圆的基本性质练习题(主)
第3章 圆的基本性质单元测试卷(含解析)
绝密★启用前第三章圆的基本性质单元测试卷题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共10小题,每小题3分,共30分)1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O上C.点P在⊙O外D.无法判断2.如图,AB是直径,,∠BOC=40°,则∠AOE的度数为()A.30°B.40°C.50°D.60°3.如图,AB是⊙O的直径,弦CD⊥AB于点P,CD=10cm,AP:PB=1:5,那么⊙O的半径是()A.cm B.cm C.cm D.cm4.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100°D.130°5.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.2cm B.cm C.cm D.1cm6.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3B.S2<S1<S3 C.S1<S3<S2D.S3<S2<S17.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(1.2,1.4)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(2.8,3.6)B.(﹣2.8,﹣3.6)C.(3.8,2.6)D.(﹣3.8,﹣2.6)为()A.10 cm B.16 cm C.24 cm D.26 cm9.如图的矩形ABCD中,E为的中点,有一圆过C、D、E三点,且此圆分别与、相交于P、Q两点.甲、乙两人想找到此圆的圆心O,其作法如下:(甲)作∠DEC的角平分线L,作的中垂线,交L于O点,则O即为所求;(乙)连接、,两线段交于一点O,则O即为所求对于甲、乙两人的作法,下列判断何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确10.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,∠BAC=30°,则线段PM的最大值是()A.4 B.3 C.2 D.1第Ⅱ卷(非选择题)请点击修改第Ⅱ卷的文字说明评卷人得分二.填空题(共8小题,每小题3分,共24分)11.如图,已知AB是⊙O的弦,半径OC垂直AB,点D是⊙O上一点,且点D与点C12.如图,四边形ABCD是⊙O的内接四边形,点D是的中点,点E是上的一点,若∠CED=40°,则∠ADC=度.13.如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则的长为.14.如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C、D两点.若∠CMA=45°,则弦CD的长为.15.在Rt△ABC中,∠ACB=90°,在斜边AB上分别截取AD=AC,BE=BC,DE=6,点O是△CDE的外心,如图所示,则点O到△ABC的三边的距离之和是.16.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,17.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是.18.如图,⊙O的半径是8,AB是⊙O的直径,M为AB上一动点,==,则CM+DM 的最小值为.评卷人得分三.解答题(共6小题,共46分)19.(6分)如图,在⊙O中,=,CD⊥OA于D,CE⊥OB于E,求证:AD=BE.20.(6分)已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形(1)求证:△DFB是等腰三角形;(2)若DA=AF,求证:CF⊥AB.21.(8分)如图,四边形ABCD内接于⊙O,AC平分∠BAD,延长DC交AB的延长线于点E.(1)若∠ADC=86°,求∠CBE的度数;(2)若AC=EC,求证:AD=BE.22.(8分)已知:如图1,在⊙O中,直径AB=4,CD=2,直线AD,BC相交于点E.(1)∠E的度数为;(2)如图2,AB与CD交于点F,请补全图形并求∠E的度数;(3)如图3,弦AB与弦CD不相交,求∠AEC的度数.23.(8分)如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).24.(10分)如图,⊙O中,直径CD⊥弦AB于E,AM⊥BC于M,交CD于N,连接AD.(1)求证:AD=AN;(2)若AB=8,ON=1,求⊙O的半径.参考答案与试题解析1.解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙0内,故选:A.2.解:∵,∠BOC=40°,∴∠BOC=∠COD=∠EOD=40°,∴∠AOE=180°﹣∠BOE=60°.故选:D.3.解:设AP=x,则PB=5x,那么⊙O的半径是(x+5x)=3x ∵弦CD⊥AB于点P,CD=10cm∴PC=PD=CD=×10=5cm由相交弦定理得CP•PD=AP•P B即5×5=x•5x解得x=或x=﹣(舍去)故⊙O的半径是3x=3cm,故选:C.4.解:∵∠BOD=100°,∴∠BAD=100°÷2=50°,∴∠BCD=180°﹣∠BAD=180°﹣50°=130°故选:D.5.解:∵正六边形的任一内角为120°,∴∠1=30°(如图),∴a=2cos∠1=,6.解:作OD⊥BC交BC与点D,∵∠COA=60°,∴∠COB=120°,则∠COD=60°.∴S扇形AOC=;S扇形BOC=.在三角形OCD中,∠OCD=30°,∴OD=,CD=,BC=R,∴S△OBC =,S弓形==,>>,∴S2<S1<S3.故选:B.7.解:由题意将点P向下平移5个单位,再向左平移4个单位得到P1,∵P(1.2,1.4),∴P1(﹣2.8,﹣3.6),∵P1与P2关于原点对称,∴P2(2.8,3.6),故选:A.8.解:如图,过O作OD⊥AB于C,交⊙O于D,∵CD=8,OD=13,∴Rt△BCO中,BC==12,∴AB=2BC=24.故选:C.9.解:甲,∵=,∴△DEC为等腰三角形,∴L为之中垂线,∴O为两中垂线之交点,即O为△CDE的外心,∴O为此圆圆心.乙,∵∠ADC=90°,∠DCB=90°,∴、为此圆直径,∴与的交点O为此圆圆心,因此甲、乙两人皆正确.故选:A.10.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选:B.11.解:如图,连接OA.∵OC⊥AB,∴=,∴∠AOC=∠COB=70°,∴∠ADC=AOC=35°,故答案为35.12.解:如图,连接AE,∵点D是的中点,∴∠AED=∠CED,∵∠CED=40°,∴∠AEC=2∠CED=80°,∵四边形ADCE是圆内接四边形,∴∠ADC+∠AEC=180°,∴∠ADC=180°﹣∠AEC=100°,故答案为:100.13.解:连接OC,如图,∵OA=OC,∴∠OCA=∠CAO=60°,∴∠AOC=60°,∴∠BOC=130°﹣60°=70°,∴的长==π.故答案为π.14.解:连接OD,作OE⊥CD于E,如图所示:则CE=DE,∵AB是⊙O的直径,AB=4,点M是OA的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM是等腰直角三角形,∴OE=OM=,在Rt△ODE中,由勾股定理得:DE==,∴CD=2DE=;故答案为:.15.解:由题意点O是EC、CD垂直平分线的交点,∵AD=AC,BE=BC,∴EC的垂直平分线经过B且平分∠B,CD的垂直平分线经过A且平分∠A,∴O是△ABC的内心,则r=(AC+BC﹣AB)=(AD+BE﹣AB)=DE=3,∴点O到△ABC的三边的距离之和是3r=9,故答案为9.16.解:设BE,DG交于O,∵四边形ABCD和EFGC都为正方形,∴BC=CD,CE=CG,∠BCD=∠ECG=90°,∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG,在△BCE和△DCG中,,∴△BCE≌△DCG(SAS),∴BE=DG,∴∠1=∠2,∵∠1+∠4=∠3+∠1=90°,∴∠2+∠3=90°,∴∠BOG=90°,∴BE⊥DG;故①②正确;连接BD,EG,如图所示,∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=2b2,则BG2+DE2=DO2+BO2+EO2+OG2=2a2+2b2,故③正确.故答案为:①②③.17.解:如图,连接CE.∵AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,∴∠ACB=90°,OB=OC=OD=2,BC=CE=4.又∵OE∥AC,∴∠ACB=∠COE=90°.∴在直角△OEC 中,OC=2,CE=4, ∴∠CEO=30°,∠ECB=60°,OE=2∴S 阴影=S 扇形BCE ﹣S 扇形BOD ﹣S △OCE =﹣π×22﹣×2×2=﹣2,故答案为:﹣2.18.解:如图,作点C 关于AB 的对称点C′,连接C′D 与AB 相交于点M , 此时,点M 为CM +DM 的最小值时的位置, 由垂径定理,=,∴=,∵==,AB 为直径,∴C ′D 为直径,∴CM +DM 的最小值是16. 故答案是:16.19.证明:连接OC , ∵=,∴∠AOC=∠BOC .∵CD ⊥OA 于D ,CE ⊥OB 于E , ∴∠CDO=∠CEO=90° 在△COD 与△COE 中, ∵,∴△COD ≌△COE (AAS ), ∴OD=OE ,∵AO=BO,∴AD=BE.20.解:(1)∵AB是⊙O直径,∴∠ACB=90°,∵△AEF为等边三角形,∴∠CAB=∠EFA=60°∴∠B=30°,∵∠EFA=∠B+∠FDB,∴∠B=∠FDB=30°,∴△DFB是等腰三角形;(2)过点A作AM⊥DF于点M,设AF=2a,∵△AEF是等边三角形,∴FM=EM=a,AM=a,在Rt△DAM中,AD=AF=2a,AM=,∴DM=5a,∴DF=BF=6a,∴AB=AF+BF=8a,在Rt△ABC中,∠B=30°,∠ACB=90°,∴AC=4a,∵AE=EF=AF=2a,∴CE=AC﹣AE=2a,∴∠ECF=∠EFC,∵∠AEF=∠ECF+∠EFC=60°,∴∠CFE=30°,∴∠AFC=∠AFE+∠EFC=60°+30°=90°,∴CF⊥AB.21.(1)解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,又∵∠ADC=86°,∴∠ABC=94°,∴∠CBE=180°﹣94°=86°;(2)证明:∵AC=EC,∴∠E=∠CAE,∵AC平分∠BAD,∴∠DAC=∠CAB,∴∠DAC=∠E,∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,又∵∠CBE+∠ABC=180°,∴∠ADC=∠CBE,在△ADC和△EBC中,,∴△ADC≌△EBC,∴AD=BE.22.解:(1)如图1,连结OD,OC,BD,∵OD=OC=CD=2∴△DOC为等边三角形,∴∠DOC=60°∴∠DBC=30°∴∠EBD=30°∵AB为直径,∴∠ADB=90°∴∠E=90°﹣300=600∠E的度数为600;(2)①如图2,直线AD,CB交于点E,连结OD,OC,AC.∵OD=OC=CD=2,∴△DOC为等边三角形,∴∠DOC=60°,∴∠DAC=30°,∴∠EBD=30°,∵AB为直径,∴∠ACB=90°,∴∠E=90°﹣30°=60°,(3)如图3,连结OD,OC,∵OD=OC=CD=2, ∴△DOC 为等边三角形, ∴∠DOC=60°, ∴∠CBD=30°, ∴∠ADB=90°, ∴∠BED=60°, ∴∠AEC=60°.23.解:(1)连接OD ,OC , ∵C 、D 是半圆O 上的三等分点, ∴==,∴∠AOD=∠DOC=∠COB=60°, ∴∠CAB=30°, ∵DE ⊥AB , ∴∠AEF=90°,∴∠AFE=90°﹣30°=60°; (2)由(1)知,∠AOD=60°, ∵OA=OD ,AB=4,∴△AOD 是等边三角形,OA=2, ∵DE ⊥AO , ∴DE=,∴S 阴影=S 扇形AOD ﹣S △AOD =﹣×=π﹣.24.(1)证明:∵CD ⊥AB∴∠CEB=90°∴∠C+∠B=90°,同理∠C+∠CNM=90°∴∠CNM=∠B,∵∠CNM=∠AND∴∠AND=∠B,∵,∴∠D=∠B,∴∠AND=∠D,∴AN=AD;(2)解:设OE的长为x,连接OA∵AN=AD,CD⊥AB∴DE=NE=x+1,∴OD=OE+ED=x+x+1=2x+1,∴OA=OD=2x+1,∴在Rt△OAE中OE2+AE2=OA2,∴x2+42=(2x+1)2.解得x=或x=﹣3(不合题意,舍去),∴OA=2x+1=2×+1=,即⊙O的半径为.。
圆的基本性质练习(含答案)
圆的基本性质练习(含答案)圆的基本性质考点1 对称性圆既是__________ ①______ 对称图形,又是 _________ ②____ 对称图形。
任何一条直径所在的直线都是它的 _____ ③。
它的对称中心是_ ④ _____________________ 。
同时圆又具有旋转不变性。
温馨提示:轴对称图形的对称轴是一条直线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。
考点2 垂径定理定理:垂直于弦的直径平分_________ ⑤______ 并且平分弦所对的两条__⑥ __________ 。
常用推论:平分弦(不是直径)的直径垂直于__________ ⑦ _______ ,并且平分弦所对的两条 _______ ⑧ ___________ 。
温馨提示:垂径定理是中考中的重点考查内容,每年基本上都以选择或填空的形式出现,一般分值都在3分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。
在这里总结一下:(1)垂径定理和勾股定理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形;(2)常用的辅助线:连接半径;过顶点作垂线;(3)另外要注意答案不唯一的情况,若点的位置不确定,则要考虑优弧、劣弧的区别;(4)为了更好理解垂径定理,一条直线只要满足:①过圆心;②垂直于弦;③平分弦;④ 平分弦所对的优弧;⑤平分弦所对的劣弧;考点3 圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧___________ ⑨ _____ ,所对的弦也______ ⑩_________ o常用的还有:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角—a ______________ ,所对的弦____ J2 __________ o(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角 _______ 13 _____________ ,所对的弧 __________ 14方法点拨:为了便于理解和记忆,圆心角、弧、弦之间的关系定理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地其余各组量也都相等。
(完整版)圆的基本性质检测试题
圆的基本性质测试题班级 姓名 得分一:选择题(每题3分,共30分)( )1.下列语句中不正确的有①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,对称轴是任意一条直径所在的直线, ④半圆是弧,⑸直径是圆内 最长的弦,⑥等弧所对的圆周角相等. A .3个 B.4个 C .5个 D.6个( )2. 如图,已知⊙O 的半径为5,弦AB=6,M 是AB 上任意一点,则线段OM 的长可能是:A .2.5B .3.5C .4.5D .5.5 ( )3.如图,,已知AB 是⊙O 的直径,∠BOC=400,那么∠AOE=A.400B. 600C.800D.1200( )4.如图,将圆沿AB 折叠后,圆弧 恰好经过圆心,则 ∠AOB 等于:A .60°B .90°C .120°D .150°(第3题) (第4题) (第5题) (第6题)( )5. 两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为A .(45)+ cmB .9 cmC .45cmD .62cm( )6. 如图,BD 是⊙O 的直径,圆周角∠A = 30︒,则∠CBD 的度数是 A .30︒ B .45︒ C .60︒ D .80︒( )7.AB 为⊙O 的直径,C 、D 是⊙O 上的两点,∠BAC =30º,AD =CD ,则∠DAC 的度数是:A .30ºB .60ºC .45ºD .75º(第7题) (第8题) (第9题) (第10题)( )8.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,连接BC ,若AB =2cm ,∠BCD =22°30′,则⊙O 的半径为: A .4cm B.2cm C.1cm D.0.5cm ( )9. 已知⊙O 的直径AB=12,弦AC=6,AD=62,则∠CAD=A. 60°B. 450C.1050 或150D. 60°或 450( )10.如图,AB 是⊙O 的直径,AB=2,点C 在⊙O 上,∠CAB=30°,D 为的中点,P 是直径AB 上一动点,则PC+PD 的最小值为: A.22 B.2 C.1 D.2二:填空题(每题3分,共18分)11. 如图,⊙O 的半径OA=10cm ,弦AB=16cm ,P 为AB 上一动点,则点P 到圆心O 的最短距 离为 。
圆的基本性质练习题
圆的基本性质练习题姓名______________学号__________一.选择题:(本题共10小题,每小题3分,共30分)1. 已知扇形的弧长为π8,扇形的圆心角为060,则这个扇形的半径为( )A. 12B. 24C. 62D. 482.如图,△ABC 的顶点A 、B 、C 均在⊙O 上,若∠ABC+∠AOC=90°,则∠AOC 的大小是( )A. 030B. 045C. 060D. 0703.下列说法正确的是( )A .半圆是弧,弧也是半圆B .三点确定一个圆C .平分弦的直径垂直于弦D .直径是同一圆中最长的弦4.如图,DC 是⊙O 直径,弦AB ⊥CD 于F ,连接BC ,DB ,则下列结论错误的是( )A .弧AD=弧BDB .AF=BFC .OF=CFD D .∠DBC=90°5.已知⊙O 的直径为10,若PO=5,则点P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法判断6.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD=70°,AO ∥DC ,则∠B 的度数为( )A.40°B.45°C.50°D.55°7.如图,⊙O 的半径为10,若OP=8,则经过点P 的弦长可能是( )A .10B .6C .19D .228. 如图,在半径为13cm 的圆形铁片上切下一块高为8cm 的弓形铁片,则弓形弦AB 的长为( )A 、10cmB 、16cmC 、24cmD 、26cm9.如图,点C 是以AB 为直径的半圆O 的三等分点,AC=2,则图中阴影部分的面积是( )A 、334-πB 、3234-πC 、332-πD 、332-π 10.如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC ,则线段CP 长的最小值为( )A .23 B .2 C .13138 D .131312 二.填空题(本题共6小题,每题4分,共24分)温馨提示:填空题必须是最简洁最正确的答案! 11.一正六边的边长为8,则它的外接圆的直径为_______________12.四边形ABCD 内接于⊙O ,弧AB :弧BC :弧CD=2:3:5,∠BAD=120°,则∠ABC=_____13.如图,将弧AC 沿弦AC 折叠交直径AB 于圆心O ,则弧AC= 度.14.在半径为2的圆中,弦AC 长为1,M 为AC 中点,过M 点最长的弦为BD ,则四边形ABCD 的面积为15.如图,⊙O 是△ABC 的外接圆,AO ⊥BC 于点F ,D 为弧AC 的中点,且弧CD 的度数为70°,则∠BAF=16.如图,⊙O 的半径OD ⊥弦AB 于点C ,连结AO 并延长交⊙O 于点E ,连结EC .若AB=8,CD=2,则EC 的长为________________17. 已知△ABC 的边BC=23cm ,且△ABC 内接于半径为2cm 的⊙O ,则∠A= 度.18.如图,C 、D 是以AB 为直径的圆O 上的两个动点(点C 、D 不与A 、B 重合),在运动过程中弦CD 始终保持不变,M 是弦CD 的中点,过点C 作CP ⊥AB 于点P .若CD=3,AB=5,PM=x ,则x 的最大值是_________.19.如图,△ABC 内接于⊙O ,∠B=90°,AB=BC ,D 是⊙O 上与点B关于圆心O 成中心对称的点,P 是BC 边上一点,连接AD 、DC 、AP .已知AB=8,CP=2,Q 是线段AP 上一动点,连接BQ 并延长交四边形ABCD 的一边于点R ,且满足AP=BR ,则=QRBQ ______ 三.解答题(共6题,共66分) 温馨提示:解答题应将必要的解答过程呈现出来!20(本题6分)如图,AB ,CD 是⊙O 的两条直径,过点A 作AE ∥CD 交⊙O 于点E ,连接BD ,DE ,求证:BD=DE .21(本题8分).如图所示,AB=AC ,AB 为⊙O 的直径,AC 、BC 分别交⊙O 于E 、D ,连结ED 、BE .(1)求证:BE ⊥AC ;(2)求证:BD=DE ;22(本题8分).如图,在直角坐标系中,⊙E 的半径为5,点E (1,﹣4).(1)求弦AB 与弦CD 的长;(2)求点A ,B 坐标.23(本题10分).如图,AB 是⊙O 的直径,弦CD⊥AB 于点E ,点P 在⊙O 上,PB 与CD 交于点F ,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O 的半径R=2,求劣弧AC 的长度.24.如图,在⊙O 中,两弦AB 与CD 的中点分别是P 、Q ,且⋂⋂=CD AB ,连结PQ ,求证:∠APQ =∠CQP 。
圆的基本性质练习题
圆的基本性质练习一、 填空题:(21分)1、 如图,在⊙O 中,弦AB ∥OC ,115AOC ∠=︒,则BOC ∠=_________2、如图,在⊙O 中,AB 是直径,角ACD=30度,则BAD ∠=__________3、如图,点O 是ABC ∆的外心,已知40OAB ∠=︒,则ACB ∠=___________5、如图,⊙O 的直径为8,弦CD 垂直平分半径OA ,则弦CD = .6、已知⊙O 的半径为2cm ,弦AB =2cm ,P 点为弦AB 上一动点,则线段OP 的范围是 .7、如图,在⊙O 中,∠B=50º,∠C=20º,则∠BOC 的=____________ 二、解答题(70分)1、如图,AB 是⊙O 的直径. (1)若OD ∥AC ,弧CD 与弧BD 的大小有什么关系?为什么? (2)把(1)中的条件和结论交换一下,还能成立吗?说明理由.2、已知:如图,在⊙O 中,弦AB=CD. 求证:⑴弧AC=弧BD ;⑵∠AOC=∠BODABC3、如图,已知:⊙O 中,AB 、BC 为弦,OC 交AB 于D , 求证:(1)∠ODB>∠OBD ,(2)∠ODB>∠OBC ;4、已知如图,AB 为⊙O 的弦,半径OE 、OF 分别交AB 于点C 、D , 且AC=BD 。
求证:CE=DF5、已知如图,,AB 、AC 为弦,OM ⊥AB 于M ,ON ⊥AC 于N ,MN 是△ABC 的中位线吗?6、已知⊙O 中,M 、N 分别是不平行的两条弦AB 和CD 的中点, 且AB = CD ,求证:∠AMN=∠CNM8、已知如图,AB 是⊙O 的直径,C 是⊙O 上的一点,CD ⊥AB 于D ,CE 平分∠DCO ,交⊙O 于E ,求证:弧AE=弧EB9、已知如图,以等腰△ABC 的一腰AB 为直径的⊙O 交另一腰于F ,交底边BC 于D ,则BC 与DF 的关系,证明你的观点。
圆的有关性质练习及答案(供参考)
1° ° D CB A O圆的有关性质【知识要点】 1.圆的定义:(1)动态定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。
(2)静态定义:在平面内到定点(圆心O )的距离等于定长(半径r )所有点的集合叫做圆:2.圆的相关概念弦:直径:弧:半圆弧:优弧:劣弧:等弧:同心圆:3.垂径定理及推论:垂直于弦的直径平分弦,并且平分弦所对的两条弧。
由此得到推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线,经过圆心, 并且平分弦所对的两条弧。
4.圆的轴对称性:(1)圆是轴对称图形;(2)经过圆心的每一条直线都是它的对称轴;(3)圆的对称轴有无数条。
5..圆的旋转不变性圆是以圆心为对称中心的中心对称图形6.圆心角、弧、弦关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等。
7.弧的度数等于它所对的圆心角的度数。
8..圆周角定理及推论:在同圆或等圆中,同弧或等弧所对的圆周角相等,并等于这条弧所对的圆心角的一半.推论:(1)半圆(或直径)所对的圆周角是直角.90°的圆周角所对的弦是直径.(2)三角形的一边上的中线等于这边的一半,则这个三角形是直角三角形9:三角形:圆内接三角形;圆:三角形的外接圆 四边形:圆内接四边形圆:四边形的外接圆 定理:圆内接四边形的对角互补【基础和能力训练】 一、选择题1.平行四边形的四个顶点在同一圆上,则该平行四边形一定是( )A.正方形 B.菱形 C.矩形 D.等腰2.(2014•毕节地区)如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( ) A 6 B 5 C 4 D 33. ( 2014•珠海)如图,线段AB 是⊙O 的直径, 弦CD 丄AB ,∠CAB =20°,则∠AOD 等于( ) A 160° B 150° C 140° D 120°4.(2015湖南常德)如图,四边形ABCD 为⊙O 的内接四边形,已知∠BOD =100°,则∠BCD 的度数为( ) A 、50° B 、80° C 、100° D 、130°5.(2015上海)如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是( )A 、AD =BD ;B 、OD =CD ;C 、∠CAD =∠CBD ;D ∠OCA =∠OCB .6. 如图:是小明完成的.作法是:取⊙O 的直径AB ,在⊙O 上任取一点C 引弦CD ⊥A B.当C 点在半圆上移动时(C 点不与A 、B 重合),∠OCD 的平分线与⊙O 的交点P 必( ) A 。
圆的性质练习题
圆的性质练习题1. 以下哪个说法是关于圆心的?- (A) 圆心是圆的中点- (B) 圆心位于圆周上- (C) 圆心与半径相等- (D) 圆心可以位于圆外答案:(A) 圆心是圆的中点2. 在一个圆中,有两条相交的弦AB和CD,若弦AB的长度为12,弦CD的长度为16,那么弦AB的一半加上弦CD的一半等于多少?答案:弦AB的一半加上弦CD的一半等于143. 下列哪个选项不能确定一个圆?- (A) 圆心和半径- (B) 直径和半径- (C) 弦和半径- (D) 弧和半径答案:(C) 弦和半径4. 若一个圆的直径为10,那么它的半径是多少?答案:半径是55. 下列哪个说法是关于切线的?- (A) 切线与圆相切于圆的内部- (B) 切线与圆相切于圆的外部- (C) 切线与圆的切点位于圆的任意位置- (D) 切线与圆不可能相切答案:(B) 切线与圆相切于圆的外部6. 如果AB是一个圆的直径,CD是一个切线,且切点为E,那么角CED的度数是多少?答案:角CED的度数是90度7. 以下哪个选项不能作为一个圆的弧长?- (A) 3- (B) 3π- (C) π/2- (D) 2π答案:(C) π/28. 若一个圆的半径为8,那么它的周长是多少?答案:周长是16π9. 若一个圆的周长为12π,那么它的直径是多少?答案:直径是610. 以下哪个说法是关于圆的面积的?- (A) 圆的面积与周长成正比- (B) 圆的面积与半径的平方成正比- (C) 圆的面积与直径成正比- (D) 圆的面积与弧度成正比答案:(B) 圆的面积与半径的平方成正比以上是关于圆的性质的练习题,希望能帮助你巩固对圆的相关概念的理解。
请根据题目给出的选项选择正确答案,并核对答案的准确性。
2.3_圆的基本性质水平测试题(含答案)
圆的基本性质一、选择题1、下面三个命题:①圆既是轴对称图形,又是中心对称图形;②垂直于弦的直径平分这条弦;③相等的圆心角所对的弧相等。
其中是真命题的是 ( )A.①②;B. ①③;C. ②③;D. ①②③。
2、已知⊙O 的半径为5cm ,P 为该圆内一点,且OP=1cm ,则过点P 的弦中,最短的弦长为( )A 、8cm ;B 、6cm ;C 、; D 、。
3.如图1,CD 是O 的直径,A B ,是O 上的两点,若20ABD ∠=,则ADC ∠的度数为( )A .40B .50 C .60 D .70图1 图2 图34、如图2,点A 、B 、D 、C 是⊙O 上的四个点,且∠BOC=110°,则∠BAC 的度数是( )A.110°B.70°C.100°D.55°5、如图3,正方形ABCD 的四个顶点分别在⊙O 上,点P 在劣弧CD 上不同于点C 得到任意一点,则∠BPC 的度数是( )A 、45 ;B 、60 ;C 、75 ;D 、90。
6、如图4,AD 平分∠BAC ,则图中相似三角形有( )A 、2对;B 、3对;C 、4对;D 、5对。
图4D二、精心填一填(每小题3分,共24分)7、如图,已知AB是⊙O的直径,弦CD与AB相交于点E。
若______,则CE=DE(只须填上一个适合的条件即可)。
8、已知AB、CD为⊙O的两条弦,圆心O到它们的距离分别为OM、ON,如果AB>CD,那么OM____ON。
(填“>、=、<”中的一种)9、在⊙O中,AB是直径,CD是弦,若AB⊥CD于E,且AE=2,EB=8,则CD=__________.10、△ABC的三边长分别是AB=4cm,AC=2cm,,以点C为圆心,CA为半径画圆交边AB于另一点D,设AD的中点为E,则CE=_______。
11、半径为10cm的圆内有两条平行弦,长度分别为12cm、16cm,则这两条平所弦间的距离为_______cm。
浙教版数学九年级上册 第3章测试卷 圆的基本性质(含答案)
第3章测试卷圆的基本性质班级学号得分姓名一、选择题(本大题有10小题,每小题3分,共30分)1.已知⊙O的直径为10,点P到点O的距离大于8,那么点P的位置( )A. 一定在⊙O的内部B. 一定在⊙O的外部C. 一定在⊙O上D. 不能确定2.正六边形的每个内角度数为( )A. 90°B. 108°C. 120°D. 150°3.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为( )A. 60°B. 50°C. 40°D. 20°4.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是( )A7 B. 7 C. 6 D. 85. 下列有关圆的一些结论:①与半径长相等的弦所对的圆周角是30°;②圆内接正六边形的边长与该圆半径相等;③垂直于弦的直径平分这条弦;④平分弦的直径垂直于弦.其中正确的是( )A. ①②③B. ①③④C. ②③D. ②④6. 如图,正方形ABCD 内接于⊙O,AB=22,则AB的长是( )A. πB.32π C. 2π D127.如图,已知 BC 是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点 A,点C重合),BD与OA交于点E,设∠AED=α,∠AOD=β,则( )A. 3α+β=180°B. 2α+β=180°C. 3α-β=90°D. 2α-β=90°8. 如图,在扇形 AOB中,∠AOB=90°,点C 是弧AB 的中点,点 D 在OB 上,点 E 在OB 的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为( )A. π-2B. 2π—2C. π—4D. 2π-49. 如图,四边形ABCD内接于⊙O,点I是△ABC角平分线的交点,∠AIC=124°,点 E 在AD 的延长线上,则∠CDE的度数为( )A. 56°B. 62°C. 68°D. 78°10. 如图,AB是半圆O 的直径,点 P 从点O 出发,沿OA→AB→BO(的路径匀速运动一周.设OP 的长为s,运动时间为t,则下列图象能大致地刻画s与t之间关系的是( )二、填空题(本大题有6小题,每小题4分,共24分)11. 如图,点 A,B,C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为 .12. 如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB 的距离为 .13. 如图,在四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC 交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是 .14.如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为 .15.如图,在半径2₂的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形面积为 .16. 如图所示,E,F分别是正方形ABCD 的边AB,BC上的点,BE=CF,连结CE,DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转了.三、解答题(本大题有8小题,共66分)17. (6分)已知扇形的半径为6cm,面积为10πcm²,求该扇形的弧长.18. (6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,点O,M也在格点上.(1)画出△ABC关于直线OM 对称的△A₁B₁C₁;(2)画出△ABC绕点O按顺时针方向旋转 90°后所得的△A₂B₂C₂.19. (6分)中国的拱桥始建于东汉中后期,已有一千八百余年的历史,如图,一座拱桥在水面上方部分是.AB,拱桥在水面上的跨度AB为8米,拱桥AB与水面的最大距离为3米.(1)用直尺和圆规作出AB所在圆的圆心O;(2)求拱桥 AB所在圆的半径.20.(8分)如图所示,在△ABC中,AB=AC,∠A=30°,,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点 B作BP 平行于DE,交⊙O于点P,连结OP,CP.(1)求证:BD=DC;(2)求∠BOP的度数.21.(8分)如图,AB是⊙O的直径,C是.AE的中点,CD⊥AB于点D,交AE于点F,连结AC.求证:AF=CF.22.(10分)如图,A,P,B,C是⊙O上的四点,且满足∠BAC=∠APC=60°.(1) 试判断△ABC是否为等边三角形? 为什么?(2)若⊙O的半径OD⊥BC于点E,BC=8,,求⊙O的半径长.23.(10分)如图,在△ABC中,AB=AC,E在AC上,经过A,B,E三点的⊙O交BC 于点D,且.BD= DE.(1)求证:AB为⊙O的直径;(2)若AB=8,∠BAC=45°,,求阴影部分的面积.24.(12分)如图,点A,B,C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB;(2)如图,过点O作(OE⊥AB于点E,交AC于点 P.若AB=2,∠AOE=30°,求 PE的长.第3章测试卷 圆的基本性质1. B2. C3. B4. B5. C6. A7. D8. A9. C 10. C 11. 6 12. 3 13. 6π14 12 15. π 16. 9017. 解:由 S =12l ⋅R 得 l =2S R =2×106=103π(cm ).18. 解:(1)如图, △A₁B₁C₁即为所求作的三角形.(2)如图, △A₂B₂C₂即为所求作的三角形.19. 解:(1)如图1所示,点 O 即为所求;(2)如图2 所示,取 AB 的中点D ,连结OD 交AB 于点 E,连结OA,则 OD ⊥AB,且AE=EB=4米,由题意得,DE=3米,设圆的半径为r 米,在 Rt△AEO 中, AE +EO²=OA²,即 4²+(r−3)²=r²,解得 r =256.即拱桥AB 所在圆的半径为 256米.20. (1)证明:如图,连结 AD.∵AB 为⊙O 的直径,∴∠ADB=90°,即 AD⊥BC,∵AB=AC,∴BD=CD. (2)解:∵∠BAC= 30°,AB= AC,∴ ∠ABC =12×(180∘−30∘)=75°.∵四边形 ABDE 为圆O 的内接四边形,∴∠EDC=∠BAC=30°.∵BP∥DE,∴∠PBC=∠EDC=30°,∴∠OBP=∠ABC--∠PBC=45°.∵OB =OP,∴∠OPB=∠OBP=45°,∴∠BOP =90°21. 证明:延长CD 交⊙O 于点 H,∵C 是 AE 的中点, ∴AC =CE ,∵CD ⊥AB,∴AC =AH ,∴CE =AH ,∴∠ACD=∠CAE,∴AF=CF.22. 解:(1)△ABC 是等边三角形.理由:∵∠BAC=∠APC=60°,又∵∠APC=∠ABC,∴∠ABC=60°,∴∠ACB =180°−∠BAC−∠ABC =180°− 60°−60°=60°,∴△ABC 是等边三角形. (2)如图,连结OB,∵△ABC 为等边三角形,⊙O 为其外接圆,∴BO 平分∠ABC,∴∠OBC=30°,∵OD ⟂BC,∴BD =CD,BE =CE = 4,∠BOD =60∘,∴OE =433, OB =833.∴OO|的半径长 833.23. (1)证明:如图,连结.AD, ∵⌢BD =DE ,∴∠BAD =∠CAD.又∵AB = AC, ∴AD ⊥ BC, ∴∠ADB=90°,∴AB 为⊙O 的直径. (2)解:∵AB 为⊙O 的直径,∴O 在AB 上,如图,连结OE,∵AB=8,∠BAC=45°,∴∠AOE=∠BOE= ∴1∘∴AB =8,∴BO =EO =4,S 扇形AOE =90×π×42360 =4π,S BOE =12OB 2=12×16=8,∴S 阴影=S BOE24. (1)证明:∵AB∥OC,∴∠C=∠BAC.∵OA=OC,∴∠C=∠OAC,∴∠BAC=∠OAC,即AC 平分∠OAB. (2)解: COE⟂AB,∴AE =BE =12AB =1,又∵∠AOE 、30°,∠PEA=90°,∴∠OAE= 60∘,∴∠EAP =3∠OAE =30∘,∴PE =12PA.设PE=x,则 PA=2x,根据勾股定理得 x²+1²=(2x)²,解得 x =33,∴PE =33.。
圆的性质练习题(基础)(最新整理)
PE∥AB 交 BD 于点 E.若∠AOC=60°,BE=3,则点 P 到弦 AB 的距离为_______.
3、如图,△ABC 内接于⊙O,AB=BC,∠ABC=120°,AD 为⊙O 的直径,AD=6,那么 BD= _________.
4、如图,已知在 Rt△ABC 中, ACB Rt , AB 4 ,分别以 AC , BC 为直径作
半圆,面积分别记为 S1 , S2 ,则 S1 + S2 的值等于
.
5、如图,⊙O 的半径 OA=10cm,P 为 AB 上一动点,则点 P 到圆心 O 的最短距离为 ___________cm。
A
C
O
B
C
A
O
B
第5题
第6题
第7题
第8题
6、(2009 娄底)如图 7,⊙O 的半径为 2,C1 是函数 y= 1 x2 的图象,C2 是函数 y=- 1 x2 的
12、(2009 温州)如图,在△ABC 中,∠C=90°,AC=3,BC=4.0 为 BC 边上一点,以 0 为 圆心,OB 为半径作半圆与 BC 边和 AB 边分别交于点 D、点 E,连结 DE。
(1)当 BD=3 时,求线段 DE 的长; (2)过点 E 作半圆 O 的切线,当切线与 AC 边相交时,设交点为 F.
求证:△FAE 是等腰三角形.
6
A. AD=BD B.∠ACB=∠AOE C. AAE BAE D.OD=DE
5、如图已知⊙O 的两条弦 AC,BD 相交于点 E,∠A=70o,∠c=50o,那么 sin∠AEB 的值为()
A. 1 2
B. 3 3
C. 2 2
D. 3 2
6、如图,直线 AB 与⊙O 相切于点 A,⊙O 的半径为 2,若∠OBA = 30°,则 OB 的长为
中考数学复习圆的基本性质练习题含答案解析
第六单元圆第24课时圆的基本性质点对点·课时内考点巩固30分钟1. (2019柳州)如图,A,B,C,D是⊙O上的点,则图中与∠A相等的角是()A. ∠BB. ∠CC. ∠DEBD. ∠D第1题图2. (2019宜昌)如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A. 50°B. 55°C. 60°D. 65°第2题图3. (2019兰州)如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C=()A. 110°B. 120°C. 135°D. 140°第3题图4. (2019甘肃省卷)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的2倍,则∠ASB的度数是()A. 22.5°B. 30°C. 45°D. 60°第4题图5.如图,AB是⊙O的直径,点C,D在⊙O上,若∠DCB=110°,则∠AED的度数为()A. 15°B. 20°C. 25°D. 30°第5题图6.(2019西安高新一中模拟)如图,四边形ABCD内接于⊙O,AD∥BC,∠DAB=48°,则∠AOC的度数是()A. 48°B. 96°C. 114°D. 132°第6题图7. (2019陕西黑马卷)如图,在⊙O中,弦AB∥CD,连接BC,OA,OD.若∠BCD=25°,CD=OD,则∠AOD的度数是()A. 140°B. 120°C. 110°D. 100°第7题图8. (2019赤峰)如图,AB 是⊙O 的弦,OC ⊥AB 交⊙O 于点C ,点D 是⊙O 上一点,∠ADC =30°,则∠BOC 的度数为( )A. 30°B. 40°C. 50°D. 60°第8题图9. (2019贵港)如图,AD 是⊙O 的直径,AB ︵=CD ︵,若∠AOB =40°,则圆周角∠BPC 的度数是( ) A. 40° B. 50° C. 60° D .70°第9题图10. 如图,△ABC 内接于⊙O ,∠BAC =120°,AB =AC ,BD 为⊙O 的直径,AD =6,则BD 的长为( ) A. 3 B. 2 3 C. 4 3 D. 12第10题图11. 如图,AB 为⊙O 的直径,∠CAB =30°,CB =3,∠ACB 的平分线CD 交⊙O 于点D ,则弦AD 的长为( )A. 2 3B. 2 2C. 3 3D. 32第11题图12. 如图,B 、C 是⊙A 上的两点,AB 的垂直平分线与⊙A 交于E 、F 两点,与线段AC 交于点D ,连接BC 、BD 、BF 、CF .若∠BFC =20°,则∠DBC =( )A. 30°B. 29°C. 28°D. 20°第12题图13. (2019西工大附中模拟)如图,已知△ABC 内接于⊙O ,EF 为⊙O 的直径,且点F 是弧BC ︵的中点.若∠B =40°,∠C =60°,则∠AFE 的度数为( )A. 10°B. 20°C. 30°D. 40°第13题图14. (2019西安铁一中模拟)如图,在半径为3的⊙O 中,弦BC 、DE 所对的圆周角分别是∠A 、∠F ,且∠A +∠F =90°.若BC =4,则DE 的长为( )A. 13B. 4C. 5D. 25第14题图15.在圆内接四边形ABCD中,∠ACB=∠ACD=60°,对角线AC、BD交于点E.已知BC=32,CD =22,则线段CE的长为()第15题图A. 32 2B. 7 5C. 62 5D. 22 316. (2019株洲)如图所示,AB为⊙O的直径,点C在⊙O上,且OC⊥AB,过点C的弦CD与线段OB 相交于点E,满足∠AEC=65°,连接AD,则∠BAD=________度.第16题图17.(2019安徽)如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为________.第17题图18.已知半径为5的⊙O中,弦AB=52,弦AC=5,则∠BAC的度数是________.点对线·板块内考点衔接10分钟1. (2019襄阳)如图,AD是⊙O的直径,BC是弦,四边形OBCD是平行四边形,AC与OB相交于点P,下列结论错误的是()A. AP=2OPB. CD=2OPC. OB⊥ACD. AC平分OB第1题图2. (2019西工大附中模拟)如图,已知⊙O的内接五边形ABCDE,连接BE、CE,若AB=BC=CE,∠EDC =130°,则∠ABE的度数为()A. 25°B. 30°C. 35°D. 40°第2题图3.(2019天水)如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=80°,则∠EAC的度数为()A. 20°B. 25°C. 30°D. 35°第3题图4.(2019柳州)在半径为5的圆形纸片上裁出一个边长最大的正方形纸片,则这个正方形纸片的边长应为________.5.如图,在矩形ABCD中,AB=3,BC=4,O为矩形ABCD的中心,以D为圆心,1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP、OA,则△AOP面积的最大值为________.第5题图点对面·跨板块考点迁移2分钟1. (2019安顺)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC 为()第1题图A. 13 B. 22 C.223 D.24参考答案第24课时 圆的基本性质点对点·课时内考点巩固1. D 【解析】在⊙O 中,∵∠A 与∠D 都是BC ︵所对的圆周角,∴∠A =∠D .2. A 【解析】∵OB =OC ,∴∠OCB =∠OBC =40°.∴在△OBC 中,∠BOC =180°-∠OCB -∠OBC =180°-40°-40°=100°.∴∠A =12∠BOC =12×100°=50°.3. D 【解析】∵四边形ABCD 内接于⊙O ,∠A =40°,∴∠C =180°-∠A =140°.4. C 【解析】如解图,设圆心为O ,半径为r ,则AB =2r .连接OA 、OB ,则r 2+r 2=(2r )2,∴△OAB 为等腰直角三角形,∠AOB =90°.∴∠ASB =12∠AOB =45°.第4题解图5. B 【解析】如解图,连接AC ,∵AB 为直径,∴∠ACB =90°,∴∠ACD =∠DCB -∠ACB =110°-90°=20°,∴∠AED =∠ACD =20°.第5题解图6. B 【解析】∵AD ∥BC ,∴∠B =180°-∠DAB =132°,∵四边形ABCD 内接于⊙O ,∴∠D =180°-∠B =48°,由圆周角定理得,∠AOC =2∠D =96°.7. C 【解析】如解图,连接OC ,∵AB ∥CD ,∴∠B =∠BCD =25°,∴∠AOC =50°,∵CD =OD ,OD =OC ,∴OC =OD =CD ,∴△COD 为等边三角形,∴∠COD =60°,∴∠AOD =∠AOC +∠COD =110°.第7题解图8. D 【解析】∵OC ⊥AB ,∴点C 是AB ︵的中点,即AC ︵=BC ︵.∴∠BOC =∠AOC =2∠ADC =60°. 9. B 【解析】∵AB ︵=CD ︵,∴∠COD =∠AOB =40°,∴∠BOC =100°,∴∠BPC =12∠BOC =50°.10. C 【解析】∵∠BAC =120°,AB =AC ,∴∠BCA =12×(180°-120°)=30°.∴∠D =∠BCA =30°.∵BD为⊙O 的直径,∴∠BAD =90°.在Rt △BAD 中,BD =AD cos30°=632=4 3. 11. D 【解析】如解图,连接BD ,∵AB 为⊙O 的直径,∴∠ACB =∠ADB =90°,在Rt △ABC 中,∵∠CAB =30°,∴AB =2CB =6,∵CD 平分∠ACB ,∴∠BCD =45°,∵∠BAD =∠BCD =45°,∴△ABD 为等腰直角三角形,∴AD =22AB =22×6=3 2.第11题解图12. A 【解析】∵∠BFC =20°,∴∠BAC =2∠BFC =40°,∵AB =AC ,∴∠ABC =∠ACB =12(180°-40°)=70°.又∵EF 是线段AB 的垂直平分线,∴AD =BD ,∴∠ABD =∠BAC =40°,∴∠DBC =∠ABC -∠ABD =70°-40°=30°.13. A 【解析】如解图,连接OC 、CF .∵∠B =40°,∠ACB =60°,∴∠BAC =80°,∠AFC =∠ABC =40°,∵点F 是弧BC ︵的中点,∴∠BAF =∠CAF =40°,∴∠COF =2∠CAF =80°,∵OF =OC ,∴∠OFC =12(180°-80°)=50°,∴∠AFE =∠OFC -∠AFC =10°.第13题解图14. D 【解析】如解图,连接DO 并延长,交⊙O 于点G ,连接EG 、FG ,则∠DFG =∠DEG =90°,又∵∠A +∠DFE =90°,∠GFE +∠DFE =90°,∴∠A =∠GFE .则GE =BC =4.∵⊙O 的半径为3,∴DG =6.在Rt △DEG 中,DE =DG 2-GE 2=62-42=2 5.第14题解图15. C 【解析】如解图,作BM ⊥AC 于点M ,DN ⊥AC 于点N ,则BM ∥DN ,∴△BME ∽△DNE ,∴MENE =BM DN ,∵∠ACB =∠ACD =60°,∴∠CBM =∠CDN =30°,∴CM =12BC =322,CN =12CD =2,∴BM =3CM =362,DN =3CN =6,∴MN =CM -CN =122,∴ME NE =32,∴EN =25MN =25,∴CE =CN +EN =2+25=625.第15题解图16. 20 【解析】∵AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,∴∠ADC =12∠AOC =45°.∵∠AEC=65°,且∠AEC 是△ADE 的一个外角,∴∠BAD =∠AEC -∠ADC =20°.17. 2 【解析】如解图,连接OA 、OC ,∵∠CBA =45°,∴∠AOC =90°.又∵OA =OC =2,∴AC =2 2.在Rt △ACD 中,∠CDA =90°,∠CAD =30°,∴CD =AC ·sin30°= 2.第17题解图18. 105°或15° 【解析】如解图,连接OC ,OA ,OB .∵OC =OA =AC =5,∴△OAC 是等边三角形,∴∠CAO =60°,∵OA =OB =5,AB =52,∴OA 2+OB 2=AB 2,∴△OAB 是等腰直角三角形,∠OAB =45°,点C 的位置有两种情况,如解图①时,∠BAC =∠CAO +∠OAB =60°+45°=105°;如解图②时,∠BAC =∠CAO -∠OAB =60°-45°=15°.综上所述,∠BAC 的度数是105°或15°.第18题解图点对线·板块内考点衔接1. A 【解析】如解图,连接OC .∵四边形OBCD 是平行四边形,OD =OB ,∴四边形OBCD 是菱形.∴OD =OC =CD .∵AD 是⊙O 的直径,∴∠ACD =90°.∵CD ∥OB ,∴CD =2OP ,OB ⊥AC .故B 、C 选项正确.∵△CBP ≌△COP (HL),∴BP =OP .故D 选项正确.第1题解图2. B 【解析】如解图,连接OA ,OB ,OC ,OE ,∵AB =BC =CE ,∴AB ︵=BC ︵=CE ︵,∠1=∠2=∠3,在四边形BCDE 中,∵∠D =130°,∴∠CBE =50°,∠2=2∠CBE =100°,∴∠1=∠3=∠2=100°,∠AOE=360°-3×100°=60°,∴∠ABE =12∠AOE =30°.第2题解图3. C 【解析】∵∠AEB +∠AEC =∠D +∠AEC =180°,∠D =80°,∴∠AEB =∠D =80°.∵四边形ABCD是菱形,∴∠B =∠D =80°,AB =BC ,∴∠B =∠AEB .∴∠BAE =180°-2∠B =20°,∠BAC =∠ACB =12(180°-∠B )=50°.∴∠EAC =∠BAC -∠BAE =30°.4. 52 【解析】如解图,四边形ABCD 为正方形,BD 为⊙O 的直径,OA 为半径,则OA =OB =5,OA ⊥OB ,∴AB = OA 2+OB 2=52+52=5 2.第4题解图5. 174【解析】如解图,延长AO 至C 点,过点D 作DF ⊥AC 于点F ,延长FD 交⊙D 于点P ′,连接AP ′,OP ′,要使△AOP 面积最大,则只需AO 边上的高最大,此时P ′满足条件,即P ′F 为△AOP 的AO 边上最大的高.∵DF =AD ·CD AC =4×342+32=125,∴P ′F =DF +DP ′=125+1=175,AO =12AC =52,∴△AOP 的最大面积为12AO ·P ′F =12×52×175=174.第5题解图点对面·跨板块考点迁移1. D 【解析】如解图,连接AC 、AO ,得到等腰三角形AOC ,过A 点作AD ⊥OC ,垂足为点D ,∴∠CAD =12∠CAO =∠OBC ,∵点C 坐标为(0,2),∴CD =OD =1,∴在Rt △ACD 中,AD =AC 2-CD 2=32-12=22,∴tan ∠OBC =tan ∠CAD =CD AD =122=24.第1题解图。
圆的基本性质经典题库
第三章圆的基本性质第一节圆第1课时[基础训练]1.下列结论正确的是( )A.弦是直径 B.弧是半圆 C.半圆是弧 D.过圆心的线段是直径2.两圆的圆心都是O,半径分别是r1, r2 ( r l < r2 ) , 若r l <OP<r2、则点P在( )A.大圆外 B.小圆内 C.大圆内,小圆外 D.无法确定3.若OP的半径为13,圆心P的坐标为(5, 12 ), 则平面直角坐标系的原点O与OP的位置关系是( )A.在⊙P内 B.在⊙P内上 C.在⊙P外 D.无法确定4. 已知⊙O的半径长6cm,P为线段O A的中点,若点P在⊙O上,则OA的长是( )A.等于6cm B.等于12cm C.小于6cm D .大于12cm5.圆上各点到圆心的距离都等于 , 到圆心距离等于半径的点都在 .6.在Rt△ABC中,∠C=900, CD⊥AB, AB=2, BC=3,若以C为圆心,以2为半径作⊙C,则点A在⊙C ,点 B 在⊙C ,点D在⊙C .7.一个点到定圆上最近点的距离为4,最远点的距离为9,则此圆的半径是__________.8.如图,AB, CD为⊙O的两条直径,E, F 分别为OA, OB的中点,求证:四边形CEDF是平行四边形.[综合提高]1. ⊙0的半径为13cm,圆心O到直线l的距离d=OD=5cm.在直线l上有三点P,Q,R,且PD = 12cm , QD<12cm, RD>12cm,则点P在,点Q在,点R在 .2.在以AB=5cm为直径的圆上,到直线AB的距离为2.5cm的点有( )A.无数个个 C. 2个 D. 4个3. AB为⊙0的直径,C为⊙O上一点,过C作CD⊥AB于点D,延长CD至E,使DE=CD,那么点E的位置( )A.在⊙0 内 B.在⊙0上 C.在⊙0外 D.不能确定4. 在⊙0中,半径为6,圆心O在坐标原点上,点P的坐标为(3,5),则点P与⊙0的位置关系是( )A.点P在⊙0内 B.点P在⊙0上 C.点P在⊙0外 D.不能确定5.如图,点A,D,G,M在半圆上,四边形ABOC, DEOF,HMNO均为矩形,BC=a,EF=b, NH=C,则下列各式中正确的是( )>b>c =b=c >a>b >c>a6.在平面直角坐标系内,以原点O为圆心、5为半径作O,已知A、B、C).试判断A、B、三点的坐标分别为A(3,4),B(-3,-3),C(4,10C三点与O的位置关系.7.⊙0的半径为2,点P到圆心的距离OP=m, 且m使关于二的方程2x2-22x+m-1=0有实根,试确定点P的位置.[拓展延伸]如图,点P的坐标为(4,0), p的半径为5,且p与x轴交于点A,B,与y轴交于点 C,D, 试求出点A , B,C,D的坐标.第2课时[基础训练]1.判断正误.(1)三点确定一个圆. ( )(2)已知圆心和半径可以确定一个圆. ( )(3)已知圆心和圆上一点可以确定一个圆. ( )(4) 已知半径和圆上一点可以确定一个圆. ( )(5)已知半径和圆上两点可以确定一个圆. ( )2.下列说法正确的是( )A.一个点可以确定一条直线 B.两个点可以确定两条直线C.三个点可以确定一个圆 D.不在同一直线上的三点确定一个圆3. 直角三角形两直角边长分别为3和l,那么它的外接圆的直径是( ).2 C4. 下列命题中,正确的是()A.三角形的外心是三角形的三条高线的交点B.等腰三角形的外心一定在它的内部C.任何一个三角形有且仅有一个外接圆D.任何一个四边形都有一个外接圆5. 下图是一个圆形轮子的一部分,请你用直尺和圆规把它补完整.[综合提高]三角形的外心在它的内部,_______三角形的外心在它的外部;直角三角形的外心在______________.2.如果以平行四边形的对角线的交点为圆心,以它和一边中点的距离为半径画圆,若这个四边形四条边的中点都在这个圆上,那么这个四边形是 ( ) A .矩形 B .正方形 C .等腰梯形 D .菱形3. 下列命题正确的个数有( )① 矩形的四个顶点在同一个圆上; ② 梯形的四个顶点在同一个圆上; ③ 菱形的四边中点在同一个圆上; ④ 平行四边形的四边中点在同一个圆上. A. 1个 B. 2个 C. 3个 D. 4个 4.在Rt △ABC 中,AB=6 , BC=8,那么这个三角形的外接圆直径是( ) A. 5 .10 C 或 4 D. 10或8 5.已知等腰三角形ABC 中,AB=AC ,O 是ABC ∆的外接圆,若 O 的半径是4,120BOC ∠=,求AB 的长.6.如图所示,平原上有三个村庄A 、B 、C ,现计划打一口水井p ,使水井到三个村庄的距离相等。
(完整版)圆的基本性质练习题一
圆的基本性质练习一、看准了再选1..如图,⊙O 中,ABDC 是圆内接四边形,∠BOC=110°,则∠BDC 的度数是( ) A.110° B.70° C.55° D.125°2.如图,⊙O 的直径CD 过弦EF 的中点G 且EF ⊥CD ,若∠EOD=40°,则∠DCF 等于( ) A.80° B. 50° C.40° D. 20°3.直线a上有一点到圆心O 的距离等于⊙O 的半径,则直线a与⊙O 的位置关系是( ) A、相离 B、相切 C、相切或相交 D、相交4.在⊙O 中,弦AB 垂直并且平分一条半径,则劣弧AB 的度数等于( ) A.30° B.120° C.150° D.60°5.如图,⊙O 的半径OA=3,以点A 为圆心,OA 的长为半径画弧交⊙O 于B ,C•则BC=( ). A .32 B .33 C .323 D .3326..如图所示,∠1,∠2,∠3的大小关系是( ).A .∠1>∠2>∠3B .∠3>∠1>∠2C .∠2>∠1>∠3D .∠3>∠2>∠1 7..如图,已知∠BAC=45°,一动点O 在射线AB 上运动(点O•与点A 不重合),设OA=x ,如果半径为1的圆O 与射线AC 有公共点,那么x 的取值范围是( ) A .0<x ≤2 B .1<x ≤2 C .1≤x ≤2 D .x>28.如图,AB 、AC 与⊙O 相切于点B 、C ,∠A=50°,点P 是圆上异于B 、C 的一动点,则∠BPC 的度数是( )OCFGD EAPBC OA .65°B .115°C .65°或115°D .130°或50°9如图,PA 、PB 分别切⊙O 于A 、B ,AC 是⊙O 的直径,连结AB 、BC 、OP ,则与∠PAB 相等的角有( )个。
初中数学【圆的基本性质】练习题
初中数学【圆的基本性质】练习题一.选择题(共9小题)1.在圆中,下列命题中正确的是()A.垂直于弦的直线平分这条弦B.平分弧的直线垂直于弧所对的弦C.平分弦的直径垂直于这条弦D.平分弦所对的两条弧的直线平分这条弦2.如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴相切于B,与y轴交于C(0,1),D(0,4)两点,则点A的坐标是()A.B.C.D.3.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100°D.130°4.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是BC、AB的中点,则MN长的最大值是()A.10B.5C.10D.205.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为()A.70°B.90°C.110°D.120°6.在Rt△ABC中,∠C=90°,AB=6,△ABC的内切圆半径为1,则△ABC的周长为()A.13B.14C.15D.167.如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.19B.16C.18D.208.如图,AB,CD是⊙O的弦,AB⊥CD,BE是⊙O的直径.若AC=3,则DE的长是()A.3B.3.5C.2D.1.59.已知⊙O的半径为13cm,弦AB∥CD,AB=24cm,CD=10cm,则AB,CD之间的距离为()A.17cm B.7cm C.12cm D.17cm或7cm 二.填空题(共8小题)10.如图,PT切⊙O于点T,经过圆心的割线P AB交⊙O于点A和B,PT=4,P A=2,则⊙O的半径是.11.如图,⊙O中两条弦AB、CD相交于点P,已知P A=3,PB=4,PC=2,那么PD长为.12.如图,圆内接四边形ABCD中两组对边的延长线分别相交于点E,F,且∠A=45°,∠E=30°,则∠F=.13.如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为.14.如图,E是⊙O上一点,AB是⊙O的弦,OE的延长线交AB的延长线于C.如果BC =OE,∠C=40°,求∠EOA=度.15.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为.16.如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为.17.如图,⊙O是△ABC的外接圆,BC为直径,BC=4,点E是△ABC的内心,连接AE 并延长交⊙O于点D,则DE=.三.解答题(共2小题)18.如图,以△ABC的一边AB为直径的半圆与其他两边AC,BC的交点分别为D,E,且=(1)试判断△ABC的形状,并说明理由;(2)已知半圆的半径为5,BC=12,求AD的长.19.已知:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,G是弧AC上的任意一点,AG、DC的延长线相交于点F.求证:∠FGC=∠AGD.答案一.选择题(共9小题)1.在圆中,下列命题中正确的是()A.垂直于弦的直线平分这条弦B.平分弧的直线垂直于弧所对的弦C.平分弦的直径垂直于这条弦D.平分弦所对的两条弧的直线平分这条弦【解答】解:A、直线只有过圆心时,垂直于弦的直线平分这条弦,故选项错误;B、直线只有过圆心时,平分弧的直线垂直于弧所对的弦,故选项错误;C、被平分的弦是直径时,不一定垂直于弦,故选项错误;D、正确.故选:D.2.如图,在平面直角坐标系中,点A在第一象限,⊙A与x轴相切于B,与y轴交于C(0,1),D(0,4)两点,则点A的坐标是()A.B.C.D.【解答】解:过点A作AM⊥CD∵⊙A与x轴相切于点B,与y轴交于C(0,1),D(0,4)两点∴OC=1,CD=3,DM=CM=1.5∴OM=AB=2.5,∴圆的半径R=2.5,∴AC=2.5∴AM==2,即点A的坐标是().故选:C.3.如图A,B,C是⊙O上的三个点,若∠AOC=100°,则∠ABC等于()A.50°B.80°C.100°D.130°【解答】解:如图,在优弧上取点D,连接AD,CD,∵∠AOC=100°,∴∠ADC=∠AOC=50°,∴∠ABC=180°﹣∠ADC=130°.故选:D.4.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是BC、AB的中点,则MN长的最大值是()A.10B.5C.10D.20【解答】解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=10,∴AD=20,∴MN=AD=10,故选:A.5.如图,点A,B,C在⊙O上,CO的延长线交AB于点D,∠A=50°,∠B=30°,则∠ADC的度数为()A.70°B.90°C.110°D.120°【解答】解:∵∠A=50°,∴∠BOC=2∠A=100°,∵∠B=30°,∠BOC=∠B+∠BDC,∴∠BDC=∠BOC﹣∠B=100°﹣30°=70°,∴∠ADC=180°﹣∠BDC=110°,故选:C.6.在Rt△ABC中,∠C=90°,AB=6,△ABC的内切圆半径为1,则△ABC的周长为()A.13B.14C.15D.16【解答】解:根据直角三角形的内切圆的半径公式,得(AC+BC﹣AB)=1,∴AC+BC=8.则三角形的周长=8+6=14.故选:B.7.如图所示,在⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为()A.19B.16C.18D.20【解答】解:延长AO交BC于D,作OE⊥BC于E;∵∠A=∠B=60°,∴∠ADB=60°;∴△ADB为等边三角形;∴BD=AD=AB=12;∴OD=4,又∵∠ADB=60°,∴DE=OD=2;∴BE=10;∴BC=2BE=20;故选:D.8.如图,AB,CD是⊙O的弦,AB⊥CD,BE是⊙O的直径.若AC=3,则DE的长是()A.3B.3.5C.2D.1.5【解答】解:连接AE、AD,如图,∵BE是⊙O的直径.∴∠BAE=90°,∵AB⊥CD,∴AE∥CD,∴∠ADC=∠DAE,∴=,∴DE=AC=3.故选:A.9.已知⊙O的半径为13cm,弦AB∥CD,AB=24cm,CD=10cm,则AB,CD之间的距离为()A.17cm B.7cm C.12cm D.17cm或7cm 【解答】解:①当弦AB和CD在圆心同侧时,如图1,连接OA、OC.作OF⊥CD于F,交AB于E.∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=12﹣5=7cm;②当弦AB和CD在圆心异侧时,如图2,连接OA、OC.作OF⊥CD于F,交AB于E.∵AB=24cm,CD=10cm,∴AE=12cm,CF=5cm,∵OA=OC=13cm,∴EO=5cm,OF=12cm,∴EF=OF+OE=17cm.∴AB与CD之间的距离为7cm或17cm.故选:D.二.填空题(共8小题)10.如图,PT切⊙O于点T,经过圆心的割线P AB交⊙O于点A和B,PT=4,P A=2,则⊙O的半径是3.【解答】解:∵PT切⊙O于点T,∴由切割线定理得PT2=P A•PB,即42=2×(2+AB).解得AB=6.∴⊙O的半径是3,故答案为:3.11.如图,⊙O中两条弦AB、CD相交于点P,已知P A=3,PB=4,PC=2,那么PD长为6.【解答】解:∵两条弦AB、CD相交于点P,∵PD•PC=P A•PB,∴PD==6.故答案为6.12.如图,圆内接四边形ABCD中两组对边的延长线分别相交于点E,F,且∠A=45°,∠E=30°,则∠F=60°.【解答】解:∵四边形ABCD是圆内接四边形,∴∠BCD=180°﹣∠A=135°,有三角形的外角性质可知,∠EDC=∠BCD﹣∠E=105°,∴∠F=∠EDC﹣∠A=60°,故答案为:60°.13.如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为4.【解答】解:∵OC⊥AP,OD⊥PB,∴由垂径定理得:AC=PC,PD=BD,∴CD是△APB的中位线,∴CD=AB=×8=4,故答案为:4.14.如图,E是⊙O上一点,AB是⊙O的弦,OE的延长线交AB的延长线于C.如果BC =OE,∠C=40°,求∠EOA=60度.【解答】解:连接OB,∵OB=OE=BC,∠C=40°,∴∠COB=∠C=40°,∴∠ABO=∠C+∠COB=80°,∵OA=OB,∴∠A=∠ABO=80°,△AOC中,∠EOA=180°﹣40°﹣80°=60°,故答案为:60.15.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则BD的长为.【解答】解:过点C作CE⊥AD于点E,则AE=DE,∵∠ACB=90°,AC=3,BC=4,∴AB===5,∵S△ABC=AC•BC=AB•CE,∴CE==,∴AE===,∴AD=2AE=,∴BD=AB﹣AD=5﹣=,故答案为:.16.如图,点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,则AE的长为5.【解答】∵AC平分∠BAD,∴=,∴∠BDC=∠CAD,∵∠ACD=∠DCE,∴△CDE∽△CAD,∴CD:AC=CE:CD,∴CD2=AC•CE,设AE=x,则AC=AE+CE=4+x,∴62=4(4+x),解得:x=5.∴AE=5.故答案为:5.17.如图,⊙O是△ABC的外接圆,BC为直径,BC=4,点E是△ABC的内心,连接AE 并延长交⊙O于点D,则DE=.【解答】解:如图,连接BD,CD,EC.∵点E是△ABC的内心,∴∠DAB=∠DAC,∠ECA=∠ECB,又∵∠DCB=∠DAB,∴∠DAC=∠DCB∵∠DEC=∠EAC+∠ECA,∠ECD=∠ECB+∠DCB,∴∠DEC=∠DCE,∴DE=DC,∵BC是直径,∴∠BDC=90°,∵∠DAB=∠DAC,∴=,∴BD=DC,∵BC=4,∴DC=DB=2,∴DE=2,故答案为2.三.解答题(共2小题)18.如图,以△ABC的一边AB为直径的半圆与其他两边AC,BC的交点分别为D,E,且=(1)试判断△ABC的形状,并说明理由;(2)已知半圆的半径为5,BC=12,求AD的长.【解答】(1)方法一:连接AE,∵AB是直径,∴∠AEB=∠AEC=90°,∵=,∴∠BAE=∠CAE,又AE=AE,∴△AEB≌△AEC(ASA),∴AB=AC,∴△ABC是等腰三角形;方法二:∵AB是直径,∴∠ADB=∠CDB=90°,∵=,∴DE=BE,∴∠CBD=∠BDE,∴∠C=∠CDE,∵ABED是圆内接四边形,∴∠CDE=∠CBA,∴∠C=∠CBA,∴AB=AC,∴△ABC是等腰三角形;(2)∵△ABC为等腰三角形,AE⊥BC,∴BE=CE=BC=×12=6,在Rt△ABE中,∵AB=10,BE=6,∴AE==8,∵AB为直径,∴∠ADB=90°,∴AE•BC=BD•AC,∴BD==,在Rt△ABD中,∵AB=10,BD=,∴AD==.19.已知:如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,G是弧AC上的任意一点,AG、DC的延长线相交于点F.求证:∠FGC=∠AGD.【解析】连接AD.∵CD⊥AB,∴弧AD=弧AC ,∴∠ADC=∠AGD.∵四边形ADCG是圆内接四边形,∴∠ADC=∠FGC,∴∠FGC=∠AGD.。
圆的有关性质初三练习题
圆的有关性质初三练习题1. 单选题:下列哪个选项是关于圆的有关性质的描述?a) 圆的面积等于πr²b) 圆的外切矩形的面积小于圆的面积c) 圆周长等于2πrd) 圆的直径等于圆的半径的两倍2. 填空题:已知圆的半径为5cm,求其直径长为______cm。
3. 判断题:若两个圆的半径相等,则它们的面积一定相等。
4. 多选题:下列哪些是圆的有关性质?a) 弧长公式:L = α/360° × 2πrb) 圆的切线与半径垂直c) 弦的长大于弧的长d) 圆心角等于弧所对的圆周角e) 圆的半径与直径满足关系式:d = 2r5. 解答题:已知圆的半径为8cm,求其面积和周长。
6. 判断题:如果两个圆的半径相等,则它们的直径也一定相等。
7. 单选题:下列哪个选项是圆的有关性质的描述?b) 弧长与圆心角的关系:L = rθc) 两条弧长相等的弧所对的圆心角一定相等d) 圆上的两点可以连成一条直线8. 填空题:确定圆心为O,半径为6cm的圆上,P点与Q点之间的弧长为12πcm,则圆心角∠POQ的度数为______。
9. 判断题:两条相交的弦一定相等。
10. 解答题:已知圆的周长为12πcm,求其半径和面积。
11. 单选题:下列哪个选项是关于两个相交圆的有关性质的描述?a) 两个相交圆一定有2个公共切线b) 两个相交圆的外切矩形的面积一定小于两个圆的面积之和c) 两个相交圆的内切矩形的面积一定大于两个圆的面积之和d) 两个相交圆的半径之和一定大于两个相交弦的长度之和12. 填空题:已知圆的周长为18πcm,则其直径长为______cm。
13. 判断题:两个相交圆的交点一定在两个圆的直径上。
14. 多选题:下列哪些是与圆的有关性质有关的计算公式?a) 圆的面积公式:S = πr²b) 圆的弧长公式:L = 2πrd) 圆心角的计算公式:α = L/re) 弧度制与角度制的换算公式:θ(度数) = θ(弧度) × 180°/π15. 解答题:已知圆的面积是16πcm²,求其半径和周长。
初三圆的基本性质练习题
初三圆的基本性质练习题1. 判断题1) 四分之一圆的圆心角为90度。
2) 每个半圆的弧长是直径的一半。
3) 在同一圆上,弧长相等的弧对应的圆心角相等。
4) 在同一圆上,圆心角相等的弧的弧长相等。
5) 半径相等的两个圆,面积相等。
2. 选择题1) 半径为r的圆,其面积S等于下面哪个式子?a) S = πrb) S = 2πrc) S = πr^2d) S = 2πr^22) 如果圆的直径是8cm,那么该圆的半径是多少?a) 2cmb) 4cmc) 6cmd) 8cm3) 半径为3cm的圆,它的周长等于多少?a) πcmb) 3πcmc) 6πcmd) 9πcm4) 一个扇形的圆心角是120度,如果圆的半径为5cm,那么该扇形的弧长是多少?a) 2.5cmb) 5cmc) 10cmd) 20cm3. 计算题1) 半径为6cm的圆,计算其面积和周长。
2) 直径为12cm的圆,计算其面积和周长。
3) 圆的周长为20πcm,计算其半径和面积。
4) 一个扇形的圆心角是60度,半径为8cm,计算其弧长和面积。
5) 两个圆的面积分别为36πcm^2和64πcm^2,它们的半径分别是多少?4. 应用题1) 一个半径为10cm的圆中,切一个等边三角形,求三角形的边长。
2) 一个半径为r的圆中,切一个等边三角形,求三角形的边长与r的关系。
3) 一个直径为20cm的圆,在圆的外部连接两个相切的切线,连接切线的两个端点和圆心构成一个直角三角形,请计算该三角形的斜边长。
4) 一个半径为5cm的圆上,取一点O,并连接O与圆的两个切点A和B,形成一条弦AB。
设弧OA所对的圆心角为α,则弦AB的长度与圆心角α之间有什么关系?5) 在平面直角坐标系中,一个圆心位于原点O,半径为r的圆与x轴和y轴相交于四个点A、B、C、D,求证:四边形ABCD是一个正方形。
以上就是初三圆的基本性质练习题的内容,希望能够帮助你巩固和提高对圆的基本性质的理解和应用。
初中数学圆练习题
初中数学圆练习题1. 圆的基本性质- 圆的定义是什么?- 圆的半径和直径之间的关系是什么?- 圆周角定理是什么?2. 圆的周长计算- 如果一个圆的半径是7厘米,它的周长是多少?3. 圆的面积计算- 已知一个圆的面积是78.5平方厘米,求这个圆的半径。
4. 圆心角和弧长的关系- 一个圆的圆心角是30度,求对应的弧长,如果半径是5厘米。
5. 扇形的面积计算- 已知一个扇形的半径是10厘米,圆心角是60度,求这个扇形的面积。
6. 圆的切线- 一个圆的半径是6厘米,一个点到圆心的距离是8厘米,求这个点到圆的切线长度。
7. 圆与圆的位置关系- 两个圆的半径分别是3厘米和5厘米,圆心之间的距离是7厘米,判断这两个圆的位置关系。
8. 圆与直线的位置关系- 一个圆的半径是4厘米,一条直线与圆心的距离是2厘米,判断这条直线与圆的位置关系。
9. 圆的内接多边形- 一个正六边形内接于一个圆中,求这个正六边形的边长,如果圆的半径是5厘米。
10. 圆的外接多边形- 一个正三角形外接于一个圆中,求这个圆的半径,如果正三角形的边长是6厘米。
练习题答案提示- 对于第2题,可以使用公式 \( C = 2\pi r \) 来计算周长。
- 第3题可以通过公式 \( A = \pi r^2 \) 来求得半径。
- 第4题,可以使用弧长公式 \( L = \frac{\theta}{360} \times 2\pi r \),其中 \( \theta \) 是圆心角的度数。
- 第5题,扇形面积公式为 \( A = \frac{1}{2} r^2 \theta \)。
- 第6题,切线长度可以通过勾股定理来求解。
- 第7题和第8题,可以通过比较圆心距和半径之和或差来判断位置关系。
- 第9题和第10题,可以通过正多边形的性质和圆的性质来求解。
通过这些练习题,学生可以更好地理解和掌握圆的几何性质和计算方法。
希望这些练习题能够帮助学生在数学学习中取得进步。
圆的基本性质练习(含答案)
圆的基本性质考点1 对称性圆既是________①_____对称图形,又是______②________对称图形。
任何一条直径所在的直线都是它的____③_________。
它的对称中心是_____④_______。
同时圆又具有旋转不变性。
温馨提示:轴对称图形的对称轴是一条直线,因此在谈及圆的对称轴时不能说圆的对称轴是直径。
考点2 垂径定理定理:垂直于弦的直径平分______⑤______并且平分弦所对的两条___⑥________。
常用推论:平分弦(不是直径)的直径垂直于______⑦_______,并且平分弦所对的两条_____⑧___________。
温馨提示:垂径定理是中考中的重点考查内容,每年基本上都以选择或填空的形式出现,一般分值都在3分左右,这个题目难度不大,只要在平时的练习中,多注意总结它所用的数学方法或数学思想等,以及常用的辅助线的作法。
在这里总结一下:(1)垂径定理和勾股定理的有机结合是计算弦长、半径等问题的有效方法,其关键是构造直角三角形;(2)常用的辅助线:连接半径;过顶点作垂线;(3)另外要注意答案不唯一的情况,若点的位置不确定,则要考虑优弧、劣弧的区别;(4)为了更好理解垂径定理,一条直线只要满足:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧;考点3 圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧______⑨______,所对的弦也_____⑩________。
常用的还有:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角___○11____________,所对的弦_____○12___________。
(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角____○13___________,所对的弧______○14 __________。
方法点拨:为了便于理解和记忆,圆心角、弧、弦之间的关系定理,可以归纳为:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应地其余各组量也都相等。
小学三年级简单圆形练习题
小学三年级简单圆形练习题
题目一:圆的基本性质
1. 画一个半径为5厘米的圆,请计算它的直径和周长分别是多少?
2. 在一个圆形游泳池周围,建造了一条宽度为2米的小径。
游泳池
的半径是8米,请计算小径的长度是多少?
3. 画一个直径为12米的圆,请计算它的半径和周长分别是多少?
题目二:圆的面积计算
1. 画一个半径为10厘米的圆,请计算它的面积是多少?
2. 一个圆形花坛占地面积为50平方米,求这个花坛的半径是多少?
3. 一个半径为6厘米的圆盘用来制作一个圆形饼底,求这个圆形饼
底的面积。
题目三:圆的比较
1. 画一个半径为3厘米的圆和一个半径为5厘米的圆,请比较这两
个圆的大小。
2. 已知圆A的直径是圆B的半径的2倍,求圆A的面积和圆B的
面积的比值。
3. 两个圆的半径分别为5厘米和8厘米,请比较这两个圆的周长。
题目四:圆的运用
1. 一个圆形花坛占地面积为100平方米,现在要在花坛中画一条半径为6米的小径,请计算小径的长度是多少?
2. 一个圆框的直径是30厘米,现在要在圆框中画一个直径为12厘米的小圆,请计算小圆的面积。
3. 简爷爷想在一个半径为4米的大圆内建造一个半径为2米的小圆花坛,请计算还剩下多少平方米的空地。
题目五:解决实际问题
1. 某座公园的中央是一个半径为20米的圆形湖,请计算这个湖的面积。
2. 一块广场的形状是一个半径为15米的圆形,请计算这个广场的面积。
3. 我们手中有一块铁丝,它可以弯成一个半径为8厘米的圆形,或者可以弯成一个正方形,请问哪种形状的面积更大?
注意:这些题目仅供参考,请根据实际需要进行适当调整和修改。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的基本性质练习
一、 填空题:(21分)
1、 如图,在⊙O 中,弦AB ∥OC ,115AOC ∠=︒,则BOC ∠=_________
2、如图,在⊙O 中,AB 是直径,角ACD=30度,则BAD ∠=__________
3、如图,点O 是ABC ∆的外心,已知40OAB ∠=︒,则ACB ∠=___________
5、如图,⊙O 的直径为8,弦CD 垂直平分半径OA ,则弦CD = .
6、已知⊙O 的半径为2cm ,弦AB =2cm ,P 点为弦AB 上一动点,则线段OP 的范围是 .
7、如图,在⊙O 中,∠B=50º,∠C=20º,则∠BOC 的=____________
二、解答题(70分) 1、如图,AB 是⊙O 的直径. (1)若OD ∥AC ,弧CD 与弧BD 的大小有什么关系?为什么?
(2)把(1)中的条件和结论交换一下,还能成立吗?说明理由.
2、已知:如图,在⊙O 中,弦AB=CD. 求证:⑴弧AC=弧BD ;⑵∠AOC=∠BOD
D B C A O B O C A C A O B D O
A B C D
O A B C D
B O A
C O
A B
P A B C
O
3、如图,已知:⊙O 中,AB 、BC 为弦,OC 交AB 于D , 求证:(1)∠ODB>∠OBD ,(2)∠ODB>∠OBC ;
4、已知如图,AB 为⊙O 的弦,半径OE 、OF 分别交AB 于点C 、D , 且AC=BD 。
求证:CE=DF
5、已知如图,,AB 、AC 为弦,OM ⊥AB 于M ,ON ⊥AC 于N ,MN 是△ABC 的中位线吗?
6、已知⊙O 中,M 、N 分别是不平行的两条弦AB 和CD 的中点,
且AB = CD ,
求证:∠AMN=∠CNM
8、已知如图,AB 是⊙O 的直径,C 是⊙O 上的一点,CD ⊥AB 于D ,CE 平分∠DCO ,交⊙O 于E ,求证:弧
AE=弧EB
9、已知如图,以等腰△ABC 的一腰AB 为直径的⊙O 交另一腰于F ,交底边BC 于D ,则BC 与DF 的关系,
证明你的观点。
A B C D O
A B C D O M N F
O
A B E N M O A B O A B C D
E
10、如图,已知△ABC ,AC =3,BC =4,∠C =90°,以点C 为圆心作⊙C ,半径为r .
(1)当r 取什么值时,点A 、B 在⊙C 外. A
B C
(2)当r 在什么范围时,点A 在⊙C 内,点B 在⊙C 外.
三、计算下列各题:(40分)
1、如图,已知AB 为⊙O 的直径,AC 为弦,OD ∥BC 交AC 于D ,OD =cm 2,求BC 的长;
2、如图,在Rt ΔABC 中,∠C =90°,AC =3,BC =4,以点C 为圆心,CA 为半径的圆与AB 、BC 分别交于
点D 、E ,求AB 、AD 的长.
3、如图,⊙O 的直径AB 和弦CD 相交于点E ,且AE=1cm ,
EB=5cm ,∠DEB=60°,求CD 的长。
4、如图,在直径为100 mm 的半圆铁片上切去一块高为20 mm 的弓形铁片,求弓形的弦AB 的长.
A B
5、如图所示,已知矩形ABCD 的边AB cm AD cm ==34,。
(1)以点A 为圆心,4cm 为半径作⊙A ,则点B 、C 、D 与⊙A 的位置关系如何?
(2)若以点A 为圆心作⊙A ,使B 、C 、D 三点中至少有一点在圆内,且至少有一点在圆外,则⊙A 的
半径r 的取值范围是什么?
A B C
D E
A B C
D
O E
O A B C D
四、作图题:(9分)
如图是一块圆形砂轮破碎后的部分残片,试找出它的圆心, 并将它还原成一个圆.要求:1、尺规作图;2、保留作图痕迹.(可不写作法.)
A
C
D B。