最新八年级下册勾股定理17.1勾股定理第1课时勾股定理教案新版新人教

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

17.1 勾股定理第1课时勾股定理

1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)

2.掌握勾股定理,并运用它解决简单的计算题;(重点)

3.了解利用拼图验证勾股定理的方法.(难点)

一、情境导入

如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?

二、合作探究

探究点一:勾股定理

【类型一】

直接运用勾股定理

如图,在△ABC中,∠ACB=

90°,AB=13cm,BC=5cm,CD⊥AB于D

求:

(1)AC的长;

(2)S△ABC;

(3)CD的长.

解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.

解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;

(2)S△ABC=

1

2

CB·AC=

1

2

×5×12=30(cm2);

(3)∵S△ABC=

1

2

AC·BC=

1

2

CD·AB,∴CD =

AC·BC

AB

60

13

cm.

方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.

【类型二】分类讨论思想在勾股定

理中的应用

在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.

解:此题应分两种情况说明:

(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14

=42;

(2)当△ABC 为钝角三角形时,如图②所示.在Rt △ABD 中,BD =AB 2

-AD 2

=152

-122

=9.在Rt △ACD 中,CD =

AC 2-AD 2=132-122=5,∴BC =9-5=

4,∴△ABC 的周长为15+13+4=32.∴当△ABC 为锐角三角形时,△ABC 的周长为42;当△ABC 为钝角三角形时,△ABC 的周长为32.

方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.

【类型三】

勾股定理的证明

探索与研究: 方

1

对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;

方法2:如图: 该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?

解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行

解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD 的面积之和解答.

解:方法1:S

正方形ACFD

=S

四边形ABFE

=S △

BAE

+S △BFE ,即b 2

=12c 2+12

(b +a )(b -a ),整

理得2b 2

=c 2

+b 2

-a 2

,∴a 2

+b 2

=c 2

方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S 四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,∴S △ABC +S △ACD =S △ABD +S △BCD ,即12b 2+12ab =12c 2+12

a (

b -a ),整理得b 2

+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,

∴a 2

+b 2

=c 2

.

方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,

然后利用大图形的面积等于几个小图形

的面积和化简整理证明勾股定理.

探究点二:勾股定理与图形的面积

如图是一株美丽的勾股树,其中

所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E

的面积是________.

解析:根据勾股定理的几何意义,可得正方形A 、B 的面积和为S 1,正方形C 、

D 的面积和为S 2,S 1+S 2=S 3,即S 3=2+5

+1+2=10.故答案为10.

方法总结:能够发现正方形A 、B 、C 、

D 的边长正好是两个直角三角形的四条直

相关文档
最新文档