=>,所以1n a >,B 正确;C 选项,因为1n a >,所以100100S >,C 错误;D 选项,令1()ln 1(1)h x x x x =+->,22111()0x h x x x x-='=->, 所以()h x 在(1,)+∞单调递增,所以()(1)0h x h >=,所以1ln 10n n a a +->, 则22ln 20n n a a +->,所以112ln 2n n n a a a ⎛⎫++> ⎪⎝⎭,即112n n a a ++>, 所以112n n n a a a ++>,所以D 错误.故选:AB.【点睛】易错点睛:本题主要考查导数与数列的综合问题,属于难题.解决该问题应该注意的事项: (1)转化以函数为背景的条件时,应该注意题中的限制条件,如函数的定义域,这往往是很容易被忽视的问题;(2)利用函数的方法研究数列中的相关问题时,应准确构造相应的函数,注意数列中相关限制条件的转化.8.下列命题正确的有( )A .已知0,0a b >>且1a b +=,则1222a b -<<B .34a b ==a b ab+= C .323y x x x =--的极大值和极小值的和为6-D .过(1,0)A -的直线与函数3y x x =-有三个交点,则该直线斜率的取值范围是1(,2)(2,)4-+∞ 【答案】ACD【分析】由等式关系、指数函数的性质可求2a b -的范围;利用指对数互化,结合对数的运算法求a b ab+;利用导数确定零点关系,结合原函数式计算极值之和即可;由直线与3y x x =-有三个交点,即可知2()h x x x k =--有两个零点且1x =-不是其零点即可求斜率范围.【详解】A 选项,由条件知1b a =-且01a <<,所以21(1,1)a b a -=-∈-,即1222a b -<<;B 选项,34a b ==log a =4log b =1212112(log 3log 4)2a b ab a b+=+=+=; C 选项,2361y x x '=--中>0∆且开口向上,所以存在两个零点12,x x 且122x x +=、1213x x =-,即12,x x 为y 两个极值点, 所以2212121212121212()[()3]3[()2]()6y y x x x x x x x x x x x x +=++--+--+=-; D 选项,令直线为(1)y k x =+与3y x x =-有三个交点,即2()()(1)g x x x k x =--+有三个零点,所以2()h x x x k =--有两个零点即可∴140(1)20k h k ∆=+>⎧⎨-=-≠⎩,解得1(,2)(2,)4k ∈-+∞ 故选:ACD【点睛】本题考查了指对数的运算及指数函数性质,利用导数研究极值,由函数交点情况求参数范围,属于难题.。

导数及其应用测试题(有详细答案)

导数及其应用测试题(有详细答案)

《导数及其应用》一、选择题1.0()0f x '=是函数()f x 在点0x 处取极值的:A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 2、设曲线21y x =+在点))(,(x f x 处的切线的斜率为()g x ,则函数()cos y g x x =的部分图象可以为A. B. C. D.3.在曲线y =x 2上切线的倾斜角为π4的点是( )A .(0,0)B .(2,4) C.⎝ ⎛⎭⎪⎫14,116D.⎝ ⎛⎭⎪⎫12,14 4.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( )A .a =1,b =1B .a =-1,b =1C .a =1,b =-1D .a =-1,b =-1 5.函数f (x )=x 3+ax 2+3x -9,已知f (x )在x =-3时取得极值,则a 等于( )A .2B .3C .4D .56. 已知三次函数f (x )=13x 3-(4m -1)x 2+(15m 2-2m -7)x +2在x ∈(-∞,+∞)是增函数,则m 的取值范围是( )A .m <2或m >4 B .-4<m <-2 C .2<m <4 D .以上皆不正确7. 直线y x =是曲线ln y a x =+的一条切线,则实数a 的值为A .1- B .e C .ln 2 D .1 8. 若函数)1,1(12)(3+--=k k x x x f 在区间上不是单调函数,则实数k 的取值范围( ) A .3113≥≤≤--≤k k k 或或 B .3113<<-<<-k k 或C .22<<-kD .不存在这样的实数k9. 10.函数()f x 的定义域为(),a b ,导函数()f x '在(),a b 内的图像如图所示, 则函数()f x 在(),a b 内有极小值点A .1个B .2个C .3个D .4个10.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数x 都有()0f x ≥,则(1)'(0)f f 的最小值为A .3 B .52 C .2 D .32Ox xx xyyyyOO O二、填空题 11.函数sin xy x=的导数为_________________ 12、已知函数223)(a bx ax x x f +++=在x=1处有极值为10,则f (2)等于____________. 13.函数2cos y x x =+在区间[0,]2π上的最大值是14.已知函数3()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 15. 已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,)()(2>-'x x f x f x )(0>x ,则不等式0)(2>x f x 的解集是三、解答题16. 设函数f (x )=sin x -cos x +x +1,0<x <2π,求函数f (x )的单调区间与极值.17. 已知函数3()3f x x x =-.(Ⅰ)求)2(f '的值;(Ⅱ)求函数()f x 的单调区间.18. 设函数R x x x x f ∈+-=,56)(3. (1)求)(x f 的单调区间和极值;(2)若关于x 的方程a x f =)(有3个不同实根,求实数a 的取值范围. (3)已知当)1()(,),1(-≥+∞∈x k x f x 时恒成立,求实数k 的取值范围.19. 已知1x =是函数32()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈< (1)求m 与n 的关系式; (2)求()f x 的单调区间;(3)当[1,1]x ∈-,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围。

导数的练习题及答案

导数的练习题及答案

导数的练习题及答案导数是微积分中的一个重要概念,它描述了函数在某一点上的变化率。

掌握导数的概念对于解决各种数学和物理问题至关重要。

在这篇文章中,我们将给出一些关于导数的练习题及其答案,帮助读者更好地理解和应用导数。

练习题一:求函数 $f(x) = 2x^3 - 5x^2 + 3x - 1$ 在 $x = 2$ 处的导数。

解答一:根据导数的定义,我们知道导数可以通过函数的极限来求解。

在这个例子中,我们可以使用直接求导的方法来计算导数。

首先,我们对每一项使用求导法则。

对于 $2x^3$,它的导数是$6x^2$;对于 $-5x^2$,它的导数是 $-10x$;对于 $3x$,它的导数是$3$;对于常数项 $-1$,它的导数是 $0$。

然后,将这些导数相加,得到函数 $f(x)$ 的导数 $f'(x)$。

所以,$f'(x) = 6x^2 - 10x + 3$。

接下来,我们求函数 $f(x)$ 在 $x = 2$ 处的导数。

将 $x$ 替换为 $2$,得到 $f'(2) = 6(2)^2 - 10(2) + 3 = 28$。

所以,函数 $f(x) = 2x^3 - 5x^2 + 3x - 1$ 在 $x = 2$ 处的导数为 $f'(2) = 28$。

练习题二:求函数 $y = e^x \sin(x)$ 的导数。

解答二:这个问题涉及到两个函数的乘积,所以我们需要使用乘积规则来求解。

首先,我们将函数 $y = e^x \sin(x)$ 分解为两个函数的乘积:$y =u(x) v(x)$,其中 $u(x) = e^x$,$v(x) = \sin(x)$。

然后,我们求出每个函数的导数。

对于 $u(x) = e^x$,它的导数仍然是 $e^x$;对于 $v(x) = \sin(x)$,它的导数是 $\cos(x)$。

根据乘积规则,函数 $y$ 的导数为 $y' = u'v + uv'$。

导数及应用专题练习作业含答案

导数及应用专题练习作业含答案

小题专练·作业(十二)一、选择题1.(2014·福建质检)若执行如图所示的程序框图,则输出的M 的值是()A .2B .-1 C.12 D .-2答案 B解析 当i =1时,1<5成立,M =11-2=-1;当i =2时,2<5成立,M =11-(-1)=12;当i =3时,3<5成立,M =11-12=2;当i=4时,4<5成立,M =11-2=-1;当i =5时,5<5不成立,所以输出的M =-1.故选B.2.(2014·湖北重点中学模拟)如图是某几何体的三视图,则该几何体的表面积为( )A .80+162+16 3B .80+122+16 3C .80+162+12 3D .80+122+12 3答案 A解析 由三视图可知,该几何体上部为一条侧棱与中部正方体上表面垂直的四棱锥,下部为以正方体下表面为底面且侧面上底边高为23的正四棱锥.总体表面积S =(2×12×4×4+2×12×4×42)+4×4×4+4×12×4×23=80+162+163,故选A.3.(2014·潍坊五校联考)已知直线(m +2)x +(m +1)y +1=0上存在点(x ,y )满足⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥1,则实数m 的取值范围为( )A .[-53,+∞) B .(-∞,-53] C .[-1,12] D .[-14,12]答案 B解析 作出不等式组所表示的可行域如图中阴影部分所示,又直线l :(m +2)x +(m +1)y +1=0过定点(-1,1),结合图形可知,点(1,2),(1,-1)在直线l 的两侧或其中一点在l 上,即[(m +2)×1+(m +1)×2+1]·[(m +2)×1+(m +1)×(-1)+1]≤0,解得m ≤-53.4.(2014·山东名校联考)执行如图所示的程序框图,若输出的结果是8,则判断框内m 的取值范围是( )A.(30,42] B.(42,56]C.(56,72] D.(30,72]答案 B解析第一次运行S=2×1,k=2;第二次运行S=2×1+2×2,k=3;…;当输出结果是8时,此时S=2×1+2×2+…+2×7=56,故m≤56,并且m>2×1+2×2+…+2×6=42,综上可知m的取值范围是(42,56].5.(2014·南昌质检)某几何体的三视图如图所示,则该几何体的体积的最大值为()A .1 B.16 C.13 D.12答案 D解析 由三视图可知该几何体为三棱锥,设此三棱锥的高为x ,则主视图中的长为6-x 2,所以所求体积V =13×(12×6-x 2×1)x=16(6-x 2)x 2≤16×6-x 2+x 22=12,当且仅当`6-x 2=x ,即x =3时取等号,所以该几何体的体积的最大值为12.6.(2014·临沂4月联考)执行如图所示的程序框图,若输出的值S =16,则输入自然数n 的最小值应等于( )A.7 B.8C.9 D.10答案 C解析根据程序框图可知:i=2,k=1,S=1,进入循环体后,循环次数,S,i,k的值变化如下:第3次循环后,i=8,应满足条件“i<n”,则自然数n≥9,第4次循环后,S=16,i=10,应退出循环,不满足条件“i<n”,则自然数n≤10,∴9≤n≤10,最小的自然数n的值应等于9.7.(2014·黄冈统一调研)已知点A(3,3),O为坐标原点,点P(x,y )的坐标x ,y 满足⎩⎪⎨⎪⎧3x -y ≤0,x -3y +2≥0,y ≥0则向量OP →在向量OA →方向上的投影的取值范围是( )A .[0,3]B .[-3,3]C .[-3,3]D .[-3,3]答案 D解析 首先作出可行域,如图中阴影部分所示,那么点P 即在此区域内移动.我们需要对投影有一个清醒认识,首先投影是一个标量,但是它有正负之分,所以当点P 运动到点E 处时,它在向量OA →上的投影即为最大值3,同理,当点P 运动到点B 处时,它在向量OA →上的投影即为最小值- 3.8.(2014·湖南)执行如图所示的程序框图,若输入的t ∈[-2,2],则输出的S 属于( )A.[-6,-2] B.[-5,-1]C.[-4,5] D.[-3,6]答案 D解析由程序框图知,当0≤t≤2时,输出S=t-3,此时S∈[-3,-1];当-2≤t<0时,执行t=2t2+1后1<t≤9,执行1<t≤9时,输出S=t-3,此时S∈(-2,6].因此输出S的值属于[-3,6].9.(2014·江西十校联考)多面体MN-ABCD的底面ABCD为矩形,其正视图和侧视图如图,其中正视图为等腰梯形,侧视图为等腰三角形,则该多面体的体积是()A.16+33B.8+633C.163D.203答案 D解析 将多面体分割成一个三棱柱和一个四棱锥,如图所示,因为正视图为等腰梯形,侧视图为等腰三角形,所以四棱锥底面BCFE 为正方形,S BCFE =2×2=4,四棱锥的高为2,所以V N -BCFE =13×4×2=83.可以将三棱柱补成直三棱柱,则V ADM -EFN =12×2×2×2=4,所以多面体的体积为203,故选D.10.(2014·武汉质检)已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y +3≥0,x -3y +3≤0,y -1≤0,若目标函数z =y -ax 仅在点(-3,0)处取得最大值,则实数a 的取值范围为( )A .(3,5)B .(12,+∞) C .(-1,2)D .(13,1)答案 B解析 如图所示,在坐标平面内作出题设中的不等式组表示的平面区域及直线y -ax =0,要使目标函数z =y -ax 仅在点(-3,0)处取到最大值(即直线z =y -ax 仅当经过该平面区域内的点(-3,0)时,相应的直线在y 轴上的截距才达到最大),结合图形可知a >12,故选B.11.(2014·湖南)一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4答案 B解析 将几何体的三视图还原为直观图.由三视图可知该几何体是一个直三棱柱,如图所示.由题意知,当打磨成的球的大圆恰好与三棱柱底面直角三角形的内切圆相同时,该球的半径最大,故其半径r =12×(6+8-10)=2.因此选B.二、填空题12.(2014·荆州质检二)已知a 为如图所示的程序框图中输出的结果,则二项式(a x -1x)6的展开式中常数项是________.答案 -160解析 逐次计算,a =2,i =1;a =-1,i =2;a =12,i =3;a =2,i =4;…,由此可以看出a 值的出现是周期性的,且以3为周期,输出的是i =2 014时的a 值,2 014=671×3+1,故输出的a =2,所以(a x -1x )6=(2x -1x )6.展开式的通项是T r +1=C r 6(2x )6-r (-1x)r =(-1)r 26-r C r 6x 3-r ,当r =3时为常数项,即常数项为T 4=-8C 36=-160.13.(2014·北京)若x ,y 满足⎩⎪⎨⎪⎧ y ≤1,x -y -1≤0,x +y -1≥0,则z =3x +y 的最小值为________.答案 1解析作出可行域,作直线l:y=-3x并平移寻找最优解.由线性约束条件画出可行域为如图所示的△ABC内部区域(包括边界).由z=3x+y变形得y=-3x+z,作直线l:y=-3x并平移,当直线平移至过点A(0,1)时,z取得最小值,且最小值z=3×0+1=1.14.(2014·威海质检)执行如图所示的程序框图,若输出a的值大于2014,判断框内为k≤m,则整数m的最小值为________.答案10解析第一次循环:k=1,a=2,满足条件,所以a=5×2+1=11,k=1+2=3;第二次循环:a=11<2 014,故要继续循环,所以a=5×11+3=58,k=3+2=5;第三次循环:a=58<2 014,故要继续循环,所以a=5×58+5=295,k=5+2=7;第四次循环:a=295<2 014,故要继续循环,所以a=5×295+7=1 482,k=7+2=9;第五次循环:a=1 482<2 014,故要继续循环,所以a=5×1 482+9=7 419,k=9+2=11.因为此时a=7 419>2 014,故符合题设条件,输出a值,此时k=11.所以整数m的最小值为10.15.(2014·天津)一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m3.答案 20π3解析 根据三视图还原出几何体,利用圆柱和圆锥的体积公式求解.根据三视图知,该几何体上部是一个底面直径为4,高为2的圆锥,下部是一个底面直径为2,高为4的圆柱.故该几何体的体积V =13π×22×2+π×12×4=20π3.16.(2014·济南模拟)设目标函数z =x +ay 的可行域是△ABC 的内部及边界,其中A (1,0),B (3,1),C (2,3),若目标函数取得最小值的最优解有无数多个,则y x -a的最大值为________. 答案 97解析 由题意知,最优解应在线段AC 上取到,故x +ay =0应与直线AC 平行.∵k AC =3-02-1=3,∴-1a =3,∴a =-13,∴y x -a =y -0x -(-13)表示点P (-13,0)与可行域内的点Q (x ,y )连线的斜率,由图得,当点Q 与点C (2,3)重合时,y x -a 取得最大值,最大值是3-02-(-13)=97.17.(2014·宜昌一模)设x ,y 满足约束条件⎩⎪⎨⎪⎧ x -2y +3≥0,2x -3y +4≤0,y ≥0,若目标函数z =ax +by (其中a >0,b >0)的最大值为3,则1a +2b 的最小值为________.答案 3解析 作出可行域,由z =ax +by (a >0,b >0),得y =-a b x +z b .所以直线的斜率-a b <0,直线截距越大,z 越大.作出直线y =-a b x +z b ,由图像可知,当直线y =-a b x +z b 经过点A 时,截距最大,此时z =3,由⎩⎨⎧ x -2y +3=0,2x -3y +4=0,得⎩⎨⎧ x =1,y =2,代入直线z=ax +by ,得a +2b =3,即a 3+2b 3=1.所以1a +2b =(1a +2b )(a 3+2b 3)=13+43+2a 3b +2b 3a ≥53+22a 3b ×2b 3a =53+43=3,当且仅当2a 3b =2b 3a ,即a =b 时取等号,所以1a +2b 的最小值为3.。

导数应用作业(及答案)

导数应用作业(及答案)

导数及其应用训练题一一、选择题1.用总长14.8m 的钢条制作一个长方体容器的框架,若容器底面的长比宽多0.5m ,要使它的容积最大,则容器底面的宽为( ) A .0.5m B .0.7m C .1m D .1.5m 2.已知曲线1()n f x x +=*()n N ∈与直线1x =交于点P ,若设曲线()y f x =在点P 处的切线与x 轴交点的横坐标为n x ,则129lg lg lg x x x +++ 的值为( ) A .1-B .1C .2-D .23.曲线23y x x =+在点(2,10)A 处的切线的斜率k 是( )A .4B .5C .6D .74.物体运动方程为4134S t =-,则2t =时瞬时速度为( ) A .2 B .4 C . 6D .85.已知xf x f x x f x ∆-∆+=→∆)2()2(lim,1)(0则的值是( ) A . 41 B . 2 C . 41-D . -26.设()f x 是R 上的可导函数,且满足()()f x f x >',对任意的正实数a ,下列不等式恒成立的是( )A .()(0)a f a e f <B . ()(0)a f a e f >C .(0)()a f f a e< D .(0)()a f f a e>7.函数cos 2y x =在点(,0)4π处的切线方程是( )A .024=++πy xB .440x y π+-=C .024=--πy xD .024=-+πy x8.已知函数2()21f x x =-的图象上一点(1,1)及邻近一点,1(1)x y ∆++∆,则yx∆∆等于( ) A .4B .4x ∆C .42x +∆D .242x +∆二、填空题9.已知函数)(x f 的导函数为)(x f ',且满足)5(23)(2f x x x f '+=则)5(f '= .10.若函数32()4f x x x ax =+--在区间()1,1-恰有一个极值点,则实数a 的取值范围为____________11.已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是________.12.已知为常数)a a x x x f (62)(23+-= 在[-2,2]上有最小值3,那么)(x f 在[-2,2]上的最大值是三、解答题13.已知函数1()ln xf x x ax-=+ (1)若函数()f x 在[1,+∞)上为增函数,求正实数a 的取值范围; (2)当1a =时,求()f x 在[1,e e]上的最大值和最小值;14.已知函数f(x)=x 3+mx 2+nx -2的图象过点(-1,-6),且函数g(x)=()x f '+6x 的图象关于y 轴对称.(1)求m 、n 的值及函数y =f(x)的单调区间;(2)若a>0,求函数y =f(x)在区间 (a -1,a +1)内的极值.15.已知函数e ().1axf x x =-(I ) 当1a =时,求曲线()f x 在(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 的单调区间.16.已知:函数)1ln(21)(2x ax x x f +--=,其中R a ∈. (Ⅰ)若2x =是)(x f 的极值点,求a 的值; (Ⅱ)求)(x f 的单调区间; (Ⅲ)若)(x f 在[0,)+∞上的最大值是0,求a 的取值范围.17.已知函数21()22f x ax x =+,()g x lnx =. (1)如果函数()y f x =在[1,)+∞上是单调增函数,求a 的取值范围; (2)是否存在实数0a >,使得方程()()(21)g x f x a x '=-+在区间1(,)e e内有且只有两个不相等的实数根?若存在,请求出a 的取值范围;若不存在,请说明理由.18.已知()ln f x x x =,2()3g x x mx =-+-.(1)求()f x 在[],2(0)t t t +>上的最小值;(2)若对一切()0,x ∈+∞,2()()f x g x ≥成立,求实数m 的取值范围.导数及其应用训练题一一、选择题1.用总长14.8m 的钢条制作一个长方体容器的框架,若容器底面的长比宽多0.5m ,要使它的容积最大,则容器底面的宽为( ) A .0.5m B .0.7m C .1m D .1.5m 【答案】C 2.已知曲线1()n f x x +=*()n N ∈与直线1x =交于点P ,若设曲线()y f x =在点P 处的切线与x 轴交点的横坐标为n x ,则129lg lg lg x x x +++ 的值为( ) A .1-B .1C .2-D .2【答案】A3.曲线23y x x =+在点(2,10)A 处的切线的斜率k 是( )A .4B .5C .6D .7【答案】D4.物体运动方程为4134S t =-,则2t =时瞬时速度为( ) A .2 B .4 C . 6D .8 【答案】D5.已知xf x f x x f x ∆-∆+=→∆)2()2(lim,1)(0则的值是( ) A . 41 B . 2 C . 41-D . -2 【答案】C6.设()f x 是R 上的可导函数,且满足()()f x f x >',对任意的正实数a ,下列不等式恒成立的是( )A .()(0)a f a e f <B . ()(0)a f a e f >C .(0)()a f f a e< D .(0)()a f f a e>【答案】B 7.函数cos 2y x =在点(,0)4π处的切线方程是( )A .024=++πy xB .440x y π+-=C .024=--πy xD .024=-+πy x 【答案】D8.已知函数2()21f x x =-的图象上一点(1,1)及邻近一点,1(1)x y ∆++∆,则yx∆∆等于( ) A .4B .4x ∆C .42x +∆D .242x +∆【答案】C 第Ⅱ卷(非选择题 共90分)二、填空题9.已知函数)(x f 的导函数为)(x f ',且满足)5(23)(2f x x x f '+=则)5(f '= .【答案】-3010.若函数32()4f x x x ax =+--在区间()1,1-恰有一个极值点,则实数a 的取值范围为____________ 【答案】[1,5)11.已知函数f (x )=e x -2x +a 有零点,则a 的取值范围是________.解析:由原函数有零点,可转化为方程e x -2x +a =0有解,即方程a =2x -e x 有解.令函数g (x )=2x -e x ,则g ′(x )=2-e x ,令g ′(x )>0,得x <ln 2,所以g (x )在(-∞,ln 2)上是增函数,在(ln 2,+∞)上是减函数,所以g (x )的最大值为g (ln 2)=2ln 2-2.因此,a 的取值范围就是函数g (x )的值域,所以a 的取值范围为(-∞,2ln 2-2].12.已知为常数)a a x x x f (62)(23+-= 在[-2,2]上有最小值3,那么)(x f 在[-2,2]上的最大值是 【答案】43 三、解答题13.已知函数1()ln xf x x ax-=+(1)若函数()f x 在[1,+∞)上为增函数,求正实数a 的取值范围; (2)当1a =时,求()f x 在[1,e e]上的最大值和最小值;【答案】(1)由已知得'21()(0)ax x a ax -=ƒ> 依题意得:210ax ax-≥对一切的x ≥1 都成立 即10[1,)ax -≥∈+对一切x ∞恒成立,也就是1[1,)a x ≥∈+对一切x ∞恒成立,∴max 1()1a x≥=(2)当'2111(),[,]x a f x x e x e -==∈时,若1[,1)x e∈则'()0,f x <若(1,]x e ∈则'()0f x >故1x =是()f x 在区间1[,]e e上的惟一极小值点,也是最小值点,故min ()(1)0f x f ==;1111()2,()22f e f e e e =-= ><,∴ ()f x 在 1[,]e e上最大值为e-2综上知函数()f x 区间 1[,]e e上最大值是e-2,最小值是014.已知函数f(x)=x 3+mx 2+nx -2的图象过点(-1,-6),且函数g(x)=()x f '+6x 的图象关于y 轴对称.(1)求m 、n 的值及函数y =f(x)的单调区间;(2)若a>0,求函数y =f(x)在区间 (a -1,a +1)内的极值.【答案】(1)由函数f(x)的图象过点(-1,-6),得m -n =-3.①由f(x)=x 3+mx 2+nx -2,得()x f '=3x 2+2mx +n ,则g(x)=()x f '+6x =3x 2+(2m +6)x +n.而g(x)的图象关于y 轴对称,所以-2m +62×3=0,解得 m =-3.代入①得n =0.于是()x f '=3x 2-6x =3x(x -2).由()x f '>0得x>2或x<0,故f(x)的单调递增区间是(-∞,0),(2,+∞);由()x f '<0,得0<x<2,故f(x)的单调递减区间是(0,2). (2)由(1)得()x f '=3x(x -2),令()x f '=0得x =0或x =2. 当x 变化时,()x f ',f(x)的变化情况如下表:由此可得:当0<a<1时,f(x)在(a -1,a +1)内有极大值f(0)=-2,无极小值; 当a =1时,f(x)在(a -1,a +1)内无极值;当1<a<3时,f(x)在(a -1,a +1)内有极小值f(2)=-6,无极大值;当a ≥3时,f(x)在(a -1,a +1)内无极值.综上得,当0<a<1时,f(x)有极大值-2,无极小值;当1<a<3时,f(x)有极小值-6,无极大值;当a =1或a ≥3时,f(x)无极值.15.已知函数e ().1axf x x =-(I ) 当1a =时,求曲线()f x 在(0,(0))f 处的切线方程;(Ⅱ)求函数()f x 的单调区间.【答案】当1a =时,e ()1axf x x =-,2e (2)'()(1)x xf x x -=- 又(0)1f =-,'(0)2f =-,所以()f x 在(0,(0))f 处的切线方程为21y x =--(II )2e [(1)]'()(1)ax ax a f x x -+=-当0a =时,21'()0(1)f x x -=<-,又函数的定义域为{|1}x x ≠ 所以 ()f x 的单调递减区间为(,1),(1,)-∞+∞ 当 0a ≠时,令'()0f x =,即(1)0ax a -+=,解得1a x a +=当0a >时,11a x a+=>,所以()f x ',()f x 随x 的变化情况如下表所以()f x 的单调递减区间为(,1)-∞,1(1,)a a +,单调递增区间为1(,)a a++∞ 当0a <时,11a x a+=<所以()f x ',()f x 随x 的变化情况如下表:所以()f x 的单调递增区间为1(,)a a +-∞,单调递减区间为1(,1)a a+,(1,)+∞ 16.已知:函数)1ln(21)(2x ax x x f +--=,其中R a ∈.(Ⅰ)若2x =是)(x f 的极值点,求a 的值;(Ⅱ)求)(x f 的单调区间; (Ⅲ)若)(x f 在[0,)+∞上的最大值是0,求a 的取值范围.【答案】(Ⅰ)(1)(),(1,)1x a ax f x x x --'=∈-+∞+. 依题意,令(2)0f '=,解得 13a =.经检验,13a =时,符合题意. (Ⅱ)解:① 当0=a 时,()1xf x x '=+. 故)(x f 的单调增区间是(0,)+∞;单调减区间是)0,1(-.② 当0a >时,令()0f x '=,得10x =,或211x a=-.当10<<a 时,()f x 与()f x '的情况如下:所以,()f x 的单调增区间是1(0,1)a -;单调减区间是)0,1(-和1(1,)a-+∞. 当1=a 时,)(x f 的单调减区间是),1(+∞-. 当1a >时,210x -<<,()f x 与()f x '的情况如下:所以,()f x 的单调增区间是1(1,0)a -;单调减区间是1(1,1)a--和(0,)+∞. ③ 当0<a 时,)(x f 的单调增区间是(0,)+∞;单调减区间是)0,1(-. 综上,当0a ≤时,)(x f 的增区间是(0,)+∞,减区间是)0,1(-;当10<<a 时,()f x 的增区间是1(0,1)a-,减区间是)0,1(-和1(1,)a-+∞;当1=a 时,)(x f 的减区间是),1(+∞-; 当1a >时,()f x 的增区间是1(1,0)a -;减区间是1(1,1)a--和(0,)+∞.(Ⅲ)由(Ⅱ)知 0a ≤时,)(x f 在(0,)+∞上单调递增,由0)0(=f ,知不合题意.当10<<a 时,)(x f 在(0,)+∞的最大值是1(1)f a -,由1(1)(0)0f f a->=,知不合题意. 当1≥a 时,)(x f 在(0,)+∞单调递减,可得)(x f 在[0,)+∞上的最大值是0)0(=f ,符合题意. 所以,)(x f 在[0,)+∞上的最大值是0时,a 的取值范围是[1,)+∞.17.已知函数21()22f x ax x =+,()g x lnx =. (1)如果函数()y f x =在[1,)+∞上是单调增函数,求a 的取值范围;(2)是否存在实数0a >,使得方程()()(21)g x f x a x '=-+在区间1(,)e e内有且只有两个不相等的实数根?若存在,请求出a 的取值范围;若不存在,请说明理由. 【答案】(Ⅰ)当0a =时,()2f x x =在[1,)+∞上是单调增函数,符合题意.当0a >时,()y f x =的对称轴方程为2x a =-,由于()y f x =在[1,)+∞上是单调增函数,所以21a-≤,解得2a ≤-或0a >,所以0a >.当0a <时,不符合题意. 综上,a 的取值范围是0a ≥.(Ⅱ)把方程()()(21)g x f x a x '=-+整理为2(21)lnxax a x=+-+,即为方程2(12)0ax a x lnx +--=. 设2()(12)H x ax a x lnx =+-- (0)x >,原方程在区间(1,e e)内有且只有两个不相等的实数根, 即为函数()H x 在区间(1,e e)内有且只有两个零点.1()2(12)H x ax a x'=+--22(12)1(21)(1)ax a x ax x x x +--+-== 令()0H x '=,因为0a >,解得1x =或12x a=-(舍)当(0,1)x ∈时, ()0H x '<, ()H x 是减函数;当(1,)x ∈+∞时, ()0H x '>,()H x 是增函数.()H x 在(1,e e )内有且只有两个不相等的零点, 只需min 1()0,()0,()0,H e H x H e ⎧>⎪⎪<⎨⎪>⎪⎩即2222212(12)10,(1)(12)10,(12)1(2)(1)0,a a a e a e e e e H a a a ae a e e e a e ⎧--++++=>⎪⎪⎪=+-=-<⎨⎪+--=-+->⎪⎪⎩∴22,211,1,2e e a e a e a e e ⎧+<⎪-⎪⎪>⎨⎪-⎪>-⎪⎩解得2121e e a e +<<-, 所以a 的取值范围是(21,21e ee +-) .18.已知()ln f x x x =,2()3g x x mx =-+-.(1)求()f x 在[],2(0)t t t +>上的最小值;(2)若对一切()0,x ∈+∞,2()()f x g x ≥成立,求实数m 的取值范围.【答案】(Ⅰ)()ln 1f x x '=+,令1()0f x x e '==,得.当10,,()0,()x f x f x e ⎛⎫'∈< ⎪⎝⎭单调递减;当1,,()0,()x f x f x e ⎛⎫'∈+∞> ⎪⎝⎭单调递增.10,22t t e >+>>因为,(1)当min 1110()t f x f e e e ⎛⎫<<==- ⎪⎝⎭时,;(2)当min 1()()ln .t f x f t t t e ==≥时,所以min11,0,()1ln ,.t e ef x t t t e ⎧-<<⎪⎪=⎨⎪⎪⎩≥ (Ⅱ)由22ln 3x x x mx -+-≥得32ln m x x x ++≤. 设3()2ln (0)h x x x x x =++>,则2(3)(1)()x x h x x+-'=. 令()0h x '=,得1x =或3x =-(舍),当(0,1)x ∈时,()0h x '<,h(x)单调递减;当(1,)x ∈+∞时,()0h x '>,h(x)单调递增,所以min ()(1) 4.h x h == 所以min () 4.m h x =≤导数及其应用训练题二一、选择题1.曲线423+-=x x y 在点()3,1处的切线的倾斜角为( )A .30°B .45°C .60°D . 120°2.如果)(x f '是二次函数, 且 )(x f '的图象开口向上,顶点坐标为(1,3), 那么曲线)(x f y =上任一点的切线的倾斜角α的取值范围是( ) A .]3,0(πB .)2,3[ππC .]32,2(ππ D .),3[ππ3.若a>0, b>0, 且函数f(x)=4x 3-ax 2-2bx+2在x=1处有极值,则ab 的最大值等于( )A . 2B . 3C . 6D . 94.已知a 为实数,函数))(23()(2a x x x f ++=,若函数f(x)的图象上有与x 轴平行的切线,则a 的取值范围是( ) A .[)+∞--∞,2)223,(B .(]),223(2,+∞-∞- C .⎥⎦⎤ ⎝⎛-∞-223,D .),223(223,+∞⎥⎦⎤⎝⎛-∞- 5.已知函数x x x f 2cos )(⋅=,则)(x f 的导函数=)('x f ( )A . x x x 2sin 22cos -B . x x x 2sin 2cos -C . x x x 2sin 22cos +D . x x x 2sin 2cos +6.若函数f(x)在定义域R 内可导,f(1+x)=f(1-x),且当x ∈(-∞,1)时,()x -1()f x '>0 , 设(),(),()a f b f c f 3=0==32,则( )A .a b c <<B .c a b <<C .c b a <<D .b a c <<7.已知函数()2ln 38,f x x x =+则0(12)(1)lim x f x f x∆→-∆-∆的值为( )A .-20B .-10C .10D .208.设函数32sin ()tan 32f x x x θθθ=++,其中θ∈⎣⎡⎦⎤0,5π12,则导数)1(f '的取值范围是( )A .[-2,2]B .[2,3]C .[3,2]D .[2,2]二、填空题9.若函数3()f x ax x =+恰有3个单调区间,则a 的取值范围为10.函数sin ()2cos xf x x=+的单调区间减函数为11.函数|3|)(23t x x x f --= ]4,0[,∈x 的最大值记为g(t),当t 在实数范围内变化时g(t)最小值为 12.函数f (x )=e x+ln x ,g (x )=e -x+ln x ,h (x )=e -x-ln x 的零点分别是a ,b ,c ,则它们的大小关系为三、解答题13.某工厂生产某种儿童玩具,每件玩具的成本为30元,并且每件玩具的加工费为t 元(其中t 为常数,且25t ≤≤),设该工厂每件玩具的出厂价为x 元(3541x ≤≤),根据市场调查,日销售量与x e (e 为自然对数的底数)成反比例,当每件玩具的出厂价为40元时,日销售量为10件. (Ⅰ)求该工厂的日利润y (元)与每件玩具的出厂价x 元的函数关系式; (Ⅱ)当每件玩具的日售价为多少元时,该工厂的利润y 最大,并求y 的最大值.14.设函数2)1()(ax e x x f x --=(1)若a=21,求)(x f 的单调区间;(2)若当0≥x 时,0)(≥x f ,求a 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小题专练·作业(十七)一、选择题1.(2014·陕西)定积分⎠⎛01(2x +e x )d x 的值为( )A .e +2B .e +1C .eD .e -1答案 C解析 ⎠⎛01(2x +e x )d x =(x 2+e x )|10=(1+e )-(0+e 0)=e ,因此选C .2.(2014·大纲全国)曲线y =x e x -1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1答案 C解析 利用导数的几何意义求解.y ′=e x -1+x e x -1=(x +1)e x -1,故曲线在点(1,1)处的切线斜率为y ′|x =1=2.3.(2014·烟台训练)函数f(x)=ln x -12x 2的大致图像是()答案 B解析 易知函数f(x)的定义域为(0,+∞),f ′(x)=1x -x =1-x 2x .当0<x<1时,f ′(x)>0;当x>1时,f ′(x)<0.所以f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,所以f(x)max =f(1)=-12,故结合图像可知选B .4.已知函数f(x)的定义域为[-1,5],部分对应值如下表.f(x)的导函数y =f ′(x)的图像如图所示.下列关于函数f(x)的命题: ①函数y =f(x)是周期函数; ②函数f(x)在[0,2]上是减函数;③如果当x ∈[-1,t]时,f(x)的最大值是2,那么t 的最大值为4; ④当1<x<2时,函数y =f(x)-a 有4个零点. 其中真命题的个数为( ) A .4个 B .3个 C .2个 D .1个答案 D解析 依题意得函数f(x)不可能是周期函数,因此①不正确;当x ∈(0,2)时,f ′(x)<0,因此函数f(x)在[0,2]上是减函数,②正确;当x ∈[-1,t]时,f(x)的最大值是2,依题意,结合函数f(x)的可能图像形状分析可知,此时t 的最大值是5,因此③不正确;注意到f(2)的值不明确,结合图形分析可知,将函数f(x)的图像向下平移a(1<a<2)个单位后相应曲线与x 轴的交点个数不确定,因此④不正确.故选D .5.(2014·陕西)如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图像的一部分,则该函数的解析式为( )A .y =12x 3-12x 2-x B .y =12x 3+12x 2-3x C .y =14x 3-x D .y =14x 3+12x 2-2x答案 A解析 A 选项中,y ′=f ′(x)=32x 2-x -1,f ′(0)=-1,f ′(2)=3.曲线在(0,0)和(2,0)处分别与直线y =-x ,y =3x -6相切,且在⎝ ⎛⎭⎪⎫0,1+73上单调递减,在⎝ ⎛⎭⎪⎫1+73,2上单调递增,符合题意,对B ,C ,D 选项可验证曲线在(0,0)或(2,0)处不与直线y =-x ,y =3x -6相切,故选A .6.(2014·惠州二次调研)已知函数f(x)=1+x -x 22+x 33-x 44+…+x 2 0132 013,且函数f(x)的零点均在区间[a ,b](a<b ,a ,b ∈Z )内,则圆x 2+y 2=b -a 的面积的最小值是( )A .πB .2πC .3πD .4π答案 A解析 ∵f (x )=1+x -x 22+x 33-x 44+…+x 2 0132 013,f ′(x )=1-x +x 2-x 3+…+x 2 012,∴当x =-1时,f ′(x )=2 013>0,当x ≠-1时,f ′(x )=1+x 2 0131+x>0.∴函数f (x )在(-∞,+∞)上单调递增.又f (-1)=1-1-12-13-14-…-12 013<0,f (0)=1>0,∴函数f (x )在(-∞,+∞)上有唯一零点x 0∈(-1,0),∴b -a 的最小值为1,故圆x 2+y 2=b -a 的面积的最小值为π×12=π.7.(2014·九江六校联考)定积分⎠⎛-10 (1-(x +1)2+x)d x 的值为( )A .π4B .π2C .π4-12D .π2-12答案 C 解析⎠⎛-1(1-(x +1)2+x)d x 表示半圆(x +1)2+y 2=1(y ≥0)与直线y =-x 围成的封闭区域的面积,如图所示,直线y =-x 与(x +1)2+y 2=1(y ≥0)的交点为(0,0),(-1,1),所以由定积分的几何意义可知,⎠⎛-1(1-(x +1)2+x)d x =π×124-12×1×1=π2-12.8.(2014·南昌二模)已知函数y =f(x)对任意的x ∈(-π2,π2)满足f ′(x)cos x +f(x)sin x>0(其中f ′(x)是函数f(x)的导函数),则下列不等式成立的是( )A .2f(-π3)<f(-π4)B .2f(π3)<f(π4)C .f(0)>2f(π3) D .f(0)>2f(π4)答案 A解析 由f ′(x)cos x +f(x)sin x>0,知(f (x )cos x )′>0.所以g(x)=f (x )cos x 在(-π2,π2)上是增函数,所以g(-π3)<g(-π4),即f (-π3)cos (-π3)<f (-π4)cos (-π4),即2f(-π3)<f(-π4),所以A 正确.同理由g(π3)>g(π4),即f (π3)cos π3>f (π4)cos π4,得2f(π3)>f(π4),所以B 不正确;由g(π3)>g(0),即f (π3)cos π3>f (0)cos 0,得f(0)<2f(π3),所以C 不正确;由g(π4)>g(0),即f (π4)cos π4>f (0)cos 0,得f(0)<2f(π4),所以D 不正确.故选A .9.(2014·青岛重点中学联考)已知函数f(x)=a ln (x +1)-x 2,在区间(0,1)内任取两个实数p ,q ,且p ≠q ,若不等式f (p +1)-f (q +1)p -q >1恒成立,则实数a 的取值范围为( )A .[11,+∞)B .[13,+∞)C .[15,+∞)D .[17,+∞)答案 C解析 f (p +1)-f (q +1)p -q =f (p +1)-f (q +1)(p +1)-(q +1)表示点(p +1,f(p +1))与点(q +1,f(q +1))连线的斜率,因为0<p<1,0<q<1,所以1<p +1<2,1<q +1<2,即函数f(x)的图像在区间(1,2)内任意两点连线的斜率大于1,即f ′(x)>1在(1,2)内恒成立.由定义域可知x>-1,所以f ′(x)=a x +1-2x>1,即ax +1>1+2x ,所以a>(1+2x)(x +1)成立.设y =(1+2x)(x +1),则y =2x 2+3x +1,当1<x<2时,y ∈(6,15),所以a ≥15,即a 的取值范围为[15,+∞).故选C .10.(2014·昆明模拟)如图,在矩形ABCO 中任取一点P ,则点P 恰在阴影部分的概率为( )A .π+2πB .2π C .12π D .1π答案 D解析 因为y =2cos 2x2-1=cos x ,所以阴影部分面积即为y =cos x与x 轴所围成的封闭图形的面积.又x ∈[0,π],所以12S 阴影=cos x d x=1,即S 阴影=2,所以所求概率P =22π=1π.11.(2014·黄冈市统一调研)设函数f(x)=x 2-2x +1+a ln x 有两个极值点x 1,x 2,且x 1<x 2,则( )A .f(x 2)<1+2ln 24B .f(x 2)<1-2ln 24 C .f(x 2)>1+2ln 24 D .f(x 2)>1-2ln 24答案 D解析 由题设,知f(x)的定义域为{x|x>0},求导得f ′(x)=2x 2-2x +a x ,因为f(x)有两个极值点x 1,x 2,所以x 1,x 2是方程2x 2-2x +a =0的两根.又x 1<x 2,且x 1+x 2=1,所以12<x 2<1.又a =2x 2-2x 22,所以f(x 2)=(x 2-1)2+(2x 2-2x 22)ln x 2.令g(t)=(t -1)2+(2t -2t 2)ln t ,其中12<t<1,g ′(t)=2(1-2t)ln t>0,所以g(t)在(12,1)上为增函数,所以g(t)>g(12)=1-2ln 24,所以f(x 2)>1-2ln 24.12.(2014·江西新课程适应性考试)已知函数f(x)=-13x 3+2x 2+2x ,若存在满足0≤x 0≤3的实数x 0,使得曲线y =f(x)在点(x 0,f(x 0))处的切线与直线x +my -10=0垂直,则实数m 的取值范围是( )A .[6,+∞)B .(-∞,2]C .[2,6]D .[5,6]答案 C解析 f ′(x)=-x 2+4x +2=-(x -2)2+6,因为0≤x 0≤3,所以曲线y =f(x)在(x 0,f(x 0))处的切线斜率的取值范围是f ′(x 0)∈[2,6].而切线与直线x +my -10=0垂直,所以切线的斜率等于m ,所以m ∈[2,6].13.(2014·太原模拟)已知函数f(x)=a x -log a x(a>1),要使f(x)恒有两个零点,则a 的取值范围为( )答案 B 解析14.(2014·湖南)已知函数f(x)=x 2+e x -12(x<0)与g(x)=x 2+ln (x +a)的图像上存在关于y 轴对称的点,则a 的取值范围是( )A .⎝ ⎛⎭⎪⎫-∞,1e B .(-∞,e ) C .⎝ ⎛⎭⎪⎫-1e ,eD .⎝⎛⎭⎪⎫-e ,1e答案 B解析 由题意可得当x>0时,y =f(-x)与y =g(x)的图像有交点,即g(x)=f(-x)有正解,即x 2+ln (x +a)=(-x)2+e -x-12有正解,即e-x-ln (x +a)-12=0有正解,令F(x)=e -x-ln (x +a)-12,则F ′(x)=-e -x-1x +a <0,故函数F(x)=e -x-ln (x +a)-12在(0,+∞)上是单调递减的,要使方程g(x)=f(-x)有正解,则存在正数x 使得F(x)≥0,即e -x -ln (x +a)-12≥0,所二、填空题15.(2014·江西)若曲线y =e -x 上点P 处的切线平行于直线2x +y +1=0,则点P 的坐标是________.答案 (-ln 2,2)解析 先求复合函数的导数,再利用导数的几何意义确定切点的坐标.设P(x 0,y 0),∵y =e -x ,∴y ′=-e -x . ∴点P 处的切线斜率为k =-e -x 0=-2. ∴-x 0=ln 2,∴x 0=-ln 2.∴y 0=e ln 2=2,∴点P 的坐标为(-ln 2,2). 16.已知函数f(x)=(x -k)2,其中k>0,则f(x)的单调递增区间为________.答案 (-∞,-k),(k ,+∞)解析 由题意知f ′(x)=1k (x 2-k 2) .令f ′(x)=0,得x =±k.当k>0时,f(x)与f ′(x)的情况如下:所以f(x)的单调递增区间是(-∞,-k)和(k ,+∞);单调递减区间是(-k ,k).17.(2014·大同模拟)设f(x)是定义在R 上的奇函数,在区间(-∞,0)上有xf ′(x )+f (x )<0,且f (-2)=0,则不等式xf (2x )<0的解集为________.答案 {x |-1<x <1,且x ≠0}解析 令g (x )=xf (x ),由f (x )是定义在R 上的奇函数,知f (x )=0,且g (x )=xf (x )(x ∈R )是偶函数.另一方面,在(-∞,0)上,g ′(x )=xf ′(x )+f (x )<0,从而g (x )=xf (x )在(-∞,0)上是减函数,在(0,+∞)上是增函数.由f (-2)=0,知f (2)=0,故由xf (2x )<0,即2xf (2x )<0,知⎩⎪⎨⎪⎧x ≠0,|2x |<2,即-1<x <0或0<x <1. 探究 本题主要考查学生综合利用函数的奇偶性、单调性等解决函数、导数和不等式问题的能力,同时要求学生能根据“xf ′(x )+f (x )<0”构造相关函数解题.18.(2014·合肥四校联考)符号[x ]表示不超过x 的最大整数,如[2]=2,[π]=3,[-2]=-2,定义函数f (x )=x -[x ],设函数g (x )=-x 2,若f (x )在(0,2)上的零点个数记为a ,f (x )与g (x )图像交点的个数记为b ,则 [f(x)+g(x)]d x 的值是________.答案 -316解析19.(2014·成都市第二次诊断)设定义在R 上的函数f (x )满足f (1)=1,f ′(x )>13,其中f ′(x )是f (x )的导函数,则不等式f (x 3)<13x 3+23的解集为________.答案 (-∞,1)解析 令t =x 3,g (t )=f (t )-13t ,则g ′(t )=f ′(t )-13>0,故g (t )是增函数.又g (1)=23,故原不等式即为g (t )<g (1),故t <1,x 3<1,x <1.20.(2014·郑州预测)已知a >1,且函数y =a x 与函数y =log a x 的图像有且仅有一个公共点,则此公共点的坐标为________.答案 (e ,e)解析。

相关文档
最新文档