对应分析原理
对应分析
p12 / p1. p22 / p2. p n 2 / pn .
p1 p / p1. p 2 p / p 2. pnp / pn.
pij n pij E ( ) = ∑ . pi. = p. j , j = 1,2,, p pi. i =1 pi.
因为原始变量的数量等级可能不同,所以为了尽 量减少各变量尺度差异,将行轮廓中的(各列元素) 均除以其期望的平方根.得矩阵D(R)
32 6
15 1
62 8
11 1
40 8
58 6
35 10
58 67
21 23
70 95
17 25
70 71
62 89
83 91
American European Japanese Large Medium Small Family Sporty Work 1 Income 2 Incomes Own Rent Married Married with Kids Single
变量的叉积矩阵
∑ R = (X* )′X* ( p × p)
样品的叉积矩阵
∑ Q = X* ( X* )′ ( n × n)
显而易见,变量和样品的叉积矩阵的阶数不同,一般来说, 显而易见,变量和样品的叉积矩阵的阶数不同,一般来说, 他们的非零特征根也不一样,那么能否将观测值做变换. 他们的非零特征根也不一样,那么能否将观测值做变换.
含义 雪糕 纯水 碳酸饮料 果汁饮料 保健食品 空调 洗衣机 毛毯
代码 Feel1 Feel2 Feel3 Feel4 Feel5 Feel6 Feel7 Feel8
含义 清爽 甘甜 欢快 纯净 安闲 个性 兴奋 高档
name1
product1 product2 product3 product4 product5 product6 product7 product8 feel1 feel2 feel3 feel4 feel5 feel6 feel7 feel8 50 508 55 109 34 11 30 2 368 217 19 142 16 2 4 3
对应分析
可见 λk 也是ZZ’的特征根,相应的特征向量是 Zu k
因此将原始数据矩阵X变换成矩阵Z,则变量和 样品的协差阵分别可表示为 A = Z ′Z 和B=ZZ′ ,A和 B具有相同的非零特征值,相应的特征向量有很密 切的关系。 这样就可以用相同的因子轴去同时表示变量 和样品,把变量和样品同时反映在具有相同坐标 轴的因子平面上。
= ∑ z ak z aj
a =1
n
pak − pa. p.k xak − xa. x.k = z ak = pa. p.k xa. x.k
令Z为zij所组成的矩阵,则 A = Z′Z
p1 j 称 p. j
p2 j p. j
L
pnj x1 j = p. j x. j
L
第i个行变量的期望:
E( pij p. j )=∑
j =1 p
pij p. j
. p. j = pi.
因为原始变量的数量等级可能不同,所以为了尽量 减少各变量尺度差异,将列形象中的各行元素均除以 其期望的平方根。得矩阵D(Q)
p11 p.1 p1. p21 D (Q ) = p.1 p2. M p n1 p.1 pn. p12 p.2 p1. p22 p.2 p2. M pn 2 p.2 pn.
X ⋅ X*
*
′
x11 − x1 x21 − x1 L xn1 − x1 x11 − x1 x12 − x2 L x1p − xp x12 − x2 x22 − x2 L xn2 − x2 x21 − x1 x22 − x2 L x2 p − xp = × M M M M M M x − x x − x L x − x x −x x − x L x − x np p n1 1 n2 2 np p 1p p 2 p p
第九章对应分析资料
应用多元统计分析第九章对应分析对应分析又称相应分析,于1970年由法国统计学家J.P.Beozecri提出的.它是在R型和Q型因子分析基础上发展起来的多元统计分析方法,故也称为R-Q型因子分析.因子分析方法是用少数几个公共因子去提取研究对象的绝大部分信息,既减少了因子的数目,又把握住了研究对象的相互关系.在因子分析中根据研究对象的不同,分为R型和Q型,如果研究变量间的相互关系时采用R型因子分析;如果研究样品间相互关系时采用Q型因子分析.无论是R型或Q型都未能很好地揭示变量和样品间的双重关系.另方面在处理实际问题中,样本的大小经常是比变量个数多得多.当样品个数n很大(如n>100),进行Q型因子分析时,计算n阶方阵的特征值和特征向量对于微型计算机的容量和速度都是难以胜任的.还有进行数据处理时,为了将数量级相差很大的变量进行比较,常常先对变量作标准化处理,然而这种标准化处理对于变量和样品是非对等的,这给寻找R型和Q型之间的联系带来一定的困难.第九章什么是对应分析对应分析方法是在因子分析的基础上发展起来的,它对原始数据采用适当的标度方法.把R型和Q型分析结合起来,同时得到两方面的结果---在同一因子平面上对变量和样品一块进行分类,从而揭示所研究的样品和变量间的内在联系.对应分析由R 型因子分析的结果,可以很容易地得到Q 型因子分析的结果,这不仅克服样品量大时作Q 型因子分析所带来计算上的困难,且把R 型和Q 型因子分析统一起来,把样品点和变量点同时反映到相同的因子轴上,这就便于我们对研究的对象进行解释和推断.第九章 对应分析的基本思想由于R 型因子分析和Q 型分析都是反映一个整体的不同侧面,因而它们之间一定存在内在的联系. 对应分析就是通过一个变换后的过渡矩阵Z 将二者有机地结合起来.具体地说,首先给出变量间的协差阵R S =Z'Z 和样品间的协差阵Q S =ZZ' ,由于Z'Z 和ZZ'有相同的非零特征根,记为12...m λλλ≥≥≥,如果R S 的特征根i λ对应的特征向量为i v ,则Q S 的特征根i λ对应的特征向量i i i u Zv λ=.由此可以很方便地由R 型因子分析而得到Q 型因子分析的结果.对应分析的基本思想由A 的特征根和特征向量即可写出R 型因子分析的因子载荷阵(记为R A )和Q 型因子分析的因子载荷阵(记为Q A ).§9.1 什么是对应分析基本思想由于A和B具有相同的非零特征根,而这些特征根又正是各个公共因子的方差,因此可以用相同的因子轴同时表示变量点和样品点,即把变量点和样品点同时反映在具有相同坐标轴的因子平面上,以便对变量点和样品点一起考虑进行分类.第十章典型相关分析相关分析是研究多个变量与多个变量之间的相关关系.如研究两个随机变量之间的相关关系可用简单相关系数表示;研究一个随机变量与多个随机变量之间的相关关系可用全相关系数表示.1936年Hotelling首先将相关分析推广到研究多个随机变量与多个随机变量之间的相关关系,故而产生了典型相关分析,广义相关系数等一些有用的方法.第十章什么是典型相关分析在实际问题中,经常遇到要研究一部分变量和另一部分变量之间的相关关系,例如:在工业中,考察原料的主要质量指标(1,.....,p X X ) 与产品的主要质量指标(1,.....,p Y Y )间的相关性;在经济学中,研究主要肉类的价格与销售量之间的相关性;在地质学中,为研究岩石形成的成因关系,考察岩石的化学成份与其周围围岩化学成份的相关性;在气象学中为分析预报24小时后天气的可靠程度,研究当天和前一天气象因子间的相关关系;第十章 什么是典型相关分析在教育学中,研究学生在高考的各科成绩与高二年级各主科成绩间的相关关系;在婚姻的研究中,考察小伙子对追求姑娘的主要指标与姑娘想往的小伙子的主要尺度之间的相关关系;在医学中,研究患某种疾病病人的各种症状程度与用科学方法检查的一些结果之间的相关关系;在体育学中,研究运动员的体力测试指标与运动能力指标之间的相关关系等.第十章 什么是典型相关分析一般地,假设有一组变量1,.....,p X X 与另一组变量1,.....,p Y Y (也可以记为1,....,p p q X X ++),我们要研究这两组变量的相关关系,如何给两组变量之间的相关性以数量的描述,这就是本章研究的典型相关分析.当p=q=1时,就是研究两个变量X 与Y 之间的相关关系.简单相关系数是最常见的度量.其定义为第十章 什么是典型相关分析当p ≥ 1 ,q=1时(或 q ≥ 1 , p =1)设则称为Y 与(X1,…,Xp) 的全相关系数.其实Y 对X 的回归为1(|)()()Y YX XX X E Y X x def x μμϕ-=+∑∑-且 并称R 为全相关系数 .第十章 什么是典型相关分析 当p,q>1时,利用主成分分析的思想,可以把多个变量与多个变量之间的相关化为两个新变量之间的相关.也就是求α=(α1,…, αp )'和β =(β1,…, βq ) ' , 使得新变量:V = α1X 1+…+αp X p = α 'X1~(,),0XX XY p YX YY X N Y μσ+∑∑⎛⎫⎛⎫∑∑=> ⎪ ⎪∑⎝⎭⎝⎭1/21YX XX XY YY R σ-⎛⎫∑∑∑= ⎪⎝⎭(,())Y x Rρϕ=W = β1Y 1+…+ βq Y q = β 'Y 之间有最大可能的相关,基于这个思想就产生了典型相关分析(Canonical correlatinal analysis).第十章 总体典型相关设X=(X1,...,Xp )及Y=(Y1,...,Yq)为随机向量(不妨设p ≤q),记随机向量Z 的协差阵为其中Σ11是X 的协差阵,Σ22是Y 的协差阵, Σ12 =Σ’21是X,Y 的协差阵. 第十章 总体典型相关我们用X 和Y 的线性组合V=a X 和W=b Y 之间的相关来研究X 和Y 之间的相关.我们希望找到a 和b,使ρ(V,W) 最大.由相关系数的定义:又已知⎪⎭⎫ ⎝⎛∑∑∑∑=∑22211211第十章总体典型相关故有对任给常数c1,c2,d1,d2,显然有ρ(c1V+d1, c2W+d2)=ρ(V,W)即使得相关系数最大的V=a'X和W=b'X并不唯一.故加附加约束条件 Var(V)=a'Σ11a=1,Var(W)=b'Σ22b=1.问题化为在约束条件Var(V)= 1,Var(W)=1下,求a和b,使得ρ(V,W)= a'Σ12b达最大 .第十章样本典型相关设总体Z=(X1,...,X p,Y1,…,Y q )’.在实际问题中,总体的均值E(Z)=和协差阵D(Z)=通常是未知的,因而无法求得总体的典型相关变量和典型相关系数.首先需要根据观测到的样本资料阵对其进行估计.已知总体Z的n个样品:第十章 样本典型相关样本资料阵为若假定Z ~N(μ,∑),则协差阵的最大似然估计为第十章 样本典型相关我们从协差阵的最大似然估计S*(或样本协差阵S)出发,按上节的方法可以导出样本典型相关变量和样本典型相关系数.还可以证明样本典型相关变量和样本典型相关系数是总体典型相关变量和样本典型相关系数的极大似然估计.也可以从样本相关阵R 出发来导出样本典型相关变量和样本典型相关系数.第十章 样本典型相关典型相关系数的显著性检验:总体Z 的两组变量X=(X 1,...,X p )’和Y =(Y 1, …,Y q )’如果不相()()()()1(1,2,...,)t t t p q X Z t n Y +⨯⎛⎫== ⎪⎝⎭'()()11()()nt t t Z Z Z Z def S n ∧=∑=--∑关,即COV(X,Y )=∑12=0,以上有关两组变量典型相关的讨论就毫无意义.故在讨论两组变量间相关关系之前,应首先对以下假设H 0作统计检验.(1) 检验H 0 : ∑12=0 (即λ1=0)设总体Z ~N p+q (μ,∑).用似然比方法可导出检验H 0的似然比统计量为(A ,A 11,A 22为离差阵)第十章 样本典型相关典型相关系数的显著性检验(2)检验H 0(i): λi =0 (i =2,...,p )当否定H 0时,表明X,Y 相关,进而可得出至少第一个典型相关系数λ1≠ 0.相应的第一对典型相关变量V 1,W 1可能已经提取了两组变量相关关系的绝大部分信息.在实际问题中,经常迂到需要研究两组多重相关变量间的相互依赖关系,并研究用一组变量(常称为自变量或预测变量)去预测另一组变量(常称为因变量或响应变量),除了最小二乘准则下的经典多元线性回归分析(MLR),提取自变量组主成分的主成分回归分析(PCR)等方11221122||||||A S A A S S Λ==⨯⨯法外,还有近年发展起来的偏最小二乘(PLS)回归方法.第十一章什么是偏最小二乘回归偏最小二乘回归提供一种多对多线性回归建模的方法,特别当两组变量的个数很多,且都存在多重相关性,而观测数据的数量(样本量)又较少时,用偏最小二乘回归建立的模型具有传统的经典回归分析等方法所没有的优点。
对应分析原理
对应分析原理
对应分析原理是一种用来确定两个或多个事物之间的对应关系的方法。
它主要包括以下几个步骤:
1. 收集相关数据:首先,需要收集与待分析事物相关的数据。
这些数据可以是各种类型的,比如数字、文字、图像等。
2. 建立对应关系:在收集到足够的数据之后,需要根据数据的特征建立对应关系。
对应关系可以是一对一的,也可以是一对多的。
3. 分析数据特征:根据建立的对应关系,可以对数据的特征进行分析。
可以使用统计学方法、机器学习算法等来识别数据的模式和规律。
4. 验证对应关系:在分析数据特征之后,需要对建立的对应关系进行验证。
可以使用交叉验证、模型评估等方法来验证对应关系的准确性和可靠性。
5. 应用对应关系:最后,根据对应分析的结果,可以应用对应关系来解决实际问题。
比如,可以根据对应关系预测未知数据的属性或进行分类。
通过对应分析原理,我们可以更好地理解不同事物之间的对应关系,从而为实际问题提供科学的解决方案。
无论是在科学研究、工程设计还是商业决策中,对应分析都具有重要的应用价值。
对应分析
对应分析法一、简介对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,是近年新发展起来的一种多元相依变量统计分析技术,是一种多元统计分析技术,主要分析定性数据的方法,也是强有力的数据图示化技术。
对应分析是一种数据分析技术,它能够帮助我们研究由定性变量构成的交互汇总表来揭示变量间的联系。
交互表的信息以图形的方式展示。
主要适用于有多个类别的定类变量,可以揭示同一个变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系,适用于两个或多个定类变量。
对应分析是由法国人Benzenci于1970年提出的,起初在法国和日本最为流行,然后引入到美国。
对应分析法是在R型和Q型因子分析的基础上发展起来的一种多元统计分析方法,因此对应分析又称为R-Q型因子分析。
在因子分析中,如果研究的对象是样品,则需采用Q型因子分析;如果研究的对象是变量,则需采用R型因子分析。
但是,这两种分析方法往往是相互对立的,必须分别对样品和变量进行处理。
因此,因子分析对于分析样品的属性和样品之间的内在联系,就比较困难,因为样品的属性是变值,而样品却是固定的。
于是就产生了对应分析法。
对应分析就克服了上述缺点,它综合了R型和Q型因子分析的优点,并将它们统一起来使得由R型的分析结果很容易得到Q型的分析结果,这就克服了Q 型分析计算量大的困难;更重要的是可以把变量和样品的载荷反映在相同的公因子轴上,这样就把变量和样品联系起来便于解释和推断。
对应分析数据的典型格式是列联表或交叉频数表。
常表示不同背景的消费者对若干产品或产品的属性的选择频率。
背景变量或属性变量可以并列使用或单独使用。
两个变量间——简单对应分析;多个变量间——多元对应分析。
对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
它最大特点是能把众多的样品和众多的变量同时作到同一张图解上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。
第九章-对应分析
pp i r i cD c 1r i c
i 1
2
总 惯 量 jq 1 p ji p 1p ij p p ji p i jq 1 p jc j r D r 1c j r
其中
2
ricD c 1ricq j1
pij
pipj pj
称为第i 行轮廓 r i 到行轮廓中心c 的卡方( 2 )距离, 它可看作是一个加权的平方欧氏距离。同样,
❖ 将表9.1.3中的数据除以,得到对应矩阵,列于表
9.1.4中。表9.1.4给出的行密度和列密度向量为
0.185
r0.363, c0.305,0.173,0.231,0.160,0.131
0.218 0.186 0.235 0.117 0.068
RDr1P00..331029
pp2
p p p p
❖ 其中 D r d ia gp 1 ,p 2 , ,p p 。
p1q
p1
p2q p2
p pq
p p
列轮廓矩阵
p11 p1
p12 p2
C PDc1 c1,c2 ,
p21
,cq p1
p22 p2
p p1 p p2
p1
p2
❖ 其中 D c d ia gp 1 ,p 2 , ,p q。
和c 的元素有时称为行和列密度(masses)。
三、行、列轮廓
❖ 第 i 行轮廓:
ri p p ii1 ,p p ii2 , ,p p iiq n n ii1 ,n n ii2 , ,n n iiq
其各元素之和等于1 ,即 r i1 1 , i 1 ,2 , ,p 。 ❖ 第 j 列轮廓:
cj p p1 jj,p p2 jj, ,p ppjj n n1 jj,n n2 jj, ,n npjj
对应分析
首先选取了数据如下:欲分析该省这么多年各种产业生产总值的特征以及该省每一年的人口数与每一年各产业生产总值之间的关系。
一、对应分析对应分析又称为相应分析,是一种多元相依变量统计分析技术。
通过分析由属性变量构成的交互汇总数据来解释变量之间的内在联系。
同时,使用这种技术,还可以揭示同一变量的各个类别之间的差异及不同变量各个类别之间的对应关系。
而且变量划分的类别越多,这种方法就越明显。
对应分析的过程由两部分组成:表格和关联图。
对应分析中的表格是一个二维表格,由行和列构成。
每一行代表事物的一个属性,依次排开。
列则代表不同的事物本身,它由样本集合构成,排列顺序没有特别要求。
在关联图上,各个样品都浓缩为一个点集合,而样品的属性变量在图上同样也是以点集合的形式显示出来。
对应分析的基本思想就是利用降维的思想,通过分析原始数据结构,对一个列联表中的行与列同时进行处理。
它的最大特点就是可以在同一张图上同时表示出两类属性变量的各种状态,以直观、明了的方式揭示属性变量之间及属性变量各种状态之间的相互关系。
另外,对应分析还省去了公因子的选取和因子旋转等复杂的数学运算及中间过程,可以从因子载荷图上对事物进行分类,而且能够揭示分类的主要参数及依据。
具体实验步骤:(1)数据录入:打开SPSS文件,按顺序:文件——新建——数据打开一个空白数据文件,首先进行变量的编辑,点击在SPSS变量视图中建立变量“人口数”、“产业”、“数值”分别表示“全省户籍人口”、“生产总值情况”和“数据的权重”。
“人口数”为数值变量,分别将每年该省的户籍人口数赋值为“1”、“2”、“3”、“4”.....“24”。
“生产总值情况”为名义变量,分别将“农业生产总值”、“工业生产总值”、“建筑业生产总值”、“第三产业生产总值”赋值为“1”、“2”、“3”、“4”。
如图所示:在SPSS活动数据文件的数据视图中,把相关数据输入到各个变量中。
(2)打开数据文件,进入SPSS Statistics 数据编辑器窗口,在菜单栏中选择“数据——加权个案”命令,将变量“数值”选入加权个案,单击“确定”按钮。
第8讲因子分析与对应分析
第8讲因子分析与对应分析因子分析和对应分析是多元统计分析的两个重要方法,可以用于探索和解释多个变量之间的关系。
本文将详细介绍因子分析与对应分析的原理、应用以及在研究中的注意事项。
一、因子分析1.概念与原理因子分析是一种用于降维和检验构念的统计方法,通过分析变量之间的共同变异性,将一组相关变量归纳为几个相互独立的因子。
通过因子分析,可以减少变量的数量,提取出变量集合的共同因素,并进一步应用这些因子进行研究。
2.过程与步骤因子分析的步骤主要包括:确定因子数量、提取因子、旋转因子和解释因子。
首先,需要根据研究的目的和理论基础确定因子的数量;然后,通过主成分分析、最大似然法等方法提取因子;接着,对提取的因子进行旋转,以便更好地解释因子的含义;最后,根据提取和旋转的因子来解释因子的含义和解释力,进行结果的解释。
3.应用与示例因子分析可以应用于研究心理学、社会学、经济学等多个领域。
例如,在心理学中,可以通过因子分析提取出代表不同人格特征的因子,从而研究不同因素对人格的影响。
在市场研究中,可以通过因子分析分析顾客对不同产品特征的偏好,从而为产品定位和市场推广提供参考。
二、对应分析1.概念与原理对应分析是一种描绘和解释两个或多个表格之间关系的统计方法,通过计算表格中元素之间的关联性,找出表格之间的对应关系。
对应分析基于数学原理,可以识别表格中的模式和趋势,并提供对表格元素之间关系的可视化展示。
2.过程与步骤对应分析的过程主要包括:计算对应坐标、分析对应方向和解释对应结果。
首先,通过降维技术(如主成分分析)计算表格中每个元素的对应坐标,即将高维表格转化为低维坐标。
其次,通过对应方向的分析,找出表格之间的对应关系。
最后,根据对应结果,解释表格之间的关联性和趋势。
3.应用与示例对应分析可以应用于研究多个变量之间的关系,如消费者对产品特征的偏好、不同地区的经济发展等。
例如,在市场研究中,可以通过对应分析识别消费者对不同产品特征的偏好,并据此进行市场推广策略。
对应分析、典型相关分析、定性数据分析
应用领域的拓展
对应分析的应用领域 拓展
随着数据科学和商业智能的不断 发展,对应分析的应用领域将不 断拓展,如市场细分、消费者行 为分析、社交网络分析等,对应 分析将为这些领域提供更有效的 分析和预测工具。
典型相关分析的应用 领域拓展
典型相关分析作为一种重要的多 元统计分析方法,其应用领域也 将不断拓展,如生物信息学、环 境科学、金融风险管理等,典型 相关分析将为这些领域提供更准 确的数据分析和预测工具。
典型相关分析
能够揭示两组变量之间的关联,但需要较大的样本量, 且对异常值敏感。
定性数据分析
能够挖掘数据中的模式和规律,但主观性强,需要经 验丰富的分析师进行操作。
05
对应分析、典型相关分析、定性数据分析的 未来发展
CHAPTER
新方法的出现
对应分析的新方法
随着数据科学和统计学的不断发展,对应分析的新方法将不断涌现,如基于机器学习的对应分析方法、网络分析方法 等,这些新方法将为对应分析提供更强大的工具和更广泛的应用领域。
心理学研究
在心理学研究中,对应分析可用于揭示人类行为和心理状态之间的关系。
例如,它可以用于研究不同性格类型或心理状态的人在不同情境下的行
为反应。
02 典型相关分析
CHAPTER
典型相关分析的定义
典型相关分析是一种多元统计分析方 法,用于研究两组变量之间的相关关 系。
它通过寻找两组变量之间的典型相关 变量,来解释两组变量之间的相互关 系。
市场调研
在市场调研中,定性数据分析可用于深入了解消费者需求、 态度和行为,为产品定位和市场策略提供依据。
01
社会学研究
在社会学研究中,定性数据分析常用于 探究社会现象、文化差异和群体行为等, 以揭示社会结构和动态。
对应分析
对应分析对应分析方法(Correspondence Analysis)又称相应分析、关联分析,是一种多元相依变量统计分析技术,是通过分析由定性变量构成的交互汇总数据来解释变量之间的内在联系的。
同时,使用这种分析技术还可以揭示同一变量的各个类别之间的差异以及不同变量各个类别之间的对应关系。
特别是当分类变量的层级数比较大时,对应分析可以将列联表中众多的行和列的关系在低维的空间中表示出来。
而且,变量划分的类别越多,这种方法的优势就越明显。
对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
它最大特点是能把众多的样品和众多的变量同时作到同一张图上,将样品的大类及其属性在图上直观而又明了地表示出来,具有直观性。
另外,它还省去了因子选择和因子轴旋转等复杂的数学运算及中间过程,可以从因子载荷图上对样品进行直观的分类,而且能够指示分类的主要参数(主因子) 以及分类的依据,是一种直观、简单、方便的多元统计方法。
该统计研究技术在市场细分、产品定位、品牌形象以及满意度研究等领域正在越来越广泛的运用。
方法原理◆将数据整理为交叉表,然后按照零假设成立的情况进行变量变换(计数资料连续化)。
◆分别对行变量和列变量进行因子分析,得到各自的因子分解方式和各类别的评分。
◆将行、列变量的因子分析结果结合起来观察,研究两变量各级别的关系。
要点◆是多维图示分析技术的一种◆与因子分析有关(分类资料的因子分析)◆通过图形直观展示两个/多个分类变量各类间的关系◆研究较多分类变量间关系时较佳◆各个变量的类别较多时较佳◆结果直观、简单例在研究读写汉字能力与数学的关系时,取得了232个美国亚裔学生的数学成绩和汉字读写能力的数据。
关于汉字读写能力的变量有三个水平:“纯汉字”意味着可以完全自由使用纯汉字读写,“半汉字”意味着读写中只有部分汉字(比如日文),而“纯英文”意味着只能够读写英文而不会汉字。
数学成绩有4个水平:A、B、C、F。
第六章对应分析
对应分析的基本原理
由原始资料阵X出发,计算规格化的概率矩阵P, 使变量与样品具有相同比例大小,在空间定义两 两样品点或两两变量点之间的距离,定义样品点 和变量点的协差阵分别为B和A。A和B的非0特 征根相同,而特征根又表示各个公共因子所提供 的方差,因此变量空间中的公共因子与样品空间 中对应的各个公共因子在总方差中所占的百分比 完全相同,从几何意义来看,即诸样品点与样品 空间中各因子轴的距离和诸变量点与变量空间中 相对应的各因子轴的距离完全相同,因此,可以 把变量点和样品点同时反映在同一个因子轴所确 定的平面上(即取同一个坐标系),根据接近的 程度,将变量点与样品点一起考虑进行分类。
对应分析的基本思想
通过一个过渡矩阵Z将R型因子分析和Q 型因子分析有机地结合起来。首先给出变 量点的协差阵A和样品点的协差阵B,由于 A和 B有相同的非零特征根,这些特征根又 正是各个公共因子的方差,因此可以用相 同的因子轴同时表示变量点和样品点,即 把变量点和样品点同时反映在具有相同坐 标轴的因子平面上,以便对变量点和样品 点一起考虑原始资料阵X出发,计算规格化的 概率矩阵P;相当于改变了测度尺度, 使变量与样品具有相同比例大小;
二﹑ 计算过渡矩阵Z; 三﹑ 进行因子分析
1.R型因子分析 2.Q型因子分析
对应分析的微机实现
对应分析在SPSS中的实现
在SPSS的数据编辑窗口中点help→syntax guide→categories , 其 中 的 ANACOR 和 correspondence为对应分析过程,可通过 编简单的程序来实现对应分析。
第六章 对 应 分 析
【教学目的】通过本章的教学应使学生 掌握对应分析的基本思想和基本原理, 掌握用对应分析法分析研究解决实际问 题的方法。
对应分析
对应分析对应分析的基本思想对应分析( Correspondence Analysis )又称为相应分析,是由法国统计学家于1970提出的,是在R型和Q型因子分析基础上,发展起来的一种多元相依的变量统计分析技术。
它通过分析由定性变量构成的交互汇总表来揭示变量间的关系。
当以变量的一系列类别以及这些类别的分布图来描述变量之间的联系时,使用这一分析技术可以揭示同一变量的各个类别之间的差异以及不同变量各个类别之间的对应关系。
对应分析方法是通过对交互表的频数分析来确定变量及其类别之间的关系。
例如,在分析顾客对不同品牌商品的偏好时,可以将商品与顾客的性别、收入水平、职业等进行交叉汇总,汇总表中的每一项数字都代表着某一类顾客喜欢某一品牌的人数,这一人数也就是这类顾客与这一品牌的“对应”点,代表着不同特点的顾客与品牌之间的联系。
通过对应分析,可以把品牌、顾客特点以及它们之间的联系同时反映在一个二维或三维的分布图上,顾客认为比较相似的品牌在图上的分布就会彼此靠近在一起。
根据顾客特点与每一品牌之间的距离,就可以判断它们之间关系的密切程度。
在对应分析中,每个变量的类别差异是通过直观图上的分值距离来表示。
这个距离并不是我们通常所说的距离,而是经过加权的距离,在加权的过程中,以卡方值的差异表现出来。
因此,对应分析的基础是将卡方值转变为可度量的距离。
卡方值是由累计交叉汇总表中每一交互组的实际频数与期望频数的差值计算得出。
如果卡方值是负值,就说明这一单元中实际发生频数低于期望频数。
每一单元格(每个行变量类别与列变量类别在表中的交叉点)频数的期望值取决于它在行分布中所占比例和列分布中所占比例。
如果某一单元格的卡方值是正值,而且数值很大,就说明这一单元格对应的行变量与列变量有很强的对应关系,这两个类别在图上的距离就会很近。
反之,若为负值,则在图上的距离就会远。
总之,对应分析是通过对定性变量构成的交互表进行分析,将定性变量的数据转变成可度量的分值,减少维度并做出分值分布图。
对应分析
对应分析对应分析是指在进行某种事物或情况时,通过对应关系的分析来进行推理、研究或解决问题的方法。
在不涉及AI和人工智能的情况下,对应分析可以应用于各种领域和问题,例如产品定位、市场调研、销售策略等等。
下面将简要介绍对应分析的相关概念和应用。
对应分析是一种基于对应关系的研究方法。
对应关系是指在两个事物、情况或变量之间存在一种相互联系或相互影响的关系。
通过对这种关系进行分析,可以揭示隐藏在数据背后的规律和趋势,帮助人们做出决策和解决问题。
在实际应用中,对应分析可以用于产品定位。
产品定位是指将一种产品或服务与目标市场中其他产品或服务区分开来,使其在市场中具有独特的竞争优势。
通过对目标市场中其他产品的特点和消费者需求进行对应分析,可以找到产品定位的破局点,从而设计出能够满足消费者需求并有竞争力的产品。
另外,对应分析也可以用于市场调研。
市场调研是指通过各种研究方法和技术,对市场中的消费者需求、竞争对手、市场环境等进行调查和分析,为企业的决策提供可靠的数据支持。
通过对消费者需求与产品特点、价格、品牌等进行对应分析,可以了解到消费者的购买动机和购买偏好,进而制定有针对性的市场策略。
此外,对应分析还可以应用于销售策略。
销售策略是指企业通过制定一系列销售计划和策略,以实现销售目标的过程。
通过对销售数据、市场需求和竞争对手等因素进行对应分析,可以找出市场中的机会和挑战,为销售策略的制定提供指导。
总而言之,对应分析是一种揭示数据背后规律和趋势的方法。
通过对数据和情况之间的对应关系进行分析,可以帮助人们做出决策和解决问题。
在产品定位、市场调研和销售策略等方面,对应分析都有重要的应用价值。
对应分析不仅能够帮助企业了解市场需求和消费者偏好,还可以为企业的决策提供科学依据。
对应分析原理范文
对应分析原理范文对应分析原理(Correspondence analysis)是一种用于探索和可视化数据集的统计分析方法,通过计算变量之间的相关性来揭示数据集中的模式和关联。
对应分析可用于分析分类变量、多元变量和混合变量的数据,常用于市场研究、社会科学、生态学和生物学等领域。
1.创建频数表:对于给定的数据集,首先需要将数据进行归类和计数,形成一个频数表。
频数表的行和列分别表示不同的分类变量和多元变量的取值,单元格内的数值表示对应的频数或计数。
2.计算卡方距离:根据频数表,计算不同分类变量和多元变量之间相似度的卡方距离。
卡方距离是一种衡量两个事物之间差异的统计度量,通过计算不同分类变量和多元变量之间的卡方距离,可以衡量它们之间的相关性。
3.进行奇异值分解:利用奇异值分解将卡方距离矩阵分解为三个矩阵的乘积。
奇异值分解可以将一个矩阵分解为一个正交矩阵、一个对角矩阵和一个转置矩阵的乘积。
这种分解可以提取出数据矩阵的主要特征,并将数据降维到较低的维度。
4.计算对应分析坐标:根据奇异值分解的结果,计算每个分类变量和多元变量在对应分析坐标系中的位置。
对应分析坐标系是一个二维坐标系,表示不同分类变量和多元变量之间的关系。
坐标系的原点表示整个数据集的平均位置,坐标轴表示主要的模式和维度。
5.可视化和解释:使用对应分析坐标,将数据集可视化为一个散点图或散点矩阵。
通过观察和解释散点图中不同分类变量和多元变量的位置,可以发现数据集中的模式、关联和异常。
对应分析的关键思想是通过计算变量之间的相关性来发现和解释数据集中的模式和关联。
通过降低数据的维度,对应分析可以将复杂的数据集可视化为一个简单的二维图形,从而使数据的结构和特征更加清晰和易于理解。
对应分析的优点包括能够处理多种类型的数据,如分类变量、多元变量和混合变量;能够提取出数据集的主要特征和维度;能够将复杂的数据集可视化为简单的图形;并且对于大规模数据集也有较好的计算效率。
第9章 对应分析
眼睛颜色 深色 棕色 蓝色 浅色 合计
金色 98 343 326 688 1455
头发颜色 合计 红色 棕色 深色 黑色 48 403 681 85 1315 84 909 412 26 1774 38 241 110 3 718 116 584 188 4 1580 286 2137 1391 118 5387
第9章对应分析
同一直角坐标系内同时表达出变量与样 品两者之间的相互关系
社会科学的数量研究中经常会对品质型(属性) 变量进行分析,研究两个或多个品质型变量之 间的相关关系。
例如:利用储户储蓄数据研究储户收入水平与所选择的 储蓄种类间是否存在联系;(该问题中收入水平和储蓄 种类均是品质型变量,其中收入水平为定序变量,储蓄 种类为定类变量) 例如:分析顾客职业与购买汽车的品牌之间的关系,研 究不同客户群对汽车的喜爱偏好。(该问题中顾客职业 和汽车品牌均是定类的品质型变量)
作业
利用《多元统计分析》课程中学到的方法, 分析现实中的经济学问题,形成一篇小论 文 格式:标题,作者(学号,姓名),摘要, 关键词,绪论,理论或模型简介,实证分 析,结论,参考文献
去除量纲,同时乘以一个系数
p
j
同理p个变量也可表示正类似形式
4、计算协方差矩阵
5、进行数据的对应变换
对协方差矩阵R与Q进行因子分析
R型因子分析
Q型因子分析
绘制变量和样品的对应分布图
R、Q因子分析,分别提取两个最重要的公 因子R1,R2和Q1,Q2 绘制在同一个坐标平面中,各点坐标为相 应的因子载荷
运行以后,数据编辑器中的原始数据并没 有变化,只是在右下角的状态栏中显示 “Weight on”字样。但利用加权后的数据 进行统计分析后所得到的结果与没加权数 据进行统计分析后得到的结果完全不同。
对应分析数据
对应分析数据一、背景介绍在当今信息爆炸的时代,大量的数据被生成和收集,为了更好地理解和利用这些数据,对数据进行对应分析是非常重要的。
对应分析是一种统计方法,用于研究两组数据之间的关系和相互作用。
通过对数据进行对应分析,我们可以发现数据中的模式、趋势和相关性,从而为决策提供有价值的信息。
二、对应分析的定义和原理对应分析(Correspondence Analysis,简称CA)是一种多变量数据分析方法,它通过将高维数据映射到低维空间中,从而揭示数据之间的关系。
对应分析的原理基于数学上的奇异值分解(Singular Value Decomposition,简称SVD)和特征值分解(Eigenvalue Decomposition),通过计算数据矩阵的特征值和特征向量,将数据在低维空间中进行降维和可视化。
三、对应分析的步骤和方法1. 数据预处理:对数据进行清洗和标准化,去除异常值和缺失值,并将数据转换为适合对应分析的格式。
2. 计算数据矩阵:根据数据的特点,构建数据矩阵,其中行表示样本或观测对象,列表示变量或属性。
3. 计算对应分析的结果:通过对数据矩阵进行奇异值分解或特征值分解,得到对应分析的结果,包括特征值、特征向量和对应坐标。
4. 解释和解读结果:根据对应分析的结果,进行可视化和解释,发现数据中的模式、趋势和相关性,并提取有用的信息。
5. 结果验证和应用:对对应分析的结果进行验证和应用,评估模型的准确性和可靠性,并将结果应用于实际问题的决策和优化。
四、对应分析的应用领域对应分析广泛应用于各个领域,包括市场调研、消费者行为、社会科学、生物学、医学等。
以下是对应分析在几个典型领域的应用示例:1. 市场调研:通过对应分析,可以分析不同产品或品牌在市场中的位置和竞争关系,帮助企业制定市场策略和推广计划。
2. 消费者行为:对应分析可以帮助分析消费者对不同产品或服务的偏好和关联性,为企业提供精准的市场定位和产品定价策略。
对应分析数据
对应分析数据一、概述对应分析数据是一种数据分析方法,用于研究两个或者多个变量之间的关系。
通过对数据进行对应分析,可以揭示变量之间的相关性,并匡助我们理解数据暗地里的模式和趋势。
本文将介绍对应分析数据的基本概念、步骤和应用场景。
二、基本概念1. 对应分析对应分析是一种多元数据分析方法,它通过将多个变量映射到一个低维空间中,从而揭示变量之间的关系。
对应分析可以匡助我们发现数据中的结构和模式,进而进行更深入的分析。
2. 对应图对应图是对应分析结果的可视化表示。
对应图通常是一个二维平面图,其中每一个数据点表示一个观测值,不同的颜色或者符号表示不同的组别或者类别。
通过观察对应图,我们可以看到数据点之间的关系和趋势。
三、步骤对应分析数据的步骤如下:1. 数据准备首先,需要准备要进行对应分析的数据。
数据可以是任何类型的,可以是定量数据(如数值)或者定性数据(如类别)。
确保数据的质量和完整性非常重要。
2. 数据标准化对应分析需要对数据进行标准化,以消除不同变量之间的量纲差异。
常用的标准化方法包括Z-score标准化和归一化等。
3. 计算对应分析利用对应分析的算法,对标准化后的数据进行计算,得到对应分析的结果。
对应分析的算法有多种,常用的包括主成份分析(PCA)和多维尺度分析(MDS)等。
4. 绘制对应图将对应分析的结果绘制成对应图,以便更直观地观察数据之间的关系和趋势。
对应图可以通过各种数据可视化工具来实现,如散点图、气泡图等。
5. 解读对应图通过观察对应图,我们可以解读数据之间的关系和趋势。
可以观察数据点的分布情况、类别之间的距离和相对位置等。
根据对应图的结果,可以进一步进行数据分析和决策。
四、应用场景对应分析数据在各个领域都有广泛的应用,以下列举几个常见的应用场景:1. 市场调研对应分析数据可以匡助市场调研人员了解不同产品或者品牌之间的关系和竞争状况。
通过对应分析,可以发现市场中的潜在细分市场和目标客户群体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§7.2 对应分析的基本理论
2020/4/4
中国人民大学六西格玛质量管理研究中心
24
目录 上页 下页 返回 结束
• 对应分析是R型因子分析与Q型因子分析的结合, 它也是利用降维的思想以达到简化数据结构的目 的,不过,与因子分析不同的是,它同时对数据 表中的行与列进行处理,寻求以低维图形表示数 据表中行与列之间的关系。对应分析的思想首先 由(Richardson)和(Kuder)在1933年提出, 后来法国统计学家(Jean-Paul Benzécri)和日 本统计学家林知己夫(Chikio Hayashi)对该方 法进行了详细的论述而使其得到了发展。
2020/4/4
中国人民大学六西格玛质量管理研究中心
21
目录 上页 下页 返回 结束
§7.2 对应分析的基本理论
2020/4/4
中国人民大学六西格玛质量管理研究中心
22
目录 上页 下页 返回 结束
§7.2 对应分析的基本理论
2020/4/4
中国人民大学六西格玛质量管理研究中心
23
目录 上页 下页 返回 结束
• 对应分析方法广泛用于对由属性变量构成的列联 表数据的研究,利用对应分析可以在一张二维图 上同时画出属性变量不同取值的情况,列联表的 每一行及每一列均以二维图上的一个点来表示, 以直观、简洁的形式描述属性变量各种状态之间 的相互关系及不同属性变量之间的相互关系。
2020/4/4
中国人民大学六西格玛质量管理研究中心
18
目录 上页 下页 返回 结束
§7.2 对应分析的基本理论
2020/4/4
中国人民大学六西格玛质量管理研究中心
19
目录 上页 下页 返回 结束
§7.2 对应分析的基本理论
2020/4/4
中国人民大学六西格玛质量管理研究中心
20
目录 上页 下页 返回 结束
§7.2 对应分析的基本理论
2. 距离与总惯量
3
目录 上页 下页 返回 结束
§7.1列联表及列联表分析
在讨论对应分析之前,我们先简要回顾一下列 联表及列联表分析的有关内容。在实际研究工 作中,人们常常用列联表的形式来描述属性变 量(定类尺度或定序尺度)的各种状态或是相 关关系,这在某些调查研究项目中运用得尤为 普遍。比如,公司的管理者为了了解消费者对 自己产品的满意情况,需要针对不同职业的消 费者进行调查,而调查数据很自然的就以列联 表的形式提交出来。见表7-1所示。
多元统计分析
何晓群
中国人民大学出版社
2020/4/4
中国人民大学六西格玛质量管理研
1
究中心
第 七 章 对应分析
• §7.1列联表及列联表分析
• §7.2 对应分析的基本理论
• §7.3对应分析的步骤及逻辑框图
• §7.4对应分析的上机实现
2020/4/4
中国人民大学六西格玛质量管理研
2
究中心
第 七 章 对应分析
11
目录 上页 下页 返回 结束
§7.1列联表及列联表分析
2020/4/4
中国人民大学六西格玛质量管理研究中心
12
目录 上页 下页 返回 结束
§7.1列联表及列联表分析
2020/4/4
中国人民大学六西格玛质量管理研究中心
13
目录 上页 下页 返回 结束
§7.1列联表及列联表分析
2020/4/4
2020/4/4
中国人民大学六西格玛质量管理研究中心
6
目录 上页 下页 返回 结束
§7.1列联表及列联表分析
2020/4/4
中国人民大学六西格玛质量管理研究中心
7
目录 上页 下页 返回 结束
§7.1列联表及列联表分析
2020/4/4
中国人民大学六西格玛质量管理研究中心
8
目录 上页 下页 返回 结束
2020/4/4
中国人民大学六西格玛质量管理研 究中心
4
目录 上页 下页 返回 结束
§7.1列联表及列联表分析
以上是两变量列联表的一般形式,横栏与纵栏交叉位置的数 字是相应的频数。这样表露数据就可以清楚地看到不同职业 的人对该公司产品的评价,以及所有被调查者对该公司产品 的整体评价、被调查者的职业构成情况等信息;通过这张列 联表,还可以看出职业分布与各种评价之间的相关关系,如 管理者与比较满意交叉单元格的数字相对较大(“相对”指 应抵消不同职业在总的被调查对象中的比例的影响),则说 明职业栏的管理者这一部分与评价栏的比较满意这一部分有 较强的相关性。由此可以看到,借助列联表,人们可以得到 很多有价值的信息。
非上市分类,按企业所属的行业分类,按不同所有
制关系分类等。同时用列联表的格式来研究企业的
各种指标,如企业的盈利能力、企业的偿债能力、
企业的发展能力等。这些指标即可以是简单的,也
可以是综合的,甚至可以是用因子分析或主成分分
析提取的公因子;把这些指标按一定的取值范围进
行分类,就可以很方便地用列联表来研究。
2020/4/4
中国人民大学六西格玛质量管理研究中心
5
目录 上页 下页 返回 结束
§7.1列联表及列联表分析
在研究经济问题的时候,研究者也往往用列联表的
形式把数据呈现出来。比如说横栏是不同规模的企
业,纵栏是不同水平的获利能力,通过这样的形式,
可以研究企业规模与获利能力之间的关系。更为一
般的,可以对企业进行更广泛的分类,如按上市与
2020/4/4
中国人民大学六西格玛质量管理研究中心
16
目录 上页 下页 返回 结束
§7.2 对应分析的基本理论
7.2.1 有关概念
1. 行剖面与列剖面
2020/4/4
中国人民大学六西格玛质量管理研究中心
17
目录 上页 下页 返回 结束
§7.2 对应分析的基本理论
2020/4/4
中国人民大学六西格玛质量管理研究中心
§7.1列联表及列联表分析
2020/4/4
中国人民大学六西格玛质量管理研究中心
9
目录 上页 下页 返回 结束
§7.1列联表及列联表分析
2020/4/4
中国人民大学六西格玛质量管理研究中心
10
目录 上页 下页 返回 结束
§7.1列联表及列联表分析
2020/4/4
中国民大学六西格玛质量管理研究中心
14
目录 上页 下页 返回 结束
§7.2 对应分析的基本理论
2020/4/4
中国人民大学六西格玛质量管理研究中心
15
目录 上页 下页 返回 结束
§7.2 对应分析的基本理论
假定我们下面讨论的都是形如表7-3的规格化的列联表 数据。为了论述方便,先对有关概念进行说明。