有理数的加法及简便运算
有理数的加法
有理数的加法有理数的加法是数学中一种基本的运算方法。
在数学中,有理数是可以用整数表示的数,包括正整数、负整数和0。
有理数的加法是指将两个或多个有理数相加得到一个和的过程。
有理数的加法可以用以下几种方式进行。
1. 原理法原理法是指根据有理数的定义,将两个有理数的分子和分母进行相应的运算,然后将结果归纳为一个有理数。
例如,对于两个有理数a/b 和c/d,其中a、b、c、d为整数且b和d不为0,可以将它们的分子相加得到分子的和,分母相加得到分母的和,即(a+b)/(b+d)。
2. 十进制法十进制法是将有理数转化为十进制小数后进行相加的方法。
首先将有理数表示为一个整数部分和一个小数部分,然后对整数部分进行相加,对小数部分进行相加,最后将整数部分和小数部分的和合并得到一个新的有理数。
3. 图形法图形法是通过在数轴上绘制表示有理数的点,并将相应的点进行相加,得到一个新的有理数。
在数轴上,正数表示向右移动,负数表示向左移动,0表示原点。
通过将两个有理数的点进行移动和合并,可以得到它们的和。
有理数的加法满足以下几个基本性质。
1. 交换律对于任意两个有理数a和b,它们的和a+b和b+a相等。
2. 结合律对于任意三个有理数a、b和c,它们的和(a+b)+c和a+(b+c)相等。
3. 加法逆元对于任意有理数a,存在一个有理数-b,使得a+(-b)=0。
4. 加法单位元0是加法的单位元,对于任意有理数a,a+0=a。
有理数的加法在日常生活中广泛应用。
例如,在购物中,我们需要将商品的价格相加得到总价;在账户余额中,我们需要将收入和支出相加得到最新的余额;在时间计算中,我们需要将时、分、秒相加得到总的时间等等。
总之,有理数的加法是一种基本且实用的数学运算方法。
通过不同的计算方式和性质,我们可以灵活地进行有理数的相加运算,解决各种实际问题。
有理数加减法法则
有理数加减法法则一、有理数的加法法则把两个或两个以上的有理数合并成一个有理数的运算,叫做有理数的加法,相加的两个数叫做加数,得到的结果叫做和。
由于有理数分为正有理数、零、负有理数三类,所以两个有理数相加就有以下三种情况:同号两数相加;异号两数相加;一个数同0相加。
⑴一个数同0相加,仍得这个数。
如:(-2)+0=-2,6+0=6.⑵借助数轴来探究同号两数相加的情况:(规定向东为正方向,1个单位长度为1米)同号两数相加,取相同的符号,并把绝对值相加。
⑶借助数轴来探究异号两数相加的情况:(规定向东为正方向,1个单位长度为1米)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0。
二、有理数加法的运算步骤进行有理数加法运算时,应按照以下“一判,二定,三加减”的步骤:第一步:判断加法的类型,并根据加法的类型确定使用哪一个法则;第二步:根据加法绝对值的大小及有理数的符号,确定和的符号:第三步:对绝对值进行加或减,确定和的绝对值。
三、有理数的加法运算律加法交换律:两个数相加,交换加数的位置和不变。
即a+b=b+a。
交换加数的位置时,各加数应连同其符号一起交换。
加法结合律:三个数相加,先把前两个数相加或先把后两个数相加和不变。
即(a+b)+c=a+(b+c)。
多个数相加时,灵活运用加法运算律,可使运算简便,通常有以下运算技巧。
①凑0,即和为0的几个数先加。
②凑10或凑100,即和为整10或者100的几个数先加。
③凑整,即和为整数的几个数先加。
④同号的几个数先加。
⑤同分母或易通分的分数先加。
四、有理数的减法法则减法的概念:已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法,减法是加法的逆运算。
在小学时,被减数要大于减数,引入负数后,任何两个数都可以进行减法运算。
有理数减法法则:减去一个数等于加这个数的相反数。
即a-b=a+(-b)。
0减去任何数得这个数的相反数。
(口诀)有理数的加法运算
有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
【注】“大”减“小”是指绝对值的大小。
合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b - a)2n+1(a-b)2n=(b - a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
有理数的加、减法的法则及运算律
错例分析
到原点的距离是4的点有几个?若A.B的距离是6,且到原点的距离相等,A在原点的左边,B在原点的右边 A.B分别带表什么数? 答:到原点的距离是4的点有2个,分别是+4和-4.若A.B的距离是6,且到原点的距离相等, A在原点的左边,B在原点的右边, A为-3,B为+3.
冬季某天我国三个城市的最高气温分别是-10℃,1℃, - 7℃把他们从高到低排列为
4 若-a>a,则a只能是
5 一个负数在增大时,它的绝对值在
<
>
>
>
>
<
负数
减小
1℃ , —7℃ , -10℃
<
>
2比较大小:-3 π - -Biblioteka 2aa-1-(a-1)
用“>”或“<”填空 —8 6 ; 0 __ - 18 ; 0.01 0 13 - 13 - 0.1 - 10 - 1 - 0.75
a+( b+ c )=( a +b )+c
(1)符号相同的数可以先相加; (2)互为相反数的两个数可先相加; (3)几个数相加得整数时,可先相加; (4)同分母的分数可以先相加;
a-b = a + (-b)
添加标题
有理数减法法则
添加标题
减去一个数等于加这个数的相反数
添加标题
注意:只要减号变成加号、减数换成其相反数;
有理数加法法则
同号两数相加,取相同的符号,并把绝对值相加。 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。 互为相反数的两个数相加得0。 一个数同0相加,仍得这个数。
初一数学 1.有理数加、减、乘、除中的简便运算
二、计算结果成规律的相结合 计算:1-2+3-4+5-6+……+2015-2016
解:原式=(1-2)+(3-4)+(5-6)+……+(2015-2016)
=-1×(2016÷2) =-1008
1008组
类型二:乘法分配律的解题技巧
正用分配律、逆用分配律或除法变为乘法,再利用分配律
计算:⑴
12
有理数加、减、乘、除中的简便运算
如何提高有理数计算能力呢?
计算:⑴ 3 5 0.5 7 3 5 1 3 1 7.75
6
426
⑵ 4.4 1 6 3 3 2 2.4
3
3
类型一:加减混合运算的技巧 一、相反数相结合、同分母结合、凑整结合或同号结合
计算:⑴ 3 5 0.5 7 3 5 1 3 1 7.75
1
⑵
370
1 4
0.25
24.5
5
1 2
25%
解:⑵原式= 370 1 1 24.5 5.5 1
44
4
=(370 24.5 5.5) 1
4
=400 1
4
=100
49
24 25
1 5
原式=49 24 5
25
=
50
1 25
5
=-250+ 1 5
= 249 4 5
方法总结
6
426
⑵ 4.4 1 6 3 3 2 2.4
3
3
⑵解:原式=(4.4 2.4) ( 1 3 2) (3 6) 33
=-2-4+9
=(-6)+9
=3
方法总结
进行有理数加减混合运算时,如遇相反数、同分母、可以凑整的,可以 优先考虑运用加法交换律和结合律,将具有以上关系的项结合后计算,最后 将同号的结合计算,这样可以使计算变得简单.
有理数的加法
有理数的加法有理数是数学中的一类数,包括整数、分数和小数。
在数学运算中,加法是最基本也是最常用的运算之一。
本文将介绍有理数的加法运算,以及相关的规则和性质。
一、有理数的加法运算有理数的加法运算是指将两个有理数相加得到其和的过程。
有理数的加法可以通过以下步骤进行:1. 步骤一:判断两个有理数的符号:a) 如果两个有理数同号,则它们的绝对值相加,并保留相同的符号为和的符号。
b) 如果两个有理数异号,则它们的绝对值相减,并保留绝对值较大的数的符号为和的符号。
2. 步骤二:计算两个有理数的绝对值相加或相减,得到结果的绝对值。
3. 步骤三:根据步骤一中的判断结果,将结果的绝对值与相应的符号结合,得到最终的结果。
例如,计算-2/3 + 1/5的和:首先,判断两个有理数的符号:一个为负号,一个为正号,它们的绝对值相加。
则有理数的绝对值为2/3 + 1/5。
然后,求解绝对值:2/3 + 1/5 = (10/15) + (3/15) = 13/15。
最后,根据符号相结合,得到最终结果为-13/15。
二、有理数加法的规则和性质有理数的加法运算具有以下规则和性质:1. 交换律:a + b = b + a。
无论两个有理数的顺序如何,它们的和都是相等的。
2. 结合律:(a + b) + c = a + (b + c)。
无论有理数相加的顺序如何,它们的和都是相等的。
3. 加法单位元:对于任意有理数a,有a + 0 = 0 + a = a。
任何有理数与0相加等于它自身。
4. 加法逆元:对于任意有理数a,存在一个唯一的有理数-b,使得a + (-b) = (-b) + a = 0。
任何有理数与其相反数相加等于0。
5. 加法对称性:对于任意有理数a,存在一个唯一的有理数-b,使得a + b = b + a = 0。
任何有理数可以与一个唯一的有理数相加等于0。
根据这些规则和性质,我们可以简化和计算有理数的加法,并且保证了运算的准确性。
有理数的加法知识点
有理数的加法知识点有理数的加法是数学中的基本运算之一,它涉及到了数的概念、符号的运用和运算规则等内容。
本文将从以下几个方面介绍有理数的加法知识点。
一、有理数的概念有理数是指可以表示为两个整数的比值的数,包括正有理数、负有理数和零。
有理数可以用分数形式表示,如1/2、3/4等,也可以用整数形式表示,如-2、5等。
有理数的加法就是对两个有理数进行运算,得到一个新的有理数。
二、有理数的符号运用在有理数的加法中,正有理数和负有理数的加法规则是不同的。
当两个正有理数相加时,直接将它们的绝对值相加,并保持符号不变。
例如,2+3=5。
当两个负有理数相加时,也是将它们的绝对值相加,并保持符号不变。
例如,-2+(-3)=-5。
而当正负两个有理数相加时,先计算它们的绝对值相减,然后取绝对值较大的有理数的符号。
例如,2+(-3)=-1。
三、有理数的运算规则有理数的加法遵循以下几个规则:1. 交换律:a+b=b+a,即有理数的加法满足顺序可交换的性质。
例如,2+3=3+2=5。
2. 结合律:(a+b)+c=a+(b+c),即有理数的加法满足结合律。
例如,(2+3)+4=2+(3+4)=9。
3. 零元素:任何有理数与0相加等于其本身,即a+0=a。
例如,2+0=2。
4. 负元素:任何有理数与其相反数相加等于0,即a+(-a)=0。
例如,2+(-2)=0。
5. 加法逆元:对于任何有理数a,都存在一个相反数-b,使得a+(-a)=0。
例如,2+(-2)=0。
四、有理数的加法运算举例下面通过一些例子来说明有理数的加法运算:例1:计算-3+5。
根据正负数的加法规则,将绝对值相加并保持符号不变,得到2。
所以,-3+5=2。
例2:计算-2+(-7)。
根据负数的加法规则,将绝对值相加并保持符号不变,得到-9。
所以,-2+(-7)=-9。
例3:计算1/2+3/4。
将两个分数的分子和分母分别相加,得到7/4。
所以,1/2+3/4=7/4。
有理数的运算定律
有理数的运算定律有理数是我们在数学学习中的一个重要部分,它包括整数和分数。
有理数的运算基于一些基本定律,这些定律在数学中非常常用。
本文将详细介绍有理数的运算定律,包括加法交换律、加法结合律、乘法交换律、乘法结合律、分配律、减法的逆运算和除法的逆运算。
1. 加法交换律加法交换律是数学中的一个基本运算定律。
它的定义是,对于任意两个有理数a和b,我们可以交换它们的加法顺序,即a + b = b + a。
这个定律非常重要,因为它确保了加法运算的交换性质。
这个定律与乘法交换律有密切关系。
事实上,如果a和b都是正数或都是负数,那么a + b和b + a可以看作是a和b的平均数,因此它们的值相等。
但如果a和b是相反数,即a + b = 0,那么a + b和b + a也相等,因为它们的结果都是0。
2. 加法结合律加法结合律是另一个基本的运算定律。
它的定义是,对于任意三个有理数a、b和c,我们可以改变加法的顺序,即(a + b) + c = a + (b +c)。
这个定律确保了加法运算的结合性质。
类似地,加法结合律与乘法结合律之间也有密切关系。
对于任意三个正数或负数a、b和c,我们可以将(a + b) + c看作是(a + b)与c的平均数,而a + (b + c)则是a与(b + c)的平均数。
因此,如果a、b和c 都是正数或都是负数,那么(a + b) + c和a + (b + c)的值相等。
但如果a、b和c中有一个是0,那么(a + b) + c和a + (b + c)也相等,因为它们的结果都是0。
3. 乘法交换律乘法交换律是关于两个有理数相乘的运算定律。
它的定义是,对于任意两个有理数a和b,我们可以交换它们的乘法顺序,即ab = ba。
这个定律确保了乘法运算的交换性质。
乘法交换律与除法结合律之间也有密切关系。
如果a和b都是正数或都是负数,那么ab和ba的值相等。
但如果a和b是相反数,即ab = 0,那么ab和ba也相等,因为它们的结果都是0。
有理数加减运算
有理数加减运算知识要点:1、有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.1、有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤:①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差2、有理数加法的运算律:①两个加数相加,交换加数的位置,和不变.a • b =b • a (加法交换律)②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变(a b) c二a (b c)(加法结合律)3、有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算③多个加数相加时,若有互为相反数的两个数,可先结合相加得零④若有可以凑整的数,即相加得整数时,可先结合相加⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.4、有理数减法法则:减去一个数,等于加这个数的相反数.a - b二a • (_b)5、有理数减法的运算步骤:①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算.6、有理数加减混合运算的步骤:①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.例如:(3) (-0.15)七一9 (5) (-11)=3-0.15-9 5-11,它的含义是正3,负0.15,负9,正5,负11的和.(4)22+ (-2 - ) + (-1 —) 5 8 12+43+ (-11 ) +(-3 1 );5 8 12⑹—0.5 - 37 (3)例题精讲:【例1】计算下列各式。
有理数加减法 简便运算
数学学科学生辅导讲义学员编号: 年 级:七年级 课 时 数:3 学员姓名:辅导科目:数学学科教师:应志伟授课类型T 有理数的加法 T 有理数的减法 C 简便运算授课日期及时段教学内容(大脑放电影~)知识点一: 有理数加法法则①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值. ③一个数同0相加,仍得这个数.知识点二: 有理数加法的运算步骤法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤: ①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差.知识点三:有理数加法的运算律①两个加数相加,交换加数的位置,和不变.a b b a +=+(加法交换律) ②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.()()a b c a b c ++=++(加法结合律)T 同步——同步训练同步知识梳理知识点四:有理数加法的运算技巧①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.(热个身先~~~)题型一:有理数的加法法则例1. ﹣10+3的结果是()A. ﹣7B. 7C. ﹣13D. 13例2. 计算│-5+3│的结果是()A. -8B. 8C. -2D. 2例3. 下列交换加数的位置的变形中,正确的是()A. 1﹣4+5﹣4=1﹣4+4﹣5B. 1﹣2+3﹣4=﹣(2﹣1+4﹣3)C.13111311=34644436-+--+--D. 4.5﹣1.7﹣2.5+1.8=4.5+2.5﹣1.8﹣1.7例4. 如果两个数的和是负数,那么这两个数()A. 至少有一个为正数B. 同是正数C. 同是负数D. 至少有一个为负数例5. 化简下列各式+(﹣7)= ,﹣(+1.4)= , +(+2.5)= ,﹣[+(﹣5)]= ;﹣[﹣(﹣2.8)]= ,﹣(﹣6)= ,﹣[﹣(+6)]= .例6. 运用交换律和结合律计算:(1)3-10+7=3________7______10=________;(2)-6+12-3-5=______6______3______5______12=______.同步题型分析例7. 王无生到某城市行政中心大楼办事,假定乘电梯向上一楼记为+1,向下一楼记为﹣1.李先生从1楼出发,电梯上下楼层依次记录如下(单位:层)+5,﹣3,+10,﹣8,+12,﹣6,﹣1(1)请你通过计算说明李先生最后是否回到出发点1楼;(2)若该中心大楼每层高2.8m,电梯每上或下1m需要耗电0.1度,根据李先生现在所处的位置,请你算一算、当他办事时电梯需要耗电多少度?例8. 计算(1)(-12.56)+(-7.25)+3.01+(-10.01)+7.25;(2)0.47+(-0.09)+0.39+(-0.3)+1.53;(3)121546333⎛⎫⎛⎫+-+-⎪ ⎪⎝⎭⎝⎭;(4)23+(-72)+(-22)+57+(-16);(5)() 515133242 6565⎛⎫⎛⎫+-+-++-⎪ ⎪⎝⎭⎝⎭;(6)2.25+(-414)+(-2.5)+212+3.4+(-175)(7)()6441623 5 3.125738326 1171187117⎛⎫⎛⎫⎛⎫⎛⎫+-+-+-++-+-+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭题型二:有理数的加法法则的一般应用例1. 若a>0,b<0,|a|<|b|,则a与b的和是()A. ﹣|a|﹣|b|B. ﹣(|a|﹣|b|)C. |a|+|b|D. ﹣(|b|﹣|a|)例2. 若|x+3|+|y﹣2|=0,则x+y的值为()A. 5B. ﹣5C. ﹣1D. 1例3. 绝对值大于2且小于5的所有整数的和是()A. 0B. 7C. 14D. 28例4. 绝对值不等的异号两个数相加,其和的符号与绝对值__________的加数的符号相同.例5. 有理数a,b,c在数轴上的对应点如图所示,计算a-b+c________0(填“>”“<”或“=”).例6. 邮递员骑车从邮局出发,先向南骑行2km到达A村,继续向南骑行3km到达B村,然后向北骑行9km到C村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示出A、B、C三个村庄的位置;(3) C村离A村有多远?(3)邮递员一共骑了多少千米?题型三:有理数加法的实际应用例1. 某银行的一个蓄储所某天上午在一段时间内办理了5件蓄储业务(存入为正,取出为负):+1080元,-900元,+990元,+1000元,-1100元;这时银行现款增加了()A. .1080元B. 1070元C. 1060元D. 1050元例2. 五袋白糖以每袋50千克为标准,超过的记为正,不足的记为负,称量记录如下:+4.5,﹣4,+2.3,﹣3.5,+2.5.这五袋白糖总重量是 _____________千克.例3. 为体现社会对教师的尊重,教师节这天上午,出租车司机小王在东西走向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下.(单位:千米)+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17(1)当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是多少?(2)若出租车的耗油量为0.4升/千米,这天上午出租车共耗油多少升?(你都掌握了没有呢~~~)1. 计算()()()6375-+--+-结果是( )A. -7B. -9C. 5D. -342. 在1,-1,-2这三个数中,任意两个数之和的最大值是( ) A. -3 B. -1 C. 0 D. 23. 若有理数a 、b 互为相反数,则下列等式中一定成立的是( ) A. a b 0-= B. a b 0+= C. ab l = D. ab 1=-4. 某校小卖铺一周的盈亏情况如下表所示(每天固定成本200元,其中“+”表示盈利,“-”表示亏损) 星期 一 二 三 四 五 盈亏 +220-30+215-25+225则这个周共盈利( )A. 715元B. 630元C. 635元D. 605元 5. 两个有理数的和为负数,那么这两个数一定( ) A. 都是负数 B. 绝对值不相等 C. 有一个是0 D. 至少有一个负数 6. 若5a =,6b =,且a b >,则a b + 的值为( )A. ﹣1或11B. 1或﹣11C. ﹣1或﹣11D. 117. 填空:(1)-12+11=______; (2)19+(-8)=______; (3)-18+(-7)=______;(4)12-18=_______; (5)-13-5=_________; (6)0-(-6)=_______;8. |a|=4,|b|=3且a <b ,则a+b=_____.9. 慈善篮球赛,每个队员的得分以20分为标准,超过的部分记为正,不足的部分记为负,已知 5位主力队员得分情况分别是(单位:分):4,2,3,﹣7,﹣1. (1)这5位主力队员中,最低得分是多少分?(2)若主力队员每得1分赞助商就额外捐款2000元,那么本次慈善篮球赛赞助商共额外捐款多少课堂达标检测(大脑放电影~)知识点一:有理数减法法则:减去一个数,等于加这个数的相反数.()a b a b -=+- 知识点二:有理数减法的运算步骤 ①把减号变为加号(改变运算符号) ②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算. 知识点三:有理数加减混合运算的步骤 ①把算式中的减法转化为加法; ②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.(热个身先~~~)题型一:有理数的减法法则例1. 计算﹣3﹣1的结果是( )例2. 在算式( )+6=-8中,括号里应填( ) A. 2 B. -2 C. 14 D. -14例3. 用算式表示“比﹣4℃低6℃的温度”正确的是( ) A. ﹣4+6=2 B. ﹣4﹣6=﹣10 C. ﹣4+6=﹣10 D. ﹣4﹣6=﹣2例4. 将算式(﹣8)﹣(﹣10)+(﹣6)﹣(+4)改写成省略加号和括号的形式是:_____.例5. 比较大小:_____.T 同步——同步训练同步知识梳理同步题型分析例12. 出租车司机老王某天上午营运全是在东西走向的解放路上进行,如果规定向东为正,向西为负,他这天上午行车里程(单位:km)如下:+8,+4,﹣10,﹣3,+6,﹣5,﹣2,﹣7,+4,+6,﹣9,﹣11.(1)将第几名乘客送到目的地时,老王刚好回到上午出发点?(2)将最后一名乘客送到目的地时,老王距上午出发点多远?(3)若汽车耗油量为每行驶100km耗用汽油7L,这天上午老王耗油多少升?题型二:有理数减法法则的应用例1.元月份某一天,北京市的最低气温为﹣6℃,长泰县的最低气温为15℃,那么这一天长泰县的最低气温比北京市的最低气温高()A. 15℃B. 20℃C. ﹣21℃D. 21℃例2.如图,加工一种轴时,轴直径在299.5毫米到300.2毫米之间的产品都是合格品,在图纸上通+0.2来表示这种轴的加工要求,这里φ300表示直径是300毫米,+0.2表示最大限度可常用φ300﹣0.5以比300毫米多0.2毫米,﹣0.5表示最大限度可以比300毫米少0.5毫米.现加工四根轴,轴直径+0.03,下列数据是加工成的轴直径,其中不合格的是()的加工要求都是φ50﹣0.02A. 50.02B. 50.01C. 49.99D. 49.88例 3.北京等5个城市的国际标准时间(单位:小时)可在数轴上表示如下:如果将两地国际标准时间的差简称为时差,那么下列说法中正确的是()A. 汉城与纽约的时差为13小时B. 北京与纽约的时差为13小时C. 北京与纽约的时差为14小时D. 北京与多伦多的时差为14小时例6.在一次数学测验中,七年级(4)班的平均分为86分,•如果把高于平均分的部分记作正数,不足平均分的部分记作负数(1)李洋得了90分,应记作多少?(2)刘红的成绩记作-5分,她实际得分是多少?(3)李洋和刘红相差多少分?例7. 10袋小麦每袋150千克为标准,超出的千克数记为正数,不足的千克数记为负数,分别记为:﹣6,﹣1,﹣1,﹣2,+7,+3,+4,﹣3,﹣2,+1(1)与标准质量相比较,这10袋小麦总计超出或不足多少千克?(2)求这10袋小麦的平均质量.课堂达标检测(你都掌握了没有呢~~~)1. 计算﹣2﹣(﹣4)的结果是______.2. 我市某天最高气温是11℃,最低气温是零下3℃,那么当天的最大温差是_____℃.3. 把6﹣(+3)﹣(﹣7)+(﹣2)改成加法并写成省略加号的形式是_____.4. 2018南1月24日是腊八节,这天哈尔滨市的最低气温是﹣35℃,最高气温是﹣24℃,这一天哈尔滨市的温差为()A. 9℃B. 10℃C. 11℃D. 59℃5. 某潜水艇停在海面下500米处,先下降200米,又上升130米,这时潜水艇停在海面下多少米处()A. 430B. 530C. 570D. 4709. 计算:(1)7-(-4)+(-5);(2)12-(-18)+(-7)-15;(3)1211839-+-+;(4)-7.2-0.8-5.6+11.6;(5)351527676⎛⎫⎛⎫⎛⎫-+--+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(6)-(+2.7)-(-1.6)-(-2.7)+(+2.4);10. 某校七(1)班学生的平均身高是160厘米,下表给出了该班6名学生的身高情况(单位:厘米).(1)列式计算表中的数据a和b;(2)这6名学生中谁最高?谁最矮?最高与最矮学生的身高相差多少?(3)这6名学生的平均身高与全班学生的平均身高相比,在数值上有什么关系?(通过计算回答)(画竹必先成竹于胸!)专题一: 利用有理数的加法运算律进行巧算 技巧1:同号结合法1. 计算:(-3)+4+(+2)+(-6)+7+(-5)技巧2:相反数结合法 2. 计算:(+41)+(+81)+6+(-83)+(-85)+(-6)技巧3:同形结合法3. 计算:54+75+(-72)+43+(-41)+(-52)C 专题——简便运算知识典例专题二:利用有理数的加减解与数轴、绝对值有关的问题例1.已知a,b,c,d为有理数,其中a,b,c,d在数轴上的位置如图所示,试求|a-b|-|b-c|+|c|-|b+d|的值.专题三:综合例1.阅读第(1)小题的计算方法,再用这种方法计算第(2)小题.(1)计算:5231591736342⎛⎫⎛⎫-+-++-⎪ ⎪⎝⎭⎝⎭解:原式=()()()5231591736342⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-+-+-+-+++-+-⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦=()()()5231591736342⎡⎤⎛⎫⎛⎫⎛⎫⎡⎤-+-++-+-+-++-⎪ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭⎝⎭⎣⎦=1014⎛⎫+-⎪⎝⎭=114-,上面这种解题方法叫做拆项法.(4)计算:522120001999400016332⎛⎫⎛⎫⎛⎫-+-++-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.例2.在-49,-48,-47,…,2003这一串数中(1)前99个连续整数的和是多少?(2)前100个连续整数的和是多少?(举一反三增能力!)1、已知有理数、、在数轴上的位置如图所示,则等于()A. B. C. D.2、小刚同学做“伴你学习新课程”练习题时,遇到了这样一道题:“计算:”,其中“”是被污损看不清的一个数,他翻开后面的答案知该题计算的结果是,则“”表示的数是()A. 或B. 或C.D.3、在下列各式中,与的值相等的是()A. B.C. D.4、下列计算中,不正确的是()A. B. C. D.5、计算所得的结果是( )A. B. C. D.6、有理数,在数轴上的位置如图所示,则的值()A. 大于B. 小于C. 小于D. 大于7、等于()A. B. C. D.强化练习8、,,的和比它们的绝对值的和小()A. B. C. D.9、“这三个数,,的代数和”与“它们的绝对值的和”的差为()A. B. C. D.10、计算的正确结果为()A. B. C. D.11、计算的结果是()A. B. C. D.12、与的和为的数是()A. B. C. D.13、比小的数是()A. B. C. D.14、点为数轴上表示的点,将点沿数轴向右平移个单位到点,则点表示的数是()A. B. C. D. 或15、下列说法正确的有()个①所有的有理数都能用数轴上的点表示;②符号不同的两个数互为相反数;③有理数分为正数和负数;④两数相减,差一定小于被减数;⑤两数相加,和一定大于任何一个加数.A. B. C. D.16、计算:.(如果答案为分数,则填b/a)17、已知,,,且,则_________.18、已知是的相反数,比的相反数小,则等于.19、比小_______.20、绝对值大于而小于的所有负整数之和为.21、计算:.22、计算:.23、计算学法提炼(吾日三省吾身)1、专题特点:有理数减法法则的实质是将减法转化为加法,其转化的方法是“两变”:一是“变”减号为加号;二是将减数“变”为它的相反数.2、解题方法:(1)用减法法则将减法转化为加法;(2)写成省略括号和加号的和的形式;(3)进行有理数的加法运算3、注意事项:运用运算律使运算更加简便.一般情况下,常采用同类结合法、凑整法、为零相消法等.学法升华一、知识收获:有理数的加法法则;有理数的减法法则.二、方法总结:(1)在有理数的加法计算中首先判断属于加法中的何种类型,再按该类型法则计算. (2)在求和的绝对值前先确定和的符号,注意符号优先.三、技巧提炼:(1)同号:把正数和负数分别结合相加.(2)凑整:把和为整数的几个数相加.(3)凑零:把和为零的数相加.(4)分数相加:分母相同或易于通分的分数相加.(5)带分数相加:把带分数的整数部分、真分数部分分别相结合.(6)小数相加:整数部分、纯小数部分分别结合相加.注:以上方法不是固定不变的,可以灵活运用.课后作业1、把写成省略括号的和是()A. B.C. D.2、计算的结果为()A. B. C. D.3、把写成省略括号的形式是()A. B.C. D.4、计算所得的结果是()A. B. C. D.5、下列各式可以写成的是()A. B.C. D.6、一天早晨的气温是,中午上升了,晚上又下降了,晚上的气温是()A. B. C. D.7、下面哪个式子可以用来验证小明的计算是否正确?()A. B. C. D.8、今年元旦,某风景区的最低气温为,最高气温为,则这个风景区今年元旦的最高气温比最低气温高()A. B. C. D.9、比小的数是()A. B. C. D.10、计算的结果等于()A. B. C. D.11、的相反数加上,结果是()A. B. C. D.12、若,则括号内的数是()A. B. C. D.13、下列算式中,与相等的是()A. B. C. D.14、下列说法正确的有()个①所有的有理数都能用数轴上的点表示;②符号不同的两个数互为相反数;③有理数分为正数和负数;④两数相减,差一定小于被减数;⑤两数相加,和一定大于任何一个加数.A. B. C. D.15、一种零件的直径尺寸在图纸上是(单位:),它表示这种零件的标准尺寸是,加工要求尺寸最大不超过()A. B. C. D.16、( )17、把写成省略加号的和的形式是___________.18、已知,,,且,那么_______.19、计算的结果是.20、计算等于21、22、计算:.23、计算:.。
第04讲 有理数的加减法(解析版)
第4讲有理数的加减法1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算;2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系;3.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简算,并会解决简单的实际问题.考点01有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.要点诠释:利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3.运算律:要点诠释:交换加数的位置时,不要忘记符号.考法01有理数的加法运算1.计算:(1)(+20)+(+12); (2)1223⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭; (3)(+2)+(-11);(4)(-3.4)+(+4.3); (5)(-2.9)+(+2.9); (6)(-5)+0.【答案】(1)(2)属于同一类型,用的是加法法则的第一条;(3)(4)属于同一类,用的是加法法则的第二条;(5)用的是第二条:互为相反数的两个数相加得0;(6)用的是法则的第三条.(1)(+20)+(+12)=+(20+12)=+32=32;(2)121211 23236⎛⎫⎛⎫⎛⎫-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)(+2)+(-11)=-(11-2)=-9(4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9(5)(-2.9)+(+2.9)=0;(6)(-5)+0=-5.【总结】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.2.计算:11 3343⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭【答案】11111 3333433412⎛⎫⎛⎫⎛⎫-++=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3计算:(1) (+10)+(-11);(2)⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭12 -1+-23【答案】(1) (+10)+(-11)=﹣(11-10)=﹣1;(2)⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1212341 -1+-=-1+=-1+=-2 2323666考点02有理数的减法1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.要点诠释:(1)任意两个数都可以进行减法运算.(2) 几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:()a b a b -=+-.要点诠释: 将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:考法02有理数的减法计算:(1)(-32)-(+5); (2)(+2)-(-25).【思路】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算. 【答案】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【总结】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.考点03有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算.考法03有理数的加减混合运算1.计算:3.8+441﹣(+654)+(﹣832) 【思路】根据有理数的加减混合运算的方法:有理数加减法统一成加法,求解即可. 【答案】解:原式=(3.8﹣6.8)+(441﹣832) =﹣3﹣4125=﹣7125, 【总结】本题考查了有理数的加减混合运算的知识,如果在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式. 2.用简便方法计算:(1)(-2.4)+(-4.2)+(-3.8)+(+3.1)+(+0.8)+(-0.7) (2) 2)324(83)65()851(43-++-+-+ 【答案】 (1) 原式=[(-3.8)+ (-4.2)]+[ (-2.4)+ (-0.7) +(+3.1)]+(+0.8)=-8+0.8=-7.2 (2) 原式=(2-1-4)+(34-58-56+38-23)=-3+[68-58+38+(-56-46)]=-3-1=-4 考法04有理数加减法在实际生活中的应用1.邮递员骑车从邮局出发,先向南骑行2km 到达A 村,继续向南骑行3km 到达B 村,然后向北骑行9km 到C 村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm 表示1km ,画出数轴,并在该数轴上表示出A 、B 、C 三个村庄的位置; (2)C 村离A 村有多远? (3)邮递员一共骑了多少千米?【思路】(1)以邮局为原点,以向北方向为正方向用1cm 表示1km ,按此画出数轴即可; (2)可直接算出来,也可从数轴上找出这段距离;(3)邮递员一共骑了多少千米?即数轴上这些点的绝对值之和. 【答案】解:(1)依题意得,数轴为:;(2)依题意得:C 点与A 点的距离为:2+4=6(千米); (3)依题意得邮递员骑了:2+3+9+4=18(千米).【总结】本题主要考查了学生有实际生活中对数轴的应用能力,只要掌握数轴的基本知识即可.2.华英中学七年级(14)班的学生分成五组进行答题游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束后各组的得分如下表:(1)第一名超过第二名多少分? (2)第一名超过第五名多少分?【答案】由表看出:第一名350分,第二名150分,第五名-400分.(1) 350-150=200(分)(2) 350-(-400)=350+400=750(分)答:第一名超过第二名200分;第一名超过第五名750分. 3.某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198. 计算出售的粮食总共多少千克?【答案】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克) 答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克) 答:出售的粮食共1594千克.考向01计算拆项法阅读下题的计算方法. 计算⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+-2134317329655解:原式=()()()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-2134317329655=()()()[]⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+-++-+-2143326531795=0+(﹣45)=﹣45 上面这种解题方法叫做拆项法,按此方法计算:⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-211324022322010652011【思路】根据拆项法,可把整数结合在一起,分数结合在一起,再根据有理数的加法,可得答案. 【答案】解:原式=[(﹣2011)+(﹣65)]+[(﹣2010)+(﹣32)]+[4022+32]+[(﹣1)+(﹣21)] =[(﹣2011)+(﹣2010)+4022+(﹣1)]+[(﹣65)+(﹣32)+32+(﹣21)]=0+(﹣34)=﹣34.【总结】本题考查了有理数的加法,拆项法是解题关键.考向02凑整凑分(1)11(6)( 3.3)(3)(6)(0.3)(8)(6)(16)644⎛⎫⎛⎫++++-+++-+++++++-+- ⎪ ⎪⎝⎭⎝⎭. 【答案】解法一:11(6)( 3.3)(3)(6)(0.3)(8)(6)(16)644⎛⎫⎛⎫++++-+++-+++++++-+- ⎪ ⎪⎝⎭⎝⎭11(6)(3)(0.3)(8)(6)( 3.3)(6)(16)644⎡⎤⎡⎤⎛⎫⎛⎫=++++++++++++-+-+-+- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦→同号的数一起先加(23.55)(31.55)8=++-=-.解法二:11(6)( 3.3)(3)(6)(0.3)(8)(6)(16)644⎛⎫⎛⎫++++-+++-+++++++-+- ⎪ ⎪⎝⎭⎝⎭11(6)6[( 3.3)(3)(0.3)][(6)(6)][(16)(8)]44⎡⎤⎛⎫⎛⎫=++++-+-+++++-+++-++ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦→同分母,互为相反数的数,或几个数可以凑整的数分别结合相加000(8)8=+++-=-.【总结】计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换. (2)1113.7639568 4.7621362--+--+ 【答案】仔细观察各个加数,可以发现两个小数的和是-1,两个整数的和是29,三个分数通分后也不难算.故把整数、分数、小数分别分为一组. 解:1113.7639568 4.7621362--+--+ 111(3.76 4.76)(521)(3968)362=-+--++-+1(6)2922=-+-+=【总结】计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换. (3)51133.464 3.872 1.54 3.376344+---+++ 【答案】3.46和1.54的和为整数,把它们分为一组;-3.87与3.37的和为-0.5,把它们分为一组;546与13-易于通分,把它们分为一组;124-与34同分母,把它们分为一组. 解:51133.464 3.872 1.54 3.376344+---+++5113(3.46 1.54)( 3.87 3.37)(4)(2)6344=++-++-+-+115(0.5)4(1) 4.537.522=+-++-=+=【总结】计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换. (4)1355354624618-++- 【答案】先把整数分离后再分组.解:1355354624618-++- 1355354624618=--++++--1355(3546)()24618=-++-+-++-182********-++-=+2936= 注:带分数中的整数与分数分离时,如果这个数是负数,那么分离得到的整数与分数都是负数,例如 113322-=--. 【总结】计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换. (5)132.2532 1.87584+-+ 【答案】如果按小数、整数分组,效果似乎不是很好.可先将小数和分数统一后再考虑分组.解:132.25321.87584+-+ (2.25 2.75)(3.125 1.875)=-++ 0.55 4.5=-+=【总结】计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换.考向03特殊技巧计算-3.72-1.23+4.18-2.93-1.25+3.72; 【答案】观察各个加数,可以发现-3.72与3.72互为相反数,把它们分为一组;4.18、-2.93与-1.25的和为0,把它们分为一组可使计算简便. 解:-3.72-1.23+4.18-2.93-1.25+3.72 =(-3.72+3.72)+(4.18-2.93-1.25)-1.23 =0+0-1.23=-1.23【总结】计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换.考向04凑正凑负11-12+13-15+16-18+17【答案】把正数和负数分别分为一组.解:11-12+13-15+16-18+17=(11+13+16+17)+(-12-15-18)=57+(-45)=12【总结】计算多个有理数相加时,必须先审题,分析特点,寻找规律,然后再去计算.注意在交换加数的位置时,要连同符号一起交换.考向05应用1.“九宫图”传说是远古时代洛河中的一个神龟背上的图案,故又称“龟背图”,中国古代数学史上经常研究这一神话.(1)现有1,2,3,4,5,6,7,8,9共九个数字,请将它们分别填入图1的九个方格中,使得第行的三个数、每列的三个数、斜对角的三个数之和都等于15;(2)通过研究问题(1),利用你发现的规律,将3,5,﹣7,1,7,﹣3,9,﹣5,﹣1这九个数字分别填入图2的九个方格中,使得横、竖、斜对角的所有三个数的和都相等.【答案】解:(1)15÷3=5,∴最中间的数是5,其它空格填写如图1;(2)如图2所示.【总结】本题考查了有理数加法,熟知“九宫图”的填法是解题的关键.2.某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?【答案】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克) 答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克) 答:出售的粮食共1594千克.【易错01】对括号使用不当导致错误(1)计算:-7-5.【答案】解:原式=-7+(-5)=-12. (2)计算:⎪⎭⎫⎝⎛-+--2141512 【答案】解:原式=2+15-14+12=2920.(1)3401(1)(5)|4|77⎡⎤⎛⎫⎛⎫+-----+--+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;(2)212102133434⎛⎫⎛⎫⎛⎫-++---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)4444499999999999999955555++++(4)1+(-2)+(-3)+4+5+(-6)+(-7)+8+…+97+(-98)+(-99)+100的值. (5)111118244880120++++; (6)2312()()3255---+--+-【解析】(1)原式341[15]45(5)1077=--+-++=--= (2)原式212102133434⎛⎫⎛⎫⎛⎫=-+++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21212133434=-++- 2211213213183344⎛⎫⎛⎫=-++-=-+=- ⎪ ⎪⎝⎭⎝⎭(3)原式=1111101001000100005555⎡⎤⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-++-++-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦⎣⎦11000005⎡⎤⎛⎫++- ⎪⎢⎥⎝⎭⎣⎦11111(10100100010000100000)55555⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+++++-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦111110(1)111109=+-=.(4)1+(-2)+(-3)+4+5+(-6)+(-7)+8+…+97+(-98)+(-99)+100=[1+(-2) + (-3)+4]+[5+(-6) + (-7)+8]+…+[97+(-98) + (-99)+100] =0+0++…+0=0.(5)111111111182448801202446688101012++++=++++⨯⨯⨯⨯⨯ 111111*********()()22446688101012221224=-+-+-+-+-=-= (6)原式23122312231283[()][()]32553255325530=------=--------=----=-1.某地一天的最高气温是12℃,最低气温是2℃,则该地这天的温差是( ) A . ﹣10℃ B . 10℃ C . 14℃D . ﹣14℃【答案】B2.比﹣1小2015的数是( )A .﹣2014B .2016C .﹣2016D .2014 【答案】C【解析】解:根据题意得:﹣1﹣2015=﹣2016,故选C.3.如果三个数的和为零,那么这三个数一定是( ).A .两个正数,一个负数B .两个负数,一个正数C .三个都是零D .其中两个数之和等于第三个数的相反数 【答案】D【解析】若0a b c ++=,则a b c +=-或b c a +=-或a c c +=-,所以D 正确. 4. 若0,0a b ><,a b <, 则a 与b 的和是 ( ) A. B.C.D..【答案】D【解析】(a b +)的符号与绝对值较大的b 一致为负的,并用较大的绝对值减去较小的绝对值,即有()b a --. 5.下列判断正确的是( ) A .两数之差一定小于被减数.六、对点通关训练B .若两数的差为正数,则两数都为正数.C .零减去一个数仍得这个数.D .一个数减去一个负数,差一定大于被减数. 【答案】D【解析】A 错误,反例:2-(-3)=5,而5>2;B 不对,反例:2-(-3)=5,而-3为负数;C 错误,0-2=-2,0-(-2)=2,所以零减去一个数得这个数的相反数.6.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg ,(25±0.2)kg ,(25±0.3)kg 的字样,从中任意拿出两袋,它们的质量最多相差 ( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg 【答案】B【解析】因为最低重量为24.7kg ,最大重量为25.3kg ,故质量最多相差25.3-24.7=0.6kg . 7.有理数,,a b c 在数轴上对应点位置如图所示,用“>”或“<”填空:(1)|a |______|b |;(2)a +b +c ______0: (3)a -b +c ______0; (4)a +c ______b ; (5)c -b ______a . 【答案】<,<,>,>,>【解析】由图可知:b a c >>,且0,0b a c <<>,再根据有理数的加法法则可得答案. 8.小明存折中原有450元,取出260元,又存入150元,现在存折中还有______元. 【答案】340【解析】450﹣260+150=290+150=340(元).9. 若a ,b 为整数,且|a-2|+| a -b|=1,则a+b =________. 【答案】2,6,3或5【解析】当|a-2|=1,| a -b|=0时,得:a+b =6或2;当|a-2|=0,| a -b|=1时,得:a+b =3或5;10.某地的冬天,半夜的温度是-5︒C ,早晨的温度是-1︒C ,中午的温度是4︒C.则 (1)早晨的温度比半夜的温度高________度; (2)早晨的温度比中午的温度低________度. 【答案】(1)4 (2) 5【解析】 (1)-1-(-5)=4 (2) -1-(+4)= -511.北京与纽约的时差为-13(负号表示同一时刻纽约时间比北京时间晚).如果现在是北京时间15:00,那么纽约时间是______________【答案】2:00【解析】15:00+(-13)=2:00.12. 数学活动课上,王老师给同学们出了一道题:规定一种新运算“☆”对于任意两个有理数a和b,有a☆b=a-b+1,请你根据新运算,计算(2☆3)☆2的值是 .【答案】 -1【解析】(2☆3)☆2=(2☆3)-2+1=2-3+1-2+1=-113.数轴上到原点的距离小于3的整数的个数为x,不大于3的正整数的个数为y,绝对值等于3的整数的个数为z,求:x+y+z的值.【解析】解:根据数轴,到原点的距离小于3的整数为0,±1,±2,即x=5,不大于3的正整数为1,2,3,即y=3,绝对值等于3的整数为3,﹣3,即z=2,所以x+y+z=10.14.股民李星星在上周星期五以每股11.2元买了一批股票,下表为本周星期一到星期五该股票的涨跌情况求:(1)本周星期三收盘时,每股的钱数.(2)李星星本周内哪一天把股票抛出比较合算,为什么?星期一二三四五每股涨跌/元+0.4 +0.45 ﹣0.2 +0.25 ﹣0.4【解析】解:(1)根据题意得:11.2+0.4+0.45+(﹣0.2)=11.85(元),则本周星期三收盘时,该只股票每股为11.85元;(2)根据题意得:11.2+0.4+0.45+(﹣0.2)+0.25=12.1(元),则本周该只股票最高价12.1元出现在周四,李星星本周四把股票抛出比较好.1.某市一天的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高()A.﹣10℃ B.﹣6℃ C.10℃D.6℃【答案】C【解析】解:2﹣(﹣8)=2+8=10℃.故选C.2.若等式0□1=﹣1成立,则□内的运算符号为()A. + B.﹣C.×D.÷【答案】B3.两个有理数相加,和小于其中一个加数而大于另一个加数,需满足()A.两个数都是正数 B.两个数都是负数C.一个是正数,另一个是负数 D.至少有一个数是零【答案】C【解析】举例验证.4.下列说法中正确的是A.正数加负数,和为0B.两个正数相加和为正;两个负数相加和为负C.两个有理数相加,等于它们的绝对值相加D.两个数的和为负数,则这两个数一定是负数【答案】B【解析】举反例:如5+(-2)=+3≠0,故A错;如:(-2)+(-3)≠|-2|+|-3|,故C错;如(+2)+(-8)=-6,故D错误.5.下列说法正确的是( )A.零减去一个数,仍得这个数B.负数减去负数,结果是负数C.正数减去负数,结果是正数D.被减数一定大于差【答案】C【解析】举反例逐一排除.6.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg,(25±0.2)kg,(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差( )A .0.8kgB .0.6kgC .0.5kgD .0.4kg 【答案】B【解析】因为最低重量为24.7kg ,最大重量为25.3kg ,故质量最多相差25.3-24.7=0.6kg . 7. -3+5的相反数是( ).A .2B .-2C .-8D .8 【答案】B8.有理数,,a b c c 在数轴上对应点位置如图所示,用“>”或“<”(1)|a |______|b |;(2)a +b +c______0: (3)a -b +c______0;(4)a +c______b ; (5)c -b______a . 【答案】<,<,>,>,>【解析】由图可知:b a c >>,且0,0b a c <<>,再根据有理数的加法法则可得答案. 9.计算:|﹣2|+2=________. 【答案】4.10.某月股票M 开盘价20元,上午10点跌1.6元,下午收盘时又涨了0.4元,则股票这天的收盘价是_______. 【答案】18.8元【解析】跌1.6元记为-1.6元,涨0.4元记为+0.4元,故有收盘价为20+(-1.6)+0.4-18.8. 11.列出一个满足下列条件的算式:(1)所有的加数都是负数,和为-5,________;(2)一个加数是0,和是-5________;(3)至少有一个加数是正整数,和是-5,________. 【答案】(1)(-2)+(-3)=-5 (2)(-5)+0=-5 (3)2+(-7)=-5 【解析】答案不唯一.12. 数学活动课上,王老师给同学们出了一道题:规定一种新运算“☆”对于任意两个有理数a 和b ,有a ☆b =a-b+1,请你根据新运算,计算(2☆3)☆2的值是 . 【答案】-1【解析】(2☆3)☆2=(2☆3)-2+1=2-3+1-2+1=-1 13.计算(﹣3)+(﹣9)的结果为 . 【答案】-12.【解析】同号两数相加的法则是取相同的符号,并把绝对值相加. 原式=﹣(3+9)=﹣12.14.计算题(1)232(1)(1)( 1.75)343-----+-(2)132.1253(5)(3.2)58-+---+(3)21772953323+---(4)231321234243--++-+(5)2312()() 3255 ---+--+-(6)123456782001200220032004 -+-+-+-+--+-+【解析】(1)原式22(1)( 1.75 1.75)133=-++-+=;(2)原式131 [3( 3.2)][(5) 2.125]3 584 =+-++---=(3)原式21729771 9)533326 =+---=-(4)原式223311 ()()12334422 =-++-++-=-(5)原式23122312231283[()][()]32553255325530 =------=--------=----=-(6)原式=12342001200220032004 -+-++-+-+ (12)(34)(20032004)110021002 =-++-+++-+=⨯=15.已知:|a|=2,|b|=3,求a+b的值.【解析】由题意知:a=±2, b=±3,所以要分四种情况代入求值.∵|a|=2, ∴ a=±2, ∵|b|=3, ∴b=±3.当a=+2, b=+3时, a+b=(+2)+(+3)=+5;当a=+2, b=-3时, a+b=(+2)+(-3)=-1;当a=-2,b=+3时, a+b=(-2)+(+3)=+1;当a=-2, b=-3时, a+b=(-2)+(-3)=-5.16.某人用400元购买了8套儿童服装,准备以一定价格出售,如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2.(单位:元)(1)当他卖完这八套儿童服装后是盈利还是亏损?(2)盈利(或亏损)了多少钱?【解析】解:根据题意得(1)2﹣3+2+1﹣2﹣1+0﹣2=﹣3,55×8+(﹣3)=437元,∵437>400,∴卖完后是盈利;(2)437﹣400=37元,故盈利37元.。
有理数加减混合运算的技巧
例谈有理数加减混合运算的技巧有理数运算是初中数学中最基本的运算.在实行有理数加减混合运算时,若能巧妙地用加法交换律和加法结合律来计算,则能使计算简便、快捷!现举例说明。
一、几个有理数相加,把相加得零的数先行相加:例1 计算38-231-18-20+532-41-331 解: 原式=(38-18-20)+(-231+532-331)-41=0+0-41=-41. 例2 计算1+2-3-4+5+6-7-8+9+…+1998-1999-2000+2001+2002-2003-2004+2005+2006解: 原式=1+(2-3-4+5)+(6-7-8+9)+…+(1998-1999-2000+2001)+(2002-2003-2004+2005)+2006=1+0+0+…+0+2006=2007.二、几个有理数相加,把同号的数分别相加:例3 计算-18+21-16+8-23+28解: 原式=(21+8+28)+(-18-16-23)=57-57=0.三、几个非整数的有理数相加,先把相加得整数的数相加:例4 计算-0.375+3.15+141-685+753 解: 原式=(-0.375-685)+(3.15+141+753)=-7+12=5. 例5 计算241-132+352-131+2.35+9 解: 原式=(2.35+241+352)+(-132-131)+9=8-3+9=14. 四、几个分数相加,先把同分母的分数分别相加:例6 计算431+541+643-131 解: 原式=(541+643)+(431-131)=12+3=15. 五、几个带分数相加,先把它们的整数部分和分数部分分别相加:例7 (同例6)解: 原式=(4+5+6-1)+(31+41+43-31)=14+1=15. 六、先变形,后相加:例8 计算38+27-49-996+2006+28解: 原式=(40-2)+(30-3)+(-50+1)+(-1000+4)+(2000+6)+(30-2)=(40+30-50-1000+2000+30)+(-2-3+1+4+6-2)=1230+4=1234.小结:进行有理数的加减混合运算前,根据减法法则把减法变成加法.进行有理数的加减混合运算时,一般先应考虑到符号相同的数先加;互为相反数的数先加,同分母的数先加,和为整数的几个数先加.。
有理数的加法运算规则及简便方法
有理数的加法运算规则及简便方法有理数是数学中的一类数,包括整数、分数和小数。
它们可以用来表示各种实际问题中的量,如温度、时间、距离等等。
在进行有理数的运算中,加法是常见且重要的一种运算。
本文将介绍有理数的加法运算规则及简便方法,以帮助读者更好地理解和运用。
一、有理数的加法运算规则1. 同号整数相加:当两个整数的符号相同时,只需将它们的绝对值相加,然后保留它们的符号,即可得到它们的和。
例如:(-3) + (-5) = -8,(-7) + (-2) = -92. 异号整数相加:当两个整数的符号不同时,我们可以按照以下步骤进行运算:a. 求两个整数的绝对值之差。
b. 取绝对值较大的整数的符号作为和的符号。
例如:(-4) + 7,先计算绝对值之差,即 |(-4)| - |7| = 3;因为绝对值较大的整数是7,所以和的符号为正,即:(-4) + 7 = 33. 小数和整数相加:将小数和整数转化为分数形式,然后再进行运算。
例如:1.5 + 2 = 1.5 + 2.0 = 3.54. 分数相加:分数相加的一般步骤如下:a. 确定两个分数的公共分母。
b. 将两个分数的分子相加,分母保持不变。
c. 对所得的分数进行约分,得到最简形式。
例如:1/3 + 2/5,公共分母为3和5的最小公倍数15,所以1/3 + 2/5 = (1 * 5)/(3 * 5) + (2 * 3)/(5 * 3) = 5/15 + 6/15 = 11/15二、有理数加法的简便方法有理数加法的规则虽然清晰,但在实际计算中可能会比较繁琐。
为了简化计算,我们可以使用一些常见的简便方法,如下所示:1. 利用数轴进行计算:将有理数在数轴上表示出来,根据符号和数轴上的位置进行加法运算。
这种方式直观且易于理解,尤其适合初学者。
2. 利用整数的法则:将有理数化为整数的和,然后按照整数的加法法则进行计算。
最后再根据题目要求将结果转换为有理数形式。
3. 利用分数的法则:将有理数化为分数的和,然后按照分数的加法法则进行计算。
有理数加减混合运算中的简便计算
(2)49-58+35-49+38-45; 解:-290
(3)(-0.5)-(-314)+2.75-(-712).
解:13
【变式训练】 1. 计算: (1)-2.4+3.5-4.6+3.5; 解:0
(2)(-478)-(-512)+(-414)-(+3187);
解:-834
(3)1+(-2)+3+(-4)+5+(-6)+7+(-8)+…+197+(-198).
6. 去年7月份小明到银行开户,存入1500元钱,以后每月根据收支情况存取 一笔钱,下表为小明从8月份到12月份的存款情况: 则截止到去年12月份,存折上共有__00
9 -200
10 +500
11 +300
12 -250
三、解答题 7. 计算: (1)456-335-(-316)-125; 解:3
解:(1)因为-9+11+7-14-6+13-6-8=(11+7+13)+(-9-14-6-6 -8)=-12(km),故C地在A地的正西方且相距A地12 km (2)因为-9+11+ 7-14=(11+7)+(-9-14)=-5,所以B点在A点的正西方5 km处,画出的 数轴如图所示:
9. (广州模拟)试分别在120,130,140,150,160,170,180,190的前面添上“+” 或“-”号,使这些正数与负数的和为 1,你能写出两种不同的添法吗?
D.-13+34-16-14=14+34-13-16
4. (深圳月考)算式 11213-11212+11216的值为( B ) A.-112 B.112 C.0 D.108
二、填空题 5. 计算: (1)-(-512)+1627+(-15.5)-(-357)=___1_0___;
(2)2.5+(-214)-1.75+(-12)=__-__2___; (3)-3+5-7+9-11+13=____6____.
有理数加减混合运算法则
知识点1:有理数的加法法则把两个或两个以上的有理数合并成一个有理数的运算,叫做有理数的加法,相加的两个数叫做加数,得到的结果叫做和。
由于有理数分为正有理数、零、负有理数三类,所以两个有理数相加就有以下三种情况:同号两数相加;异号两数相加;一个数同0相加。
⑴一个数同0相加,仍得这个数。
如:(-2)+0=-2,6+0=6.⑵借助数轴来探究同号两数相加的情况:(规定向东为正方向,1个单位长度为1米)同号两数相加,取相同的符号,并把绝对值相加。
⑶借助数轴来探究异号两数相加的情况:(规定向东为正方向,1个单位长度为1米)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0。
知识点2:有理数加法的运算步骤进行有理数加法运算时,应按照以下“一判,二定,三加减”的步骤:第一步:判断加法的类型,并根据加法的类型确定使用哪一个法则;第二步:根据加法绝对值的大小及有理数的符号,确定和的符号:第三步:对绝对值进行加或减,确定和的绝对值。
知识点3:有理数的加法运算律加法交换律:两个数相加,交换加数的位置和不变。
即a+b=b+a。
交换加数的位置时,各加数应连同其符号一起交换。
加法结合律:三个数相加,先把前两个数相加或先把后两个数相加和不变。
即(a+b)+c=a+(b+c)。
多个数相加时,灵活运用加法运算律,可使运算简便,通常有以下运算技巧。
①凑0,即和为0的几个数先加。
②凑10或凑100,即和为整10或者100的几个数先加。
③凑整,即和为整数的几个数先加。
④同号的几个数先加。
⑤同分母或易通分的分数先加。
知识点4:有理数的减法法则减法的概念:已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法,减法是加法的逆运算。
在小学时,被减数要大于减数,引入负数后,任何两个数都可以进行减法运算。
有理数减法法则:减去一个数等于加这个数的相反数。
即a-b=a+(-b)。
0减去任何数得这个数的相反数。
有理数的加减法(基础)知识讲解
有理数的加减法(基础)【学习目标】1.掌握有理数加法的意义,法则及运算律,并会使用运算律简算; 2.掌握有理数减法的法则和运算技巧,认识减法与加法的内在联系;3.熟练将加减混合运算统一成加法运算,理解运算符号和性质符号的意义,运用加法运算律合理简 算,并会解决简单的实际问题. 【要点梳理】要点一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数. 要点诠释:利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则. (2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减). 3.有理数加法运算律加法交换律 文字语言 两个数相加,交换加数的位置,和不变 符号语言 a+b =b+a加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言 (a+b )+c =a+(b+c )要点诠释:交换加数的位置时,不要忘记符号. 要点二、有理数的减法1.定义: 已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算. 要点诠释:(1)任意两个数都可以进行减法运算.(2) 几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值.2.法则:减去一个数,等于加这个数的相反数,即有:()a b a b -=+-.要点诠释: 将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:要点三、有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算. 【典型例题】类型一、有理数的加法运算1.计算:(1)(+20)+(+12);(2)1223⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭;(3)(+2)+(-11);(4)(-3.4)+(+4.3);(5)(-2.9)+(+2.9);(6)(-5)+0.【答案与解析】(1)(2)属于同一类型,用的是加法法则的第一条;(3)(4)属于同一类,用的是加法法则的第二条;(5)用的是第二条:互为相反数的两个数相加得0;(6)用的是法则的第三条.(1)(+20)+(+12)=+(20+12)=+32=32;(2)121211 23236⎛⎫⎛⎫⎛⎫-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)(+2)+(-11)=-(11-2)=-9(4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9(5)(-2.9)+(+2.9)=0;(6)(-5)+0=-5.【总结升华】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.举一反三:【变式1】计算:11 3343⎛⎫⎛⎫-++⎪ ⎪⎝⎭⎝⎭【答案】11111 3333433412⎛⎫⎛⎫⎛⎫-++=+-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭【变式2】计算:(1)(+10)+(-11);(2)⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭12 -1+-23【答案】(1) (+10)+(-11)=﹣(11-10)=﹣1;(2)⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1212341 -1+-=-1+=-1+=-2 2323666类型二、有理数的减法运算2.计算:(1)(-32)-(+5);(2)(+2)-(-25).【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.【答案与解析】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【总结升华】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.类型三、有理数的加减混合运算3.计算,能用简便方法的用简便方法计算. (1) 26-18+5-16 ; (2)(+7)+(-21)+(-7)+(+21) (3) ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432 (4) 113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭(5)132.2532 1.87584+-+(6)1355354624618-++-【答案与解析】 (1) 26-18+5-16=(+26)+(-18)+5+(-16) →统一成加法 =(26+5)+[(-18)+(-16)] →符号相同的数先加 = 31+(-34)=-3(2)(+7)+(-21)+(-7)+(+21)=[ (+7)+(-7) ] +[(-21)+(+21)] →互为相反数的两数先加=0(3)⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432 ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦21111-1+-2+1+-8+733224→同分母的数先加 ()()⎡⎤=⎢⎥⎣⎦1-4+-7+74=3-34(4)113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭113.5875573( 1.587)24⎛⎫⎛⎫=++-++-+- ⎪ ⎪⎝⎭⎝⎭→统一成加法11[3.587( 1.587)](57)5324⎡⎤⎛⎫⎛⎫=+-+++-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦→整数、小数、分数分别加312128544⎛⎫=++-= ⎪⎝⎭(5)132.25321.87584+-+ (2.25 2.75)(3.125 1.875)=-++→统一同一形式(小数或分数),把可凑整的放一起 0.55 4.5=-+=(6)1355354624618-++-1355354624618=--++++--1355(3546)()24618=-++-+-++-→整数,分数分别加18273010036-++-=+2936= 【总结升华】在进行加减混合的运算时,(1)先将各式中的减法运算转化为加法运算;(2)观察各加数之间的关系,再运用“技巧”适当交换加数的位置,注意交换时各加数的带着符号一起交换. 举一反三:【变式】用简便方法计算:(1)(-2.4)+(-4.2)+(-3.8)+(+3.1)+(+0.8)+(-0.7) (2) 2)324(83)65()851(43-++-+-+ 【答案】 (1) 原式=[(-3.8)+ (-4.2)]+[ (-2.4)+ (-0.7) +(+3.1)]+(+0.8)=-8+0.8=-7.2(2)原式=(2-1-4)+(34-58-56+38-23)=-3+[68-58+38+(-56-46)]=-3-1=-4 类型四、有理数的加减混合运算在实际中的应用4.小虫从点O 出发在一条直线上来回爬行,向右爬行的路程记为正,向左爬行的路程记为负,爬行的各段路程依次为:+5,-3,+10,-8,-6,+12,-10.(单位:cm ) (1) 小虫最后是否回到出发地O ?为什么? (2) 小虫离开O 点最远时是多少?(3) 在爬行过程中,如果每爬行1 cm 奖励1粒芝麻,则小虫一共可以得到多少粒芝麻?【思路点拨】题目中给出的各数由两部分组成:一是性质符号,表示的爬行的方向,二是绝对值部分,表示爬行的路程大小.所以若直接将它们相加得到的和也包括两层含义:方向和路程大小;若只把它们的绝对值相加,则最后结果只表示路程的大小.【答案与解析】解:(1)(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=(5+10+12)+(-3-8-6-10)=27-27=00表示最后小虫又回到了出发点O答:小虫最后回到了出发地O.(2) (+5)+(-3)=+2;(+5)+(-3)+(+10)=+12;(+5)+(-3)+(+10)+(-8)=+4;(+5)+(-3)+(+10)+(-8)+(-6)=-2;(+5)+(-3)+(+10)+(-8)+(-6)+(+12)=+10;(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0.因为绝对值最大的是+12,所以小虫离开O点最远时是向右12cm;++-+++-+-+++-=(cm), 所以小虫爬行的总路程是54 (3) 531086121054cm,⨯=(粒)由15454答:小虫一共可以得到54粒芝麻.【总结升华】利用有理数的加减混合运算可以解决很多现实生活中的实际问题,这就需要我们认真观察、大胆分析和设想.举一反三:【变式1】华英中学七年级(14)班的学生分成五组进行答题游戏,每组的基本分为100分,(2)第一名超过第五名多少分?【答案】由表看出:第一名350分,第二名150分,第五名-400分.(1) 350-150=200(分)(2) 350-(-400)=350+400=750(分)答:第一名超过第二名200分;第一名超过第五名750分.【变式2】某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?【答案】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克)答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克)答:出售的粮食共1594千克.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的加法和简便运算
一.解答题(共30小题)
1.(2015秋•富顺县月考)(﹣15)+(+9)
2.(2015秋•太和县月考)计算:
(1)(﹣25)+(﹣35);
(2)(﹣12)+(+3);
(3)(+8)+(﹣7);
(4)0+(﹣7).
3.(2014秋•南康市校级期中)计算:.
4.(2014秋•北流市期中)利用适当的方法计算:﹣4+17+(﹣36)+73.5.(2014秋•黄冈校级月考)直接写出计算结果:
(1)(﹣12)+13=
(2)﹣3+(﹣2)=
(3)+(﹣1)=
(4)(﹣3.5)+2=
(5)=
(6)=
6.(2014秋•河源校级月考)计算:3+(﹣2)+5+(﹣8)
7.(2014秋•长沙校级月考)计算题
(1)5.6+(﹣0.9)+4.4+(﹣8.1)+(﹣0.1)
(2)﹣0.5+(﹣3)+(﹣2.75)+(+7)
(3)1+(﹣1)++(﹣1)+(﹣3)
(4)+(﹣)+(﹣)+(﹣)+(﹣)
(5)(﹣0.8)+1.2+(﹣0.7)+(﹣2.1)+0.8+3.5
(6)(﹣1)+(﹣6)+(﹣2.25)+.
8.(2014秋•新华区校级月考)(1)+(﹣)++(﹣)+(﹣);
(2)(﹣0.5)+3+2.75+(﹣5)
(3)7+(﹣6.9)+(﹣3.1)+(﹣8.7)
(4).
9.(2013秋•永定县校级月考)18.56+(﹣5.16)+(﹣1.45)+(+5.16)+(﹣18.56)
10.(2013秋•白云区校级月考)计算:
(1)直接写出下列结果:
①50+(﹣30)=
②3+(﹣3)=
③(﹣6)+0=
④(﹣13)+(﹣9)=
⑤(﹣38)+(+12)=
(2)3.4+(﹣0.8)+2.3+(﹣7.2)+(﹣2)
(3)(+1)+(﹣2)+(+3)+(﹣4)+…+(+19)+(﹣20)
11.(2013秋•保亭县校级月考)计算
(1)(﹣3)+(+7);
(2)+(﹣);
(3)(﹣0.25)+(﹣0.75);
(4)(+26)+(﹣18)+5+(﹣16);
(5)(﹣1.75)+1.5+(+7.3)+1.75+(﹣2.8).
12.(2013秋•惠山区校级月考)(1)(﹣1.25)+1;
(2)+(﹣1);
(3)(﹣6)+(﹣16);
(4)(﹣23)+72+(﹣31)+(+47);
(5)(﹣1.6)+(﹣3)+|﹣1.8|;
(6)(+1.25)+(﹣)+(﹣)+(+1)
13.(2011秋•单县校级月考)计算:
(1)(﹣15)+19+(﹣16)+7+(﹣23)+24
(2)+(﹣)+(﹣)+
(3)0.36+(﹣7.4)+0.3+(﹣0.6)+0.64
(4)1+(﹣2)++.
14.(2010秋•常宁市校级月考).
15.(+12)+(﹣4);
(﹣5)+(﹣7);
(+6)+(﹣9);
+(﹣);
(﹣)+;
(﹣3)+(﹣1)
16.用简便方法计算:
(1)0.75+(﹣)+0.125+(﹣)+(﹣4);
(2)(+3)+(﹣2)+(﹣3)+(﹣1)+(+5)+(+5);(3)(+6)+(+)+(﹣6.25)+(+)+(﹣)+(﹣).
17.计算下列各题:
(1)(﹣25)+34+156+(﹣65);
(3)(﹣42)+57+(﹣84)+(﹣23);
(5)(﹣301)+125+301+(﹣75);
(7)41+(﹣23)+(﹣31)+0.
18.计算:
(1)(﹣8)+(﹣9);
(2)(﹣17)+21;
(3)(﹣12)+25;
(4)45+(﹣23);
(5)(﹣45)+23;
(6)(﹣29)+(﹣31);
(7)(﹣39)+(﹣45);
(8)(﹣28)+37;
(9)(﹣13)+0.
19.计算:
(1)(﹣10)+(+4);
(2)(+16)+(﹣8);
(3(﹣48)+(﹣33);
(4)(﹣)+(﹣)
20.计算:
(1)(﹣4)+(+3);
(2)(﹣3.125)+(+3);
(3)(﹣36.35)+(﹣7.25)+26.35+(+7);
(4)(﹣)+(﹣89)+(﹣5)+(+)+(﹣0.75).
21.计算:
(1)(﹣1.9)+3.5
(2)(﹣)+(﹣)
(3)2+(﹣3)
(5)(﹣6)+8+(﹣4)+12.
22.计算:
(1)3+(﹣1)+(﹣3)+1+(﹣4)
(2)(﹣9)+4+(﹣5)+8
(3)(﹣36.35)+(﹣7.25)+26.35+(+7)(4)+1++(﹣2)
(5)(﹣)+(﹣)++(﹣)
(6)(﹣)+(+)+(+)+(﹣1)
23.计算:
(1)(+3)+(+11)
(2)(﹣)+(﹣)
(3)(﹣4.5)+2.7
(4)(﹣5)+(+8)
24.用适当的方法计算:
(1)(﹣24)+18+(﹣16)+12;
(2)4+(﹣13)+(﹣0.5)+9+;
(3)(﹣3)+(+15.5)+(﹣16)+(﹣5);(4)(﹣1.5)+(+3)+2.75+(﹣5)
25.计算:
(1)(﹣0.9)+(﹣2.7);
(2)3.8+(﹣8.4);
(3)(﹣0.5)+3;
(4)3.92+1.78;
(5)7+(﹣3.04);
(6)(﹣2.9)+(﹣0.31);
(7)(﹣9.18)+6.18;
(8)4.23+(﹣6.77).
26.计算:
(1)+(﹣);
(2)(﹣)+(﹣);
(4)(﹣)+(﹣);
(5)+(﹣2);
(6)(﹣)+(﹣1);
(7)(﹣1)+(﹣2);
(8)3+(﹣1).
27.计算:
(1)(﹣26)+(﹣73);
(2)(+15)+(﹣8);
(3)(﹣23)+(+7);
(4);
(5);
(6);
(7).
28.计算:
(1)(﹣17)+59+(﹣37);
(2)(﹣18.65)+(﹣6.15)+18.15+6.15;(3)(﹣4)+(﹣3)+6+(﹣2);(4)(﹣0.5)+3+2.75+(﹣5).29.计算:
(1);
(2)(﹣2.2)+3.8;
(3)+(﹣5);
(4)(﹣5)+0;
(5)(+2)+(﹣2.2);
(6)(﹣)+(+0.8);
(7)(﹣6)+8+(﹣4)+12;
(8);
(9)0.36+(﹣7.4)+0.3+(﹣0.6)+0.64;
(10)9+(﹣7)+10+(﹣3)+(﹣9).
30.计算:
(1)(﹣100)+(﹣200);
(2)(﹣3)+(+2);
(3)(﹣1)+(+1.75);
(4)﹣5.1+0;
(5)18.56+(﹣5.16)+(﹣1.44)+(+5.16)+(﹣18.56);(6)4.1+(+)+(﹣)+(﹣10.1)+7.。