浙教版八年级上第四章 图形与坐标 2018年秋同步测试(含答案)

合集下载

浙教版八年级上册数学第4章 图形与坐标含答案

浙教版八年级上册数学第4章 图形与坐标含答案

浙教版八年级上册数学第4章图形与坐标含答案一、单选题(共15题,共计45分)1、如图所示的网络图中,每个小格的边长是1个单位,点A、B都在格点上,若A(-2,1),则点B应表示为()A.(-2,0)B.(0,-2)C.(1,-1)D.(-1,1)2、点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限3、如图,在平面直角坐标系中,△ABC的顶点都在方格纸的格点上,如果将△ABC先向右平移4个单位长度,再向下平移1个单位长度,得到△A1B1C1,那么点A的对应点A1的坐标为()A.(4,3)B.(2,4)C.(3,1)D.(2,5)4、抛物线y=-2(x+3)2的顶点在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上5、下列网格中的点可以表示一个分数(分母为1的分数记为整数),如点A,B,C,D分别表示1,,, 2.按照此规律,图中与点C表示的分数相等的点为()A.点EB.点FC.点GD.点H6、将△ABC的三个顶点坐标的横坐标都乘以﹣1,并保持纵坐标不变,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将原图形沿x轴的负方向平移了1个单位7、已知点P的坐标为((2-a,3a+6),且点P到两坐标轴的距离相等,则点P 的坐标为()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)8、若A(2x-5,6-2x)在第四象限,则X的取值范围是()A.x>3B.x>-3C.x<-3D.x<39、如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(0,)C.()D.(﹣1,1)10、若点P在第二象限,且点P到x轴、y轴的距离分别为4,3,则点P的坐标是()A.(4,3)B.(3,﹣4)C.(﹣3,4)D.(﹣4,3)11、在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分别为(﹣1,﹣1),(1,﹣2),将△ABC绕点C顺时针旋转90°,则点A的对应点的坐标为()A.(4,1)B.(4,﹣1)C.(5,1)D.(5,﹣1)12、如图,点A(﹣2,1)到y轴的距离为()A.-2B.1C.2D.13、如图,的坐标为若将线段平移至,则a-b的值为()A.-1B.0C.1D.214、如图,在平面直角坐标系中,点P的坐标为( )A.(3,-2)B.(-2,3)C.(-3,2)D.(2,-3)15、点位于平面直角坐标系的()A.第二象限B.第三象限C. 轴上D. 轴上二、填空题(共10题,共计30分)16、点A(-2,3)关于x轴对称的点B的坐标是________17、若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=________.18、已知点A(﹣1,﹣2),B(3,4),将线段AB平移得到线段CD.若点A 的对应点C在x轴上,点B对应点D在y轴上,则点C的坐标是________.19、如图所示的围棋盘放在平面直角坐标系内,黑棋A的坐标为(1,2),那么白棋B的坐标是________.20、如果点P在第四象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为________.21、点A(x,y)关于x轴的对称点坐标为(﹣3,﹣4),则点A坐标是________.22、在平面直角坐标系中,点(2,1)在第________象限.23、已知点A在x轴上方,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是________.24、若点P(2k﹣1,1﹣k)在第四象限,则k的取值范围为________.25、若将点关于x轴对称得到点B,点B的坐标是________.三、解答题(共5题,共计25分)26、已知点P(x+1,x−1)关于x轴对称的点在第一象限,试化简:|x+1|+|x−1|.27、在平面直角坐标系,点P(3n+2,4﹣2n)在第四象限,求实数n的取值范围.28、为进行农村电网建设,某电厂决定给A.B.C.D四个村庄架设电线,已知电厂及A.B .C.D四个村庄的位置分别是(0,3).(2,3).(2,4).(5,0).(6,2).试在图中分别找出电厂及A.B.C三个村庄的位置.29、小明骑车从学校出发去城南广场,到新华书店时迷路了,于是他打电话向朋友求助,如果你是他朋友,请你根据下图帮帮小明顺利到达目的地.30、△ABC在平面直角坐标系内,A点坐标是(3,4),B点坐标是(1,3),C点坐标是(4,1),平移△ABC得到△A′B′C′,已知A′的坐标是(﹣2,2).(1)求点B′和C′的坐标.(2)若△ABC内部一点P的坐标是(a,b),则点P的对应点P′的坐标是多少?参考答案一、单选题(共15题,共计45分)1、B2、B3、D4、B5、C6、B7、D8、A9、D10、C11、D12、C13、B14、A15、C二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

浙教版八年级数学上册第4章图形与坐标同步练习(共6套有答案)

浙教版八年级数学上册第4章图形与坐标同步练习(共6套有答案)

浙教版八年级数学上册第4章图形与坐标同步练习(共6套有答案)第4章图形与坐标 4.1 探索确定位置的方法 A组 1.小丽同学向大家介绍自己家的位置,其中表达正确的是(D) A. 距学校300 m处 B. 在学校的西边 C. 在西北方向300 m处 D. 在学校西北方向300 m处2.下表是计算机中的Excel电子表格,计算B2,C2,D2,E2和F2的和,其结果是(B) A B C D E F 1 4 6 2 5 9 3 2 2 3 4 5 6 7 A.28 B.25 C.15 D.10 3.如图所示是象棋棋盘的一部分,若将○位于点(1,-2)上,相○位于点(3,-2)上,则炮○的位置是(C) (第3题) A.(-1,1) B.(-1,2) C.(-2,1) D.(-2,2) 4.如图所示是雷达探测到的6个目标,若目标B用(30,60°)表示,目标D用(50,210°)表示,则表示为(40,120°)的是(B) (第4题) A. 目标A B. 目标C C. 目标E D. 目标F 5.小张和小陈都在电影院看电影,小张的位置用(a,b)表示,小陈的位置用(x,y)表示,我们约定“排数在前,列数在后”,若小张恰在小陈的正前方,则(B) A. a=x B. b=y C. a=y D. b=x(第6题) 6.如图,以灯塔A为观测点,小岛B在灯塔A的北偏东45°方向上,距灯塔A 20 km处.若以小岛B为观测点,则灯塔A在小岛B的南偏西45°方向上,距小岛B__20__km处. 7.剧院里5排2号可以用(5,2)表示,则7排4号用(7,4)表示. 8.如图所示是一个楼梯的侧面示意图.(第8题) (1)如果用(0,0)表示点A的位置,用(4,2)来表示点D的位置,那么点C,H又该如何表示呢?(2)按照第(1)题的表示方法,(2,0),(6,4),(8,8)又分别表示哪个点的位置?【解】(1)点C(2,2),H(8,6). (2)(2,0)表示点B,(6,4)表示点F,(8,8)表示点I. B组 9.有一个英文单词的字母顺序对应图中的有序数对(其中第一个数为列数)分别为(2,1),(2,2),(4,2),(5,1),请你把这个英文单词写出来或者翻译成中文为:BIKE(自行车). (第9题)【解】∵(2,1)对应点B,(2,2)对应点I, (4,2)对应点K,(5,1)对应点E. ∴这个英文单词为BIKE,中文意思为自行车. 10.同学们玩过五子棋吗?它的比赛规则是只要同色5子连成一条直线就算获胜.如图所示是两人玩的一盘棋,若白①的位置是(1,-5),黑❶的位置是(2,-4),现在轮到黑棋走,则黑棋放在(2,0)或(7,-5)的位置,就获得胜利了. (第10题)【解】如解图,当黑棋放在黑❷所在的位置时,就获得胜利了.∵白①的位置是(1,-5),黑❶的位置是(2,-4),∴黑❷的位置分别为(2,0)和(7,-5). (第10题解)11.台风是一种自然灾害,它以台风中心为圆心,在周围数千米范围内形成气旋风暴,有极强的破坏力.根据气象观测,距沿海某城市A 的正南方向220 km的B处有一台风中心,其中心最大风力为12级,每远离台风中心20 km,风力就会减弱一级.该台风中心正以15 km/h 的速度沿北偏东30°方向往C处移动,且台风中心风力不变.若城市所受风力达到或超过四级,则称受台风影响.该城市是否受到该台风的影响?请说明理由. (第11题解) 【解】受到台风的影响.理由如下:如解图,过点A作AC⊥BC于点C. 由题意,得AB=220 km,∠ABC=30°,∴AC=12AB=110 km. ∵110÷20=5.5,∴12-5.5=6.5>4. ∴该城市受到该台风的影响.12.将正偶数按下表所示的方式排成5列:第1列第2列第3列第4列第5列第1行 2 4 6 8 第2行 16 14 12 10 第3行 18 20 22 24 第4行… … 28 26 … 则2018应该排在哪行哪列?【解】本题偶数的排列规律为第1行左边空一列从左往右排,第2行右边空一列从右往左排,第3行同第1行,第4行同第2行,因此可看成每2行为一循环,即8个数为一循环.2018是第1009个偶数,1009÷8=126……1,因此2018是第253行从左往右数的第1个数,即2018在第253行第2列.数学乐园 13.如图①,将射线Ox按逆时针方向旋转β,得到射线Oy,如果P为射线Oy上的一点,且OP=a,那么我们规定用(a,β)表示点P在平面内的位置.例如,图②中,如果OM=8,∠xOM=110°,那么点M在平面内的位置记为M(8,110°),根据图形,解答下列问题: (1)如图③,如果点N在平面内的位置记为N(6,30°),那么ON=__6__,∠xON=__30°__. (2)如果点A,B在平面内的位置分别记为A(5,30°),B(12,120°),求A,B两点之间的距离. (第13题) (第13题解)【解】(2)根据题意画出A,B的位置,如解图所示.∵点A(5,30°),B(12,120°),∴∠BOx=120°,∠AOx=30°,OA=5,OB =12,∴∠AOB=90°. ∴在Rt△AOB中,AB=122+52=13. 4.2 平面直角坐标系(一) A组 1.如图,在平面直角坐标系中,已知正方形网格的格点A的坐标为(-3,5),则它到x轴的距离是__5__,到y轴的距离是__3__,到原点的距离是__34__.格点B,C的坐标分别为B(1,5),C(4,2).若点D(-3,-4),则它到x轴的距离为__4__,到y轴的距离为__3__,到原点的距离为__5__. (第1题)2.若a<0,则点P(-a,2)应在(A) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3.已知点P(0,m)在y轴的正半轴上,则点M(-m,-m-1)在(C) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 4.(1)已知点P(3-m,m)在第二象限,则m的取值范围是(C) A. m>0 B. m<0 C. m>3 D. 0<m<3 (2)在平面直角坐标系中,点A在x轴上方,y轴左侧,距离每条坐标轴都是1个单位,则点A的坐标为(C) A. (1,1) B. (-1,-1) C. (-1,1) D. (1,-1) (第4题) (3)在一次科学探测活动中,探测人员发现一目标在如图所示的阴影区域内,则目标的坐标可能是(C) A.(-3,300) B.(9,600) C.(7,-500) D.(-2,-800) 5.(1)若点P(2-a,3a+6)到两条坐标轴的距离相等,则点P的坐标为(D) A.(3,3) B.(3,-3) C.(6,-6) D.(3,3)或(6,-6) (第5题) (2)如图,在平面直角坐标系中,已知点B,C在x轴上,AB⊥x轴于点B,DA⊥AB.若AD=5,点A 的坐标为(-2,7),则点D的坐标为(C) A.(-2,2) B.(-2,12) C.(3,7) D.(-7,7) (3)已知点A(5,4),B(5,8),则线段AB的位置特征和AB的长度分别是(D) A.与x轴相交,AB=4 B.与y 轴相交,AB=3 C.与x轴平行,AB=3 D.与y轴平行,AB=4 6.在如图所示的平面直角坐标系中,写出点A,B,C,D,E,F的坐标. (第6题) 【解】点A的坐标为(3,2);点B 的坐标为(-3,-2);点C的坐标为(0,2);点D的坐标为(-3,0);点E的坐标为(2,-1);点F的坐标为(-2,1). 7.(1)已知点P(a-1,3a+6)在y轴上,求点P的坐标. (2)已知点A(-3,m),B(n,4),若AB∥x轴,求m 的值,并确定n的取值范围.【解】(1)∵点P(a-1,3a+6)在y 轴上,∴横坐标为0,即a-1=0,∴a=1. ∴点P的坐标为(0,9).(2)∵AB∥x轴,∴点A(-3,m),B(n,4)的纵坐标相等,∴m =4. ∵A,B两点不能重合,∴n 的取值范围是n≠-3. 8.如果|3x -13y+16|+|x+3y-2|=0,那么点P(x,y)在第几象限?点Q(x+1,y-1)在平面直角坐标系的什么位置?【解】由题意,得3x -13y+16=0,x+3y-2=0,解得x=-1,y=1. ∴点P的坐标为(-1,1),在第二象限;点Q的坐标为(0,0),是平面直角坐标系的原点. B组 9.(1)已知P(x,y)是第四象限内的一点,且x2=4,|y|=3,则点P的坐标为(D) A. (2,3) B. (-2,3) C. (-2,-3) D. (2,-3) 【解】∵x2=4,|y|=3,∴x=±2,y=±3. ∵P(x,y)在第四象限,∴x>0,y<0. ∴x=2,y=-3,∴点P(2,-3). (2)以二元一次方程组的解为坐标(x,y),请写出一个二元一次方程组,使它的解在第三象限:x+y=-3,x-y=1(答案不唯一). (3)已知点M23|x|,12x+1在第一、三象限的角平分线上,则x=6或-67.【解】∵点M在第一、三象限的角平分线上,∴23|x|=12x+1,∴x=6或-67. (4)在平面直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.现规定:在一正方形的内部(边界除外)的横、纵坐标均为整数的点称为正方形内部的整点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点……则边长为8的正方形内部的整点个数为__49__. (第9题) 【解】边长为1和2的正方形内部有1个整点,边长为3和4的正方形内部有9个整点,边长为5和6的正方形内部有25个整点,从而推出边长为7和8的正方形内部有49个整点. 10.已知点A(2m+1,m+9)到x轴和y轴的距离相等,求点A的坐标.【解】由题意,得2m +1=m+9或2m+1+m+9=0,解得m=8或-103,∴2m+1=17或-173. ∴点A的坐标为(17,17)或-173,173. 11.在平面直角坐标系xOy中,对于点P(x,y),我们把P1(y-1,-x-1)叫做点P 的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4……这样依次得到点An(n为正整数). (1)若点A1的坐标为(2,1),则点A3的坐标为(-4,-1),点A2018的坐标为(0,-3). (2)若点A2018的坐标为(-3,2),设点A1(x,y),求x+y的值. (3)设点A1的坐标为(a,b),若点A1,A2,A3,…,An均在y轴的左侧,求a,b的取值范围.【解】(1)∵点A1(2,1),∴点A2(0,-3),∴点A3(-4,-1),∴点A4(-2,3),∴点A5(2,1)…… 由此可知,每4个点为一循环,∴点A4a+1(2,1),A4a+2(0,-3),A4a+3(-4,-1),A4a+4(-2,3)(a为自然数).∵2018=504×4+2,∴点A2018的坐标为(0,-3).(2)∵点A2018的坐标为(-3,2),∴点A2017(-3,-2),∴点A1(-3,-2),∴x +y=-5. (3)∵点A1(a,b),∴点A2(b-1,-a-1), A3(-a-2,-b),A4(-b-1,a+1).∵点A1,A2,A3,…,An均在y轴的左侧,∴a<0,-a-2<0,且b-1<0,-b-1<0,解得-2<a<0,-1<b<1. 数学乐园 12.如图,已知点A(-1,0)和点B(1,2),在坐标轴上确定点P,使得△ABP为直角三角形,则满足这样条件的点P共有(C) A.2个B.4个C.6个D.7个导学号:91354023 (第12题) (第12题解)【解】如解图.①以A为直角顶点,可过点A作直线垂直于AB,与坐标轴交于点P1. ②以B为直角顶点,可过点B作直线垂直于AB,与坐标轴交于点P2,P3. ③以P为直角顶点,可以AB为直径画圆,则圆心为AB的中点I,与坐标轴交于点P4,P5,P6(由AI=BI=PI 可得出∠APB为直角).故满足条件的点P共有6个.。

浙教版八年级数学上册同步练习:第4章 图形与坐标检测卷含答案

浙教版八年级数学上册同步练习:第4章  图形与坐标检测卷含答案

浙教版八年级数学上册同步练习:第4章图形与坐标检测卷一、选择题(每题2分,共20分)1.甲打电话给乙:“你在哪儿啊?”在下面乙的回话中,甲能确定乙位置的是()A.我和你相距500米B.我在你北偏东30°的方向500米处C.我在你北偏东30°的方向D.你向北走433米,然后转90°再走250米2.把点(-3,4)先以x轴为对称轴进行轴对称变换,再以y轴为对称轴进行轴对称变换得到的点的坐标是()A.(3,-4)B.(3,4)C.(-3,-4)D.(-3,4)3.若点P(1-a,a+2)在第四象限,则a的取值范围是()A.-2<a<1B.a<1C.a>-2D.a<-24.已知点P(3a-3,1-2a)关于x轴的对称点在第三象限,则a的取值范围在数轴上表示正确的是()5.(长兴中考)在平面直角坐标系中,将线段上每个点的纵坐标都加上3,横坐标保持不变,所得图形的位置与原图形的位置相比()A.向上平移3个单位B.向下平移3个单位C.向左平移3个单位D.向右平移3个单位6.如图,△ABC与△DEF关于y轴对称,已知A(-4,6),B(-6,2),E(2,1),则点D的坐标为()A.(-4,6)B.(4,6)C.(-2,1)D.(6,2)7.如图,已知点A(1,1),B(4,1),则线段AB上任意一点的坐标可表示为()A.x=1(1≤x≤4)B.y=1(1≤x≤4)C.x=1(1<x<4)D.y=1(1<x<4)8.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(-,1)B.(-1,)C.(,1)D.(-,-1)9.如图,坐标平面内一点A(2,-1),O是原点,P是x轴上一个动点,如果以点P、O、A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为()A.2个B.3个C.4个D.5个10.如图,等边△ABC在平面直角坐标系中的位置如图所示,其中顶点A(-1,-1),B(3,-1),则顶点C的坐标为()A.(1,2)B.(0,2)C.(1,2-1)D.(1,2-2)二、填空题(每题3分,共24分)11.已知点A的坐标为(-2,3),则点A关于x轴的对称点A1的坐标是____________.12.把点A(-3,a)向下平移5个单位,所得点与点A关于x轴对称,则a=____________.13.如图,如果士所在的位置坐标为(-1,-2),相所在的位置坐标为(2,-2),则炮所在位置坐标为____________.14.在平面直角坐标系中,点A、B的坐标分别是(m,3)、(3m-1,3).若线段AB与直线y=2x+1相交,则m的取值范围为____________.15.在直角坐标系中,O为坐标原点,△ABO是正三角形,若点B的坐标是(-2,0),则点A的坐标是____________.16.已知点A(4,y),B(x,-3),若AB∥x轴,且线段AB的长为5,x=____________,y=____________.17.如图,平面直角坐标系中有一正方形OABC,点C的坐标为(-2,-1),则点A的坐标为____________,点B的坐标为____________.18.在平面直角坐标系中,对于点P(a,b),我们把Q(-b+1,a+1)叫做点P的伴随点,已知A1的伴随点为A2,A2的伴随点为A3,…,这样依次下去得到A1,A2,A3,…,An,若A1的坐标为(3,1),则A2019的坐标为____________.三、解答题(共56分)19.(8分)在棋盘中建立如图所示的直角坐标系,三颗棋子A,O,B的位置如图,它们的坐标分别是(-1,1),(0,0),(1,0).(1)如图2,添加棋子C,使四颗棋子A,O,B,C成为一个轴对称图形,请在图中画出该图形的对称轴;(2)在其他格点位置添加一颗棋子P,使四颗棋子A,O,B,P成为轴对称图形,请直接写出棋子P的位置的坐标.(写出2个即可)20.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形.已知△ABC的顶点均在格点上,建立直角坐标系后,点B的坐标为(-5,0).(1)直接写出点A,C的坐标;(2)△A1B1C1可以看做是由△ABC经过怎样的变换得到,写出变换过程;(3)作△A1B1C1关于x轴对称的图形;(4)求△ABC在x轴上方阴影部分的面积.21.(8分)如图,图中的小方格均是边长为1的正方形,△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)把△ABC先向右平移1个单位,再向下平移4个单位.若△ABC内(不包括边界)有一点P的坐标为(a,b),则点P的对应点P1的坐标为____________,其中a的取值范围是____________.22.(10分)如图,在平面直角坐标系中,A(0,1),B(2,0),C(4,3).(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.23.(10分)已知,如图,在平面直角坐标系xOy中,A(4,0),C(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着长方形OABC移动一周(即:沿着O→A→B→C→O的路线移动).(1)写出B点的坐标:____________;(2)当点P移动了4s时,描出此时P点的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.24.(12分)在某河流的北岸有A,B两个村子,A村距河北岸的距离为1千米,B村距河北岸的距离为4千米,且两村相距5千米,现以河北岸为x轴,A村在y轴正半轴上(单位:千米).(1)请建立平面直角坐标系,并描出A,B两村的位置,写出其坐标;(2)近几年,由于乱砍滥伐,生态环境受到破坏,A,B两村面临缺水的危险.两村商议,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么位置?在图中标出水泵站的位置,并求出所用水管的长度.参考答案一、选择题1—5.BADBA6—10.BBACC二、填空题11.(-2,-3)12.13.(-3,1)14.≤m≤115.(-1,)或(-1,-)16.9或-1-317.(-1,2)(-3,1)18.(-3,1)三、解答题19.(1)如图2所示:直线l即为所求;(2)如图1所示:P(0,-1),P′(-1,-1)都符合题意.(答案不唯一)20.(1)A (-4,2),C (-3,-2);(2)把△ABC 先向右平移4个单位,再向上平移2个单位,得到△A1B1C1;(3)如图,△A2B2C1即为所求图形;(4)由图象可知点E (-3.5,0),∴BE=1.5,∴S △ABE=×1.5×2=.21.(1)如图,△A1B1C1即为所求图形.(2)(a+1,b-4)0<a <322.(1)过点C 作CH ⊥x 轴于点H ,S △ABC =S 梯形AOHC -S △AOB -S △CHB =21(1+3)×4-21×1×2-21×2×3=4;(2)当点P 在x 轴上时,设P (x ,0),得S △ABP =21BP ·AO =21|x-2|×1=4,解得x =-6或10,故P (-6,0)或P (10,0),当点P 在y 轴上时,设P (0,y ),得S △ABP =21BO ·AP =21|y-1|×2=4,解得y =-3或5,故P (0,-3)或P (0,5),综上,P 的坐标为(-6,0)或(10,0)或(0,-3)或(0,5).23.(1)(4,6)(2)描点略;由点P 以每秒2个单位长度的速度沿着长方形OABC 移动一周(即:沿着O →A →B →C →O 的路线移动),点P 移动了4s ,得P 点移动了8个单位,即OA +AP =8,则P 点在AB 上且距A 点4个单位,∴P (4,4);(3)第一次距x 轴5个单位时AP =5,即OA +AP =9=2t ,解得t =;第二次距x 轴5个单位时,OP =5,即OA +AB +BC +CP =4+6+4+6-5=2t ,解得t =.综上所述,t =s 或t =s 时,点P 到x 轴的距离为5个单位长度.24.(1)如图1,点A (0,1),点B (4,4).(2)作A 关于x 轴的对称点A ′,连结A ′B 交x 轴于点P ,则P 点即为水泵站的位置,PA +PB =PA ′+PB =A ′B 且最短(如图2).过B 、A ′分别作x 轴,y 轴的垂线交于E ,作AD ⊥BE ,垂足为D ,则BD =3,由(1)得A 点坐标为(0,1),B 点坐标为(4,4),则A ′点坐标为(0,-1),由A ′E =4,BE =5知,在Rt △A ′BE 中,A ′B =.故所用水管最短长度为千米.。

浙教版八年级上册数学第四章图形与坐标单元检测题及答案

浙教版八年级上册数学第四章图形与坐标单元检测题及答案

浙教版八年级上册数学第四章图形与坐标单元检测题(测试时间60分钟,满分100分)一、选择题(每小题3分,共30分)1.点P (4,﹣3)到x 轴的距离是( )A .4B .3C .﹣3D .52.根据下列表述,能确定位置的是( )A .运城空港北区B .给正达广场3楼送东西C .康杰初中偏东35°D .东经120°,北纬30°3. 在平面直角坐标系中,已知点P (2,-3),则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限4.在平面直角坐标系中,若点P (x -2, x )在第二象限,则x 的取值范围为( )A .x >0B .x <2C .0<x <2D .x >25.如果直线AB 平行于y 轴,则点A .B 的坐标之间的关系是( )A .横坐标相等B .纵坐标相等C .横坐标的绝对值相等D .纵坐标的绝对值相等6.如果P (m +3,2m +4)y 轴上,那么点P 的坐标是( )A .(-2,0)B .(0,-2)C .(1,0)D .(0,1)7.如果)42,3(++m m P 在y 轴上,那么点P 的坐标是( )A. (-2,0)B. (0,-2)C. (1,0)D. (0,1)8.在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是( )A .(3,7)B .(5,3)C .(7,3)D .(8,2)第8题图 第9题图 第10题图9.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1 mm ,则图中转折点P 的坐标表示正确的是( )A .(5,30)B .(8,10)C .(9,10)D .(10,10)10.如图,平面直角坐标系中有正方形OABC ,点A 的坐标为(1,2),则点C 的坐标为( ) A .(-3,1) B .(-2,1) C .(2,-1) D .(-2,0.5)二、填空题(每题3分,共24 分)11.点A (3,-4)到y 轴的距离为_______,到x 轴的距离为_____,到原点距离为_____.12.七年级(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________.13.在平面直角坐标系中,点P (﹣2,﹣5)关于x 轴的对称点P ′的坐标是 .14.在平面直角坐标系中,若点M (1,3)与点N (x ,3)之间的距离是5,则x 的值是 .15.如图,平面直角坐标系内有一点A (3,4),O 为坐标原点.点B 在y 轴上,OB =OA ,则点B 的坐标为 .16. 一只蚂蚁由(0,0)先向上爬4个单位长度,再向右爬3个单位长度,再向下爬2个单位长度后,它所在位置的坐标是_________.17.如果0,0<+>y x xy ,且那么点),(y x P 在第 象限.18.已知点),(y x P 位于第二象限,并且62+≤x y ,y x ,为整数,则点P 的个数是 .三、解答题(共46分)19.(本题6分)如图,方格纸中每个小正方形的边长均为1个单位长度,现有△ABC 和点O ,△ABC 的顶点和点O均与小正方形的顶点重合.(1)在方格纸中将△ABC 先向_______平移______个单位长度,再向______平移_____个单位长度后,可使点A 与点O重合;(2)试画出平移后的△OB 1C 1.第15题图20.(本题6分)如图,正方形ABCD的边长为4,点A的坐标为(-1,1),AB平行于x轴,求点B,C,D的坐标.21.(本题8分)如图,A.B两点的坐标分别是(2,-3).(-4,-3).(1)请你确定P(4,3)的位置;(2)请你写出点Q的坐标.22.(本题8分)已知:A(0,1),B(2,0),C(4,3).(1)在坐标系中描出各点,画出△ABC;(2)求△ABC的面积;(3)若点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.23.(本题8分)如图,在平面直角坐标系中,A(-3,4),B(-1,-2),O•为原点,•求△AOB的面积.24.(本题10分)如图,在平面直角坐标系中,已知点A(0,4),B(8,0),C(8,6)三点.(1)求△ABC的面积;(2)如果在第二象限内有一点P(m,1),且四边形ABOP的面积是△ABC的面积的两倍;求满足条件的P点的坐标.参考答案 一、选择题1.B 2.D .3.D 4.C 5.B 6.B 7.B 8.C 9.C 10.B二、填空题11.3 4 5 12.(5,2); 13. (﹣2,5) .14. ﹣4或6 .15.(0,5)或(0,-5) 16.(3,2) 17.三 18.6三、解答题19. (1)右,2,下,4 (2)作图20.解:)5,1(),5,3(),1,3( D C B21.解:(1)根据A .B 两点的坐标可知:x 轴平行于A .B 两点所在的直线,且距离是3;y 轴在距A 点2(距B 点4)位置处,如图建立直角坐标系,则点P (4,3)的位置,即如图所示的点P(2)点Q 的坐标是(-2,2)22.解:(1)如图所示.(2)S △ABC =3×4-21×2×3-21×2×4-21×2×1=12-3-4-1=4. (3)当点P 在x 轴上时,S △ABP =21A O·BP =4, 即21×1·BP =4,解得BP =8, ∴点P 的坐标为(10,0)或(-6,0);当点P 在y 轴上时,S △ABP =21B O·AP =4, 即21×2AP =4,解得AP =4, ∴点P 的坐标为(0,5)或(0,-3),∴点P 的坐标为(0,5)或(0,-3)或(10,0)或(-6,0). 23.524.解:(1)S △ABC =12×6×8=24. (2)由题意得,12×|m |×4+12×4×8=24×2,|m |=16,∵P 在第二象限,∴m <0,∴m =-16,∴点P (-16,1).。

【浙教版】2018年秋八年级上《第4章图形与坐标》单元试卷含答案

【浙教版】2018年秋八年级上《第4章图形与坐标》单元试卷含答案

第4章一、选择题(每小题2分,共20分)1.在平面直角坐标系中,点P(-2,3)关于x轴的对称点的坐标为(A)A. (-2,-3)B. (2,-3)C. (-3,-2)D. (3,-2)2.平面直角坐标系内的点A(-1,2)与点B(-1,-2)关于(B)A. y轴对称B. x轴对称C. 原点对称D. 直线y=x对称3.已知点A在x轴上,且点A到y轴的距离为4,则点A的坐标为(C)A.(4,0) B.(0,4)C.(4,0)或(-4,0) D.(0,4)或(0,-4)【解】一个点在x轴上,其纵坐标为0;到y轴的距离就是点的横坐标的绝对值.4.若点A(x,1)与点B(2,y)关于x轴对称,则下列各点中,在直线AB上的是(A) A.(2,3) B.(1,2)C.(3,-1) D.(-1,2)【解】∵点A和点B关于x轴对称,∴AB与x轴垂直,即直线AB上的点的横坐标相同,为2.∴选A.5.如图,已知棋子“車”的位置表示为(-2,3),棋子“馬”的位置表示为(1,3),则棋子“炮”的位置可表示为(A)(第5题)A.(3,2) B.(3,1)C.(2,2) D.(-2,2)6.若点M(a-1,a-3)在y轴上,则a的值为(C)A.-1B.-3 C.1D.3【解】由题意,得a-1=0,∴a=1.7.在国外留学的叔叔送给聪聪一个新奇的玩具——智能流氓兔.它的新奇之处在于若第一次向正南跳一下,第二次就掉头向正北跳两下,第三次又掉头向正南跳三下……而且每一跳的距离为20 cm.如果流氓兔位于原点处,第一次向正南跳(记y轴正半轴方向为正北,1个单位为1 cm),那么跳完第80次后,流氓兔所在位置的坐标为(C)A. (800,0)B. (0,-80)C. (0,800)D. (0,80)【解】用“-”表示正南方向,用“+”表示正北方向.根据题意,得-20+20×2-20×3+20×4-…-20×79+20×80=20(-1+2)+20(-3+4)+…+20(-79+80)=20×40=800(cm),∴流氓兔最后所在位置的坐标为(0,800).(第8题)8.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′.若线段AB上有一个点P(a,b),则点P在线段A′B′上的对应点P′的坐标为(A)A. (a-2,b+3)B. (a-2,b-3)C. (a+2,b+3)D. (a+2,b-3)【解】由题意可得,将线段AB向左平移2个单位,向上平移3个单位得到线段A′B′,则点P(a,b)在线段A′B′上的对应点P′的坐标为(a-2,b+3).(第9题)9.如图,将斜边长为4的直角三角板放在直角坐标系xOy中,两条直角边分别与坐标轴重合,P为斜边的中点.现将此三角板绕点O顺时针旋转120°后点P的对应点的坐标是(B)A. (3,1)B. (1,-3)C. (2 3,-2)D. (2,-2 3)(第9题解)【解】根据题意画出△AOB绕点O顺时针旋转120°得到的△COD,连结OP,OQ,过点Q作QM⊥y轴于点M,如解图.由旋转可知∠POQ=120°.易得AP=OP=12AB,∴∠BAO=∠POA=30°,∴∠MOQ=180°-30°-120°=30°.在Rt△OMQ中,∵OQ=OP=2,∴MQ=1,OM= 3.∴点P的对应点Q的坐标为(1,-3).10.已知P(x,y)是以坐标原点为圆心,5为半径的圆周上的点,若x,y都是整数,则这样的点共有(C)A.4个B.8个C.12个D.16个【解】由题意知,点P(x,y)满足x2+y2=25,∴当x=0时,y=±5;当y=0时,x=±5;当x=3时,y=±4;当x=-3时,y=±4;当x=4时,y=±3;当x=-4时,y=±3,∴共有12个点.二、填空题(每小题3分,共30分)11.在平面直角坐标系中,点(1,5)所在的象限是第一象限. 12.若点B (7a +14,a -2)在第四象限,则a 的取值范围是-2<a <2.13.已知线段MN 平行于x 轴,且MN 的长度为5,若点M (2,-2),则点N 的坐标为(-3,-2)或(7,-2).【解】 ∵MN ∥x 轴,点M (2,-2), ∴点N 的纵坐标为-2. ∵MN =5,∴点N 的横坐标为2-5=-3或2+5=7, ∴点N (-3,-2)或(7,-2).14.已知点A (y +a ,2)和点B (y -3,b +4)关于x 轴对称,则ba=__2__.【解】 ∵点A (y +a ,2)和点B (y -3,b +4)关于x 轴对称,∴⎩⎪⎨⎪⎧y +a =y -3,2=-(b +4),解得⎩⎪⎨⎪⎧a =-3,b =-6. ∴b a =-6-3=2. 15.把以 (-1,3),(1,3)为端点的线段向下平移4个单位,此时线段两端点的坐标分别为(-1,-1),(1,-1),所得像上任意一点的坐标可表示为(x ,-1)(-1≤x ≤1).16.已知点A (0,-3),B (0,-4),点C 在x 轴上.若△ABC 的面积为15,则点C 的坐标为(30,0)或(-30,0).【解】 ∵点A (0,-3),B (0,-4),∴AB =1. ∵点C 在x 轴上,∴可设点C (x ,0). 又∵△ABC 的面积为15, ∴12·AB ·|x |=15,即12×1×|x |=15, 解得x =±30.∴点C 的坐标为(30,0)或(-30,0).17.如图,将边长为1的正三角形OAP沿x轴正方向连续翻转2017次,点依次落在点P1,P2,P3,…,P2017的位置,则点P2017的横坐标为2017.(第17题)【解】观察图形并结合翻转的方法可以得出点P1,P2的横坐标是1,点P3的横坐标是2.5;点P4,P5的横坐标是4,点P6的横坐标是5.5……依此类推下去,点P2017的横坐标为2017.18.已知甲的运动方式为:先竖直向上运动1个单位,再水平向右运动2个单位;乙的运动方式为:先竖直向下运动2个单位,再水平向左运动3个单位.在平面直角坐标系内,现有一动点P第1次从原点O出发按甲方式运动到点P1,第2次从点P1出发按乙方式运动到点P2,第3次从点P2出发再按甲方式运动到点P3,第4次从点P3出发再按乙方式运动到点P4……以此运动规律,经过11次运动后,动点P所在位置点P11的坐标是(-3,-4).【解】P(0,0)→P1(2,1)→P2(-1,-1)→P3(1,0)→P4(-2,-2)→……每两次运动后,横纵坐标均减少1,得点P2n(-n,-n)(n为正整数),∴点P10(-5,-5),∴点P11(-3,-4).(第19题)19.如图,在平面直角坐标系中,四边形OABC是正方形,点A的坐标为(4,0),P为边AB上一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内的点B′处,则点B′【解】提示:过点B′作y轴的垂线交y轴于点D,易得B′C=BC=4,∠B′CD=30°,求出B′D和CD的长,从而求出OD的长,即可得点B′的坐标.20.如图,正方形A1A2A3A4,正方形A5A6A7A8,正方形A9A10A11A12,…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行.若它们的边长依次是2,4,6,…,则顶点A20的坐标为(5,-5).(第20题)【解】∵20÷4=5,∴点A20在第四象限.∵点A4所在正方形的边长为2,∴点A4的坐标为(1,-1).同理可得:点A8的坐标为(2,-2),点A12的坐标为(3,-3)……∴点A20的坐标为(5,-5).三、解答题(共50分)21.(6分)已知△ABC在直角坐标系中的位置如图所示,请在图中画出△ABC关于y轴的对称图形△A1B1C1,并写出△A1B1C1各顶点的坐标.(第21题)【解】画图如图中△A1B1C1所示,点A1(4,1),B1(1,3),C1(2,-2).22.(6分)如图,在平面直角坐标系中,将点P(-4,2)绕原点顺时针旋转90°,求其对应点Q的坐标.(第22题)【解】 如解图,过点P 作PM ⊥x 轴于点M ,过点Q 作QN ⊥x 轴于点N .(第22题解)∵∠MPO +∠POM =90°,∠QON +∠POM =90°,∴∠MPO =∠NOQ . 在△PMO 和△ONQ 中, ∵⎩⎪⎨⎪⎧∠PMO =∠ONQ =90°,∠MPO =∠NOQ ,PO =OQ , ∴△PMO ≌△ONQ (AAS ). ∴PM =ON ,OM =QN .∵点P 的坐标为(-4,2),∴点Q 的坐标为(2,4).23.(6分)如图,在平面直角坐标系中,点A (1,2),B (-4,-1),C (0,-3),求△ABC 的面积.(第23题)(第23题解)。

浙教版八年级上浙教版八年级数学上《第四章图形与坐标》单元测试含答案解析

浙教版八年级上浙教版八年级数学上《第四章图形与坐标》单元测试含答案解析

第四章图形与坐标单元测试一、选择题1、点P(﹣ 1, 2)关于y 轴对称点的坐标是()A 、( 1,2)B 、(﹣ 1,﹣ 2)C、( 1,﹣ 2) D 、( 2,﹣ 1)2、假如P( m+3, 2m+4)在y 轴上,那么点P 的坐标是()A 、(﹣ 2, 0)B 、( 0,﹣ 2)C、( 1, 0)D、( 0,1)3、点P(m﹣ 1,2m+1)在第二象限,则m 的取值范围是()A 、;B、C、 m< 1D、4、点P 在第四象限且到x 轴的距离为4,到y 轴的距离为5,则P 点的坐标是()A 、( 4,﹣ 5)B 、(﹣ 4,5)C、(﹣5, 4)D、( 5,﹣ 4)5、如图,将四边形ABCD先向左平移 3 个单位,再向上平移 2 个单位,那么点 A 的对应点A′的坐标是()A 、( 6,1)B、( 0, 1)C、( 0,﹣ 3)D、( 6,﹣ 3)6、如图,在平面直角坐标系中,已知点A( a,0), B( 0, b),假如将线段AB 绕点 B 顺时针旋转 90°至CB,那么点 C 的坐标是()A 、(﹣ b, b+a)B 、(﹣ b, b﹣ a)C、(﹣a, b﹣ a)D、( b, b﹣a)7、如图,△ABC与△ DEF关于y 轴对称,已知A(﹣ 4, 6), B(﹣ 6, 2), E( 2,1),则点D的坐标为()A 、( 4, 6)B、( 4, 6)C、( 2, 1)D、( 6, 2)8、家的坐(2, 1),家的坐(1, 2),家在家的()A 、南方向B 、北方向C、西南方向D、西北方向9、在平面直角坐系中,任意两点A(x1, y1), B( x2, y2),定运算:①A⊕ B=( x1+x2,y1+y2);② A? B=x1x2+y1y2;③当 x1=x2且 y1=y2, A=B,有以下四个命:(1)若 A( 1, 2), B( 2, 1), A⊕B=( 3,1), A? B=0 ;(2)若 A⊕ B=B⊕ C, A=C;( 3)若 A? B=B? C, A=C;(4)任意点 A、B、C,均有( A⊕B)⊕ C=A⊕( B⊕ C)建立,此中正确命的个数()A、1 个B、2个C、3 个D、4 个10、如,一个点 P 在平面直角坐系中按箭所示方向做折运,即第一次从原点运到( 1,1),第二次从( 1,1)运到( 2, 0),第三次从( 2, 0)运到( 3, 2),第四次从(3,2)运到( 4,0),第五次从(4, 0)运到( 5, 1),⋯,按的运律,第2013 次运后,点P 的坐是()A 、( 2012,1) B、( 2012, 2)C、( 2013, 1) D 、( 2013, 2)二、填空11、假如影院里的二排六号用(2, 6)表示,( 1, 5)的含是、12、若 B 地在 A 地的南偏50°方向, 5km , A 地在 B 地的°方向km 、13、已知点 P( 3, 1)关于 y 的称点 Q 的坐是( a+b, 1 b), a b的、14、已知△ ABC 在直角坐系中的地点如所示,假如△A′B′C′与△ ABC 关于 y 称,点 A 的点 A′的坐是、15、如图,假如所在地点的坐标为(﹣1,﹣ 2),所在地点的坐标为(2,﹣ 2),那么,所在地点的坐标为、16、如图,已知A( 0, 1), B( 2,0),把线段AB 平移后获得线段CD,此中 C( 1, a), D( b,1),则 a+b=、17、在直角坐标系中,O 为坐标原点,△ABO 是正三角形,若点坐标是、18、已知点P( 2m﹣ 1,m)可能在某个象限的角均分线上,则B 的坐标是(﹣ 2, 0),则点P 点坐标为、A 的19、已知点A( 4,y), B(x,﹣ 3),若AB∥ x 轴,且线段AB 的长为5, x=, y=、20、如图,等边三角形OAB的极点O 在座标原点,极点 A 在 x 轴上, OA=2,将等边三角形OAB绕原点顺时针旋转105°至OA′B′的地点,则点B′的坐标为、三、解答题(共50 分)21、在棋盘中建立以以下图的平面直角坐标系,三颗棋子A,O,B 的地点以以下图,它们的坐标分别是(﹣ 1,1),( 0, 0)和( 1, 0)(1)如图,增添棋子 C,使 A,O,B,C 四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;( 2)在其余个点地点增添一颗棋子P,使 A, O,B,P 四颗棋子成为一个轴对称图形,请直接写出棋子 P 的地点坐标(写出 2 个即可)、22、已知四边形ABCD各极点的坐标分别是A( 0, 0), B(3, 6), C( 6,8), D( 8, 0)( 1)请建立合适的平面直角坐标系,并描出点A、点B、点C、点D、( 2)求四边形ABCD的面积、23、如图,图形中每一小格正方形的边长为1,已知△ABC、(1)AC的长等于,△ ABC的面积等于、( 2)先将△ABC向右平移 2 个单位获得△A′B′C′,则 A 点的对应点A′的坐标是、( 3)再将△ABC绕点 C 按逆时针方向旋转90°后获得△A1B1C1,则A 点对应点A1的坐标是、OABC在直角坐标系中,(如图)OA与y 轴的夹角为30°,求点A、点24、已知边长为 4 的正方形C、点 B 的坐标、25、已知:在平面直角坐标系中,A( 0, 1), B( 2, 0), C(4, 3)( 1)求△ ABC 的面积;( 2)设点 P 在 x 轴上,且△ ABP 与△ ABC 的面积相等,求点P 的坐标、26、在某河流的北岸有A、B 两个乡村, A 村距河北岸的距离为 1 千米, B 村距河北岸的距离为 4 千米,且两村相距 5 千米,B 在 A 的右侧,现以河北岸为x 轴, A 村在y 轴正半轴上(单位:千米)、( 1)请建立平面直角坐标系,并描出A、 B 两村的地点,写出其坐标、( 2)近几年,因为乱砍滥伐,生态环境遇到破坏,A、 B 两村面对缺水的危险、两村商讨,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么地点在图中标出水泵站的地点,并求出所用水管的长度、参照答案与试题分析一、选择题1、点 P(﹣ 1, 2)关于 y 轴对称点的坐标是()A 、( 1, 2) B、(﹣ 1,﹣ 2) C 、( 1,﹣ 2) D 、( 2,﹣ 1)【考点】关于x 轴、 y 轴对称的点的坐标、【专题】计算题、【分析】依据关于y 轴对称,横坐标互为相反数,纵坐标不变、【解答】解:点P(﹣ 1, 2)关于 y 轴对称点的坐标为(1, 2)、应选 A、【评论】此题观察了关于x 轴、 y 轴对称点的坐标,注:关于y 轴对称,横坐标互为相反数,纵坐标不变;关于 x 轴对称,纵坐标互为相反数,横坐标不变;关于原点对称,横纵坐标都互为相反数、2、假如 P( m+3,2m+4)在 y 轴上,那么点P 的坐标是()A 、(﹣ 2, 0)B、( 0,﹣ 2)C、( 1,0) D 、( 0, 1)【考点】点的坐标、【分析】依据点在y 轴上,可知P 的横坐标为0,即可得 m 的值,再确立点P 的坐标即可、【解答】解:∵ P(m+3,2m+4)在 y 轴上,∴ m+3=0 ,解得 m=﹣3, 2m+4=﹣ 2,∴点 P 的坐标是(0,﹣ 2)、应选 B、【评论】解决此题的要点是记着y 轴上点的特色:横坐标为0、3、点 P(m﹣ 1,2m+1)在第二象限,则m 的取值范围是()A 、B、C、 m< 1 D 、【考点】点的坐标;解一元一次不等式组、【专题】证明题、【分析】让点P 的横坐标小于0,纵坐标大于0 列不等式求值即可、【解答】解:∵点P( m﹣1, 2m+1)在第二象限,∴m﹣ 1< 0, 2m+1> 0,解得:﹣< m< 1、应选: B、【评论】此题主要观察了平面直角坐标系中各个象限的点的坐标的符号特色、四个象限的符号特色分别是:第一象限(+, +);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)、4、点 P 在第四象限且到x 轴的距离为A 、( 4,﹣ 5)B、(﹣ 4, 5)4,到C、(﹣y 轴的距离为5,则 P 点的坐标是(5, 4)D、( 5,﹣ 4))【考点】点的坐标、【分析】依据第四象限内点的横坐标是正数,纵坐标是负数,点到x 轴的距离等于纵坐标的长度,到 y 轴的距离等于横坐标的长度解答、【解答】解:∵点P 在第四象限且到x 轴的距离为4,到 y 轴的距离为5,∴点P 的横坐标为5,纵坐标为﹣4,∴ P 点的坐标是(5,﹣ 4)、应选 D 、【评论】此题观察了点的坐标,熟记点到x 轴的距离等于纵坐标的长度,到y 轴的距离等于横坐标的长度是解题的要点、5、如图,将四边形ABCD先向左平移 3 个单位,再向上平移 2 个单位,那么点 A 的对应点A′的坐标是()A 、( 6, 1) B、( 0, 1) C、( 0,﹣ 3)D、( 6,﹣ 3)【考点】坐标与图形变化-平移、【专题】推理填空题、【分析】四边形ABCD 与点 A 平移同样,据此即可获得点A′的坐标、【解答】解:四边形ABCD 先向左平移 3 个单位,再向上平移 2 个单位,所以点 A 也先向左平移 3 个单位,再向上平移 2 个单位,由图可知, A′坐标为( 0, 1)、应选: B、【评论】此题观察了坐标与图形的变化﹣﹣平移,此题此题观察了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移同样、平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减、6、如图,在平面直角坐标系中,已知点A( a,0), B( 0, b),假如将线段AB 绕点 B 顺时针旋转 90°至 CB,那么点C 的坐标是()A 、(﹣ b, b+a) B、(﹣ b, b﹣ a)C、(﹣ a, b﹣a)D、( b,b﹣ a)【考点】坐标与图形变化-旋转;旋转的性质、【专题】计算题、【分析】过点 C 作 CD⊥ y 轴于点 D,依据旋转的性质可以证明∠CBD =∠BAO,而后证明△ ABO 与△ BCD 全等,依据全等三角形对应边相等可得BD、CD 的长度,而后求出OD 的长度,最后依据点C 在第二象限写出坐标即可、【解答】解:如图,过点 C 作 CD⊥ y 轴于点 D,∵∠ CBD +∠ ABO=90°,∠ ABO +∠ BAO=90°,∴∠ CBD =∠ BAO,在△ ABO 与△ BCD 中,,∴△ ABO ≌△ BCD( AAS),∴CD=OB, BD =AO,∵点 A( a, 0), B( 0, b),∴CD=b, BD =a,∴OD=OB﹣ BD =b﹣a,又∵点 C 在第二象限,∴点 C 的坐标是(﹣ b, b﹣a)、应选 B、BD 、【评论】此题主要观察了旋转的性质,坐标与图形的关系,作出辅助线利用全等三角形求出CD 的长度是解题的要点、7、如图,△ ABC 与△ DEF 关于 y 轴对称,已知A(﹣ 4, 6), B(﹣ 6, 2), E( 2,1),则点 D 的坐标为()A 、(﹣ 4, 6)B、( 4,6) C 、(﹣ 2, 1) D 、( 6, 2)【考点】关于x 轴、 y 轴对称的点的坐标、【分析】依据关于y 轴对称点的坐标特色:横坐标互为相反数,纵坐标不变、即点P( x, y)关于 y 轴的对称点P′的坐标是(﹣x, y),从而得出答案、【解答】解:∵△ABC 与△ DEF 关于 y 轴对称, A(﹣ 4, 6),∴D( 4, 6)、应选: B、【评论】此题主要观察了关于y 轴对称点的性质,正确记忆横纵坐标的关系是解题要点、8、丽丽家的坐标为(﹣2,﹣ 1),红红家的坐标为(1, 2),则红红家在丽丽家的()A 、东南方向B 、东北方向C、西南方向 D 、西北方向【考点】坐标确立地点、【分析】依据已知点坐标得出所在直线分析式,从而依据图象与坐标轴交点坐标得出两家的地点关系、【解答】解:∵丽丽家的坐标为(﹣2,﹣ 1),红红家的坐标为(1, 2),∴设过这两点的直线分析式为:y=ax+b,则,解得:,∴直线分析式为:y=x+1,∴图象过( 0, 1),(﹣ 1, 0)点,则红红家在丽丽家的东北方向、应选: B、【评论】此题主要观察了坐标确立地点,依据已知得出两点与坐标轴交点坐标是解题要点、9、在平面直角坐标系中,任意两点A(x1, y1), B( x2, y2),规定运算:①A⊕ B=( x1+x2, y1+y2);② A? B=x1x2+y1y2;③当 x1=x2且 y1=y2时, A=B,有以下四个命题:( 1)若 A( 1, 2), B( 2,﹣ 1),则 A⊕ B=( 3,1), A? B=0;( 2)若 A⊕ B=B⊕ C,则 A=C;( 3)若 A? B=B? C,则 A=C;( 4)对任意点A、B、 C,均有(A⊕ B)⊕ C=A⊕( B⊕ C)建立,此中正确命题的个数为()A、1 个B、2 个C、3 个D、4 个【考点】命题与定理;点的坐标、【专题】压轴题、【分析】(1)依据新定义可计算出A⊕B=( 3, 1), A? B=0 ;(2)设 C(x3,y3),依据新定义得 A⊕ B=(x1+x2,y1+y2),B⊕C=( x2+x3,y2+y3),则 x1+x2=x2+x3,y +y =y +y ,于是获得x=x , y=y ,而后依据新定义即可获得A=C;12231313(3)因为 A? B=x1x2+y1y2,B? C=x2x3+y2y3,则 x1x2+y1y2=x2x3+y2y3,不可以获得 x1=x3,y1=y3,所以 A≠C;( 4)依据新定义可得(A⊕ B)⊕ C=A⊕( B⊕C) =(x +x+x , y +y +y )、123123【解答】解:(1) A⊕ B=(1+2 , 2 1) =( 3,1), A? B=1×2+2×( 1) =0,所以( 1)正确;(2) C( x3, y3), A⊕ B=( x1+x2, y1+y2), B⊕C=( x2 +x3, y2+y3),而 A⊕ B=B⊕C,所以 x1+x2=x2+x3, y1+y2=y2+y3, x1=x3,y1=y3,所以 A=C,所以( 2)正确;(3) A? B=x1 x2 +y1 y2, B? C=x2 x3+y2y3,而 A? B=B? C, x1x2+y1y2 =x2 x3+y2y3,不可以获得 x1=x3,y1=y3,所以 A≠C,所以( 3)不正确;(4)因( A⊕ B)⊕ C=( x1+x2+x3, y1+y2+y3), A⊕( B⊕ C) =( x1+x2+x3, y1+y2 +y3),所以( A⊕B)⊕C=A⊕( B⊕ C),所以( 4)正确、故 C、【点】本考了命与定理:判断一件事情的句,叫做命、多命都是由和两部分成,是已知事,是由已知事推出的事,一个命可以写成“⋯那么⋯”假如形式、有些命的正确性是用推理的,的真命叫做定理,也考了理解能力、10、如,一个点P 在平面直角坐系中按箭所示方向做折运,即第一次从原点运到( 1,1),第二次从(1, 1)运到(2, 0),第三次从(2, 0)运到(3,2),第四次从(3,2)运到( 4,0),第五次从(4,0)运到(5,1),⋯,按的运律,第2013次运后,点P 的坐是()A 、( 2012, 1)B、( 2012, 2)C、( 2013, 1)D、( 2013, 2)【考点】律型:点的坐、【分析】依据各点的横坐化得出点的坐律而得出答案即可、【解答】解:∵第一次从原点运到(1,1),第二次从(1, 1)运到( 2,0),第三次从(2,0)运到( 3, 2),第四次从( 3, 2)运到( 4, 0),第五次从(4,0)运到( 5, 1),⋯,∴按的运律,第几次横坐即几,坐:1, 0, 2, 0,1, 0, 2,0⋯4个一循,∵=503⋯1,∴ 第 2013 次运后,点 P 的坐是:( 2013, 1)、故 C、【点】此主要考了点的坐律,依据已知的点的坐得出点的化律是解关、二、填空11、假如影院里的二排六号用(2, 6)表示,( 1, 5)的含是一排五号【考点】坐确立地点、【分析】依占有序数表示地点,可得答案、【解答】解:影院里的二排六号用(2,6)表示,(1, 5)的含是一排五号,故答案:一排五号、、【点】本考了坐确立地点,利用有序数表示地点是解关、12、若 B 地在 A 地的南偏50°方向, 5km , A 地在 B 地的北偏西50°方向 5 km 、【考点】方向角、【分析】依据方向角的看法,画正确表示出方向角,即可求解、【解答】解:从中∠CAB=50°,故 A 地在 B 地的北偏西50°方向 5km、【点】解答此需要从运的角度,正确画出方向角,找准中心是解答此的关、13、已知点 P( 3, 1)关于 y 的称点 Q 的坐是( a+b, 1 b), a b的25 、【考点】关于x 、 y 称的点的坐、【分析】依据关于y 称点的坐特色:横坐互相反数,坐不可直接获得答案、【解答】解:∵点P( 3,﹣ 1)关于 y 轴的对称点Q 的坐标是( a+b, 1﹣b),∴,解得:,则a b的值为:(﹣5)2=25 、故答案为: 25、【评论】此题主要观察了关于y 轴对称点的坐标特色,要点是掌握点的坐标的变化规律、14、已知△ ABC 在直角坐标系中的地点以以下图,假如△A′B′C′与△ ABC 关于 y 轴对称,则点 A 的对应点 A′的坐标是(3,2)、【考点】关于x 轴、 y 轴对称的点的坐标、【分析】第一利用图形得出 A 点坐标,再利用关于y 轴对称点的性质得出答案、【解答】解:以以下图:A(﹣ 3, 2),则点 A 关于 y 轴对称的对应点A′的坐标是:(3, 2)、故答案为:( 3, 2)、【评论】此题主要观察了关于y 轴对称点的性质,正确记忆关于坐标轴对称点的性质是解题要点、15、如图,假如所在地点的坐标为(﹣1,﹣ 2),所在地点的坐标为(2,﹣ 2),那么,所在地点的坐标为(﹣ 3,1)、【考点】坐标确立地点、【专题】压轴题、【分析】依据已知两点的坐标建立坐标系,而后确立其余点的坐标、【解答】解:由所在地点的坐标为(﹣1,﹣ 2),所在地点的坐标为(2,﹣ 2),可以确立平面直角坐标系中x 轴与y 轴的地点、从而可以确立所地点点的坐标为(﹣3, 1)、故答案为:(﹣3, 1)、【评论】观察类比点的坐标解决实质问题的能力和阅读理解能力、解决此类问题需要先确立原点的地点,再求未知点的地点,也许直接利用坐标系中的挪动法规右加左减,上加下减来确立坐标、16、如图,已知A( 0, 1), B( 2,0),把线段AB 平移后获得线段CD,此中 C( 1, a), D( b,1),则 a+b= 5、【考点】坐标与图形变化-平移、【分析】依据点A、C 的横坐标判断出向右平移 1 个单位,而后求出b,再依据点B、D 的纵坐标判断出向上平移 1 个单位,而后求出a,最后相加计算即可得解、【解答】解:∵A(0, 1), C( 1,a),∴向右平移 1 个单位,∴b=2+1=3 ,∵B( 2, 0), D( b, 1),∴向上平移 1 个单位,∴ a=1+1=2 ,∴ a+b=2+3=5 、故答案为: 5、【评论】此题观察了坐标与图形变化﹣平移,依据对应点的坐标的变化确立出平移方法是解题的关键、17、在直角坐标系中,O 为坐标原点,△ABO 是正三角形,若点 B 的坐标是(﹣2, 0),则点 A 的坐标是、【考点】等边三角形的性质;坐标与图形性质、【分析】第一依据题意画出图形,过点 A 作AC⊥ OB于点C,由△ ABO是正三角形,点 B 的坐标是(﹣ 2, 0),即可求得OC与AC的长,既而求得答案、【解答】解:如图,过点 A 作AC⊥ OB于点C,∵△ OAB是正三角形,∴OA=OB =2, OC=BC= OB=1 ,∴ AC==,∴点 A 的坐标是;(﹣1,),同理:点 A′的坐标是(﹣ 1,﹣),∴点 A 的坐标是(﹣ 1,)或(﹣ 1,﹣)、故答案为:(﹣1,)或(﹣ 1,﹣)、【评论】此题观察了等边三角形的性质与勾股定理、此题难度不大,注意掌握数形联合思想与分类谈论思想的应用、18、已知点 P( 2m﹣ 1,m)可能在某个象限的角均分线上,则P点坐标为(﹣,)或(1,1)、【考点】点的坐标、【分析】分两种状况谈论:①依据第二、四象限角均分线上的点的横坐标与纵坐标互为相反数列出方程求解即可;②依据第一、三象限角均分线上的点的横坐标与纵坐标相等列出方程求解即可、【解答】解:分两种状况谈论:①当点 P(2m﹣ 1, m)在第二、四象限角均分线上时,2m﹣ 1+m=0,解得: m=,则点 P 的坐标为:(﹣,);②当点 P(2m﹣ 1, m)在第一、三象限角均分线上时,2m﹣ 1=m,解得: m=1 ,则点 P 的坐标为( 1, 1);故答案为:(﹣,)或(1,1)、【评论】此题观察了点的坐标,解决此题的要点是分两种状况谈论、19、已知点 A( 4, y), B( x,﹣ 3),若 AB ∥x 轴,且线段AB 的长为 5, x= 9 或﹣ 1,y=﹣3、【考点】坐标与图形性质、【分析】若AB∥ x 轴,则 A, B 的纵坐标同样,因此y=﹣ 3;线段 AB 的长为 5,即 |x﹣ 4|=5,解得x=9 或﹣ 1、【解答】解:若AB∥ x 轴,则 A,B 的纵坐标同样,因此y=﹣3;线段 AB 的长为 5,即 |x﹣ 4|=5,解得 x=9 或﹣ 1、故答案填: 9 或﹣ 1,﹣ 3、【评论】此题主要观察了与坐标轴平行的点的坐标的关系,与x 轴的点的纵坐标同样,与y 轴平行的线上的点的横坐标同样、20、如图,等边三角形OAB 的极点 O 在座标原点,极点 A 在 x 轴上, OA=2,将等边三角形OAB 绕原点顺时针旋转105°至 OA′B′的地点,则点B′的坐标为(,﹣)、【考点】坐标与图形变化-旋转;等边三角形的性质、【分析】过 B 作 BE⊥ OA 于 E,则∠ BEO =90°,依据等边求出 OB=OA=2,∠ BOA =60°,依据旋转得出∠AOA ′=105,°∠ A′OB′=∠ AOB=60°,求出∠ AOB′=45,°解直角三角形求出 B′E 和 OE 即可、【解答】解:过 B 作 BE⊥ OA 于 E,则∠ BEO=90°,∵△OAB 是等边三角形,A(2,0),∴ OB=OA =2,∠ BOA=60°,∵等边三角形OAB 绕原点顺时针旋转105°至 OA′B′的地点,旋转角为105°,∴∠ AOA ′=105,°∠ A′OB′=∠AOB=60°, OB=OB′=2,∴∠ AOB ′=105﹣°60°=45°,在 Rt△B′EO中, B′E=OE=OB′=,即点 B′的坐标为(,﹣),故答案为:(,﹣)、【评论】此题观察了等边三角形的性质,旋转的性质,解直角三角形的应用,能构造直角三角形是解此题的要点、三、解答题(共50 分)21、在棋盘中建立以以下图的平面直角坐标系,三颗棋子A,O,B 的地点以以下图,它们的坐标分别是(﹣1,1),(0, 0)和( 1, 0)(1)如图,增添棋子 C,使 A,O,B,C 四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;( 2)在其余个点地点增添一颗棋子P,使 A, O,B,P 四颗棋子成为一个轴对称图形,请直接写出棋子 P 的地点坐标(写出 2 个即可)、【考点】利用轴对称设计图案、【分析】( 1) A, O, B, C 四颗棋子构成等腰梯形,而后画出上下两底的中垂线即可;(2)依据轴对称图形的定义:沿着向来线折叠后,直线两旁的部分能重合是轴对称图形,而后增添一颗棋子 P 即可、【解答】解:( 1)以以下图:直线 l 为对称轴;;( 2)以以下图:P(2, 1),( 0,﹣ 1)、【评论】此题主要观察了利用轴对称图形设计图案,要点是掌握轴对称图形的定义、22、已知四边形ABCD 各极点的坐标分别是(1)请建立合适的平面直角坐标系,并描出点A( 0, 0), B(3, 6), C( 6,8), D( 8, 0)A、点B、点C、点D、( 2)求四边形ABCD 的面积、【考点】坐标与图形性质、【专题】作图题;网格型、【分析】( 1)采用合适的点作为坐标原点,经过原点的两条相互垂直的直线分别作为x 轴, y 轴,建立坐标系,分别描出点A、点 B、点 C、点 D、如确立( 3, 6)表示的地点,先在x 轴上找出表示3 的点,再在 y 轴上找出表示 6 的点,过这两个点分别做x 轴和 y 轴的垂线,垂线的交点即所要表示的地点、( 2)过 B 作 BE⊥ AD 于 E,过 C 作 CF ⊥ AD 于 F ,利用四边形ABCD 的面积 =S△ABE+S 梯形BEFC+S△CFD,进行求解、【解答】解:(1)以以下图、(2)过 B 作 BE⊥AD 于 E,过 C 作 CF⊥AD 于 F,则S 四边形ABCD=S△ABE+S 梯形BEFC+S△CFD===9+21+8=38答:四边形ABCD 的面积为 38、【评论】主要观察了直角坐标系的建立、在平面直角坐标系中,必定要理解点与坐标的对应关系,是解决此类问题的要点、23、如图,图形中每一小格正方形的边长为1,已知△ABC、(1) AC 的长等于,△ ABC 的面积等于3.5、(2)先将△ ABC 向右平移 2 个单位获得△ A′B′C′,则 A 点的对应点 A′的坐标是(1,2)、(3)再将△ ABC 绕点 C 按逆时针方向旋转90°后获得△ A1B1C1,则 A 点对应点 A1的坐标是(﹣ 3,﹣2)、【考点】坐标与图形变化-旋转;三角形的面积;坐标与图形变化-平移、【分析】( 1)利用勾股定理即可求解;(2) A 的坐标是(﹣ 1, 2),向右平移 2 个单位长度,则 A′的坐标即可写出;(3)依据旋转的性质,即可求解、【解答】解:(1) AC==,S△ABC=3×3﹣×1×2﹣×2×3﹣×1×3=3.5,故答案为:; 3.5;(2) A 点的对应点 A′的坐标是( 1, 2),故答案为:( 1, 2)、(3)并写出 A 点对应点 A1的坐标是(﹣ 3,﹣ 2)、故答案为:(﹣ 3,﹣ 2)、【评论】此题主要观察了旋转及平移变换,解题的要点是旋转及平移变换的变化特色、24、已知边长为 4 的正方形OABC 在直角坐标系中,(如图)OA 与 y 轴的夹角为30°,求点 A、点C、点 B 的坐标、【考点】正方形的性质;坐标与图形性质、【专题】计算题、【分析】作 AD⊥ x 轴于 D,作 CE⊥x 轴于E,作 BF⊥ CE 于 F,如图,先求出∠AOD=60°,则利用含 30 度的直角三角形三边的关系获得OD=OA=2, AD=OD =2 ,从而获得 A 点坐标;再计算出∠ COE =30°,则在 Rt△ COE 中可计算出 CE=OC=2 , OE=CE=2,于是获得 C(﹣ 2, 2);而后计算出∠ BCF=30°,所以 BF =BC=2,CF =BF=2,于是获得 B 点坐标、【解答】解:作 AD⊥ x 轴于 D,作 CE⊥ x 轴于 E,作 BF ⊥CE 于 F ,如图,∵ OA 与 y 轴的夹角为 30°,∴∠ AOD =60°,∴OD=OA=2, AD=OD =2,∴A(2, 2);∵∠ AOC =90°,∴∠ COE =30°,CE=2,在 Rt△COE 中, CE=OC=2 , OE=∴ C(﹣ 2,2);∵∠ OCE =60°,∠ BCO =90°,∴∠ BCF =30°,∴ BF= BC=2, CF =BF=2,∴ B(﹣ 2+2, 2+2)、【评论】此题观察了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,相互垂直均分,而且每条对角线均分一组对角、也观察了坐标与图形性质、记着含 30 度的直角三角形三边的关系、25、已知:在平面直角坐标系中,A( 0, 1), B( 2, 0), C(4, 3)( 1)求△ ABC 的面积;( 2)设点 P 在 x 轴上,且△ ABP 与△ ABC 的面积相等,求点P 的坐标、【考点】坐标与图形性质、【分析】(1)过点 C 向 x、y 轴作垂线,垂足分别为D、E,而后依照S△ABC=S 四边形CDEO﹣ S△AEC﹣ S△ABO ﹣ S△BCD求解即可、(2)设点 P 的坐标为( x, 0),于是获得 BP=|x﹣ 2|,而后依照三角形的面积公式求解即可、【解答】解:( 1)过点 C 作 CD ⊥ x 轴, CE⊥y,垂足分别为 D、 E、S△ABC=S 四边形CDEO﹣S△AEC﹣S△ABO﹣S△BCD=3×4﹣×2×4﹣×1×2﹣×2×3=12﹣ 4﹣ 1﹣ 3=4、(2)设点 P 的坐标为( x, 0),则 BP=|x﹣ 2|、∵△ ABP 与△ ABC 的面积相等,∴ ×1×|x﹣ 2|=4、解得: x=10 或 x=6、所以点 P 的坐标为( 10, 0)或( 6, 0)、【评论】此题主要观察的是坐标与图形的性质,利用割补法求得△ABC 的面积是解题的要点、26、在某河流的北岸有A、B 两个乡村, A 村距河北岸的距离为 1 千米, B 村距河北岸的距离为 4 千米,且两村相距 5 千米, B 在 A 的右侧,现以河北岸为x 轴, A 村在 y 轴正半轴上(单位:千米)、( 1)请建立平面直角坐标系,并描出A、 B 两村的地点,写出其坐标、( 2)近几年,因为乱砍滥伐,生态环境遇到破坏,A、 B 两村面对缺水的危险、两村商讨,共同在河北岸修一个水泵站,分别向两村各铺一条水管,要使所用水管最短,水泵站应修在什么地点在图中标出水泵站的地点,并求出所用水管的长度、【考点】坐标确立地点;轴对称-最短路线问题、【专题】应用题、【分析】( 1)依据题意建立坐标系解答;(2)利用两点之间线段最短的数学道理作图即可、【解答】解:( 1)如图,点 A( 0, 1),点 B( 4, 4);( 2)找 A 关于 x 轴的对称点A′,连接 A′B 交 x 轴于点 P,则 P 点即为水泵站的地点,PA+PB=PA′+PB=A′B 且最短(如图)、过 B、 A′分别作 x 轴、 y 轴的垂线交于E,作 AD ⊥ BE,垂足为 D,则 BD=3 ,在 Rt△ABD 中, AD==4,所以 A 点坐标为( 0, 1), B 点坐标为( 4, 4),A′点坐标为( 0,﹣ 1),由 A′E=4,BE =5,在 Rt△A′BE 中, A′B==、故所用水管最短长度为千米、【评论】主要观察了直角坐标系的建立和运用以及作图求两点之间的最短距离,该题中还涉及到了勾股定理的运用、此类题型是个要点也是难点,需要掌握、。

【浙教版】八年级数学上第4章 图形与坐标 单元测试(含答案)

【浙教版】八年级数学上第4章 图形与坐标 单元测试(含答案)

单元测试(四)图形与坐标题号一二三总分合分人复分人得分一.1.(丹东期末)根据下列表述,能确定位置的是( D )A.红星电影院2排B.北京市四环路C.北偏东30°D.东经118°,北纬40°2.点P(1,-2)在平面直角坐标系中所在的象限是( D )A.第一象限B.第二象限C.第三象限D.第四象限3.长方形OABC中,AB=3,BC=2,芳芳建立了如图所示的平面直角坐标系,则点B的坐标是( C )A.(3,2)B.(2,3)C.(-3,2)D.(-2,3)4.设点A(m,n)在x轴上,且位于原点的左侧,则下列结论正确的是(D)A.m=0,n为一切数B.m=0,n<0C.m为一切数,n=0D.m<0,n=05.在直角坐标系中,已知A(2,0),B(-3,-4),O(0,0),则△AOB的面积为(A)A.4B.6C.8D.36.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数a,则所得的图案与原来图案相比( D )A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位C.图案向上平移了a个单位D.图案向右平移了a个单位,并且向上平移了a个单位7.如图所示的象棋盘上,若“帅”位于点(1,-2)上,“相”位于点(3,-3)上,则“炮”位于点( C )A.(-1,1)B.(-1,2)C.(-2,0)D.(-2,2)8.已知点P (a +1,2a -3)关于x 轴的对称点在第一象限,则a 的取值范围是( B )A.a <-1B.-1<a <32C.-32<a <1D.a >329.已知点M (3,-4),在x 轴上有一点B ,B 点与M 点的距离为5,则点B 的坐标为( D )A.(6,0)B.(0,1)C.(0,-8)D.(6,0)或(0,0)10.如图,矩形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (2,0)同时出发,沿矩形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2 012次相遇地点的坐标是( D )A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)二.填空题(每小题4分,共24分)11.如果将电影票上“6排3号”简记为(6,3),那么“10排10号”可表示为(10,10);(7,1)表示的含义是7排1号.12.已知点B (-3,4)关于y 轴的对称点为点A ,则点A 的坐标是(3,4).13.一只蚂蚁由点(0,0)先向上爬4个单位,再向右爬3个单位,再向下爬2个单位后,它所在位置的坐标是(3,2).14.平面直角坐标系内,点M (a +3,a -2)在y 轴上,则点M 的坐标是(0,-5).15.已知两点E (x 1,y 1).F (x 2,y 2),如果x 1+x 2=2x 1,y 1+y 2=0,那么E .F 两点关于x 轴对称. 16.在平面直角坐标系中,横坐标.纵坐标都为整数的点称为整点.观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第10个正方形(实线)四条边上的整点个数为40.三.解答题(共66分)17.(6分)某学校的平面示意图如图所示,实验楼所在位置的坐标为(-2,-3),教学楼所在位置的坐标为(-1,2),请确定图书馆所在位置的坐标.解:由实验楼所在位置的坐标为(-2,-3),教学楼所在的位置的坐标为(-1,2),可以确定平面直角坐标系中x轴与y轴的位置,如图.从而可以确定图书馆所在位置的坐标为(-4,3).18.(8分)已知点A(2m+1,m+9)在第一象限,且点A到x轴和y轴的距离相等,求点A的坐标.解:由题意,得2m+1=m+9.解得m=8,所以2m+1=17.所以A(17,17).19.(8分)(诸暨期末)△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC关于x轴对称的△A1B1C1;(2)将△ABC向左平移4个单位长度,画出平移后的△A2B2C2.解:略.20.(10分)如图,已知A(-1,0),B(1,1),把线段AB平移,使点B移动到点D(3,4)处,这时点A移动到点C处.(1)写出点C的坐标;(2)如果平移时只能左右或者上下移动,叙述线段AB是怎样移到CD的.解:(1)由点B(1,1)移动到点D(3,4)处的平移规律可得C(1,3).(2)先向右平移2个单位,再向上平移3个单位即可得到CD.21.(10分)在直角坐标系中,用线段顺次连结点A(-2,0),B(0,3),C(3,3),D(4,0).(1)这是一个什么图形; (2)求出它的周长.解:(1)因为A ,D 的纵坐标相同,B ,C 的纵坐标相同,所以BC ∥AD . 又因为AB 与CD 不平行,故四边形ABCD 是梯形.图略. (2)在Rt △ABO 中,根据勾股定理得AB =OA 2+OB 2=13,同理可得CD =10,因而梯形的周长是9+13+10.22.(12分)如图1,将射线OX 按逆时针方向旋转β角,得到射线OY ,如果点P 为射线OY 上的一点,且OP =a ,那么我们规定用(a ,β)表示点P 在平面内的位置,并记为P (a ,β),例如,图2中,如果OM =8,∠XOM =110°,那么点M 在平面内的位置,记为M (8,110),根据图形,解答下列问题:图1 图2 图3(1)如图3,如果点N 在平面内的位置记为N (6,30),那么ON =6,∠XON =30°; (2)如果点A ,B 在平面内的位置分别记为A (4,30),B (4,90),试求A ,B 两点间的距离.解:因为∠BOX =90°,∠AOX =30°, 所以∠AOB =60°. 因为OA =OB =4,所以△AOB 是等边三角形,所以AB =OA =4.23.(12分)(滨江区期末)已知,△ABC 的三个顶点A ,B ,C 的坐标分别为A (4,0),B (0,-3),C (2,-4).(1)在如图所示的平面直角坐标系中画出△ABC ,并分别写出点A ,B ,C 关于x 轴的对称点A ′,B ′,C ′的坐标;(2)将△ABC 向左平移5个单位,请画出平移后的△A ″B ″C ″,并写出△A ″B ″C ″各个顶点的坐标;(3)求出(2)中的△ABC 在平移过程中所扫过的面积.解:(1)△ABC 如图所示,A ′(4,0),B ′(0,3),C ′(2,4).(2)△A ″B ″C ″如图所示,A ″(-1,0),B ″(-5,-3),C ″(-3,-4). (3)△ABC 在平移过程中所扫过的面积为5×4+(4×4-12×4×3-12×1×2-12×2×4)=20+(16-6-1-4)=20+5=25.。

浙教版八年级上册数学第4章 图形与坐标含答案

浙教版八年级上册数学第4章 图形与坐标含答案

浙教版八年级上册数学第4章图形与坐标含答案一、单选题(共15题,共计45分)1、如图,在平面直角坐标系中,点的坐标分别为,.将线段平移后A点的对应点是,则点B的对应点的坐标为()A. B. C. D.2、已知,点与点关于轴对称,则的值为()A. B.1 C.-1 D.3、如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是()A. B. C. D.4、已知在第三象限,且,,则点的坐标是()A. B. C. D.5、若点的坐标是(2,﹣1),则点在()A.第一象限B.第二象限C.第三象限D.第四象限6、点P(a,b)在第四象限,则点P到x轴的距离是( )A.aB.bC.-aD.-b7、点M(a+1,a﹣3)在y轴上,则点M的坐标为()A.(0,﹣4)B.(4,0)C.(﹣2,0)D.(0,2)8、坐标平面内下列各点中,在坐标轴上的是()A.(3,3)B.(﹣3,0)C.(﹣1,2)D.(﹣2,﹣3)9、如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(﹣3,2)B.(2,﹣3)C.(1,﹣2)D.(﹣1,2)10、已知点为第四象限内一点,且满足,,则P点的坐标为()A. B. C. D.11、在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限12、如图,在方格纸上画出的小红旗图案,若用(0,0)表示点A,(0,4)表示点B,那么点C的坐标是()A.(﹣3,0)B.(﹣2,3)C.(﹣3,2)D.(﹣3,﹣2)13、在平面直角坐标系中,点(3,﹣4)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限14、在长方形中,三点的坐标分别是则点的坐标为()A. B. C. D.15、如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),那么A2020坐标为()A.(2020,1)B.(2020,0)C.(1010,1)D.(1010,0)二、填空题(共10题,共计30分)16、已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为________.17、如图,在平面直角坐标系xOy中,B1(0,1),B2(0,3),B3(0,6),B 4(0,10),…,以B1B2为对角线作第一个正方形A1B1C1B2,以B2B3为对角线作第二个正方形A2B2C2B3,以B3B4为对角线作第三个正方形A3B3C3B4,…,如果所作正方形的对角线Bn Bn+1都在y轴上,且BnBn+1的长度依次增加1个单位,顶点An 都在第一象限内(n≥1,且n为整数). 那么A1的坐标为________;An的坐标为________(用含n的代数式表示).18、平面直角坐标系xOy中,点A(4,3),点B(3,0),点C(5,3),点E在x轴上.当CE=AB时,点E的坐标为________.19、点向左平移两个单位后恰好位于双曲线上,则________.20、已知点关于x轴的对称点为点B,关于原点的对称点为点C,关于y轴的对称点为点D,则四边形ABCD的面积为________.21、若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为________.22、点P(1,a)在反比例函数的图象上,它关于y轴的对称点在一次函数y=2x+4的图象上,则此反比例函数的解析式为________.23、在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第________象限.24、已知抛物线y=x2+(m+1)x﹣m﹣2(m>0)与x轴交于A、B两点,与y轴交于点C,不论m取何正数,经过A、B、C三点的⊙P恒过y轴上的一个定点,则该定点的坐标是________.25、如图所示的象棋盘上,若帅位于点(1,﹣2)上,相位于点(3,﹣2)上,则炮所在点的坐标是________.三、解答题(共5题,共计25分)26、已知点A 和点B 关于轴对称,求的值.27、有序数对(2,3)和(3,2)相同吗?如果有序数对(a,b)表示某栋楼房中a层楼b号房,那么有序数对(2,3)和(3,2)分别代表什么?28、如图,这是某市部分简图,已知医院的坐标为(﹣2,﹣2),请建立平面直角坐标系,分别写出其余各地的坐标.29、六•一儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度),如图,它与两面互相垂直的围墙OP、OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等,比如:A、B、C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1、S2、S3,并测得S2=6(单位:平方米).OG=GH=HI.(Ⅰ)求S1和S3的值;(Ⅱ)设T(x,y)是弯道MN上的任一点,写出y关于x的函数关系式;(Ⅲ)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?30、在平面直角坐标系内,已知点(1-2a,a-2)在第三象限的角平分线上,求a的值及点的坐标?参考答案一、单选题(共15题,共计45分)1、D2、B3、C4、D5、D6、D7、A8、B9、B10、C11、A12、C13、D14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

浙教版八年级数学上第4章 图形与坐标单元测试(含答案解析)

浙教版八年级数学上第4章 图形与坐标单元测试(含答案解析)

第四章图形与坐标单元测试一、单选题(共10题;共30分)1、若a>0,b<-2,则点(a,b+2)应在()A、第一象限B、第二象限C、第三象限D、第四象限2、如图,在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为()A、(-3,-5)B、(3,5)C、(3.-5)D、(5,-3)3、在平面直角坐标系中,点P(2,3)关于y轴的对称点在( )A、第一象限B、第二象限C、第三象限D、第四象限4、将6个边长是1的正方形无缝隙铺成一个矩形,则这个矩形的对角线长等于()A、B、C、或者D、或者5、课间操时,小聪、小慧、小敏的位置如图所示,小聪对小慧说,如果我的位置用(0,0)表示,小敏的位置用(7,7)表示,那么你的位置可以表示成()A、(5,4)B、(4,4)C、(3,4)D、(4,3)6、点M(﹣3,4)离原点的距离是多少单位长度()A、3B、4C、5D、77、若线段CD是由线段AB平移得到的,点A(﹣1,3)的对应点为C(2,2),则点B(﹣3,﹣1)的对应点D的坐标是()A、(0,﹣2)B、(1,﹣2)C、(﹣2,0)D、(4,6)8、如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A、(3,﹣3)B、(1,﹣1)C、(3,0)D、(2,﹣1)9、在平面直角坐标系xOy中,点P(﹣3,5)关于y轴的对称点在第()象限.A、一B、二C、三D、四10、在平面直角坐标系中,点(3,﹣2)所在象限是()A、第一象限B、第二象限C、第三象限D、第四象限二、填空题(共8题;共24分)11、)写出一个平面直角坐标系中第三象限内点的坐标:(________ ).12、在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________ .13、已知点A(﹣2,4),则点A关于y轴对称的点的坐标为________.14、在平面直角坐标系中,点A(﹣1,0)与点B(0,2)的距离是________15、在平面直角坐标系中,若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在第________象限.16、已知点A(3,3)和点B是平面内两点,且它们关于直线x=2轴对称,则点B的坐标为________17、在平面直角坐标系中,将三角形各点的横坐标都乘﹣1,纵坐标保持不变,所得图形与原图形相比有怎样的位置关系________.18、在平面直角坐标系中,点A(﹣4,4)关于x轴的对称点B的坐标为________.三、解答题(共5题;共38分)19、下图中标明了小红家附近的一些地方,建立平面直角坐标系如图.(1)写出游乐场和糖果店的坐标;(2)某星期日早晨,小红同学从家里出发,沿着(1,3),(3,﹣1),(0,﹣1),(﹣1,﹣2),(﹣3,﹣1)的路线转了一下,又回到家里,写出路上她经过的地方.20、在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如图.(1)填写下列各点的坐标:A4(,),A8(,);(2)点A4n﹣1的坐标(n是正整数)为(3)指出蚂蚁从点A2013到点A2014的移动方向.21、如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.22、已知点A(2x+y,﹣7)与点B(4,4y﹣x)关于x轴对称,试求(x+y)的值.23、在我国沿海地区,几乎每年夏秋两季都会或多或少地遭受台风的侵袭,加强台风的监测和预报,是减轻台风灾害的重要措施.下表是中央气象台2010年发布的第13号台风“鲇鱼”的有关信息:请在下面的经纬度地图上找到台风中心在16日23时和17日23时所在的位置.四、综合题(共1题;共8分)24、如图,在平面直角坐标系xoy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1,B1,C1的坐标(直接写答案).A1________B1________C1________答案解析一、单选题1、【答案】D【考点】点的坐标【解析】【分析】根据b<-2确定出b+2<0,然后根据各象限内点的坐标特征解答.【解答】∵b<-2,∴b+2<0,又∵a>0,∴点(a,b+2)应在第四象限.故答案为:D【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2、【答案】B【考点】关于x轴、y轴对称的点的坐标【解析】【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】点P(-3,5)关于y轴的对称点的坐标为(3,5).故选B.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3、【答案】B【考点】关于x轴、y轴对称的点的坐标【解析】【分析】关于y轴对称点的坐标的特征:纵坐标不变,横坐标互为相反数。

浙教版八年级上第四章图形与坐标20172018学年检测题含答案

浙教版八年级上第四章图形与坐标20172018学年检测题含答案

第 4 章检测题( 时间: 120 分钟满分: 120 分 )一、选择题 (每题 3 分,共 30 分)1、以下各式:-12 21 1 x - y 225a b , x - 1,- 25,,,a - 2ab + b .此中单项式的个数有 ( C )2x 2A 、4 个B 、3 个C 、2 个D 、1个2、以下说法正确的选项是 ( D )ab 的系数是 1A 、 0 和 x 不是单项式B 、- 2 2C 、x 2y 的系数是 0D 、- 22x 2 的次数是 23、以下各组的两项中 ,属于同类项的是 ( D )5与 x 2B 、 4ab 与 4abcC 、 22、nm 与- mnA 、 6 0.2x y 与 0.2xy D 4、以下各式从左到右的变形中 ,正确的选项是 ( C )A 、 a - (b - c)= a -b - cB 、 7ab + 6ab =13a 2b 23212 2222C.2a b - 2a b = a bD 、 3a b + 4b a = 7a b5、计算 6a 2- 5a + 3 与 5a 2+ 2a -1 的差 ,结果正确的选项是( D )A 、 a 2- 3a + 4B 、a 2- 3a +2C 、 a 2- 7a + 2D 、 a 2- 7a + 4 6、若 A = 3x 2+ 5x + 2, B =4x 2+5x + 3,则 A 与 B 的大小关系是 ( B )A 、A >BB 、A <BC 、 A ≤BD 、没法确立7、若 P 与 Q 都是关于 x 的五次多项式 ,则 P +Q 是(D )A 、关于 x 的五次多项式B 、关于 x 的十次多项式C 、关于 x 的四次多项式D 、关于 x 的不超出五次的多项式或单项式8、已知代数式 2x 2- 3x + 9 的值为 7,则 x 2-3x + 9 的值为 ( C )27 9A.2B.2C 、8D 、109、两列火车都从A 地驶向B 地、已知甲车的速度是x 千米 / 时,乙车的速度是 y 千米 /时,经过 3小时,乙车距离 B 地 5 千米,此刻甲车距离 B 地( C )A 、 [3( -x + y)- 5]千米B 、 [3(x + y)- 5]千米C 、[3( - x +y)+ 5]千米D 、 [3(x + y)+ 5]千米10、如图 ,以下每个图都是由若干个点构成的形如三角形的图案,每条边 (包含两个顶点) 有 n 个点 ,每个图案的总点数是S ,按此推测 S 与 n 的关系式为 ( B )A 、 S = 3nB 、 S = 3(n -1)C 、 S = 3n - 1D 、 S = 3n + 1二、填空题 (每题4 分,共 24 分)212 22 211、多项式 2a b - a b - ab 是 __四 __次 __三 __项式 ,次数最高的项是__- 1a b __、33112、若m,n互相反数,3(m- n)-2(2m- 10n)= __0__、13、已知a+ 1+ |b- 2|= 0,(3a- 3b- 2ab)- (a- 5b+ ab)的 __8__、14、已知关于x,y的式A=3nx3y m,B=2mx n y2,若A+B=13x3y2,A-B=__5x3y2__、215、如,方形内有两个相的正方形,面分是m 和 9,那么暗影部分的面__3m-9__、16、如所示的运算程序中,若开始入的x-5,我第一次出的数-2,再将- 2 入,第 2 次出数-1⋯⋯这样循,第 2017 次出的果__1__、三、解答 (共 66 分 )22217、(6分)化求:2(x y+xy)-3(x y-xy)-4x y,此中x=1,y=1.18、(8分)已知A=3a2-4ab,B=a2+2ab.(1)求 A- 2B;(2)若 |2a+ 1|+ (2 -b) 2= 0,求 A-2B 的、解: (1)A-2B=a2-8ab(2)由意知a=-12, b= 2,原式=14+ 8= 81419、(8分)若关于x,y的代数式(x2+ax-2y+7)-(bx2-2x+9y-1)的与字母x的取没关、(1)求 a, b 的值;(2)求 2(ab- 3a)- 3(2b- ab)的值、解: (1)原式= (1-b)x2+ (a+2)x-11y+8,由于此代数式的值与x没关,因此b=1,a =- 2 (2)原式= 5ab- 6a- 6b,当 a=- 2, b= 1 时,原式=- 420、(10分)如图,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b >a> 0)、(1)用 a, b 表示暗影部分的面积;(2)当 a= 3, b= 5 时,计算暗影部分的面积、解: (1)暗影部分面积为1 2a( a+ b) 1 2 1 21(2)当a=3,b=5时,暗影部2b+2=2a+2b+2ab12121分面积=2×3+2×5+2×3×5=24.521、(10分)挪动公司开设了两种通信业务:①“全世界通”用户先交10元月租费,而后每通话一分钟,付话费 0.2 元;②“快捷通”用户不交月租费,每通话一分钟付话费 0.4 元、(1)按一个月通话 a 分钟计算,请你写出两种收费方式顶用户对付的花费?(2)某用户一个月内通话300 分钟,你以为选择哪一种挪动通信业务较适合?解: (1)①0.2a+10;②0.4a (2)当a=300时,0.2a+10=70(元 );0.4a=120(元 ),由于70< 100,因此选择“全世界通”挪动通信业务较适合22、(12分)a,b,c在数轴上的地点以以下图,则:(1)用“<”“>”或“=”填空:a__< __0, b__< __0, c__> __0;(2)用“<”“>”或“=”填空:-a__> __0, a- b__< __0, c- a__> __;(3)化简: |- a|- |a- b|+ |c- a|.解: (3)原式=-a- (b-a) +(c-a) =-a-b+a+c-a=-a-b+c23、(12分)一辆出租车从A地出发,在一条东西走向的街道上来回,每次行驶的行程 (记向东为正 )记录以下 (x>9 且 x<26,单位: km):第一次第二次第三次第四次x1x- 52(9- x)-2x(1)说出这辆出租车每次行驶的方向;(2)求经过连续 4 次行驶后,这辆出租车所在的地点;(3)这辆出租车一共行驶了多少行程?解: (1)第一次是向东,第二次是向西,第三次是向东,第四次是向西(2)x+ (-12x)+(x-5)+2(9-x)=13-112x,由于 x> 9且 x< 26,因此 13-2x> 0,因此经过连续 4 次行驶后,1这辆出租车所在的地点是向东(13-2x) km199(3)|x|+|-2x|+|x-5|+|2(9-x)|=2x-23,则这辆出租车一共行驶了(2x-23) km的行程。

2017-2018学年浙教版八年级上《第4章图形与坐标》习题含答案

2017-2018学年浙教版八年级上《第4章图形与坐标》习题含答案

第4章图形与坐标4.1探索确定位置的方法01基础题知识点1用有序数对确定平面上物体的位置1.到电影院看电影需要对号入座,“对号入座”的意思是(C)A.只需要找到排号B.只需要找到座位号C.既要找到排号又要找到座位号D.随便找座位2.如图,如果规定行号写在前面,列号写在后面,那么A点表示为(A)A.(1,2)B.(2,1)C.(1,2)或(2,1)D.以上都不对第2题图第3题图3.做课间操时,袁露、李婷、张茜的位置如图所示,李婷对袁露说:“如果我们三人的位置相对于我而言,我的位置用(0,0)表示,张茜的位置用(5,8)表示.”则袁露的位置可表示为(C)A.(4,3)B.(3,4)C.(2,3)D.(3,2)4.剧院里2排5号可以用(2,5)来表示,那么3排7号可以表示为(3,7),(7,4)表示的含义是7排4号,(4,7)表示的含义是4排7号.5.某市中心有3个大型商场,位置如图所示,若甲商场的位置可表示为(B,2),则乙商场的位置可表示为(D,4),丙商场的位置可表示为(G,1).知识点2用方向和距离确定物体的位置6.小明看小丽的方向为北偏东30°,那么小丽看小明的方向是(B)A.东偏北30°B.南偏西30°C.东偏北60°D.南偏西60°7.生态园位于县城东北方向5公里处,如图表示准确的是(B)A BC D8.如图是雷达探测到的6个目标,若目标B用(30,60°)表示,目标D用(50,210°)表示,则表示为(40,120°)的是(B)A.目标AB.目标CC.目标ED.目标F9.小明家在学校的北偏西40°的方向上,离学校300 m,小华家在学校的南偏西50°的方向上,离学校400 m,小明和小华两家之间的距离是多少?解:小明和小华两家之间的距离是500 m.知识点3用经度、纬度确定物体的位置10.北京时间2016年1月21日01时13分在青海海北州门源县发生6.4级地震,震源深度10千米,能够准确表示这个地点位置的是(D)A.北纬37.68°B.东经101.62°C.海北州门源县D.北纬37.68°,东经101.62°02中档题11.如图,已知棋子“”的位置表示为(-2,3),棋子“”的位置表示为(1,3),则棋子“”的位置表示为(A)A.(3,2)B.(3,1)C.(2,2)D.(-2,2)12.如图为晓莉使用微信与晓红的对话纪录.据图中两个人的对话纪录,若下列有一种走法能从邮局出发走到晓莉家,此走法为(A)A.向北直走700米,再向西直走100米B.向北直走100米,再向东直走700米C.向北直走300米,再向西直走400米D.向北直走400米,再向东直走300米13.下图是围棋棋盘的一部分,如果用(0,0)表示A点的位置,用(7,1)表示C点的位置,那么:(1)图中B,D,E三点的位置如何表示?(2)图中(6,5),(4,2)的位置在哪里?请在图中用点F,G表示出来.解:(1)B(2,1),D(5,6),E(1,4).(2)略.14.常用的确定物体位置的方法有两种.如图,在4×4个边长为1的正方形组成的方格中,标有A,B两点.请你用两种不同的方法表述点B相对于点A的位置.解:方法1,用有序实数对(a,b)表示,比如:以点A为原点,则B(3,3);方法2,用方向和距离表示,比如:B点位于A点的北偏东45°方向上,距离A点32处.15.如图是小明家和学校所在地的简单地图,已知OA=2 cm,OB=2.5 cm,OP=4 cm,C为OP的中点,回答下列问题:(1)图中距小明家距离相同的是哪些地方?(2)商场、学校、公园、停车场分别位于小明家的什么方位?哪两个地方的方位是相同的?(3)若学校距离小明家400 m,则商场和停车场分别距离小明家多少米?解:(1)学校和公园.(2)商场:北偏西30°;学校:北偏东45°;公园和停车场都是南偏东60°.公园和停车场的方位是相同的.(3)商场距离小明家500 m,停车场距离小明家800 m.03综合题16.将正整数按如图所示的规律排列下去.若用有序实数对(n,m)表示第n排,从左到右第m个数,如(4,3)表示的数是9,则(7,2)表示的数是23.微课堂4.2平面直角坐标系第1课时平面直角坐标系01基础题知识点1平面直角坐标系1.如图所示,平面直角坐标系的画法正确的是(B)知识点2点的坐标2.(柳州中考)如图,点A(-2,1)到y轴的距离为(C)A.-2B.1C.2D. 53.(嘉兴期末)点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为(C)A.(-4,3)B.(-3,-4)C.(-3,4)D.(3,-4)4.如图,图中小正方形的边长均为1,以点O为坐标原点,写出图中点A、B、C、D、E、F的坐标.解:A(-3,-2),B(-5,4),C(5,-4),D(0,-3),E(2,5),F(-3,0).知识点3点的坐标特征5.(杭州开发区期末)下列坐标系表示的点在第四象限的是(C)A.(0,-1)B.(1,1)C.(2,-1)D.(-1,2)6.如图,下列各点在阴影区域内的是(A)A.(3,2)B.(-3,2)C.(3,-2)D.(-3,-2)第6题图第7题图7.如图,点A与B的横坐标(A)A.相同B.相隔3个单位长度C.相隔1个单位长度D.无法确定8.(金华金东区期末)若点P(a,4-a)是第二象限的点,则a必须满足(C)A.a<4 B.a>4C.a<0 D.0<a<49.在直角坐标系中,如果点P(a+3,a+1)在x轴上,那么P点的坐标为(B)A.(0,2)B.(2,0)C.(4,0)D.(0,-4)10.过点M(3,2)且平行于x轴的直线上点的纵坐标是2,过点M(3,2)且平行于y轴的直线上的点的横坐标是3.11.如图,A点、B点的坐标分别是(-2,0)和(2,0).(1)请你在图中描出下列各点:C(0,5),D(4,5),E(-4,-5),F(0,-5);(2)连结AC、CD、DB、BF、FE、EA,并写出图中的任意一组平行线.解:(1)如图所示.(2)如图所示,平行线有AB∥CD∥EF,CE∥DF.02中档题12.(杭州上城区期末)平面直角坐标系内有一点A(a,-a),若a>0,则点A位于(D)A.第一象限B.第二象限C.第三象限D.第四象限13.在平面直角坐标系xOy中,若A点坐标为(-3,3),B点坐标为(2,0),则△ABO的面积为(D)A.15 B.7.5C.6 D.314.点P的坐标为(2-a,3a+6),且到两坐标轴的距离相等,则点P的坐标为(D)A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)15.周日,小华做作业时,把老师布置的一个正方形忘了画下来,打电话给小云,小云在电话中答复他:“你可以这样画,正方形ABCD的顶点A,B,C的坐标分别是(1,2),(-2,2),(-2,-1),顶点D的坐标你自己想吧!”那么顶点D的坐标是(1,-1).16.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2),…,根据这个规律,第2 016个点的横坐标为45.习题解析17.如图是某公园的平面图(每个方格的边长为100米).(1)写出任意五个景点的坐标;(2)某星期天的上午,苗苗在公园沿(-500,0),(-200,-100),(200,-200),(300,200),(500,0)的路线游玩了半天,请你写出她路上经过的地方.解:(1)湖心亭(-300,200),望春亭(-200,-100),音乐台(0,400),牡丹园(300,200),游乐园(200,-200).(2)西门→望春亭→游乐园→牡丹园→东门.18.(1)已知点P(a-1,3a+6)在y轴上,求点P的坐标;(2)已知两点A(-3,m),B(n,4),若AB∥x轴,求m的值,并确定n的范围.解:(1)∵点P在y轴上,∴a-1=0,即a=1.∴3a+6=9.∴点P的坐标为(0,9).(2)∵A (-3,m ),B (n ,4),且AB ∥x 轴, ∴m =4,n ≠-3. 03 综合题19.(金华期末)在平面直角坐标系xOy 中,有点A (2,1)和点B ,若△AOB 为等腰直角三角形,则点B 的坐标为(1,-2),(-1,2),(3,-1),(1,3),(32,-12)或(12,32).第2课时用坐标系确定点的位置01基础题知识点1建立适当的平面直角坐标系,求点的坐标1.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为(D)A.(2,2)B.(3,2)C.(2,3)D.(2,-3)2.在方格纸上有A、B两点,若以B点为原点建立直角坐标系,则A点坐标为(2,5),若以A点为原点建立直角坐标系,则B点坐标为(A)A.(-2,-5)B.(-2,5)C.(2,-5)D.(2,5)3.如图所示,在平面直角坐标系中,四边形MNPO的顶点P的坐标是(3,4),且OM=OP,则顶点M的坐标是(C)A.(3,0)B.(4,0)C.(5,0)D.(6,0)4.小宇在平面直角坐标系中画一个正方形,其中四个顶点到原点的距离相等,其中一个顶点的坐标为(2,2),则在第四象限内的顶点的坐标是(2,-2).5.已知点A、B的坐标分别为(2,0)、(2,4),以A、B、P为顶点的三角形与△ABO全等,写出一个符合条件的点P的坐标:(4,0).6.已知等腰三角形ABC的底边BC=6,腰AB=AC=5,若点C与坐标原点重合,点B在x轴的负半轴上,点A 在x轴的上方,则点A的坐标是(-3,4),点B的坐标是(-6,0).7.(金华金东区期末)已知长方形的两条边长分别为4,6.建立适当的坐标系,使它的一个顶点的坐标为(-2,-3).画出示意图,然后写出其他各顶点的坐标.解:如图所示:点A的坐标为(-2,-3),则其他各点的坐标是B(4,-3)、C(4,1)、D(-2,1).知识点2建立适当的平面直角坐标系,用坐标表示地理位置8.如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是(B)A.点AB.点BC.点CD.点D9.有一张图纸被损坏,但上面有如图所示的两个标志点A(-3,1),B(-3,-3)可认,而主要建筑C(3,2)处破损,请通过建立直角坐标系找到图中C点的位置,并求△ABC的周长.解:略.02中档题10.一个平行四边形的三个顶点的坐标分别是(0,0),(2,0),(1,2),则第四个顶点的坐标为(D)A.(-1,2)B.(1,-2)C.(3,2)D.(1,-2)或(-1,2)或(3,2)11.(赤峰中考)如图所示,在象棋盘上建立平面直角坐标系,使“马”位于点(2,2),“炮”位于点(-1,2),写出“兵”所在位置的坐标是(-2,3).第11题图第12题图12.如图,在平面直角坐标系中,B,C两点的坐标分别为(-3,0)和(7,0),AB=AC=13,则点A的坐标为(2,12).13.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形”,现有点A(2,5),B(-1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是(1,8),(-3,-2)或(3,2).14.已知等腰直角△ABC的斜边两端点的坐标分别为A(-4,0),B(2,0),求直角顶点C的坐标.解:C(-1,3)或C(-1,-3).15.如图是某台阶的一部分,如果建立适当的坐标系,使A 点的坐标为(0,0),B 点的坐标为(1,1).(1)直接写出C ,D ,E ,F 的坐标;(2)如果台阶有10级,你能求得该台阶的长度和高度吗?解:(1)以A 点为原点,水平方向为x 轴,建立平面直角坐标系, 所以C ,D ,E ,F 各点的坐标分别为C (2,2),D (3,3),E (4,4),F (5,5). (2)每级台阶高为1,宽也为1,所以10级台阶的高度是10,长度为11.16.温州一位老人制作的仿真郑和宝船尺寸如图,已知在某一直角坐标系中点A 坐标为(9,0),请你直接在图中画出该坐标系,并写出其余五点的坐标.解:坐标系如图所示: 各点的坐标为B (5,2),C (-5,2),D (-9,0),E (-5,-2),F (5,-2).03 综合题 17.如图所示,在Rt △ABC 中,∠C =90°,AC =3,BC =4.建立以A 为坐标原点,AB 为x 轴的平面直角坐标系.求B ,C 两点的坐标.解:∵∠C =90°,AC =3,BC =4, ∴AB =AC 2+BC 2=5, 即B 点的坐标为(5,0). 过C 作CD ⊥AB 于D , 则S △ABC =12AC·BC =12AB·CD ,∴CD =AC·BC AB =125,AD =AC 2-CD 2=95.∴C 点坐标为(95,125).4.3坐标平面内图形的轴对称和平移第1课时用坐标表示轴对称01基础题知识点1关于坐标轴对称的点的坐标特征1.点P(-2,3)关于x轴对称的点的坐标是(C)A.(-3,2)B.(2,-3)C.(-2,-3)D.(2,3)2.如图,在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为(B)A.(-3,-5)B.(3,5)C.(3,-5)D.(5,-3)3.(金华金东区期末)点A(-4,0)与点B(4,0)是(A)A.关于y轴对称B.关于x轴对称C.关于坐标轴都对称D.以上答案都错4.(杭州六校12月月考)已知点A(a,-3),B(4,b)关于y轴对称,则a+b的值为(C)A.1 B.7C.-7 D.-15.将点P(-4,-5)先关于y轴对称得P1,将P1关于x轴对称得P2,则P2的坐标为(A)A.(4,5)B.(-4,5)C.(4,-5)D.(-4,-5)6.(杭州开发区期末)已知点A(m,3)与点B(2,n)关于y轴对称,则m=-2,n=3.知识点2图形的轴对称变换7.(海南中考)如图,△ABC与△DEF关于y轴对称,已知A(-4,6),B(-6,2),E(2,1),则点D的坐标为(B)A.(-4,6)B.(4,6)C.(-2,1)D.(6,2)8.线段MN在直角坐标系中的位置如图所示,若线段M′N′与MN关于y轴对称,则点M的对应点M′的坐标为(D)A.(4,2)B.(-4,2)C.(-4,-2)D.(4,-2)9.将平面直角坐标系内的△ABC的三个顶点坐标的横坐标乘以-1,纵坐标不变,则所得的三角形与原三角形(B)A.关于x轴对称B.关于y轴对称C.关于原点对称D.无任何对称关系10.(江山期末)已知:如图,在△ABC中,点A(-3,2),B(-1,1).(1)根据上述信息确定平面直角坐标系,并写出点C的坐标;(2)在平面直角坐标系中,作出△ABC关于y轴的对称图形△A1B1C1.解:(1)直角坐标系如图,点C(-1,4).(2)如图所示,△A1B1C1就是所求作的三角形.02中档题11.下列语句:①点A(5,-3)关于x轴对称的点A′的坐标为(-5,-3);②点B(-2,2)关于y轴对称的点B′的坐标为(-2,-2);③若点D在第二、四象限坐标轴夹角的角平分线上,则点D的横坐标与纵坐标相等.其中正确的是(D)A.①B.②C.③D.①②③都不正确12.已知点P1(a-1,5)和P2(2,b-1)关于x轴对称,则(a+b)2 017的值为(B)A.0 B.-1 C.1 D.(-3)2 01713.(嵊州期末)如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是(B)A.A点B.B点C.C点D.D点第13题图第14题图习题解析14.如图,在平面直角坐标系中,正方形ABCD的顶点坐标分别为A(1,1),B(1,-1),C(-1,-1),D(-1,1),y轴上有一点P(0,2).作点P关于点A的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此操作下去,则点P2 016的坐标为(A)A.(0,2)B.(2,0)C.(0,-2)D.(-2,0)15.已知在平面直角坐标系中,点A,B的坐标分别为A(-3,4),B(4,-2).(1)求点A,B关于y轴对称的点的坐标;(2)在平面直角坐标系中分别作出点A,B关于x轴的对称点M,N,顺次连结AM,BM,BN,AN,求四边形AMBN的面积.解:(1)根据轴对称的性质,得A(-3,4)关于y轴对称的点的坐标是(3,4);点B(4,-2)关于y轴对称的点的坐标是(-4,-2).(2)根据题意:点M,N与点A,B关于x轴对称,可得M(-3,-4),N(4,2).四边形AMBN的面积=42.为(4+8)×7×1216.在图上建立直角坐标系,用线段顺次连结点(0,0),(1,3),(4,4),(4,0),(0,0).作出这个图形关于x 轴对称的图形,并求它的面积和周长.解:作图略,面积为2×12×1×3+3×3=12,周长为2×12+32+4+4=8+210.03综合题17.如图,在直角坐标系中,已知两点A(0,4),B(8,2),点P是x轴上的一点,求PA+PB的最小值.A点关于x轴对称的点A′坐标为(0,-4),由勾股定理得:A′B=PA+PB=10,即PA+PB的最小值为10.第2课时用坐标表示平移01基础题知识点1用坐标表示点的平移1.(杭州六校12月月考)在直角坐标系中,点A(2,1)向右平移2个单位长度后的坐标为(A)A.(4,1)B.(0,1)C.(2,3)D.(2,-1)2.在直角坐标系中,将点P(3,6)向左平移4个单位长度,再向下平移8个单位长度后,得到的点位于(C)A.第一象限B.第二象限C.第三象限D.第四象限3.点(-4,b)沿y轴正方向平移2个单位得到点(a+1,3),则a,b的值分别为(D)A.a=-3,b=3 B.a=-5,b=3C.a=-3,b=1 D.a=-5,b=14.将点P(-2,1)先向左平移1个单位,再向上平移2个单位得到点P′,则点P′的坐标为(-3,3).5.将点P(m+2,2m+4)向右平移若干个单位后得到(4,6),则m的值为1.6.(嘉兴期末)把点A(a+2,a-1)向上平移3个单位,所得的点与点A关于x轴对称,则a的值为-1 2.知识点2用坐标表示图形的平移7.已知△ABC在平面直角坐标系中的位置如图所示,将△ABC先向下平移5个单位,再向左平移2个单位,则平移后C点的坐标是(B)A.(5,-2)B.(1,-2)C.(2,-1)D.(2,-2)第7题图第8题图8.(萧山区万向中学月考)如图,与图1中的三角形相比,图2中的三角形发生的变化是(A)A.向左平移了3个单位B.向左平移了1个单位C.向上平移了3个单位D.向上平移了1个单位9.如图,在平面直角坐标系中,平行于x轴的线段AB上所有点的纵坐标都是-1,横坐标的取值范围是1≤x≤5,则线段AB上任意一点的坐标可以用“(x,-1)(1<x<5)”表示,按照这样的规定,回答下列问题:(1)怎样表示线段CD上任意一点的坐标?(2)把线段AB向上平移3个单位,画出所得到的线段,线段上任意一点的坐标可以怎样表示?(3)把线段CD向右平移3个单位,画出所得到的线段,线段上任意一点的坐标又可以怎样表示?解:(1)(-1,x)(-1<x<2).(2)如图所示,(x,2)(1<x<5).(3)如图所示,(2,x)(-1<x<2).02中档题10.如图,△ABC的顶点坐标分别为A(-4,-3),B(0,-3),C(-2,1),如将B点向右平移2个单位后,再向上平移4个单位到达B1点,若设△ABC的面积为S1,△AB1C的面积为S2,则S1,S2的大小关系为(C)A.S1>S2B.S1<S2C.S1=S2D.不能确定11.如图,把图1中的△ABC经过一定的变换得到图2中的△A′B′C′,如果图1中△ABC上点P的坐标为(a,b),那么这个点在图2中的对应点P′的坐标为(C)图1图2)A.(a-2,b-3)B.(a-3,b-2)C.(a+3,b+2)D.(a+2,b+3)12.将下图中的△ABC作下列运动,画出相应的图形,指出三个顶点的坐标所发生的变化.(1)将△ABC沿y轴正方向平移2个单位得到△A1B1C1,并写出各点的坐标;(2)作△A1B1C1关于x轴对称的△A2B2C2,并写出各点的坐标.解:(1)图略,△ABC的三个顶点的横坐标不变,纵坐标都加2,即A1(-4,10),B1(-6,2),C1(-2,2).(2)图略,△A1B1C1的三个顶点的横坐标不变,纵坐标变为其相反数,即A2(-4,-10),B2(-6,-2),C2(-2,-2).13.如图,已知点A(-4,-1),B(-5,-4),C(-1,-3),△ABC经过平移得到的△A′B′C′,△ABC中任意一点P(x1,y1)平移后的对应点为P′(x1+6,y1+4).(1)请在图中作出△A′B′C′;(2)写出点A′,B′,C′的坐标.解:(1)略.(2)A′(2,3),B′(1,0),C′(5,1).03综合题14.如图所示的直角坐标系中,△ABC的顶点坐标分别是A(0,0),B(7,1),C(4,5).(1)如果将△ABC向上平移1个单位,再向右平移2个单位,得到△A1B1C1,求A1,B1的坐标;(2)由△ABC得到△A1B1C1的过程中,线段BC扫过的面积为多少.解:(1)A1(2,1),B1(9,2).(2)线段BC扫过的面积为11.章末复习(四)图形与坐标01基础题知识点1确定物体的位置1.下列数据,不能确定物体位置的是(C)A.4号楼-2单位-601室B.新华路25号C.北偏东25°D.东经118°,北纬45°2.如图,点O、M、A、B、C在同一平面内,若规定点A的位置记为(50,20°),点B的位置记为(30,60°),那么图中点C的位置应记为(D)A.(60°,30)B.(110°,34)C.(34,4°)D.(34,110°)第2题图第3题图3.如图,有A,B,C三点,如果A点用(1,1)来表示,B点用(2,3)表示,则C点的坐标的位置可以表示为(C)A.(6,2)B.(5,3)C.(5,2)D.(2,5)知识点2平面直角坐标系及点的坐标4.(江山期末)已知点P的坐标为(3,-2),则点P到y轴的距离为(A)A.3 B.2 C.1 D.55.(金华金东区期末)如图,小手盖住的点的坐标可能为(D)A.(5,2)B.(-6,3)C.(-4,-6)D.(3,-4)6.点A的坐标(x,y)满足(x+3)2+|y+2|=0,则点A的位置在(C)A.第一象限B.第二象限C.第三象限D.第四象限7.如图是某战役缴获敌人防御工事坐标地图的碎片,依稀可见:一号暗堡A的坐标为(4,3),五号暗堡B的坐标为(-2,3).另有情报得知敌军指挥部的坐标为(-3,-2).请问你能找到敌军的指挥部吗?解:能.图略.知识点3 坐标平面内图形的轴对称和平移8.线段CD 是由线段AB 平移得到的,点A (-1,4)的对应点为C (4,7),则点B (-4,-1)的对应点D 的坐标为(C )A .(2,9)B .(5,3)C .(1,2)D .(-9,-4)9.已知点P (x ,3-x )关于x 轴对称的点在第三象限,则x 的取值范围是(A )A .x <0B .x <3C .x >3D .0<x <3 10.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4),将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是(A )A .(3,1)B .(-3,-1)C .(1,-3)D .(3,-1)第10题图 第11题图 11.如图所示,在图形B 到图形A 的变化过程中,下列描述正确的是(B )A .向上平移2个单位,向左平移4个单位B .向上平移1个单位,向左平移4个单位C .向上平移2个单位,向左平移5个单位D .向上平移1个单位,向左平移5个单位02 中档题12.(江山期末)已知点P (3-a ,a -5)在第三象限,则整数a 的值是(A ) A .4 B .3,4C .4,5D .3,4,5 13.如图,已知A (3,2),B (5,0),E (4,1),则△AOE 的面积为(B )A .5B .2.5C .2D .314.在平面直角坐标系xOy 中,对于点P (a ,b )和点Q (a ,b ′),给出下列定义:若b′=⎩⎨⎧b (a ≥1),-b (a<1),则称点Q 为点P 的限变点,例如:点(2,3)的限变点的坐标是(2,3),点(-2,5)的限变点的坐标是(-2,-5),如果一个点的限变点的坐标是(3,-1),那么这个点的坐标是(C )A .(-1,3)B .(-3,-1)C .(3,-1)D .(3,1)15.(杭州六校12月月考)已知点A (4,y ),B (x ,-3),若AB ∥x 轴,且线段AB 的长为5,x =9或-1,y =-3.16.如图,平面直角坐标系中有四个点,它们的横、纵坐标均为整数,若在此平面直角坐标系内移动点A ,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为(-1,1)或_(-2,-2)或_(0,2)或(-2,-3).17.如图,已知单位长度为1的方格中有△ABC.(1)请画出△ABC向上平移3格再向右平移2格所得的△A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B、点B′的坐标:B(1,2)、B′(3,5).解:如图所示.03综合题18.阅读一段文字,再回答下列问题:已知在平面内两点的坐标为P1(x1,y1),P2(x2,y2),则该两点间距离公式为P1P2=(x1 -x2 )2+(y1 -y2 )2.同时,当两点在同一坐标轴上或所在直线平行于x轴、垂直于x轴时,两点间的距离公式可化简成|x2-x1|或|y2-y1|.(1)若已知两点A(3,3),B(-2,-1),试求A,B两点间的距离;(2)已知点M,N在平行于y轴的直线上,点M的纵坐标为7,点N的纵坐标为-2,试求M,N两点间的距离;(3)已知一个三角形各顶点的坐标为A(0,6),B(-3,2),C(3,2),你能判定此三角形的形状吗?试说明理由.解:(1)∵点A(3,3),B(-2,-1),∴AB=(-2-3)2+(-1-3)2=41,即A,B两点间的距离是41.(2)∵点M,N在平行于y轴的直线上,点M的纵坐标为7,点N的纵坐标为-2,∴MN=|-2-7|=9,即M,N两点间的距离是9.(3)该三角形为等腰三角形.理由:∵一个三角形各顶点的坐标为A(0,6),B(-3,2),C(3,2),∴AB=5,BC=6,AC=5.∴AB=AC.∴该三角形为等腰三角形.。

浙教版八年级上第四章 图形与坐标 2017-2018学年同步单元测试卷(含解析)

浙教版八年级上第四章 图形与坐标 2017-2018学年同步单元测试卷(含解析)

班级姓名学号分数《图形与坐标》测试卷(A卷)(测试时间:60分钟满分:120分)一、选择题(每小题3分,总计30分)1.在平面直角坐标系中,点P(-1,3)在().A.第一象限B.第二象限C.第三象限D.第四象限2.平面直角坐标系中,与点(2,-3)关于原点中心对称的点是()A.(-3,2) B.(3,-2) C.(-2,3) D.(2,3)3.已知点P关于x轴的对称点为(a,-2),关于y轴的对称点为(1,b),那么点P的坐标为()A.(a, -b)B.(b, -a)C.(-2,1)D.(-1,2)4.点P(﹣2,﹣3)向右平移2个单位,再向下平移3个单位,则所得到的点的坐标为()A.(0,0)B.(﹣4,0)C.(0,﹣6)D.(0,6)5.点P在第四象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标()A.(3,-4)B.(-4,3)C.(-3,4)D.(4,-3)6.在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:①△(a,b)=(-a,b);②O(a,b)=(-a,-b);③Ω(a,b)=(a,-b);按照以上变换有:△(O(1,2))=(1,-2),那么O(Ω(3,4))等于()A.(3,4)B.(3,-4)C.(-3,4)D.(-3,-4)7.如图,在平面直角坐标系中,将点M(2,1)向下平移2个单位长度得到点N,则点N的坐标为()A.(2,﹣1)B.(2,3)C.(0,1)D.(4,1)8.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2 步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.(100,33)D.(99,34)9.已知点P(2a﹣1,1﹣a)在第一象限,则a的取值范围在数轴上表示正确的是()A.B.C.D.10.把△ABC各点的横坐标都乘以-1,纵坐标都乘以-1,符合上述要求的图是( )二、填空题(每小题4分,总计24分)11.在直角坐标系中,点(2,-3)在第象限.12.点P(3,-2)关于原点中心对称的点的坐标是。

浙教版八年级上册数学第4章 图形与坐标含答案

浙教版八年级上册数学第4章 图形与坐标含答案

浙教版八年级上册数学第4章图形与坐标含答案一、单选题(共15题,共计45分)1、若点在轴上,则点的坐标为()A. B. C. D.2、点M位于平面直角坐标系第四象限,且到x轴的距离是5,到y轴的距离是2,则点M的坐标是()A.(2,﹣5)B.(﹣2,5)C.(5,﹣2)D.(﹣5,2)3、在平面直角坐标系中,点A的坐标是(– 1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是()A.(– 1,– 2)B.(1,2)C.(1,– 2)D.(–2,1)4、有以下四个命题,其中正确的是()A.同位角相等B.0.01是0.1的一个平方根C.若点P (x,y)在坐标轴上,则xy=0D.若a 2>b 2,则a>b5、在平面直角坐标系中,点(-3,)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限6、在平面直角坐标系中,点P(2,﹣7)位于()A.第一象限B.第二象限C.第三象限D.第四象限7、如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位B.向左平移()个单位,再向上平移1个单位C.向右平移个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位8、如果mn<0,且m>0,那么点P(m2, m-n)在( ).A.第一象限B.第二象限C.第三象限D.第四象限9、点P的坐标为(﹣1,2),则点P位于()A.第一象限B.第二象限C.第三象限D.第四象限10、在平面直角坐标系中,点(3,﹣2)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限11、在平面直角坐标系中,把点先向左平移3个单位长度,再向上平移2个单位长度后得到的点的坐标是()A. B. C. D.12、将点A(2,1)向左平移2个单位长度得到点,则点的坐标是()A.(0,1)B.(2,-1)C.(4,1)D.(2,3)13、平面直角坐标系中,已知点在第四象限,则点关于直线对称的点的坐标是()A. B. C. D.14、在平面直角坐标系中,对进行循环往复的轴对称变换,若原来点的坐标是,则经过第2019次变换后所得的点的坐标是()A. B. C. D.15、在平面直角坐标系中,点P(3,﹣1)关于x轴对称的点的坐标是()A.(﹣3,﹣1)B.(﹣3,1)C.(﹣1,3)D.(3,1)二、填空题(共10题,共计30分)16、P(3,﹣4)到x轴的距离是________.17、将点A向右平移2个单位,再向下平移3个单位,得到点A′(4,5),则点A的坐标是________.18、点P(﹣3,4)到x轴的距离是________.19、如图,A,B两点的坐标分别为(-2,0),(0,1),将线段AB平移到线段A 1B1的位置.若A1(b,1),B1(-1,a),则b-a=________.20、已知点P(3,-1)关于y轴的对称点Q的坐标是(a+b,1-b),则a b的值为________ .21、若点P(a,4﹣a)是第一象限的点,则a的取值范围是________.22、若点M(a﹣3,a+4)在x轴上,则a=________.23、若点在直角坐标系的轴上,则点的坐标为________.24、已知点A(1,-2),若A、B两点关于x轴对称,则B点的坐标为________25、如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(________ ,________ )、B(________ ,________ )(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(________ ,________ )、B′(________ ,________ )、C′(________ ,________ ).(3)△ABC的面积为 5 .三、解答题(共5题,共计25分)26、已知点P(x+1,x−1)关于x轴对称的点在第一象限,试化简:|x+1|+|x−1|.27、如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即:沿着长方形移动一周).(1)写出点B的坐标(2)当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.(3)在移动过程中,当点P到x轴距离为5个单位长度时,求点P移动的时间.28、在图中建立适当的直角坐标系表示图中各景点位置.A 狮虎山B 猴山C 珍禽馆D 熊猫馆E 大山F 游乐场G 长廊.29、如图的方格中有25个汉字,如四1表示“天”,请沿着以下路径去寻找你的礼物:(1)一1→三2→二4→四3→五1(2)五3→二1→二3→一5→三4(3)四5→四1→一2→三3→五2.30、已知A(a+b,1),B(﹣2,2a﹣b),若点A,B关于x轴对称,求a,b 的值.参考答案一、单选题(共15题,共计45分)2、A3、C4、C5、C6、D7、D8、A9、B10、D11、A12、A13、C14、A15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。

第4章 图形与坐标数学八年级上册-单元测试卷-浙教版(含答案)

第4章 图形与坐标数学八年级上册-单元测试卷-浙教版(含答案)

第4章图形与坐标数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、下列数据不能确定物体位置的是( )A.电影票5排8号B.北偏东30°C.希望路25号D.东经118°,北纬40°2、在平面直角坐标系中,点关于y轴对称的点的坐标是()A. B. C. D.3、已知点P(a﹣1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为()A. B. C.D.4、将平面直角坐标系内某图形上各个点的纵坐标都乘以﹣1,横坐标不变,所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.沿y轴向下平移1个单位长度5、一个质点在第一象限及轴、轴上运动,在第一秒钟,它从原点运动到,然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第秒时质点所在位置的坐标是( )A. B. C. D.6、在平面直角坐标系中,把△ABC的各顶点的横坐标都除以,纵坐标都乘,得到△DEF,把△DEF与△ABC相比,下列说法中正确的是( )A.横向扩大为原来的4倍,纵向缩小为原来的B.横向缩小为原来的,纵向扩大为原来的3倍 C.△DEF的面积为△ABC面积的12倍 D.△DEF的面积为△ABC面积的7、点P(3,2)关于x轴的对称点的坐标是()A.(3,2)B.(-3,2)C.(-3,-2)D.(3,-2)8、点所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限9、若点A(-2,4)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限10、下列说法错误的是()A.平行于x轴的直线上的所有点的纵坐标相同B.若点P(a,b)在x轴上,则a=0C.平行于y轴的直线上的所有点的横坐标相同D.(﹣3,4)与(4,﹣3)表示两个不同的点11、已知点A(2a+1,5a﹣2)在第一、三象限的角平分线上,点B(2m+7,m﹣1)在二、四象限的角平分线上,则()A.a=1,m=﹣2B.a=1,m=2C.a=﹣1,m=﹣2D.a=﹣1,m=212、已知点A(4,3)和点B是坐标平面内的两个点,且它们关于过点(﹣3,0)与y轴平行的直线对称,则点B的坐标是()A.(1,3)B.(﹣10,3)C.(4,3)D.(4,1)13、点P(﹣3,m+1)在第二象限,则m的取值范围在数轴上表示正确的是()A. B. C.D.14、若点P(m﹣1,5)与点Q(3,2﹣n)关于y轴对称,则m+n的值是()A.﹣5B.1C.5D.1115、在平面直角坐标系中,点P(3,﹣x2﹣1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、如图,在平面直角坐标系上有个点,点第次向上跳动个单位至点,紧接着第次向右跳动个单位至点,第次向上跳动个单位,第次向右跳动个单位,第次又向上跳动个单位,第次向左跳动个单位,依此规律跳动下去,的坐标是_________,点第次跳动至的坐标为________ _;则点第次跳动至的坐标是________.17、点M(2,﹣3)关于y轴对称的对称点N的坐标是________18、若点P关于x轴的对称点为P1(2a+b, -a+1),关于y轴对称点的点为P2(4-b,b+2),则点P的坐标为________19、在同一坐标系中,图形a是图形b向上平移3个单位长度得到的,如果在图形a中点A坐标为(5,-3),则图形b中与A对应的点A'的坐标为________20、如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是________.21、以方程组的,解为坐标的点在第________象限.22、已知点在轴上,则________.23、如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的平面坐标分别为A(﹣2,1)和B(﹣2,﹣3),那么第一架轰炸机C的平面坐标是________.24、在平面直角坐标系中,按照一定规律写出了如下各点坐标:点A1(2,2),A2(3,5),A3(4,10),A4(5,17),…请你仔细观察,按照此规律点A10的坐标应为________.25、已知点和点关于轴成轴对称,则________.三、解答题(共5题,共计25分)26、已知点A 和点B 关于轴对称,求的值.27、如图,已知单位长度为1的方格中有个△ABC.(1)请画出△ABC向上平移3格再向右平移2格所得△A′B′C′.(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B、点B′的坐标:B(,);B′(,)28、某市有A、B、C、D四个大型超市,分别位于一条东西走向的平安大路两侧,如图,若C(﹣2,8)、D(0,0),请建立适当的直角坐标系,并写出A、B两个超市相应的坐标.29、在平面直角坐标系中,O为坐标原点,A(1,3),B(2,1),OA∥BC,OC∥AB,试用平移的知识求C点的坐标.30、温州一位老人制作的仿真郑和宝船尺寸如图,已知在某一直角坐标系中点A坐标为(9,0),请你直接在图中画出该坐标系,并写出其余5点的坐标.参考答案一、单选题(共15题,共计45分)1、B2、B4、A5、C6、A7、D8、C9、B10、B11、A12、B13、C14、A15、D二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章自我测试一、选择题(每小题2分,共20分)1.点A(-3,2)关于y轴对称的点的坐标为(B)A. (3,-2)B. (3,2)C. (-3,-2)D. (2,-3)2.在平面直角坐标系中,点(-2,x2+1)所在的象限是(B)A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.已知点A在x轴上,且点A到y轴的距离为4,则点A的坐标为(C)A.(4,0) B.(0,4)C.(4,0)或(-4,0) D.(0,4)或(0,-4)4.若点A(x,1)与点B(2,y)关于x轴对称,则下列各点中,在直线AB上的是(A) A.(2,3) B.(1,2) C.(3,-1) D.(-1,2)5.如图,已知棋子“車”的位置表示为(-2,3),棋子“馬”的位置表示为(1,3),则棋子“炮”的位置可表示为(A)(第5题)A.(3,2) B.(3,1) C.(2,2) D.(-2,2)6.若点M(a-1,a-3)在y轴上,则a的值为(C)A.-1B.-3 C.1D.37.在平面直角坐标系中,线段AB的两个端点坐标分别为A(-1,-1),B(1,2),平移线段AB,得到线段A′B′,已知A′的坐标为(3,-1),则点B′的坐标为(B)A. (4,2)B. (5,2)C. (6,2)D. (5,3)8.某天,聪聪的叔叔送给他一个新奇的玩具——智能流氓兔.它的新奇之处在于若第一次向正南跳一下,第二次就掉头向正北跳两下,第三次又掉头向正南跳三下……而且每一跳的距离为20 cm.如果流氓兔位于原点处,第一次向正南跳(记y轴正半轴方向为正北,1个单位为1 cm),那么跳完第80次后,流氓兔所在位置的坐标为(C)A. (800,0)B. (0,-80)C. (0,800)D. (0,80)【解】 用“-”表示正南方向,用“+”表示正北方向.根据题意,得-20+20×2-20×3+20×4-…-20×79+20×80=20(-1+2)+20(-3+4)+…+20(-79+80)=20×40=800(cm ),∴流氓兔最后所在位置的坐标为(0,800).(第9题)9.如图,将斜边长为4的三角尺放在平面直角坐标系xOy 中,两条直角边分别与坐标轴重合,P 为斜边的中点.现将此三角尺绕点O 顺时针旋转120°后点P 的对应点的坐标是(B ) A. (3,1) B. (1,-3) C. (2 3,-2) D. (2,-2 3)(第9题解)【解】 根据题意画出△AOB 绕点O 顺时针旋转120°得到的△COD ,连结OP ,OQ ,过点Q 作QM ⊥y 轴于点M ,如解图所示.由旋转可知∠POQ =120°.易得AP =OP =12AB ,∴∠POA =∠BAO =30°,∴∠MOQ =180°-30°-120°=30°.在Rt △OMQ 中,∵OQ =OP =2,∴MQ =1,OM = 3.∴点P 的对应点Q 的坐标为(1,-3).10.已知P (x ,y )是以坐标原点为圆心,5为半径的圆周上的点,若x ,y 都是整数,则这样的点共有(C )A .4个B .8个C .12个D .16个【解】 由题意知,点P (x ,y )满足x 2+y 2=25,∴当x =0时,y =±5;当y =0时,x =±5;当x =3时,y =±4;当x =-3时,y =±4;当x =4时,y =±3;当x =-4时,y =±3,∴共有12个点.二、填空题(每小题3分,共30分)11.在平面直角坐标系中,点(-1,5)所在的象限是第二象限.12.若点B (7a +14,a -2)在第四象限,则a 的取值范围是-2<a <2.【解】 由题意,得⎩⎨⎧7a +14>0,a -2<0,解得-2<a <2. 13.已知线段MN 平行于x 轴,且MN 的长为5.若点M (2,-2),则点N 的坐标为(-3,-2)或(7,-2).【解】 ∵MN ∥x 轴,点M (2,-2),∴点N 的纵坐标为-2.∵MN =5,∴点N 的横坐标为2-5=-3或2+5=7,∴点N (-3,-2)或(7,-2).14.在平面直角坐标系中,将点P (-3,2)向右平移2个单位,再向下平移2个单位得点P ′,则点P ′的坐标为(-1,0).【解】 由平移规律可得点P ′的坐标为(-3+2,2-2),即点P ′(-1,0).15.把以 (-1,3),(1,3)为端点的线段向下平移4个单位,此时线段两端点的坐标分别为(-1,-1),(1,-1),所得线段上任意一点的坐标可表示为(x ,-1)(-1≤x ≤1).16.已知点A (0,-3),B (0,-4),点C 在x 轴上.若△ABC 的面积为15,则点C 的坐标为(30,0)或(-30,0).【解】 ∵点A (0,-3),B (0,-4),∴AB =1.∵点C在x轴上,∴可设点C(x,0).又∵△ABC的面积为15,∴12·AB·|x|=15,即12×1×|x|=15,解得x=±30.∴点C的坐标为(30,0)或(-30,0).17.已知点P的坐标为(-4,3),先将点P作x轴的轴对称变换得到点P1,再将点P1向右平移8个单位得到点P2,则点P,P2之间的距离是__10__.【解】由题意得,点P1(-4,-3),P2(4,-3),∴PP2=[4-(-4)]2+(-3-3)2=10.18.如图,将边长为1的等边三角形OAP沿x轴正方向连续翻转2018次,点依次落在点P1,P2,P3,…,P2018的位置,则点P2018的横坐标为2017.(第18题)【解】观察图形并结合翻转的方法可以得出点P1,P2的横坐标是1,点P3的横坐标是2.5;点P4,P5的横坐标是4,点P6的横坐标是5.5……依此类推下去,点P2018的横坐标为2017.19.如图,在平面直角坐标系中,四边形OABC是正方形,点A的坐标为(4,0),P为AB边上的一点,∠CPB=60°,沿CP折叠正方形,折叠后,点B落在平面内的点B′处,则点B′的坐标为(2,4-23).【解】过点B′作B′D⊥y轴于点D.易得B′C=BC=4,∠B′CD=30°,∴B′D=2,CD=2 3,∴OD=4-2 3,∴点B′(2,4-2 3).(第19题) (第20题)20.如图,正方形A1A2A3A4,正方形A5A6A7A8,正方形A9A10A11A12,…(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行.若它们的边长依次是2,4,6,…,则顶点A20的坐标为(5,-5).【解】∵20÷4=5,∴点A20在第四象限.∵点A4所在正方形的边长为2,∴点A4的坐标为(1,-1).同理可得:点A8的坐标为(2,-2),点A12的坐标为(3,-3)……∴点A20的坐标为(5,-5).三、解答题(共50分)21.(6分)已知△ABC在平面直角坐标系中的位置如图所示,请在图中画出△ABC 关于y轴的对称图形△A1B1C1,并写出△A1B1C1各顶点的坐标.(第21题)【解】画出△ABC关于y轴的对称图形如图中△A1B1C1所示,点A1(4,1),B1(1,3),C1(2,-2).(第22题)22.(6分)如图,在等腰△ABC 中,点B 在坐标原点,∠BAC =120°,AB =AC =2,求点A 的坐标.【解】 过点A 作AD ⊥BC 于点D .∵AB =AC ,∴∠ABC =∠ACB .∵∠BAC =120°,∴∠ABC =180°-120°2=30°, ∴AD =12AB =12×2=1. 由勾股定理,得BD =AB 2-AD 2=22-12=3,∴点A (3,1).23.(6分)如图,在平面直角坐标系中,点A (1,2),B (-4,-1),C (0,-3),求△ABC 的面积.(第23题) (第23题解)【解】 如解图,先构造长方形ADFE ,使其过点A ,B ,C ,且AE ∥x 轴,AD ∥y 轴.∵点A (1,2),B (-4,-1),C (0,-3),∴点E (-4,2),F (-4,-3),D (1,-3),∴AE =1-(-4)=5,AD =2-(-3)=5.∴S △ABC =S 长方形ADFE -S △AEB -S △BCF -S △ACD=5×5-12×5×3-12×4×2-12×5×1=11.(第24题)24.(12分)如图,在平面直角坐标系xOy 中,A (4,0),C (0,6),点B 在第一象限内,点P 从原点O 出发,以每秒2个单位的速度沿着长方形OABC 移动一周(即沿着O →A →B →C →O 的路线移动).(1)写出点B 的坐标:(4,6).(2)当点P 移动了4 s 时,描出此时点P 的位置,并求出点P 的坐标.(3)在移动过程中,当点P 到x 轴的距离为5个单位时,求点P 移动的时间.【解】 (2)点P 的位置如图所示.由点P 移动了4 s ,得点P 移动了8个单位,即OA +AP =8,则点P 在AB 上且到点A 的距离为4个单位,∴点P 的坐标为(4,4).(3)设点P 移动的时间为t (s ).当点P 在AB 边上,AP =5时,OA +AP =9=2t ,解得t =92. 当点P 在OC 边上,且OP =5时,OA +AB +BC +CP =4+6+4+(6-5)=2t ,解得t =152.综上所述,点P 移动的时间为92 s 或152s . 25.(10分)如图①,在6×6的方格纸中,给出如下三种变换:P 变换,Q 变换,R 变换.将图形F 沿x 轴向右平移1格得到图形F 1,称为作1次P 变换;将图形F 沿y 轴翻折得到图形F 2,称为作1次Q 变换;将图形F 绕坐标原点顺时针旋转90°得到图形F 3,称为作1次R 变换.规定:PQ 变换表示先作1次Q 变换,再作1次P 变换;QP 变换表示先作1次P 变换,再作1次Q 变换;R n 变换表示作n 次R 变换,解答下列问题:(1)作R 4变换相当于至少作__2__次Q 变换.(2)请在图②中画出图形F 作R 2018变换后得到的图形F 4.(3)PQ 变换与QP 变换是否是相同的变换?请在图③中画出PQ 变换后得到的图形F 5,在图④中画出QP 变换后得到的图形F 6.(第25题)【解】(1)根据操作,观察发现:每作4次R变换便与原图形F重合.因此R4变换相当于作2n次Q变换(n为正整数).(2)∵2018÷4=504……2,故R2018变换即为R2变换,其图象如解图①所示.(3)PQ变换与QP变换不是相同的变换.画出图形F5,F6如解图②③所示.(第25题解)26.(10分)在平面直角坐标系中,O为坐标原点,已知点A(4,0),B(0,3).若有一个直角三角形与Rt△ABO全等,且它们有一条公共边,请写出这个三角形未知顶点的坐标.【解】如解图.分三种情况讨论:①若AO为公共边,易得未知顶点为B′(0,-3)或B″(4,3)或B′′′(4,-3).②若BO为公共边,易得未知顶点为A′(-4,0)或A″(4,3)(与点B″重合)或A′′′(-4,3).③若AB 为公共边,易得此时有三个未知顶点O ′,O ″,O ′′′,其中点O ′(4,3)(与点B ″重合).过点O 作OD ⊥AB 于点D ,过点D 作DE ⊥y 轴于点E ,DF ⊥x 轴于点F .易得AB =5,OD =OA·OB AB =2.4,∴BD =OB 2-OD 2=1.8,ED =BD·OD OB=1.44. 同理可得DF =1.92.连结O ″D .易知点O 和点O ″关于点D (1.44,1.92)对称,∴点O ″(2.88,3.84).设AB 与OO ′交于点M ,则点M (2,1.5).易知点O ″与点O ′′′关于点M 对称,∴点O ′′′(1.12,-0.84).(第26题解)。

相关文档
最新文档