七年级上册数学第一章《有理数》测试题(含答案)

合集下载

人教版七年级数学上册《第一章有理数》测试卷-附含答案

人教版七年级数学上册《第一章有理数》测试卷-附含答案

人教版七年级数学上册《第一章有理数》测试卷-附含答案1.设|a |=4 |b |=2 且|a +b |=-(a +b ) 则a -b 所有值的和为( ) A .-8 B .-6 C .-4 D .-2点中可能是原点的为( )A .A 点B .B 点C .C 点D .D 点10010AB BC CD DE ===, 则数9910所对应的点在线段( )上.A .AB B .BC C .CD D .DE【详解】 AB BC =14AB ∴=4.计算202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭的结果是( )A .23B .32C .23-D .32-20202019 1.53⨯⋅⋅⋅⨯个个20193个在一个由六个圆圈组成的三角形里图中圆圈里 要求三角形每条边上的三个数的和S 都相等 那么S 的最大值是( )A .-9B .-10C .-12D .-13【答案】A【详解】解:六个数的和为:()()()()()()12345621-+-+-+-+-+-=- 最大三个数的和为:()()()1236-+-+-=- S=[(21)(6)]39-+-÷=-. 填数如图:故选A.6.|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|的最小值是a ||||||1a b ca b c++=-那么||||||||ab bc ac abcab bc ac abc+++的值为()A.﹣2B.﹣1C.0D.不确定【答案】45或23【详解】解:∵|x|=11 |y|=14 |z|=20∵x=±11 y=±14 z=±20.∵|x +y |=x +y |y +z |=﹣(y +z ) ∵x +y ≥0 y +z ≤0.∵x +y ≥0.∵x =±11 y =14. ∵y +z ≤0 ∵z =﹣20当x =11 y =14 z =﹣20时 x +y ﹣z =11+14+20=45; 当x =﹣11 y =14 z =﹣20时 x +y ﹣z =﹣11+14+20=23. 故答案为:45或23.8.若|a|+|b|=|a+b| 则a 、b 满足的关系是_____. 【答案】a 、b 同号或a 、b 有一个为0或同时为0 【详解】∵|a|+|b|=|a+b|∵a 、b 满足的关系是a 、b 同号或a 、b 有一个为0 或同时为0 故答案为a 、b 同号或a 、b 有一个为0 或同时为0.9.计算:11111111111111234201723420182342018⎛⎫⎛⎫⎛⎫----⋯-⨯+++⋯+-----⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11112342017⎛⎫⨯+++⋯+= ⎪⎝⎭_________.12017++=12018++=1111111111)]()[1()]()2017232018232018232017⨯+++--+++⨯+++++1[1(2018m -+)(2018m m -+a +2b +3c +4d 的最大值是_____. 【答案】81【详解】解:∵a b c d 表示4个不同的正整数 且a +b 2+c 3+d 4=90 其中d >1 ∵d 4<90 则d =2或3 c 3<90 则c =1 2 3或4b 2<90 则b =1 2 3 4 5 6 7 8 9a <90 则a =1 2 3 … 89 ∵4d ≤12 3c ≤12 2b ≤18 a ≤89 ∵要使得a +2b +3c +4d 取得最大值则a 取最大值时 a =90﹣(b 2+c 3+d 4)取最大值 ∵b c d 要取最小值 则d 取2 c 取1 b 取3 ∵a 的最大值为90﹣(32+13+24)=64 ∵a +2b +3c +4d 的最大值是64+2×3+3×1+4×2=81 故答案为:81.11.如图 将一个半径为1个单位长度的圆片上的点A 放在原点 并把圆片沿数轴滚动1周 点A 到达点A '的位置 则点A '表示的数是 _______;若起点A 开始时是与—1重合的 则滚动2周后点A '表示的数是______.【答案】 2π或2π- 41π-或41π--对数轴上分别表示数a和数b的两个点A B之间的距离进行了探究:(1)利用数轴可知5与1两点之间距离是;一般的数轴上表示数m和数n的两点之间距离为.问题探究:(2)请求出|x﹣3|+|x﹣5|的最小值.问题解决:(3)如图在十四运的场地建设中有一条直线主干道L L旁依次有3处防疫物资放置点A B C已知AB=800米BC=1200米现在设计在主干道L旁修建防疫物资配发点P问P建在直线L上的何处时才能使得配发点P到三处放置点路程之和最短?最短路程是多少?()1求A、B两点之间的距离;()2点C、D在线段AB上AC为14个单位长度BD为8个单位长度求线段CD的长;()3在()2的条件下动点P以3个单位长度/秒的速度从A点出发沿正方向运动同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动求经过几秒点P、点Q到点C的距离相等.)12a++b-=60b=;6)1218-=;在线段ABAC=AB=1418BC∴=18=CD BD()3设经过AD AB=①当点P的数学工具 它使数和数轴上的点建立起对应关系 揭示了数与点之间的内在联系 它是“数形结合”的基础.例如 式子2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1 所以1x +的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.结合数轴与绝对值的知识回答下列问题:(1)若23x -= 则x = ;32x x -++的最小值是 .(2)若327x x -++= 则x 的值为 ;若43113x x x ++-++= 则x 的值为 .(3)是否存在x 使得32143x x x +-+++取最小值 若存在 直接写出这个最小值及此时x 的取值情况;若不存在 请说明理由.当P 在A 点左侧时2255PA PB PA AB PA +=+=+>;同理当P 在B 点右侧时2255PA PB PB AB PB +=+=+>;。

人教版七年级上册数学 第一章《有理数》练习题(附答案)

人教版七年级上册数学 第一章《有理数》练习题(附答案)

1 2
,

3
48.食品店一周中的盈亏情况如下 ( 盈余为正 ) : 132 元, −12.5 元, −10.5 元,127 元, −87 元, 136.5 元,98 元. 请通过计算说明这一周食品店的盈亏情况.
49.试比较 a 与﹣a 的大小.
50.把下列各数填在相应的表示集合的大括号内:
-3,-
(2)解:原式=
1 2
×(﹣24)+
5 6
×(﹣24)﹣
7 12
×(﹣24)=﹣12﹣20+14=﹣18.
40.【答案】 解:原式=2+2-1=3
四、解答题
41.【答案】
解:正数集合:{
1 10
,2014,20%,…}
负数集合:{-7,﹣
1 3

-0.75…}
整数集合:{0,2014…}
正分数集合:{
+
1
+
2

3+2×
3 2

2
2
=
13 4

2
2
37.【答案】 解:(+7)+(﹣4)﹣(﹣3)﹣(+14)=7﹣4+3﹣14=3+3-14=6-14=﹣8
38.【答案】 解:原式 = 3 × 2 − ( − 1)
39.【答案】 (1)解:原式=6.8﹣(﹣4.2)+ ( − 1)3 =6.8+4.2﹣1=10
A. -6
B.
−5
1 3
C.
−4
1 2
D.
−3
3 4
6.计算 18 − ( − 5) 的结果等于( )

七年级数学上册第一章《有理数》考试卷-人教版(含答案)

七年级数学上册第一章《有理数》考试卷-人教版(含答案)

七年级数学上册第一章《有理数》考试卷-人教版(含答案)班级 座号 姓名一、选择题(30分)1.若盈余60万元记作+60万元,则﹣60万元表示( ) A .盈余60万元 B .亏损60万元C .亏损﹣60万元D .不盈余也不亏损2.下列各数:8,-0.08,0,()2.5--,7.7%,2π-,其中负数有( )个. A .1B .2C .3D .43.如图,数轴上被阴影盖住的点表示的数可能是( )A .3B .0C .-1D .-24.某种食品保存的温度是o 102C -±,以下几个温度中,不适合储存这种食品的是( ) A .o 6C -B .o 8C -C .o 10C -D .o 12C -5.下列说法错误的是( ) A .-5的相反数是5 B .3的倒数是13C .(-3)-(-5)=2D .-11,0,4这三个数中最小的数是06.308.76亿元用科学记数法表示为( ) A .30.876×109元B .3.0876×1010元C .0.30876×1011元D .3.0876×1011元7.用四舍五入法对3.14159取近似值,精确到百分位的结果是( ) A .3.1B .3.14C .3.142D .3.1418.若m 满足方程20192019m m -=+,则2020m -等于( ) A .2020m -B .2020m --C .2020m +D .2020m -+9.a 是不为2的有理数,我们把22a -称为a 的“哈利数”.如:3的“哈利数”是223-=﹣2,﹣2的“哈利数”是212(2)2=--,已知a 1=3,a 2是a 1的“哈利数”,a 3是a 2的“哈利数”,a 4是a 3的“哈利数”,…,依此类推,则a 2019=( ) A .3B .﹣2C .12D .4310.设|a |=4,|b |=2,且|a +b |=-(a +b ),则a -b 所有值的和为( ) A .-8B .-6C .-4D .-2二、填空题(18分)11.数轴上与表示-2的点距离3个长度单位的点所表示的数是_______.12.某公交车上原有10个人,经过三个站点时乘客上下车情况如下(上车为正,下车为负):(+2,﹣3),(+8,﹣5),(+1,﹣6),则此时车上的人数为_____13.规定一种新运算“☆”对于任意两个有理数a 和b ,有a ☆b =a -b +1,请你根据新运算,计算(2☆3)☆2的值是___________14.在数轴上点A 表示数2,点B 与点A 相距3个单位长度,点B 表示的数是________.15.设m 是绝对值最小的数,n 是最大的负整数,则m n -=_________. 16.A ,B ,C ,D ,E ,F 是数轴上从左到右的六个点,并且AB =BC =CD =DE =EF .点A 所表示的数是-5,点F 所表示的数是11,那么与点C 所表示的数最接近的整数是______. 三、解答题(52分) 17.计算: (1)212525-⨯+-(2)()2127322⎛⎫---+-⨯- ⎪⎝⎭(3)2129312323⎛⎫-÷+-⨯+ ⎪⎝⎭(4)()()22212325555⎛⎫⎛⎫-⨯÷---÷÷- ⎪ ⎪⎝⎭⎝⎭18.请你画出一条数轴,并在数轴上表示下列有理数:12-,|0.5|-,0,(3)--,|2.5|-.并用“>”把这些数连接起来.19.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩需求量大幅增加,巴中市某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因,实际每天生产量与计划每天生产量相比有出入,下表是2月份某一周的生产情况(超出为正,不足为负,单位:个)、星期一二三四五六日增减+400﹣100+100﹣100﹣200+150+350(1)根据记录可知前三天共生产口罩个;产量最多的一天比产量最少的一天多生产口罩个;(2)该口罩加工厂实行计件工资制,每生产一个口罩需支付工人0.4元的工资,每个口罩的材料成本为0.6元,该工厂以每个1.5元的批发价将前5天的口罩全部售出后,为响应国家“一方有难,八方支援”的号召,决定将剩下两天的口罩全部捐出,试通过计算说明该工厂本周是赚了还是亏了?20.在今年720特大洪水自然灾害中,一辆物资配送车从仓库O出发,向东走了4千米到达学校A,又继续走了1千米到达学校B.然后向西走了9千米到达学校C,最后回到仓库O.解决下列问题:(1)以仓库O为原点,以向东为正方向,用1个单位长度表示1千米,画出数轴.并在数轴上表示A、B、C的位置;(2)结合数轴计算:学校C在学校A的什么方向,距学校A多远?(3)若该配送车每千米耗油0.1升,在这次运送物资回仓的过程中共耗油多少升?21.阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之-间的距离可以表示为a b根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与2-的两点之间的距离是________.(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为________.x+可以表示数轴上有理数x与有理数________所对应的两点之间的距离;(3)代数式8x+=,则x=________.若85参考答案1.B解:∵盈余60万元记作+60万元, ∵﹣60万元表示亏损60万元. 故选:B . 2.B解:下列各数:8,-0.08,0,()2.5--,7.7%,2π-,其中负数有-0.08,2π-,共2个; 故选B . 3.A解:设被阴影盖住的点表示的数为x ,则0,x > 只有A 选项的数大于0, 故选:A. 4.A解:∵-10+2=-8,-10-2=-12, ∵这种食品保存的温度是-12∵到-8∵, A .-6∵不在这个温度范围内,符合题意; 故选: A . 5.D解:A 、-5的相反数是5,故该选项正确,不符合题意; B 、3的倒数是13,故该选项正确,不符合题意;C 、(-3)-(-5)=-3+5=2,故该选项正确,不符合题意;D 、∵-11<0<4,∵-11,0,4这三个数中最小的数是-11,故该选项错误,符合题意. 故选:D . 6.B解:308.76亿=30876000000=3.0876×1010. 故选:B . 7.B解:3.14159≈3.14(精确到百分位). 故选:B . 8.D当2019m ≥时,20192019m m -=-,不符合题意; 当0m ≤时,20192019m m -=+,符合题意;当02019m <<时,20192019m m -=-,不符合题意; 所以0m ≤20202020m m -=-+故选D 9.C ∵a 1=3, ∵a 2=223-=﹣2, a 3=212(2)2=--,a 4=213224=-,a 5=23243=-,∵该数列每4个数为1周期循环, ∵2019÷4=504…3, ∵a 2019=a 3=12.故选:C . 10.A∵|a +b |=-(a +b ),∵a +b ≤0,∵|a |=4,|b |=2,∵a =±4,b =±2,∵a =-4,b =±2, 当a =-4,b =-2时,a -b =-2; 当a =-4,b =2时,a -b =-6;故a -b 所有值的和为:-2+(-6)=-8.故选A . 11.1或5- 解:由题意得, 当点在2-左侧时, 即235--=-, 当点在2-右侧时, 即231-+=, 故答案为:1或5-. 12.7解:10+2-3+8-5+1-6=7(人), 故答案为:7.13.1-解:a☆b=a-b+1,∴(2☆3)☆2231☆2=0☆2021 1.故答案为:1-14.5或-1##-1或5解:当B点在A点右边时,A表示2,则B表示2+3=5,当B点在A点左边时,A表示2,则B表示2-3=-1,故答案为:5或-1;【点睛】本题考查了数轴上两点距离=右边的数-左边的数;掌握数轴上右边的数比左边的数大是解题关键.15.1解:∵m是绝对值最小的数,n是最大的负整数,∵m=0,n=−1,∵m−n=0-(-1)=1,故答案为:1.16.1解:由A、F两点所表示的数可知AF=11﹣(﹣5)=16,∵AB=BC=CD=DE=EF,∵EF=16÷5=3.2,∵点C表示的数为:﹣5+3.2×2=1.4;∵与点C所表示的数最接近的整数是1.故答案为:1.17.(1)5(2)1(3)4(4)20(1)解:原式=4-1+2=5;(2)原式=4-7+3+1 =1; (3)原式=1231212923-+⨯-⨯+=-3+6-8+9 =4; (4)原式=()543255512⎛⎫⨯⨯--÷⨯- ⎪⎝⎭=-5+25 =20.18.1(3)|0.5|0|2.5|2-->->>->-;数轴见详解 解:|0.5|0.5-=,(3)3--=,|2.5| 2.5-=-, 在数轴上表示各数为:根据数轴得1(3)|0.5|0|2.5|2-->->>->-.19.(1)15400;600 (2)赚了7300元 (1)解:()4001001003500015400+-++⨯=(个) 故前三天共生产15400个口罩;()400200600+--=(个)故产量最多的一天比产量最少的一天多生产600个; 故答案为:15400;600; (2)()()()()40010010010020015035050007 1.50.40.6150350500020.40.6-+--+++⨯⨯---++⨯⨯+356000.5105001=⨯-⨯ 1780010500=-7300=(元)答:该工厂本周是赚了7300元 20 (1)解:根据题意得:AO =4,AB =1,BC =9,OC =4 画出数轴,如下:(2)解:4-(-4)=8千米,答:学校C 在学校A 的西边,距学校A 8千米; (3)解:(4+1+9+4)×0.1=18×0.1=1.8升,答:在这次运送物资回仓的过程中共耗油1.8升. 21.(1)5; (2)7x ; (3)-8;-3或-13; (1)解:数轴上表示3与2-的两点之间的距离是3-(-2)=5; (2)解:数轴上有理数x 与有理数7所对应两点之间的距离用绝对值符号可以表示为7x ; (3)解:∵8x +=()8x --,∵代数式8x +可以表示数轴上有理数x 与有理数-8所对应的两点之间的距离; 若85x +=,则当(x+8)>0时,x +8=5, x =-3, 当(x+8)<0时, x +8=-5, x =-13, 故答案为:-8;x =-3或-13;。

七年级上册数学第一章《有理数》测试题(含答案)

七年级上册数学第一章《有理数》测试题(含答案)

七年级数学(上) 第一章 有理数单元测试题(120分)一、选择题(3分×10=30分) 1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、200812、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-112-= D 、1)1(2-=-3、近几年安徽省教育事业加快发展,据2005年末统计的数据显示,仅普通初中在校生就约有334万人,334万人用科学记数法表示为( )A 、0.334×710人B 、33.4×510人C 、3.34×210人D 、3.34×610人 4、下列各对数互为相反数的是( )A 、-(-8)及+(+8)B 、-(+8)及+︱-8︱C 、-2222)与(- D 、-︱-8︱及+(-8)5、计算(-1)÷(-5)×51的结果是( ) A 、-1 B 、1 C 、251D 、-25 6、下列说法中,正确的是( )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )A 、800 mB 、200 mC 、2400 mD 、-200 m 8、已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( ) A 、5 B 、-1 C 、-5或-1 D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,则在数轴上到A 点的距离是3个单位长度的点所表示的数有( ) A 、1个 B 、2个 C 、3个 D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( ) A 、(0.1×20)mm B 、(0.1×40)mm C 、(0.1×220)mm D 、(0.1×202)mm二、填空题(5分×3=15)11、妈妈给小颖10元钱,小颖记作“+10元”,则“-5元”可能表示什么 _____12、一个正整数,加上-10,其和小于0,则这个正整数可能是 .(写出两个即可)13、某同学用计算器计算“2÷13”时,计算器上显示结果为0.153846153,将此结果保留三位有效数字为 . 14、观察下列各数,按规律在横线上填上适当的数。

人教版七年级数学上册《第一章有理数》测试题-附有答案

人教版七年级数学上册《第一章有理数》测试题-附有答案

人教版七年级数学上册《第一章有理数》测试题-附有答案一、选择题(本题共12小题每小题4分共48分在每小题给出的四个选项中只有一项是符合题目要求的请用2B铅笔把答题卡上对应题目答案标号涂黑)1.(4分)有理数﹣1 0 1 3四个数中最小的是()A.﹣1B.0C.1D.3【分析】利用有理数的大小比较来选择即可.【解答】解:有理数﹣1 0 1 3四个数中最小的是﹣1故选:A.2.(4分)中国疾控中心免疫规划首席专家王华庆在2022年3月25日国务院联防联控机制新闻发布会上表示我国60岁以上的老年人中有2.12亿人完成了新冠病毒疫苗的全程接种.其中2.12亿用科学记数法表示为()A.2.12×107B.2.12×108C.0.212×109D.2.12×109【分析】用科学记数法表示较大的数时一般形式为a×10n其中1≤|a|<10 n为整数且n比原来的整数位数少1 据此判断即可.【解答】解:2.12亿=212000000=2.12×108.故选:B.3.(4分)中老铁路是与中国铁路网直接连通的国际铁路线路北起中国西南地区的昆明市南向到达老挝首都万象市是“一带一路”上最成功的样板工程.从长期看将会使老挝每年的总收入提升21% 若+21%表示提升21% 则﹣10%表示()A.提升10%B.提升31%C.下降10%D.下降﹣10%【分析】利用正负数表示相反意义的数来选择即可.【解答】解:∵+21%表示提升21%∴﹣10%就表示下降10%.故选:C.4.(4分)下列各对数中互为相反数的是()A.﹣(﹣2)和2B.4和﹣(+4)C.和﹣3D.5和|﹣5|【分析】利用互为相反数的定义、绝对值的定义判断即可.【解答】解:﹣(﹣2)=2 A不符合题意;4与﹣(+4)互为相反数B符合题意;和﹣3不互为相反数C不符合题意;5=|﹣5| 不互为相反数D不符合题意.故选:B.5.(4分)已知有理数a b c在数轴上的对应点的位置如图所示则下列结论不正确的是()A.c<a<b B.a﹣c>0C.bc<0D.|c﹣b|=c﹣b【分析】利用a b c在数轴上的位置可以判断出c<a<b再用有理数的加减乘除法则判断即可.【解答】解:利用数轴可以判断出c<a<b则A选项正确不符合题意;由数轴可以看出c<a则a﹣c>0 则B选项正确不符合题意;由数轴可以看出c<0<b则bc<0 则C选项正确不符合题意;由数轴可以看出c<0<b|c|>|b|则|c﹣b|=﹣(c﹣b)=b﹣c故D选项错误符合题意.故选:D.6.(4分)我国幅员辽阔南北跨纬度广温差较大5月份的某天同一时刻我国最南端的海南三沙市气温是30℃而最北端的漠河镇气温是﹣2℃则三沙市的气温比漠河镇的气温高()A.﹣32℃B.﹣28℃C.28℃D.32℃【分析】利用有理数的减法运算法则计算即可.【解答】解:根据题意可知三沙市的气温比漠河镇的气温高30﹣(﹣2)=30+2=32(℃)故选:D.7.(4分)如图1 点A B C是数轴上从左到右排列的三个点分别对应的数为﹣5 b 4 某同学将刻度尺如图2放置使刻度尺上的数字0对齐数轴上的点A发现点B对应刻度1.8cm点C对齐刻度5.4cm.则数轴上点B所对应的数b为()A.3B.﹣1C.﹣2D.﹣3【分析】根据刻度尺上的刻度与数轴上得单位长度的比值不变求解.【解答】解:∵5.4÷(4+5)=0.6(cm )∴1.8÷0.6=3∴﹣5+3=﹣2故选:C .8.(4分)计算(241343671211-+-)×(﹣24)的结果是( ) A .1 B .﹣1 C .10 D .﹣10【分析】根据乘法分配律计算即可.【解答】解:(﹣+﹣)×(﹣24) =×(﹣24)﹣×(﹣24)+×(﹣24)﹣×(﹣24) =﹣22+28+(﹣18)+13=1故选:A .9.(4分)下列说法正确的是( )A .近似数4.20和近似数4.2的精确度一样B .近似数4.20和近似数4.2的有效数字相同C .近似数3千万和近似数3000万的精确度一样D .近似数52.0和近似数5.2的精确度一样【分析】根据近似数和有效数字的定义 可以判断各个选项中的说法是否正确.【解答】解:近似数4.20和近似数4.2的精确度不一样 近似数4.20精确到百分位 近似数4.2精确到十分位 故选项A 错误 不符合题意;近似数4.20和近似数4.2的有效数字不相同 近似数4.20有三个有效数字 近似数4.2有两个有效数字 故选项B 错误 不符合题意;近似数3千万和近似数3000万的精确度不一样 近似数3千万精确到千万位 近似数3000万精确到万位 故选项C 错误 不符合题意;近似数52.0和近似数5.2的精确度一样 故选项D 正确 符合题意;故选:D .10.(4分)规定:把四个有理数1 2 3 ﹣5分成两组 每组两个 假设1 3分为一组 2 ﹣5分为另一组 则A =|1+3|+|2﹣5|.在数轴上原点右侧从左到右取两个有理数m 、n 再取这两个数的相反数 对于这样的四个数其所有A的和为()A.4m B.4m+4n C.4n D.4m﹣4n【分析】根据已知条件列出所有情况并求出A的值即可求得所有A的和.【解答】解:根据题意得m<n m n的相反数为﹣m﹣n则有如下三种情况:①m n为一组﹣m﹣n为另一组此时有A=|m+n|+|(﹣m)+(﹣n)|=2m+2n;②m﹣m为一组n﹣n为另一组此时有A=|m+(﹣m)|+|n+(﹣n)|=0;③m﹣n为一组n﹣m为另一组此时有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m.∴所有A的和为2m+2n+0+2n﹣2m=4n.故选:C.11.(4分)如图在一个由6个圆圈组成的三角形里把﹣25到﹣30这6个连续整数分别填入图的圆圈中要求三角形的每条边上的三个数的和S都相等那么S的最小值是()A.﹣84B.﹣85C.﹣86D.﹣87【分析】三个顶点处分别是﹣30 ﹣29 ﹣28 ﹣30与﹣29之间是﹣25 ﹣30和﹣28之间是﹣26 ﹣29和﹣28之间是﹣27 这样每边的和才能相等并且S有最小值.【解答】解:如图∴S=﹣29﹣27﹣28=﹣84故选:A.12.(4分)设a b是有理数定义一种新运算:a⊗b=a2﹣b2.下面有四个推断:①a⊗b=b⊗a;②a⊗(﹣b)=(﹣a)⊗b;③a⊗(b⊗c)=(a⊗b)⊗c;④(a+b)⊗(a﹣b)=(b+a)⊗(b﹣a).所有合理推断的序号是()A.①③B.②④C.②③④D.①②③④【分析】各式利用新定义判断即可.【解答】解:根据题中的新定义得:①a⊗b=a2﹣b2b⊗a=b2﹣a2不成立;②a⊗(﹣b)=a2﹣b2(﹣a)⊗b=a2﹣b2成立;③a⊗(b⊗c)=a2﹣(b2﹣c2)2=a2﹣b4+2b2c2﹣c4;(a⊗b)⊗c=(a2﹣b2)2﹣c2=a4﹣2a2b2+b4﹣c2不成立;④(a+b)⊗(a﹣b)=(a+b)2﹣(a﹣b)2(b+a)⊗(b﹣a)=(b+a)2﹣(b﹣a)2=(a+b)2﹣(a﹣b)2成立故选:B.二、填空题(本题共4个小题每小题4分共16分答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上)13.(4分)定义:如果2m=n(m n为正数)那么我们把m叫做n的D数记作m=D(n).根据所学知识试计算:D(16)=.【分析】根据题意得:2m=16 求出m的值即可.【解答】解:根据题意得:2m=16∴m=4.故答案为:4.14.(4分)已知|a+2|=4 (b﹣1)2=4 且ab<0 则a+b=.【分析】先求出a b的值根据ab<0 知道a b异号分两种情况分别计算即可.【解答】解:∵|a+2|=4 (b﹣1)2=4∴a=2或﹣6 b=3或﹣1∵ab<0∴a b异号当a=2 b=﹣1时a+b=2﹣1=1;当a=﹣6 b=3时a+b=﹣6+3=﹣3;故答案为:1或﹣3.15.(4分)如果有4个不同的正整数a、b、c、d满足(2019﹣a)(2019﹣b)(2019﹣c)(2019﹣d)=8 那么a+b+c+d的最大值为.【分析】根据a、b、c、d是四个不同的正整数可知四个括号内是各不相同的整数结合乘积为8 进行分类讨论.【解答】解:∵a、b、c、d是四个不同的正整数∴四个括号内是各不相同的整数不妨设(2019﹣a)<(2019﹣b)<(2019﹣c)<(2019﹣d)又∵(2019﹣a)(2019﹣b)(2019﹣c)(2019﹣d)=8∴这四个数从小到大可以取以下几种情况:①﹣4 ﹣1 1 2;②﹣2 ﹣1 1 4.∵(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)=8076﹣(a+b+c+d)∴a+b+c+d=8076﹣[(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)]∴当(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)越小a+b+c+d越大∴当(2019﹣a)+(2019﹣b)+(2019﹣c)+(2019﹣d)=﹣4﹣1+1+2=﹣2时a+b+c+d取最大值=8076﹣(﹣2)=8078.故答案为:8078.16.(4分)如图圆的直径为1个单位长度该圆上的点A与数轴上表示﹣1的点重合将该圆沿数轴负方向滚动1周点A到达点B的位置点B表示的数为x则|4+x|=.【分析】B点到A点的距离即圆周长从而得到点B表示的数进一步代入计算即可.【解答】解:∵r=∴c=2πr=π∴AB=c=π∴B表示的数x=﹣(π+1).∴|4+x |=|4﹣(π+1)|=|4﹣π﹣1|=|3﹣π|=π﹣3故答案为:π﹣3.三、解答题(本题共8个小题 共86分 答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上 解答时应写出必要的文字说明、证明步骤或演算步骤.)17.(6分)把下列各数按要求分类:5.2 02722 +(﹣4) ﹣243 ﹣(﹣3) 0.25555… ﹣0.030030003….(1)写出所有的分数;(2)写出所有的非负整数;(3)写出所有的有理数.【分析】(1)根据分数的定义 可得答案;(2)根据不小于零的整数是非负整数 可得答案;(3)根据有理数包括整数和分数 可得答案.【解答】解:(1)分数集合:{5.2 ﹣2 0.25555} (2)非负整数集合:{ 5 ﹣(﹣3)}(3)有理数集合:{ 5.2 0 +(﹣4) ﹣2 ﹣(﹣3) 0.25555}.18.(8分)已知a b 互为相反数 c d 互为倒数 |m |=2 求3(a +b ﹣1)+(﹣c d )2022﹣2m 的值.【分析】利用相反数 倒数 绝对值定义求出a +b cd 及m 的值 将各自的值代入计算即可求出值.【解答】解:根据题意得:a +b =0 cd =1 m =2或﹣2当m =2时原式=3×(0﹣1)+(﹣1)2022﹣2×2=﹣3+1﹣4=﹣6;当m =﹣2时原式=3×(0﹣1)+(﹣1)2022﹣2×(﹣2)=﹣3+1+4=2.19.(12分)计算题:(1)1+(﹣2)+|﹣3|﹣5; (2)(4332125-+)×(﹣12); (3)(﹣43)×(﹣121)÷(﹣241); (4)(﹣85)×42﹣0.25×(﹣8)×(﹣1)2017. 【分析】(1)先算绝对值 再算加减法;(2)根据乘法分配律计算;(3)将带分数化为假分数 除法变为乘法 再约分计算即可求解;(4)先算乘方 再算乘 最后算减;同级运算 应按从左到右的顺序进行计算.【解答】解:(1)1+(﹣2)+|﹣3|﹣5=1﹣2+3﹣5=﹣3;(2)(+﹣)×(﹣12) =×(﹣12)+×(﹣12)﹣×(﹣12)=﹣5﹣8+9=﹣4;(3)(﹣)×(﹣1)÷(﹣2)=﹣××=﹣;(4)(﹣)×42﹣0.25×(﹣8)×(﹣1)2017=(﹣)×16﹣0.25×(﹣8)×(﹣1)=﹣10﹣2=﹣12.20.(10分)一个四位正整数的千位、百位、十位、个位上的数字分别为a b c d 如果a ≤b ≤c ≤d 那么我们把这个四位正整数叫做顺次数 例如四位正整数1369:因为1<3<6<9 所以1369叫做顺次数.(1)四位正整数中 最大的“顺次数”是 最小的“顺次数”是 ;(2)已知一个四位正整数的百位、个位上的数字分别是2、7 且这个四位正整数是“顺次数” 同时 这个四位正整数能被7整除 求这个四位正整数.【分析】(1)根据“顺次数”的概念分析最大数和最小数;(2)根据“顺次数”的概念千位上的数字是1或2 然后分情况分析求解.【解答】解:(1)根据题意a ≤b ≤c ≤d∴四位正整数中 最大的“顺次数”是9999 最小的“顺次数”是1111故答案为:9999;1111;(2)根据题意a ≤b ≤c ≤d 且一个四位顺次数的百位、个位上的数字分别是2、7∴这个“顺次数”的千位是1或2①当a =1时 这个顺次数可能是1227 1237 1247 1257 1267 1277;其中 只有1267是7的倍数;②当a =2时 这个顺次数可能是2227 2237 2247 2257 2267 2277;其中 只有2247是7的倍数;∴这个四位正整数是1267或2247.21.(12分)如图是某一条东西方向直线上的公交线路的部分路段 西起A 站 东至L 站 途中共设12个上下车站点 某天 小明参加该线路上的志愿者服务活动 从C 站出发 最后在某站结束服务活动.如果规定向东为正 向西为负 当天的乘车站数按先后顺序依次记录如下(单位:站):+5 ﹣3 +4 ﹣5 +8 ﹣2 +1 ﹣3 ﹣4 +1.(1)请通过计算说明结束服务的“某站”是哪一站?(2)若相邻两站之间的平均距离约为2.5千米 求这次小明志愿服务期间乘坐公交车行进的总路程约是多少千米?(3)已知油箱中要保持不低于10%的油量才能保证汽车安全行驶 若小明开始志愿服务活动时该汽车油量占油箱总量的7011 每行驶1千米耗油0.2升 活动结束时油量恰好能保证汽车安全行驶 则该汽车油箱能存储油多少升?【分析】(1)用原点表示起点位置 再利用有理数的和求解;(2)先用绝对值求共几个站 再求里程数;(3)列方程求解.【解答】解:(1)设C 站为原点 则):+5﹣3+4﹣5+8﹣2+1﹣3﹣4+1=+2 表示原点右侧第二个站 即E 站.(2))|+5|+|﹣3|+|+4|+|﹣5|+|+8|+|﹣2|+|+1|+|﹣3|+|﹣4|+|+1|=5+3+4+5+8+2+1+3+4+1=3636×2.5=90(千米).(3)设该汽车油箱能存储油x升依题意得:x﹣0.2×90=0.1x解得:x=315答:该汽车油箱能存储油315升22.(12分)如图所示某数学活动小组编制了一道有理数混合运算题即输入一个有理数按照自左向右的顺序运算可得计算结果其中“●”表示一个有理数.(1)若●表示2 输入数为﹣3 求计算结果;(2)若计算结果为8 且输入的数字是4 则●表示的数是几?(3)若输入数为a●表示的数为b当计算结果为0时请求出a与b之间的数量关系.【分析】(1)把﹣3和●表示的数输入计算程序中计算即可求出值;(2)设●表示的数为x根据计算程序列出方程求出方程的解即可得到x的值;(3)把a与b代入计算程序中计算使其结果为0 得到a与b的数量关系即可.【解答】解:(1)根据题意得:(﹣3)×(﹣4)÷2+(﹣1)﹣2=12÷2﹣1﹣2=6﹣1﹣2=3;(2)设●表示的数为x根据题意得:4×(﹣4)÷2+(﹣1)﹣x=8解得:x=﹣17;(3)由题意得:+(﹣1)﹣b=0整理得:b=﹣2a﹣1.23.(12分)某水果店以每箱200元的价格从水果批发市场购进20箱樱桃若以每箱净重10千克为标准超过的千克数记为正数不足的千克数记为负数称重的记录如下表:与标准重量的差值(单位:千克)﹣﹣0.2500.250.30.50.5箱数1246n2(1)求n的值及这20箱樱桃的总重量:(2)若水果店打算以每千克25元销售这批樱桃若全部售出可获利多少元;(3)实际上该水果店第一天以(2)中的价格只销售了这批樱桃的60% 第二天因为害怕剩余樱桃腐烂决定降价把剩余的樱桃以原零售价的70%全部售出水果店在销售这批樱桃过程中是盈利还是亏损盈利或亏损多少元.【分析】(1)根据总箱数和已知箱数求出n求出新数的和再加200千克即可;(2)根据销售额=销售单价×总数量计算即可;(3)根据销售额=销售单价×总数量×销售比例计算即可.【解答】解:(1)n=20﹣1﹣2﹣4﹣6﹣2=5(箱)10×20+(﹣0.5)×1+(﹣0.25)×2+0.25×6+0.3×5+0.5×2=203(千克);答:n的值是5 这20箱樱桃的总重量是203千克;(2)25×203﹣200×20=1075(元);答:全部售出可获利1075元;(3)25×203×60%+25×203×(1﹣60%)×70%﹣200×20=466(元).答:是盈利的盈利466元.24.(14分)数轴上有A B C三点给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系则称该点是其它两个点的“关联点”.例如数轴上点A B C所表示的数分别为1 3 4 此时点B是点A C的“关联点”.(1)若点A表示数﹣2 点B表示数1 下列各数﹣1 2 4 6所对应的点分别是C1C2C3C4其中是点A B的“关联点”的是;(2)点A表示数﹣10 点B表示数15 P为数轴上一个动点:①若点P在点B的左侧且点P是点A B的“关联点”求此时点P表示的数;②若点P在点B的右侧点P A B中有一个点恰好是其它两个点的“关联点”请直接写出此时点P表示的数.【分析】(1)根据新定义内容结合数轴上两点间距离公式求解;(2)①根据新定义内容结合方程思想及分类讨论思想求解;②根据新定义内容结合方程思想及分类讨论思想求解.【解答】解:(1)∵AC1=﹣1﹣(﹣2)=1 BC1=1﹣(﹣1)=2 ∴2AC1=BC1∴C1是点A B的“关联点”;∵AC2=2﹣(﹣2)=4 BC2=2﹣1=1 AB=1﹣(﹣2)=3∴C2不是点A B的“关联点”;AC3=4﹣(﹣2)=6 BC3=4﹣1=3∴AC3=2BC3∴C3是点A B的“关联点”;AC4=6﹣(﹣2)=8 BC4=6﹣1=5 AB=1﹣(﹣2)=3∴C4不是点A B的“关联点”;故答案为:C1C3;(2)设P点在数轴上表示的数为p.①∵P在点B左侧则:(Ⅰ)当P点在AB之间时15﹣p=2[p﹣(﹣10)]解得:p=−;或2(15﹣p)=p﹣(﹣10)解得:p=;(Ⅱ)当P点在A点左侧时15﹣p=2(﹣10﹣p)p=﹣35∴当P点在B点左侧时点P表示的数为﹣35或−或;②∵点P在B点右侧则:(Ⅰ)当点P为点A B的“关联点”时2(p﹣15)=p+10解得:p=40;(Ⅱ)当点B为点P A的“关联点”时2(p﹣15)=15+10解得:p=27.5;或p﹣15=2×25解得:p=65;(Ⅲ)当点A为点B P的“关联点”时p+10=(15+10)×2解得:p=40∴点P在点B的右侧点P A B中有一个点恰好是其它两个点的“关联点”此时点P表示的数为40或65或27.5.。

七年级上册数学第1章有理数测试题(含答案)

七年级上册数学第1章有理数测试题(含答案)

七年级上册第1章训练题一.选择题1.定义一种新运算a⊙b=(a+b)×2,计算(﹣5)⊙3的值为()A.﹣7B.﹣1C.1D.﹣42.如图,点O为数轴的原点,若点A表示的数是﹣1,则点B表示的数是()A.﹣5B.﹣3C.3D.43.数轴上,点A、B分别表示﹣1、7,则线段AB的中点C表示的数是()A.2B.3C.4D.54.下列说法:①﹣a是负数;②﹣2的倒数是;③﹣(﹣3)的相反数是﹣3;④绝对值等于2的数2.其中正确的是()A.1个B.2个C.3个D.4个5.若|x|=3,|y|=4,则x+y值为()A.±7或±1B.7或﹣7C.7D.﹣76.如图,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C.若点C表示的数为1,则与点A表示的数互为相反数的是()A.﹣7B.3C.﹣3D.27.用分配律计算()×,去括号后正确的是()第1页(共1页)A .﹣B .﹣C .﹣D .﹣8.下列各式中,与3÷4÷5运算结果相同的是()A.3÷(4÷5)B.3÷(4×5)C.3÷(5÷4)D.4÷3÷5 9.如图,a,b在数轴上的位置如图所示,那么|a﹣b|+|a+b|的结果是()A.﹣2b B.2b C.﹣2a D.2a 10.若1<x<2,则的值是()A.﹣3B.﹣1C.2D.1二.填空题11.已知|a|=2,|b|=4,若|a﹣b|=a﹣b,则a+b 的值等于.12.若a、b互为相反数,c、d互为倒数,则(a+b)2﹣2cd=.13.已知|x|=3,|y|=7,且x+y>0,则x﹣y的值等于.14.如果规定向北为正,那么走﹣200米表示.15.a,b是自然数,规定a∇b=3×a﹣,则2∇17的值是.三.解答题16.计算与化简:(1)12﹣(﹣6)+(﹣9);(2)(﹣48)×(﹣﹣+);第1页(共1页)(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.17.现有15箱苹果,以每箱25kg为标准,超过或不足的部分分别用正、负数来表示,记录如下表,请解答下列问题:﹣102 2.53标准质量的差(单位:kg)﹣2﹣1.5箱数1322241(1)15箱苹果中,最重的一箱比最轻的一箱重多少千克?(2)与标准质量相比,15箱苹果的总重量共计超过或不足多少千克?(3)若苹果每千克售价为8元,则这15箱苹果全部售出共可获利多少元?18.已知数轴上的点A和点B之间的距离为16个单位长度,点A在原点的左边,距离原点4个单位长度,点B在原点的右边.(1)点A所对应的的数是,点B对应的数是.(2)若已知在数轴上的点E从点A出发向右运动,速度为每秒1个单位长度,同时点F 从点B出发向左运动,速度为每秒3个单位长度,求当EF=4时,点E对应的数(列方第1页(共1页)程解答)(3)若已知在数轴上的点M从点A出发向右运动,速度为每秒a个单位长度,同时点N 从点B出发向右运动,速度为每秒2a个单位长度,设线段NO的中点为P(O为原点),在运动过程中,线段OP的值减去线段AM的值是否变化?若不变,求其值;若变化,说明理由.19.超市购进8筐白菜,以每筐25kg为准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售,为促销超市决定打九折销售,求这8筐白菜现价比原价便宜了多少钱?第1页(共1页)20.有个填写运算符号的游戏:“2_3_5_9”,在每个“____”上,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:2+3﹣5﹣9;(2)若2÷3×59=30,请推算横线上的符号;(3)在“235+9”的横线上填入符号后,使计算所得数最小,直接写出填上符号后的算式及算式的计算结果的最小值.第1页(共1页)参考答案一.选择题1.解:根据题中的新定义得:原式=(﹣5+3)×2=﹣4,故选:D.2.解:点B在原点的右侧,且到原点3个单位长度,因此点B表示的数为3,故选:C.3.解:线段AB的中点C 表示的数为:=3,故选:B.4.解:①﹣a不一定是负数,错误;②﹣2的倒数是,正确;③﹣(﹣3)的相反数是﹣3,正确;④绝对值等于2的数是±2,错误;故选:B.5.解:∵|x|=3,|y|=4,∴x=±3,y=±4,∴x+y=﹣3+4=1,或x+y=﹣3﹣4=﹣7,x+y=3+4=7或x+y=3﹣4=﹣1,综上所述,x+y的值为±7或±1,故选:A.第1页(共1页)6.解:数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位长度到达点C,∵点C表示的数为1,∴点B表示的数为﹣4,∴点A表示的数为﹣2,∴则与点A表示的数互为相反数的是2,故选:D.7.解:()×=,故选:D.8.解:3÷4÷5=×=,A、原式=3÷=,不符合题意;B、原式=3÷20=,符合题意;C、原式=3÷=,不符合题意;D 、原式=×=,不符合题意,故选:B.9.解:根据题意得:b<a<0,且|a|<|b|,∴a﹣b>0,a+b<0,∴原式=a﹣b﹣a﹣b=﹣2b.第1页(共1页)故选:A.10.解:∵1<x<2,∴x﹣2<0,x﹣1>0,x>0,∴原式=﹣1+1+1=1,故选:D.二.填空题11.解:∵|a|=2,|b|=4,∴a=±2,b=±4,∵|a﹣b|=a﹣b,∴a﹣b>0,∴a>b,∴a=2,b=﹣4,或a=﹣2,b=﹣4.(1)a=2,b=﹣4时,a+b=2+(﹣4)=﹣2.(2)a=﹣2,b=﹣4时,a+b=﹣2+(﹣4)=﹣6.故答案为:﹣2或﹣6.12.解:根据题意得:a+b=0,cd=1,则原式=0﹣2=﹣2.故答案为:﹣2.第1页(共1页)13.解:∵|x|=3,|y|=7∴x=3或x=﹣3;y=7或y=﹣7,又∵x+y>0,∴当x=3,y=7时,x﹣y=3﹣7=﹣4;当x=﹣3,y=7时,x﹣y=﹣3﹣7=﹣10;故答案为:﹣4或﹣10.14.解:规定向北走为正,则向南走为负,故走﹣200米表示向南走200米.故答案为:向南走200米.15.解:∵a∇b=3×a ﹣,∴2∇17=3×2﹣=6﹣=.故答案为:.三.解答题16.解:(1)12﹣(﹣6)+(﹣9)=12+6+(﹣9)=18+(﹣9)第1页(共1页)=9;(2)(﹣48)×(﹣﹣+)=(﹣48)×(﹣)+(﹣48)×(﹣)+(﹣48)×=24+30﹣28=26;(3)﹣32÷(﹣2)2×|﹣1|×6+(﹣2)3.=﹣9÷4××6+(﹣8)=﹣××6+(﹣8)=(﹣18)+(﹣8)=﹣26.17.解:(1)3﹣(﹣2)=5(千克).答:最重的一箱比最轻的一箱重5千克;(2)﹣2+(﹣1.5×3)+(﹣1×2)+0×2+(0×2)+2×2+2.5×4+3×1=8.5(千克).答:与标准质量相比,15箱苹果的总重量共计超过8.5千克;(3)25×15+8.5=383.5(千克)383.5×8=3068(元).答:这15箱苹果全部售出共可获利3068元.18.解:(1)根据题意得:A点所对应的数是﹣4;B对应的数是12.故答案为﹣4,12;第1页(共1页)(2)设经过x秒时,EF=4.分两种情况:①相遇前,根据题意得:x+4+3x=16,解得:x=3.则点E对应的数为﹣4+1x3=﹣1;②相遇后,根据题意得:x﹣4+3x=16,解得:x=5,则点E对应的数为﹣4+5=1;(3)设运动时间是t秒,则AM=at,PO =ON =,则PO﹣AM =﹣at=6.即PO﹣AM为定值,定值为6.19.解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),答:以每筐25千克为标准,这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克),25×8﹣5.5=194.5(千克),答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元),583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.第1页(共1页)20.解:(1)原式=5﹣5﹣9=﹣9;(2)若2÷3×5×9=30,因此“空格”上的符号为“×”;(3)2﹣3×5+9=﹣4,故答案为:﹣×.第1页(共1页)。

人教版初中数学七年级上册第一章 《有理数》测试题(含答案)

人教版初中数学七年级上册第一章 《有理数》测试题(含答案)

第一章 《有理数》测试题一、单选题(每小题只有一个正确答案)1.25-的倒数是( ) A .25 B .52 C .52- D .12- 2.判断下列说法正确的是( )A .正数和负数统称为有理数B .正分数和小数统称为分数C .正整数集、负整数集并列在一起构成整数集D .一个有理数不是整数就是分数3.已知关于x 的代数式25x -与52x -互为相反数,则x 的值为( )A .9B .9-C .1D .1-4.某市去年完成了城市绿化面积28210000m .将“8210000”用科学记数法可表示( )A .482110⨯B .582.110⨯C .70.82110⨯D .68.2110⨯5.如果高出海平面 20 米,记作+20 米,那么-30 米表示( )A .高出海平面 30 米B .低于海平面 30 米C .不足 30 米D .低于海平面 20 米6.与1的和是3的数是( )A .﹣4B .﹣2C .2D .4 7.一家快餐店一周中每天的盈亏情况如下(盈利为正):37元,-26元,-15元,27元,-7元,128元,98元,这家快餐店总的盈亏情况是( )A .盈利了290元B .亏损了48元C .盈利了242元D .盈利了-242元8.下列说法正确的有( )①数轴原点两旁的两个数互为相反数;②若 a ,b 互为相反数,则 a+b=0;③如果一个数的绝对值等于它本身,那么这个数是正数;④-3.14 既是负数,分数,也是有理数.A .1B .2C .3D .49.已知有理数a 、b 在数轴上的位置如图所示,下列结论正确的是( )A .a+b >0B .ab <0C .b —a >0D .a >b 10.27-的倒数与绝对值等于221的数的积为( )A .13B .13- C .13或13- D .4147或4147- 11.30269精确到百位的近似数是( )A .303B .30300C .330.230⨯D .43.0310⨯12.若a 是负数,则下列各式不正确的是( )A .a 2=(﹣a )2B .a 2=|a 2|C .a 3=(﹣a )3D .a 3=﹣(﹣a 3)二、填空题13.﹣13的相反数是_____,倒数是_____,绝对值是_____. 14.如图,数轴上点A 表示的数是________.15.已知a 是最大的负整数,b 是最小的正整数,c 是绝对值最小的数,则(a +c )÷b =___________.16.已知|a|=5,|b|=3,且|a ﹣b|=b ﹣a ,那么a+b=_____.17.若定义一种新的运算,规定a cb d =ab-cd,则14 23-=_____.三、解答题18.把下列各数分别填在相应的集合内:-11,4.8,73,-2.7,16 ,3.141 592 6,-34,73,0. 正分数集合:{ };负分数集合:{ };非负整数集合:{ };非正整数集合:{ }.19.计算题:(1)(-20)-(+3)-(-5) (2)(3) |-3|×(-5)÷(- ) (4) ( )(5) (6)( )×4(7) ( ) ( ) ( )(8)20.用科学记数法表示下列各数.(1);(2);(3);(4).21.下表记录了七(1)班一个组学生的体重情况,假设平均体重是50 kg,超出记为正,不足记为负.(1)谁最重?谁最轻?(2)最重的同学比最轻的同学重多少?22.已知水结成冰的温度是,酒精冻结的温度是.现有一杯酒精的温度为,放在一个制冷装置里、每分钟温度可降低,要使这杯酒精冻结,需要几分钟?(精确到分钟)23.已知,互为相反数,,互为倒数,且,求的值.24.把下列各数表示的点画在数轴上,并用“<”把这些数连接起来.-5, |-1.5|,, 0,(-2)2.用“<”把这些数连接起来:______________________________________.25.某电力局维修队从电力局出发,在一条南北方向的公路上巡回维修,假定向南的路线记为正数,走过的各段路程依次为(单位:千米)﹣600,+4050,﹣805,+380,﹣1600(1)维修队最后是否能回到电力局?(2)维修队最后收工时在本局什么方向,距本局多远?(3)维修队离开本局最远时是多少?(4)如果每千米耗油2升,那么在整个维修过程中用了多少升油?参考答案1.C2.D3.C4.D5.B6.C7.C8.B9.D10.C11.D12.C13.13-31314.-115.-116.﹣2或﹣8.17.1418.详见解析.19.(1)-18;(2)-5;(3)9;(4)-25;(5)-15;(6)-399;(7)0;(8)40.20.见解析21.(1)小天最重,小丽最轻;(2)小天比小丽重13 kg.22.需要分钟.23.-3.24.用“<”把这些数连接起来:-5<-<0<<25.(1)维修队最后没有回到电力局;(2)维修队最后收工时在本局北边,距本局425千米;(3)维修队离开本局最远时是3450千米;(4)在整个维修过程中用了14870升油.。

人教版数学七年级上册第一章《有理数》检测试试题(含答案)

人教版数学七年级上册第一章《有理数》检测试试题(含答案)

人教版数学七年级上册第一章《有理数》检测试题一、选择题1.-1的相反数是( )A.-1B.0C.1D.-1或12.计算(-1)2020的结果是( )A.-1B.1C.-2020D.20203.若x =-(-2)×3,则x 的倒数是( )A.-16B.16C.-6D.64.已知有理数a 、b 在数轴上对应点如图所示,则下列式子正确的是( )A .ab >0B .︱a ︱>︱b ︱C .a -b >0D .a +b >05.比较-12,-13,14的大小,下列选项中正确的结果是( ) A.-12<-13<14 B.-12<14<-13C.14<-13<-12D.-13<-12<14 6.有以下两个结论:①任何一个有理数和它的相反数之间至少有一个有理数;②如果一个有理数有倒数,则这个有理数与它的倒数之间至少有一个有理数.则( )A.①,②都不对B.①对,②不对C.①,②都对D.①不对,②对7.若a +b <0,ab <0,则( )A.a >0,b >0B.a <0,b <0C.a ,b 两数一正一负,且正数的绝对值大于负数的绝对值D.a ,b 两数一正一负,且负数的绝对值大于正数的绝对值8.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差( )BA.0.8kgB.0.6kgC.0.5kgD.0.4kg9.一根1m 长的小棒,第一次截去它的13,第二次截去剩下的13,如此截下去,第五次后剩下的小棒的长度是( )C A.513⎛⎫ ⎪⎝⎭m B.[1-513⎛⎫ ⎪⎝⎭]m C.523⎛⎫ ⎪⎝⎭m D.[1-523⎛⎫ ⎪⎝⎭]m 10.若ab ≠0,则a a +b b的取值不可能是( ) A.0 B.1C.2D.-2 二、填空题11.-15的绝对值是_______;立方等于-8的数是_______. 12.一种商品原价120元,按八折(即原价的80%)出售,则现售价应为_______元. 0 1 -1 b a13.对于式子-(-4),下列理解:①可表示-4的相反数;②可表示-1与-4的乘积;③可表示-4的绝对值;④运算结果等于4.其中理解错误的有_______个.14.数轴距离原点3个单位的点有_______个,他们分别表示数是_______.15.比-312大而比213小的所有整数的和为_______.16.多伦多与北京的时间差为-12小时(正数表示同一时刻比北京时间早的时数),如果北京时间是10月1日14:00,那么多伦多时间是_______.17.某校师生在为某地地震灾区举行的爱心捐款活动中总计捐款18.49 万元.把18.49 万用科学记数法表示并保留两个有效数字为_______.18.规定a※b=5a2+2b-1,则(-4)※6的值为_______.19.大家知道5=50-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离.又如式子63-,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子5a+在数轴上的意义是_______.20.为了求1+2+22+23+…+22020的值,可令S=1+2+22+23+…+22020,则2S=2+22+23+24+…+22021,因此2S-S=22021-1,所以1+2+22+23+24+…+22020=22021-1,仿照以上推理计算出1+5+52+53+…+52020的值是_______.三、解答题21.计算:(1)-9÷3+(12-23)×12+32;(2)713×(-9)+713×(-18)+713;(3)-691516×8.22.一条小虫沿一根东西方向放着的长杆向东以2.5米/分的速度爬行4分钟后,又向西爬行6分钟.问此时它距出发点的距离是多少?23.马虎同学在做题时画一条数轴,数轴上原有一点A,其表示的数是-2,由于一时粗心把数轴上的原点标错了位置,使A点正好落在-2的相反数的位置,请你帮帮马虎同学,借助于这个数轴要把这个数轴画正确,原点应向哪个方向移动几个单位长度.24.我们常用的数是十进制数,如4657=4×103+6×102+5×101+7×100,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中110=1×22+1×21+0×20等于十进制的数6,110101=1×25+1×24+0×23+1×22+0×21+1×20等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?25.若1+2+3+…+31+32+33=17×33,试求1-3+2-6+3-9+4-12+…+31-93+32-96+33-99的值.26.我国古代有一道有趣的数学题,“井深10米,一只蜗牛从井底向上爬,白天向上爬2米,夜间又滑下1米,问小蜗牛几天可以爬出深井?”27.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向(1)求收工时距A地多远?(2)在第几次纪录时距A地最远?(3若每km耗油0.3升,问共耗油多少升?参考答案:一、1.C;2.B;3.A;4.C.点拨:由数轴上a、b对应点的位置可知0<a<1,b<-1,故a、b异号,即ab<0,否定A选项;又︱a︱<1,︱b︱>1,即︱a︱<︱b︱,选项B 错误;因为a>0>b,所以a-b>0,选项C正确;由︱a︱<︱b︱且a>0,b<0,得a+b<0,选项D错误;5.A.点拨:因为正数大于一切负数,所以三个数中14最大.又因为︱-1 2︱=12=36,︱-13︱=13=26,︱-12︱>︱-13︱,所以-12<-13,即-12<-13<14;6.A.点拨:①中的说法我们可以想象在一条数轴上原点的两边如±1,±2,…这样的两个非零有理数之间存在“间隙”,也就是说它们之间一定有另外的有理数.但是0的相反数是0,0和它的相反数0之间就没有“间隙”了,所以①错;②中按照①的分析方法,如果一个数的倒数等于它本身,那么说法②就是错的,我们知道1的倒数是1,-1的倒数是-1,显然②这种说法也不对;7.D;8.B;9.C;10.B.点拨:本题可利用分析的方法考虑.因为ab≠0,所以ab>0或ab<0.若ab>0,则可能有两种情况:a>0,b>0或a<0,b<0.当a>0,b>0时,aa+bb=1+1=2;当a<0,b<0时,aa+bb=-1-1=-2;若ab<0,则可能有两种情况:a>0,b<0或a<0,b>0;当a>0,b<0时,aa+bb=1-1=0;当a<0,b>0时,aa+bb=-1+1=0.可能出现的结果有0,2,-2,所以应选B.二、11.15、-2;12.96;13.2.点拨:②和③理解错误;14.2个、+3和-3;15.-3;16.2:00;17.1.8×105.点拨:因为18.49万=184900,所以用科学记数可表示为1.849×105,保留两个有效数字在8后的数要舍去为1.8×105;18.61.点拨:因为a※b=2a2+5b-1,所以(-4)※6=2×(-4)2+5×6-1=61;19.表示a的点与表示-5的点之间的距离;20.4152021-.点拨:不妨模仿条件中的求解方法,设S=1+5+52+53+…+52020,再在两边同乘以5,得5S=5+52+53+…+52021,两式相减,得5S-S=52021-1,即S=4152021-.三、21.(1)-9÷3+(12-23)×12+32=-3+12×12-23×12+9=-3+6-8+9=4.(2)7 13×(-9)+713×(-18)+713=713×(-9-18+1)=713×(-26)=-14.(3)-691516×8=-(70-116)×8=-(70×8-116×8)=-55912.点拨:(1)中涉及有理数的加、减、乘、除与乘方,用运算法则进行运算,其中可以运用分配律简化运算,(12-23)×12=12×12-23×12=6-8=-2;(2)中各部分含有相同因数713,所以可想到逆用分配律计算;(3)题先确定符号,然后把绝对值691516化成(70-116)再与8相乘比较简便.解:评析:在进行有理数的计算时,切记要灵活.在拿到题目之前先要看看题目的特点,选择恰当的运算性质,尤其是分配律的正向和反向应用,正确应用运算律会起到事半功倍的效果.22.设向东速度为2.5米/分,向西为-2.5米/分.2.5×4+(-2.5)×6=10-15=-5(米).答:它在距出发点西边5米的地方.点拨:我们一般规定向东为正,即向东速度为2.5米/分;向西为负,即向西速度为-2.5米/分.评析:本题是一道有理数乘法与数轴知识综合运用的应用题,可以利用数轴的直观性使问题变得简单.23.向左移动4个单位长度.24.101011=1×25+0×24+1×23+0×22+1×21+1×20=32+0+8+0+2+1=43.25.1-3+2-6+3-9+4-12+…+31-93+32-96+33-99=(1+2+3+…+31+32+33)+(-3-6-9-…-99)=17×33-3(1+2+3+…+31+32+33)=17×33-3×17×33=-2×17×33.26.把向上爬记为正数,向下滑记为负数,由蜗牛一天爬1米;蜗牛最后一天可以爬出井,在此之前它要爬10-2=8(米);所以蜗牛要先爬8天,加上最后一天,总共是9天.答:蜗牛要9天可以爬出深井.点拨:如果把向上爬记为正数,向下滑记为负数,则蜗牛一天爬(2+(-1)=1)米,那么蜗牛爬了8天,就爬8米,剩下2米,第9天就可以爬出来了.27.(1)因为(-4)+(+7)+(-9)+(+8)+(+6)+(-5)+(-2)=+1,所以收工时距A 地1 km.(2)五.(3)因为一天中共行驶的路程=4-+7++9-+8++6++5-+2-发=41(km ),而41×0.3=12.3(升),所以共耗油12.3升.。

(必考题)初中七年级数学上册第一章《有理数》经典测试题(含答案解析)

(必考题)初中七年级数学上册第一章《有理数》经典测试题(含答案解析)

一、选择题1.(0分)下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯- A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 2.(0分)如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112 C .12 D .-112A 解析:A 【分析】 逐一求出三个数的绝对值,代入原式即可求解.【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A .【点睛】 本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.3.(0分)下列说法正确的是( )A .近似数5千和5000的精确度是相同的B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C .2.46万精确到百分位D .近似数8.4和0.7的精确度不一样B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A .近似数5千精确度到千位,近似数5000精确到个位,所以A 选项错误;B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯,所以B 选项正确;C .2.46万精确到百位,所以C 选项错误;D .近似数8.4和0.7的精确度是一样的,所以D 选项错误.故选B .【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.4.(0分)已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D 解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.5.(0分)若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】【分析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.6.(0分)将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是( )A .(-3.4)3<(-3.4)4<(-3.4)5B .(-3.4)5<(-3.4)4<(-3.4)3C .(-3.4)5<(-3.4)3<(-3.4)4D .(-3.4)3<(-3.4)5<(-3.4)4C解析:C【解析】(-3.4)3、 (-3.4)5的积为负数,且(-3.4)3的绝对值小于 (-3.4)5的绝对值,所以(-3.4)3>(-3.4)5 ;(-3.4)4的积为正数,根据正数大于负数,即可得(-3.4)5<(-3.4)3<(-3.4)4,故选C.7.(0分)下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】 根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误; B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误;D、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确;故选:D.【点睛】本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.8.(0分)如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.9.(0分)下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则ab=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a ,b 互为相反数,则a b=-1在a 、b 均为0的时候不成立,故本小题错误; ③∵如果a=2,b=0,a >b ,但是b 没有倒数,∴a 的倒数小于b 的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x 2-2x-33x 3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】 本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.10.(0分)已知有理数a ,b 满足0ab ≠,则||||a b a b +的值为( ) A .2±B .±1C .2±或0D .±1或0C解析:C【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果.【详解】∵0ab ≠,∴当0a >,0b <时,原式110=-=;当0a >,0b >时,原式112=+=;当0a <,0b <时,原式112=--=-;当0a <,0b >时,原式110=-+=.故选:C .【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键. 二、填空题11.(0分)若230x y ++-= ,则x y -的值为________.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性 解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.12.(0分)若有理数a ,b 满足()26150a b -+-=,则ab =__________.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab 的值再把ab 的值代入ab 中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a ,b 的值,再把a 、b 的值代入ab 中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0. 13.(0分)计算1-2×(32+12)的结果是 _____.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算 解析:-18【分析】先算乘方、再算括号、然后算乘法、最后算加减即可.【详解】解:1-2×(32+12) =1-2×(9+12)=1-2×192=1-19=-18.故答案为-18.【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键. 14.(0分)填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.15.(0分)下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1b a=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab 互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶解析:④【分析】利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可.【详解】①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误;②0a b 时,a ,b 互为相反数,但是对于等式1b a=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确.综上,正确的有④.故答案为:④.【点睛】本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.16.(0分)某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】根据题意,得他九月份工资为4000300(1320010000)5%4460++-⨯=(元). 故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.17.(0分)把点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P所表示的数是______.【分析】根据向右移动加向左移动减进行解答即可【详解】因为点P从数轴的原点开始先向右移动2个单位长度再向左移动7个单位长度所以点P所表示的数是0+2-7=-5故答案为:-5【点睛】本题考查的是数轴熟知解析:5【分析】根据向右移动加,向左移动减进行解答即可.【详解】因为点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,所以点P所表示的数是 0+2-7=-5.故答案为:-5.【点睛】本题考查的是数轴,熟知数轴的特点是解答此题的关键.18.(0分)气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.19.(0分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.5×108【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数 解析:5×108【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.(0分)若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b=- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 三、解答题21.(0分)高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?解析:(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧;(2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;++-+++-+-+++-+-++++⨯,(2)(17971531168516)0.2=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.22.(0分)点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.解析:(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5,∴BC=|2﹣5|=3.(2)当点D在点A的右侧时,点D所表示的数为﹣3+3=0,所以点B移动到点D的距离为m=|2﹣0|=2,当点D在点A的左侧时,点D所表示的数为﹣3﹣3=﹣6,所以点B移动到点D的距离为m=|2﹣(﹣6)|=8,答:m的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD的距离分类讨论点D的位置是解题关键.23.(0分)计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 解析:(1)28;(2)-2【分析】 (1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)45(30)(13)+---=4530+13-=15+13=28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11--=-2.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.24.(0分)定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上);①21a =(0)a ≠;②对于任何正整数n ,11n =;③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数.应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式) 试一试:将下列除方运算直接写成幂的形式:65=_______;91()2-=________; (4)计算:3341()(2)2(8)24-÷--+-⨯-.解析:(1)12;(2)①②④;(3)41()5,7(2)-;(4)26-. 【分析】(1)根据a n 表示“a 的下n 次方”的意义进行计算即可;(2)根据a n 表示“a 的下n 次方”的意义计算判断即可;(3)根据a n 表示“a 的下n 次方”的意义,表示出56,91()2-=7(2)-,进而得出答案; (4)按照有理数的运算法则进行计算即可.【详解】(1)23=2÷2÷2=2×12×12=12, 故答案为:12; (2)当a≠0时,a 2=a÷a =1,因此①正确;对于任何正整数n ,1n =1÷1÷1÷…÷1=1,因此②正确;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③不正确; 根据有理数除法的法则可得,④正确;故答案为:①②④; (3)56=5÷5÷5÷5÷5÷5=5×15×15×15×15×15=(15)4, 同理可得,91()2-==(−2)7, 故答案为:(15)4,(−2)7; (4)3341()(2)2(8)24-÷--+-⨯- =16×(-18)-8+(-8)×2 =-2-8-16=−26.【点睛】 本题考查有理数的混合运算,理解“a n ,表示a 的下n 次方”的意义是正确计算的前提. 25.(0分)设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立.【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.26.(0分)计算(1) ()375244128⎛⎫---⨯- ⎪⎝⎭(2) ()212382455-+--÷-⨯解析:(1)47;(2)4925【分析】 (1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解: ()375244128⎛⎫---⨯- ⎪⎝⎭ =18+14+15=47(2)()212|38|2455-+--÷-⨯ =11452455⎛⎫-+-⨯-⨯⎪⎝⎭ =24125+ 4925= 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.27.(0分)如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.28.(0分)计算(1)18()5(0.25)4+----(2)2﹣412()(63)7921-+⨯- (3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 解析:(1)3;(2)37;(3)﹣236;(4)72【分析】 (1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+ =3;(2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦ =2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦ =341(92)149--⨯-⨯-÷=9 12 -+=72.【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.。

初中数学七年级上册第一章:有理数测试题(含答案)

初中数学七年级上册第一章:有理数测试题(含答案)

《第1章有理数》单元测试卷一、选择题(共10小题)1.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0C.D.﹣12.有理数﹣2的相反数是()A.2B.﹣2C.D.﹣3.2015的相反数是()A.B.﹣C.2015D.﹣20154.﹣的相反数是()A.2B.﹣2C.D.﹣5.6的绝对值是()A.6B.﹣6C.D.﹣6.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是17.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是() A.﹣10℃B.10℃C.14℃D.﹣14℃8.下列说法错误的是()A.﹣2的相反数是2B.3的倒数是C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是09.如图,数轴上的A、B、C、D 四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D10.若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1B.a≤1C.a<1D.a>1二、填空题11.有一种原子的直径约为0.00000053米,用科学记数法表示为__________.12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是__________,第n个数是__________(n为正整数).13.﹣3的倒数是__________,﹣3的绝对值是__________.14.数轴上到原点的距离等于4的数是__________.15.|a|=4,b2=4,且|a+b|=a+b,那么a﹣b的值是__________.16.在数轴上点P到原点的距离为5,点P表示的数是__________.17.绝对值不大于2的所有整数为__________.18.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:__________.负数集:__________.有理数集:__________.三、计算题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)20.已知3m+7与﹣10互为相反数,求m的值.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3+0.1﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(__________)2=__________.根据以上规律填空:(1)13+23+33+…+n3=(__________)2=[__________]2.(2)猜想:113+123+133+143+153=__________.新人教版七年级上册《第1章有理数》单元测试卷解析版一、选择题(共10小题)1.在﹣,0,,﹣1这四个数中,最小的数是()A.﹣B.0C.D.﹣1【考点】有理数大小比较.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数大小比较的法则,可得﹣1<﹣,所以在﹣,0,,﹣1这四个数中,最小的数是﹣1.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.有理数﹣2的相反数是()A.2B.﹣2C.D.﹣【考点】相反数.【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:根据相反数的定义,﹣2的相反数是2.故选:A.【点评】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.3.2015的相反数是()A.B.﹣C.2015D.﹣2015【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:2015的相反数是:﹣2015,故选:D.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.4.﹣的相反数是()A.2B.﹣2C.D.﹣【考点】相反数.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣的相反数是.故选C.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.5.6的绝对值是()A.6B.﹣6C.D.﹣【考点】绝对值.【分析】根据绝对值的定义求解.【解答】解:6是正数,绝对值是它本身6.故选:A.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.6.下列说法正确的是()A.一个数的绝对值一定比0大B.一个数的相反数一定比它本身小C.绝对值等于它本身的数一定是正数D.最小的正整数是1【考点】绝对值;有理数;相反数.【分析】分别利用绝对值以及有理数和相反数的定义分析得出即可.【解答】解:A、一个数的绝对值一定比0大,有可能等于0,故此选项错误;B、一个数的相反数一定比它本身小,负数的相反数,比它本身大,故此选项错误;C、绝对值等于它本身的数一定是正数,0的绝对值也等于其本身,故此选项错误;D、最小的正整数是1,正确.故选:D.【点评】此题主要考查了绝对值以及有理数和相反数的定义,正确掌握它们的区别是解题关键.7.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是()A.﹣10℃B.10℃C.14℃D.﹣14℃【考点】有理数的减法.【专题】应用题.【分析】用最高气温减去最低气温,然后根据有理数的减法运算法则减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:12℃﹣2℃=10℃.故选:B.【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键.8.下列说法错误的是()A.﹣2的相反数是2B.3的倒数是C.(﹣3)﹣(﹣5)=2D.﹣11,0,4这三个数中最小的数是0【考点】相反数;倒数;有理数大小比较;有理数的减法.【分析】根据相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较进行判断即可.【解答】解:﹣2的相反数是2,A正确;3的倒数是,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选:D.【点评】本题考查的是相反数的概念、倒数的概念、有理数的减法法则和有理数的大小比较,掌握有关的概念和法则是解题的关键.9.如图,数轴上的A、B、C、D 四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D【考点】实数与数轴;估算无理数的大小.【分析】先估算出≈1.732,所以﹣≈﹣1.732,根据点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,即可解答.【解答】解:∵≈1.732,∴﹣≈﹣1.732,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.10.若|a﹣1|=a﹣1,则a的取值范围是()A.a≥1B.a≤1C.a<1D.a>1【考点】绝对值.【分析】根据|a|=a时,a≥0,因此|a﹣1|=a﹣1,则a﹣1≥0,即可求得a的取值范围.【解答】解:因为|a﹣1|=a﹣1,则a﹣1≥0,解得:a≥1,故选A【点评】此题考查绝对值,只要熟知绝对值的性质即可解答.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.二、填空题11.有一种原子的直径约为0.00000053米,用科学记数法表示为5.3×10﹣7.【考点】科学记数法—表示较小的数.【专题】应用题.【分析】较小的数的科学记数法的一般形式为:a×10﹣n,在本题中a应为5.3,10的指数为﹣7.【解答】解:0.00000053=5.3×10﹣7.故答案为:5.3×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.一组按规律排列的数:2,0,4,0,6,0,…,其中第7个数是8,第n 个数是(n为正整数).【考点】规律型:数字的变化类.【专题】规律型.【分析】观察数据可得:偶数项为0;奇数项为(n+1);故其中第7个数是(7+1)=8;第n 个数是(n+1).【解答】解:第7个数是(7+1)=8;第n 个数是(n+1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.13.﹣3的倒数是﹣,﹣3的绝对值是3.【考点】倒数;绝对值.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数;根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣3的倒数是﹣,﹣3的绝对值是3,故答案为:,3.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.14.数轴上到原点的距离等于4的数是±4.【考点】数轴.【分析】根据从原点向左数4个单位长度得﹣4,向右数4个单位长度得4,得到答案.【解答】解:与原点距离为4的点为:|4|,∴这个数为±4.故答案为:±4.【点评】本题考查的是数轴的知识,灵活运用数形结合思想是解题的关键,解答时,要正确理解绝对值的概念.15.|a|=4,b2=4,且|a+b|=a+b,那么a﹣b的值是0或4或﹣4.【考点】有理数的混合运算;绝对值.【分析】根据绝对值的性质求出a的值,根据平方根求出b的值,再根据|a+b|=a+b可知,a+b≥0,然后确定出a、b的值,再代入进行计算即可.【解答】解:∵|a|=4,∴a=2或﹣2,∵b2=4,∴b=2或﹣2,∵|a+b|=a+b,∴a+b≥0,∴a=2时,b=2,或a=2时,b=﹣2,或a=﹣2时,b=2,∴a﹣b=2﹣2=0,或a﹣b=2﹣(﹣2)=4,或a﹣b=(﹣2)﹣2=﹣4,综上所述,a﹣b的值是0或4或﹣4.故答案为:0或4或﹣4.【点评】本题考查了有理数的混合运算,绝对值的性质,平方根的概念,根据题意求出a、b的值是解题的关键.16.在数轴上点P到原点的距离为5,点P表示的数是±5.【考点】数轴.【专题】推理填空题.【分析】根据数轴上各点到原点距离的定义进行解答.【解答】解:∵在数轴上点P到原点的距离为5,即|x|=5,∴x=±5.故答案为:±5.【点评】本题考查的是数轴上各数到原点距离的定义,即数轴上各点到原点的距离等于各点所表示的数绝对值.17.绝对值不大于2的所有整数为0,±1,±2.【考点】绝对值.【专题】计算题.【分析】找出绝对值不大于2的所有整数即可.【解答】解:绝对值不大于2的所有整数为0,±1,±2.故答案为:0,±1,±2.【点评】此题考查了绝对值,熟练掌握绝对值的意义是解本题的关键.18.把下列各数分别填在相应的集合内:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9分数集:5%、﹣2.3、、3.1415926、﹣、.负数集:﹣11、﹣2.3、﹣、﹣9.有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9.【考点】有理数.【分析】按照有理数的分类填写:有理数.【解答】解:分数集:5%、﹣2.3、、3.1415926、﹣、;负数集:﹣11、﹣2.3、﹣、﹣9;有理数集:﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9;故答案为:5%、﹣2.3、、3.1415926、﹣、;﹣11、﹣2.3、﹣、﹣9;﹣11、5%、﹣2.3、、3.1415926、0、﹣、、2014、﹣9.【点评】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.三、计算题19.计算﹣+×(23﹣1)×(﹣5)×(﹣)【考点】有理数的混合运算.【专题】计算题.【分析】根据运算顺序先算括号中的乘方运算,23表示三个2的乘积,计算后再根据负因式的个数为2个,得到积为正数,约分后,最后利用异号两数相加的法则即可得到最后结果.【解答】解:原式=﹣+×(8﹣1)×(﹣5)×(﹣)=﹣+×7×(﹣5)×(﹣)=﹣+4=.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序:先乘方,再乘除,最后算加减,有括号先算括号中的,同级运算从左到右依次进行,然后按照运算法则运算,有时可以利用运算律来简化运算.20.已知3m+7与﹣10互为相反数,求m的值.【考点】相反数.【分析】根据互为相反数的和为零,可得关于m的方程,根据解方程,可得答案.【解答】解:由3m+7与﹣10互为相反数,得3m+7+(﹣10)=0.解得m=1,m的值为1.【点评】本题考查了相反数,利用互为相反数的和为零得出关于m的方程是解题关键.21.计算(1)11﹣18﹣12+19(2)(﹣5)×(﹣7)+20÷(﹣4)(3)(+﹣)×(﹣36)(4)2×(﹣)﹣12÷(5)3+12÷22×(﹣3)﹣5(6)﹣12+2014×(﹣)3×0﹣(﹣3)【考点】有理数的混合运算.【专题】计算题.【分析】(1)原式结合后,相加即可得到结果;(2)原式先计算乘除运算,再计算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式先计算乘除运算,再计算加减运算即可得到结果;(5)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(6)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:(1)原式=11+19﹣18﹣12=30﹣30=0;(2)原式=35﹣80=﹣45;(3)原式=﹣4﹣6+9=﹣1;(4)原式=﹣×﹣12×=﹣﹣18=﹣19;(5)原式=3+12××(﹣3)﹣5=3﹣9﹣5=﹣11;(6)原式=﹣1+0+3=2.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题22.某股民在上周星期五买进某种股票1000股,每股10元,星期六,星期天股市不交易,下表是本周每日该股票的涨跌情况(单位:元):星期一二三四五每股涨跌+0.3+0.1﹣0.2﹣0.5+0.2(1)本周星期五收盘时,每股是多少元?(2)已知买进股票时需付买入成交额1.5‰的手续费,卖出股票时需付卖出成交额1.5‰的手续费和卖出成交额1‰的交易费,如果在本周五收盘时将全部股票一次性地卖出,那么该股民的收益情况如何?【考点】正数和负数.【分析】(1)根据有理数的加法,可得答案;(2)根据卖出股票金额减去买入股票金额,减去成交额费用,减去手续费,可得收益情况.【解答】解:(1)10+0.3+0.1﹣0.2﹣0.5+0.2=9.9(元).答:本周星期五收盘时,每股是9.9元,(2)1000×9.9﹣1000×10﹣1000×10×1.5‰﹣1000×9.9×1.5‰﹣1000×9.9×1‰=9900﹣15﹣14.85﹣9.9﹣10000=﹣139.75(元).答:该股民的收益情况是亏了139.75元.【点评】本题考查了正数和负数,利用了炒股知识:卖出股票金额减去买入股票金额,减去成交额费用,减去手续费.23.定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【专题】新定义.【分析】首先根据运算的定义,根据3⊕x的值小于13,即可列出关于x的不等式,解方程即可求解.【解答】解:∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,解得:x>﹣1..【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.24.在求1+2+22+23+24+25+26的值时,小明发现:从第二个加数起每一个加数都是前一个加数的2倍,于是他设:S=1+2+22+23+24+25+26①然后在①式的两边都乘以2,得:2S=2+22+23+24+25+26+27②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.(1)求1+3+32+33+34+35+36的值;(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.【考点】整式的混合运算.【专题】换元法.【分析】(1)将1+3+32+33+34+35+36乘3,减去1+3+32+33+34+35+36,把它们的结果除以3﹣1=2即可求解;(2)将1+a+a2+a3+…+a2013乘a,减去1+a+a2+a3+…+a2013,把它们的结果除以a﹣1即可求解.【解答】解:(1)1+3+32+33+34+35+36=[(1+3+32+33+34+35+36)×3﹣(1+3+32+33+34+35+36)]÷(3﹣1)=[(3+32+33+34+35+36+37)﹣(1+3+32+33+34+35+36)]÷2=(37﹣1)÷2=2187÷2=1093.5;(2)1+a+a2+a3+…+a2013(a≠0且a≠1)═[(1+a+a2+a3+…+a2013)×a﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=[(a+a2+a3+…+a2013+a2014)﹣(1+a+a2+a3+…+a2013)]÷(a﹣1)=(a2014﹣1)÷(a﹣1)=.【点评】本题考查了整式的混合运算,有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.25.观察下列各式:13+23=1+8=9,而(1+2)2=9,∴13+23=(1+2)2;13+23+33=6,而(1+2+3)2=36,∴13+23+33=(1+2+3)2;13+23+33+43=100,而(1+2+3+4)2=100,∴13+23+33+43=(1+2+3+4)2;∴13+23+33+43+53=(1+2+3+4+5)2=225.根据以上规律填空:(1)13+23+33+…+n3=(1+2+…+n)2=[]2.(2)猜想:113+123+133+143+153=11375.【考点】整式的混合运算.【专题】规律型.【分析】观察题中的一系列等式发现,从1开始的连续正整数的立方和等于这几个连续正整数和的平方,根据此规律填空,(1)根据上述规律填空,然后把1+2+…+n 变为个(n+1)相乘,即可化简;(2)对所求的式子前面加上1到10的立方和,然后根据上述规律分别求出1到15的立方和与1到10的立方和,求出的两数相减即可求出值.【解答】解:由题意可知:13+23+33+43+53=(1+2+3+4+5)2=225(1)∵1+2+…+n=(1+n)+[2+(n﹣1)]+…+[+(n﹣+1)]=,∴13+23+33+…+n3=(1+2+…+n)2=[]2;(2)113+123+133+143+153=13+23+33+...+153﹣(13+23+33+ (103)=(1+2+…+15)2﹣(1+2+…+10)2=1202﹣552=11375.故答案为:1+2+3+4+5;225;1+2+…+n;;11375.【点评】此题要求学生综合运用观察、想象、归纳、推理概括等思维方式,探索问题,获得解题途径.考查了学生善于观察,归纳总结的能力,以及运用总结的结论解决问题的能力.。

人教版数学七年级上册第一章有理数测试(含答案)

人教版数学七年级上册第一章有理数测试(含答案)

人教版数学七年级上学期第一章有理数测试一、选择题(本大题共10小题,每小题3分,共30分)1.下列各数中,不是负数的是()A. -2B. 3C. -58D. -0.102.在下列选项中,具有相反意义的量是()A. 收入20元与支出30元B. 上升了6米和后退了7米C. 卖出10斤米和盈利10元D. 向东行30米和向北行30米3. 下列四个数中最大的数是( )A. ﹣2B. ﹣1C. 0D. 14.计算1﹣(﹣1)的结果是()A. 2B. 1C. 0D. ﹣25.下列各对数是互为倒数的是( )A. 4和-4B. -3和13C. -2和12D. 0和06.下列说法中错误的是( )A. 0的相反数是0B. 任何有理数都有相反数C. a的相反数是-aD. 表示相反意义的量的两个数互为相反数7. 如图,数轴单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是( )A. —4B. —2C. 0D. 48.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为( )A. 312×104B. 0.312×107C. 3.12×106D. 3.12×1079.下列各式中不正确的是( )A. 22=(-2)2B. -22=(-2)2C. -33=(-3)3D. -33=-|-33|10.有理数a,b在数轴上对应的位置如图所示,则下列结论中正确的是( )A a+b >0B. a-b=0C. a-b >0D. ab <0二、填空题(本大题共6小题,每小题3分,共18分)11.比较大小:﹣1____12-(填“>”、“<”或“=”) 12.某种零件,标明要求是φ20±0.2 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm ,该零件_____________(填“合格” 或“不合格”).13. 用四舍五入法取近似数,1.806≈__________(精确到0.01). 14.在检测排球质量过程中,规定超过标准的克数记为正数,不足的克数记为负数,根据下表提供的检测结果,你认为质量最接近标准的是_______号排球.15.如图,将一刻度尺放在数轴上(数轴上的单位长度是1cm ),刻度尺上“0cm ”和“8cm ”分别对应数轴上的3-和,那么的值为___ .16.已知2+23=22×23,3+38=32×38,4+415=42×415,…若14+a b =142×a b(a,b 均正整数),则a+b=_______.三、解答题(本大题共6小题,共52分)17.请把下列有理数填入相应的大括号里(将各数用逗号分开): -(-53),- 3.14-,+31,3--4⎛⎫ ⎪⎝⎭,0,-(+7) ,1213,2016,-1.39. 整数:{ …}; 分数:{ …}; 非负数:{ …}. 18.计算: (1)(-24)×(12-213-38); (2)[2-5×(-12)2]÷1-4⎛⎫ ⎪⎝⎭.19.计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.20.为节约水资源,某初中环保宣传小组作了一个调查,得到了如下的一组数据:全市大约有160万人,每天早晨起来漱口,如果漱口时都不关水龙头,那么每个人漱口时要浪费56毫升的水.(1)按这样计算,如果每个人都不关水龙头,那么全市一天早晨漱口要浪费多少升水?(结果用科学记数法表示)(2)如果用500毫升的水瓶来装(1)中浪费的水,可以装多少瓶?(结果用科学记数法表示)21.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×41185+999×(15-)-999×3185.22.在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流营救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:km):+14,-9,+8,-7,+13,-6,+10,-5.(1)通过计算说明B地在A地什么方向,与A地相距多远.(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗油0.5 L,油箱容量为29 L,则途中还需补充多少升油?附加题(共20分,不计入总分)23.已知a为有理数,定义运算符号▽:当a>-2时,▽a=-a;当a<-2时,▽a=a;当a=-2时,▽a=0.根据这种运算,计算▽[4+▽(2-5)]的值为( )A. -7B. 7C. -1D. 124.已知A,B在数轴上表示的数分别是m,n.(1)填写下表:m 5 -5 -6 -6 -10 -2.5n 3 0 4 -4 2 -2.5A、B两点间的距离(2)若A,B两点间的距离为d,写出d与m,n之间的数量关系.(3)在数轴上标出所有符合条件的整数点P,使它到5和-5的距离之和为10,并求出所有这些整数的和.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列各数中,不是负数是()A. -2B. 3C. -58D. -0.10【答案】B【解析】试题分析:A.﹣2是负数,故本选项不符合题意;B.3是正数,不是负数,故本选项符合题意;C.58是负数,故本选项不符合题意;D.﹣0.10是负数,故本选项不符合题意;故选B.考点:正数和负数.2.在下列选项中,具有相反意义的量是()A. 收入20元与支出30元B. 上升了6米和后退了7米C. 卖出10斤米和盈利10元D. 向东行30米和向北行30米【答案】A【解析】试题分析:收入20元与支出30元是一对具有相反意义的量.故选A.考点:相反意义的量.3. 下列四个数中最大的数是( )A. ﹣2B. ﹣1C. 0D. 1 【答案】D【解析】试题分析:∵﹣2<﹣1<0<1,∴最大的数是1.故选D.考点:有理数大小比较.4.计算1﹣(﹣1)的结果是()A. 2B. 1C. 0D. ﹣2 【答案】A【解析】【详解】解:1﹣(﹣1)=1+1=2. 故选:A .【点睛】本题考查有理数的减法. 5.下列各对数是互为倒数是( ) A. 4和-4 B. -3和13C. -2和12D. 0和0【答案】C 【解析】试题解析:A 、4×(-4)≠1,选项错误; B 、-3×13≠1,选项错误; C 、-2×(-12)=1,选项正确; D 、0×0≠1,选项错误. 故选C . 考点:倒数.6.下列说法中错误的是( ) A. 0的相反数是0 B. 任何有理数都有相反数C. a 的相反数是-aD. 表示相反意义的量的两个数互为相反数【答案】D 【解析】A 中,0的相反数是0本身,故A 不符合题意;B 中,任何有理数都有相反数,故B 不符合题意;C 中,a 的相反数是﹣a ,故C 不符合题意;D 中,只有符号不同的两个数叫做互为相反数.而表示相反意义的量的两个数可以用正数和负数表示. 故选D.点睛:本题考查了相反数,只有符号不同的两个数叫做互为相反数,一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0. 7. 如图,数轴的单位长度为1,如果点A,B 表示的数的绝对值相等,那么点A 表示的数是( )A. —4B. —2C. 0D. 4【答案】B【解析】解:如图,AB的中点即数轴的原点O.根据数轴可以得到点A表示的数是﹣2.故选B.8.过度包装既浪费资源又污染环境,据测算,如果全国每年减少十分之一的包装纸用量,那么能减少3120000吨二氧化碳的排放量,把数据3120000用科学记数法表示为( )A. 312×104B. 0.312×107C. 3.12×106D. 3.12×107【答案】C【解析】试题解析:3120000=3.12×106故选C.9.下列各式中不正确的是( )A. 22=(-2)2B. -22=(-2)2C. -33=(-3)3D. -33=-|-33|【答案】B【解析】【分析】根据乘方运算法则逐一计算即可判断.【详解】A. 22=4,(−2)2=4,故此选项正确;B. −22=−4,(−2)2=4,故此选项错误;C. −33=−27,(−3)3=−27,故此选项正确;D. −33=−27,−|−33|=−27,故此选项正确;故答案选:B.【点睛】本题考查了有理数的乘方运算,解题的关键是熟练的掌握有理数的乘方运算法则.10.有理数a,b在数轴上对应的位置如图所示,则下列结论中正确的是( )A. a+b>0B. a-b=0C. a-b>0D. ab<0【答案】D【解析】【分析】根据图示,可得:a<-1,0<b<1,据此逐项判断即可.【详解】∵a<−1,0<b<1,∴a+b<0,∴选项A不符合题意;∵a<−1,0<b<1,∴∴a−b<0∴选项B不符合题意;∵a<−1,0<b<1,∴a-b<0,∴选项C不符合题意;∵a<−1,0<b<1,∴ab<0,∴选项D符合题意.故答案选:D.【点睛】本题考查了数轴的知识点,解题的关键是熟练的掌握数轴的知识与运用.二、填空题(本大题共6小题,每小题3分,共18分)11.比较大小:﹣1____12-(填“>”、“<”或“=”)【答案】< 【解析】两个负数比较,绝对值大的反而小,故﹣1<1 2 -12.某种零件,标明要求是φ20±0.2 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9mm,该零件_____________(填“合格” 或“不合格”).【答案】合格【解析】【分析】先求出合格直径范围,再判断即可.【详解】解:由题意得,合格直径范围为:19.8mm--20.2mm,若一个零件的直径是19.9mm,则该零件合格.故答案为:合格.【点睛】本题考查了正数和负数的知识,解答本题的关键是求出合格直径范围.13. 用四舍五入法取近似数,1.806≈__________(精确到0.01).【答案】1.90.【解析】试题分析:本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.把千分位上的数字6进行四舍五入即可.解::1.806≈1.90(精确到0.01).故答案为1.90.考点:近似数和有效数字.14.在检测排球质量过程中,规定超过标准的克数记为正数,不足的克数记为负数,根据下表提供的检测结果,你认为质量最接近标准的是_______号排球.【答案】五【解析】【分析】根据题意可知:质量最接近标准的排球就是检测结果的绝对值最小的.【详解】解:依题意,有|−0.6|<|+0.8|<|−2.5|<|−3.5|<|+5|由于“绝对值越小,距离标准越近”所以质量接近标准的是五号排球.【点睛】本题考查了正数与负数,解题的关键是熟练的掌握正数与负数的相关知识.15.如图,将一刻度尺放在数轴上(数轴上的单位长度是1cm),刻度尺上“0cm”和“8cm”分别对应数轴上的3 和,那么的值为___ .【答案】5.【解析】试题解析:由数轴可知38,x -+= 解得: 5.x = 故答案 16.已知2+23=22×23,3+38=32×38,4+415=42×415,…若14+a b =142×a b(a,b 均为正整数),则a+b=_______.【答案】209 【解析】试题解析:根据题中规律可知33222221111n n n n n n n n n n n n -++===⋅---- ,则当14n = 时,14a = ,195b =,所以14195209a b +=+= . 故本题的答案为209.三、解答题(本大题共6小题,共52分)17.请把下列有理数填入相应的大括号里(将各数用逗号分开): -(-5.3),- 3.14-,+31,3--4⎛⎫⎪⎝⎭,0,-(+7) ,1213,2016,-1.39. 整数:{ …}; 分数:{ …}; 非负数:{ …}.【答案】+31,0,-(+7),2016;-(-5.3),- 3.14-,3--4⎛⎫ ⎪⎝⎭,1213,-1.39;-(-5.3),+31 ,3--4⎛⎫ ⎪⎝⎭,0,1213,2016.【解析】 【分析】根据有理数的分类进行判断即可.有理数包括:整数(正整数、0和负整数)和分数(正分数和负分数). 【详解】解:整数:{+31,0,-(+7),2016,…}; 分数:{-(-5.3),- 3.14-,3--4⎛⎫ ⎪⎝⎭,1213,-1.39,…};非负数:{-(-5.3),+31 ,3--4⎛⎫ ⎪⎝⎭,0,1213,2016,…}. 【点睛】考查了有理数的知识点,解题的关键是熟练的掌握有理数的分类与定义. 18.计算:(1)(-24)×(12-213-38);(2)[2-5×(-12)2]÷1-4⎛⎫⎪⎝⎭.【答案】(1)37;(2)-3.【解析】【分析】(1)原式利用乘法分配律计算即可得到结果;(2)原式先计算乘方运算再计算乘除运算,最后算加减运算即可得到结果. 【详解】解:(1)原式=-12+40+9=37;(2)原式=(2-54)×(-4)=-8+5= -3.【点睛】本题考查了有理数的综合运算,解决的关键在于符号的处理.19.计算6÷(﹣1123+),方方同学的计算过程如下,原式=6÷(-12)+6÷13=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】-36【解析】【分析】根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可.【详解】解:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣12+26)=6÷(﹣16)=6×(﹣6)=﹣36.【点睛】本题考查有理数的除法.20.为节约水资源,某初中环保宣传小组作了一个调查,得到了如下的一组数据:全市大约有160万人,每天早晨起来漱口,如果漱口时都不关水龙头,那么每个人漱口时要浪费56毫升的水.(1)按这样计算,如果每个人都不关水龙头,那么全市一天早晨漱口要浪费多少升水?(结果用科学记数法表示)(2)如果用500毫升的水瓶来装(1)中浪费的水,可以装多少瓶?(结果用科学记数法表示)【答案】(1) 8.96×104;(2) 1.792×105.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【详解】解:(1)1 600 000×56÷1000=89 600=8.96×104(升).答:如果每个人都不关水龙头,那么全市一天早晨漱口要浪费8.96×104升水.(2)89 600×1000÷500=179 200=1.792×105(瓶).答:如果用500毫升的水瓶来装(1)中浪费的水,可以装1.792×105瓶.【点睛】本题主要考查科学记数法—表示较大的数,关键在于要确定a的值和n的值.21.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×41185+999×(15-)-999×3185.【答案】(1)149985;(2)99900.【解析】【详解】试题分析:根据题目中所给的规律,第一题凑整法,第二题提同数法解决即可. 试题解析:(1)999×(-15)=(1000-1)×(-15)=15-15000=149985;(2)999×41185+999×(15-)-999×31185=999×[41185+(15-)-3185]=999×100=99900.考点:有理数的运算.22.在某次抗险救灾中,消防官兵的冲锋舟沿东西方向的河流营救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:km):+14,-9,+8,-7,+13,-6,+10,-5.(1)通过计算说明B地在A地的什么方向,与A地相距多远.(2)救灾过程中,最远处离出发点A有多远?(3)若冲锋舟每千米耗油0.5 L,油箱容量为29 L,则途中还需补充多少升油?【答案】(1) B地在A地的东边18千米处;(2) 还需补充7升油.【解析】试题分析:(1)把题目中所给数值相加,若结果为正数则B地在A地的东方,若结果为负数,则B地在A地的西方;(2)分别计算出各点离出发点的距离,取数值较大的点即可;(3)先求出这一天走的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量. 试题解析:(1)∵14﹣9+8﹣7+13﹣6+10﹣5=18>0,∴B 地在A 地的东边18千米;(2)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5千米;14﹣9+8=13千米;14﹣9+8﹣7=6千米;14﹣9+8﹣7+13=19千米;14﹣9+8﹣7+13﹣6=13千米;14﹣9+8﹣7+13﹣6+10=23千米;14﹣9+8﹣7+13﹣6+10﹣5=18千米,∴最远处离出发点23千米;(3)∵这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+10+|﹣5|=72千米,应耗油72×0.5=36(升),∴还需补充的油量为:36﹣29=7(升).考点:正数和负数.附加题(共20分,不计入总分)23.已知a 为有理数,定义运算符号▽:当a >-2时,▽a=-a ;当a <-2时,▽a=a ;当a=-2时,▽a=0.根据这种运算,计算▽[4+▽(2-5)]的值为( )A. -7B. 7C. -1D. 1 【答案】C【解析】【分析】定义运算符号▽当a>-2时, ▽a=-a;当时a<-2, ▽a=a;当a=-2时, ▽a=0,先判断a 的大小,然后按照题中的运算法则求解即可.【详解】2532,-=-<-且当a 2<-时, ▽a=a,▽(-3)=-3.4+▽(2-5)=4-3=1>-2,当a>-2时, ▽a=-a,▽[4+▽(2-5)]=▽1=-1.【点睛】本题考查了学生读题做题的能力.关键是理解“▽”这种运算符号的含义,以便从已知条件里找寻规律. 24.已知A,B 在数轴上表示的数分别是m,n.(1)填写下表:(2)若A,B两点间的距离为d,写出d与m,n之间的数量关系.(3)在数轴上标出所有符合条件的整数点P,使它到5和-5的距离之和为10,并求出所有这些整数的和.【答案】(1)2,5,10,2,12,0;(2)d=|m-n|;(3)在数轴上标出略,整数点P表示的数可以是5,-5,4,-4,3,-3,2,-2,1,-1,0,它们的和0.【解析】【分析】根据在数轴求距离的方法,让右边的点表示的数减去左边的点的表示的数,依次计算可得答案.数轴上两点间的距离d等于表示两点数之差的绝对值,即d=|m-n|.设P点为x,根据(2)得出的结论列出含绝对值的一元一次方程,利用绝对值的代数意义化简即可求出x的值.【详解】解:(1)从左到右依次填2,5,10,2,12,0.(2)d=|m-n|.(3) 5,-5,4,-4,3,-3,2,-2,1,-1,0,它们的和是0.【点睛】本题是一个新型题目,通过本题我们可掌握数轴上两点间的距离的计算方法:两点间的距离表示两个点的数的差的绝对值,熟悉掌握是关键.。

人教版初中七年级数学上册第一章《有理数》经典测试题(含答案解析)

人教版初中七年级数学上册第一章《有理数》经典测试题(含答案解析)

1.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=0C解析:C【分析】 根据y 的正负然后代入两个式子内分别求解,看清条件逐一排除即可.【详解】当x=-4,y=-2时,-2<0,故代入x 2-2y ,结果得20,故不选A ;当x=3,y=3时,3>0,故代入x 2+2y ,结果得15,故不选B ;当x=2,y=4时,4>0,故代入x 2+2y ,结果得12,C 正确;当x=4,y=0时,00≥,故代入x 2+2y ,结果得16,故不选D ;故选C .【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.2.如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112 C .12 D .-112A 解析:A 【分析】 逐一求出三个数的绝对值,代入原式即可求解.【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A .【点睛】 本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.3.有理数a 、b 在数轴上,则下列结论正确的是( )A .a >0B .ab >0C .a <bD .b <0C解析:C【分析】根据数轴的性质,得到b >0>a ,然后根据有理数乘法计算法则判断即可.【详解】根据数轴上点的位置,得到b >0>a ,所以A 、D 错误,C 正确;而a 和b 异号,因此乘积的符号为负号,即ab <0所以B 错误;故选C .【点睛】本题考查了数轴,以及有理数乘法,原点右侧的点表示的数大于原点左侧的点表示的数;异号两数相乘,符号为负号;本题关键是根据a 和b 的位置正确判断a 和b 的大小. 4.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1C 解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.5.下列说法中,其中正确的个数是( )(1)有理数中,有绝对值最小的数;(2)有理数不是整数就是分数;(3)当a 表示正有理数,则-a 一定是负数;(4)a 是大于-1的负数,则a 2小于a 3A .1B .2C .3D .4C解析:C【解析】【分析】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.【详解】解:(1)有理数中,绝对值最小的数是0,符合题意;(2)有理数不是整数就是分数,符合题意;(3)当a表示正有理数,则-a一定是负数,符合题意;(4)a是大于-1的负数,则a2大于a3,不符合题意,故选:C.【点睛】利用有理数,绝对值的代数意义,以及有理数的乘方意义判断即可.此题考查了有理数的乘方,正数与负数,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.6.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.-一定是负数;②||a一定是正数;③倒数等于它本身的数是±1;7.下列说法:①a④绝对值等于它本身的数是l;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个A解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】-不一定是负数,故该说法错误;①a②||a一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.8.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.9.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为()A.8个B.16个C.32个D.64个D解析:D【分析】每半小时分裂一次,一个变为2个,实际是21个.分裂第二次时,2个就变为了22个.那么经过3小时,就要分裂6次.根据有理数的乘方的定义可得.【详解】26=2×2×2×2×2×2=64.故选D.【点睛】本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.10.2020年5月7日,世卫组织公布中国以外新冠确诊病例约为3504000例,把“3504000”用科学记数法表示正确的是()A.3504×103B.3.504×106C.3.5×106D.3.504×107B解析:B【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.【详解】3504000=3.504×106,【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.11.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( )A .28×10﹣9mB .2.8×10﹣8mC .28×109mD .2.8×108m B 解析:B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm 用科学记数法可表示为:2.8×10﹣8m ,故选B .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12.若1<x <2,则|2||1|||21x x x x x x ---+--的值是( ) A .﹣3B .﹣1C .2D .1D 解析:D【分析】在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.【详解】解:12x <<,20x ∴-<,10x ->,0x >,∴原式1111=-++=,故选:D .【点睛】本题主要考查了绝对值,代数式的化简求值问题.解此题的关键是在解绝对值时要考虑到绝对值符号中代数式的正负性,再去掉绝对值符号.13.按键顺序是的算式是( ) A .(0.8+3.2)÷45= B .0.8+3.2÷45= C .(0.8+3.2)÷45= D .0.8+3.2÷45=B 解析:B根据计算器的使用方法,结合各项进行判断即可.【详解】 解:按下列按键顺序输入:则它表达的算式是0.8+3.2÷45=, 故选:B .【点睛】 此题主要考查了计算器的应用,根据有理数的输入方法正确输入数据是解题关键. 14.已知 1b a 0-<<< ,那么 a b,a b,a 1,a 1+-+- 的大小关系是( )A .a b a b a 1a 1+<-<-<+B .a 1a b a b a 1+>+>->-C .a 1a b a b a 1-<+<-<+D .a b a b a 1a 1+>->+>- C 解析:C【分析】根据有理数大小比较的法则分别进行解答,即可得出答案.【详解】解:∵-1<b <a <0,∴a+b <a+(-b)=a-b .∵b >-1,∴a-1=a+(-1)<a+b .又∵-b <1,∴a-b=a+(-b)<a+1.综上得:a-1<a+b <a-b <a+1,故选:C .【点睛】本题主要考查了实数大小的比较,熟练掌握有理数大小比较的法则和有理数的加法法则是解题的关键.15.下列各式计算正确的是( )A .826(82)6--⨯=--⨯B .434322()3434÷⨯=÷⨯C .20012002(1)(1)11-+-=-+D .-(-22)=-4C解析:C【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断.【详解】A 、82681220--⨯=--=-,错误,不符合题意;B 、433392234448÷⨯=⨯⨯=,错误,不符合题意; C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.1.绝对值小于2的整数有_______个,它们是______________.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(1解析:3; -1,0,1等.【分析】当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.故答案为(1). 3; (2). -1,0,1等.【点睛】本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.2.一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B '=可得点A '为12,再根据A 与A '以C 为折点对折,即C 为A ,A '中点即可求解.【详解】解:翻折后A '在B 右侧,且3A B '=.所以点A '为12,∵A 与A '以C 为折点对折,则C 为A ,A '中点,即1216:22C-=-.【点睛】本题考查数轴上两点间的距离,得到C为A,A'中点是解题的关键.3.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.4.观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数90155【分析】根据数的排列每一行的最后一个数的绝对值等于行数的平方并且奇数都是负数偶数都是正数求出第9行的最后一个数的绝对值然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为19解析:90, 15, 5.【分析】根据数的排列,每一行的最后一个数的绝对值等于行数的平方,并且奇数都是负数,偶数都是正数,求出第9行的最后一个数的绝对值,然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为196,即可得解.【详解】∵第9行的最后一个数的绝对值为92=81,∴第10行从左边数第9个数的绝对值是81+9=90,∵90是偶数,∴第10行从左边数第9个数是正数,为90,∵142=196,201-196=5,∴数-201是第15行从左边数起第5个数.故答案为90,15,5.【点睛】本题是对数字变化规律的考查,观察出每一行的最后一个数的绝对值等于行数的平方是解题的关键.5.某电视塔高468 m,某段地铁高-15 m,则电视塔比此段地铁高_____m.483【分析】根据有理数减法进行计算即可【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483m故答案为:483【点睛】本题考查了有理数减法根据题意列出式子是解题的关键解析:483【分析】根据有理数减法进行计算即可.【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483 m.故答案为:483.【点睛】本题考查了有理数减法,根据题意列出式子是解题的关键.6.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10na 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】根据题意,得他九月份工资为4000300(1320010000)5%4460++-⨯=(元). 故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.8.有理数a ,b ,c 在数轴上的位置如图所示:填空:+a b ________0,1b -_______0,a c -_______0,1c -_______0.<<<>【分析】数轴上右边表示的数总大于左边表示的数左边的数为负数右边的数为正数;根据有理数减法法则进行判断即可【详解】由题图可知所以故答案为:<<<>【点睛】考核知识点:有理数减法掌握有理数减法法解析:< < < >【分析】数轴上右边表示的数总大于左边表示的数.左边的数为负数,右边的数为正数;根据有理数减法法则进行判断即可.【详解】由题图可知01b a c <<<<,所以0,10,0,10a b b a c c +<-<-<->故答案为:<,<,<,>【点睛】考核知识点:有理数减法.掌握有理数减法法则是关键.9.已知2x =,3y =,且x y <,则34x y -的值为_______.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键. 10.根据二十四点算法,现有四个数3、4、6、10,每个数用且只用一次进行加、减、乘、除,使其结果等于24,则列式为___=24.6÷3×10+4【分析】灵活利用运算符号将34610连接使结果为24即可解答本题【详解】由题意可得6÷3×10+4故答案为:6÷3×10+4【点睛】本题考查了有理数的混合运算关键是明确题意进行灵活变解析:6÷3×10+4【分析】灵活利用运算符号将3、4、6、10连接,使结果为24即可解答本题.【详解】由题意可得,6÷3×10+4.故答案为:6÷3×10+4.【点睛】本题考查了有理数的混合运算,关键是明确题意,进行灵活变化,最终求出问题的答案. 11.某班同学用一张长为1.8×103mm ,宽为1.65×103mm 的大彩色纸板制作一些边长为3×102mm 的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.1.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.解析:数轴表示见解析;-3<112-<0<112<3.【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可.【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3.故答案为:-3<112-<0<112<3.【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.2.计算:-32+2×(-1)3-(-9)÷2 1 3⎛⎫ ⎪⎝⎭解析:70【分析】先计算乘方,然后计算乘除,再计算加减,即可得到答案.【详解】解:原式=92(1)(9)9-+⨯---⨯=9281--+=70.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握运算法则进行解题.3.计算题:(1)3×(﹣4)﹣28÷(﹣7);(2)﹣12020+(﹣2)3×1123⎛⎫-+⎪⎝⎭.解析:(1)﹣8;(2)13. 【分析】 (1)先计算乘除,再计算加减,即可得到答案;(2)先计算乘方、然后计算乘法和括号内的运算,再计算加法即可.【详解】解:(1)3×(﹣4)﹣28÷(﹣7)=(﹣12)+4=﹣8;(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. =-1+(-8)×16⎛⎫-⎪⎝⎭ =413-+=13. 【点睛】本题考查了有理数的加减乘除运算,解题的关键是熟练掌握运算法则进行解题. 4.计算 ①()115112236⎛⎫--+--- ⎪⎝⎭ ②()32112114132⎛⎫⎛⎫-÷-⨯--- ⎪ ⎪⎝⎭⎝⎭③524312(4)()12(152)2-÷-⨯-⨯-+④()()213132123242834⎛⎫⎛⎫-÷--+-⨯- ⎪ ⎪⎝⎭⎝⎭ ⑤222019111()22(1)2⎡⎤---÷--⨯-÷-⎢⎥⎣⎦ 解析:①-2;②458-;③-10;④-9;⑤-13. 【分析】 ①先去括号和绝对值,在进行加减运算即可.②先运算乘方,去括号,再将除法改为乘法,最后进行混合运算即可.③先运算乘方,再去括号,最后进行混合运算即可.④先运算乘方,利用乘法分配律去括号,再将除法改为乘法,最后进行混合运算即可. ⑤先运算乘方,再将除法改为乘法,再去括号,去绝对值,最后进行混合运算即可.【详解】①原式14171236=+-- 386176666=+-- 2=-. ②原式3274()(3)()48=-⨯-⨯--- 2798=-+ 458=-. ③原式3132(4)12(1516)4=-÷-⨯-⨯-+ 181214=⨯-⨯ 10=-.④原式()()()()1171542242424834=⨯--⨯--⨯-+⨯- 8335690=-++- 9=-.⑤原式11(12)2(1)4=---÷-⨯÷- 1(142)2=-+-⨯-⨯ 1(6)2=-+-⨯ 112=--13=-.【点睛】本题考查有理数的混合运算,掌握有理数混合运算的顺序是解答本题的关键.。

人教版七年级数学上册《第一章有理数》练习题-附有答案

人教版七年级数学上册《第一章有理数》练习题-附有答案

人教版七年级数学上册《第一章有理数》练习题-附有答案考点1【正负数和零】1.一种巧克力的质量标识为“23±0.25千克”则下列哪种巧克力的质量是合格的.()A.23.30千克B.22.70千克C.23.55千克D.22.80千克【答案】D解:∵23+0.25=23.2523-0.25=22.75∴巧克力的重量在23.25与22.75kg之间.∴符合条件的只有D.2.若足球质量与标准质量相比超出部分记作正数不足部分记作负数则在下面4个足球中质量最接近标准的是()A.B.C.D.【答案】A-<+<+<-解:0.70.8 2.1 3.5∴质量最接近标准的是A选项的足球3.我市某天最高气温是12℃最低气温是零下3℃那么当天的日温差是_________ ℃【答案】15.12−(−3)=12+3=15(℃)4.若某次数学考试标准成绩定为85分规定高于标准记为正两位学生的成绩分别记作:+9分和﹣3分则第一位学生的实际得分为______分.5.教师节当天出租车司机小王在东西向的街道上免费接送教师规定向东为正向西为负当天出租车的行程如下(单位:千米):+5 ﹣4 ﹣8 +10 +3 ﹣6 +7 ﹣11﹣﹣1)将最后一名老师送到目的地时小王距出发地多少千米?方位如何?﹣2)若汽车耗油量为0.2升/千米则当天耗油多少升?若汽油价格为5.70元/升则小王共花费了多少元钱?解℃℃1℃+5℃4℃8+10+3℃6+7℃11=℃4℃则距出发地西边4千米;℃2)汽车的总路程是:5+4+8+10+3+6+7+11=54千米则耗油是54×0.2=10.8升花费10.8×5.70=61.56元答:当天耗油10.8升小王共花费了61.56元.考点2【有理数分类】1.在数22715π0.40.30.1010010001... 3.1415中有理数有()A.3个B.4个C.5个D.6个【答案】C数22715π0.40.30.1010010001... 3.1415中有理数有227150.40.3 3.1415共计5个2.下列说法正确的有( )(1)整数就是正整数和负整数;(2)零是整数但不是自然数;(3)分数包括正分数、负分数;(4)正数和负数统称为有理数;(5)一个有理数它不是整数就是分数.A.1个B.2个C.3个D.4个【答案】B℃分数包括正分数、负分数正确;℃正数、负数和0 统称为有理数故错误;℃一个有理数它不是整数就是分数正确3.在3.142π15-00.12个数中是有理数的几个()A.2B.3C.4D.5【答案】C解:有理数为3.1415-00.12共4个4.若a是最小的自然数b是最大的负整数c是绝对值最小的有理数则a-b-c的值为()A.-1B.0C.2D.1【答案】D解:由题意得:a=0b=-1c=0∴a-b-c=0-(﹣1)-0=1.5.下列说法中正确的是()A.非负有理数就是正有理数B.零表示没有不是自然数C.正整数和负整数统称为整数D.整数和分数统称为有理数【答案】DA.非负有理数就是正有理数和零故A错误;B.零表示没有是自然数故B错误;C.整正数、零、负整数统称为整数故C错误;D.整数和分数统称有理数故D正确;考点3【数轴】1.在数轴上表示a﹣b两数的点如图所示则下列判断正确的是()A.a+b﹣0B.a+b﹣0C.a﹣|b|D.|a|﹣|b|【答案】B解℃℃b℃0℃a而且a℃|b|℃a+b℃0∴选项A不正确选项B正确;℃a℃|b|∴选项C不正确;℃|a|℃|b|∴选项D不正确.2.数轴上表示整数的点称为整点某数轴的单位长度是1厘米若在这个数轴上随意画出一条长2000厘米的线段AB盖住的整点的个数共有()个.A.1998或1999B.1999或2000C.2000或2001D.2001或2002【答案】C解:依题意得:①当线段AB起点在整点时覆盖2001个数;②当线段AB起点不在整点即在两个整点之间时覆盖2000个数.3.已知点A和点B在同一数轴上点A表示数﹣2又已知点B和点A相距5个单位长度则点B表示的数是()A.3B.﹣7C.3或﹣7D.3或7【答案】C分为两种情况:当B点在A点的左边时B点所表示的数是-2-5=−7;当B点在A点的右边时B点所表示的数是-2+5=3;4.a b ,是有理数 它们在数轴上的对应点的位置如图所示 把a a b b --,,,按照从小到大的顺序排列( )A .b a a b -<<-<B .a b a b -<-<<C .b a a b -<-<<D .b b a a -<<-<【答案】A观察数轴可知:b >0>a 且b 的绝对值大于a 的绝对值.在b 和-a 两个正数中 -a <b ;在a 和-b 两个负数中 绝对值大的反而小 则-b <a . 因此 -b <a <-a <b .5.将一把刻度尺按如图所示放在数轴上(数轴的单位长度是1cm) 刻度尺上的“0cm”和“8cm”分别对应数轴上的-3.6和x 则x 的值为( )A .4.2B .4.3C .4.4D .4.5【答案】C利用减法的意义 x -(-3.6)=8 x =4.4.所以选C.6.如图 数轴上四点O A B C 其中O 为原点 且2AC = OA OB = 若点C 表示的数为x 则点B 表示的数为( )A .()2x -+B .()2x --C .2x +D .2x -【答案】B解:∵AC=2 点C 表示的数为x∵OA OB =∴点B 表示的数为:-(x -2)7.点A 在数轴上距原点5个单位长度 将A 点先向左移动2个单位长度 再向右移动6个单位长度 此时A 点所表示的数是( ) A .-1 B .9C .-1或9D .1或9【答案】C解:∵点A 在数轴上距原点5个单位长度 ∴点A 表示的数是−5或5∵A 点先向左移动2个单位长度 再向右移动6个单位长度 ∴−5−2+6=−1或5−2+6=9 ∴此时点A 所表示的数是−1或9.考点4【相反数】1.若a 与1互为相反数 则a +3的值为( ) A .2 B .0C .﹣1D .1【答案】A∵a 与1互为相反数 ∴a =﹣1则a +3的值为:﹣1+3=2.2.下列各对数:()3+-与3- ()3++与+3 ()3--与()3+- ()3-+与()3+-()3-+与()3++ +3与3-中 互为相反数的有( )A .3对B .4对C .5对D .6对解:根据相反数的定义得-(-3)与+(-3)-(+3)与+(+3)+3与-3互为相反数所以有3对.3.如果a+b=0那么a b两个数一定()A.都等于0B.互为相反数C.一正一负D.a>b【答案】B由a+b=0则有=-a b所以a b两个数一定是互为相反数-的相反数是-2那么a是()4.7aA.5B.-3C.2D.1【答案】A解:∵7-a的相反数是-2∴7-a=2解得a=5.5.若a表示有理数则-a是()A.正数B.负数C.a的相反数D.a的倒数【答案】Ca表示有理数则a-表示a的相反数考点5【绝对值】1.下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有()A.0个B.1个C.2个D.3个【答案】B解:①∵互为相反数的两个数相加和为0移项后两边加上绝对值是相等的∴互为相反数的两个数绝对值相等故①正确;④∵|2|=|-2| 但2≠-2 ∴④错误2.如果一个有理数的绝对值是正数 那么这个数必定是( ) A .是正数 B .不是0C .是负数D .以上都不对【答案】B由于正数和负数的绝对值都是正数 而0的绝对值是0;所以若一个有理数的绝对值是正数 那么这个数必不为0.3.已知a>0 b<0 c<0且c >a >b 则下列结论错误的是( ) A .a+c<0 B .b -c>0C .c<-b<-aD .-b<a<-c【答案】C解:∵a>0 b<0 c<0且c >a >b在数轴上表示如下:则a+c<0 b -c>0 c<-a<-b -b<a<-c 故C 错误4.若a ab b=- 则下列结论正确的是( ) A .0a < 0b < B .0a > 0b >C .0ab >D .0ab ≤【答案】D解:a ab b=- ∴0ab≤ 即0ab ≤;A.a>0B.a≥0C.a<0D.a≤0【答案】D=-解:∵||a a∴a≤0.-表示的数是( )6.若x为有理数则x xA.正数B.非正数C.负数D.非负数【答案】D【解析】℃1)若x≥0时丨x丨-x=x-x=0℃℃2)若x℃0时丨x丨-x=-x-x=-2x℃0℃由(1℃℃2)可得丨x丨-x表示的数是非负数.考点6【有理数的加减法】1.已知|a|=7|b|=2且a<b求a+b的值.【答案】-5或-9解:∵|a|=7∴a=±7又∵|b|=2∴b=±2又∵a<b∴a=-7b=2或a=-7b=-2当a=-7b=2时a+b=-7+2=-5当a=-7b=-2时a+b=-7+(-2)=-9综上所述a+b的值为-5或-9.2.已知|a| = 3 |b| = 2 且ab < 0 求:a + b的值.解:℃|a|=3 |b|=2 ℃a=±3 b=±2; ℃ab <0 ℃ab 异号.℃当a=3时 b=-2 则a + b=3+(-2)=1; 当a=-3时 b=2 则a + b=-3+2=-1.3.已知5a = 2a b -=且a b a b -=- 求+a b 的值 【答案】8或-12 解:∵|a|=5 ∴a=±5∵2a b -=且a b a b -=- ∴0a b -> 2a b -= ∴2b a =- ∴当a=5 则b= 3 当a=-5 则b= -7 ∴a+b=8或-12;4.已知│a │=4且a<0 b 是绝对值最小的数 c 是最大的负整数 则a+b -c=____. 【答案】﹣3解:因为a =4且a <0 b 是绝对值最小的数 c 是最大的负整数所以a =﹣4 b =0 c =﹣1所以a +b -c =﹣4+0-(﹣1)=﹣4+1=﹣3.5.绝对值大于3且小于5.5的所有整数的和为______________ ;解:∵绝对值大于3而小于5.5的整数为:-4-545∴其和为:-4+(-5)+4+5=0故绝对值大于3且小于5.5的所有整数的和为0.考点7【有理数的乘除法】1.先阅读下面的材料再回答后面的问题:计算:10÷(12-13+16).解法一:原式=10÷12-10÷13+10÷16=10×2-10×3+10×6=50;解法二:原式=10÷(36-26+16)=10÷26=10×3=30;解法三:原式的倒数为(12-13+16)÷10=(12-13+16)×110=12×110-13×110+16×110=130故原式=30.(1)上面得到的结果不同肯定有错误的解法你认为解法是错误的。

人教版数学七年级上册第一章有理数综合检测卷(含答案)

人教版数学七年级上册第一章有理数综合检测卷(含答案)

人教版数学七年级上学期第一章有理数测试一.选择题(共12小题)1.如果收入150元记作+150元,那么支出100元记作( )A. +100元B. +50元C. ﹣50元D. ﹣100元2.某种大米包装袋上的质量标识为“25±0.5kg ”,现从超市随机检测到四袋大米中不合格的是( ) A. 24.5kg B. 24.8kg C. 25.5kg D. 26.1kg 3.若a 的相反数为1,则a 2019是( )A. 2019B. ﹣2019C. 1D. ﹣14.武汉轨道交通7号线一期工程,线路全长31公里,全部地下线,总投资达321亿元,将321亿元用科学记数法可以表示( )A. 0.321×1010元B. 3.21×108元C. 3.21×109元D. 3.21×1010元5.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂64个,则这个过程要经过( )A. 1小时B. 2小时C. 3小时D. 4小时 6.下列各组数中:①﹣22与22;②(﹣3)2与32;③|﹣2|与﹣|﹣2|;④(﹣3)3与﹣33;⑤﹣3与﹣(+3),其中相等的共有( )A. 4对B. 3对C. 2对D. 1对 7.在﹣(﹣8),﹣|﹣7|,0,(﹣2)2,﹣32这五个数中,负数共有( )A. 4个B. 3个C. 2个D. 1个8.计算12﹣7×(﹣4)+8÷(﹣2)的结果是( ) A. 36 B. ﹣20C. 6D. ﹣24 9.若与互为倒数,则()20072008a b ⋅-的值是( ) A. B. a -C. D. b - 10.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,则以下结论:①0b a ->;②b a ->;③a b ->-;④0b a >,正确的是( ) A. ①② B. ②③ C. ②④ D. ③④11. 下列说法中正确的有( )①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A. 1个B. 2个C. 3个D. 4个12.能使式子|5+x|=|5|+|x|成立的数x 是( )A. 任意一个非正数B. 任意一个正数C. 任意一个非负数D. 任意一个负数二.填空题(共6小题)13.若a 、b 互为倒数,则2ab ﹣6=_____.14.甲、乙两同学进行数字猜谜游戏:甲说一个数a 的相反数就是它本身,乙说一个数b 的倒数也等于本身,请你猜一猜|a ﹣b|=_____.15.如果A 表示最小的正整数,B 表示最大的负整数,C 表示绝对值最小的有理数,那么计算(A ﹣B)×C=_____. 16.已知|a|=1,|b|=2,且ab <0.则a ﹣b 的值为_____.17.下列说法正确的是_____(填写符合要求的序号)(1)两个有理数的和为负数时,这两个数都是负数;(2)如果两个数的差是正数,那么这两个数都是正数;(3)几个有理数相乘,当负因数个数为奇数时,乘积一定为负;(4)数轴上到原点的距离为3的点表示的数是3或﹣3;(5)0乘以任何数都是0.18.如图,是一个简单的数值运算程序,当输入x 的值为﹣3时,则输出的数值为_____.三.解答题(共8小题)19.计算(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(2)5+(﹣34 )﹣7﹣(﹣2.5) (3)(﹣145)×(﹣27)+(﹣145)×(+177) (4)2213133()()(24)3468-⨯-+-+⨯- (5)8﹣23÷(﹣4)3+18 (6)(﹣1)2018+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣12 ) 20.将有理数﹣12,0,20,﹣1.25,134,﹣|﹣12|,﹣(﹣5)放入恰当集合中.21.列式计算:(1)4119-减去163与499-的和,所得的差是多少? (2)求142与132的相反数的商. 22.已知a =﹣312,b =﹣6.25,c =﹣2.5,求|b|﹣(a ﹣c )的值. 23.今抽查10袋盐,每袋盐标准质量是100克,超出部分记为正,统计成表:盐的袋数2 3 3 1 1每袋超出标准的克数+1﹣0.5 0 +2.5 ﹣2问:①这10袋盐以100克为标准质量,总计超过多少克或不足多少克?②这10袋盐一共多少克?24.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A 地出发,到收工时,行走记录为(单位:千米):+8、﹣9、+4、﹣7、﹣2、﹣10、+11、﹣12.回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油02升,问从A地出发到收工时,共耗油多少升?25.已知不相等的两数a,b互为相反数,c,d互为倒数,x的绝对值和倒数都是它本身,求:2016a+2018cd﹣2017x+2016b﹣2017的结果.26.某仓库本周运进货物件数和运出货物件数如下表:(1)如果用正数表示运进货物件数,负数表示运出货物件数,请你分别表示出周二、周五当天进出货物后变化的量;(2)若经过一周的时间,仓库货物总量相比上周末库存量减少了5件,求a的值;(3)若本周运进货物总件数比运出货物件数一半多15件,本周运进货物总件数比上周减少16,而本周运出货物总件数比上周多23,这两周内,该仓库货物共增加了3件,求a、b的值.答案与解析一.选择题(共12小题)1.如果收入150元记作+150元,那么支出100元记作( )A. +100元B. +50元C. ﹣50元D. ﹣100元【答案】D【解析】【分析】利用相反意义量的定义判断即可.【详解】解:如果收入150元记作+150元,那么支出100元记作﹣100元.故选D.【点睛】考查具有相反意义的量,解决本题的关键突破口是理解用正数和负数表示具有相反意义的量.2.某种大米包装袋上的质量标识为“25±0.5kg”,现从超市随机检测到四袋大米中不合格的是( )A. 24.5kgB. 24.8kgC. 25.5kgD. 26.1kg【答案】D【解析】【分析】先求出面粉的合格重量的范围,再据此对四个选项逐一判断.【详解】解:质量标识为“25±0.5kg”表示25上下0.5,即24.5到25.5之间为合格;分析答案可得26.1kg不在此范围内,不合格.故选:D.【点睛】考查正数和负数的实际应用,根据面粉包装袋上的质量标识为“25±0.5kg”,求出面粉的合格重量的范围是解题的关键.3.若a的相反数为1,则a2019是( )A. 2019B. ﹣2019C. 1D. ﹣1【答案】D【解析】【分析】先根据相反数的定义求出a,再代入计算即可求解.【详解】∵a的相反数为1,∴a=−1,∴a 2019=(−1)2019=−1.故答案选:D.【点睛】本题考查了相反数的定义,解题的关键是根据相反数的定义求出a 的值.4.武汉轨道交通7号线一期工程,线路全长31公里,全部地下线,总投资达321亿元,将321亿元用科学记数法可以表示( )A. 0.321×1010元B. 3.21×108元C. 3.21×109元D. 3.21×1010元【答案】D【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值>1时,是正数;当原数的绝对值<1时,是负数.【详解】解:321亿元=32100000000元,32100000000元这个数用科学记数法可以表示为3.21×1010元.故选D .【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.5.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个),若这种细菌由1个分裂为64个,则这个过程要经过( )A. 1小时B. 2小时C. 3小时D. 4小时 【答案】C【解析】【分析】根据已知可知1个细胞从第1次到第3次所分裂的细胞个数分别为21个,22个,23个,从而得出第n 次细胞分裂后的细胞个数.【详解】解:根据已知可知:一个细胞第一次分裂成21个,第二次分裂成22个,第三次分裂成23个,由上述规律可知,第n次时细胞分裂的个数为2n个,设第x次分裂成64个,由题意得2x=64,解得x=6,即第6次分裂细菌分裂成64个,答:由每半小时分裂一次,此细菌由1个分裂成64个,共花费了3个小时.故答案选C.【点睛】本题考查了有理数的乘方,解题的关键是熟练的掌握有理数的乘方的相关知识点.6.下列各组数中:①﹣22与22;②(﹣3)2与32;③|﹣2|与﹣|﹣2|;④(﹣3)3与﹣33;⑤﹣3与﹣(+3),其中相等的共有( )A. 4对B. 3对C. 2对D. 1对【答案】B【解析】【分析】各式计算得到结果,比较即可.详解】解:①−22=−4,22=4,不相等;②(−3)2=32=9,相等;③|−2|=2,−|−2|=−2,不相等;④(−3)3=−33=−27,相等;⑤−(+3)= −3,相等.故答案选B.【点睛】本题考查了相反数、绝对值与有理数的乘方,解题的关键是熟练度掌握相反数、绝对值与有理数的乘方的性质.7.在﹣(﹣8),﹣|﹣7|,0,(﹣2)2,﹣32这五个数中,负数共有( )A. 4个B. 3个C. 2个D. 1个【答案】C【解析】【分析】根据负数的定义可以判断题目中的哪些数据是负数,从而可以解答本题.【详解】解:在()()228,702,3------,,中, 负数有:27,3---,共2个,故选:C.【点睛】考查有理数的分类,掌握负数的定义是解题的关键.8.计算12﹣7×(﹣4)+8÷(﹣2)的结果是( ) A. 36B. ﹣20C. 6D. ﹣24 【答案】A【解析】【分析】根据运算顺序先计算乘除运算,最后算加减运算,即可得到结果.【详解】原式()()122841228436.=--+-=+-=故选A.【点睛】考查有理数的混合运算,掌握运算法则是解题的关键.9.若与互为倒数,则()20072008a b ⋅-的值是( ) A.B. a -C.D. b - 【答案】B【解析】【分析】由a 与b 互为倒数,得ab=1,然后逆用积的乘方公式即可求解.【详解】解:∵a 与b 互为倒数,∴ab=1,则原式=()20072007a a b ⋅⋅-=()2007ab a -⋅=()20071-•=a -.故选B .【点睛】本题考查倒数的定义以及积的乘方公式,正确对所求的式子进行变形是关键.10.点A 、B 在数轴上的位置如图所示,其对应的数分别是a 和b ,则以下结论:①0b a ->;②b a ->;③a b ->-;④0ba >,正确的是( )A. ①②B. ②③C. ②④D. ③④ 【答案】B【解析】由点A 、B 在数轴上的位置可知,505b a <-<<<,∴(1)0b a -<;(2)b a ->;(3)a b ->-;(4)0ba <.∴原来四个结论中成立的是②③.故选B.11. 下列说法中正确的有( )①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值,等于这两个有理数的绝对值的积.A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】①错误,如,符号改变; ③错误,如0×0,积为0;②④正确.12.能使式子|5+x|=|5|+|x|成立的数x 是( )A. 任意一个非正数B. 任意一个正数C. 任意一个非负数D. 任意一个负数【答案】C【解析】【分析】根据题意利用具特殊值的方法,即可判断出答案.【详解】当x =2时,|5+x |=|5+2|=7,而|5|+|x |=5+2=7,7=7,当x =0时,|5+x |=|5+0|=5,而|5|+|x |=5+0=5,故B 错误.当x =−2时,|5+x |=|5+(−2)|=3,而|5|+|x |=5+2=7,37,≠故A. D 错误;当x 是正数或0时,式子|5+x|=|5|+|x|成立.故选C.【点睛】考查绝对值的定义以及应用,注意分类讨论思想在解题中的应用.二.填空题(共6小题)13.若a 、b 互为倒数,则2ab ﹣6=_____.【答案】-4【解析】【分析】根据乘积为1的两个数互为倒数,可得互为倒数的两个数的积是1,可得答案.【详解】解:若a 、b 互为倒数,则2ab-6=2-6=-4.故答案为−4.【点睛】本题考查了倒数的定义,解题的关键是熟练的掌握倒数的定义.14.甲、乙两同学进行数字猜谜游戏:甲说一个数a 的相反数就是它本身,乙说一个数b 的倒数也等于本身,请你猜一猜|a ﹣b|=_____.【答案】1【解析】a 等于0,b 等于1.15.如果A 表示最小的正整数,B 表示最大的负整数,C 表示绝对值最小的有理数,那么计算(A ﹣B)×C=_____. 【答案】0.【解析】【分析】根据小的正整数是1,最大的负整数是﹣1,绝对值最小的有理数是0.得到A,B,C 的值,代入运算即可.【详解】A 表示最小的正整数,A=1B 表示最大的负整数 B=﹣1C 表示绝对值最小的有理数,C=0()()1100.A B C ⎡⎤-⨯=--⨯=⎣⎦故答案为0.【点睛】本题需掌握的知识点是:最小的正整数是1,最大的负整数是﹣1,绝对值最小的有理数是0. 16.已知|a|=1,|b|=2,且ab <0.则a ﹣b 的值为_____.【解析】【分析】根据题意,利用绝对值的代数意义化简求出a 与b 的值,即可确定出a-b 的值.【详解】∵|a |=1,|b |=2,且ab <0,∴a =1,b =−2;a =−1,b =2,则a −b =3或−3.故答案为3或−3.【点睛】考查[有理数的乘法, 绝对值, 有理数的减法,得到a 与b 的值是解题的关键.17.下列说法正确的是_____(填写符合要求的序号)(1)两个有理数的和为负数时,这两个数都是负数;(2)如果两个数的差是正数,那么这两个数都是正数;(3)几个有理数相乘,当负因数个数为奇数时,乘积一定为负;(4)数轴上到原点的距离为3的点表示的数是3或﹣3;(5)0乘以任何数都是0.【答案】(4)(5).【解析】【分析】根据有理数加法,减法,乘法法则以及数轴的性质进行判断即可.【详解】(1)两个有理数的和为负数时,这两个数不一定都是负数;例如()32,+-故错误.(2)如果两个数的差是正数,那么这两个数不一定都是正数;例如()12,--故错误.(3)几个有理数相乘,当负因数个数为奇数时,乘积不一定为负;当有一个因数为0时,结果为0.(4)数轴上到原点的距离为3的点表示的数是3或﹣3;正确.(5)0乘以任何数都是0.正确.故答案为(4)(5).【点睛】考查有理数的加法,减法,乘法法则以及数轴的性质,比较基础,难度不大.18.如图,是一个简单的数值运算程序,当输入x 的值为﹣3时,则输出的数值为_____.【解析】【分析】根据题中运算程序,将3x =-代入列出关系式中计算,即可得到输出的结果.【详解】根据题意列得:()()232418414.-⨯-+=-+=-则输出的数值为14.-故答案为:14.-【点睛】此题考查了代数式的求值,弄清题中的运算程序是解本题的关键. 三.解答题(共8小题)19.计算(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)(2)5+(﹣34)﹣7﹣(﹣2.5) (3)(﹣145)×(﹣27)+(﹣145)×(+177) (4)2213133()()(24)3468-⨯-+-+⨯- (5)8﹣23÷(﹣4)3+18 (6)(﹣1)2018+(﹣5)×[(﹣2)3+2]﹣(﹣4)2÷(﹣12) 【答案】(1)0.9;(2)﹣0.25;(3)﹣6;(4)﹣24;(5)814;(6)63. 【解析】分析】(1)利用加法结合律,进行加减运算即可求解;(2)把减法转化为加法,根据法则进行运算即可.(3)首先计算乘法,最后进行加减运算即可求解;(4)首先计算乘方,再利用分配律计算即可; (5)首先计算乘方,计算括号内的式子,再计算除法,最后进行加减运算即可;(6)首先计算乘方,计算括号内的式子,再计算除法,最后进行加减运算即可;【详解】(1)原式=(5.6+4.4)+(﹣0.9﹣8.1﹣0.1)=10﹣9.1=0.9;(2)原式=5﹣0.75﹣7+2.5 =7.5﹣7.75=﹣0.25;(3)原式434306. 555=-=-=-(4)原式191849,9=-⨯-+-=﹣1﹣18+4﹣9, =﹣24;(5)原式()18864,8=-÷-+118,88=++184=;(6)原式=1+(﹣5)×(﹣8+2)﹣16×(﹣2)=1+(﹣5)×(﹣6)+32=1+30+32=63.【点睛】考查有理数的混合运算,掌握运算法则是解题的关键.20.将有理数﹣12,0,20,﹣1.25,134,﹣|﹣12|,﹣(﹣5)放入恰当的集合中.【答案】详见解析.【解析】【分析】根据小于零的数是负数,可得负数集合;根据形如-1,-2,0,1,3,5…是整数,可得整数集合.【详解】解:∵﹣12=﹣1,﹣|﹣12|=﹣12,﹣(﹣5)=5,∴负数集合有:﹣12,﹣1.25,﹣|﹣12|,…整数集合有:﹣12,0,20,﹣|﹣12|,﹣(﹣5)|,…所以【点睛】考查有理数的分类,熟练掌握正数以及负数的定义是解题的关键.21.列式计算:(1)4119-减去163与499-的和,所得的差是多少?(2)求142与132的相反数的商.【答案】(1)183-;(2)9-7【解析】【分析】(1)根据题意列出算式即可求出正确答案;(2)先求132的相反数,再将依据题意作商即可得出答案.【详解】解:(1)由题意可得:(4119--163)+(499-),则(4119--163)+(499-)=411(9-+-163)+(499-)=183-;(2)∵132的相反数是132-,∴142与132的相反数的商即为14921732=--.故本题答案为:(1)183-;(2)9-7.【点睛】掌握有理数加减乘除运算和相反数的含义,以及会根据题意列出相应的算式是解答本题的关键.22.已知a=﹣312,b=﹣6.25,c=﹣2.5,求|b|﹣(a﹣c)的值.【答案】7.25【解析】分析】把a、b、c的值代入代数式,再根据绝对值的性质和有理数的减法运算法则进行计算即可得解.【详解】解:∵a=﹣312,b=﹣6.25,c=﹣2.5,∴|b|﹣(a﹣c)=﹣b﹣a+c=6.25+312﹣2.5=7.25.【点睛】本题考查了绝对值的性质与有理数的减法,解题的关键是熟练的掌握绝对值的性质与有理数的减法运算法则.23.今抽查10袋盐,每袋盐的标准质量是100克,超出部分记为正,统计成表:问:①这10袋盐以100克为标准质量,总计超过多少克或不足多少克?②这10袋盐一共多少克?【答案】(1)总计不足3千克;(2)997千克.【解析】【分析】(1)根据正数表示超出100克的重量,负数表示比100克差的重量,计算出10袋盐一共超出标准重量的重量;(2)根据(1)可得10袋盐一共超出标准重量的重量,然后用100×10加上这个数即可.【详解】解:(1)2×(﹣1)+3×(﹣0.5)+3×0+1×2.5+1×(﹣2)=﹣3,答:这10袋盐以100克为标准质量,总计不足3千克;(2)10×100﹣3=997千克.答:这10袋盐一共997千克.【点睛】本题考查了正数与负数,解题的关键是熟练的掌握正数与负数相关知识点.24.检修组乘汽车,沿公路检修线路,约定向东为正,向西为负,某天自A地出发,到收工时,行走记录为(单位:千米):+8、﹣9、+4、﹣7、﹣2、﹣10、+11、﹣12.回答下列问题:(1)收工时在A地的哪边?距A地多少千米?(2)若每千米耗油0.2升,问从A地出发到收工时,共耗油多少升?【答案】(1)收工时在A地的西边,距A地17千米;(2)若每千米耗油0.2升,从A地出发到收工时,共耗油12.6升.【解析】【分析】(1)根据题中的数据,将各个数据相加看最后的结果,即可解答本题;(2)根据题中的数据将它们的绝对值相加,然后乘以0.2即可解答本题.【详解】解:(1)+8﹣9+4﹣7﹣2﹣10+11﹣12=﹣17.答:收工时在A地的西边,距A地17千米.(2)|+8|+|﹣9|+|+4|+|﹣7|+|﹣2|+|﹣10|+|+11|+|﹣12|=63,63×0.2=12.6(升),答:若每千米耗油0.2升,从A地出发到收工时,共耗油12.6升.【点睛】本题考查了正数与负数,解题的关键是熟练的掌握正数与负数相关知识点.25.已知不相等的两数a,b互为相反数,c,d互为倒数,x的绝对值和倒数都是它本身,求:2016a+2018cd﹣2017x+2016b﹣2017的结果.【答案】﹣2016.【解析】【分析】先根据已知条件求出a+b=0,cd=1,x=1,再把这些数值代入所求式子,计算即可.【详解】解:∵不相等的两数a,b互为相反数,c,d互为倒数,x的绝对值和倒数都是它本身,∴a+b=0,cd=1,x=1,∴2016a+2018cd﹣2017x+2016b﹣2017=2016(a+b)+2018cd﹣2017(x+1)=2016×0+2018×1﹣2017×(1+1)=0+2018﹣4034=﹣2016.【点睛】考查代数式求值, 根据相反数, 绝对值, 倒数的定义得到a+b=0,cd=1,x=1,是解题的关键.26.某仓库本周运进货物件数和运出货物件数如下表:(1)如果用正数表示运进货物件数,负数表示运出货物件数,请你分别表示出周二、周五当天进出货物后变化的量;(2)若经过一周的时间,仓库货物总量相比上周末库存量减少了5件,求a的值;(3)若本周运进货物总件数比运出货物件数的一半多15件,本周运进货物总件数比上周减少16,而本周运出货物总件数比上周多23,这两周内,该仓库货物共增加了3件,求a、b的值.【答案】(1)周二进出货物后变化的量为﹣a,周五进出货物后变化的量为5;(2)a=0;(3)a=10,b=10.【解析】【分析】(1)根据有理数的加法法则即可求出周二、周五当天进出货物后变化的量;(2)运进货物件数-运出货物件数=-5,列出方程求解即可.(3)本周运进货物总件数比运出货物件数的一半多15件,列出方程即可求出b的值,设上周运进货物总件数为m,上周运出货物的总件数为n,找出题目中的等量关系,列方程即可求解.【详解】解:(1)周二运进货物件数+运出货物件数=a+(﹣2a)=﹣a,∴周二进出货物后变化的量为:﹣a,周五运进货物件数+运出货物件数=b+[﹣(b﹣5)]=5,∴周五进出货物后变化的量为:5;(2)依题意得:5×5+a+b﹣(12+2a+8+0+b﹣5+5+10)=﹣5解得a=0;(3)依题意得:5+a+5+5+b+5+5=12(12+2a+8+0+b ﹣5+5+10)+15, 化简得:b=10, 设上周运进货物总件数为m ,上周运出货物的总件数为n ,1555556a b m m ++++++=-, 即5256a b m ++=, 2122855103a b n n +++-++=+, 即52303a b n ++=, ∵这两周内,该仓库货物共增加了3件, ∴()55363m n m n ⎛⎫-+-= ⎪⎝⎭, ∴11m ﹣16n=18, ∴()()631125162301855a b a b ⨯++-⨯++=, 解得:a=10.【点睛】考查正负数的意义以及一元一次方程的应用,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.熟练掌握正数和负数的意义和有理数的加减运算.。

人教版初中数学七年级上册第一章《有理数》单元检测题(含答案)

人教版初中数学七年级上册第一章《有理数》单元检测题(含答案)

《有理数》检测题一、单选题1.实数在数轴上的对应点的位置如图所示,则正确的结论是()A. B. C. D.2.实数在数轴上的对应点位置如图所示,把,按照从小到大的顺序排列,正确的是( ).A. B.C. D.3.的计算结果为()A. B. C. D.4.在﹣,0,﹣π,﹣1这四个数中,最小的数是()A. ﹣B. 0C. ﹣πD. ﹣15.在“有理数的加法与减法运算”的学习过程中,我们做过如下数学实验.“把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”用算式表示以上过程和结果的是()A. (﹣3)﹣(+1)=﹣4 B. (﹣3)+(+1)=﹣2 C. (+3)+(﹣1)=+2 D. (+3)+(+1)=+46.在 0.5, 0 ,-1,-2 这四个数中,绝对值最大的数是( ) A. 0.5 B. 0 C. -1 D. -27.一个数的绝对值等于5,这个数是().A. 5B. ±5C. -5D.8.的倒数的相反数是()A. ﹣5B.C.D. 59.计算的结果等于( ).A. -2B. 0C. 1D. 210.气温由﹣1℃上升2℃后是()A. 3℃B. 2℃C. 1℃D. ﹣1℃11.武汉地区冬季某一天最高气温7℃,最低-3℃,则这一天最高气温比最低气温高()A. 10℃B. 4℃C. 8℃D. 7℃二、填空题12.(2017四川省宜宾市)规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=﹣2.1时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.13.常用成语中有“半斤八两”,旧制一斤为十六两,若一两为十六钱,则48钱为_____斤.14.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1200亿吨油当量.将1200亿用科学记数法表示为a×10n的形式,则a的值为_____.15.2017年襄阳全市实现地区生产总值4064.9亿元,数据4064.9亿用科学计数法表示为_______.16.扬州市梅岭中学图书馆藏书12000本,数据“12000”用科学记数法可表示为_________.17.计算_______________.三、解答题18.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0,试回答下列问题:(1)求a,b,c的值(2)a、b、c所对应的点分别为A、B、C,若点A以每秒1个单位长度的速度向左运动,点C以每秒5个单位长度的速度向右运动,试求几秒后点A 与点C距离为12个单位长度?参考答案1.C【解析】分析:根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.详解:由数轴上点的位置,得:a<−4<b<0<c<1<d.A.a<−4,故A不符合题意;B.bd<0,故B不符合题意;C.|a|>|b|,故C符合题意;D.b+c<0,故D不符合题意;故选:C.点睛:本题考查了实数与数轴、绝对值的性质.2.C【解析】分析:根据数轴得出a<0<b,求出﹣a>﹣b,﹣b<0,﹣a>0,即可得出答案.详解:∵从数轴可知:a<0<b,∴﹣a>﹣b,﹣b<0,﹣a>0,∴﹣b<0<﹣a.故选C.点睛:本题考查了数轴,有理数的大小比较的应用,能根据数轴得出﹣b<0<﹣a,是解答此题的关键.3.B【解析】分析:原式利用绝对值的代数意义计算即可.详解:原式==﹣.故选B.点睛:本题考查了有理数的减法以及绝对值,熟练掌握运算法则是解答本题的关键.4.C【解析】分析:正数大于一切负数;零大于一切负数;零小于一切正数;两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小.本题只要根据有理数大小比较方法即可得出答案.详解:根据有理数的大小比较方法可得:-π<-<-1<0,故选C.点睛:本题主要考查的是有理数的大小比较方法,属于基础题型.明白有理数的大小比较方法即可得出答案.5.B【解析】分析:根据向左为负,向右为正得出算式(-3)+(+1),求出即可.详解:∵把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,∴根据向左为负,向右为正得出(-3)+(+1)=-2,∴此时笔尖的位置所表示的数是-2.故选:B.点睛:本题考查了有关数轴问题,解此题的关键是理解两次运动的表示方法和知道一般情况下规定:向左用负数表示,向右用正数表示.6.D【解析】分析:根据绝对值的意义,数轴上一个数所对应的点与原点(点零处)的距离叫做该数绝对值,由距离的多少比较即可.详解:0.5的绝对值为0.5;0的绝对值为0;-1的绝对值为1;-2的绝对值为2.因为2最大,所以绝对值最大的是-2.故选:D.点睛:此题主要考查了绝对值的意义,熟记绝对值的意义和绝对值的性质是解题关键,比较简单.7.B【解析】分析:根据绝对值的定义解答.详解:绝对值是5的数,原点左边是-5,原点右边是5,∴这个数是±5.故选B.点睛:本题主要考查了绝对值的定义,要注意从原点左右两边考虑求解.8.D【解析】分析:先根据倒数的定义得到的倒数为-5,再根据相反数的定义得到-5的相反数为5.详解:∵的倒数为-5,-5的相反数为5,∴的倒数的相反数是5.故选D.点睛:本题考查了倒数的定义,也考查了相反数的定义.9.A【解析】分析:根据有理数的减法运算法则进行计算即可得解.详解:﹣1﹣1=﹣2.故选A.点睛:本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.10.C【解析】分析:根据上升2℃即是比原来的温度高了2℃,就是把原来的温度加上2℃即可.详解:∵气温由﹣1℃上升2℃,∴﹣1℃+2℃=1℃.故选C.点睛:本题考查了有理数的加法,要先判断正负号的意义:上升为正,下降为负,再根据有理数加法运算法则进行计算.11.A【解析】分析:根据题意列出式子按有理数减法法则计算即可.详解:由题意可得:(℃).故选A.点睛:本题考查的是有理数减法的实际应用,解题的关键是根据题意列出正确的算式.12.②③【解析】试题解析:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x=﹣2.1时,[x]+(x)+[x)=[﹣2.1]+(﹣2.1)+[﹣2.1)=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正确;③当1<x<1.5时,4[x]+3(x)+[x)=4×1+3×2+1=4+6+1=11,故③正确;④∵﹣1<x<1时,∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为:②③.考点:1.两条直线相交或平行问题;2.有理数大小比较;3.解一元一次不等式组.13.256【解析】【分析】根据题意列出算式,计算即可得.【详解】根据题意得:48÷16=48÷42=46(两),46÷16=46÷42=44=256(斤),故答案为:256.【点睛】本题考查了有理数的乘方、同底数幂的除法,掌握相应的运算法则是解题的关键.14.1.2.【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1200亿有12位,所以可以确定n=12-1=11.详解:1200亿=1.2×1011,故a=1.2.故答案为:1.2.点睛:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.15.4.0649×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】4064.9亿=406490000000,406490000000小数点向左移动11位得到4.0649,所以4064.9亿用科学计数法表示为4.0649×1011,故答案为:4.0649×1011.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.详解:12000=1.2×104.故答案为:1.2×104.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17.【解析】分析:根据绝对值的定义可知,负指数幂的运算法则可知,再由实数的运算法则计算即可.详解:原式=.点睛:本题考察了去绝对值符号、负指数幂.18.(1) a=﹣1,b=1,c=5;(2) 1秒后点A与点C距离为12个单位长度.【解析】分析:(1)根据非负数的性质列出算式,求出a、b、c的值;(2)根据题意列出方程,解方程即可.详解:(1)由题意得,b=1,c-5=0,a+b=0,则a=-1,b=1,c=5;(2)设x秒后点A与点C距离为12个单位长度,则x+5x=12-6,解得,x=1,答:1秒后点A与点C距离为12个单位长度.点睛:本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.。

人教版七年级数学上册《第一章有理数》测试-附有答案

人教版七年级数学上册《第一章有理数》测试-附有答案

人教版七年级数学上册《第一章有理数》测试-附有答案一、选择题(本题共12小题每小题4分共48分在每小题给出的四个选项中只有一项是符合题目要求的请用2B铅笔把答题卡上对应题目答案标号涂黑)1.(4分)下列各组数中数值相等的是()A.32与23B.﹣23与(﹣2)3C.﹣32与(﹣3)2D.3×22与(3×2)2【分析】先根据有理数的乘方和有理数的乘法进行计算再根据求出的结果进行判断即可.【解答】解:A.∵32=9 23=8∴32≠23故本选项不符合题意;B.∵﹣23=﹣8 (﹣2)3=﹣8∴﹣23=(﹣2)3故本选项符合题意;C.∵﹣32=﹣9 (﹣3)2=9∴﹣32≠(﹣3)2故本选项不符合题意;D.∵3×22=3×4=12 (3×2)2=62=36∴3×22≠(3×2)2故本选项不符合题意;故选:B.2.(4分)2022年春节期间为响应国家号召多数人选择“就地过年”太原市文旅系统推出了探寻晋商年味之旅、魅力山西时尚之旅等10条主题线路使“就地过年”更有年味、更加贴心2月1日至2月16日全市20家A级景区平均每天接待游客2万人次则全市这20家A级景区这7天共接待的游客数量用科学记数法可表示为()A.0.14×106人次B.1.4×105人次C.1.4×104人次D.1.4×108人次【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10 n为整数.确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同.当原数绝对值≥10时n 是正整数当原数绝对值<1时n是负整数.【解答】解:2万×7=140000=1.4×105.故选:B.3.(4分)下列各对数中互为相反数的是()A.﹣(﹣5)与﹣|﹣5|B.|+3|与|﹣3|C.﹣(﹣6)与|﹣6|D.﹣(+4)与+(﹣4)【分析】根据相反数和绝对值化简各选项中的数根据相反数的定义即可得出答案.【解答】解:A选项5与﹣5互为相反数故A选项符合题意;B选项3=3 故B选项不符合题意;C选项6=6 故C选项不符合题意;D选项﹣4=﹣4 故D选项不符合题意;故选:A.4.(4分)如表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点(℃)﹣183﹣253﹣196﹣268.9则沸点最高的液体是()A.液态氧B.液态氢C.液态氮D.液态氦【分析】根据有理数大小的比较方法解答即可.【解答】解:因为﹣268.9<﹣253<﹣196<﹣183 所以沸点最高的液体是液态氧.故选:A.5.(4分)如图在不完整的数轴上点A B分别表示数a b且a与b互为相反数若AB=8 则点A 表示的数为()A.﹣4B.0C.4D.8【分析】根据点A B分别表示数a b且a与b互为相反数得到A B两点位于原点的两侧且到原点的距离相等得到原点O在AB的中点求出OA的长度即可得到点A表示的数.【解答】解:∵点A B分别表示数a b且a与b互为相反数∴A B两点位于原点的两侧且到原点的距离相等∴原点O在AB的中点∵AB=8∴OA=AB=×8=4∴点A表示的数为﹣4.故选:A.6.(4分)如图已知A B(B在A的左侧)是数轴上的两点点A对应的数为4 且AB=6 动点P从点A出发以每秒2个单位长度的速度沿数轴向左运动在点P的运动过程中M N始终为AP BP 的中点设运动时间为t(t>0)秒则下列结论中正确的有()①B对应的数是2;②点P到达点B时t=3;③BP=2时t=2;④在点P的运动过程中线段MN的长度不变.A.①③④B.②③④C.②③D.②④【分析】利用数轴结合方程及分类讨论思想求解.【解答】解:∵已知A B(B在A的左侧)是数轴上的两点点A对应的数为4 且AB=6∴B对应的数为:4﹣6=﹣2;故①是不符合题意的;∵6÷2=3 故②是符合题意的;∵当BP=2时t=2或t=4 故③是不符合题意的;∵在点P的运动过程中MN=3 故④是符合题意的;故选:D.7.(4分)已知a b两数在数轴上的位置如图所示则化简代数式|b﹣a|﹣|1﹣a|﹣|b﹣2|的结果是()A.1B.2a﹣3C.﹣1D.2b﹣1【分析】根据负数的绝对值等于它的相反数去绝对值合并同类项即可得出答案.【解答】解:∵b﹣a<0 1﹣a<0 b﹣2<0∴|b﹣a|﹣|1﹣a|﹣|b﹣2|=a﹣b+1﹣a+b﹣2=﹣1.故选:C.8.(4分)用四舍五入法分别按要求取0.17326取近似值下列结果中错误的是()A.0.2(精确到0.1)B.0.17(精确到百分位)C.0.174(精确到0.001)D.0.1733(精确到0.0001)【分析】根据近似数的精确度对各选项进行判断.【解答】解:A.0.17326≈0.2(精确到0.1)所以A选项不符合题意;B.0.17326≈0.17(精确到百分位)所以B选项不符合题意;C.0.17326≈0.173(精确到0.001)所以C选项符合题意;D.0.17326≈0.1733(精确到0.0001)所以D选项不符合题意.故选:C.9.(4分)北京与西班牙的时差为7个小时.比如北京时间中午12点是西班牙的凌晨5点2022年2月4日晚8时北京冬奥会开幕式正式开始在西班牙留学的嘉琪准时观看了直播直播开始的当地时间为()A.凌晨1点B.凌晨3点C.17:00D.13:00【分析】根据北京与西班牙的时差为7个小时解答即可.【解答】解:晚8时=20时20﹣7=13即直播开始的当地时间为13时.故选:D.10.(4分)若(m﹣2)2与|n+3|互为相反数则(m+n)2021的值是()A.﹣1B.1C.2021D.﹣2021【分析】先根据互为相反数的和为0 再根据非负数的性质列出算式求出m、n的值计算即可.【解答】解:∵(m﹣2)2与|n+3|互为相反数∴(m﹣2)2+|n+3|=0∴m﹣2=0 n+3=0∴m=2 n=﹣3∴(m+n)2021=(2﹣3)2021=﹣1.故选:A.11.(4分)从小明家到学校有1200米上坡1600米平路和800米下坡小明上学时上坡的速度为60米/分钟平路上的速度为80米/分钟下坡速度为100米/分钟则小明上学时的平均速度是()A.75米/分钟B.80米/分钟C.85米/分钟D.无法求出平均速度【分析】利用小明上学时的平均速度=小明家到学校的路程÷小明从家到学校的时间即可求出小明上学时的平均速度..【解答】解:===75(米/分钟).故选:A.12.(4分)如图小明在3×3的方格纸上写了九个式子(其中的n是正整数)每行的三个式子的和自上而下分别记为A1A2A3每列的三个式子的和自左至右分别记为B1B2B3其中值可以等于732的是( )A .A 1B .B 1C .A 2D .B 3【分析】将A 1 A 2 B 1 B 3的式子表示出来 使其等于732 求出相应的n 的数值即可判断答案.【解答】解:A 1=2n ﹣2+2n ﹣4+2n ﹣6=732整理可得:2n =248n 不为整数;A 2=2n ﹣8+2n ﹣10+2n ﹣12=732整理可得:2n =254n 不为整数;B 1=2n ﹣2+2n ﹣8+2n ﹣14=732整理可得:2n =252n 不为整数;B 3=2n ﹣6+2n ﹣12+2n ﹣18=732整理可得:2n =256n =8;故选:D .二、填空题(本题共4个小题 每小题4分 共16分 答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上)13.(4分)已知a 为有理数 {a }表示不小于a 的最小整数 如{52}=1 {﹣321}=﹣3 则计算{﹣665}﹣{5}×{﹣143}÷{4.9}= . 【分析】根据新定义 将{﹣6}﹣{5}×{﹣1}÷{4.9}化简为﹣6﹣5×(﹣1)÷5 再根据有理数的混合运算法则解决此题.【解答】解:{﹣6}﹣{5}×{﹣1}÷{4.9}=﹣6﹣5×(﹣1)÷5=﹣6﹣(﹣5)÷5=﹣6﹣(﹣1)=﹣6+1=﹣5.故答案为:﹣5.14.(4分)若a 、b 互为相反数 c 、d 互为倒数 m 是(﹣3)的相反数 则cd b a m +++9的值是 . 【分析】先根据相反数的性质、倒数的定义得出a +b =0 cd =1 m =3 再代入计算即可.【解答】解:根据题意知a +b =0 cd =1 m =3则原式=3+0+1=4.故答案为:4.15.(4分)如图 圆的直径为1个单位长度 该圆上的点A 与数轴上表示1的点重合 将该圆沿数轴向左滚动1圈 点A 到达A '的位置 则点A '表示的数是 .【分析】先求出圆的周长为π 从A 滚动向左运动 运动的路程为圆的周长.【解答】解:∵圆的直径为1个单位长度∴此圆的周长=π∴当圆向左滚动时点A ′表示的数是﹣π+1;故答案为:﹣π+1.16.(4分)我们知道:相同加数的和用乘法表示 相同因数的积用乘方表示.类比拓展:求若干个相同的有理数(均不等于0)的除法运算叫做除方 如2÷2÷2 (﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等 类比有理数的乘方 我们把2÷2÷2记作2③读作“2的圈3次方” (﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④ 读作“﹣3的圈4次方”.一般地 我们把n 个a (a ≠0)相除记作an 读作“a 的圈n 次方”.根据所学概念 求(﹣4)③的值是 .【分析】根据新定义内容列出算式 然后将除法转化为乘法 再根据乘法和乘方的运算法则进行化简计算.【解答】解:(﹣4)③=(﹣4)÷(﹣4)÷(﹣4)=﹣4××=﹣.故答案为:﹣.三、解答题(本题共8个小题 共86分 答题请用黑色墨水笔或签字笔直接答在答题卡相应的位置上 解答时应写出必要的文字说明、证明步骤或演算步骤.)17.(8分)请你把下列各数填入表示它所在的数的集合内:(﹣3)4 ﹣(﹣2)5 ﹣62 |﹣0.5|﹣2 20% ﹣0.13 ﹣7 43 0 4.7 正有理数集合:{ …};整数集合:{ …};负分数集合:{ …};自然数集合:{ …}.【分析】先根据有理数的乘方 绝对值的定义将原数先化简 再进行分类即可得出答案.【解答】解:∵(﹣3)4=34=81 ﹣(﹣2)5=25=32 ﹣62=﹣36 |﹣0.5|﹣2=0.5﹣2=﹣1.5 ∴正有理数集合:{(﹣3)4 ﹣(﹣2)5 20% 4.7 …};整数集合:{(﹣3)4 ﹣(﹣2)5 ﹣62 ﹣7 0 …};负分数集合:{|﹣0.5|﹣2 ﹣0.13 …};自然数集合:{(﹣3)4 ﹣(﹣2)5 0 …}.18.(8分)若|a |=2 |b |=3 |c |=6 |a +b |=﹣(a +b ) |b +c |=b +c .计算a +b ﹣c 的值.【分析】根据题意可以求得a 、b 、c 的值 从而可以求得所求式子的值.【解答】解:∵|a |=2 |b |=3 |c |=6∴a =±2 b =±3 c =±6∵|a +b |=﹣(a +b ) |b +c |=b +c∴a +b ≤0 b +c ≥0∴a =±2 b =﹣3 c =6∴当a =2 b =﹣3 c =6时a +b ﹣c =2+(﹣3)﹣6=﹣7a =﹣2b =﹣3c =6时a +b ﹣c =﹣2+(﹣3)﹣6=﹣11.19.(10分)点M N 是数轴上的两点(点M 在点N 的左侧) 当数轴上的点P 满足PM =2PN 时 称点P为线段MN的“和谐点”.已知点O A B在数轴上表示的数分别为0 a b回答下面的问题:(1)当a=﹣1 b=5时线段AB的“和谐点”所表示的数为;(2)当b=a+6且a<0时如果O A B三个点中恰有一个点为其余两个点组成的线段的“和谐点”此时a的值是多少?【分析】(1)设线段AB的“和谐点”所表示的数为x分两种情况讨论:①点在A、B之间;②点在B 的右边.根据新定义列出方程求解;(2)首先由b=a+6得出AB=6 再分三种情况讨论:①点O为线段AB的“和谐点”;②点A为线段OB的“和谐点”;③点B为线段AO的“和谐点”.根据题意列出方程求解.【解答】解:(1)设线段AB的“和谐点”为P P表示的数为x.①如果点P在A、B之间∵P A=2PB A B在数轴上表示的数分别为﹣1 5∴x﹣(﹣1)=2(5﹣x)解得x=3;②如果点P在B的右边∵P A=2PB∴x﹣(﹣1)=2(x﹣5)解得x=11.故答案为:3或11;(2)∵b=a+6∴b﹣a=6 即AB=6分三种情况:①如果点O为线段AB的“和谐点”那么AO=2OB根据题意可得0﹣a=2(b﹣0)或0﹣a=2(0﹣b)即a=﹣2b或a=2b又b=a+6∴a=﹣4 b=2 或a=﹣12 b=﹣6;②如果点A为线段OB的“和谐点”那么AO=2AB∵a<0∴这种情况不存在;③如果点B为线段AO的“和谐点”那么AB=2OB根据题意可得 6=2(0﹣b ) 或6=2(b ﹣0)即b =﹣3 或b =3又∵b =a +6∴a =﹣9或a =﹣3;故答案为:﹣3 ﹣4 ﹣9 ﹣12.20.(10分)如果a c =b 那么我们规定(a b )=c 例如:因为23=8 所以(2 8)=3.(1)根据上述规定 填空:(3 9)= (4 1)= (2 81)= ; (2)若记(3 4)=a (3 7)=b (3 28)=c 求证:a +b =c .【分析】(1)根据有理数的乘方和新定义即可得出答案;(2)由题意得:3a =4 3b =7 3c =28 根据4×7=28 得到3a ×3b =3c 根据同底数幂的乘法法则得到3a +b =3c 从而得出结论.【解答】解:(1)∵32=9 40=1 2﹣3= 故答案为:2;0;﹣3;(2)证明:由题意得:3a =4 3b =7 3c =28因为4×7=28所以3a ×3b =3c所以3a +b =3c所以a +b =c .21.(12分)计算(1)﹣165+265﹣78﹣22+65; (2)38112143⨯⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-; (3)⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛--7812787431; (4)32÷(﹣2)3+(﹣2)3×⎪⎭⎫ ⎝⎛-43﹣22. 【分析】(1)先分组计算 再相加即可求解;(2)将带分数化为假分数 除法变为乘法 再约分计算即可求解;(3)将带分数化为假分数 根据乘法分配律计算;(4)先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.【解答】解:(1)﹣165+265﹣78﹣22+65=(﹣165+265)﹣(78+22)+65=100﹣100+65=65;(2)=﹣×××3=﹣1;(3)=×(﹣)﹣×(﹣)﹣×(﹣)=﹣2+1+=﹣;(4)32÷(﹣2)3+(﹣2)3×﹣22=9÷(﹣8)﹣8×﹣4=﹣1+6﹣4=.22.(12分)某电商把脐橙产品放到了网上售卖原计划每天卖200kg脐橙但由于种种原因实际每天的销售与计划量相比有出入下表是某周的销售情况(超额记为正不足记为负单位:kg).星期一二三四五六日+6+3﹣2+12﹣7+19﹣11与计划量的差值(1)根据表中的数据可知前三天共卖出kg脐橙;(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售kg脐橙;(3)若电商以1.5元/kg的价格购进脐橙又按3.5元/kg出售脐橙且电商需为买家按0.5元/kg的价格支付脐橙的运费则电商本周一共赚了多少元?【分析】(1)前三天共卖出的脐橙为200×3+(6+3﹣2)千克计算即可;(2)销售量最多的一天比销售量最少的一天多销售19﹣(﹣11)=30(千克);(3)先计算脐橙的总量然后根据:总量×(售价﹣进价﹣运费)代入数据计算结果就是赚的钱数.【解答】解:(1)前三天共卖出的脐橙为200×3+(6+3﹣2)=600+7=607(千克);(2)销售量最多的一天比销售量最少的一天多销售19﹣(﹣11)=30(千克);(3)200×7+(6+3﹣2+12﹣7+19﹣11)=1420(千克)1420×(3.5﹣1.5﹣0.5)=2130(元)答:电商本周一共赚了2130元.23.(12分)阅读下面材料:点A 、B 在数轴上分别表示有理数a 、b 在数轴上A 、B 两点之间的距离AB =|a ﹣b |.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是 数轴上表示x 和﹣2的两点之间的距离是 ;(2)数轴上表示a 和1的两点之间的距离为6 则a 表示的数为 ;(3)若x 表示一个有理数 则|x +2|+|x ﹣4|有最小值吗?若有 请求出最小值;若没有 请说明理由.【分析】(1)(2)在数轴上A 、B 两点之间的距离为AB =|a ﹣b | 依此即可求解;(3)根据绝对值的性质去掉绝对值号 然后计算即可得解.【解答】解:(1)|1﹣(﹣3)|=4;|x ﹣(﹣2)|=|x +2|;故答案为:4 |x +2|;(2)|a ﹣1|=6∴a ﹣1=6或a ﹣1=﹣6即a =7或a =﹣5故答案为:7或﹣5;(3)有最小值当x <﹣2时 |x +2|+|x ﹣4|=﹣x ﹣2﹣x +4=﹣2x +2>6当﹣2≤x ≤4时 |x +2|+|x ﹣4|=x +2﹣x +4=6当x >4时 |x +2|+|x ﹣4|=x +2+x ﹣4=2x ﹣2>6所以当﹣2≤x ≤4时 它的最小值为6.24.(14分)阅读下列材料:小明为了计算1+2+22+…+22020+22021的值 采用以下方法:设S =1+2+22+…+22020+22021①则2S =2+22+…+22021+22022②②﹣①得 2S ﹣S =S =22022﹣1.请仿照小明的方法解决以下问题:(1)2+22+…+220= ;(2)求1+21+221+…+5021= ; (3)求1+a +a 2+a 3+…+a n 的和.(a >1 n 是正整数 请写出计算过程)【分析】(1)(2)根据题目所给方法 令等式左边为S 表示出2S 相减即可得到结果;(3)根据题目所给方法令等式左边为S表示出aS相减即可得到结果.【解答】解:(1)设S=2+22+…+220则:2S=22+23+…+220+2212S﹣S=(22+23+…+220+221)﹣(2+22+…+220)=221﹣2∴S=221﹣2故答案为:221﹣2.(2)设S=1+++…+则:2S=2+1+++…+2S﹣S=(2+1+++…+)﹣(1+++…+)=2﹣∴S=2﹣故答案为:2﹣.(3)设S=1+a+a2+a3+…+a n则:aS=a+a2+a3+…+a n+a n+1aS﹣S=(a﹣1)S=(a+a2+a3+…+a n+a n+1)﹣(1+a+a2+a3+…+a n)=a n+1﹣1.∴S=.。

人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)

人教版七年级数学上册第一章《有理数》全章练习题题(含答案解析)
创新应用 ★11.如图所示的是两个正方体纸盒的表面展开图,请分别在标有字母的正方形内填入适当 的数,使得它们折成正方体后相对面上的两个数互为相反数.
能力提升 1.C 2.D
参考答案
1.2.2 数轴
能力提升 1.在数轴上,原点及原点右边的点表示的数是( )
A.正数
B.整数
C.非负数
D.非正数
2.数轴上的点 A 与原点距离 6 个单位长度,则点 A 表示的数为( )
A.6 或-6
B.6
C.-6
D.3 或-3
3.在数轴上,表示-17 的点与表示-10 的点之间的距离是( )
A.27 个单位长度 B.-27 个单位长度
参考答案
能力提升 1.C 在数轴上,原点及原点右边的点表示的数是 0 和正数. 2.A 3.C 4.D 5.4 -6 6.2 7.7 符合条件的点有-3,3,-2,2,-1,1,0,共 7 个. 8.-5 或 1 画出数轴,找出-2 表示的点,与该点距离 3 个单位长度的点有两个,分别表示 -5,1. 9.分析:从图中可见墨迹盖住两段,一段是在-8~-3 之间,另一段在 4~9 之间. 解:-8~-3 之间的整数有-4,-5,-6,-7;4~9 之间的整数有 5,6,7,8.
D.Q 站点与 R 站点之间
5. 在 数 轴 上 , 表 示 数 -6,2.1,- ,0,-4 ,3,-3 的 点 中 , 在 原 点 左 边 的 点 有
个,
表示的点与原点的距离最远.
7
6.点 M 表示的有理数是-1,点 M 在数轴上向右移动 3 个单位长度后到达点 N,则点 N 表示的有
理数是 .
5 -0.8 0 -2 -3
整数
分数
负整数

人教版初中七年级上册数学第一章《有理数》单元测试含答案解析

人教版初中七年级上册数学第一章《有理数》单元测试含答案解析

《第1章有理数》一、选择题1.﹣的相反数是()A. B.±C.D.﹣2.下列各组数中,互为相反数的是()A.3和﹣3 B.﹣3和C.﹣3和D.和33.一个数的相反数仍是它本身,这个数是()A.1 B.﹣1 C.0 D.正数4.下面关于表示互为相反数的m与﹣m的点到原点的距离,表述正确的是()A.表示数m的点距离原点较远 B.表示数﹣m的点距离原点较远C.一样远D.无法比较5.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数6.下列各对数中,是互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣与+(﹣0.5)C.与D.+(﹣0.01)与7.下列说法正确的是()A.﹣5是的相反数B.与互为相反数C.﹣4是4的相反数D.是2的相反数8.下列各组数中,相等的一组是()A.+2.5和﹣2.5 B.﹣(+2.5)和﹣(﹣2.5)C.﹣(﹣2.5)和+(﹣2.5)D.﹣(+2.5)和+(﹣2.5)9.﹣(﹣2)的值是()A.﹣2 B.2 C.±2 D.410.﹣的相反数是()A.5 B.C.﹣ D.﹣511.一个实数a的相反数是5,则a等于()A.B.5 C.﹣ D.﹣512.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N13.下列四个数中,其相反数是正整数的是()A.3 B.C.﹣2 D.﹣二、填空题.14.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是.15.若a=13,则﹣a= ;若﹣x=3,则x= .16.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为.三、解答题.17.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?18.填表.原数﹣59.2 0 4相反数 3 ﹣719.求下列各数(式)的相反数.(1);(2)5;(3)0;(4)a;(5)x+1.20.化简下列各数的符号.(1)﹣(+4);(2)﹣(﹣7.1);(3)﹣[+(﹣5)];(4)﹣[﹣(﹣8)].21.在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数是什么?22.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?23.如图是具有互为相反数的三角形数阵.当最下面一行的两个数为多少时,这两个数以及它们上面的数的个数为2013.《第1章有理数》参考答案与试题解析一、选择题1.﹣的相反数是()A. B.±C.D.﹣【考点】相反数.【分析】求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.【解答】解:﹣的相反数是﹣(﹣)=.故选:A.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握.2.下列各组数中,互为相反数的是()A.3和﹣3 B.﹣3和C.﹣3和D.和3【考点】相反数.【分析】根据相反数的定义分别判定得出答案即可.【解答】解:A、∵3+(﹣3)=0,∴3与﹣3为互为相反数,故选项正确;B、∵﹣3+≠0,∴不是互为相反数,故选项错误;C、∵﹣3﹣≠0,∴不是互为相反数,故选项错误;D、∵3+≠0,∴不是互为相反数,故选项错误;故选:A.【点评】此题主要考查了相反数的定义,利用定义分别判断是解题关键.3.一个数的相反数仍是它本身,这个数是()A.1 B.﹣1 C.0 D.正数【考点】相反数.【分析】根据相反数的定义,0的相反数仍是0.【解答】解:0的相反数是其本身.故选C.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.4.下面关于表示互为相反数的m与﹣m的点到原点的距离,表述正确的是()A.表示数m的点距离原点较远 B.表示数﹣m的点距离原点较远C.一样远D.无法比较【考点】相反数;数轴.【分析】根据数轴表示数的方法与相反数的定义得到m与﹣m的点到原点的距离相等.【解答】解:互为相反数的m与﹣m的点到原点的距离相等.故选C.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.5.下列说法中,正确的是()A.因为相反数是成对出现的,所以0没有相反数B.数轴上原点两旁的两点表示的数是互为相反数C.符号不同的两个数是互为相反数D.正数的相反数是负数,负数的相反数是正数【考点】相反数.【分析】根据0的相反数为0对A进行判断;根据数轴表示数的方法对B进行判断;根据相反数的定义对C、D进行判断.【解答】解:A、0的相反数为0,所以A选项错误;B、数轴上原点两旁且到原点的距离的点所表示的数是互为相反数,所以B选项错误;C、符号不同且绝对值相等的两个数是互为相反数,所以C选项错误;D、正数的相反数是负数,负数的相反数是正数,所以D选项正确.故选D.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.6.下列各对数中,是互为相反数的是()A.﹣(+7)与+(﹣7)B.﹣与+(﹣0.5)C.与D.+(﹣0.01)与【考点】相反数.【分析】相反数的概念:只有符号不同的两个数叫做互为相反数.【解答】解:﹣(+7)=﹣7,+(﹣7)=﹣7,故这对数不互为相反数,故本选项错误;B、﹣与﹣(0.5)不互为相反数,故本选项错误;C、﹣1=﹣,与互为相反数,故本选项正确;D、+(﹣0.01)=﹣0.01,﹣ =﹣0.01,故这对数不互为相反数,故本选项错误;故选C.【点评】本题考查了相反数的知识,属于基础题,解答本题的关键是掌握相反数的定义.7.下列说法正确的是()A.﹣5是的相反数B.与互为相反数C.﹣4是4的相反数D.是2的相反数【考点】相反数.【专题】存在型.【分析】根据相反数的定义对各选项进行逐一分析即可.【解答】接:A、∵﹣5与5是只有符号不同的两个数,∴﹣5的相反数是5,故本选项错误;B、∵﹣与,∴﹣的相反数是,故本选项错误;C、∵﹣4与4是只有符号不同的两个数,∴﹣4的相反数是4,故本选项正确;D、∵﹣与是只有符号不同的两个数,∴﹣的相反数是,故本选项错误.故选C.【点评】本题考查的是相反数的定义,即只有符号不同的两个数叫做互为相反数.8.下列各组数中,相等的一组是()A.+2.5和﹣2.5 B.﹣(+2.5)和﹣(﹣2.5)C.﹣(﹣2.5)和+(﹣2.5)D.﹣(+2.5)和+(﹣2.5)【考点】有理数大小比较.【分析】根据同号得正,异号得负可知,A,B,C中都互为相反数,相等的一组是D.【解答】解:根据同号得正,异号得负可排除A,B,C.故选D.【点评】简化符号可根据同号得正,异号得负求得.9.﹣(﹣2)的值是()A.﹣2 B.2 C.±2 D.4【考点】相反数.【分析】根据相反数的定义直接求得结果.【解答】解:﹣(﹣2)=2,故选B【点评】本题主要考查了相反数的性质,只有符号不同的两个数互为相反数,0的相反数是0.10.(•宜宾)﹣的相反数是()A.5 B.C.﹣ D.﹣5【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:﹣的相反数是,故选B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.11.(2012•大庆)一个实数a的相反数是5,则a等于()A.B.5 C.﹣ D.﹣5【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,列出方程求解即可.【解答】解:根据题意得,﹣a=5,解得a=﹣5.故选D.【点评】本题考查了实数的性质,主要利用了互为相反数的定义,是基础题,熟记概念是解题的关键.12.如图,数轴上表示数﹣2的相反数的点是()A.点P B.点Q C.点M D.点N【考点】数轴;相反数.【分析】根据数轴得出N、M、Q、P表示的数,求出﹣2的相反数,根据以上结论即可得出答案.【解答】解:从数轴可以看出N表示的数是﹣2,M表示的数是﹣0.5,Q表示的数是0.5,P表示的数是2,∵﹣2的相反数是2,∴数轴上表示数﹣2的相反数是点P,故选A.【点评】本题考查了数轴和相反数的应用,主要培养学生的观察图形的能力和理解能力,题型较好,难度不大.13.下列四个数中,其相反数是正整数的是()A.3 B.C.﹣2 D.﹣【考点】相反数.【分析】根据相反数的概念,及正整数的概念,采用逐一检验法求解即可.【解答】解:其相反数是正整数的数本身首先必须是负数则可舍去A、B,而且相反数还得是整数又舍去D.故选C.【点评】主要考查相反数及整数的概念.二、填空题.14.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是2,﹣2 .【考点】相反数;数轴.【分析】先根据互为相反数的定义,可设两个数是x和﹣x(x>0),再根据数轴上两点间的距离等于较大的数减去较小的数列方程计算.【解答】解:设两个数是x和﹣x(x>0),则有x﹣(﹣x)=4,解得:x=2.则这两个数分别是2和﹣2.故答案为:2,﹣2.【点评】本题考查了互为相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.掌握数轴上两点间的距离的计算方法.15.若a=13,则﹣a= ﹣13 ;若﹣x=3,则x= ﹣3 .【考点】相反数.【分析】根据相反数的定义,即可得出答案.【解答】解:若a=13,则﹣a=﹣13;若﹣x=3,则x=﹣3;故答案为:﹣13,﹣3.【点评】本题考查了相反数的知识,解答本题的关键是掌握相反数的定义.16.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为﹣5 .【考点】数轴.【专题】数形结合.【分析】点A表示的数是﹣1,点B表示的数是3,所以,|AB|=4;点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,即,设点C表示的数为x,则,﹣1﹣x=4,解出即可解答;【解答】解:如图,点A表示的数是﹣1,点B表示的数是3,所以,|AB|=4;又点B关于点A的对称点为C,所以,点C到点A的距离|AC|=4,设点C表示的数为x,则,﹣1﹣x=4,x=﹣5;故答案为:﹣5.【点评】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.三、解答题.17.已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置;(2)若数b与其相反数相距20个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a表示的点与数b的相反数表示的点相距5个单位长度,求a表示的数是多少?【考点】相反数;数轴.【专题】数形结合.【分析】(1)根据互为相反数的点到原点的距离相等在数轴上表示出﹣a,﹣b;(2)先得到b表示的点到原点的距离为10,然后根据数轴表示数的方法得到b表示的数;(3)先得到﹣b表示的点到原点的距离为10,再利用数a表示的点与数b的相反数表示的点相距5个单位长度,则a表示的点到原点的距离为5,然后根据数轴表示数的方法得到a表示的数.【解答】解:(1)如图,;(2)数b与其相反数相距20个单位长度,则b表示的点到原点的距离为10,所以b表示的数是﹣10;(3)因为﹣b表示的点到原点的距离为10,而数a表示的点与数b的相反数表示的点相距5个单位长度,所以a表示的点到原点的距离为5,所以a表示的数是5.【点评】本题考查了相反数:a的相反数为﹣a.也考查了数轴.18.填表.原数﹣5﹣3 9.2 0 47相反数﹣5 3 ﹣9.2 0 ﹣4﹣7【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:原数﹣5﹣3 9.2 0 47相反数5 3 ﹣9.2 0 ﹣4﹣7故答案为:4,﹣3,﹣9.2,0,﹣4,7.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.19.求下列各数(式)的相反数.(1);(2)5;(3)0;(4)a;(5)x+1.【考点】相反数.【分析】根据相反数的定义,a的相反数是﹣a,分别得出即可.【解答】解:(1)的相反数为:;(2)5的相反数为:﹣5;(3)0的相反数为:0;(4)a的相反数为:﹣a;(5)x+1的相反数为:﹣x﹣1.【点评】此题主要考查了相反数的定义,熟练掌握相关定义是解题关键.20.化简下列各数的符号.(1)﹣(+4);(2)﹣(﹣7.1);(3)﹣[+(﹣5)];(4)﹣[﹣(﹣8)].【考点】相反数.【分析】去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.【解答】解:(1)﹣(+4)=﹣4;(2)﹣(﹣7.1)=7.1;(3)﹣[+(﹣5)]=﹣5;(4)﹣[﹣(﹣8)]=﹣8.【点评】本题考查去括号的知识,属于基础题,注意掌握去括号时,若括号前面是“+”则可直接去掉,若括号前面是“﹣”则括号里面各项需变号.21.在数轴上点A表示7,点B、C表示互为相反数的两个数,且点C与点A间的距离为2,求点B、C对应的数是什么?【考点】相反数;数轴.【分析】根据数轴上两点间的距离等于较大的数减去较小的数列式计算,再根据相反数的定义写出最后答案.【解答】解:∵数轴上A点表示7,且点C到点A的距离为2,∴C点有两种可能5或9.又∵B,C两点所表示的数互为相反数,∴B点也有两种可能﹣5或﹣9.故B:﹣5,C:5或B:﹣9,C:9.【点评】本题综合考查了数轴和相反数:本题考查了互为相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号.掌握数轴上两点间的距离的计算方法.22.小李在做题时,画了一个数轴,在数轴上原有一点A,其表示的数是﹣3,由于粗心,把数轴的原点标错了位置,使点A正好落在﹣3的相反数的位置,想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?【考点】数轴.【专题】综合题.【分析】先根据题意画出数轴,便可直观解答,点A的相反数是3,可得出原点需要向右移动.【解答】解:如图所示,可得应向右移动6个单位,故答案为原点应向右移动6个单位.【点评】此题综合考查了对数轴概念的理解,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.23.如图是具有互为相反数的三角形数阵.当最下面一行的两个数为多少时,这两个数以及它们上面的数的个数为2013.【考点】规律型:数字的变化类.【专题】计算题;规律型;实数.【分析】根据题意归纳总结得到一般性规律,确定出所求即可.【解答】解:第一行,数值为1个数为1个,总个数为1;第二行,数值为+2,﹣2个数为2,总数为3;第三行,数值为+3,﹣3个数为2,总数为5,依此类推,第n行,数值为+n,﹣n个数为2,总数为2n﹣1,故令2n﹣1=2013,解得:n=1007,则这两个数为+1007和﹣1007.【点评】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键.课后小知识--------------------------------------------------------------------------------------------------小学生每日名人名言1、读书要三到:心到、眼到、口到2、一日不读口生,一日不写手生。

人教版七年级数学上册《第一章有理数》单元测试卷(带答案)

人教版七年级数学上册《第一章有理数》单元测试卷(带答案)

人教版七年级数学上册《第一章有理数》单元测试卷(带答案)一、选择题1.若10℃表示零上10℃,则17-℃表示( )A .零上17℃B .零上27℃C .零下17℃D .零下17-℃2.以下说法正确的是( )A .正整数和负整数统称整数B .整数和分数统称有理数C .正有理数和负有理数统称有理数D .有理数包括整数、零、分数3.如图所示,在数轴上,被叶子盖住的点表示的数可能是( )A .-1.3B .1.3C .3.1D .2.34.下列各数中,互为相反数的是( )A .13-与3- B .0与0 C .5--和5-D .12和0.5 5.- 3的绝对值是( )A .13B .3C .-3D .-136.在﹣2,3,0,﹣3.14这四个数中,最小的数为( )A .﹣2B .3C .0D .﹣3.147.下列计算正确的是( )A .﹣3+9=6B .4﹣(﹣2)=2C .(﹣4)×(﹣9)=﹣36D .23÷32=18.下列各对数中,数值相等的是( )A .2233()44和B .|-10|=10和-(-10)C .2233--()和 D .3223和9.我国南水北调东线北延工程2022年度供水任务顺利完成,共向黄河以北调189000000立方米,数据189000000用科学记数法表示为( ) A .618910⨯B .718.910⨯C .81.8910⨯D .91.8910⨯10.下列由四舍五入法得到的近似数精确到千位的是( )A .44.110⨯B .0.0035C .7658D .2.24万二、填空题11.直播购物逐渐成为人们一种主流的购物方式,10月21日“双十一”正式开始预售,据官方数据显示,李佳琦直播间累计观看人数达到了16750000人.请把数16750000用科学记数法表示为 .12.比较大小:-|-2.7| -(-3.3)(填“<”““>”或“=”).13.如图.A 、B 两点在数轴上(A 在B 的右侧),点A 表示的数是2,A 、B 之间的距离为4则点B 表示的数是14.若一0.5的倒数与m+4互为相反数,则m=三、计算题15.(1)18×(13-)-8÷(-2).(2)(-2)3+[-9+(-3)2×13] (3)11182414289--⨯-()() (4) 22333[2()2]22-÷-⨯--四、解答题16.世界最高峰珠穆朗玛峰的海拔高度是8844.43米,死海湖面的海拔高度是﹣416米,我国吐鲁番盆地的海拔高度比死海湖面高262米,珠穆朗玛峰的海拔高度比吐鲁番盆地的海拔高度高多少米?17.将﹣2.5,12,2,﹣(﹣3)这四个数在数轴上表示出来,并用“<”把它们连接起来.18.质量检测部门从某洗衣粉厂9月份生产的洗衣粉中抽出了8袋进行检测,每袋洗衣粉的标准重量是450克,超过标准重量的部分用“+”记录,不足标准重量的部分用“-”记录,记录如下:-6,-3,-2,0,+1,+4,+5,-1(1)通过计算,求出8袋洗衣粉的总重量(2)厂家规定超过或不足的部分大于4克时,不能出厂销售,若每袋洗衣粉的定价为3元,请计算这8袋洗衣粉中合格品的销售总金额为多少元19.若23(2)0x y ++-=,求xyx y-的值. 五、综合题20.如图,点A,B,C为数轴上三点,点A表示-2,点B表示4,点C表示8.(1)A、C两点间的距离是.(2)当点P以每秒1个单位的速度从点C出发向CA方向运动时,是否存在某一时刻,使得PA=3PB?若存在,请求出运动时间;若不存在,请说明理由.21.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东,跑回到自己家.(1)若以小明家为原点,向东的方向为正方向,用1个单位长度表示1km,请在如图所示的数轴,,表示出小彬家,小红家和学校的位置;上,分别用点A B C(2)小彬家与学校之间的距离为;(3)如果小明跑步的速度是200m/min,那么小明跑步一共用了多长时间?22.某检修小组从A地出发,在东西向的马路上检修线路,如果规定向东行驶为正,向西行驶为负,一km天中七次行驶纪录如下:(单位:)第一次第二次第三次第四次第五次第六次第七次-4+7-9+8+6-5-2(1)求收工时距A地多远?(2)若每km耗油0.3升,问一天共耗油多少升?答案解析部分1.【答案】C2.【答案】B【解析】【解答】解:A:正整数和负整数统称整数,说法错误,漏掉了0;B:整数和分数统称有理数,说法正确;C:正有理数和负有理数统称有理数,说法错误,漏掉了0;D:有理数包括整数、零、分数,说法错误,整数里面已经包括了零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学(上) 第一章 有理数
单元测试题(120分)
一、选择题(3分×10=30分) 1、2008的绝对值是( )
A 、2008
B 、-2008
C 、±2008
D 、2008
1
2、下列计算正确的是( )
A 、-2+1=-3
B 、-5-2=-3
C 、-112-=
D 、1)1(2-=-
3、近几年安徽省教育事业加快发展,据2005年末统计的数据显示,仅普通初中在校生就约有334万人,334万人用科学记数法表示为( ) A 、0.334×710人 B 、33.4×510人 C 、3.34×210人 D 、3.34×610人
4、下列各对数互为相反数的是( )
A 、-(-8)与+(+8)
B 、-(+8)与+︱-8︱
C 、-2
222)与(- D 、-︱-8︱与+(-8)
5、计算(-1)÷(-5)×5
1
的结果是( )
A 、-1
B 、1
C 、25
1
D 、-25
6、下列说法中,正确的是( )
A 、有最小的有理数
B 、有最小的负数
C 、有绝对值最小的数
D 、有最小的正数
7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )
A 、800 m
B 、200 m
C 、2400 m
D 、-200 m 8、已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( )
A 、5
B 、-1
C 、-5或-1
D 、±1
9、已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所表示的数有( )
A 、1个
B 、2个
C 、3个
D 、4个
10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( )
A 、(0.1×20)mm
B 、(0.1×40)mm
C 、(0.1×220)mm
D 、(0.1×202)mm
二、填空题(5分×3=15)
11、妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能表示什么 _____
12、一个正整数,加上-10,其和小于0,则这个正整数可能是 .(写出两个即可)
13、某同学用计算器计算“2÷13”时,计算器上显示结果为0.153846153,将此结果保留三位有效数字为 .
14、观察下列各数,按规律在横线上填上适当的数。

2,5,10,17, , .
三、(4分×2=8分) 15、下面给出了五个有理数.
-1.5 6
3
2
0 -4 (1)将上面各数分别填入相应的集合圈内.
正 数 负 数 (2) 请计算其中的整数的和与分数积的差。

16、下表是某一天我国部分城市的最低气温:
(1)请把表中各数在数轴上.
(2)按该天气的最低气温,从低到高排列城市名。

四、(21分) 17、计算:
(1)-40-(-19)+(-24) (2))9
1
()65(45-⨯-÷
(3)⎥⎦⎤⎢⎣⎡-+-⨯-)95(3
2
)3(2 (4)[]
4)2(2)4()3(1324÷--+-⨯-+-
18.已知p 与q 互为倒数,r 与s 互为相反数,∣t ∣=1,求t 2 + 2009pq +
r+s
2009
的值。

(5分)
五、(6分×2=12分)
19、小颖、小丽、小虎三位同学的身高如下表所示。

(1)以小丽身高为标准,记作0㎝,用有理数表示出小颖和小虎的身高。

(2)若小颖身高记作-8㎝,那么小虎和小丽的身高应记作多少㎝。

20.某地区高山的温度从山脚开始每升高100m 降低0.6℃,现测得山脚的温度是4℃.
(1)求离山脚1200m 高的地方的温度。

(2)若山上某处气温为-5℃,求此处距山脚的高度。

六、(6分)
21、甲、乙两商场上半年经营情况如下(“+”表示盈利,“-”表示亏本,以百万为单位)
(1)三月份乙商场比甲商场多亏损多少元?
(2)六月份甲商场比乙商场多盈利多少元?
(3)甲、乙两商场上半年平均每月分别盈利或亏损多少元?
七(8分)
22、如图所示,一个点从数轴上的原点开始,先向右移动2个单位长度,再向左移动5个单位长度,可以看到终点表示是-3,已知A、B是数轴上的点,请参照下图并思考,完成下列各题。

(1)如果点A表示的数-1,将点A向右移动4个单位长度,那么终点B表示的数是。

A、B两点间的距离是。

(2)如果点A表示的数2,将点A向左移动6个单位长度,再向右移动3个单位长度,那么终点B表示的数是。

A、B两点间的距离是。

(3)如果点A表示的数m,将点A向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示的数是。

A、B两点间的距离是。

八、(10分)
23、一辆货车从超市出发,向东走了3km,到达小彬家,继续走了1.5km到达小颖家,又向西走了9.5km到达小明家,然后回到超市。

(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1km,你能在数轴上表示出小明家、小彬家和小颖家的位置吗?
(2)小明家距小彬家多远?
(3)货车一共行驶了多少km?
九、计算题(10分)
24.已知∣x∣=2,y2=36,求x+y的值。

(5分)
25.如果∣m-5∣+(n+6)2=0,求(m+n)2008+m3的值。

(5分)
部分参考答案:
一、选择题
二、填空题
11、用去5元 12、1,2,3,… 13、0.154 14、26,37
三、15、正数:6,32 负数:-1.5,-4 (6+0-4)-(-1.5×3
2
)=3
16、(1)略 (2)哈尔滨,北京,上海,杭州,宁波,广州
17、(1)原式=-40+19-24=-45 (2)原式=)91()56(45-⨯-⨯=915645⨯⨯=6
1
18、(1)原式=11)911(995329-=-⨯=⎪⎭⎫
⎝⎛--⨯ (2)原式=()4)8(216)3(1÷--+⨯-+-
=-1+(-3)×18-(-2) =-1-54+2=-53
19、(1)小颖:-3cm 小虎:+5㎝ (2)小虎:0㎝ 小丽:-5㎝ 20、(1)4-0.6×1200÷100=-3.2(℃) (2)4-(-5)=9 9÷0.6×100=1500m 21、(1)-0.6-(-0.4)=-0.2(百万)
-0.2×1000000=-200000 多亏损200000元 (2)+0.2-(-0.1)=0.3(百万)
0.3×1000000=300000(元) 多盈利300000元
(3)甲:(+0.8+0.6-0.4-0.1+0.1+0.2)÷6=0.2(百万)=200000元 乙:(+1.3+1.5-0.6-0.1+0.4-0.1)÷6=0.4(百万)=400000元 甲商场平均每月盈利200000元,乙商场平均每月盈利400000元。

22、(1)3,4 (2)-1,3 (3)m+n-p ,︳n+p ︳ 23、(1)略。

(2)8km (3)19km
Welcome To Download !!!
欢迎您的下载,资料仅供参考!。

相关文档
最新文档